
Heterogeneity Aware Fault Tolerance for Extreme

Scale Computing

by

Zaeem Hussain

Masters in Computer Science, Lahore University of Management

Sciences, 2014

Submitted to the Graduate Faculty of

the Department of Computer Science in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2020

UNIVERSITY OF PITTSBURGH

SCHOOL OF COMPUTING AND INFORMATION

This dissertation was presented

by

Zaeem Hussain

It was defended on

July 17th 2020

and approved by

Rami Melhem, Department of Computer Science

Taieb Znati, Department of Computer Science

Daniel Mosse, Department of Computer Science

Balaji Palanisamy, School of Computing and Information

Dissertation Advisors: Rami Melhem, Department of Computer Science,

Taieb Znati, Co-advisor, Department of Computer Science

ii

Copyright c© by Zaeem Hussain

2020

iii

Heterogeneity Aware Fault Tolerance for Extreme Scale Computing

Zaeem Hussain, PhD

University of Pittsburgh, 2020

Upcoming Extreme Scale, or Exascale, Computing Systems are expected to deliver a

peak performance of at least 1018 floating point operations per second (FLOPS), primarily

through significant expansion in scale. A major concern for such large scale systems, however,

is how to deal with failures in the system. This is because the impact of failures on system

efficiency, while utilizing existing fault tolerance techniques, generally also increases with

scale. Hence, current research effort in this area has been directed at optimizing various

aspects of fault tolerance techniques to reduce their overhead at scale. One characteristic

that has been overlooked so far, however, is heterogeneity, specifically in the rate at which

individual components of the underlying system fail, and in the execution profile of a parallel

application running on such a system. In this thesis, we investigate the implications of

such types of heterogeneity for fault tolerance in large scale high performance computing

(HPC) systems. To that end, we 1) study how knowledge of heterogeneity in system failure

likelihoods can be utilized to make current fault tolerance schemes more efficient, 2) assess

the feasibility of utilizing application imbalance for improved fault tolerance at scale, and 3)

propose and evaluate changes to system level resource managers in order to achieve reliable

job placement over resources with unequal failure likelihoods. The results in this thesis,

taken together, demonstrate that heterogeneity in failure likelihoods significantly changes

the landscape of fault tolerance for large scale HPC systems.

iv

Table of Contents

1.0 Introduction . 1

1.1 HPC Fault Tolerance Landscape . 1

1.2 Heterogeneity in System Failure Likelihoods 3

1.3 Research Overview . 4

1.3.1 Improving the State of the Art in Fault Tolerance for HPC Systems . 4

1.3.1.1 Checkpointing . 5

1.3.1.2 Replication . 6

1.3.2 Leveraging Application Imbalance for Fault Tolerance 7

1.3.3 Heterogeneity Aware Resource Managers 8

1.3.4 Thesis Statement . 8

1.4 Contributions . 9

1.4.1 Organization . 9

2.0 Optimal Placement of In-Memory Checkpoints under Heterogeneous

Failure Likelihoods . 11

2.1 Introduction . 11

2.2 Full In-Memory Checkpoints . 13

2.2.1 IID Node Failures . 13

2.2.2 Non-Identical Node Failures . 14

2.3 Encoded Checkpoint Grouping . 19

2.4 Validation . 23

2.4.1 Full Checkpoint Placement . 24

2.4.2 Encoded Checkpoints Grouping . 25

2.5 Related Work . 26

2.6 Summary . 27

3.0 Enhancing Reliability-Aware Speedup Modeling via Replication 28

3.1 Introduction to Reliability-Aware Speedups 28

v

3.2 Background . 29

3.2.1 Expected Time without Replication 31

3.2.2 Expected Time with Replication . 31

3.3 Optimal Processor Count . 33

3.3.1 Without Replication . 33

3.3.2 Replication . 37

3.4 Performance comparison of Replication with No Replication 42

3.4.1 Theoretical Analysis . 44

3.4.2 Empirical Evaluation . 46

3.5 Overhead of Replication . 48

3.6 Related Work . 50

3.7 Summary . 51

4.0 Partial Replication under Heterogeneous Failure Likelihoods 52

4.1 Motivation Behind Partial Replication . 52

4.2 Replica Selection and Pairing . 53

4.3 Expected Completion Time . 57

4.3.1 Job Model . 58

4.3.2 Overhead Model for Partial Replication 58

4.3.3 Combining with Checkpointing . 59

4.3.4 Optimization Problem . 60

4.4 Results . 60

4.4.1 System with IID Nodes . 60

4.4.1.1 Exponential Distribution . 61

4.4.1.2 Weibull Distribution . 64

4.4.2 System with Two Types of Nodes . 65

4.4.2.1 Exponential Distribution . 67

4.4.2.2 Weibull Distribution . 70

4.5 Systems beyond two categories of nodes . 71

4.6 Related Work . 73

4.7 Summary . 74

vi

5.0 Co-located Shadows for Fault Tolerance 75

5.1 Nature of HPC Workloads . 75

5.2 Co-Located Shadows Model . 77

5.2.1 Basic Setup . 77

5.2.2 Failure Free Execution . 78

5.2.3 Recovery from Failures . 78

5.2.4 Periodic Leaping . 79

5.2.5 Analysis . 80

5.3 Implementation Background . 82

5.3.1 Process Management . 83

5.3.2 Message Passing and Consistency . 83

5.3.3 Failure Recovery . 84

5.3.4 Buffer Overflow . 84

5.4 Processor Sharing to Utilize Idle Times . 85

5.4.1 Processor Yielding . 86

5.4.2 Behavior of Shadow Process . 86

5.5 Evaluation . 87

5.5.1 Experimental Setup . 88

5.5.2 Failure Injection . 88

5.5.3 Results . 89

5.6 Related Work . 91

5.7 Summary . 92

6.0 Failure-Aware Resource Allocation under Heterogeneous Failure Like-

lihoods . 93

6.1 Introduction . 93

6.2 Making Resource Allocation Failure-Aware 94

6.2.1 Problem Statement . 95

6.2.2 Maximizing Reliability . 95

6.2.3 Minimizing Waste . 96

6.2.4 Discussion . 98

vii

6.3 Handling Job with Replication . 99

6.3.1 Results on Optimizing Reliability . 99

6.3.2 Results on Minimizing Expected Waste 103

6.3.3 Allocation in presence of replicated job 105

6.4 Empirical Results . 105

6.4.1 Validation . 106

6.4.2 Job Trace Description . 108

6.4.3 Simulation . 110

6.4.4 Analysis with Actual Failure Data . 111

6.4.5 Replication . 112

6.4.6 Discussion . 113

6.5 Related Work . 115

6.6 Summary . 115

7.0 Conclusion and Future Directions . 117

Bibliography . 119

viii

List of Tables

1 Catastrophic Failures with Full Checkpoint Placement Schemes 24

2 Optimal Processors Counts . 42

3 Average idle time as a percentage of total execution time 77

4 Impact of Shadow Compute Thread on Normalized Execution Time 90

5 Node and System Level MTBFs (h: hours, d : days, y : years) 106

6 % Waste Improvement over Random Allocation for Small System B 107

ix

List of Figures

1 Traditional Coordinated C/R vs Pure replication[29]. 2

2 Spatial distribution of failures in the Titan Supercomputer[35]. 3

3 Scope of this dissertation. 5

4 Average overhead due to catastrophic failures, based on the multilevel check-

point model[24] using 2 levels. Projected exascale system paramters (taken

from [1]): Number of nodes = 100,000, Node MTBF = 5 years, In-memory

(Level 1) checkpoint cost = 9 seconds. 12

5 Some examples of full in-memory checkpoint placement schemes over 8 nodes.

An arrow starts at the node whose checkpoint is to be stored in another node

and ends at the node where that checkpoint is placed. 13

6 Optimal checkpoint placement scheme for nodes with different reliabilities. . . 15

7 Decomposing a larger ring into a pair and a ring of smaller size. 16

8 Breaking two rings of 3 nodes each into three pairs of nodes 18

9 XOR encoded checpointing with a groups size of 4 (Figure taken from [58]). . 20

10 A histogram of the number of failures experienced by nodes in the system. . . 24

11 Number of catstrophic failure experienced by the different grouping schemes. 26

12 Average behavior between consecutive failures. 32

13 Optimal number of processors when no replication is employed. The actual

optimal value is calculated by writing Hnorep(P) using Equation 3.1 and nu-

merically locating its minimum. Individual processor MTBF = 10 years while

C = R = D = 300 seconds. 35

14 Optimal number of processors when no replication is employed. C = R = D =

300 seconds. The scale of y-axis is different for the three plots. 37

15 Optimal number of processors with dual replication. Checkpointing cost = 300

seconds, same as in Figure 14. 39

x

16 Optimal number of processors with dual replication, as obtained by the simu-

lation as well as the first order approximation (Equation 3.11). X-axis range

is from α = 0 to α = 10−10. Individual processor MTBF = 10 years while

C = R = D = 300 seconds. 40

17 Optimal number of processors with dual replication for a perfectly parallel

workload. Checkpointing cost = 300 seconds. 41

18 Optimal number of processors with replication. C = R = D = 300 seconds.

Scale of y-axis is different for each plot. 42

19 Different possibilities of how the performance of replication and no replication

compare to each other as the number of processors increases. 43

20 The normalized expected completion time, H(P ∗norep) of no replication and

replication. For both figures, C = 300 seconds. Note: Y-axis scale is different

in the two plots. 47

21 Normalized expected completion time versus the number of processors. Node

MTBF = 10 years, while C = R = D = 300 seconds. Note: Y-axis scale is

different in the two plots. 49

22 Selection and pairing of replicas to maximize reliability. 54

23 Normalized Expected Completion Time for different values of r. Node MTBF

= 5 years. Checkpointing cost is taken to be 60 seconds. α = 0 and also γ = 0. 61

24 Expected Completion Time for different values of r for exponential node dis-

tribution. Node MTBF = 5 years, α = 0.00001, Checkpointing cost = 60

seconds, γ = 0.2 . 63

25 Expected Completion Time for different values of r with Weibull node fail-

ures. For the distribution, shape parameter = 0.7 and MTBF = 5 years.

