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In this work we present a derivation of the spectral theorem of unbounded spectral operators in a

Hilbert space. The spectral theorem has several applications, most notably in the theory of quantum

mechanics. The theorem allows a self-adjoint linear operator on a Hilbert space to be represented

in terms of simpler operators, projections.

The focus of this work are the self-adjoint operators in Hilbert spaces. The work begins with the int-

roduction of vector and inner product spaces and the de�nition of the complete inner product space,

the Hilbert space. Three classes of bounded linear operators relevant for this work are introduced:

self-adjoint, unitary and projection operators. The unbounded self-adjoint operator and its proper-

ties are also discussed. For the derivation of the spectral theorem, the basic spectral properties of

operators in Hilbert space are presented.

The spectral theorem is �rst derived for bounded operators. With the de�nition of basic spectral

properties and the introduction of the spectral family, the spectral theorem for bounded self-adjoint

operators is presented with a proof. Using Weckens lemma, the spectral theorem can be written for

the special class of unitary operators.

Using the spectral theorem for unitary operators, we can write the spectral theorem of unbounded

self-adjoint operators. Using the Cayley transform, the unbounded self-adjoint operator is rewritten

in terms of bounded unitary operators and the spectral theorem is presented in the most general

form. In the last section of the thesis, the application of the above results in quantum mechanics is

brie�y discussed.
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1 Introduction

The idea of the spectral theory arose from attempts to generalize the �nite dimensional
eigenvalue theory to in�nite dimensions. The spectral theorem allows a self-adjoint linear
operator on a Hilbert space to be represented in terms of simple operators, projections.
While spectral theory has many applications, it is of special importance in quantum
mechanics. With spectral theorem, the complicated quantum mechanical operator can be
constructed starting from projectors and the spectra of operators form the sets of possible
measurement outcomes of observables. [1, 2]

In this work, the spectral representation of a self-adjoint operator on a Hilbert space is
constructed. A Hilbert space is a (�nite or in�nite dimensional) complete inner product
space. Self-adjoint operators are linear operators on a complex Hilbert space that map
the Hilbert space into itself and are their own adjoint operators. Self-adjoint operators
are a fundamental concept in quantum mechanics, where observables are represented as
self-adjoint operators in Hilbert spaces.

In the �nite dimensional case the spectral theorem reduces to an eigenvalue theorem in
a normed space. If an operator T on an n-dimensional space has a set of orthonormal
eigenvectors (x1, . . . , xn) corresponding to n di�erent eigenvalues λ1, . . . , λn, then any
vector x has a unique representation

x =
n∑
i=1

〈x, xi〉xi (1)

where 〈· , ·〉 denotes the inner product. The usefulness of the spectral representation is
evident, since the complicated nature of the original operator T is broken down into simple
operations where T only acts on the eigenvectors:

Tx =
n∑
i=1

λi 〈x, xi〉xi. (2)

While the �nite dimensional case may be trivial, the in�nite-dimensional extension re-
quires a lot of tools to be rigorously constructed.

This work follows a functional analysis pathway to arrive at the spectral theorem. An
alternative approach is to use the theory of Lebesgue measure and integration and to ex-
press the spectral theorem using projection-valued measures. The latter approach is often
used in the literature, especially when applying spectral theorem in quantum mechanics.
The main source for this work has been the excellent Introductory functional analysis with
applications by Erwin Kreyszig[3] with additional insights from other sources[1, 2, 4].
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2 Operators in Hilbert spaces

In this section the key concepts of the spectral theory are presented, starting with vector
spaces and the de�nitions of completeness and the inner product. Also, some neces-
sary properties of bounded linear operators are discussed and several special classes of
bounded operators (self-adjoint, unitary and projection operators) used later in this work
are introduced.[3, 4]

2.1 Vector spaces

De�nition 2.1 (Metric space) A metric space is a pair (X, d), where X is a set and d is
a metric on X. The metric d is a function de�ned on X ×X such that for all x, y, z ∈ X
we have

(M1) d is real-valued, �nite and non-negative

(M2) d(x, y) = 0 ⇔ x = y

(M3) d(x, y) = d(y, x)

(M4) d(x, y) ≤ d(x, z) + d(z, y)

De�nition 2.2 (Cauchy sequence, completeness) A sequence (xn)n∈N in metric space X
is Cauchy, if for all ε > 0 one can �nd N ∈ N such that d(xn, xm) < ε for all n,m > N .
The space X is said to be complete if every Cauchy sequence in X converges.

Theorem 2.3 (Convergent sequence) Every convergent sequence in a metric space is a
Cauchy sequence.

Proof: If xn → x, then for every ε > 0 there exists an N , such that

d(xn, x) <
ε

2
(3)

for all n > N . Using triangle inequality we can write for m,n > N that

d(xn, xm) < d(xm, x) + d(xn, x) <
ε

2
+
ε

2
= ε (4)

and hence, (xn) is Cauchy.

In the following, unless stated otherwise, X denotes a vector space over a �eld K = R or
C. By a vector space we mean a nonempty set X of elements x, y, . . . together with two
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algebraic operations called vector addition and multiplication of vectors by scalars such
that x+ y ∈ X and αx ∈ X ∀ α ∈ K. Let us recall some basic de�nitions and properties
of vector spaces. A subspace Y of X is a vector space such that Y ⊂ X and for every
pair x, y ∈ Y and α, β ∈ K, it follows that αx+ βy ∈ Y .
A vector space X is said to be the direct sum of two subspaces Y and Z of X,

X = Y ⊕ Z (5)

if each x ∈ X has a unique representation

x = y + z (6)

where y ∈ Y and z ∈ Z. Here Z is called the algebraic complement of Y in X and vice
versa.

Theorem 2.4 (Complete subspace) A subspace M of a complex metric space X is itself
complete if and only if the set M is closed in X.

Proof: LetM be complete. Then, for every x ∈M there is a sequence (xn) inM which
converges to x. Since (xn) is Cauchy by theorem 2.3 and M is complete, (xn) converges
to a unique limit inM and hence x ∈M . This proves thatM is closed as x was arbitrary.

Conversely, let M be closed and (xn) a Cauchy sequence in M . Then xn → x ∈ X since
X is complete, which implies that x ∈ M = M since M is closed. This means that any
arbitrary Cauchy sequence in M converges meaning that M is complete.

De�nition 2.5 A subset M of a metric space X is said to be

1. rare in X if its closure M has no interior points

2. meager in X if M is the union of countably many sets each of which is rare in X

3. nonmeager in X if M is not meager in X.

A set of vectors x1, . . . , xm is called linearly independent if equation

α1x1 + . . . αmxm = 0 (7)

holds only for a m-tuple of scalars where α1 = . . . = αm = 0. Otherwise, the set of
vectors is linearly dependent. A vector space X is said to be �nite dimensional if there is
a positive integer n such that X contains a linearly independent set of n vectors whereas
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any set of n+1 or more vectors of X is linearly dependent. Then n is called the dimension
of X. If X is not �nite dimensional, it is in�nite dimensional.

A set of vectors x1, . . . , xk ∈ X span a subspace Y ⊂ X, if Y consists of all possible linear
combinations of the set x1, . . . , xk: Y = span(x1, . . . , xk) = {α1x1 + . . . , αkxk|α1, . . . , αk ∈
R}.

De�nition 2.6 (Normed space) Let X be a vector space over �eld K = C or R. A map
N : X → R is called a norm on X and (X,N) is called normed space if

(N1) N(x) ≥ 0 for all x ∈ X

(N2) N(λx) = |λ|N(x) for any λ ∈ K and x ∈ X

(N3) N(x+ y) ≤ N(x) +N(y) for any x, y ∈ X

(N4) N(x) = 0⇒ x = 0.

De�nition 2.7 (Banach space) A Banach space is a complete normed space, i.e. it is
complete in the metric de�ned by the norm.

De�nition 2.8 Let X and Y be metric spaces. Then T : D(T ) → Y with domain
D(T ) ⊂ X is called an open mapping if for every open set in D(T ) the image is an open
set in Y .

Theorem 2.9 (Bounded inverse theorem) A bounded linear operator T from a Banach
space X onto a Banach space Y is an open mapping. Hence, if T is bijective, T−1 is
bounded.

The proof of this theorem is omitted.

Since the spectral theorem is closely related to (and in �nite dimensions reduces to) the
eigenvalue decomposition in normed space, we should de�ne the eigenvalue problem. An
eigenvalue λ ∈ C of a square matrix A ∈ Rn×n is number that satis�es the eigenvalue
equation:

Ax = λx (8)

for some vector x 6= 0. Vector x is called the eigenvector of A. Given an eigenvalue λ,
the eigenvectors corresponding to this eigenvalue, together with the null-vector, span a
subspace in X called an eigenspace. The set of all eigenvalues is called the spectrum of A.
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2.2 Inner product spaces

De�nition 2.10 (Inner product) An inner product on X is a mapping of X × X into
scalar �eld K of X, that is for every pair x, y ∈ X there is an associated scalar 〈x, y〉
called the inner product. For all vectors x, y, z ∈ X and scalars λ ∈ K we have

(I1) 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉

(I2) 〈λx, y〉 = λ 〈x, y〉

(I3) 〈x, y〉 = 〈y, x〉

(I4) 〈x, x〉 ≥ 0 , 〈x, x〉 = 0⇔ x = 0.

The overline in (I3) denotes complex conjugation. The complex conjugate of a complex
number z = a+ ib is z = a− ib, where i is the imaginary unit, i2 = −1.

De�nition 2.11 (Inner product space) An inner product space is a vector space X with an
inner product de�ned on X. Given an inner product in a vector space X, the expression√
〈x, x〉 is a norm on X. We shall always consider inner product space as a normed space

with this norm.

De�nition 2.12 (Orthogonality) Vectors x, y in an inner product space X are said to be
orthogonal if 〈x, y〉 = 0.

De�nition 2.13 (Hilbert space) A Hilbert space, H, is a complete inner product space
(complete in the metric de�ned by the inner product).

2.3 Bounded linear operators on Hilbert space

In this section some general properties of bounded linear operators are presented and
two special classes of bounded linear operators, self-adjoint and unitary operators are
introduced. For the rest of the text, unless otherwise stated, X and Y denote normed
vector spaces and H denotes a complex Hilbert space.

