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In this white paper, we provide a vision for 6G edge in-
telligence. Moving toward 5G and beyond future 6G net-
works, intelligent solutions utilizing data-driven machine 
learning and artificial intelligence will become crucial for 
several real-world applications, including but not limited 
to more efficient manufacturing, novel personal smart 
device environments and experiences, urban comput-
ing, and autonomous traffic settings. We sent edge com-
puting with other 6G enablers as a key component to es-
tablish the future 2030 intelligent Internet technologies 
shown in this series of 6G white papers. 

In this white paper, we focus on the domains of edge-com-
puting infrastructure and platforms, data and edge net-
work management, software development for edge, and 
real-time and distributed training of ML/AI algorithms, as 
well as security, privacy, pricing, and end-user aspects. 
We discuss the key enablers and challenges, and identify 
the key research questions for the development of intel-
ligent edge services. As the main outcome of this white 
paper, we envision a transition from the Internet of Things 
to the Intelligent Internet of Intelligent Things and provide 
a roadmap for the development of the 6G intelligent edge.

Abstract
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Edge intelligence (EI), powered by artificial intelli-
gence (AI) techniques (e.g. machine learning, deep 
neural networks, etc.), is already considered one of 
the key missing elements in 5G networks and will 
most likely resent a key enabling factor for future 6G 
networks in supporting their performance, new func-
tions, and new services. Consequently, this whitepaper 
aims to provide an overarching understanding of why 
edge intelligence is an important element of 6G, and 
what the leading design principles and technological 
advancements are that are guiding the work toward 6G 
edge intelligence. 

In recent years, we have witnessed a growing market 
and exploitation of AI solutions in a wide spectrum of 
ICT applications. AI services are becoming increasingly 
popular in various ways, including intelligent personal 
assistants, video/audio surveillance, smart city opera-
tions, and autonomous vehicles. Indeed, entire indus-
tries are taking new forms—a prime example being 
Industry 4.0, which aims to digitize manufacturing, ro-
botics, automation, and related industrial fields as part 
of digital transformation. Furthermore, the increasing 
use of computers and software calls for new types of de-
sign tradeoff, concerning, for example, energy and tim-
ing constraints of computations and data transmissions, 
as well as privacy and security. 

The increased interest in AI can be attributed to recent 
phenomena, high-performance yet affordable comput-
ing, and the increasing amount of data generated by var-

ious ubiquitous devices, from personal smartphones to 
industrial robots. Powerful and inexpensive processing 
and storage cloud-computing resources are available for 
anyone with a credit card, where the abundance of re-
sources meets the hungry requirements of AI, calling for 
the elaboration of enormous quantities of big data. Fur-
thermore, the high density of base stations in megaci-
ties (and high density of devices) provides a good basis 
for edge and fog computing.

The devices generating and consuming data are com-
monly located at the edge of networks, near the users 
and systems under monitoring, surveillance, or control. 
However, this megatrend has received only little atten-
tion. Indeed, the wide diffusion of smart terminals, devic-
es, and mobile computing, the Internet of Things (IoT), 
and the proliferation of sensors and video cameras are 
generating several hundred observations and ZBs of 
data at the network edge. Furthermore, increasing use 
of machine-learning models with a small memory foot-
print—such as TinyML—that operate at the edge plays 
an important role. Taking this into account in computa-
tional models means the centralized cloud computing 
model needs to be extended toward the edge. 

Edge computing (EC) is a distinguished form of cloud 
computing that moves part of the service-specific 
processing and data storage from the central cloud to 
edge network nodes that are physically and logically 
close to the data providers and end users. Among the 
expected benefits of edge-computing deployment in 

Introduction 1

Figure 1: The transition from 5g to 6g enabled by edge intelligence.

© 6G Flagship
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current 5G networks are performance improvements, 
traffic optimization, and new ultra-low latency services. 
Edge intelligence in 6G will significantly contribute to 
all these aspects. Moreover, edge intelligence capability 
will enable the development of an entirely new category 
of products and services. New business and innovation 
avenues around edge computing and edge intelligence 
are likely to emerge rapidly in several industry domains.  
Sometimes, the term fog computing is also used to high-
light that in addition to running things at the edge, com-
puters located between the edge device and the central 
cloud are used. While various definitions, with subtle dif-
ferences, for edge and fog computing exist, we use the 
terms interchangeably to denote flexible executions that 
are run in computers outside the central cloud.

A definition of particular importance for 5G and beyond 
5G systems is given by the multi-access edge computing 
(MEC) initiative within ETSI1. In this architecture, a mobile 
edge host runs a mobile edge platform that facilitates the 
execution of applications and services at the edge. The 
ETSI MEC standard connects the MEC applications and 
services with the cellular domain through standardized 
APIs such as access to base station information and net-
work-slicing support. From the data analytics perspec-
tive, edge intelligence refers to data analysis and the de-
velopment of solutions at or near the site where the data 
is generated and further utilized. Edge intelligence thus 
allows the reduction of latency, costs, and security risks, 
making the associated business more efficient. From the 
network perspective, edge intelligence mainly refers to 
intelligent services and functions deployed at the edge 
of the network, probably including the user domain, the 
tenant domain, or close to the user or tenant domain, or 
across the boundary of network domains. 

In its basic form, edge intelligence involves an increas-
ing level of data processing and the capacity to filter in-
formation on the edge. However, intelligence is defined 
a priori. With increasing levels of artificial intelligence at 
the edge, it is possible to bring some AI features to each 
node, as well as clusters of nodes, so that they can learn 
progressively and possibly share what they learn with 
other similar (edge) nodes to collectively provide new 
value-added or optimized services. Hence, it can be 
dicted that the evolution of telecom infrastructures to-
ward 6G will consider highly distributed AI, moving the 
intelligence from the central cloud to edge-computing 
resources. Target systems include advanced IoT appli-
cations and digital transformation projects. Furthermore, 
edge intelligence is a necessity for a world in which intel-
ligent autonomous systems are commonplace, in partic-
ular when considering situations in which machines and 

humans cooperate (such as working environments) for 
safety reasons.

Software and hardware optimized for edge intelligence 
are currently in their infancy, and we are seeing an in-
flux of edge devices such as Coral2 and Jetson3 that 
are capable of performing AI computation. Regardless, 
current AI solutions are resource- and energy-hungry, 
and time consuming. Indeed, many commonly used ma-
chine-learning and deep neural network algorithms still 
rely on Boolean algebra transistors to do an enormous 
amount of digital computations over massive-scale data-
sets. In future, the number and size of available datasets 
will only increase, whilst AI performance requirements 
will be increasingly stringent, for the expected (almost) 
real-time ultra-low latency applications. We believe this 
trend cannot really be sustainable in the long term. 

To provide a concrete example of non-optimal hardware 
and software in 5G, we point out that in the basic func-
tioning of especially deep neural networks (DNN), each 
high-level layer learns increasingly abstract higher-level 
features, providing a useful, and at times reduced, pre-
sentation of the features to a lower-level layer. An obsta-
cle is that chipset technologies are not becoming fast-
er at the same pace as AI solutions are progressing in 
serving markets’ expectations and needs. Nanophotonic 
technologies could help in this direction: DNN opera-
tions are mostly matrix multiplication, and nanophotonic 
circuits can make such operations almost at the speed 
of light and very efficiently due to the nature of photons. 
Simply excessed, photonic/optical computing uses elec-
tromagnetic signals (e.g. via laser beams) to store, trans-
fer, and process information. Optics has been around for 
decades, but it has until now been mostly limited to laser 
transmission over optical fiber. Nanophotonic technolo-
gies using optical signals to perform computations and 
store data could accelerate AI computing by orders of 
magnitude in latency, throughput, and power efficiency. 
In-memory computing is a promising approach to ad-
dressing the processor–memory data transfer bottle-
neck in computing systems. In-memory computing is 
motivated by the observation that the movement of data 
from bit cells in the memory to the processor and back 
(across the bit lines, memory interface, and system in-
terconnect) is a major performance and energy bottle-
neck in computing systems. Efforts that have explored 
the closer integration of logic and memory are various-
ly referred to in the literature as logic-in-memory, com-
puting-in-memory, and processing-in-memory. These 
efforts may be classified in two categories—moving 
logic closer to memory, or near memory computing, and 
performing computations within memory structures, or 

1 https://www.etsi.org/technologies/multi-access-edge-computing  
2 https://www.coral.ai/ 
3 https://developer.nvidia.com/buy-jetson

https://www.etsi.org/technologies/multi-access-edge-computing
https://www.coral.ai/
https://developer.nvidia.com/buy-jetson
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in-memory computing [1]. In-memory computing ap-
pears to be a suitable solution for supporting the hard-
ware acceleration of DNN. System-on-chip architec-
tures like the adaptive computing acceleration platform 
(ACAP) are yet another approach for AI applications. 
ACAPs integrate generic CPUs with AI- and DSP-spe-
cific engines, as well as programmable logic, in a single 
device. Internal memory and high-speed interconnec-
tion networks make it possible to implement the whole 
AI processing pipeline within a single device, eliminating 
the need to transfer data off chip [2].