Checkpointing cost = 60 seconds and α = γ = 0. 64

26 Possible cases of partial replication for system with Good and Bad nodes.

Nodes within the replicated set are paired according to the arrangement de-

picted in Figure 22. 66

xi

27 Execution time of different partially replicated executions. NG = 106, NB =

8 × 105, λg = 1/50 years, C = 60 seconds and α = γ = 0. Y-axis scale is

different for each of the two figures. 68

28 Expected time vs % of Bad Nodes in the system. N = 2 × 106. Bad Node

MTBF = 5 years. Other parameters are the same as in Fig 27. 69

29 Expected time for different values of γ when Bad Node MTBF = 5 years.

Other parameters are the same as in Figure 27. The expected time for no

replication using all system nodes is much higher than all other schemes so it

is omitted from the plot. 70

30 Execution time of different replication schemes with Weibull node failures.

NG = 104, NB = 8 × 103 and Good node MTBF = 50 years. The other

parameters are the same as in Fig. 27. 71

31 Expected completion time versus r for different values of γ. The values of

other parameters are: α = 0, C = 30 seconds and each category contains 100k

nodes, for a total of 500k system nodes. 72

32 Difference between Pure replication, which requires twice the original number

of processors, and co-located shadows, which do not require extra processors. 78

33 Model based performance of co-located shadows vs traditional C/R and repli-

cation. Both the checkpointing and leaping cost are taken to be 100 seconds

each. Reboot time is taken as 300 seconds. 82

34 (a) Message transfer when Main i sends a message to Main j. (b) Message

forwarding from a main to its shadow. The shadow’s Helper thread receives

the forwarded message and places it immediately into its local buffer (push()

operation. The slower original thread at the shadow reads the data when it

reaches the point where it needs that message (pop() operation). 84

35 Leaping in case of buffer overflow . 85

36 Performance with no and single failure injected at different point of execution,

normalized by completion time of original application under no failures. . . . 89

37 Weak scaling (*LULESH was tested on 125, 216, 512 and 1000 cores) 91

xii

38 Example demonstrating the difference between MaxRel and MinWaste heuris-

tics over two non-replicated jobs. 96

39 Some possible allocations of nodes to a replicated and a non-replicated job. . 100

40 Possible node allocations among a pair of replicated and non-replicated jobs,

when maximizing reliability. The non-replicated job always gets a contiguous

set of nodes. 102

41 Relative improvement/degradation in waste of allocations made by the failure-

aware heuristics. Note the difference in the scale of y-axis in the two plots. . . 108

42 Job statistics from the Mira trace[50]. 109

43 Relative waste improvement using simulation over the Mira job trace. 110

44 Distribution of failures over the midplanes. 111

45 Relative waste improvement for systems with two equal-sized classes of nodes.

For the lowest system MTBF, node MTBFs were 5 and 50 years. The system

in the middle had nodes with MTBFs of 10 and 55 years, while the system on

the right had nodes with 15 and 60 year MTBFs. The waste of each allocation

was averaged over three runs. 113

xiii

1.0 Introduction

Extreme Scale, or Exascale, Computing within the supercomputing domain aims to

deliver a thousandfold speedup over petascale (1015 FLOPS) supercomputers. Several post-

petascale and pre-exascale systems have already been deployed over the last few years,

and their successors, Exascale Systems proper, are expected to become functional by year

2022[62]. While some of the increased speedup for these projected exascale systems is ex-

pected to come from improvement in the speeds of individual nodes, the major push is

expected to come from a much larger number of system components, when compared with

current petascale systems[8]. Due to their massive scale, a major theme in the research and

development of Exascale systems is resilience[10]. This is because the failure of a single node

being used by a large scale parallel job can bring the entire job to a halt, severely impacting

the efficiency of the system. Since any resilience scheme comes with it own costs and over-

heads, providing fault tolerance with low overhead while maintaining a high performance

under failures has been the holy grail for research efforts in this area.

1.1 HPC Fault Tolerance Landscape

The classical fault tolerance technique for HPC is coordinated checkpoint-restart[37].

This involves storing the application state, or checkpoints, during execution so that the

application can be restarted from the last checkpoint if a failure happens. Like any other

resilience mechanism, checkpointing provides fault tolerance at a cost, which is the time it

takes to write a checkpoint. When failures are infrequent, the checkpointing and recovery

cost constitute a small proportion of the total job wall clock time, on average.

As the number of nodes in the system increases, causing an increase in system failure

rate, the number of checkpoints and reexecutions needed also increases. This causes a degra-

dation in the efficiency of a system employing checkpointing as the primary fault tolerance

technique. For this reason, replication[29] has been proposed as an alternative to coordinated

1

Figure 1: Traditional Coordinated C/R vs Pure replication[29].

checkpoint-restart (C/R). Replication involves duplicating the work on redundant hardware

so that the failure of an individual node does not affect the execution of an application as

long as a replica of the failed node is alive. This allows replication to increase the mean

time to interrupt (MTTI) of a system [11]. This increase, however, is achieved at the cost of

extra system resources and power. Thus, pure replication is only viable as a primary fault

tolerance technique when the efficiency of coordinated C/R drops much lower, usually even

below 50%, as can be seen in Figure 1. Moreover, infrequent checkpoints and rollbacks are

still needed for the rare occurrence when both the original node and its replica fail.

The poor scalability of coordinated checkpoint-restart and the 50% efficiency barrier of

pure replication have both resulted in resilience being identified as a key challenge facing

Extreme Scale Computing systems of the near future. To some extent, the loss of efficiency

with increasing failure rates is unavoidable, since a cost, either in terms of system resources

or processing time, has to be paid in order to overcome failures. However, another source

of the inefficiency of these two techniques stems from the fact that these techniques have

traditionally been applied while assuming a simplified behavior of the underlying system

when it come to failures. This thesis aims at exploring how a more refined understanding

of the underlying system’s failure characteristics as well as of the execution pattern of the

2

Figure 2: Spatial distribution of failures in the Titan Supercomputer[35].

application can be used to provide more efficient fault tolerance at large scales typical of the

predicted Exascale systems of the future.

1.2 Heterogeneity in System Failure Likelihoods

The traditional assumption when analyzing fault tolerance techniques for HPC systems is

that all the homogeneous nodes in the system also have independent and identical (iid) failure

distributions. Hence, the analysis usually proceeds by using estimates of the parameters of

the failure distribution of a single node and calculates system level parameters as if the same

distribution describes each node’s failure likelihood.

While the methodology outlined above does simplify the theoretical analysis, there is no

experimental evidence to suggest that this assumption holds true in real life large scale HPC

systems. In fact, several studies[25][36][35][23] on failures experienced by supercomputing

systems have concluded that failures are spatially non-uniform. A visual example of such

heterogeneity is shown in Figure 2. The source of this heterogeneity comes not just from the

slight variations in the manufacturing of the individual components, but also from external

events that affect the components in different ways during the life cycle of a large scale

system. For example, some nodes in the system might be replaced over time, leading to

3

a disparity in the age of those components, which might result in different classes of node

reliability[84].

Based on the above discussion, the first step towards more realistic system failure models

would be to do away with the iid node failure assumptions. Removing the iid node failure

assumption leads to a more sophisticated model for system failures. The simplest such model

would assume the same kind of distribution for each node, albeit with parameter values that

are not necessarily equal. Such a model still retains the assumption that failures of different

nodes are independent, but allows for different nodes to have different probabilities of failures.

In this dissertation, we use this heterogeneous model of node failure likelihoods to analyze

the implications for HPC fault tolerance.

1.3 Research Overview

The primary goal of this dissertation is to investigate the implications, for fault tolerance

in large scale HPC systems, of heterogeneity in failure likelihoods and of the imbalance in

parallel computations. To that end, this dissertation studies the following research questions:

RQ1 How can a deeper understanding of failure characteristics of a large scale system

be used to inform and improve current fault tolerance mechanisms?

RQ2 Can the imbalance in parallel workloads be used to provide more efficient fault

tolerance for such workloads?

RQ3 How can HPC job schedulers and resources managers use heterogeneity in failure

likelihoods of individual resources to achieve reliable job placement within the system?

A visual depiction of the scope of these research questions is shown in Figure 3. I further

elaborate on these research questions below:

1.3.1 Improving the State of the Art in Fault Tolerance for HPC Systems

For coordinated checkpoint-restart with and without dual replication, the default as-

sumption has always been that all nodes in the system have the same likelihood of fail-

4

Figure 3: Scope of this dissertation.

ure. Thus, both of these techniques in their implementation are typically oblivious of any

variations that may exist among individual node reliabilities and do not present an ideal

opportunity to fully realize the benefits that could be derived from such heterogeneity. Nev-

ertheless, an awareness of such heterogeneity does bring up some interesting possibilities and

research questions for both simple checkpointing and checkpointing with replication, which

I will briefly discuss in the following subsections.

1.3.1.1 Checkpointing In recent years, in-memory, or diskless[65], checkpointing has

increased in popularity because it significantly improves the time to take a checkpoint. It

is accomplished by either placing the entire copy of a process’ state on the local memory

of another process, or by encoding the states of a group of processes and distributing the

encoded checkpoints over the local memories of all the processes in, either the same or

another, group. However, in-memory checkpointing may not tolerate all kinds of failures.

One such catastrophic failure[58] happens when a node and the node containing its checkpoint

both fail, either simultaneously or in quick succession. The optimal placement of in-memory

5

checkpoints would thus select a placement strategy that minimizes the likelihood of such

catastrophic failures. Finding this optimal strategy is non-trivial when all nodes do not have

the same likelihood of failure, but it can lead to significant improvement in the capability

of in-memory checkpoint-restart to tolerate a larger number of failures. This dissertation

makes substantial contributions towards finding optimal placement strategies for the most

common variants of in-memory checkpointing under a heterogeneous model of system failure

likelihoods[44].

1.3.1.2 Replication The projection in Figure 1 shows that replication is more efficient

than no replication when the application is running at a sufficiently large scale. However,

this does not justify the use of such a large scale for a single application in the first place.

This is because reliability-aware speedups [81] (i.e. the speedups under failures) do not always

improve with increasing scale, unlike the failure free speedup under Amdhal’s law. I show in

this dissertation that the peak speedup under failures with replication is much higher and

occurs at much larger scales than the peak reliability-aware speedup without replication[45].

This provides a definitive justification for the use of replication at larger scales in order to

achieve improved performance under failures.

After demonstrating the superior scalability of application speedup with replication in the

presence of failures, I investigate in this dissertation the consequences of having heterogeneity

in failure rates when using replication, and show that heterogeneity is actually the key to

the feasibility of partial replication[26]. As the name suggests, partial replication allows for

replicating only a subset of the processes. The idea of partial replication has been discussed

in the literature because it is not necessarily bounded above by 50% efficiency. However,

when compared with pure replication and no replication, partial replication has never been

shown to be the most efficient scheme at any system scale with iid node failure distributions.