De�nition 2.14 (Linear mapping) Let X and Y be vector spaces. A mapping T : X → Y
is linear, if T (ax+ by) = aTx+ bTy for all scalars a, b and all x, y ∈ X. Linear mappings
are usually called linear operators or just operators.

De�nition 2.15 (Linear functional) A linear operator with a domain in a vector space
and range in a scalar �eld is called a linear functional.
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De�nition 2.16 (Boundedness) Let T be an operator T : X → Y . T is bounded, if there
is a number M > 0 such that ||Tx|| ≤M ||x|| for all x.

Theorem 2.17 A linear operator is bounded if and only if it is continuous.

Proof: a) Suppose an operator T is linear and bounded. For any x, y ∈ X,

||Tx− Ty|| = ||T (x− y)|| ≤M ||x− y||. (9)

Now, for any ε > 0, ||Tx − Ty|| < ε whenever ||x − y|| < ε
M
, which means that T is

continuous.

b) Now suppose that T is linear and continuous. Taking ε = 1 in the de�nition of
continuity at y = 0, it follows that there exists δ > 0 such that

||Tx|| < 1 for ||x|| < δ. (10)

Hence for any y,

||Ty|| =
(

2||y||
δ

) ∣∣∣∣T ( yδ

2||y||

)∣∣∣∣
≤ 2||y||

δ

(11)

and thus T is bounded with M = 2
δ
.

Given normed spaces X and Y , the bounded operators T : X → Y form a normed space
L(X, Y ) when endowed with the operator norm

||T || = sup
||x||≤1

||Tx||Y . (12)

One can show that ||T || coincides with the in�mum of the number M in de�nition 2.16.
Also, L(X, Y ) is a Banach space whenever Y is complete. With the operator norm, the
set of all bounded linear functionals on X constitutes a normed space called the dual space
of X and is denoted by X ′.

De�nition 2.18 A sequence in normed space is said to be strongly convergent if

∃x ∈ X : lim
n→∞

||xn − x|| = 0. (13)

De�nition 2.19 A sequence in normed space is said to be weakly convergent if

∃x ∈ X : ∀f ∈ X ′, lim
n→∞

f(xn) = f(x). (14)
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De�nition 2.20 (Strong convergence of sequence of operators) A sequence (Tn) of bounded
operators Tn : X → Y is said to be

1. uniformly operator convergent if (Tn) converges in the norm

2. strongly operator convergent if (Tnx) converges strongly in Y for every x ∈ X

3. weakly operator convergent if (Tnx) converges weakly in Y for every x ∈ X

Theorem 2.21 (Baire's category theorem) If a metric space X 6= ∅ is complete, it is a
nonmeager in itself. This means that if X 6= ∅ and X is a union countably many closed
subsets, i.e.

X =
∞⋃
k=1

Ak (15)

with every Ak closed, then at least one Ak contains a nonempty open subset.

Proof: Suppose instead that the complete metric space X 6= ∅ was meager in itself.
Then

X =
∞⋃
k=1

Mk (16)

with eachMk rare in X. If we now construct a Cauchy sequence (xk) whose limit x (which
exists due to completeness) does not exist in any Mk, we arrive at a contradiction and
provide a proof for the theorem.

Consider a subset M1. By our assumption, M1 is rare in X and hence M1 does not
contain a nonempty open set. Since X does contain a nonempty open set (e.g. X contains
itself), this means that M1 6= X and hence the complement M

c

1 = X − M1 of M1 is
nonempty and open. We may now choose a point x1 ∈ M

c

1 and an open ball around it,
e.g.

B1 = B(x1; r1) ⊂M
c

1 (17)

with r < 1
2
. However, with the same logic, M2 is rare in X and so M2 does not contain

a nonempty open set. Hence, it does not contain the open ball B
(
x1,

r1
2

)
. This implies

that M
c

2 ∩ B
(
x1; r1

2

)
is not empty and open and so we may choose an open ball in this

set, say,

B2 = B(x2, r2) ⊂M
c

2 ∩B
(
x1;

r1

2

)
(18)

with r2 <
r1
2
. By induction, we obtain a sequence of balls

Bk = B(xk; rk) (19)
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with rk < 2−k such that Bk ∩Mk = ∅ and

Bk+1 ⊂ B
(
xk;

rk
2

)
⊂ Bk. (20)

Since rk < 2−k, the sequence (xk) of the centers is Cauchy and converges xk → x ∈ X
because X is complete. Also, for every m and n > m, we have Bn ⊂ B

(
xm; rm

2

)
and so

d(xm, x) ≤ d(xm, xn) + d(xn, x)

<
rm
2

+ d(xn, x)→ rm
2

(21)

as n→∞. Hence, x ∈ Bm for every m. Since Bm ⊂ M
c

m, we see that p /∈ Mm for every
m so that p /∈ ∪Mm = X which contradicts x ∈ X. Hence, the theorem is proved.

The following famous result is also known as the uniform boundedness theorem.

Theorem 2.22 (Banach�Steinhaus) Let (Tn)∞n=1 be a sequence of bounded linear opera-
tors from Banach space X into a normed space Y such that (||Tnx||)∞n=1 is bounded for
every x ∈ X, say,

||Tnx|| ≤ cx (22)

where cx is a real number. Then the sequence of norms ||Tn|| is bounded, i.e.

∃c > 0 : ||Tn|| ≤ c. (23)

Proof: For every k ∈ N, let Ak ⊂ X be the set of all x such that

||Tnx|| ≤ k (24)

for all n. We shall show that Ak is closed. For every x ∈ Ak, there is a sequence (xi) ∈ Ak
converging to x. Therefore, for every �xed n we have ||Tnxi|| ≤ k and we obtain ||Tnx|| ≤ k
because Tn and the norm are continuous. Hence, x ∈ Ak and Ak is closed.
Each x ∈ X belongs to some Ak by (22) and hence

X = ∪∞k=1Ak.

Using Baire's theorem 2.21 and the fact that X is complete, some Ak contains an open
ball, say

B0 = B(x0; r) ⊂ Ak0 . (25)

Let us de�ne z using some 0 6= x ∈ X by

z = x0 + γx γ =
r

2||x||
. (26)
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Now ||x0 − z|| < r, so z ∈ B0. From the de�nition of Ak0 , we have that ||Tnz|| ≤ k0 for
all n. Also ||Tnx0|| ≤ k0 since x0 ∈ B0. If we write x as

x =
1

γ
(z − x0) (27)

we get for all n that

||Tnx|| =
1

γ
||Tn(z − x0)|| ≤ 1

γ
(||Tnz||+ ||Tnx0||) ≤

4

r
||x||k0. (28)

Thus, for all n,

||Tn|| = sup
||x||=1

||Tnx|| ≤
4

r
k0 (29)

which gives us (23) with c = 4k0
r
.

Theorem 2.23 (Inverse operator power series) Let T : X → X be a bounded linear
operator on a Banach space X. If ||T || < 1, then (1 − T )−1 exists as a bounded linear
operator on X that can be written as a Neumann series

(1− T )−1 = I + T + T 2 + . . . =
∞∑
k=0

T k. (30)

De�nition 2.24 (Hilbert adjoint operator) Let T : H1 → H2 be a bounded linear operator.
The Hilbert-adjoint operator T ∗ : H2 → H1 is de�ned to be the operator satisfying

〈Tx, y〉 = 〈x, T ∗y〉 (31)

for all x ∈ H1 and y ∈ H2. If T is bounded, T ∗ is also bounded with a norm ||T ∗|| = ||T ||
on H and T ∗ is unique.

Hilbert-adjoint operators have the following general properties (stated here without a
proof):

Theorem 2.25 Let H1 and H2 be Hilbert spaces, S : H1 → H2 and T : H1 → H2

bounded linear operators and α any scalar. Then,

(a) 〈T ∗y, x〉 = 〈y, Tx〉 (x ∈ H1, y ∈ H2)

(b) (S + T )∗ = S∗ + T ∗

(c) (αT )∗ = αT ∗

9



(d) (T ∗)∗ = T

(e) ||T ∗T || = ||TT ∗|| = ||T ||2

(f) T ∗T = 0 ⇔ T = 0

(g) (ST )∗ = T ∗S∗

Theorem 2.26 The product of two bounded self-adjoint linear operators S and T on a
Hilbert space H is self-adjoint if and only if S and T commute.

Proof: Let us assume S and T commute, ST = TS. By the theorem 2.25(g) and from
the fact that S and T are self-adjoint, we have

(ST )∗ = T ∗S∗ = TS = ST (32)

so ST is self-adjoint.

Conversely, let us assume that the product is self-adjoint, (ST )∗ = ST . Then

ST = (ST )∗ = T ∗S∗ = TS (33)

and hence S and T commute.

Next we shall present two special operator classes: the self-adjoint and unitary opera-
tors. The focus of this work are the (bounded and unbounded) self-adjoint operators on
Hilbert space. Unitary operators are surjective and isometric operators that preserve the
inner product in Hilbert space and are essential in constructing the spectral theorem for
unbounded self-adjoint operators.

De�nition 2.27 (Self-adjoint and unitary operators) A bounded linear operator T : H →
H is said to be

self-adjoint if T ∗ = T

unitary if T ∗ = T−1 (34)

Theorem 2.28 Let T : H → H be a bounded self-adjoint linear operator. Then,
a) All eigenvalues of T are real, if they exist
b) Eigenvectors corresponding to numerically di�erent eigenvalues of T are orthogonal to
each other.

Proof: a) Let λ be any eigenvalue of T and let x be the corresponding eigenvector.
Using the self-adjointness of T ,

λ (x, x〉 = 〈λx, x〉 = 〈Tx, x〉 = 〈x, Tx〉 = 〈x, λx〉 = λ 〈x, x〉 (35)
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Since 〈x, x〉 6= 0 when x 6= 0, the last line may be divided by 〈x, x〉, resulting in λ = λ.
Hence λ is real.
b) Let λ and µ be two eigenvalues of T and let x and y be the corresponding eigenvectors,
respectively. Using the fact that λ and µ are real, one obtains

λ 〈x, y〉 = 〈λx, y〉 = 〈Tx, y〉 = 〈x, Ty〉 = 〈x, µy〉 = µ 〈x, y〉 (36)

If λ 6= µ, then the equality holds only if 〈x, y〉 = 0.