Software supporting AI development is also an un-
der-studied aspect of current 5G development. The 
tools, methods, and practices we use to build edge de-
vices, cloud software, the gateways that connect them, 
and end-user applications are diverging for various rea-
sons, including performance, memory constraints, and 
productivity. This means that the responsibilities of dif-
ferent devices are still largely defined a priori during their 
design and implementation. We are therefore far from 
software capabilities that would allow software to “flow” 
from one device to another (“liquid” software). Without 
liquid software as part of future 6G networks, we are 
stuck with an approach in which we must decide where 
to locate the intelligence in the network topology at the 
due design time, because the computations cannot be 
easily relocated without design-time parations.

In this white paper, we aim to shed light on the challenges 
of edge AI, potential solutions for these challenges, and a 
roadmap toward intelligent edge AI. In addition, another 
6G white paper is written to highlight machine learning 
capabilities wireless communication networks [3]. This 
paper is structured as follows: In Section 2, we discuss 
the related work that motivates the paper; in Section 3, 
we provide an insight into our vision of edge AI; in Sec-
tion 4, we address challenges and key enablers of edge 
AI in the context of the emerging 6G era; in Sections 5 
and 6, we sent key research questions and a roadmap for 
meeting the vision.
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Vision-oriented and positioning papers on 6G edge in-
telligence are starting to emerge. Zhou et al. [4] and Xu 
et al. [5] conduct a comprehensive survey of the recent 
research efforts on edge intelligence. Specifically, they 
review the background and motivation for artificial intel-
ligence running at the network edge, concentrating on 
deep neural networks (DNN), a popular architecture for 
supervised learning. Further, they provide an overview of 
the overarching architectures, frameworks, and emerg-
ing key technologies for the deep learning model for 
training and inference at the network edge. Finally, they 
discuss the open challenges and future research direc-
tions in edge intelligence.

Rausch and Dustdar [6] investigate the trends and pos-
sible “convergence” between humans, things, and AI. In 
their article, they distinguish three categories of edge in-
telligence use cases: public, such as smart public spac-
es; private, such as personal health assistants and pre-
dictive maintenance (corporate); and intersecting, such 
as autonomous vehicles. It is unclear who will own the 
future fabric for edge intelligence, whether utility-based 
offerings for edge computing will take over as is the case 
in cloud computing, whether telecommunications will 
keep up with the development of mobile edge comput-
ing, what role governments and the public will play, and 
how the answers to these questions will impact engi-
neering practices and system architectures.

To address the challenges of edge intelligence data 
analysis, computing power limitation, data sharing and 
collaborating, and the mismatch between the edge 

Related work 2
platform and AI algorithms, Zhang et al. [7] introduce an 
open framework for edge intelligence (OpenEI), which is 
a lightweight software platform to equip the edge with 
intelligent processing and data-sharing capability. Sim-
ilarly, the ARM compute library4, the Qualcomm Neural 
Processing SDK5, the Xilinx Vitis AI6, and Tensorflow 
lite7 offer solutions for performing AI computations on 
low-power devices that can be deployed at the edge. 
More generally, the experience of edge computing is 
worth recalling. Mohan [8] adopts an edge-computing 
service model based on a hardware layer, an infrastruc-
ture layer, and a platform layer to introduce a number 
of research questions. Hamm et al. [9] present an in-
teresting summary based on the consideration of 75 
edge-computing initiatives. Edge Computing Consor-
tium Europe (ECCE)8 aims to drive the adoption of the 
edge-computing paradigm within manufacturing and 
other industrial markets with the specification of a refer-
ence architecture model for edge computing (ECCE RA-
MEC), the development of reference technology stacks 
(ECCE edge nodes), the identification of gaps, and the 
recommendation of best practices by evaluating ap-
proaches within multiple scenarios (ECCE pathfinders).

On the theoretical side, Park et al. [10] highlight the need 
for distributed, low latency, and reliable machine learn-
ing at the wireless network edge to facilitate the growth 
of mission-critical applications and intelligence devices. 
Therein, the key building blocks of machine learning at 
the edge are laid out by analyzing different neural net-
work architectural splits and their inherent tradeoffs. 
Furthermore, Park et al. [10] provide a comprehensive 

4 https://developer.arm.com/ip-products/processors/machine-learning/compute-library 
5 https://developer.qualcomm.com/software/qualcomm-neural-processing-sdk  
6 https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html 
7 https://www.tensorflow.org/lite/ 
8 https://ecconsortium.eu/ 

https://developer.arm.com/ip-products/processors/machine-learning/compute-library
https://developer.qualcomm.com/software/qualcomm-neural-processing-sdk
https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html
https://www.tensorflow.org/lite/
https://ecconsortium.eu/
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analysis of theoretical and technical enablers for edge in-
telligence from different mathematical disciplines, pre-
senting several case studies to demonstrate the effec-
tiveness of edge intelligence for 5G and beyond.

In a series of position papers, Lovén et al. [11] divide 
edge AI into edge for AI, comprising the effect of the 
edge-computing platform on AI methods, and AI for 
edge, comprising how AI methods can help in the or-
chestration of an edge platform. They identify communi-
cation, control, security, privacy, and application verticals 
as the key focus areas in studying the intersection of AI 
and edge computing and outline the architecture of a se-
cure privacy-aware platform that supports distributed 
learning, inference, and decision making by edge-native 
AI agents.

Almost identically to Lovén et al. [11], Deng et al. [12] 
separate AI for edge and AI on edge. In their study, Deng 
et al. discuss the core concepts and a research roadmap 
to build the necessary foundations for future research 
programs in edge intelligence. AI for edge is a research 
direction focusing on providing a better solution to the 
constrained optimization problems in edge computing 
with the help of effective AI technologies. Here, AI is 
used to enhance edge with more intelligence and opti-
mality, resulting in Intelligence-enabled edge computing 
(IEC). AI on edge, on the other hand, studies how to carry 
out the entire lifecycle of AI models on edge. It is a par-
adigm of running AI model training and inference with 
device–edge–cloud synergy, with the aim of extracting 
insights from massive and distributed edge data with the 
satisfaction of algorithm performance, cost, privacy, re-
liability, efficiency, etc. It can therefore be interpreted as 
artificial intelligence on edge (AIE).
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There is virtually no major industry in which modern 
artificial intelligence is not already playing a role. This 
is especially true in the past few years, as data collection 
and analysis have ramped up considerably thanks to ro-
bust IoT connectivity, the proliferation of connected de-
vices, and ever-speedier computer processing. Regard-
less of the impact artificial intelligence is having on our 
present lives, it is hard to ignore that in the future it will 
enable new and advanced services for: (i) transportation 
and mobility in three dimensions; (ii) manufacturing and 
industrial maintenance; (iii) healthcare and wellness; (iv) 
education and training; (v) media and entertainment; (vi) 
ecommerce and shopping, (vii) environmental protec-
tion; (viii) customer services. The complexity of the re-
sulting functionalities requires an increasing level of dis-
tributed intelligence at all levels to guarantee efficient, 
safe, secure, robust, and resilient services. 

As with the transition we are experiencing from cloud 
to cloud intelligence, we are constantly assisting in an 
evolution from the “Internet of Things” to the “Internet 
of Intelligent Things.” Given the requirements above, it 
is increasingly evident that an “Intelligent Internet of 
Intelligent Things” is also needed to make such an In-
ternet more reliable, more efficient, more resilient, and 
more secure. This is exactly the area where 6G com-
munication with edge-driven artificial intelligence can 
play a fundamental role.