I show in this dissertation that this conclusion changes if the large scale system has non-

identical node failures. Thus, I again use a heterogeneous failure likelihood model and

first determine the best way of associating nodes with replicas, since nodes have different

failure probabilities. I then compare the resulting configuration with full and no replication

to show that partial replication can yield the most efficient fault tolerance scheme under

6

heterogeneous failure likelihoods[43].

1.3.2 Leveraging Application Imbalance for Fault Tolerance

Despite the tremendous engineering effort in scaling HPC workloads and in minimizing

idleness in computational resources, there are several HPC applications that, by their very

nature, exhibit a considerable degree of imbalance leading to idle time during their execu-

tion. In cases where such imbalance cannot be mitigated, the next best option is to somehow

leverage that imbalance in optimizing one of the other desirable objectives within the system.

An example in this direction is [32] where the authors use the idle time resulting from imbal-

ance in MPI applications to adjust power consumed by individual cores/processors, leading

to overall reduction in energy/power consumption. Yet another example is in-situ workload

performance improvement[78]. The potential of such imbalance to improve performance in

case of failures, however, has remained unexplored. Since such an imbalance is also a type of

heterogeneity, albeit at the application level and different from the heterogeneity in failure

likelihoods in the system, I explore in this dissertation whether this imbalance could, in fact,

be utilized for better fault tolerance.

I first identify the challenges that are unique to fault tolerance when it comes to capital-

izing on the idle time during application execution. I then argue in light of those challenges

that the natural approach towards fault tolerance in this context would be to use the recently

proposed Shadow Computing model[57][16]. The basic idea in this model is to associate with

each process a shadow process which, like a replica, duplicates the work of its original pro-

cess, or the main, but usually executes at a slower speed than the main. The flexibility in

execution speed allows the shadow computing model to tailor its implementation to the spe-

cific requirements of the computing environment, such as power and QoS constraints[17][14].

For HPC message passing applications, slower shadows can be used for recovery in case

of failures by employing message logging during normal operation[41]. While the original

implementation of this model placed shadows on separate hardware from the original appli-

cation, in this dissertation we interleave the placement of the shadow processes on the same

nodes as the main processes, so that the shadows can execute during the idle time of the

7

main. We then evaluate the overheads and performance of this scheme in case of failures in

order to assess the feasibility of utilizing application imbalance for fault tolerance.

1.3.3 Heterogeneity Aware Resource Managers

The two research questions discussed above are primarily focused on improving the per-

formance under failures of a single job. In the presence of heterogeneity in failure likelihoods,

I contend that there are additional opportunities at the system level to further optimize the

efficiency/performance in the presence of failures. In the last part of this dissertation, I study

one example of such an opportunity for resource assignment to multiple jobs, and show that

information about the heterogeneity in failure rates can be used to perform more efficient

resource assignment. Further background on the specific problem that I study as part of this

research question is discussed below.

One of the roles of job schedulers in large scale clusters is to assign the available compu-

tational resources to the set of jobs ready to be scheduled. Traditionally, such assignments

are done without considering their impact on the reliability of jobs, because the default

assumption is that the compute nodes have identical failure distributions, rendering all the

assignment candidates at a given time equivalent in terms of their reliability. However, un-

der heterogeneity in failure likelihoods, allocating resources to jobs while disregarding the

differences in reliabilities of those resources may end up increasing the waste incurred by

the system. I formulate in this dissertation objective functions that allow us to compare, in

terms of reliability, different possible assignments of resources to jobs. I find reliable place-

ment schemes in light of those objective functions and demonstrate their potential to reduce

system waste in case of failures.

1.3.4 Thesis Statement

By distilling the key findings from my investigations into the research questions described

above, I claim the following:

“An understanding of the heterogeneity in system reliability can lead not only towards

significant improvement in current fault tolerance techniques at the job level but also towards

8

additional opportunities at the system level to deliver efficient fault tolerance for future ex-

treme scale computing systems.”

1.4 Contributions

In summary, I make the following contributions in this dissertation:

• I provide the optimal strategy for in-memory checkpoint placement under heterogeneous

node failure likelihoods for both full and group-encoded checkpoints. [Chapter 2]

• I extend reliability-aware speedup models by adding replication as an additional fault

tolerance mechanism in those models. I provide results on the speedup profile of appli-

cations with replication and contrast them with the speedup without replication to show

that, at scale, replication will be required to improve on the optimal speedup possible

through checkpoint-restart alone. [Chapter 3]

• I identify the optimal partial replication configuration of nodes with non-identical reli-

abilities. We use this configuration to demonstrate the feasibility of partial replication

versus full and no replication under heterogeneous node failure likelihoods. [Chapter 4]

• I implement co-located shadows and provide results on their scalability and performance

under failures. [Chapter 5]

• I study the problem of allocating compute resources to jobs in a cluster comprising of

nodes with non-identical failure rates, such that the waste due to failures is minimized.

I formulate and study two objective functions that capture the reliability of jobs to be

scheduled onto the resources, which lead to two heuristics for reliable resource allocation.

I further extend the analysis by providing theoretical results for the case of replicated

jobs. [Chapter 6]

1.4.1 Organization

The remainder of this document is organized as follows: Chapter 2 discusses placement

of in-memory checkpoints, Chapter 3 studies the speedup of replication, Chapter 4 dis-

9

cusses partial replication of non-identically reliable nodes, Chapter 5 discusses the design

and implementation of co-located shadows, Chapter 6 discusses resource allocation under

heterogeneous failure likelihoods, and Chapter 7 concludes. Each of chapters 2 to 6 in-

cludes a related work section that discusses prior work related specifically to the problem

and techniques discussed in that chapter.

10

2.0 Optimal Placement of In-Memory Checkpoints under Heterogeneous

Failure Likelihoods

This chapter studies how the assumption of heterogeneous failure likelihoods can be used

for optimizing coordinated checkpoint-restart. Specifically, it looks at the problem of finding

the best placement strategy for in-memory checkpoints under this new assumption1.

2.1 Introduction

In-memory checkpointing is accomplished by either placing the entire copy of a process’

state on the local memory of another process, or by encoding the states of a group of processes

and distributing the encoded checkpoints over the local memories of all the processes in either

the same, or another, group. Although it reduces the overhead, in-memory checkpointing

may not tolerate all kinds of failures. One such catastrophic failure[58] happens when a node

and the node containing its checkpoint both fail, either simultaneously or in quick succession.

In such a scenario, recovery from in-memory checkpoints becomes impossible and either a

full application restart or a recovery from a checkpoint stored on disk is required.

Although catastrophic failures are relatively infrequent occurrences, with their share of

the total number of failures typically considered to be around 4%[59][1], their impact on the

performance of an application can be significant. This is because of the huge cost of writing

checkpoints to the file system and larger recovery times. It can be seen from Fig 4 that, for

projected exascale systems with a cost to checkpoint to file system of 18 minutes[1], average

overhead is upwards of 40%. Fig 4 also highlights that if the likelihood of catastrophic

failures is reduced, say from 4% to 2% (or even 3%), their impact on the overhead can

also be brought down significantly. One way to reduce catastrophic failure likelihood is by

optimizing the placement of in-memory checkpoints.

When all nodes are equally likely to fail, depending on the type of in-memory checkpoint-

1This work appeared in IPDPS 2019.

11

Figure 4: Average overhead due to catastrophic failures, based on the multilevel checkpoint

model[24] using 2 levels. Projected exascale system paramters (taken from [1]): Number of

nodes = 100,000, Node MTBF = 5 years, In-memory (Level 1) checkpoint cost = 9 seconds.

ing being used, either the optimal placement can easily be identified through combinatorial

counting, or all placement schemes have identical reliability. If, however, all nodes do not

experience failures with the same likelihood, finding the best checkpoint placement that min-

imizes catastrophic failures is non-trivial. I formulate this placement problem by assuming

that each node has an independent probability of failure which may be different from other

nodes. This chapter will describe the solutions I found to this placement problem for two

of the most common in-memory checkpointing techniques: full in-memory checkpoints and

grouped XOR encoded checkpoints. Since the goal of this work is to assess the reliability to

catastrophic failures of different placement schemes, I make the simplifying assumption that

the cost of sending checkpoints to different nodes is uniform. In practice, the cost depends

on the locations of the source and destination nodes within the network. A more advanced

analysis that does take into consideration the cost of different placement schemes and weighs

that against their reliabilities is left for future work.

12

Figure 5: Some examples of full in-memory checkpoint placement schemes over 8 nodes. An

arrow starts at the node whose checkpoint is to be stored in another node and ends at the

node where that checkpoint is placed.

2.2 Full In-Memory Checkpoints

This section deals with the case of full in-memory checkpoint placement, where each

node stores a full copy of another node’s checkpoint in its local memory. Fig. 5 shows

some possible placement schemes for full in-memory checkpoints. Ring based and paired

placement are the more well known schemes. While simple to understand and visualize,

these are not the only possible options. In fact, it is possible to use any arbitrary checkpoint

placement scheme (Fig 5, right). Each placement scheme can be thought of as a directed

graph where each node (or vertex) has one incoming edge (for the remote checkpoint it is

hosting) and one outgoing edge (for its own checkpoint). A catastrophic failure thus occurs

when any two nodes that are neighbors of each other in the directed graph fail.

2.2.1 IID Node Failures

When all nodes are independent and equally likely to fail, the question of optimal check-

point placement boils down to selecting between a ring based or a paired placement. This

is because the arbitrary placement scheme can also be thought of as a collection of disjoint

rings. For the example in Figure 5, the arbitrary scheme consists of two rings, one over

13

nodes 1, 3 and 6, and the other over the remaining nodes. The only thing to determine,

then, is which of the two (ring or pairing) is more resilient, which can simply be determined

by combinatorial counting of the number of multiple node failures that will lead to a catas-

trophic failure. This was done in [13] and it was shown that pairing is better than a ring

based placement.

2.2.2 Non-Identical Node Failures

When individual nodes in the system have distinct failure likelihoods, it is no longer true

that any paired scheme is better than a ring based or arbitrary scheme. Looking at Fig. 5,

suppose, for example, that nodes 1 to 4 have all reliability of 1 whereas nodes 5 to 8 all have

a reliability of 0.5 and all nodes are independent. By enumerating all possible catastrophic

failures for each scheme and calculating their likelihood, we find that the reliability of the

ring on the left is 0.5, the reliability of the pairing scheme in the middle is 0.5625 while

the reliability of the arbitrary scheme is 0.75, the highest of the three schemes. This is

because, of the nodes that have a non-zero likelihood of failure (nodes 5 to 8), only nodes 6

and 7 are connected in the arbitrary scheme, while the ring and pairing schemes both have

more connections among the less reliable nodes. Thus we can see that finding the optimal

placement for non-iid node failures cannot be done simply by combinatorial counting, as

for iid failure likelihoods. Our main theoretical result of this section describes this optimal

mapping.