Theorem 2.29 Let T : H → H be a bounded linear operator on a Hilbert space H.
Then,

1. If T is self-adjoint, 〈Tx, x〉 is real for all x ∈ H.

2. If H is complex and 〈Tx, x〉 is real for all x ∈ H, then the operator T is self-adjoint.

Proof:

1. If T is self-adjoint, then for all x ∈ H,

〈Tx, x〉 = 〈x, Tx〉 = 〈Tx, x〉 (37)

and for 〈Tx, x〉 to be its own complex conjugate, it must be real.

2. If 〈Tx, x〉 is real for all x, then

〈Tx, x〉 = 〈Tx, x〉 = 〈x, T ∗x〉 = 〈T ∗x, x〉 . (38)

Therefore
0 = 〈Tx, x〉 − 〈T ∗x, x〉 = 〈(T − T ∗)x, x〉 (39)

and T − T ∗ = 0 since H is complex.

An unitary operator has the following general properties:

Theorem 2.30 Let the operators U : H → H and V : H → H be unitary. Then,

(a) ||Ux|| = ||x|| (in particular ||U || = 1, i.e. U is isometric)

(b) U−1 = U∗

(c) U−1 is unitary

(d) UV is unitary

(e) U is normal i.e. UU∗ = U∗U

11



2.4 Projection operators

A third special class of bounded operators are the projection operators. Projection oper-
ators are essential in the spectral theory as many operators can be written in the spectral
representation using projection operators.

First, it is worth noting that a general Hilbert space H can be written as a direct sum
of a closed subspace Y and its orthogonal complement

Y ⊥ = {z ∈ H|z ⊥ Y } (40)

which is a set of all vectors orthogonal to Y . We recall that given such a Y , one can de�ne
the orthogonal projection P from H onto Y , which has the following properties:

1. ||P || = 1

2. Px ∈ Y for all x ∈ H

3. Px = x for all x ∈ Y

4. Px = 0 ⇔ x ∈ Y ⊥

These properties imply the following result:

Theorem 2.31 Let Y be any closed subspace of a Hilbert space H, then

H = Y ⊕ Z. (41)

where Z = Y ⊥ = N (P ) = {x|Px = 0}. The following theorems related to projections
are stated without proof.

Theorem 2.32 (Projection operator) A bounded linear operator P : H → H is an
orthogonal projection (or projection) onto some subspace Y if and only if P is self-adjoint
and idempotent (P 2 = P ).

Theorem 2.33 (Products of projections) Let P1 and P2 be projections onto the subspaces
Y1 and Y2 of a Hilbert space H. Then P = P1P2 is a projection on H if and only if the
projections P1 and P2 commute.

Theorem 2.34 (Partial order) Let P1 and P2 be projections onto the subspaces Y1 and
Y2 of a Hilbert space H. The following conditions are equivalent:
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(P1) Y1 ⊂ Y2

(P2) P2P1 = P1P2 = P1

(P3) N (P2) ⊂ N (P1)

(P4) ||P1x|| ≤ ||P2x||

Theorem 2.35 (Di�erence of projections) Let P1 and P2 be projections de�ned on a
Hilbert space H. Then the di�erence P = P2 − P1 is a projection on H if and only if
Y1 ⊂ Y2.

3 Unbounded operators in Hilbert Space

The focus of this section are the linear operators T : D(T ) → H whose domain of
de�nition D(T ) is a subspace of a complex Hilbert space H. Such operators are not
necessarily bounded and are referred to as unbounded operators. Unbounded operators
have many applications, notably in di�erential equations and quantum mechanics.

For a bounded linear operator T on H, the self-adjointness was de�ned by

〈Tx, y〉 = 〈x, Ty〉 . (42)

However, the following Hellinger�Toeplitz theorem shows that an unbounded linear oper-
ator that satis�es (42), cannot be de�ned on all of H.

Theorem 3.1 (Hellinger�Toeplitz) If a linear operator T is de�ned on all of a complex
Hilbert space H and satis�es condition (42), then T is bounded.

Proof: If the statement were not true, H would contain a sequence (yn) such that

||yn|| = 1 ||Tyn|| → ∞.

Consider a functional fn de�ned by

fn(x) = 〈Tx, yn〉 = 〈x, Tyn〉 . (43)

Each fn is de�ned on all of H and is linear. For �xed n, the functional fn is bounded.
This can be observed from the Schwartz inequality:

|fn(x)| = |〈x, Tyn〉| ≤ ||Tyn|| ||x||. (44)
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Similarly, for every �xed x, the sequence fn(x) is bounded:

|fn(x)| = |〈Tx, yn〉| ≤ ||Tx|| ||yn|| = ||Tx|| (45)

since ||yn|| = 1. Hence, based on the uniform boundedness theorem 2.22, ||fn|| ≤ k for all
n where ||fn|| denotes the norm of fn : H → C in the dual space H ′. This implies that
for every x ∈ H,

|fn(x)| ≤ ||fn|| ||x|| ≤ k||x|| (46)

and, taking x = Tyn, one gets

||Tyn||2 = 〈Tyn, T yn〉 = |fn(Tyn)| ≤ k||Tyn|| (47)

and thus ||Tyn|| ≤ k, which contradicts the assumption ||Tyn|| → ∞ and proves the
theorem.

Since the entire Hilbert space cannot be the domain of an unbounded operator, a suitable
domain needs to be speci�ed for the existence of an adjoint operator.

De�nition 3.2 Let T : D(T )→ H be a (unbounded) densely de�ned linear operator (i.e.
D(T ) is dense) in a complex Hilbert space H. The Hilbert adjoint operator T ∗ : D(T ∗)→
H of T is de�ned in the following way: the domain D(T ∗) consists of all y ∈ H such that
there is a y∗ ∈ H satisfying

〈Tx, y〉 = 〈x, y∗〉 ∀ x ∈ H. (48)

We then de�ne T ∗y = y∗.

Often unbounded linear operators in applications are closed or at least have a linear
extension which is closed.

De�nition 3.3 Let T : D(T ) → H be a linear operator, where D(T ) ⊂ H. Then T is
called a closed linear operator if its graph

G(T ) = {(x, y)|x ∈ D(T ), y = Tx} (49)

is closed in H ×H, where the norm on H ×H is de�ned by

||(x, y)|| = (||x||2 + ||y||2)1/2 (50)

and results from the inner product de�ned by

〈(x1, y1), (x2, y2)〉 = 〈x1, x2〉+ 〈y1, y2〉 . (51)

14



Theorem 3.4 Let T : D(T )→ H be a linear operator, where D(T ) ⊂ H. Then:

(a) T is closed if and only if

xn → x [xn ∈ D(T )] and Txn → y (52)

together imply that x ∈ D(T ) and Tx = y.

(b) If T is closed and D(T ) is closed, then T is also bounded.

(c) Let T be bounded. Then T is closed if and only if D(T ) is a closed subspace of H.

Proof:

(a) By de�nition, G(T ) is closed if and only if z = (x, y) ∈ G(T ) implies that z ∈ G(T ).
But z ∈ G(T ) if and only if there are zn = (xn, Txn) ∈ G(T ) such that zn → z, i.e.

xn → x and Txn → y

and z ∈ G(T ) if and only if x ∈ D(T ) and y = Tx.

(b) G(T ) and D(T ) are closed by assumption. Hence, G(T ) and D(T ) are complete by
theorem 2.4. Let us now consider the mapping

P : G(T )→ D(T )

(x, Tx) 7→ x.
(53)

P is linear and also bounded since

||P (x, Tx)|| = ||x|| ≤ ||x||+ ||Tx|| = ||(x, Tx)||. (54)

P is also bijective and the inverse is given by

P−1 : D(T )→ G(T )

x 7→ (x, Tx).
(55)

The inverse is also bounded by theorem 2.9, i.e. ||(x, Tx)|| ≤ c||x|| for some c ∈ R and
for all x ∈ D(T ). This shows that T is bounded because

||Tx|| ≤ ||Tx||+ ||x|| = ||(x, Tx)|| ≤ c||x|| (56)

for all x ∈ D(T ).
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(c) Lets assume D(T ) is closed. If (xn) is in D(T ) and xn → x and is also such that
(Txn) also converges, then x ∈ D(T ) = D(T ) since D(T ) is closed and Txn → Tx since
T is continuous. Hence T is closed by (a).

Conversely, if T is closed, for x ∈ D(T ) there is a sequence (xn) in D(T ) such that
xn → x. Since T is bounded,

||Txn − Txm|| = ||T (xn − xm)|| ≤ ||T || ||xn − xm||. (57)

This shows that (Txn) is Cauchy. (Txn) converges to, say, Txn → y. Since T is closed,
x ∈ D(T ) by (a). This means that D(T ) is closed since x ∈ D(T ) was arbitrary.

Theorem 3.5 (Hilbert-adjoint operator) The Hilbert-adjoint operator T ∗ is closed.

Proof: Consider a sequence (yn) ∈ D(T ∗) such that

yn → y0 and T ∗yn → z0. (58)

By the de�nition of T ∗ we have for every y ∈ D(T ∗)

〈Ty, yn〉 = 〈y, T ∗yn〉 . (59)

If we now let n→∞, we obtain for every y ∈ D(T )

〈Ty, y0〉 = 〈y, z0〉 , (60)

since the inner product is continuous. This means that y0 ∈ D(T ∗) and z0 = T ∗y0. If we
now apply the theorem 3.4(a), we may conclude that T ∗ is closed.

4 Spectral families and spectral theorem for bounded

self-adjoint operators

Here the spectrum of an operator is de�ned and discussed. The general properties that
a spectrum of an operator has depends on the kind of space on which the operator is
de�ned as well as the kind of operator in question. In this section H denotes a nonempty
complex Hilbert space.
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4.1 Basic spectral properties

Let T : D(T ) → H be a linear operator with a domain D(T ) ⊂ H. In the following we
always assume that D(T ) is dense in H. T may be associated with Tλ:

Tλ = T − λI (61)

where λ is a complex number and I the identity operator in D(T ). If Tλ has an inverse
operator, the inverse is called the resolvent operator of T :

Rλ(T ) = T−1
λ = (T − λI)−1 (62)

where Rλ is to be understood as the inverse of the restriction of T , i.e. Rλ : R(T )→ D(T ).

The properties of Tλ and Rλ depend on λ and spectral theory focuses on these properties.

De�nition 4.1 (Regular value, resolvent set, spectrum) Let T : D(T ) → H be a linear
operator. A regular value λ of T is a complex number such that,

(R1) Rλ(T ) exists

(R2) Rλ(T ) is bounded

(R3) Rλ(T ) is de�ned on a set which is dense in H

The resolvent set ρ(T ) of T is the set of all regular values λ of T . The complement
σ(T ) = C\ρ(T ) is called the spectrum of T and λ ∈ σ(T ) is a spectral value of T .