Compared with edge-computing efforts from cloud ser-
vice providers such as Google, Amazon, and Microsoft, 
there is a tighter integration advantage in computing 
and communication in 6G by telecom operators. For 
example, 6G base stations can be a natural deployment 
of edge intelligence that requires both computing and 
communication resources. This is likely to represent a 
new opportunity for telecom operators and to some ex-
tent, tower operators, to regain centrality in the market 
and increase the added value of their offer.

As the connected objects become more intelligent in 
the 6G era, it is difficult to believe that we can deal with 
them, the complexity of their use, and their working con-
ditions by continuing to use the communications net-
work in a static, simplistic, and dumb manner. The same 
need will likely emerge for any other services using fu-
ture communications networks, including phone calls, 
video calls, video conferences, video on demand, and 
augmented and mixed reality video streaming, where 
the wireless communications network will no longer 
simply provide a “connection” between two or more 
people or a “video channel” on demand from a remote 
repository to the user’s TV set, but will introduce a need 
to properly authenticate all the involved parties, guaran-
tee the security of data fluxes eventually using a dedi-
cated blockchain, and recognizing unusual or abnormal 
behavior in real time. Data exchange will in practice be 

Vision for the 2030s edge-
driven artificial intelligence 3

Figure 2: Evolution of the “intelligent internet of intelligent things”

© 6G Flagship
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much more than merely pure data exchange but will ex-
change a number of past, present, and possibly future 
properties of the data. In future 6G wireless communi-
cations networks, trust, service level, condition monitor-
ing, fault detection, reliability, and resilience will define 
fundamental requirements, and artificial intelligence 
solutions are extremely promising candidates to play a 
fundamental role in satisfying such requirements.

We can easily anticipate that larger amounts of data will 
transit on the future 6G wireless communications net-
work nodes, and a growing number of value-added ap-
plications and services will critically depend on this data. 
Bringing intelligence to the edge will clearly represent 
a basic functionality for guaranteeing the efficiency of 
future wireless communications networks in 6G, while 
representing the enabling technology for a number of 
value-added applications and services. Artificial intelli-
gence on wireless communications nodes can actually 
enable a number of advanced services and quality of 
service functionalities for the proposed applications.

Existing computing techniques used in the cloud are 
not fully applicable to edge computing directly due to 
the diversity of computing sources and the distribution 
of data sources. Considering that even those solutions 
available to transform heterogeneous clouds into a ho-
mogeneous platform are not presently performing very 

well, Mohan [8] investigates the challenges for integrat-
ing edge computing ((i) constrained hardware, (ii) con-
strained environment, (iii) availability and reliability, (iv) 
energy limitations), proposing several solutions neces-
sary for the adoption of edge computing in the current 
cloud-dominant environment. Indeed, we define perfor-
mance, cost, security, efficiency, and reliability as key 
features and measurable indicators of any AI for edge 
and AI on edge solutions.

Zhou et al. [4] categorize edge intelligence in six levels, 
based on the amount and path length of data offloading. 
We extend Zhou et al.’s vision on edge-based DNNs to 
generic AI models and architectures, with seven levels 
where the edge can either be viewed as a set of single 
autonomous intelligent nodes, or as a cluster or collec-
tion of federated/integrated edge nodes. We also add 
a different degree of autonomy in the operation of the 
edge nodes (see Fig. 4). Specifically, our definition of the 
levels of edge intelligence is as follows:

•	 Cloud intelligence: training and inferencing the AI 
model fully in the cloud.

•	 Level 1: Cloud-edge co-inference and cloud training: 
training the AI model in the cloud but inferencing the 
AI model in an edge-cloud cooperation manner. Here, 
edge-cloud cooperation means that data is partially 
offloaded to the cloud.

Figure 3: Key enablers for intelligent internet of intelligent things

© 6G Flagship



15

6G White Paper on Edge Intelligence

•	 Level 2: In-edge co-Inference and cloud training: 
training the AI model in the cloud but inferencing the 
AI model in an in-edge manner. Here, in-edge means 
that the model inference is carried out within the 
network edge, which can be realized by fully or partially 
offloading the data to the edge nodes or nearby devices 
in an independent or coordinated manner.

•	 Level 3: On-device inference and cloud training: 
training the AI model in the cloud but inferencing the 
AI model in a fully local on-device manner. Here, on-
device means that no data is offloaded/uploaded.

•	 Level 4: Cloud-edge co-training and inference: training 
and inferencing the AI model both in the edge-cloud 
cooperation manner.

•	 Level 5: All in-edge: training and inferencing the AI 
model in the in-edge manner.

•	 Level 6: Edge-device co-training and inference: 
training and inferencing the AI model in the edge-
device cooperation manner.

•	 Level 7: All on-device: training and inferencing the AI 
model in the on-device manner.

Figure 4: Level rating for edge intelligence (adapted from zhou et al [4])

Both AI for edge and AI on edge can be distributed at 
edge level. In practice, an edge node appears as a “local 
cloud” for the connected devices, and a “cluster of edge 
nodes” can cooperate to share the knowledge of the 
specific context and the specific environment, as well as 
to share computational and communication load, both 
during training and during inferencing. 

Further, we list and summarize a number of key func-
tions that we envisage as useful for possible future edge 
intelligence applications at all possible levels of Fig 4. 
Therein, we highlight where exactly the intelligence is 
“concentrated,” and the applications and the services 
are “executed,” depending on the specific application 
scenarios, the local environment, the network architec-
ture, the cooperative framework that can be defined, 
and the performance and the costs that need to be bal-
anced. Some examples of artificial intelligence methods 
to optimize telecom infrastructure in the 6G era and 
manage the lifecycle of edge networks (AI for edge) are 
recalled in Table 1; the edge as a platform for applica-

©
 6G

 Flagship
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tion-oriented distributed AI services (AI on edge) are 
listed in Table 2.

It is noteworthy that to guarantee efficient, safe, se-
cure, robust, and resilient 6G-based services, it is also 
important to reduce dependencies between AI for the 
edge and AI on edge services. Infrastructure and plat-

form orchestration functionalities should guarantee 
their coexistence and their optimization if they coexist, 
but they do not necessarily require these services to be 
fully implemented at all times. To allow maximum flex-
ibility, we should probably develop an “ontology for 6G 
connectivity” to shape all the possible combinations of 
“micro services” on the edge nodes.

Wireless 
networking

Zhu et al. (2018) [13] describe a new set of design principles for wireless commu-
nication on the edge with embedded machine-learning technologies and models, 
collectively named learning-driven communication. It can be achieved across the 
whole process of data acquisition, which are in turn multiple access, radio re-
source management, and signal encoding.

mmWave xhaul 
systems

Development of mmWave xhaul systems, including AI/ML-based optimization, 
fault/anomaly detection, and resource management. Small cells, cloud-radio access 
networks (C-RAN), software-defined networks (SDN), and network function virtu-
alization (NVF) are key enablers for addressing the demand for broadband connec-
tivity with inexpensive and flexible implementations. Small cells, in conjunction with 
C-RAN, SDN, and NVF, impose very stringent requirements on the transport network. 
Here, flexible wireless solutions are required for dynamic backhaul and fronthaul 
architectures alongside very high capacity optical interconnects, and AI to maximize 
the collaboration between the cloud and the edge can represent a key solution.

Communication 
service implemen-
tation 

Edge intelligence can automate and simplify the development, optimization, and 
run-time determination of communications service implementation. Edge intelli-
gence in this case enables/assists service execution by determining the optimal/
possible execution of service, based on the resource availability in a network.

Dynamic task allo-
cation

Offloading and onloading computational tasks and data between participating de-
vices, edge nodes, and cloud, in addition to smart and dynamic (re-) allocation of 
tasks, could become the hottest topic in AI for edge. Dynamic task allocation stud-
ies the transfer of resource-intensive computational tasks from resource-limited 
mobile devices between the edge and the cloud, and the interoperability of local 
devices sharing their computational power. These processes involve the allocation 
of various different resources, including CPU cycles, sensing capabilities, available 
data and AI models, and channel bandwidth. AI technologies with strong optimiza-
tion and communication abilities can therefore be used extensively in the 6G era.

Liquid computing 
handover

A seamless handover can be further extended to cover the handover of the tasks 
being shared between devices and edge nodes while devices move in the network.