Before describing the main result of this subsection, we first need to define some notations.

Consider a job running on N nodes where each node i, i ∈ {1, . . . , N} has a likelihood of

survival within a specified time interval (or reliability) given by pi. The failure likelihood of

that node will thus be given by 1− pi. Further, we assume that the relative ordering of the

nodes based on their reliability is known and given, in increasing order of reliability, by the

permutation σ, such that pσ(i) ≤ pσ(i+1)∀i ∈ {1, . . . , N −1}. We now provide the main result

of this subsection:

Theorem 1. The optimal checkpoint placement that minimizes the likelihood of catastrophic

failures is achieved by a paired placement scheme such that pair i consists of nodes σ(i) and

14

Figure 6: Optimal checkpoint placement scheme for nodes with different reliabilities.

σ(N − i), i ∈ {1, . . . , N/2}.

Such a placement scheme is pictorially depicted in Fig. 6 and is basically constructed by

pairing the least reliable node with the most reliable node, and so on. Further, it does not

require knowledge of values of individual failure likelihoods but only the relative ordering of

the nodes based on their failure likelihoods.

I will prove the above theorem through a series of lemmas, starting with the earlier

observation that any arbitrary checkpoint placement scheme consists of one or more mutually

exclusive rings or cycles. Since all nodes are assumed to be independent, the likelihood of a

scheme avoiding a catastrophic failure will be given by the product of the individual rings’

probability of avoiding a catastrophic failure. If, therefore, a ring within a scheme is modified

without changing anything else such that the reliability of the set of nodes from the original

ring is improved, the reliability of the new scheme will also be higher than the original

scheme.

Lemma 1. Any ring of size R ≥ 4 can always be broken into two rings of sizes R − 2 and

2 respectively, such that the likelihood of avoiding a catastrophic failure is improved.

Proof. I prove this lemma by showing that there is always a pair of neighboring nodes in

the ring which can be taken out, as shown in Fig. 7, such that the new configuration will

have either the same or better reliability than the original ring.

Let the nodes be labeled as shown in Fig. 7. Note that the reliability of the new scheme

15

Figure 7: Decomposing a larger ring into a pair and a ring of smaller size.

obtained by the decomposition differs from the original ring in exactly three scenarios: i)

failure of nodes 1 and 2 does not always lead to a catastrophic failure, unlike in the original

ring, similarly, ii) failure of nodes 3 and 4 does not always lead to a catastrophic failure,

and iii) failure of nodes 1 and 4 always leads to a catastrophic failure, which was not always

the case in the original ring. Based on this observation, I write the difference between the

reliability of the new scheme and the original one as:

δ = p1p2(1− p3)(1− p4)α4 + p3p4(1− p1)(1− p2)α1 − p2p3(1− p1)(1− p4)α1,4 (2.1)

where α4 is the likelihood of all outcomes of the rest of the nodes in the ring which will not

lead to a catastrophic failure when node 4 fails but 1 does not fail. α1 is defined similarly

and captures the case when node 1 fails but 4 does not. Finally, α1,4 is the probability of

the rest of the nodes avoiding a catastrophic failure when both nodes 1 and 4 fail.

We now need to show that there exist four consecutive nodes in the ring for which δ ≥ 0.

We first note that α1 ≥ α1,4 and α4 ≥ α1,4. This is because all possible outcomes, of the

rest of the nodes in the ring, that do not lead to a catastrophic failure when nodes 1 and 4

both fail will also not lead to a catastrophic failure when one of those two nodes does not

fail, and so their likelihood is also counted in both α1 and α4. Thus, it is enough to show

that there exist four consecutive nodes for which δ̃ ≥ 0 where

δ̃ = p1p2(1− p3)(1− p4) + p3p4(1− p1)(1− p2)− p2p3(1− p1)(1− p4) (2.2)

16

By simplifying and rearranging, we get the following expression for δ̃

δ̃ = p1p2 + p3p4 − p2p3 − p1p4(1− (1− p2)(1− p3)) (2.3)

Since 0 ≤ (1− (1− p2)(1− p3)) ≤ 1, δ̃ ≥ 0 whenever

p1p2 + p3p4 − p2p3 − p1p4 = (p1 − p3)(p2 − p4) ≥ 0 (2.4)

which holds in two cases:

Case 1: p1 ≥ p3 and p2 ≥ p4

Case 2: p1 ≤ p3 and p2 ≤ p4

I argue that there always exist four consecutive nodes in a ring that satisfy one of the two

cases above. Let the least reliable node in the ring be i, which implies that pi−2 ≥ pi and

pi ≤ pi+2. Now, if node i−1 is more reliable than node i+1 (i.e pi−1 ≥ pi+1), then the nodes

i − 2, i − 1, i and i + 1 are four consecutive nodes that satisfy Case 1 above. If, however,

node i− 1 is less reliable than node i+ 1 (i.e pi−1 ≤ pi+1), then nodes i− 1 to i+ 2 are four

consecutive nodes that satisfy Case 2 above.

Lemma 1 means that, given any arbitrary checkpoint placement scheme, one can get

a more reliable (or as reliable as the original) scheme by taking out pairs of nodes from

larger rings. The main consequence, therefore, is that the optimal scheme with maximum

reliability to catastrophic failures will not contain a ring of size larger than 3 nodes. Our

next result deals with rings of 3 nodes.

Lemma 2. Two rings of 3 nodes each can always be transformed into three pairs of nodes

such that the reliability of the new scheme is improved.

Proof. We break both the 3-node rings by taking one node from both of them and joining

the two nodes to form a pair, as shown in Fig. 8. It can then be shown, by comparing the

overall reliability of the two original rings with that of the three newly formed pairs, that

the three pairs will have a higher reliability as long as both of the two nodes taken from

each of the original rings (Nodes 3 & 4 in Fig 8) are not the least reliable nodes in their

respective rings (one of them can still be the least reliable in its ring). We omit the detailed

expressions for brevity.

17

Figure 8: Breaking two rings of 3 nodes each into three pairs of nodes

Using lemma 1 we had inferred that the optimal checkpoint placement consists only of

pairs and rings of 3 nodes. Using lemma 2, we can say that the optimal checkpoint placement

scheme consists only of pairs of nodes when the total number of nodes is even. If total number

of nodes is odd, the optimal placement will contain one ring of three nodes. The optimal

placement of the 3-node ring cannot be determined from ordering of node reliabilities alone,

but rather requires a search using the actual values of node reliabilities. In the remainder

of this chapter, I will assume that the total number of nodes is even, so henceforth we will

focus solely on pairs of nodes.

Proof of Theorem 1. We have already established, using lemmas 1 and 2 that the optimal

placement of full checkpoints is accomplished by some paired scheme. What remains is to

show that that pairing follows the arrangement mentioned in the theorem statement (and

as shown in Fig 6). In the chapter on partial replication in this dissertation (Chapter 4),

I show that the optimal pairing of nodes with replicas follows the arrangement shown in

Fig. 6. The expression for the likelihood of avoiding a catastrophic failure in a paired

checkpoint scheme is the same as the expression for the likelihood of avoiding a node-replica

pair failure when using the same mapping scheme for replication. We can thus conclude

that the optimal checkpoint pairing that minimizes the likelihood of catastrophic failures is

achieved by pairing the least reliable unpaired node with the most reliable unpaired node

and continuing in this manner recursively, resulting in the arrangement of Fig. 6. This

concludes the proof of Theorem 1.

18

Looking back at Fig. 5, and using the reliability values of the nodes mentioned in the

beginning of this subsection, we can apply Theorem 1 to find the optimal placement scheme.

Such a scheme will pair a node from nodes 1 to 4 with one of nodes 5 to 8, and will result

in an overall reliability of 1. In fact, we do not even require knowing the actual values of

node reliabilities. It would be sufficient, for example, to know that nodes 1 to 4 all have the

same reliability and nodes 5 to 8 all have the same reliability but less than that of the first

4 nodes, and we could still apply Theorem 1 to obtain the optimal grouping.

2.3 Encoded Checkpoint Grouping

A drawback of keeping a full copy of the checkpoint of a process in another process is that

it reduces the amount of memory available to the original process. This is especially a concern

because each process also needs to keep its own checkpoint in its memory in order to allow it

to roll back when another process/node dies[80]. The idea of encoding checkpoints[65] was

introduced to reduce this memory footprint by encoding multiple checkpoints in a group and

distributing the encoded checkpoints within either the same, or a different, group.

While several different ways of encoding and distributing the checkpoints have been

proposed in the literature[65][33][4], we will focus in this work on the simple XOR based

encoding, shown in Fig. 9, which is employed by the Scalable Checkpoint Restart (SCR)

library[59][58]. Under this encoding, within a group of size k, each checkpoint is split into

k − 1 chunks. Each member stores the XOR obtained by taking a chunk from each of

the other k − 1 members of the group. With this arrangement, any two failures within a

group of k nodes will lead to a catastrophic failure. We will assume that the size of the

group (k) is already determined by the programmer (or the system administrator) based

on the application’s footprint, the checkpoint size and available memory on the node. Our

goal, then, is to find the optimal way to group the system nodes such that likelihood of

catastrophic failures (more than one failure in a group) is minimized.

Formally, we are provided with a set of N nodes that need to be distributed into groups

of k nodes each. The total number of groups required will be n = N/k. We denote the nodes

19

Figure 9: XOR encoded checpointing with a groups size of 4 (Figure taken from [58]).

in a group g by agi where g ∈ {1, . . . , n}, i ∈ {1, . . . , k} and agi ∈ {1, . . . , N}. The reliability

of node agi is given by pagi . Our main result, formally stated below, says that the optimal

grouping divides the nodes such that the sum of the inverses of reliabilities of all the nodes

in a group is as uniform across groups as possible.

Theorem 2. Maximum reliability of the XOR based checkpoint encoding is achieved when

the quantity S given by

S = max
g,h∈{1,...,n}

(
k∑
j=1

1

pagj
−

k∑
j=1

1

pahj
) (2.5)

is minimum.