The spectrum σ(T ) can be partitioned into three disjoint sets:

• The point spectrum or discrete spectrum σp(T ) is the set such that Rλ(T ) does not
exist (R1 not satis�ed), since Tλ is not an injection. Thus, there exists a x 6= 0,
x ∈ D(T ), such that Tx − λx = 0 and hence Tx = λ. The vector x is then an
eigenvector and λ ∈ σp(T ) is an eigenvalue of T .

• The continuous spectrum σc(T ) is the set such that Rλ(T ) exists and is de�ned on
a dense set in X but is unbounded (R2 not satis�ed).

• The residual spectrum σr(T ) is the set such that Rλ(T ) exists (bounded or un-
bounded) but the domain of Rλ(T ) is not dense in H (R3 not satis�ed).

Some of these sets may be empty.
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Lemma 4.2 (Domain of Rλ) Let T : X → X be a linear operator and λ ∈ ρ(T ). Let
T be either 1) closed, or 2) bounded. Then the resolvent operator Rλ is bounded and is
de�ned on the whole space H.

Proof:

1) Since T is closed, so is Tλ by theorem 3.4(a). Hence Rλ is also closed. By the de�nition
of the resolvent set (R2), Rλ is bounded and its domain D(T ) is closed by theorem 3.4(c).
Now (R3) implies that D(T ) = D(T ) = H.

2) Since D(T ) = H is closed, T is closed by theorem 3.4(c) and the proof follows from
part 1) of the proof.

Theorem 4.3 Let T be a bounded linear operator on H and let λ0 ∈ ρ(T ). If λ ∈ C
satis�es,

|λ− λ0| <
1

||Rλ0||
(63)

then λ ∈ ρ(T ) and the resolvent Rλ(T ) has the representation

Rλ =
∞∑
k=0

(λ− λ0)k Rk+1
λ0

. (64)

This series is absolutely convergent for every λ in the open disk given by (63). The disk
(63) is a subset of ρ(T ).

Proof: Let ρ(T ) 6= ∅. For a �xed λ0 ∈ ρ(T ) and any λ ∈ C,

Tλ = T − λI = T − λ0I − (λ− λ0)I

= (T − λ0I)[I − (λ− λ0)(T − λ0I)−1]

= Tλ0 [I − (λ− λ0)Rλ0 ].

Since λ0 ∈ ρ(T ) and T is bounded, Rλ0exists and is bounded by lemma 4.2. The expression
in the square brackets on the right-hand-side can be inverted and written as a Neumann
series using theorem 2.23,

[I − (λ− λ0)Rλ0 ]
−1 =

∞∑
k=0

[(λ− λ0)Rλ0 ]
k . (65)

For this series to converge, it is required that ||(λ− λ0)Rλ0|| < 1, which means that

|λ− λ0| <
1

||Rλ0||
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For every operator satisfying (63), the operator Tλ has an inverse Rλ,

Rλ = (Tλ0 [I − (λ− λ0)Rλ0 ])
−1

= [I − (λ− λ0)Rλ0 ]
−1Rλ0

=
∞∑
k=0

(λ− λ0)k Rk+1
λ0

.

Theorem 4.4 The resolvent set ρ(T ) of a bounded linear operator T on H is open; hence
the spectrum σ(T ) is closed.

Proof: If ρ(T ) = ∅, then ρ(T ) would be open (however, as stated by theorem 4.5, the
resolvent set cannot be empty). For a �xed λ0 ∈ ρ(T ) and any λ ∈ C satisfying (63) in
theorem 4.3, the operator Tλ has an inverse Rλ =

∑∞
k=0 (λ− λ0)k Rk+1

λ0
.

Thus, for each arbitrary λ0, there exists an open neighbourhood of regular values λ ∈
ρ(T ) where Tλ is invertible and hence, ρ(T ) is open. As a consequence, the spectrum
σ(T ) = C\ρ(T ) is closed.

Theorem 4.5 The spectrum σ(T ) of a bounded linear operator T : H → H is compact
and lies in the disk given by

|λ| ≤ ||T || (66)

Hence, the resolvent set ρ(T ) of T is not empty.

Proof: Let λ 6= 0. Using the theorem 2.23, the resolvent operator can be expanded as
series

Rλ = (T − λI)−1

= −1

λ
(I − 1

λ
T )−1

= −1

λ

∞∑
k=0

(
1

λ
T

)k
that converges when ∣∣∣∣∣∣∣∣1λT

∣∣∣∣∣∣∣∣ =
||T ||
|λ|

< 1 ⇔ |λ| > ||T ||. (67)

Hence, all λ that satisfy |λ| > ||T ||, belong to the resolvent set and, as a consequence, the
spectrum lies in the disk given by (66) and σ(T ) is bounded.
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Above it was shown that the eigenvalues of a bounded self-adjoint linear operator are
real, if they exist. Moreover, we shall see that the entire spectrum of a bounded self-
adjoint linear operator is in fact real (theorem 4.7). To prove this, we shall �rst show a
characterization of the resolvent set ρ(T ) of T .

Theorem 4.6 Let T : H → H be a bounded self-adjoint linear operator on H. Then a
number λ belongs to the resolvent set ρ(T ) if and only if there exists a c > 0 such that
for every x ∈ H:

||Tλx|| ≥ c||x||. (68)

Proof:

a) If λ ∈ ρ(T ), then Rλ = T−1
λ : H → H exists and is bounded (say, ||Rλ|| = k > 0).

Now, I = RλTλ, so that for every x ∈ H we have

||x|| = ||RλTλx|| ≤ ||Rλ|| ||Tλx|| = k||Tλx|| (69)

which gives ||Tλx|| ≥ c||x|| when c = 1
k
.

b) Let us assume instead that ||Tλx|| ≥ c||x|| for some c > 0 and x ∈ H. Let us prove
that then

1. Tλ : H → Tλ(H) is bijective,

2. Tλ(H) is dense in H,

3. Tλ(H) is closed in H,

so that Tλ(H) = H and Rλ = T−1
λ is bounded by theorem 2.9.

1. We need to show that Tλx1 = Tλx2 implies that x1 = x2. This follows from our
assumption:

0 = ||Tλx1 − Tλx2|| = ||Tλ(x1 − x2)|| ≥ c||x1 − x2|| ⇒ ||x1 − x2|| = 0. (70)

Since x1 and x2 were arbitrary, this shows that Tλ : H → Tλ(H) is bijective.

2. Let x0 ⊥ Tλ(H). Then x0 ⊥ Tλ(H) and therefore for all x ∈ H we have

0 = 〈Tλx, x0〉 = 〈Tx, x0〉 − λ 〈x, x0〉 . (71)

Since T is self-adjoint, we obtain

〈x, Tλx0〉 = 〈Tx, x0〉 =
〈
x, λx0

〉
(72)
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and so Tx0 = λx0. If x0 6= 0, we arrive at a contradiction with our initial assumption,
since then λ would be an eigenvalue of T and so λ = λ by theorem 2.28 and Tx0− λx0 =
Tλx0 = 0, but

0 = ||Tλx0|| ≥ c||x0|| > 0 (73)

since c > 0. This contradiction means that x0 = 0. Thus Tλ(H)
⊥

= {0} because x0 was
any vector orthogonal to Tλ(H). Hence Tλ(H) = H i.e. Tλ(H) is dense in H.

3. Let y ∈ Tλ(H). Now, there exists a sequence (yn) in Tλ(H) which converges to y.
Since yn ∈ Tλ(H), we have yn = Tλxn for some xn ∈ H. From our assumption, we get

||xn − xm|| ≤
1

c
||Tλ(xn − xm)|| = 1

c
||yn − ym|| (74)

and so (xn) is Cauchy since (yn) converges. H is complete so that (xn) converges xn → x.
Since T is continuous, so is Tλ, and yn = Tλxn → Tλx. Since the limit is unique,
Tλx = y ∈ Tλ(H) and hence Tλ(H) is closed because y was arbitrary. We have Tλ(H) = H
by the point 2. This means that Rλ = T−1

λ is de�ned on all of H, is bounded by theorem
2.9. Hence, λ ∈ ρ(T ).

Theorem 4.7 The spectrum of a bounded self-adjoint linear operator T : H → H is real.

Proof: The proof is based on showing that every λ = α + iβ with β 6= 0 must belong
to ρ(T ) due to the theorem 4.6 and therefore σ(T ) ⊂ R.

For every x 6= 0,
〈Tλx, x〉 = 〈Tx, x〉 − λ 〈x, x〉 (75)

Since 〈x, x〉 and 〈Tx, x〉 are real, we get

〈Tλx, x〉 = 〈Tx, x〉 − λ 〈x, x〉 (76)

Inserting λ = α + iβ and subtracting, we have

〈Tλx, x〉 − 〈Tλx, x〉 = λ 〈x, x〉 − λ 〈x, x〉 = 2iβ||x||2 = −2iIm 〈Tλx, x〉 (77)

Taking absolute values from this result, we obtain

|β| ||x||2 = |Im 〈Tλx, x〉| ≤ |〈Tλx, x〉| ≤ ||Tλx|| ||x|| (78)

Dividing by ||x|| give |β| ||x|| ≤ ||Tλx||. If β 6= 0, then λ ∈ ρ(T ) by theorem 4.6. Hence
for λ ∈ σ(T ), we must have β = 0, that is, λ is real.
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Theorem 4.8 The spectrum of a bounded self-adjoint linear operator T : H → H lies in
the closed interval [m,M ] on the real axis, where

m = inf
||x||=1

〈Tx, x〉 M = sup
||x||=1

〈Tx, x〉 . (79)

m and M are the spectral values of T .

Proof: Here only the proof for the existence of supremum (and in�mum) is given but
the proof that m and M are spectral values is omitted.