Location-based 
optimization

The optimization of network coverage and wireless networking can greatly benefit 
from the information collected progressively on the local radio environment. Basi-
cally, in this case, the devices exploit the knowledge available on the environment 
and the edge nodes.

Table 1:
AI for edge service

Specific objective
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Location-based 
optimization

Quality of Service can be extended by predicting the behavior of the devices 
interacting with a specific edge node or group of edge nodes. Information on the 
behavior and on the QoS can be shared between edge nodes (with due attention to 
possible privacy and security issues). In this case, the edge nodes essentially exploit 
the knowledge available on the environment and the devices in that environment.

Energy 
management

Although energy management for mobile devices has experienced significant 
improvements from the hardware perspective, we observe a high variability of de-
vices’ energy performance in connection with the applications. With the increasing 
level of autonomy that we expect for devices and 6G communications networks, 
we need to further extend the energy efficiency and energy management capacity 
for both 6G devices and 6G edge nodes.

Novel application 
areas

Autonomous and driving-assisted vehicles, autonomous drones, traffic control, 
smart factories, smart farms, smart roads, smart homes, and smart cities, can 
actually define the reference profiles for services and for wireless communications 
network functionalities to be activated.

Table 2: 
AI on edge service

Specific objective

Data intelligence Edge Intelligence is to use advanced communications technology and AI to sup-
port ubiquitous data collection, aggregation, fusion, processing, distribution, and 
services at the edge. The ability to learn, infer and control from data, in both static 
and dynamic environments, is an additional value-added feature.

Cooperative 
intelligence

Algorithms run on heterogeneous platforms which may be geographically distant 
(imposing latency requirements) jointly solving an AI problem.

Real-time 
requirements 

Localized AI/ML functions with constrained computation resources and (usually) 
strict real-time requirements.

Computing as a 
service

Provide intelligent computing capabilities when and wherever the user needs them 
(satisfying his/her requirements in terms of computing power, latency, energy 
consumption, cost, mobility, service reliability, etc.).

Advanced IoT 
models

IoT data models, architectures, and smart services, especially with distributed 
services in IoT over different platforms and implementations. Here, the focus is 
on enabling services that can adapt, based on the available IoT devices/services 
in the network. Connected “smart objects” operate in an intelligent virtualized 
computational environment that is deployed across cloud, edge, and mixed layers, 
vertically and horizontally.

Table 1:
AI for edge service

Specific objective
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Although the benefits of edge intelligence are immense, 
the realization of the intelligence (training) and the focus 
of applications (inference) pose several technical chal-
lenges, in contrast to traditional centralized artificial intel-
ligence systems. It is therefore crucial to identify and ana-
lyze these challenges in edge intelligence and seek novel 
theoretical and technical enablers. In this regard, a set of 
prominent challenges in edge intelligence and some key 
enablers for overcoming them are discussed next.

Edge infrastructure solutions

Edge-computing infrastructures are best exemplified 
by the MEC reference architecture, currently under stan-

Challenges and key enablers 4
dardization by ETSI. The architecture describes edge 
platform components, their roles and expected func-
tionalities, system APIs, and interactions for collabora-
tion and third-party software integration. The target is 
an open multi-vendor edge platform. Guidelines on how 
to realize systems, applications based on the reference 
architecture, and a set of proof-of-concept applications 
are therefore presented. However, the implementation 
details of the system components and interactions are 
left open, and the architecture is based on distributed 
operation and control at two levels: system-level man-
agement and host-level management. However, the 
centralized orchestrator component is expected to have 
sole authority for all system resources. Platform- and 

Figure 5:  Key challenges and key enablers for edge intelligence for 6G

© 6G Flagship
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host-level components operate based on instructions 
received from the orchestrator with partial autonomy to 
control the resources under their domain. These compo-
nents are expected to provide feedback to orchestrators 
about their operation. These operational principles are 
certainly beneficial, but they lead to challenges in re-
al-time reactivity, providing low latency for multi-tenant 
applications, data routing, and aggregation system infor-
mation delivery, etc. across dynamic and opportunistic 
distributed IoT environments. Regarding AI capabilities 
for edge infrastructures, processing the system-wide 
data of resource usage and sharing across the de-
ployment, system performance in relation to key per-
formance indicators (KPIs), application data delivery, 
QoS, and Quality of Experience (QoE) parameters, etc. 
used for building models, learning, and further making 
predictions for the optimization of system behavior is 
largely unexplored territory.

From the architectural perspective, different approaches 
can be found. ETSI MEC is a two-tier architecture [14], 
with management components in the cloud or platforms 
with similar capabilities, and application components 
deployed in the network edge layer below. In turn, fog 
computing provides a hierarchical computing platform 
across the deployment [15], typically confined in a space 
where the computational units, i.e. fog nodes, have in-
creasing capacity toward the cloud. Cloudlets are a simi-
lar concept, in which on-demand physical computational 
capacity can be deployed in location as server racks and 
under-/overused capacity shared across the platform, 
with the additional cost of moving application compo-
nents [16]. In such a multi-tier environment, the role of 
autonomous management and the operation of local 
components are even more important and challenging. 
Recently, mist computing has emerged, in which the 
data producing IoT devices such as WSN nodes and mo-
bile devices is already harnessed for application-specific 
data processing at the data source. Another approach 
for device-level computing is mobile (cloud) computing, 
where the UEs of users provide ad hoc shared compu-
tational capabilities at a location with offloading to the 
edge/cloud. In addition to MEC standardization, open-
source solutions for edge platform management such 
as Google Kubernetes and Docker Swarm exist that are 
widely used in industry.

Edge platform orchestration

The opportunistic nature of the IoT environment and 
large physical scale of edge-computing systems jus-
tifies AI approaches for the orchestration and man-
agement of such systems. Further, optimization toward 
fulfilling the edge promises, e.g. efficient resource use 
and QoE, requires a large set of different data sources 
and complex data analysis algorithms. Such centralized 
algorithms would be initially difficult to design and de-
velop, and later deploy, maintain, and evaluate. Moreover, 

distributed and partitioned edge application execution 
is well aligned with the underlying architecture. A com-
mon challenge is to address the resource allocation 
problem, i.e. where to physically deploy edge-computing 
infrastructure, and what capabilities are needed in each 
location and its supporting logical “neighborhood” atop 
the physical network topology. A well-known approach 
here is to deploy the component next to the existing 
infrastructure, e.g. wireless access points following the 
existing underlying network topology, or harness loca-
tion-based low-resource computational units, as in fog 
computing. Such deployments are limited by budgets 
and edge device capabilities, and thus need to be care-
fully pre-planned, e.g. based on historical data, but also in 
response to online and predicted application workloads. 

Data and network management

Availability, accessibility, and types of data play pivotal 
roles in edge intelligence. In contrast to the convention-
al centralized artificial intelligence, the concept of edge 
intelligence in most circumstances relies on “small data.” 
Hence, generalizing the edge intelligence reliably over 
unseen data is a critical challenge. On the other hand, 
even when edge devices have a considerably large frac-
tion of data, it is crucial to identify duplicates and anom-
alies to refine rich data in avoiding performance losses 
(e.g. due to overfitting) in artificial intelligence models. 
Furthermore, applications relying on edge intelligence 
may generate different types of data with multi-sensory 
(audio, video, haptic), spatial, temporal, and stochastic 
characteristics. Additionally, because this heteroge-
neous sensory data is aggregated over a large network, 
the data itself may have inconsistencies. Thus, the fusion 
of these heterogeneous data types affects edge intelli-
gence performance. 

In addition to data, network states and requirements may 
change over time, even with extremely short durations 
(mission-critical applications) demanding tight response 
times. Under such changes, trained artificial intelligence 
models need the capability of adapting or coping mech-
anisms. Sharing fractions of data and trained AI models 
instead of raw data will significantly reduce the com-
munication payload size over any network, increasing 
the potential size of the data systems that can cope in 
a comparably short period. It is therefore crucial to un-
derstand and define data and model provenance and 
lifecycle well and provide measures to compare models 
and their fit to a current context. 