Proof. For XOR encoding, the reliability, rg of a group g of k nodes will be the probability

of at most one node failing within the group, and can be written as

rg =
k∏
i=1

pagi +
k∑
i=1

(1− pagi)
k∏

j=1,j 6=i

pagj =
k∏
i=1

pagi (1 +
k∑
i=1

1− pagi
pagi

) =
k∏
i=1

pagi (
k∑
i=1

1

pagi
− (k − 1))

(2.6)

20

Since each group is independent of the other groups, the overall system reliability to catas-

trophic failures will be a product of the reliabilities of the individual groups. Thus, the

overall reliability, r, will be given by

r =
n∏
g=1

rg = (
n∏
g=1

k∏
i=1

pagi)
n∏
g=1

(
k∑
i=1

1

pagi
− (k − 1)) (2.7)

Since the product
∏n

g=1

∏k
i=1 pagi is simply a product of the reliability of all the N nodes in

the system, it does not depend on how the nodes are grouped. Thus, finding a grouping that

maximizes r is the same as finding a grouping that maximizes r̃ where

r̃ =
n∏
g=1

(
k∑
i=1

1

pagi
− (k − 1)) (2.8)

Using the inequality of arithmetic and geometric means (AM-GM)[73], we get

r̃ ≤

∑n
g=1(

∑k
i=1

1
p
a
g
i

− (k − 1))

n

n

=

∑n
g=1

∑k
i=1

1
p
a
g
i

− n(k − 1)

n

n

(2.9)

This is useful because
∑n

g=1

∑k
i=1

1
p
a
g
i

is actually the sum of the inverse reliabilities of all the

nodes in the system, which also does not depend on how the nodes are grouped together.

This means that r̃ is upper bounded by a constant with respect to the grouping scheme.

In order to find the grouping that achieves this upper bound, we use the fact that equality

in the AM-GM inequality occurs when all the n numbers are equal. From Eq. 2.8, this

implies that
∑k

i=1
1
p
a
g
i

=
∑k

i=1
1
p
ah
i

for all g, h ∈ {1, . . . , n}. When it is not possible to have a

grouping that achieves strict equality, the optimal grouping will be the one that makes the

sum
∑k

i=1
1
p
a
g
i

as uniform across all the groups as possible, from which we get the statement

of the theorem.

21

Theorem 2 means that finding the optimal grouping is actually equivalent to the balanced

multi-way number partitioning problem[56]. The n-way number partitioning problem[49]

seeks to divide a set of numbers into n groups (or subsets) such that the sum of the numbers in

each group is the same. The balanced variant of this problem further imposes the constraint

that the cardinality of all the subsets (or groups) is the same. Taking the set of numbers to

partition to be the inverse node reliabilities (1/pi), based on Theorem 2, finding the most

reliable grouping for checkpoint encoding is the same as finding a balanced n-way partition

for the set of inverse node reliabilities.

Both the multi-way number partition problem and its balanced variant are NP hard,

and so several heuristics have been proposed in the literature[75][77]. The most well known

heuristic for this problem is the Balanced Largest Differencing Method (BLDM)[75][56]. The

BLDM heuristic can be thought of as a generalization of the folding operation used to form

pairs in Section 2.2 (and as shown in Fig. 6).

Theorem 2 also helps us to reason about the simpler case of system nodes belonging to

a limited set of failure classes, where all the nodes in a failure class have the same likelihood

of failure. This is still a useful case to consider in practice because even when there may

not be enough information from a real system to distinguish between individual nodes based

on their failure likelihoods, it may be possible for system administrators to classify each

node into one of a small set of failure classes[42]. In this simplified version of the original

problem, I assume that a system of N nodes consists of C failure classes, where each class

i ∈ {1, . . . , C} contains ci nodes. All the nodes in class i have the same reliability pi and each

node belongs to exactly one failure class, which means that
∑C

i ci = N . Using Theorem 2

leads us to the following corollary for the simpler problem:

Corollary 1. If ci is perfectly divisible by n (ci/n ∈ N) for all i ∈ {1, . . . , C}, maximum

reliability to catastrophic failures can be achieved by placing the same number of nodes of

each class (ci/n, for all i ∈ {1, . . . , C}) in each group.

Corollary 1 is simply a statement of the fact that, whenever it exists, a grouping scheme

which makes all groups identical by placing the same number of nodes of a particular type

in each group will be optimal. Using this, I also formulate a simple grouping heuristic that

22

works by assigning nodes into failure likelihood classes. Thus, the heuristic first organizes

the nodes by placing nodes with similar reliability values in the same failure class such

that the number of nodes in each class is divisible by n. It forms identical class based

groups by placing ci/n nodes from class i into each of the n groups. Note that if the node

failure likelihoods actually had discrete values such that they could exactly be placed into

separate failure classes where each class size is divisible by n, BLDM and my heuristic would

yield groupings with the same reliability. Thus, this class-based heuristic can be considered

a further simplification of BLDM, yet performs similarly to BLDM as we will see in the

subsequent sections.

2.4 Validation

I validate the placement schemes by using the 5-year reliability, availability and ser-

viceability (RAS) logs, collected between 2013 and 2017, of the IBM Blue Gene/Q Mira

supercomputer, deployed at the Argonne National Laboratory[22]. Blue Gene/Q Mira con-

tains 49,152 nodes organized into 48 racks of 1024 nodes each. The authors of [22] have made

the logs and their analysis tools available at [50] and [21] respectively. Each event entry in

the logs contains the time of the event, location and the severity level (INFO, WARN or

FATAL). Fatal severity level event “designates a severe error event that presumably leads

the application to fail or abort.”[51] The authors of [22] processed the logs to filter the fatal

events that corresponded to actual failure events in the system. Moreover, they used tem-

poral and spatial similarity analyses to group the fatal event entries that were caused by, or

were a manifestation of, the same failure event and obtained 1255 failure events spread over

the 5 year duration of the logs. Thus, each of the events obtained from the filters consists

of a group of fatal event entries. By looking at the locations of the entries in a group, I

determine all the impacted nodes in that failure event. Of the 1255 failure events, 520 (≈

41%) affected more than one node. Counting the number of failure events in which a node

appears, we get the histogram of Fig. 10.

23

Figure 10: A histogram of the number of failures experienced by nodes in the system.

2.4.1 Full Checkpoint Placement

I compare three schemes for full in-memory checkpoint placement in their reliability to

catastrophic failures: i) ring formed over a random permutation of all system nodes, ii)

random pairing placement and iii) the optimal pairing for non-identical nodes as found in

Section 2.2, which we will call Sorted Pairing. For each scheme, we go through each of the

1255 failure events, check if a pair of connected nodes in the scheme both have a fatal event

entry within the entries of the failure event, and, if they do, count the failure event as a

catastrophic failure event for that scheme.

For Sorted Pairing scheme, I take the number of failures experienced by the individual

nodes as a measure of their failure likelihoods. Thus, I sort the nodes based on their failure

Table 1: Catastrophic Failures with Full Checkpoint Placement Schemes

Average Minimum Maximum

Random Ring 71.3 61 82

Naive Optimal (Random Pairing) 60.3 54 71

Sequential Pairing 413 - -

Sorted Pairing 31.5 29 34

24

counts shown in Fig. 10, in order to form the pairs as determined in Section 2.2. I generate

10 random instances of each scheme, and compute the number of catastrophic failures ex-

perienced by each of them. The resulting statistics are shown in Table 1. We see that, on

average, Sorted Pairing experiences 55.8% less catastrophic failures compared to ring based

placement and 47.8% less than a random paired placement scheme. Using the estimate that

4% of failures are usually catastrophic[59][1], a 47.8% reduction would mean that the optimal

sorted pairing scheme could bring the likelihood of such failures down to around 2%. Going

back to Fig 4 for the projected exascale system, such a reduction translates into the job

overhead (caused by file system checkpoints and recovery) going down from 42% to 27%.

2.4.2 Encoded Checkpoints Grouping

For group encoded checkpoints, I test 3 grouping schemes: i) random grouping, ii) group-

ing by the BLDM heuristic[56] using inverse node reliabilities, and iii) approximating nodes

into failure classes and then making identical groups based on Corolloray 1 (I refer to this

scheme as Class Based Grouping). Since the BLDM heuristic uses the actual values to per-

form the grouping, I estimate the inverse node reliabilities using their failure counts. I first

estimate a checkpoint interval using Daly’s formula[20], where I take the checkpointing cost,

C, to be 1 minute and obtain the system MTBF using the count of 1255 failures over 5

years. I then estimate the reliability of the node within such a checkpointing interval by

assuming that the node follows an exponential distribution with rate given by the node’s

MTBF derived using its failure count over 5 years. The inverse of that likelihood for each

node is fed to the BLDM heuristic to obtain a grouping.

Fig 11 shows the number of catastrophic failures experienced by the 3 grouping schemes.

For class based scheme, I divided the list of sorted nodes (according to their failure counts)

into a number of classes equal to the group size. For example, for a group size of 8, the

nodes were also divided into 8 failure classes. For both the BLDM and Class based schemes,

we first permuted all nodes with the same failure counts among themselves in the sorted list

before applying the grouping scheme. The general trend of increased catastrophic failures

with increased group size is expected, since a larger group size trades off memory consump-

25

Figure 11: Number of catstrophic failure experienced by the different grouping schemes.

tion for reliability to catastrophic failures. Both the BLDM and Class based schemes that

use information of node failure likelihoods experienced about 35% less catastrophic failures

compared to a random grouping. Even though BLDM uses the actual values of individual

nodes’ reliabilities, its performance is comparable to Class Based grouping, which simply

groups nodes by picking from failure classes. This could be due to several reasons, such

as BLDM itself being a heuristic which may not generate an optimal grouping, and the

node reliability estimates not being accurate enough. In conclusion, for HPC systems, the

class-based heuristic is sufficient for reducing the likelihood of catastrophic failures.

2.5 Related Work

Diskless, or in-memory, checkpointing was proposed in [65]. Examples of implementation

of full in-memory checkpoint are [58] and [80]. For full in-memory checkpoint placement

over independent and identically distributed (iid) node failure likelihoods, the superiority of

paired placement over ring based placement has been discussed in [13] and [55]. The idea

of distributing encoded checkpoints was also proposed in [65]. The SCR library[58] provides

an implementation of distributed checkpoints as well using simple XOR encoding. All of

these techniques can utilize the optimal mapping schemes discussed in this work. Although

26

other more sophisticated encoding approaches have also been proposed in the literature, an

example being the RS encoding discussed in [4], we leave an analysis of the optimal placement

schemes under these encoding approaches for future work.