We get from theorem 4.7 that the spectrum σ(T ) lies in the real axis. It remains to
show that for all c > 0, λ = M + c ∈ ρ(T ). For every x 6= 0 we de�ne x̂ = x

||x|| and we
have

〈Tx, x〉 = ||x||2 〈T x̂, x̂〉 ≤ ||x||2 sup
||x̂||=1

〈T x̂, x̂〉 = 〈x, x〉M (80)

Also −〈Tx, x〉 ≥ − 〈x, x〉M . Now, using the Schwarz inequality,

||Tλx|| ||x|| ≥ − 〈Tλx, x〉 = −〈Tx, x〉+ 〈λx, x〉
≥ (−M + λ) 〈x, x〉
= c 〈x, x〉 = c||x||2

(81)

where c = λ −M > 0 by assumption. Hence, we obtain ||Tλx|| > c||x|| and therefore
x ∈ ρ(T ) by theorem 4.6. It is easy to show that the same applies for the in�mum.

Theorem 4.9 The residual spectrum σr(T ) of a bounded self-adjoint linear operator
T : H → H is empty.

Proof: The theorem can be proven via an indirect proof. Let σr 6= ∅ and λ ∈ σr(T ).
Then, by de�nition Rλ exists but its domain is not dense in H. Hence, there is a y 6= 0 in
H that is orthogonal to D(Rλ). However, the domain D(Rλ) is also the range of Tλ, so

〈Tλx, y〉 = 0 ∀x ∈ H (82)

Since λ is real and Tλ is self-adjoint, we may also write

〈x, Tλy〉 = 0 ∀x ∈ H (83)

If we now de�ne x = Tλy we get 〈Tλy, Tλy〉 = 0, which means that

Tλy = Ty − λy = 0⇔ Ty = λy (84)

and we see that λ is an eigenvalue of T (i.e λ ∈ σp(T )), which contradicts the assumption
that λ ∈ σr(T ). Hence, we conclude that σr = ∅.
Several of the properties of bounded self-adjoint linear operators hold true for unbounded

operators as well, e.g. the theorems 4.6 and 4.7 generalize to unbounded operators.
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Theorem 4.10 Let T : D(T ) → H be a self-adjoint linear operator which is densely
de�ned in H. Then a number λ belongs to the resolvent set ρ(T ) of T if and only if there
exists c > 0 such that for every x ∈ D(T ):

||Tλx|| ≥ c||x||. (85)

Theorem 4.11 The spectrum σ(T ) of a self-adjoint linear operator T : D(T )→ H is real
and closed.

The proofs of the previous theorems are very similar to theorems 4.6 and 4.7 and are
therefore omitted.

4.2 Spectral family

As discussed in the introduction, a bounded self-adjoint linear operator T in a �nite
dimensional Hilbert space H operating on a vector x ∈ H, can be written as a sum

Tx =
n∑
i=i

λiγixi,

where γi = 〈x, xi〉
(86)

and (xi)
n
i=1 is an orthonormal basis of H. However, the operation can be generalized

in terms of projection operators. In the �nite dimensional case we have an orthogonal
projection Pi : H → H which projects x onto the eigenspace of T corresponding to λi,
x 7→ γixi. The transformation can now be written as

Tx =
n∑
i=1

λiPix ⇒ T =
n∑
i=1

λiPi (87)

which gives us the operator T in terms of projections.

In order to generalize this result for in�nite-dimensional Hilbert spaces, we need to take
into account the more complicated nature of the spectrum in in�nite-dimensions. In a
�nite dimensional Hilbert space, instead of the projections P1, . . . , Pn themselves, we may
take the sum of projections, such that for each λ we de�ne

Eλ =
∑
λi≤λ

Pi. (88)
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This is called a one-parameter family of projections. The operator Eλ is a projection of
H onto the subspace Vλ spanned by all those xi for which λi ≤ λ. Thus, if λ ≤ µ, it
follows that

Vλ ⊂ Vµ. (89)

Obviously, as λ increases, Eλ spans larger portion of the Hilbert space, growing from 0 to
I. The operator Eλ remains unchanged for an interval that contains no eigenvalues of T .
Hence the operator Eλ has the following properties:

EλEµ = EµEλ = Eλ if λ < µ

Eλ = 0 if λ < λ1

Eλ = I if λ > λn

Eλ+0 = lim
µ→λ+0

Eµ = Eλ

(90)

where µ→ λ+ 0 means that µ approaches λ from the right.

Let us now generalise the above ideas for in�nite dimensional Hilbert spaces. The spectral
family E of T is formed as a one-parameter family E = (Eλ)λ∈R. A spectral family is also
called a resolution of identity and its properties are summarized in the following de�nition.

De�nition 4.12 (Spectral family) A real spectral family is a one-parameter family E =
(Eλ)λ∈R of projections Eλ de�ned on a Hilbert space H which depends on a real parameter
λ and has the following properties:

EλEµ = EµEλ = Eλ (λ < µ)

lim
λ→−∞

Eλx = 0

lim
λ→+∞

Eλx = x

Eλ+0x = lim
µ→λ+0

Eµx = Eλx

for all x ∈ E.

E is called a spectral family on an interval [a, b] if

Eλ = 0 for λ < a, Eλ = I for λ ≥ b. (91)

Since the spectrum of a bounded self-adjoint linear operator lies on a �nite interval (the-
orem 4.8), these spectral families are of special relevance to us.

We shall now derive a useful relation related to the spectral family for later use. Given
λ < µ, let us de�ne an interval ∆ = (λ, µ] and associate the operator

E(∆) = Eµ − Eλ (92)
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with the interval. Since λ < µ, we have Eλ ≤ Eµ meaning Eµ − Eλ ≥ 0 and Eλ(H) ⊂
Eµ(H) by theorem 2.34. Also, by theorem 2.35, E(∆) is also a projection.

Using the theorem 2.34 again, we can write

EµE(∆) = E2
µ − EµEλ = Eµ − Eλ = E(∆) (93)

where every Eλ is an orthogonal projection on H. Also

(I − Eλ)E(∆) = E(∆)− EλE(∆) = E(∆)− EλEµ + E2
λ = E(∆). (94)

Now, E commutes with every self-adjoint linear operator that commutes with T . This
holds true also for Tλ. Using the above results, we have

TµE(∆) = TµEµE(∆) ≤ 0

TλE(∆) = Tλ(I − Eλ)EµE(∆) ≥ 0
(95)

because the E(∆) is a positive operator. If T : H → H is a bounded linear operator, we
denote T ≥ 0, if 〈x, Tx〉 ≥ 0 for all x ∈ H. This means that T is a positive operator.

The equation (95) implies that TE(∆) ≤ µE(∆) and that TE(∆) ≥ λE(∆) and so

λE(∆) ≤ TE(∆) ≤ µE(∆) (96)

From this relation in can be shown[3] that the spectral family E is continuous from the
right i.e. the �nal property in de�nition 4.12.

4.3 Spectral theorem for bounded linear operators

Before presenting the spectral theorem for bounded operators, we shall �rst de�ne the
Riemann�Stieltjes integral.

De�nition 4.13 (Riemann�Stieltjes integral) Let x1, x2, . . . , xn be a set of increasing val-
ues of x between a and b, with xr+1 − xr < δ and x0 = a, xn+1 = b. For each interval
ξr ∈ [xr, xr+1], we may form the sum

Sn = f(ξ0)(x1 − a) + f(ξ1)(x2 − x1) + . . .+ f(ξn)(b− xn). (97)

The limit of this sum (if it exists) as δ → 0 is called the Riemann integral and is denoted
by ∫ b

a

f(x)dx. (98)
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If f(x) and g(x) are both bounded functions of x, we may form the sum

Sn = f(ξ0)(g(x1)− g(a)) + f(ξ1)(g(x2)− g(x1)) + . . .+ f(ξn)(g(b)− g(xn)) (99)

with ξr chosen as in (97). If this sum tends to a unique limit when δ → 0, the limit is
called a Riemann�Stieltjes integral and is denoted by∫ b

x=a

f(x)dg(x). (100)

Theorem 4.14 (Spectral theorem for bounded self-adjoint linear operators) Let T : H →
H be a bounded self-adjoint linear operator on a complex Hilbert space H. Then there
exists a spectral family {Eλ : λ ∈ R} such that for all x, y ∈ H,

〈Tx, y〉 =

∫ M

m−0

λdw(λ) w(λ) = 〈Eλx, y〉 (101)

where the integral is an ordinary Riemann�Stieltjes integral.

If p is a polynomial in λ with real coe�cients,

p(λ) = αnλ
n + αn−1λ

n−1 + . . .+ α0 (102)

then for the operator p(T )

p(T ) = αnT
n + αn−1T

n−1 + . . .+ α0 (103)

and for any x, y ∈ H, we may write the inner product 〈p(T )x, y〉 as

〈p(T )x, y〉 =

∫ M

m−0

p(λ)dw(λ) w(λ) = 〈Eλx, y〉 . (104)

Proof: Here we do not present the proof of the existence of the spectral family. This
can be shown using the Riesz representation theorem and Banach algebra methods.

Let us de�ne a sequence (Pn) of partitions of (a, b] where a < m and M < b with every
Pn partitioning (a, b] into intervals

∆nj = (λnj, µnj] j = 1, . . . , n (105)

of length l(∆nj) = µnj − λnj. We assume the sequence (Pn) to be such that

δ(Pn) = max
j
l(∆nj)→ 0 as n→∞. (106)
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With (96), we have
λnjE(∆nj) ≤ TE(∆nj) ≤ µnjE(∆nj). (107)

By summing over j from 1 to n, we get

n∑
j

λnjE(∆nj) ≤
n∑
j

TE(∆nj) ≤
n∑
j

µnjE(∆nj). (108)

Since µnj = λn,j+1 for j = 1, . . . , n− 1, from the de�nition 4.12 we have

T
n∑
j

E(∆nj) = T

n∑
j

(
Eµnj − Eλnj

)
= T (I − 0) = T. (109)

The equation (106) requires that for every ε > 0 there exists n such that δ(Pn) < ε.
Therefore, we should have

n∑
j

µnjE(∆nj)−
n∑
j

λnjE(∆nj) =
n∑
j

(µnj − λnj)E(∆nj) < εI. (110)

Combining this with (108), it follows that for any ε > 0 there is an N such that for any
n > N and every choice of λ̂nj ∈ ∆nj we have∣∣∣∣∣

〈
Tx−

n∑
j=1

λ̂njE(∆nj)x, y

〉∣∣∣∣∣ < ε (111)

for all x, y ∈ E . Since Eλ remains unchanged when λ < m or λ ≥M , the choice of a < m
and b > M is of no consequence. The equation (111) proves the �rst part of the theorem
since the integral in (101) is to be understood as uniform operator convergence which
implies strong operator convergence as de�ned in 2.20. Furthermore, (101) implies (103).