Pre-processing data for machine learning is beneficial to 
govern efficient and reliable artificial intelligence mod-
els in edge, cloud, and remote centralized data centers. 
Edge devices with large volumes of data can use clus-
tering techniques to identify similarities therein. They can 
also use the tools of anomaly detection methods to iso-
late data inconsistencies. After the above classifications, 
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down-sampling techniques can be adopted to manage 
the ensuring of generalized edge intelligence. For small 
data issues, edge devices need to increase sampling 
frequency with the cost of energy consumption to ob-
tain rich datasets. Additionally, synthetic data can be 
generated by resorting to well-trained generalized ad-
versarial networks. Enabling incremental learning meth-
ods to train high-quality models over time and adopting 
formally trained models via knowledge distillation and 
transfer-learning techniques are promising solutions for 
coping with the issues posed by small data availability. 
Edge intelligence that needs to cope with the fusion of 
heterogeneous data types can utilize feature extraction 
techniques (i.e. representation learning) and split learn-
ing over multiple modalities. To address the inconsisten-
cies in heterogeneous sensory data, edge intelligence 
can resort to generalized adversarial networks, in 
which synthetic data can recover and restore the data 
consistency. 

Edge AI can be used to optimize the operations and per-
formance of edge networks. However, in certain cases 
like fault detection and recovery, the problem is that fail-
ures are usually quite rare, and data for machine learning 
is thus very imbalanced. In general, network traffic and 
events tend to have self-similar behavior, which means 
that e.g. traffic anomaly detection mechanisms should 
be able to cope with heavy-tailed distributions. If user 
devices and applications start to adopt greedy AI-based 
flow control and path/GW selection mechanisms, the 
network traffic flow may become even more difficult to 
predict. While several techniques can be used to gener-
ate artificial data, it is not necessarily evident that such 
data is optimal for training, e.g. in fault detection systems. 
An alternative is to use simulations to obtain sufficient 
amounts of balanced data, which requires a kind of edge 
network digital twin. Furthermore, as the used RF fre-
quencies are moving towards higher mmW bands (and 
over), it may also be beneficial to integrate other types 
of data with network management, like fine-grained lo-
calized weather information (heavy rain events) and sea-
sonal changes in foliage. To summarize, it would be bet-
ter to understand the behavior of the network instead 
of handling it like a black box.

Intersection of the edge and device 
intelligence

The location of the edge application has the utmost 
importance for real-time reactivity and adaptivity in 
response to the dynamic environment and user move-
ment. To address the extreme end of the distributed 
edge, edge-supported approaches including mobile 
devices as part of the computational platform have 
emerged. These include mobile cloud computing, mo-
bile edge, and mobile fog. Naturally, such platforms at 
the low end possess limited capabilities for “small data” 
processing, analysis, and dissemination, where further 

support from the edge is required for advanced analy-
sis. Therefore, such distributed applications are typically 
partitioned with software components on the user devic-
es, and edge and cloud layers. Here, sharing of (refined) 
data and local resources both horizontally and vertically 
has the utmost importance for saving device resources, 
i.e. energy, in the participating devices and providing op-
erational capacity in response to user mobility. The key 
challenge is interoperability, i.e. uniform interfaces, to 
share data, results, tasks, and high-level AI models (e.g. 
algorithms). Moreover, the massive scale of such dis-
tributed deployments across networks significantly 
increases the scale of management and orchestration 
with a holistic view of system operation, introducing 
further latencies to the control. Lightweight AI solutions 
are therefore already needed at the mobile device level to 
increase autonomy and self-capabilities*. 

Here, a classical distributed AI paradigm, software 
agents, and multi-agent systems have shown benefits 
in providing autonomy, reactivity, adaptivity, machine 
learning, code mobility, and collaboration capabilities 
[17, 18]—even for resource-constrained IoT devices 
[19]. Such devices are commonly known as smart ob-
jects in the IoT context [20, 21]. Existing use cases for 
agents in the cloud–edge–device continuum include 
representing system entities, facilitating collaboration 
both horizontally and vertically, sharing of resources, and 
controlling (e.g. SDN) and monitoring system operation, 
networks, and devices. However, increasing the agent 
capabilities from reactive operation toward delibera-
tive agents with cognitive capabilities, e.g. learning and 
proactivity, is an open question. Further AI techniques, 
facilitating both vertical and horizontal collaboration and 
cooperation, include swarm intelligence, game theory, 
and genetic algorithms.

Software development for edge

Software development for edge systems relies on vir-
tualization, exemplified by virtual machines and light-
weight containers. Edge applications are developed as 
software packages, possibly implemented by multiple 
stakeholders, from where the application images are 
automatically built by edge system management com-
ponents that maintain the application lifecycle. The im-
ages are then deployed to the edge hosts atop the virtu-
alization infrastructure, according to the system policies. 
They are further managed and instantiated by platform 
and host components, which are also responsible for 
providing the required application-specific service, data, 
and network access and maintaining the required QoE. 
In addition to deployment considerations, the challenge 
here is to manage system policies, SLAs, access rights, 
billing, etc., for the software packages, and negotiate 
and orchestrate their use online, possibly with external 
third-party service providers and network operators. In 
deploying and launching edge applications, both push 
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and pull approaches are facilitated by offloading from 
UE and pulling application-specific components close 
to the infrastructure. Toward autonomy, the horizontal 
code migration of selected software component in a 
limited scope is also an enabler. In this context, securi-
ty and resources, as well as information sharing, are im-
portant challenges. 

Virtual machines typically provide monolithic self-con-
tained application images, typically of several gigabytes, 
that become resource consuming to deploy and move 
across the edge platform. Microservices are a distributed 
approach for edge application development. Their goal is 
to develop in isolation modular application components 
at the individual process level, which can be individually 
deployed on demand to build the application workflow. 
Here, a lightweight version of virtual machines and 
containers encapsulates individual microservices for 
deployment. Unikernels that can run as virtual machines 
or even at bare metal provide an alternative to containers. 
The image size of unikernel-based microservices can be 
more or less the same size as container-based alterna-
tives, so unikernels could provide better isolation with 
the same resources. 

DevOps practices such as CI/CD provide ways of devel-
oping microservices in isolation, managing versioning, 
and deploying such components automatically using 
system management components. Obviously, man-
aging such large-scale automatization online is chal-
lenging, because the additional small-scale applica-
tion-specific units and their workflows significantly 
increase the scope of system and package manage-
ment, and related performance monitoring. There are 
some AI-specific CI/CD frameworks like Kubeflow9 and 
MLFlow10 that support AI model development, train-
ing, and deployment workflows in cloud environments. 
However, in edge AI environments, such frameworks 
would need adaptation to edge data sources and fed-
erated cloud environments.

Real-time requirements and online 
learning

Novel and future AI applications require real-time feed-
back to be effective and address the challenges set by 
many real-world applications, including robotics and 
self-driving cars, traffic and logistics management sys-
tems, and telepresence, virtual, and augmented reality 
applications, all of which are included in 6G verticals 
and application areas. Real-time challenges cannot be 
solved only by decreasing latency and increasing net-
work bandwidth because of the time usually spent on 
collecting the data for machine-learning models, training 

these models, and defining actions based on the learned 
models to be returned to the application. Thus, redefin-
ing the entire real-time feedback cycle becomes even 
more crucial, including balance between pre-trained 
and online learned models, efficient model distribution 
and reutilization during their lifecycle, and dynamic 
decision making based on all the knowledge available 
from different models and data sources.

To address the challenges due to the need for a short re-
sponse time, it is essential to quickly adapt data dissemi-
nation and model training along the network changes, as 
well as to reduce the processing complexity in the infer-
ence. By using the frameworks of transfer learning and 
knowledge distillation, edge intelligence can reduce re-
training latency with the aid of pre-acquired intelligence. 
Furthermore, knowledge distillation and model prun-
ing allow the reduction of artificial intelligence models, 
yielding fast inference. In addition to the aforementioned 
methods, the dynamics in the data and the network can 
be addressed by resorting to reinforcement learning and 
the co-design of communication, control, and machine 
learning [22].