When it comes to considering heterogeneous node failure likelihoods, the only prior work,

within the HPC domain, is [61], which performs selective node level duplications based on

the heterogeneous failure history of individual system nodes. Outside of HPC, there has been

some work[47] on using the heterogeneity in disk reliabilities to optimize the grouping of disks

in storage systems. This grouping problem is theoretically similar to the grouping for XOR

encoded checkpoints considered in this chapter. However, there are a couple of distinguishing

features that make the two problems distinct. The first is that the group size for in-memory

checkpoints within an application instance is constant, in order for the memory consumption

within each node to be uniform. For disk grouping, however, groups with different sizes are

allowed. The second difference is that the work of [47] placed the constraint that disks with

different reliabilities cannot be grouped together, unlike the checkpoint grouping problem in

this chapter where nodes with different reliabilites may be placed in the same group.

2.6 Summary

In this chapter, I studied the optimal placement of in-memory checkpoints when indi-

vidual node failure likelihoods are not identical. I provided theoretical results on full and

group encoded checkpoint placement that minimize the likelihood of catastrophic failures. I

further validated my approach on failure logs of a large-scale system and showed that using

node-level failure data to place in-memory checkpoint does reduce the number of catastrophic

failures.

27

3.0 Enhancing Reliability-Aware Speedup Modeling via Replication

Before investigating the implications of failure likelihood heterogeneity for replication, we

need to establish why replication is even considered as a candidate fault tolerance mechanism

for exascale. Over the last decade, several studies[29][11] have argued that replication, paired

with checkpoint-restart, can provide better performance under failures at exascale than C/R

without replication. The crux of the argument in these studies is the fact that, at large

scales, the efficiency without replication drops below the efficiency with replication. In

this chapter, I add further weight to this argument by showing that the reliability-aware

speedup with replication can beat the best possible speedup under failures that is achievable

without replication1. Simply put, this means that, at large scale, replication can not only

outperform no replication at that scale (as argued in prior works), but can actually beat the

best performance over all scales that can be achieved without replication. Hence, while the

analysis in this chapter assumes identical failure likelihoods, the results of this chapter make

the case for studying replication under heterogenous failure likelihoods, which I do in the

next chapter.

3.1 Introduction to Reliability-Aware Speedups

On a failure free platform, the performance of a parallel high performance computing

(HPC) workload always improves with the number of processors if the application speedup

follows Amdahl’s law. However, if the application is executing on a platform where individual

processors are vulnerable to failures, it is no longer true that executing the application over

a larger number of processors always results in an improvement in job completion time. This

is because the increase in scale also increases the frequency of failures, thus increasing the

fraction of time spent in checkpointing and recovery. Eventually, this wasted time starts

to outweigh any gains made by further parallelizing the workload and thus adding more

1This work appeared in DSN 2020.

28

processors starts hurting the application performance. This raises the question: what is

the optimal number of processors at which a workload can achieve its best possible average

speedup, given a platform specific processor failure rate?

To answer the above question, one first needs to develop a speedup model that takes

into account the failure rate as well as the type and cost of the fault tolerance mechanism(s)

employed. Several past works[12][46][82] have explored such reliability-aware speedup models

using checkpoint-restart (C/R) as the sole fault tolerance mechanism, with [12] providing

theoretical results on the order of optimal processor counts in terms of failure rate λ. On the

other hand, it has been projected in [29] that, at large scales, the efficiency with C/R alone

will degrade significantly and that using replication (paired with C/R) will be a more efficient

alternative. Thus, it is reasonable to explore whether adding replication can significantly

improve reliability-aware speedups at larger scales. In this chapter, I study such reliability-

aware speedup of dual replication, obtaining results about the upper bound on the number

of processors than can be used with replication as well as results on the contrast between

the speedups with and without replication.

3.2 Background

This section describes the background information needed to understand the mathemat-

ical development in subsequent sections. It should be noted that all the quantities below

that depend on P will have different formulae depending on whether replication is employed

or not. It should also be noted that P refers to the total number of processors being used,

which means that, for dual replication, P/2 processors will be replicas of the other P/2 pro-

cessors. Thus, all comparisons between the performance of replication and no-replication are

made with the same number of total processors, P , used by each technique. This also means

that, in cases where replication has better speedup than no-replication, the expected energy

cost of replication will be lower, simply because a job using P nodes will finish quicker with

replication than without it.

I consider a job model in which the work is distributed among the available processors at

29

the time of job start, and there is no work stealing. Thus, the number of processors and the

work per processor remains fixed throughout an execution and, upon single processor fail, the

job recovers from last checkpoint and continues with same number of processors. I assume

that each processor has an exponential failure distribution with mean time between failure

(MTBF) µ, or equivalently, rate λ = 1/µ. For a parallel job using a total of P processors,

let λP denote the resulting failure rate. When no replication is used, λP = λP . With

replication, however, not every processor failure interrupts the execution of the workload.

The execution is interrupted only when a processor and its replica fail. Thus, for replication,

the quantity of interest is the Mean Time To such Interrupts (or MTTI), using which we

can again define the failure rate of replication as λP = 1/MTTIP . A general closed form for

λP for replication is not known. For dual replication though, a closed form expression was

recently derived in [7] where the authors showed that λP = λP (1 +
(
P
P/2

)
/2P) ≈ λ

√
2P/π

(for large P), which is the value I will use in the model for the failure rate of dual replication.

I take the checkpointing interval to be equal to Young’s[76] first order approximation for

the optimum checkpointing interval, given by τ =
√

2CµP . Here, µP = 1/λP is the system

MTBF of P processors in case of no replication or the MTTI of a dually replicated execution

with a total of P processors as discussed above.

I use Amdahl’s law[2] to model the failure free speedup. Hence, without replication, we

have Snorep(P) = 1
α+(1−α)/P , where α is the sequential fraction of the workload. For dual

replication with P total processors, the parallel work is divided over P/2 processors only,

which means the failure-free speedup will be Srep(P) = 1
α+2(1−α)/P . We can see that both

of these expressions are continuously increasing functions of P , which is not the case when

failures are taken into account. With failures, we are interested in the average speedup

behavior of a workload, and I denote that by Snorep(P) and Srep(P) for the two cases,

respectively. Clearly, Snorep(P) (and Srep(P)) is a function not just of α but other parameters

such as the failure rate (λ), checkpointing cost (C), recovery cost (R) and the downtime

after failure (D). When considering the behavior of Snorep(P) and Srep(P), one would expect

these to initially be increasing functions of P . However, as P grows and the failure frequency

increases, the expected speedups will eventually reach their respective peaks and then start to

decline as the growing overhead of failures starts to dominate. The optimal (or equivalently,

30

the upper bound on) number of processors is the value of P that maximizes the expected

speedup (this value will be different for replication and no replication). This is also equivalent

to finding P that minimizes Hnorep(P) = 1/Snorep(P) (and similarly, with replication), where

Hnorep(P) (and Hrep(P)) is the expected time to finish a unit of work on P processors,

without and with replication, respectively.

We can further write Hnorep(P) = Enorep(P)/Snorep(P) (and similarly for replication),

where Enorep(P) (and Erep(P)) represent the time it would take, under failures, to complete

Snorep(P) (and Srep(P)) units of work. Note that, without failures, Snorep(P) (and Srep(P))

units of work can be completed on P processors in one unit of time. Thus Enorep(P) (and

Erep(P)) represent the expected time under failures on P processors normalized by the

failure-free time on the same number of processors. Enorep(P) and Erep(P) will be modeled

using different approaches, which we discuss below.

3.2.1 Expected Time without Replication

For individual processor failures that follow the exponential failure distribution with rate

λ, the resulting failure distribution on P processors without replication is also exponential

with rate λP = λP . Thus, one can use the memoryless property to simplify the derivation

of expected completion time. The memoryless property ensures that the likelihood of failure

within an interval does not depend on when the previous failure happened. Thus, it suffices

to estimate Enorep,τ (P), the expected time to finish a single checkpoint interval, which is

given by[20]

Enorep,τ (P) = (
1

λP
+D)eλPR(eλP (τ+C) − 1) (3.1)

Enorep(P) can then be estimated as Enorep(P) = Enorep,τ (P)/τ .

3.2.2 Expected Time with Replication

When replication is employed, even if the individual failure distributions are exponential,

the distribution of failures that interrupt a replicated job execution is not. For any distri-

bution other than the exponential, the memoryless property does not hold. Therefore, the

expected time cannot be modeled by estimating the expected time to finish one interval in

31

Figure 12: Average behavior between consecutive failures.

isolation. While Equation 3.1 can still be used as an approximation to estimate the expected

completion time of a distribution with mean MTTIP = 1/λP , for replication we will use

the generic approximation approach used in [53] which considers each failure (defined as the

failure of a processor and its replica) as a renewal process and computes the average time

spent performing useful work between such consecutive failures, which is the difference of

the duration between these successive failures and the time spent in performing extra tasks,

Textra, as shown in Figure 12.

Textra consists of two components: the time spent writing checkpoints, and the time spent

doing work that was wasted due to failure in the interval in which the failure struck. The

average number of checkpoints within two successive failures is given by MTTIP/τ . Thus,

the average time spent writing checkpoints will be given by C ×MTTIP/τ . The second

component, which is the work wasted due to failure, is equal to the expected time of failure

within an interval of length τ given that a failure happens within the interval. This value

can be written as kτ , where 0 < k < 1 represents the expected proportion of an interval that

is lost due to a failure. We use the first order approximation[76][68] for the value of k which

assumes that failure strikes in the middle of the interval on average, i.e. k = 0.5. Putting all

of this together, we get that Textra = C ×MTTIP/τ + τ/2. We can then write Erep(P) as

Erep(P) =
MTTIP

MTTIP − C×MTTIP
τ

− τ
2

(3.2)

We will thus use the above equation to estimate the expected completion time for dual repli-

cation, where MTTIP ≈ λ−1
√
π/2P from [7]. It should be noted, however, that Equation

32

3.2 becomes a less accurate model for the expected completion time as Textra gets closer to

MTTIP . However, as long as Textra is less than and not too close to MTTIP , Equation 3.2

provides a close approximation of the expected performance.