For the theorem on polynomials, the theorem will be proven for λr, r ∈ N. The �rst of
the spectral family properties in de�nition 4.12 will be used: for any κ < λ ≤ µ < ν we
have

(Eλ − Eκ)(Eµ − Eν) = EλEµ − EλEν − EκEµ + EκEν

= Eλ − Eλ − Eκ + Eκ = 0.

This means that E(∆nj)E(∆nk) = 0 for every j 6= k. Also, since E(∆nj) is a projection,
E(∆nj)

s = E(∆nj) for every s ∈ N. Consequently, we obtain[
n∑
j=1

λ̂njE(∆nj)

]r
=

n∑
j=1

λ̂rnjE(∆nj). (112)
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If the sum in (111) is close to T , then the expression on the left hand side in (112) will
be close to T r because multiplication of bounded linear operators in continuous. Hence,
given ε > 0 there will be an N such that for all n > N ,∣∣∣∣∣

〈
Tx−

n∑
j=1

λ̂rnjE(∆nj)x, y

〉∣∣∣∣∣ < ε (113)

for all x, y ∈ E . This proves the polynomial part of the theorem for p(λ) = λr and the
readily follow for any arbitrary polynomial with real coe�cients.

Remark 4.15. (Spectral representation) It is possible to de�ne a spectral measure dEλ
and present the operator T as an integral with respect to the spectral measure as

T =

∫ M

m−0

λdEλ. (114)

This is called the spectral representation of T .

The m − 0 in theorem 4.14 indicates that we need to take into account a contribution
at λ = m which occurs if Em 6= 0. Then for any a < m, we may write∫ M

a

λdEλ =

∫ M

m−0

λdEλ = mEm +

∫ M

m

λdEλ. (115)

Theorem 4.16 Let T : H → H be a bounded self-adjoint linear operator on a complex
Hilbert space H and E = Eλ the corresponding spectral family. Then λ 7→ Eλ has a
discontinuity at any λ = λ0 if and only if λ0 is an eigenvalue of T . In this case the
corresponding eigenspace is

N (T − λ0I) = (Eλ0 − Eλ0−0)(H). (116)

Proof: By de�nition, λ0 is an eigenvalue of T if and only if N (T − λ0I) 6= {0}, and so
the discontinuity follows directly from (116) so we shall focus on proving (116). Let us
write F0 = Eλ0 − Eλ0−0. In order to show that the equality holds, we need to show that

F0(H) ⊂ N (T − λ0I) (117)

and
F0(H) ⊃ N (T − λ0I). (118)

Using inequality (96) with λ = λ0 − 1
n
and µ = λ0, we get(

λ0 −
1

n

)
E(∆0) ≤ TE(∆0) ≤ λ0E(∆0) (119)
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where ∆0 = (λ0 − 1/n, λ0]. If we let n→∞, then E(∆0)→ F0, so that

λ0F0 ≤ TF0λ ≤ λ0F0 (120)

and TF0 = λ0F0. This means that (T − λ0)F0 = 0 and hence we have proven (117).

Next, let us consider x ∈ N (T −λ0I). We shall prove (118) by showing that x ∈ F0(H).
By theorem 4.8, if λ0 /∈ [m,M ] then λ0 ∈ ρ(T ). Hence, N (T − λ0I) = {0} ⊂ F0(H) since
F0(H) is a vector space. Now let λ0 ∈ [m,M ]. By assumption, (T −λ0I)x = 0 which also
means that (T − λ0I)2x = 0. Now, using (101),∫ b

a

(λ− λ0)2dw(λ) (121)

where w(λ) = 〈Eλx, x〉, a < m and b > M . Since (λ − λ0)2 > 0 and λ 7→ 〈Eλx, x〉
increases monotonically, the integral must be positive over any positive interval. This
means, that for every ε > 0 we must have

0 =

∫ λ0−ε

a

(λ− λ0)2dw(λ) ≥ ε2
∫ λ0−ε

a

dw(λ) = ε2 〈Eλ0−εx, x〉 (122)

as well as

0 =

∫ b

λ0+ε

(λ− λ0)2dw(λ) ≥ ε2
∫ b

λ0+ε

dw(λ) = ε2 〈Ix, x〉 − ε2 〈Eλ0+εx, x〉 . (123)

Since ε > 0, using the properties of projection operators in section 2.4, we obtain,

〈Eλ0−εx, x〉 = 0 ⇒ Eλ0−εx = 0 (124)

〈x− Eλ0+εx, x〉 = 0 ⇒ x− Eλ0+εx = 0 (125)

and may write
x = (Eλ0+ε − Eλ0−ε)x. (126)

If we let ε → 0, we obtain x = F0x because λ 7→ Eλ is continuous from the right. This
proves (118).

To conclude the work thus far: we can associate a spectral family to any bounded
self-adjoint linear operator T on any Hilbert space and this spectral family can be used
to represent T as an Riemann�Stieltjes integral. What remains is to extend this to
unbounded operators in Hilbert space.
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5 Unitary operators, Cayley transform and the general

spectral theorem

In this section, the spectral theorem for bounded linear operators in Hilbert space will be
expanded to include also unbounded operators. For this the spectral theorem of unitary
operators is needed. The spectrum of unbounded self-adjoint operators is similar to
bounded operators, for example, the spectrum of unbounded self-adjoint operators is real.
Unitary operators are bounded linear operators whose spectrum lie on the unit circle. The
spectrum of the unitary operators can then be mapped onto the real line using a Cayley
transform and, hence, the spectrum of an unbounded operator may be written using the
spectral theorem of unitary operators as the basis.

5.1 Spectral theorem for unitary operators

Theorem 5.1 If U : H → H is a unitary linear operator on a complex Hilbert space
H 6= {0}, then the spectrum σ(U) is a closed subset of the unit circle and |λ| = 1 for
every λ ∈ σ(U).

Proof: First we note that

||Ux||2 = 〈Ux, Ux〉 = 〈x, U∗Ux〉 = 〈x, Ix〉 = ||x||2 (127)

so ||U || = 1. Hence, |λ| ≤ 1 by theorem 4.5. Also 0 ∈ ρ(T ) since for λ = 0 the resolvent
operator of U is U−1 = U∗, which is also unitary. However, according to the theorem 4.3,
setting λ0 = 0, every λ that satis�es |λ| < 1

||U || = 1 belongs to ρ(T ). Hence, the spectrum
of U must lie on the unit circle. This set is closed based on theorem 4.4.

The spectral theorem for bounded unitary operators is derived by power series method
and with a lemma by Wecken[5].

Lemma 5.2 Let

h(λ) =
∞∑
n=0

αnλ
n (128)

be absolutely convergent for all λ such that |λ| ≤ k. Suppose that S ∈ L(H,H) is
self-adjoint and has norm ||S|| ≤ k. Then

h(S) =
∞∑
n=0

αnS
n (129)
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is a bounded self-adjoint linear operator and

||h(S)|| ≤
∞∑
n=0

|αn|kn (130)

If a bounded linear operator commutes with S, is also commutes with h(S).

Partial proof: We shall only conclude here that h(S) is self-adjoint.

Let hn(λ) denote the nth partial sum of the series in (128). Each partial sum hn(S) is
self-adjoint by theorem 2.26 and so 〈hn(S)x, x〉 are real by theorem 2.29. Since the inner
product is continuous, 〈h(S)x, x〉 is also real and so the sum h(S) is also self-adjoint since
H is complex.

Lemma 5.3 (Wecken) LetW and A be bounded self-adjoint linear operators on a complex
Hilbert space H. Suppose that WA = AW and W 2 = A2. Let P be the projection of H
onto the null space N (W − A). Then:

(a) If a bounded linear operator commutes with W − A, it also commutes with P .

(b) Wx = 0 implies Px = x

(c) We have W = (2P − I)A

Proof: a) Suppose that B commutes with W −A. By de�nition, Px ∈ N (W −A) for
every x ∈ H and we obtain

(W − A)BPx = B(W − A)Px = 0 (131)

Thus, we have shown that BPx ∈ N (W − A), which implies that P (BPx) = BPx, i.e.

PBP = BP (132)

Since W − A is self-adjoint, we can write

(W − A)B∗ = [B(W − A)]∗ = [(W − A)B]∗ = B∗(W − A) (133)

and thus W − A and B∗ also commute and hence we have also PB∗P = B∗P . Finally,
since projections are self-adjoint, we have

PBP = (PB∗P )∗ = (B∗P )∗ = PB (134)

Combining the above results, we obtain PB = BP .
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b) Let Wx = 0. Now, since A2 = W 2 and both A and W are self-adjoint, we have

||Ax||2 = 〈Ax,Ax〉 =
〈
A2x, x

〉
=
〈
W 2x, x

〉
= 〈Wx,Wx〉 = ||Wx||2 = 0 (135)

and hence Ax = 0. Therefore, (W −A)x = 0. Now, if x ∈ N (W −A), then Px = x since
P is a projection onto N (W − A).

c) From the assumptions, we get

(W − A)(W + A) = W 2 − A2 = 0 (136)

which implies that (W + A)x ∈ N (W − A) for every x ∈ H. Since P projects H onto
N (W − A), we obtain

P (W + A)x = (W + A)x (137)

for every x ∈ H, so P (W + A) = W + A. Based on a), P (W − A) = (W − A)P and,
because P projects H onto N (W − A), we obtain

2PA = P (W + A)− P (W − A) = W + A

⇒ W = 2PA− A
(138)

Theorem 5.4 (Spectral theorem for unitary operators) Let U : H → H be a unitary
operator on a complex Hilbert space H 6= {0}. Then there exists a spectral family
E = Eθ on [−π, π] such that for all x, y ∈ H and for every polynomial f ,

〈f(U)x, y〉 =

∫ π

−π
f(eiθ)dw(θ) (139)

where w(θ) = 〈Eθx, y〉.

Proof: We shall show that, given a unitary operator U , there exists a bounded self-
adjointed linear operator S with σ(S) ⊂ [−π, π] such that

U = eiS = cosS + i sinS (140)

where the functions cosS and sinS are de�ned as power series

cosS =
∞∑
n=0

(−1)n

(2n)!
S2n sinS =

∞∑
n=0

(−1)n

(2n+ 1)!
S2n+1. (141)
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Since S is bounded and self-adjoint, cosS and sinS are also bounded and self-adjoint and
commute with one another, by lemma 5.2 and we can see that U de�ned in this manner
is unitary

UU∗ = (cosS + i sinS)(cosS − i sinS)

= (cos2 S + sin2 S) = I.
(142)

Similarly one can show that U∗U = I.