Developing distributedly trained 
algorithms

Toward realizing edge intelligence, the training pro-
cedure directly affects the majority of the end-to-end 
latencies, the inference reliability, and the overall scal-
ability [11]. While a handful of applications may allow 
traditional centralized artificial intelligence model 
training and download a trained model for the infer-
ence at the edge, the majority of mission-critical and 
privacy-concerned applications demand online dis-
tributed training algorithms that can be employed at 
edge devices. From this perspective, on-device limita-
tions and the communication bottleneck among edge 
devices, and between the edge and the servers, play 
a critical role in developing the distributed algorithms. 
The edge devices in a large-scale artificial intelligent 
system are likely to be mobile and thus powered with 
capacity-limited batteries and storage. The limited en-
ergy budget is used for both computation (training and 
inference) and communication. 

While large machine-learning models and frequent 
coordination among edge devices are ferred for high-
er inference accuracy and reliability [23], they could be 
inefficient from the energy consumption perspective, 
bounded by storage/memory limitations and privacy 
requirements. These on-device constraints call for en-
ergy-efficient, low-complexity and low-capacity, priva-
cy-sensitive designs of distributed algorithms. Under 

9 https://www.kubeflow.org/docs/started/kubeflow-overview/ 
10 https://mlflow.org/ 

https://www.kubeflow.org/docs/started/kubeflow-overview/
https://mlflow.org/
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limited data availability, edge devices may require ex-
changing raw data itself, its model parameters, or in-
ferred outputs/decisions among one another or with a 
central server to improve the reliability and robustness 
of the distributed algorithms. This coordination within 
the network suffers with the uncertainties in the com-
munication links and the network dynamics. Therefore, 
user and resource (computation and communication) 
scheduling, as well as data and model comssing, need 
to be accounted for in the distributed algorithm design.

The aforementioned limitations of device capabilities 
and communication in distributed algorithm design 
can be addressed with several technical and theoreti-
cal enablers, listed below. Within the limited power and 
memory of devices, it is suitable to seek data and model 
parallelization techniques, depending on the privacy re-
quirements. Here, data can be split into several batches 
and processed utilizing mobile edge-computing serv-
ers. Alternatively, large artificial intelligence models can 
be split over several devices in which sequential/paral-
lel training can be carried out, i.e. adapting split learning 
within distributed training algorithms [24]. Additionally, 
depending on training data size and privacy require-
ments, as well as the artificial intelligence model size, 
federated learning, knowledge distillation, and trans-
fer learning methods can be selected as model training 
techniques [25, 26, 27]. 

To improve communications efficiency within distrib-
uted training algorithms, the uplink-downlink channel 
capacity asymmetry in the wireless network can be ex-
ploited by jointly adapting knowledge distillation and 
federated learning. Moreover, artificial intelligence mod-
el pruning, and coded and quantized model/data trans-
mission-based learning can be adopted to address the 
limitations of both communication and storage [28]. Fur-
thermore, it is important to identify the characteristics 
of the network dynamics when designing distributed 
training algorithms. Since static algorithms may yield 
poor performance under drastic network changes, it is 
crucial to either introduce cold-start mechanisms to re-
train the models or to adopt continuous knowledge ac-
quisition via continual learning methods, including trans-
fer learning, online learning, and reinforcement learning. 
In addition to the aforementioned technical enablers, it 
is mandated to ensure latency, reliability, and scalability 
guarantees within the distributed training algorithms. 
From the perspective of reliability, generalization error is 
a performance measure of a trained artificial intelligence 
model over unseen data. For distributed algorithms, the 
frameworks of meta distribution, risk management, and 
extreme value theory can be used as theoretical en-
ablers to analyze and minimize the generalization errors. 
To reduce latency while developing secure and scalable 
distributed algorithms, tools from differential privacy, 
rate-distortion theory, and mean-field control theory can 
be adopted.

Security and privacy

In any edge-cloud computing environment, data is 
transmitted from the edge to the dedicated computing 
infrastructure with services that perform the data analy-
sis, which can be either private or public. Since the data 
leaves the edge, it can be exposed to various vulnerabil-
ities and attacks such as penetration attacks resulting 
in theft of information or even denial of service attacks, 
resulting in crashing servers or networks. Additionally, 
not only can an attacker access and intercept the data, 
but the application’s processing outcome in transit can 
lead to a different action/scenario than the intended one 
(i.e. tampering). The locality on the edge, as well as the 
potential proximity of the system to end users, can also 
enable it to help address certain security challenges. In 
some applications, edge AI can also be used to improve 
security and privacy, e.g. by anonymizing human faces 
in video streams or replacing people with straw figures 
if the main application depends only on the number of 
people in a certain location, or if someone has fallen and 
is lying on the ground. The 6G white paper on security 
and privacy discusses these topics further [29]. 

In this view, lightweight and distributed security mech-
anism designs are critical to ensure user authentica-
tion and access control, model and data integrity, and 
mutual platform verification for edge intelligence. It is 
also important to study novel secure routing schemes 
and trust network topologies for edge intelligence ser-
vice delivery when considering the coexistence of trust-
ed edge nodes with malicious ones. On the other hand, 
end users and devices would generate a massive volume 
of data at the network edge, and this data may be priva-
cy-sensitive, because it may contain the user’s location 
data, health or activity records, manufacturing informa-
tion, etc. Subject to the privacy protection requirement, 
i.e. the EU’s General Data Protection Regulation (GDPR), 
directly sharing the original datasets among multiple 
edge nodes can carry a high risk of privacy leakage. Thus, 
federated learning may be a feasible paradigm for priva-
cy-friendly distributed data training, such that the origi-
nal datasets are kept in their generated devices/nodes, 
and the edge AI model parameters are shared. To further 
enhance data privacy, research efforts are increasingly 
devoted to utilizing the tools of differential privacy, ho-
momorphic encryption, and secure multi-party compu-
tation in designing privacy-serving AI model parame-
ter-sharing schemes.

End-user aspects

One of the main goals of edge computing, and a justifica-
tion for edge intelligence, is to maintain the required QoE 
for users in terms of network connectivity and applica-
tion execution improvements, and adaptation to the dy-
namic environment and user mobility. A key challenge 
in optimizing edge systems for QoE is understanding 
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the user’s context (e.g. location-awareness), based on 
both large-scale analysis of user behavioral patterns 
across the deployment and real-time reactivity in the lo-
cal environment (e.g. in relation to network connectivity 
and latencies, bandwidth availability, data transmission 
and application execution requirements, and the inte-
gration of user-specific third-party components). These 
concerns lead to online and on-demand adaptation of 
local edge resources that propagates across the deploy-
ment, both horizontally and vertically. 

Challenges are introduced by user mobility, leading to 
user- and application-specific (virtualized) component 
movement and migration across edge deployments, and 
to management challenges in data and (stateful) appli-
cation migration while minimizing handover latencies. 
Further, dynamic edge resources are shared between 
multiple users in multi-tenant fashion, raising privacy 
and security concerns. Regarding mist computing, shar-
ing user equipment as part of data collection and the 
computational platform requires incentives to encour-
age participation, such as micropayments, defining data 
ownership(s) and policies for sharing, and GDPR-compli-
ant privacy protection schemes. Approaches to resent-
ing users in edge systems have already been proposed, 
e.g. digital twins and software agents with cognitive ca-
pabilities. Here, building trust between edge platforms 
and users is required for successful cooperation.

Pricing and sharing mechanism

In future 6G networks, AI-powered mobile edge devices 
will be enabled to share their communication, caching, 
computation, and learning resources (3C-L resources) 

to satisfy the quality of requirements (QoE and QoS) for 
6G wireless applications, such as tactile Internet, virtu-
al reality, and autonomous driving. Hence, an intelligent 
3C-L resource-sharing framework remains in its infancy 
and should be significantly addressed. All the resources 
can be shared by mobile edge devices to maximize the 
resources’ utilization by virtualizing all the resources into 
the virtual resource pool. 

To cope with such a challenge, 3C-L resource sharing 
can be modeled by a dynamic pricing mechanism from 
an economic perspective, in which mobile edge devic-
es are modeled as intelligent agents that can price, i.e. 
operate as brokers, or purchase 3C-L resources and 
consume services according to their own requirements. 
Accordingly, an economic sharing model should be es-
tablished to make 3C resources and knowledge trad-
able by a market equilibrium approach. In particular, 
the multi-agent distributed learning approach may be 
developed to make the optimal price and resource allo-
cation decisions, considering the different QoE and QoS 
requirements of 6G network applications, services, and 
systems. Moreover, how to smartly record the price and 
disseminate the revenue according to the proof of work 
among the distributed edge devices is also very import-
ant. Smart contracts and distributed ledgers are ex-
pected to play an important role in fully unleashing the 
fairness, security, and activity of this ecosystem. There-
fore, designing the appropriate sharing and incentive 
mechanisms, as well as lightweight consensus protocols 
for edge intelligence, should elicit escalating attention.