3.3 Optimal Processor Count

I first investigate the optimal number of processors that maximize the expected speedup

under failures. This can be done by setting
∂H(no)rep(P)

∂P
= 0. In order to validate the results

that I derive based on this analysis, I also built a simulator to measure the reliability-aware

speedups. The basic purpose of simulator is to compute the time to finish a given checkpoint

interval under failures generated by a given distribution. The simulator starts at t = 0 (where

t represents the time to finish one interval) and randomly generates a failure time, say x,

from the distribution. If x is greater than the interval duration, the run completes, and the

interval duration is added to t. Otherwise, x is added to t, then another draw is made and

the process repeated. Upon run completion, I calculate the useful and extra work as shown

in Figure 12. I take the average of 50,000 such runs for a given set of system parameters

to obtain E(no)rep(P). When no replication is employed, the failure times are generated

according to an exponential distribution with rate λP . In the case of replication, since the

interrupt distribution is not exponential, I generate failure times according to the actual

probability distribution for replicated failures as follows: Let R(t) be the probability that no

interrupt (defined as the failure of a processor and its replica) happens until time t. Then,

with exponential processor failures, R(t) = (1 − (1 − e−λt)2)P/2 = (2e−λt − e−2λt)P/2. The

cumulative distribution function (CDF) from which I generate interrupts for replication is

then given by 1−R(t).

3.3.1 Without Replication

The problem of finding the optimal number of processors with checkpoint-restart alone

has been studied to some extent in the literature. Jin et al.[46] and Zheng et al.[82] provided

33

procedures to numerically evaluate the optimal number of processors given other system and

application level parameters. Cavelan et al.[12] derived closed form expressions for optimal

processor counts by taking the Taylor series expansion of the exponential term in Equation

3.1 and simplifying using first order approximation for the failure rate (λP). This procedure

yields the optimal number of processors as

P ∗norep = (
1− α
α

)2/3(
2

λC
)1/3 (3.3)

For perfectly parallel applications, i.e. α = 0, this value goes to infinity. However, the

optimal number of processors for perfectly parallel applications is a finite value as we will

soon see. The discrepancy occurs because the first order approximation holds only when the

application workload consists of a non-negligible sequential fraction, 0 < α < 1.

Since one of the design goals of HPC applications is that they be highly parallelizable,

scaling to thousands of cores, the desired value of α for exascale jobs is small in order

to fully utilize the system. As α becomes small, however, the accuracy of the first order

approximation worsens, as can be seen in Figure 13. In the figure, the optimal number of

processors for α = 0 is extrapolated and plotted as a horizontal line in order to show the

range of α over which this horizontal line (representing the optimal count at α = 0) is closer

to the actual optimal counts than the counts given by the first order approximation. We

can see from the figure that, for values of α below 5 ∗ 10−6, the actual optimal processor

counts are closer to the optimal for α = 0 (a perfectly parallel workload) than to the

values given by the first order approximation. We carried out similar analyses with other

values of processor MTBFs which also revealed that the threshold of α, below which the

first order approximation become inferior, is of the order of 10−6 for the range of realistic

values of processor MTBF (1-50 years). While this value of α seems quite small by itself,

an exascale job with this fraction of sequential workload would not be efficient in utilizing

all of its allocated processors. As an example, consider a system with 105 nodes, which, as

[1] projects, will be typical of the order of node counts at exascale. On such a system, a job

running with α = 5 ∗ 10−6 will spend a third of its time in sequential execution, wasting its

allocated resources.

34

Figure 13: Optimal number of processors when no replication is employed. The actual

optimal value is calculated by writing Hnorep(P) using Equation 3.1 and numerically locating

its minimum. Individual processor MTBF = 10 years while C = R = D = 300 seconds.

Based on the discussion above, it is pertinent to also investigate the optimal processor

counts of no replication for perfectly parallel jobs (α = 0), because the results of such an

analysis would serve as better approximations to the performance models of exascale jobs

than the first order approximations that assume a relatively larger value of α. While [12]

observed, based on empirical results, that the optimal number of processors for perfectly

parallel jobs is of the order λ−1, no analytical results to that effect exist. In the theorem

below we prove that the optimal processor count is indeed of the order λ−1 when α = 0.

Theorem 3. When using checkpoint-restart without replication, and assuming a perfectly

parallel job, the optimal number of processors that maximize the expected speedup is equal to

K/λ, where K is a constant that does not depend on λ. In other words, the optimal number

of processors is directly proportional to the individual node MTBF.

Proof. Without replication, for a system comprising of P processors, each having an expo-

nential failure distribution with rate λ, the system failure distribution is also exponential

with rate λP . Hence, one can write Hnorep(P) exactly using Equation 3.1 (which applies to

exponential failure distributions). Taking the checkpointing interval to be τ =
√

2C/λP

(using Young’s first order approximation[76]) and assuming a perfectly parallel job (i.e

35

Snorep(P) = 1/P), we get from Equation 3.1 the following expression

Hnorep(P) =
1

P
(

1

λP
+D)eλPR

(eλP (
√

2C
λP

+C) − 1)√
2C
λP

=

√
λ

2C
(

1

λP 3/2
+

D√
P

)(eλP (
√

2C
λP

+C+R) − eλPR)

(3.4)

Let H(P) = (1
λP 3/2 + D√

P
)(eλP (

√
2C
λP

+C+R)− eλPR) (i.e. ignoring the constant
√
λ/2C above).

Differentiating wrt P , we get

∂H

∂P
= (

1

λP
3
2

+
D√
P

)eλPR((

√
λC

2P
+ λ(C +R))eλP (

√
2C
λP

+C)

− λR)− (
3

2λP
5
2

+
D

2P
3
2

)(eλP (
√

2C
λP

+C+R) − eλPR)

(3.5)

Setting ∂H
∂P

= 0 and simplifying, we obtain

2λP ((

√
C

2λP
+ C +R)eλP (

√
2C
λP

+C) −R) = (
3 + λPD

1 + λPD
)(eλP (

√
2C
λP

+C) − 1) (3.6)

Setting P = K/λ, Equation 3.6 becomes

2K((

√
C

2K
+ C +R)eK(

√
2C
K

+C) −R) = (
3 +KD

1 +KD
)(eK(

√
2C
K

+C) − 1) (3.7)

We note that λ has been eliminated from the equation above. This means that the value of

K that satisfies this equation does not depend on λ, thus concluding the proof.

I use the simulator to validate the result in Theorem 3 about the order of optimal

processor count without replication for perfectly parallel jobs. Figure 14 shows the optimal

number of processors as a function of the individual processor MTBF(= 1/λ). Along with

the simulation results, we also plot a best fit curve to the simulation results. The form of the

curve is assumed to be K/λ for the case of α = 0 and K/λ1/3 (based on Equation 3.3) when

α > 0. We see that the best fit curve for perfectly parallel workload, using the form given

by Theorem 1, matches closely with simulation results. When α > 0, the form given by the

first order approximation gets closer to the simulation results as α gets larger. Note that, in

this analysis, the value of K has been estimated using simulation, since the purpose was to

assess the growth of P ∗ with λ. For α > 0, the first order approximation provides a formula

36

Figure 14: Optimal number of processors when no replication is employed. C = R = D = 300

seconds. The scale of y-axis is different for the three plots.

for K as can be seen in Equation 3.3. As for perfectly parallel jobs, we see that Equation 3.7

cannot be solved analytically for K. In such a case, one can resort to numerical methods to

solve that equation and compute K given C, R and D. An alternative would be the method

we used here, which is to estimate K using simulation, as shown in Figure 14.

3.3.2 Replication

For replication, I study in this dissertation the smallest degree of replication, i.e. dual

replication. As mentioned in Section 3.2, we will use the result from [7] to approximate the

platform failure rate, λP . Thus, for a platform with a total of P processors where half of

them are replicas of the other half, we take the failure rate to be λP ≈ λ
√

2P/π. We will

therefore take the checkpointing interval to be τ =
√

2C
λ

√
π
2P

. Using Equation 3.2 and the

expression of Srep(P), we get the following approximation for Hrep(P)

Hrep(P) ≈ (α +
2(1− α)

P
)

1
λ

√
π
2P

1
λ

√
π
2P
−

C
λ

√
π
2P

τ
− τ

2

= (α +
2(1− α)

P
)

1

(1−
√

2λC
√

2P
π

)
(3.8)

I will now discuss the optimal processor counts for replication for the two cases, α > 0 and

α = 0, separately:

Non-negligible Sequential part (α > 0): From Equation 3.8, we can expand the (1 −√
2λC

√
2P
π

)−1 term, using Taylor expansion, as
∑∞

j=0(2λC
√

2P
π

)
j
2 . We now make the first

37

order approximation by taking the first couple of terms of this series to obtain

Hrep(P) ≈ (α +
2(1− α)

P
)(1 +

√
2λC

√
2P

π
) (3.9)

In order for the approximation above to be valid, the term (2λC
√

2P
π

)
j
2 should get smaller

as j increases. Thus, by making the above approximation, we are assuming that the term

2λC
√

2P
π

is of the order λε where ε > 0, as this would make the earlier terms of the series

dominant (since λ is small in practice). This translates to the condition that if P is of the

order λ−x, where x < 2, the first order approximation will hold, which is the assumption we

make here. Differentiating the approximate expression in Equation 3.9 with respect to P ,

we get

∂Hrep

∂P
=
α

4

√
2λC

P

√
2

πP
− 2(1− α)

P 2
+ Θ(λ

1
2P

−7
4) (3.10)

With our assumption on the order of P (i.e. P = Θ(λ−x) where x < 2), the last term in

the equation above is negligible compared to the first two terms. Thus, by setting ∂Hrep
∂P

= 0

using the most dominant terms, we obtain the optimal processor count as

P ∗rep = (
8(1− α)

α
√

2λC
(
π

2
)
1
4)

4
5 (3.11)

Note that, according to this expression, when α > 0, P ∗rep is of the order λ−
2
5 , which

indeed satisfies the condition on the order of P mentioned above (i.e. P = Θ(λ−x), x < 2)

and thus justifies the first order approximation made in obtaining this optimal value. When

α approaches 0, the expression above goes to infinity. However, the optimal number of pro-

cessors in that case is still finite as we will see shortly. The reason for this discrepancy, same

as with no replication, is that the optimal processor count for perfectly parallel workloads

(α = 0) is larger, which means that the condition for the first-order approximation to be

valid, i.e. P = Θ(λ−x) where x < 2, does not hold in that case.

Figure 15 plots the first order approximation derived above along with optimal processor

counts obtained using simulation results, when α = 10−6. We see that the values of R and

D do not have a significant impact on the actual value of optimal processor counts, and also

that the first order approximation is quite accurate in determining those counts.

38

Figure 15: Optimal number of processors with dual replication. Checkpointing cost = 300

seconds, same as in Figure 14.