Now, let use write
U = V + iW (143)

where

V =
1

2
(U + U∗) W =

1

2i
(U − U∗) (144)

From the properties of adjoint operators in theorem 2.25, we can see that V and W are
obviously self-adjoint. Since UU∗ = I, we have VW = WV and also V 2 +W 2 = I. Also,
since ||U || = 1 by de�nition (theorem 2.30), for V and W we have,

||V || ≤ 1, ||W || ≤ 1. (145)

Consider

g(λ) = arccosλ =
π

2
− arcsinλ =

π

2
− λ− 1

6
λ3 + . . . (146)

The Maclaurin series converges for |λ| ≤ 1. Since ||V || ≤ 1, the lemma 5.2 implies that
the operator

g(V ) = arccosV =
π

2
− V − 1

6
V 3 + . . . (147)

exists and is self-adjoint. If we now de�ne

A = sin g(V ) (148)

we have a power series in V and based on lemma 5.2, A is self-adjoint and commutes with
V and W . Since cos(g(V )) = V , we have

V 2 + A2 =
(
cos2 + sin2

)
(g(V )) = I. (149)

which implies that W 2 = A2. Hence, we can apply Weckens lemma 5.3 and conclude that
W = (2P − I)A, Wx = 0 implies that Px = x and P commutes with V and with g(V )
since these operators commute with W − A.
We can now de�ne

S = (2P − I)g(V ) = g(V )(2P − I). (150)
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S is self-adjoint. We may now de�ne that S sati�es (140). We set κ = λ2 and de�ne h1

and h2 by

h1(κ) = cosλ = 1− 1

2!
λ2 + . . .

λh2(κ) = sinλ = λ− 1

3!
λ3 + . . .

(151)

These functions exist for all κ. Since P is a projection, we have (2P−I)2 = 4P−4P+I = I
and so

S2 = (2P − I)2g(V )2 = g(V )2 (152)

Therefore
cosS = h1(S2) = h1(g(V )2) = cos(g(V ))

= V

sinS = Sh2(S2)

= (2P − I)g(V )h2(g(V )2)

= (2P − I) sin g(V )

= (2P − I)A = W

(153)

and hence U = eiS = cosS + i sinS. We note that ||S|| ≤ π. Since S is self-adjoint and
bounded, σ(S) is real and from theorem 4.5 we conclude that σ(S) ⊂ [−π, π]. If (Eθ) is
the spectral family of the operator S, then theorem 5.4 follows from the general theorem
4.14 for bounded linear operators.

5.2 Cayley transform and the general spectral theorem

Any self-adjoint unbounded operator T can be expressed in terms of unitary operator U
using a Cayley transform,

U = (T − iI)(T + iI)−1. (154)

The inverse (T + iI)−1 exists since T is self-adjoint with a real spectrum. The expression
is very similar to a Möbius transformation. The spectrum of T lies on the real axis of the
complex plane, but the spectrum of the unitary operator is on the unit circle. A Möbius
transformation like (154) maps the real axis onto the unit circle. We shall now show that
the operator de�ned by (154) is unitary and hence it has a spectral representation.

Theorem 5.5 (Cayley transform) The Cayley transformation

U = (T − iI)(T + iI)−1.

of a self-adjoint linear operator T : D(T )→ H exists on H and is a unitary operator.
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Proof: First we observe that U is isometric. For this, consider any x ∈ H and set
y = (T + iI)−1x and with direct calculation we obtain

||Ux||2 = ||(T − iI)y||2

= 〈(T − iI)y, (T − iI)y〉
= 〈Ty, Ty〉+ i 〈Ty, y〉 − i 〈y, Ty〉+ 〈iy, iy〉
= 〈(T + iI)y, (T + iI)y〉
= ||(T + iI)y||2

= ||(T + iI)(T + iI)−1x||2

= ||x||2.

Second, we note that U is surjective. Since T is self-adjoint, the spectrum σ(T ) is real
by theorem 4.7. Therefore, i and −i belong to the resolvent set ρ(T ) and, by the de�nition
of the resolvent set, the inverses (T + iI)−1 and (T − iI)−1 exist on a dense subset of H
and are bounded. Since T = T ∗, theorem 3.5 implies that T is closed. From lemma 4.2,
we see that those inverses are de�ned on all of H, that is

R(T ± iI) = H (155)

Since I is de�ned on all of H, we observe that

(T + iI)−1(H) = D(T + iI) = D(T ) = D(T − iI) (156)

and that
(T − iI)(D(T )) = H. (157)

Thus, the operator U is a bijection of H onto itself.

Because U is isometric and surjective, it is unitary.

Theorem 5.6 If T : D(T ) → H is a self-adjoint linear operator and U is as de�ned in
theorem 5.5, then

T = i(I + U)(I − U)−1 (158)

Also, 1 is not an eigenvalue of U .

Proof: Let x ∈ D(T ) and
y = (T + iI)x. (159)

Because (T + iI)−1(T + iI) = I, acting on the left with U we get

Uy = (T − iI)x. (160)
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By adding and subtracting the two equations, we get

(I + U)y = 2Tx (161a)

(I − U)y = 2ix. (161b)

From (155) we know that y ∈ R(T + iI) = H. From (161b) we see that I − U maps H
onto D(T ) and also, that

(I − U)y = 0⇔ 2ix = 0

x = 0⇔ y = (T + iI)x = 0

so (I − U)y = 0 if and only if y = 0. Hence, there exists an inverse (I − U)−1 and it is
de�ned on the range of I − U i.e. D(T ). Thus, we can invert (161) to get

y = 2i(I − U)−1x (162)

and by substituting into (161),

Tx =
1

2
(I + U)y = i(I + U)(I − U)−1x ∀ x ∈ D(T ) (163)

Since the inverse (I − U)−1 exists, 1 cannot be an eigenvalue of the Cayley transform
U .

Theorem 5.7 (Spectral theorem for self-adjoint linear operators) Let T : D(T )→ H be a
self-adjoint linear operator, where H 6= {0} is a complex Hilbert space and D(T ) is dense
in H. Let U be a Cayley transform of T as in theorem 5.5 and let (Eθ) be the spectral
family in the spectral representation of −U as in theorem 5.4. Then for all x ∈ D(T ),

〈Tx, x〉 =

∫ π

−π
tan

θ

2
dw(θ) w(θ) = 〈Eθx, x〉

=

∫ ∞
−∞

λdν(λ) ν(λ) = 〈Fλx, x〉
(164)

where Fλ = E2 arctanλ

Proof: Just as in the proof of theorem 5.4, we note that there exists an operator S such
that −U = cosS + i sinS. Since σ(S) ⊂ [−π, π], we have E−π−0 = 0. Hence if E−π 6= 0,
then −π would be an eigenvalue of S. The operator U would then have the eigenvalue

− cos(−π) + i sin(−π) = 1 (165)
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which is a contradiction as 1 is not an allowed eigenvalue for U by theorem 5.6 and hence
Eθ is continuous. Similarly, Eπ = I and if Eπ 6= I, this would also mean that 1 is an
eigenvalue of U .

Let x ∈ H and y = (I − U)x. Then y ∈ D(T ) since I − U : H → D(T ) as shown in
proof of theorem 5.6. Inserting these into (158), we get

Ty = i(I + U)(I − U)−1y = i(I + U)x (166)

Since unitary operators are isometric,

〈Ty, y〉 = 〈i(I + U)x, (I − U)x〉 (167)

= i (〈x, x〉 − 〈Ux, x〉 − 〈x, Ux〉 − 〈Ux, Ux〉) (168)

= i

||x||2 − 〈Ux, x〉 − 〈Ux, x〉 − ||Ux||2︸ ︷︷ ︸
=||x||2

 (169)

= −2Im 〈Ux, x〉 (170)

= 2

∫ π

−π
sin θd 〈Eθx, x〉 . (171)

Hence, using the relation sin θ = 2 sin θ
2

cos θ
2
,

〈Ty, y〉 = 4

∫ π

−π
sin

θ

2
cos

θ

2
d 〈Eθx, x〉 . (172)

Since Eθ is the spectral family of the operator S, they commute and by lemma 5.2. From
(139) we obtain

〈Eθy, y〉 = 〈Eθ(I − U)x, (I − U)x〉
= 〈(I − U)∗(I − U)Eθx, x〉

=

∫ π

−π
(1 + e−iφ)(1 + eiφ)d 〈Eφz, x〉

where z = Eθx. Since EφEθ = Eφ when φ ≤ θ and EφEθ = Eθ when φ > θ, and
(1 + e−iφ)(1 + eiφ) = 4 cos2 φ

2
, we get

〈Eθy, y〉 =

∫ π

−π
4 cos2 φ

2
d 〈Eφz, x〉 . (173)
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From this and using the continuity of Eθ at ±π, we arrive at∫ π

−π
tan

θ

2
d 〈Eθy, y〉 =

∫ π

−π
tan

θ

2

(
4 cos2 θ

2

)
d 〈Eθx, x〉

= 4

∫ π

−π
sin

θ

2
cos

θ

2
d 〈Eθx, x〉 = 〈Ty, y〉 .

This expression in equivalent to (164). The alternative form in given in the theorem is
obtained with substitution θ = 2 arctanλ.

6 Applications in quantum mechanics

Here the results derived in this thesis and their application to quantum mechanics is dis-
cussed. The standard way of interpreting quantum mechanics dictates that observables
can be associated to unbounded self-adjoint operators on a suitable Hilbert space and the
spectrum of each operator coincides with the values the observable may attain. The spec-
tral theorem allows the construction of complicated operators starting from projections
or to decompose operators into projections on the spectrum.[2]

Historically the spectral theorem for self-adjoint operators was �rst proved by John
von Neumann. The development of this theorem is deemed crucial for the Hilbert-space
formulation of quantum mechanics and is one of the most important achievements in
mathematics and mathematical physics of the 20th century. Von Neumann also built
the modern axiomatic notion of an abstract Hilber space by considering the �rst two
approaches to quantum mechanics by Heisenberg and Schrödinger. [2, 6]

We shall de�ne quantum mechanics using an axiomatic approach suggested �rst by von
Neumann:[7�9]

1. States ψ of a quantum system are nonzero vectors of a complex separable Hilbert
space H, considered up to a nonzero complex factor. There is a one-to-one corre-
spondence between observables and linear self-adjoint operators in H. We consider
states as unit vectors in H. These state vectors contain the most complete informa-
tion available of the system.