Table 3 summarizes the defined key challenges and 
enablers.

Edge-computing 
infrastructure

•	 Supporting dynamically changing 
resources and configurations

•	 Reliable feature deployment
•	 Device mobility

Edge platform or-
chestration

•	 Addressing the resource allocation 
problem.

•	 Addressing the resource distribution 
problem.

•	 Addressing dynamic allocation and 
distribution problems.

Table 3: Key challenges

•	 Container technologies
•	 Virtualization
•	 Isomorphic software architectures
•	 Handover protocols and techniques

•	 Virtualization optimization. 
•	 Data intelligence algorithms.
•	 Data analysis algorithms.
•	 Multi-level and fully distributed dy-

namics optimization algorithms.

Key enablers
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Data and network 
management

•	 Fusion of heterogeneous data 
types to optimize edge intelligence 
performance.

•	 Understanding and definition of data 
and model provenance and lifecycle.

•	 Comparing models and their fit to a 
given context.

•	 Enabling incremental learning methods.
•	 Addressing inconsistencies in het-

erogeneous sensory data.
•	 Modeling and understanding net-

work behavior and performance.
•	 Common Interoperability practices’ 

and standards’ optimized high-level 
AI models.

•	 Centralized system management and 
operation, limiting control latencies

Intersection of 
edge and device 
intelligence

•	 Common interoperability practic-
es and standards and optimized 
high-level AI models.

•	 Centralized system management and 
operation, limiting control latencies

Table 3: Key challenges

•	 Extension of sensor and data fusion 
algorithm to support appropriate 
data and network management.

•	 Data and network fault detection and 
identification.

•	 Knowledge extraction and incre-
mental learning algorithms

•	 Knowledge-sharing solutions.
•	 Lightweight AI solutions to increase 

autonomy and self-capabilities*.
•	 Agents with cognitive capabilities, 

e.g. learning and proactivity.
•	 AI techniques for collaboration and 

cooperation, adopting well-known 
paradigms such as swarm intelli-
gence, game theory, and genetic 
algorithms.

•	 Lightweight AI solutions to increase 
autonomy and self-capabilities*.

•	 Agents with cognitive capabilities, 
e.g. learning and proactivity.

•	 AI techniques for collaboration and 
cooperation, adopting well-known 
paradigms such as swarm intelligence, 
game theory, and genetic algorithms.

Key enablers

Software 
development for 
edge

•	 Dynamic configurations
•	 Security
•	 Flexible deployment
•	 Debugging capabilities in develop-

ment time

Real-time require-
ments and online 
learning

•	 Adapting along the network  
dynamics

•	 The need of short response times 

•	 Container technologies
•	 DevOps, CI/CD
•	 Virtualization
•	 Liquid software that can flow from 

one node to another

•	 Transferring learning, knowledge dis-
tillation, and reinforcement learning

•	 Co-designing communication, con-
trol, and machine learning

Distributedly 
trained algorithms

•	 Reducing the cost of coordination 
among edge devices

•	 Reducing generalized errors in 
trained models

•	 Federated learning, knowledge dis-
tillation, transfer learning

•	 Model pruning coded and quantized 
machine learning

•	 Meta distributions, extreme value 
theory, risk management framework
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Table 3: Key challenges Key enablers

Security and 
privacy

•	 Guaranteeing the implementation 
of security and privacy strategies 
according to user needs and system 
requirements.

•	 Guaranteeing the recognition of 
abnormal behavior according to user 
requirements and operator criteria.

•	 Allowing the application of the 
security strategy at all levels. Using 
physical-level solutions to increase 
security and trust.

•	 Allowing the appropriate manage-
ment of personal information owner-
ship at all stages.

End-user aspects •	 Understanding user context based 
on both large-scale behavior patterns

•	 Digital twins and software agents 
with cognitive capabilities
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The emergence of IoT and the demand for responsiveness, 
privacy, and context-awareness are pushing intelligence 
to the edge and pulling the challenges and enablers listed 
in Table 3. For numerous domains that utilize and benefit 
from 6G, edge Intelligence can be outlined with reference 
to the services to enable “AI for edge” in Table 1 and the 
services to enable “AI on edge” in Table 2. Next, we pro-
vide an overview of the core research questions that will 
be tackled in the development of 6G edge intelligence.

Edge infrastructure

1.	 What architectural considerations are involved in 
application development of edge intelligence? Can 
flexible architecture and pipeline cater for different 
types of edge device? Can seamless vertical and hor-
izontal collaboration in physical deployments atop 
existing network topologies be achieved?

2.	 How can edge-dedicated classification and taxono-
my for the edge intelligence components be defined?

3.	 What are the impacts on network architecture re-
garding outer-network edge intelligence and in-net-
work edge intelligence, including network service-, 
function- (NSF) level, and inter-NSF intelligence? 
How can suitable network protocols and interfaces 
for edge intelligence be developed?

System platform and stack

4.	 Which software development practices, quality as-
surance, and testing methods could be applied in 
edge intelligence-powered applications?

5.	 What are the DevOps aspects?
6.	 How can diagnostics and cooperative diagnostics 

for edge specific algorithms be enabled? How can 
multiple edge entities be involved in debugging in a 
decentralized setting? 

7.	 How can formal verification tools and processes be 
incorporated wherever possible?

Core research questions 5
Data and network management

8.	 How can online learning with (possibly) non-station-
ary data, federated learning methods, and energy-ef-
ficiency be organized?

9.	 How can agent-based systems to enable real-world 
cognitive be designed?

10.	How can computing be distributed among the differ-
ent resources?

Intersection of edge and device 
intelligence

11.	How can lightweight AI solutions be implemented to 
increase autonomy and self-capabilities?

12.	How can agents with cognitive capabilities be 
included?

13.	How can AI techniques, facilitating both vertical 
and horizontal collaboration and cooperation, and 
including swarm intelligence, game theory, and 
genetic algorithms be optimized?

Software development of the edge

14.	How can flexible and interoperable software agents 
be developed?

15.	How can reconfigurability and continuous deploy-
ment be guaranteed?

16.	What solutions can be adopted for maximum virtual-
ization capacity?

17.	How can liquid software solutions that can flow from 
one node to another be guaranteed?

Real-time requirements and online 
learning

18.	How can the capacity to transfer learning and provide 
knowledge distillation and reinforcement learning be 
guaranteed?
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19.	How can co-design communication, control, and ma-
chine learning be implemented?

20.	How can model training along the network changes 
be quickly adapted?

21.	How can the processing complexity in the inference 
be reduced? 

Distributed training, algorithmic design, 
and deployment

22.	What is the impact of accelerators, and how are they 
changing the way we approach distributed algo-
rithms and ML design?

23.	How can enough (and powerful) resources for ML at 
the edge (e.g. hardware acceleration, GPUs, etc.) be 
provided in an economically sustainable way? 

24.	How can the energy required for performing the 
computation under different scenarios be bal-
anced? Can it be achieved by enabling computa-
tional power/storage capacity/power consumption 
on the edge?

25.	How can distributed training, inference, and control 
be carried out in a communications-efficient, reliable, 
and scalable manner?

26.	How can ML algorithms be factorized that can run 
partly on heterogeneous platforms? (Also, with het-
erogeneous computing infrastructural resources? 
For example, training deep neural networks (estima-
tion of parameters)?

Security, privacy, and portability 

27.	How can security of data, ML model tempering, and 
protocols be assured? (New protocols must be in-
vented that use TPMs in edge devices.)

28.	How can operation be failing safe in the event of net-
work or node failure?

29.	How can data provenance at scale be ensured?
30.	How can the privacy concerns of users and regulato-

ry bodies be satisfied?

End-user concerns

31.	How can QoE-related KPIs of edge standardization 
be addressed?

32.	How can resources be shared among different end 
users? 

33.	How can user mobility be handled?
34.	How can stateful application migration be handled?
35.	What are the social-technological influences of edge 

intelligence?
36.	What regulation or cultural issues is involved?
37.	How then can the owner, developer, operator, tenant, 

and user of edge intelligence be motivated to define 
the relationships among them and the relationship 
with those in the network?