2. Observables are represented by self-adjoint linear operators on H. Each observable
Â is de�ned maximally, on a dense subset D(Â) ⊆ H.

3. When an observable is measured on a state ψ ∈ H, the result is always one of the
values in the spectrum of A. The expectation value of the measurement of A is
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computed as a mean value
〈
Â
〉
ψ
of the operator at state ψ. Observables A1, . . . , An

are simultaneously measurable if and only if the self-adjoint operators Â1, . . . , Ân
mutually commute.

4. There exists a one parameter group Ut of unitary operators called evolution operators
that map an initial state ψ0 at the time t = 0 to the state ψ(t) = Utψ0 at the time
t. The operator Ut is of the form

Ut = exp

(
−itĤ

h

)
where h is the Planck constant and Ĥ is called the Hamiltonian of the system. If
ψ0 ∈ D(Ĥ), then ψ(t) is di�erentiable and

i~
dψ(t)

dt
= Hψ(t). (174)

As stated by the axioms, an observable A (energy of the system, position or momentum
of a particle etc.) is associated with a self-adjoint operator Â with the domain D(Â).
The dynamics of the system are dictated by the Schrödinger equation (174) and the
solutions to this equation, ψ, are states of the system. Quantum mechanics describes
the microscopic structure of matter and maps stochastically onto the macroscopic world;
while the Schrödinger equation and the dynamics thereof are deterministic, the quantum
mechanics may only assign probabilities to di�erent macroscopically observable values.
The Born interpretation maps the state vector ψ to a probability distribution P , stating
that the probability of �nding the particle in an interval [x, x+ ∆x] at time t is given by

P (t) =

∫ x+∆x

x

Ψ(x, t)Ψ(x, t)dx =

∫ x+∆x

x

|Ψ(x, t)|2dx. (175)

If ψ ∈ D(Â), the expectation value 〈A〉ψ of the observable A exists and is

〈A〉ψ =
〈
Âψ, ψ

〉
(176)

This expectation value corresponds to the average of a large set of experimental measure-
ments measuring A conducted on a system in state ψ.

Since the observable is expressed as an self-adjoint operator Â in a Hilbert space H, we
may rewrite this equation using the spectral theorem for unbounded self-adjoint operators,
theorem 5.7,

〈A〉ψ =
〈
Âψ, ψ

〉
=

∫ ∞
−∞

λdν(λ) ν(λ) = 〈Eλψ, ψ〉 . (177)
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Now we see that the expectation value of the operator is an integral over the spectrum
and that the possible measurement outcomes lie on the spectrum of the operator. Let us
consider a dispersion of an observable A as

δψA = ||Âψ − 〈A〉ψ ψ||
2. (178)

We note that if the state ψ of the system is an eigenstate of the observable, then the
expectation value is the eigenvalue of the state and the dispersion of the observable is
zero:

〈A〉ψ =
〈
Âψ, ψ

〉
= λ 〈ψ, ψ〉 = λ

⇒ δψA = ||Âψ − 〈A〉ψ ψ||
2

= ||λψ − λψ||2 = 0.

Let us now consider two operators Â and B̂ and let ψ be a vector. How does the ordering
of the operators a�ect our result? Let Â1 = Â−〈A〉ψ I and B̂1 = B̂−〈B〉ψ I. We denote
uncertainties related to the measurement of A and B as

∆A = ||Â1ψ|| =
√
δAψ

∆B = ||B̂1ψ|| =
√
δBψ.

Usign the fact that
Â1B̂1 − B̂1Â1 = ÂB̂ − B̂Â, (179)

let us consider the expectation value of the commutator of Â and B̂ i.e. (ÂB̂ − B̂Â):∣∣∣〈(ÂB̂ − B̂Â)ψ, ψ
〉∣∣∣ =

∣∣∣〈(Â1B̂1 − B̂1Â1)ψ, ψ
〉∣∣∣

=
∣∣∣〈(Â1B̂1)ψ, ψ

〉
−
〈

(B̂1Â1)ψ, ψ
〉∣∣∣

=
∣∣∣〈B̂1ψ, Â1ψ

〉
−
〈
Â1ψ, B̂1ψ

〉∣∣∣
= 2

∣∣∣Im〈Â1ψ, B̂1ψ
〉∣∣∣ ≤ 2

∣∣∣〈Â1ψ, B̂1ψ
〉∣∣∣

≤ 2
∣∣∣∣∣∣〈Â1ψ, ψ

〉∣∣∣∣∣∣ ∣∣∣∣∣∣〈B̂1ψ, ψ
〉∣∣∣∣∣∣

= 2∆A∆B

⇒ ∆A∆B ≥ 1

2

∣∣∣〈(ÂB̂ − B̂Â)ψ, ψ
〉∣∣∣

where the Schwartz inequality has been used. The last line is known as the Heisenberg
uncertainty relation and it sets a fundamental limit to the precision at which the values
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of two non-commuting observables, such as position and momentum, can be measured.
If one knows the position of the particle to high precision, the uncertainty of particles
momentum must be high for this fundamental inequality to be satis�ed.

The time-evolution of a quantum mechanical system is given by the Schrödinger equation
of (174). Let us have a look the equation for an elementary one-particle system in one
dimension.

i
d

dt
Ψ(x, t) = ĤΨ(x, t) (180)

where x is the spatial coordinate of the particle, t is time, ψ(x, t) is called the wave
function or the state of the system. The dynamics of the system is determined by the
Hamiltonian Ĥ. The Hamiltonian consists of a kinetic and potential energy contributions
and for the one-particle system we may write it as

Ĥ = − ~2

2m

d2

dx2
+ V (x, t),

where ~ is the reduced Planck's constant and m is the mass of the particle. The �rst term
describes the kinetic energy of the particle and V (x, t) is the external potential acting
on the particle. While the kinetic energy is always the same, the potential energy is
system speci�c. If the potential in the Hamiltonian has no explicit time-dependence, i.e.
V (x, t) = V (x), then (180) becomes separable and we may write Ψ(x, t) = ψ(x)φ(t) to
obtain

i
d

dt
φ(t) = Ĥφ(t). (181)

This equation can be solve directly as

φ(t) = exp(−itĤ)φ(0). (182)

In a �nite dimensional case the Hamiltonian corresponds to a matrix and in order to
compute the matrix exponential and to grasp the dynamics of the system one needs to
diagonalize the matrix. However, as we discussed in the introduction, going from �nite
dimensional system to an in�nite dimensional system is not straightforward. Diagonaliza-
tion of a self-adjoint matrix essentially corresponds to a change in basis, but for in�nite-
dimensional spaces no good theory of bases exists. However, the spectral theorem allows
us to rewrite the operator using orthogonal projections, making the operator exponential
feasible.

The spatial part separates into

Ĥψ(x) =

[
− ~2

2m

d2

dx2
+ V (x)

]
ψ(x) = Eψ(x) (183)
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where E is a constant that corresponds to the total energy of the system. This equation
is called the time-independent Schrödinger equation. It suggests that the possible energy
levels of the system depend on the spectrum of the Hamiltonian operator. For the Born
interpretation to be meaningful, the wave function solutions should be square integrable,

ψ(x) ∈ L2(R) ⇔
∫ ∞
−∞
|ψ(x)|2dx <∞. (184)

If E is in the resolvent set of Ĥ, then the resolvent of Ĥ exists and there exists only
the trivial solution considered in L2(R). If on the other hand E belongs to the point
spectrum σp(Ĥ) or to the continuous spectrum σc(Ĥ), then there exists nontrivial solu-

tions. The residual spectrum σr(Ĥ) is empty by theorem 4.9 which can be extended also
to unbounded operators. [3]

Let us look at the spectrum of two simple quantum mechanical systems: the harmonic
oscillator and the free particle. For the quantum mechanical harmonic oscillator, the
potential of the system is de�ned as

V (x) =
1

2
mω2x2

where ω is the angular frequency of the oscillator. The solutions for the harmonic oscillator
Schrödinger equation can be written as Hermite functions,

ψn(x) =
1√
2nn!

(mω
π~

)1/4

exp

(
−mωx

2

2~

)
Hn

(√
mω

~
x

)
, n = 0, 1, 2 . . .

(185)
where the functions Hn are the Hermite polynomials given by

Hn(z) = (−1)nez
2 dn

dzn
e−z

2

. (186)

The energy levels of the system are then given as

En = ~ω
(
ω +

1

2

)
n = 0, 1, 2, . . . . (187)

These levels correspond to the total mechanical energy that the quantum oscillator may
assume. It is also evident from the unbounded nature of the eigenvalues that Ĥ is also
unbounded. The solutions are square integrable only for integer values of n. Because
of this, the spectrum of the harmonic oscillator is pure point spectrum. In a classical
oscillator, the energy levels would not be discrete but vary continuously.
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Consider next the quantum mechanical free particle, i.e. with potential function V (x) =
0. The solution to the Schrödinger equation is an eigenstate of the kinetic energy operator
which corresponds to a simple complex plane wave,

ψ(x) = A exp (−ikx) (188)

where the parameter k is related to the energy,

E =
~2k2

2m
. (189)

Unlike in the case of the harmonic oscillator, the energy of the system may now vary
continuously with the parameter k. This solution is not itself square-integrable: by the
Heisenberg uncertainty principle, if the particle is in a momentum eigenstate, then the
wave function cannot be localised anywhere. However, we can combine a set of solutions
with di�erent k to represent any ψ ∈ L2(R) as a wave packet,

ψ(x) =
1√
2π

∫ ∞
−∞

φ(k) exp(−ikx)dk (190)

where

φ(k) =
1√
2π

∫ ∞
−∞

ψ(q) exp(−ikq)dq. (191)

Due to linearity, the wave packet is also a solution to the Schrödinger equation, although
not an eigenstate of the Hamiltonian.

In general, when E ∈ σp(Ĥ), such as in the case of a quantum mechanical harmonic

oscillator, the solutions ψ are in L2(R) but when E ∈ σc(Ĥ), such as in the case of the
free particle, the equation (183) has no nonzero solutions in L2(R). However, from a set
of nonzero solutions it may be possible to integrate a solution in L2(R). [2, 3]
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