Pricing and sharing mechanism

38.	How can the 3C-L resources be virtualized?
39.	How can an economic sharing model by market equi-

librium approach be established?
40.	How can the dynamic pricing mechanism be de-

signed?
41.	How can 3C-L resources be smartly traded, and the 

revenue disseminated?
42.	How can the appropriate sharing incentive mecha-

nism be designed?
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Edge Intelligence methods will provide novel business 
opportunities and technological solutions for various 
application fields, including but not limited to personal 
computing, urban computing, and manufacturing, facil-
itating their efficient, safe, secure, robust, and resilient 
wireless networking. Next, we highlight some example 
application areas for edge intelligence, and especially 
the Intelligent Internet of Intelligent Things.

Edge intelligence for autonomous driving

Autonomous driving is one of the broad research top-
ics covering applications ranging from simple driver 
assistance systems (such as traffic sign recognition 
and lane-keeping assistance) to fully automated driving 
without human support. One of the specific and inter-
esting use cases for autonomous driving is the concept 
of autonomous vehicle platooning, i.e. the coordinated 
movement of a group of driverless cars. This group of 
short-distance vehicles, typically trucks, forms a con-
voy led by a platoon leader, responsible for sending the 
steering information to the platoon members.

The data exchange between the platoon members and 
between the platoon and other devices can be realized 
through different wireless communications technolo-
gies (such as the dedicated short-range communica-
tions, DSRC, or cellular networks, Cellular-V2X, C-V2X). 
However, when the number of communicating cars 
increases, it may suffer from the prospective medium 
congestion and may not be able to fulfill the stringent 
requirement of 99.99% reliability. In this context, the 
approach to offloading some data to other bands is 
gaining interest. EI is foreseen here as the enabler for 
dynamic spectrum access, which should allow for fast 
and reliable processing of data generated within pla-
toons and by all users on the road. A hierarchical struc-
ture of the database-oriented system supporting these 
operations in V2X communications is shown in Figure 6. 

Prospective use cases 6
We consider a highway scenario in which multiple pla-
toons of cars travel among other vehicles. We assume 
that platoon cars are autonomous, with their mobility 
controlled using the cooperative adaptive cruise con-
trol (CACC) algorithm.

The intra-platoon communications in a dynamically allo-
cated band as a secondary system should not cause the 
degradation of any existing licensed service. To support 
vehicular dynamic spectrum access, database-oriented 
systems equipped with dedicated units for data pro-
cessing and decision making will specify which frequen-
cy bands can be used for data transmission. We claim 
that various kinds of information will be stored in local 
(regional) and global databases. Edge intelligence func-
tionality will be provided by the dedicated advanced pro-
cessing units that are co-located with the base station or 
roadside units.

Edge intelligence for smart spaces

Smart spaces such as smart homes, smart campus-
es, smart offices, and smart hospitals are expected to 
contain a variety of networked devices and AI-driven 
in-network services to aid everyday activities. These 
devices and services will be latency-sensitive. They are 
expected to exchange privacy-sensitive information, 
and some of these devices, such as surveillance camer-
as, are expected to generate large volumes of data. Sat-
isfying the requirements of applications that use these 
devices and services will require edge-native solutions. 
For example, data generated by the networked devices 
in smart hospitals may be privacy-sensitive. Regulations 
such as GDPR may mandate storing and processing of 
the data on the hospital mises. Similarly, AI services for 
object and face recognition from live surveillance foot-
age in smart spaces will require real-time processing of 
large volumes of data, motivating the need for edge-na-
tive solutions.
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Edge intelligence for environmental 
sensing

Environmental sensing such as air quality monitor-
ing requires the collection and processing of large 
volumes of data from a variety of sensors sad across 
large geographical areas [27]. For example, accurate 
air quality monitoring demands a high spatial and tem-
poral resolution of air quality data from sensors moni-

toring humidity, temperature, particulate matter con-
centrations, and gaseous pollutants. Collecting this 
data requires the dense deployment of sensors and re-
al-time processing, and filtering of the raw analog data 
collected by the sensors. AI can be leveraged to iden-
tify the optimal locations for sensor deployment, the 
trajectories for the mobile sensors, the calibration of 
inexpensive sensors, and the locations for performing 
the computation. Edge-native solutions for processing 

Figure 6: Edge intelligence applied to vehicular dynamic spectrum access in platoons
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the raw data may help reduce the network load and 
parallelize the computation.

Edge intelligence for mobile XR

Mobile extended reality (XR), a portfolio encompassing 
all virtual or combined real-virtual environment com-
pounds, including virtual reality (VR), augmented reality 
(AR), and mixed reality (MR), is a promising AI-powered 
6G service application (e.g. the future tactile Internet). 
Visuo-haptic XR allows remote interaction with real 
and virtual elements (objects or systems) in perceived 
real time, driving massive real-time data at the network 
edge. It is therefore a kind of computation-intensive and 
data-craving application with low latency support. Edge 
intelligence has demonstrated great potential especially 
for XR service in resource and energy-constrained de-
vices. To address the limitations of devices’ battery en-
ergy and computation capacity, and reduce end-to-end 
latency, intelligent task segmentation, computing off-
loading, and learning model sharing will play a major role 
in bringing immersive experiences to users.

Next-generation cobots (collaborative 
robots) in manufacturing

The collaboration between robots and humans in var-
ious domains will increase and become more seamless 
in the future. In manufacturing, not only are routine tasks 
being transferred from humans to robots (while upskill-
ing people), but collaborative robots are also performing 
task-level collaboration with humans. In their current 
state, cobots are stationary devices with fixed gripper 
mechanisms and task programming. In future, cobots 
are envisioned with the following functionalities: auto-
matic monitoring of machine health properties; auton-
omous or semi-autonomous navigation on the factory 
floor; switching from one workstation to another through 
task-level adaptation; and collaborating as a fleet. These 
functionalities will call for various sources of real-time 
data generation for cobots themselves, as well as low la-
tency communications and tight collaboration with MES 
(manufacturing execution system) systems and factory 
private clouds. This again calls for a role for edge intel-
ligence in performing fine-grained control of cobots, as 
well as coordinating larger production goals with the 
back-end MES/cloud.
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Edge computing is one of the key technologies that is en-
abling 5G networks to satisfy the stringent requirements 
in different use cases such as URLLC (contributing to low 
latency) or mMTC (providing distributed computing pow-
er). AI goes even beyond becoming essential techniques 
in the technology industry for implementing a wide variety 
of applications such as video processing, data analysis, 
image generation, and so on. Thus, as shown in the “Relat-
ed work” section of this white paper, there is no doubt that 
both technologies will be combined in edge intelligence 
to play an important role in 6G.

The evolution to the deployment of a new generation of 
edge intelligence systems, applications, and services 
will occur during the next ten years, with the completion 
of different technological steps that will provide new 
devices, technology, and applications, as shown in the 
roadmap below.

Several challenges must be addressed. For example, hard-
ware needs to evolve to make it economically viable to de-
ploy (at the edge) a large number of efficient architectures 
and devices supporting existing and new AI techniques 
with high computing requirements, such as DNN, as well 
as supporting the larger amounts of data that will transit in 
future 6G wireless communications networks.  Software 
will also advance in different aspects such as distribution, 
automation, intelligent orchestration of components, se-
curity, etc.

We thus anticipate steady sustained work that will ad-
dress the main challenges identified in this white paper, 
providing new results in the various technological aspects 
related to edge intelligence. For example, the first deploy-
ments will use -trained models, but this will have to prog-
ress into systems that combine -trained and online learned 
models that will be able to define actions based on the in-
formation collected, even in real time. Despite the increas-
ing power of edge hardware, it will be necessary to dis-

Roadmap to 
edge intelligence 7

tribute both training and data processing. New hardware 
components (e.g. new AI accelerator application-specific 
integrated circuits) will be developed to improve perfor-
mance, while reducing the energy consumed and costs. In 
the long term, technologies such as nanophotonics may 
be used to perform complex operations or store informa-
tion. Communications and learning will be combined and 
exploited by learning-driven design principles. In addition, 
by exploiting the distributed nature of edge architecture, 
new proposals will arise to keep the data and intellectual 
property secure and ensure user privacy.
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