Similar to the case of no replication, I also analyse the values of α for which the first

order approximation is a closer match to the actual optimal counts for replication. Figure 16

shows that, for values of α greater or equal to 10−10, the first order approximation is closer to

the actual counts than the perfectly parallel approximation. Recall from Figure 13 that this

threshold for α without replication, assuming a system with the same parameters, was much

higher (around 5 ∗ 10−6). This means that with replication, the first order approximation

will serve as a good fit for a much larger set of parallel workloads, even if they are highly

scalable, as long as they are not embarrassingly parallel.

Perfectly Parallel workload (α = 0): Although we cannot make the simplifying first-

order approximation as above, setting α = 0 simplifies Equation 3.8, yielding Hrep(P) ≈

2/P (1−
√

2λC
√

2P
π

). Taking the derivative, we get

∂Hrep

∂P
=
−2(1− 5

√
2λC

√
2P/π/4)

P 2(1−
√

2λC
√

2P/π)2
(3.12)

Setting the derivative equal to 0 yields the optimal value as

P ∗rep ≈
32π

625λ2C2
(3.13)

39

Figure 16: Optimal number of processors with dual replication, as obtained by the simulation

as well as the first order approximation (Equation 3.11). X-axis range is from α = 0 to

α = 10−10. Individual processor MTBF = 10 years while C = R = D = 300 seconds.

While this procedure yielded an exact expression for the optimal number of processors, it

should be noted that this value is optimal for the approximate expression used in Equation

3.8. To assess the accuracy of this approximation, Figure 17, similar to Figure 15, plots the

optimal processor counts, this time for a perfectly parallel workload, along with our derived

formula. Comparing with Figure 15, we first note that the counts are significantly lower

with a non-zero value of α, which is to be expected. We also see that, while the parameters

R and D did not have much impact on the optimal processor count for non-zero α, their

values have a non-negligible impact on the optimal processor counts for perfectly parallel

workloads. This trend is similar to the case of no replication, where R and D do not have

much impact when α > 0 since they vanish from the first-order approximation[12], but have

a greater effect on the optimal counts for perfectly parallel workloads. We thus conclude

from Figure 17 that the actual optimal number of processors for perfectly parallel workloads

also depends on the recovery cost R and the downtime D, which the model used to write

Equation 3.8 does not take into account. Nevertheless, the derivation based on this model

yields a simple and handy expression which, as seen in the plot, is close to the optimal

processor counts in practice.

40

Figure 17: Optimal number of processors with dual replication for a perfectly parallel work-

load. Checkpointing cost = 300 seconds.

An additional benefit of the approximation we just derived is that it leads us to the

observation that the optimal number of processors using dual replication is of the order λ−2.

Thus, similar to Figure 14, where we investigate the dependence of the optimal counts on λ for

no replication, we plot, in Figure 18, best-fit curves over simulation based optimal processor

counts of replication using the forms indicated by our derivations (i.e. P ∗rep = K/λ2 when

α = 0 and P ∗rep = K/λ2/5 when α > 0). We see that the best-fit curve for α = 0 matches well

with the simulation results. For α > 0, the fitted curve gets closer in shape to the actual

counts as α gets larger, similar to the observations made in Figure 14 for no replication.

This means that the optimal processor counts in both cases agree with our derived formulae

on their order in terms of λ. Thus, our formulae serve as reasonable approximations to the

optimal processor counts for dual replication.

Based on the results so far, I summarize my findings about the optimal processor counts

in this section in Table 2, which lists the form of the optimal counts in terms of λ as well as

closed form approximations where available. We see that, in both cases of parallelism, the

optimal counts of replication are of a higher order in terms of the processor MTBF (= 1/λ)

when compared with their counterparts for no replication. Thus, in each case we can say that

the range of system scales over which one can continue to improve performance by enrolling

41

Figure 18: Optimal number of processors with replication. C = R = D = 300 seconds. Scale

of y-axis is different for each plot.

more processors is much larger with replication than without it.

3.4 Performance comparison of Replication with No Replication

In the previous section we saw that the optimal processor counts for replication are much

higher than those possible without replication. However, that does not necessarily mean

that the reliability-aware speedup of replication will actually be better than what is possible

without replication at higher processor counts. This is because the optimal processor counts

were optimal for their specific fault tolerance mechanisms, i.e. replication and no-replication

respectively, and so none of our earlier results say how the speedup of replication compares

Table 2: Optimal Processors Counts

C/R without Replication C/R with Replication

α > 0 Θ(λ−1/3) Θ(λ−2/5)

P ∗ ≈ (1−α
α

)2/3(2
λC

)1/3[12] P ∗ ≈ (8(1−α)
α
√
2λC

(π
2
)
1
4)

4
5

α = 0 Θ(λ−1) Θ(λ−2)

P ∗ ≈ 32π
625λ2C2

42

Figure 19: Different possibilities of how the performance of replication and no replication

compare to each other as the number of processors increases.

with no replication.

When comparing the performance of no-replication with replication with respect to the

scale of the system, we know that replication always starts off worse than no-replication at

lower processor counts, since the system failure rate is low, in which case redundancy is an

overkill. We also know from [29] and [11] that at some point replication starts outperforming

no-replication and this trend subsequently holds for increasing system sizes. Depending on

when that crossover happens, though, we get the different possibilities depicted in Figure

19. Note that the figure plots the normalized expected completion time which is minimum

at the optimal number of processors, since it is the inverse of reliability-aware speedup.

If we define the global speedup at any processor count as the best speedup possible at

that scale (i.e. the better of replication or no replication at that processor count), then

it is interesting to explore the form and behavior of this global speedup function in terms

of the performance of replication and no-replication. Figure 19 shows normalized expected

completion time of such a global speedup in each case as a dashed green curve. Finding out

which of those three scenarios is true in practice would have implications on the feasibility

of replication. For example, if either of subfigure (a) or (b) represents the true form of the

global speedup function, then the optimal global speedup will be achieved at the optimal of

replication. However, only in scenario (a) does the global speedup continuously improve until

that optimal is reached. If, on the other hand, scenario (b) is how the speedup behaves, it

43

would be surprising since that would mean that the speedup improves until some system scale

(i.e. the optimal of no-replication), then is worse for larger system scales until some point,

but after that point it starts improving once again before hitting the optimal of replication.

Finally, subfigure (c), if true, would mean that the outlook for replication is bleak since it

would never reach the optimal performance of no-replication and that the global speedup

reaches its optimal with C/R alone without replication. The findings in this dissertation

suggest that, of these three scenarios, scenario (a) in Figure 19 is what seems to be true in

practice, which is what I will demonstrate through theoretical and simulation-based analyses

in the rest of this section.

3.4.1 Theoretical Analysis

My approach in this section will be to theoretically compare the reliability aware speedups

of replication and no-replication at the optimal processor counts for no-replication. The

rationale for this analysis is that, if replication outperforms no-replication at the optimal

processor counts of no-replication, it will mean that the global speedup behavior will be

according to scenario (a) shown in Figure 19. Below we discuss our analysis for the two

cases of parallelism, based on the value of α.

Non-negligible Sequential part (α > 0): When α > 0, the authors in [12] showed that

for no-replication at its optimal processor count, P ∗norep, the expected time can be written

as H∗norep = Hnorep(P
∗
norep) ≈ α + 3(α2(1 − α)λ/2)1/3. We can also plug their expression for

P ∗norep (Equation 3.3) in the first-order approximation for the expected time of replication,

as given by Equation 3.9. The resulting expression, ignoring higher order terms, is

Hrep(P
∗
norep) ≈ α + (4α2(1− α)λ/2)1/3 (3.14)

Comparing the two expressions, we can clearly see that Hnorep(P
∗
norep) > Hrep(P

∗
norep) which

means that the performance of replication at P ∗norep is better than the performance with-

out replication. Thus, for workloads with non-negligible sequential part, we can expect

that replication will start outperforming no replication before the optimal processor counts

without replication are reached.

44

Perfectly Parallel workload (α = 0): When α = 0, we do not have an explicit formula

for the optimal number of processors without replication. We will, therefore, perform a

simplified analysis by assuming that the recovery cost and downtime are both zero. Taking

R = D = 0 in Equation 3.4 for no replication, we get

Hnorep(P) =
(eλP (

√
2C
λP

+C) − 1)√
2λCP 3

(3.15)

Taking the derivative with respect to P , setting it equal to 0 and simplifying, we obtain the

following equation

(λPC +

√
λPC

2
)eλPC+

√
2λPC − 3(eλPC+

√
2λPC − 1)

2
= 0 (3.16)

Let x = λPC, then the equation above reduces to

(x+
√
x/2)ex+

√
2x − 3(ex+

√
2x − 1)/2 = 0 (3.17)

We can solve this equation numerically to obtain x ≈ 0.68015. Note that this value of x

is determined solely from the equation above and is independent of the values of λ and

C. This means that λPC is an invariant with respect to λ and C when P represents the

optimal processor counts and this invariant can be determined from the equation above.

We therefore obtain that the optimal processor count in this case is P ∗norep = x/λC ≈

0.68015/λC. Plugging this value into Equation 3.15, we get the normalized expected time

for no replication at its optimal processor count as

Hnorep(P
∗
norep) = Hnorep(

x

λC
) = λC(

ex+
√
2x − 1

x
√

2x
) ≈ 6.7283λC (3.18)

Using Equation 3.8, we can write the performance of replication at this value of P as

Hrep(P
∗
norep) = Hrep(

x

λC
) =

2λC

x(1−
√

2λC
√

2x
πλC

)

(3.19)

By comparing the two equations above, we can derive that Hnorep(P
∗
norep) > Hrep(P

∗
norep), i.e.

replication outperforms no replication at P ∗norep, whenever

λC <
π

8x
(1− 2

√
2x

ex+
√
2x − 1

)4 ≈ 0.058 (3.20)

45

This means that, whenever µ = 1/λ is greater than C/0.058 ≈ 17.25C, the expected perfor-

mance of replication as given by the approximation in Equation 3.8 will be better than the

performance of no replication. This bound is satisfied by all realistic values of node MTBFs

and checkpointing costs, since individual node MTBFs usually are much higher than the

checkpointing cost. As an example, let’s say that the checkpointing cost for a platform is 1

hour (a conservative estimate, given the state of the art). Even with such a high value of

C, the bound above says that if individual node MTBF is higher than 17.25 hours (which

usually is the case since the node MTBF usually is of the order of years), then the global

speedup behavior will be according to scenario (a) in Figure 19. With lower values of C, this

threshold will be even lower, which again should be satisfied by all practical node MTBF

values. This means that, for all realistic platform values of λ and C, replication would have

already outperformed no-replication by the time we reach the optimal processor counts for

no-replication.

3.4.2 Empirical Evaluation

The theoretical results in the previous section give a very strong indication that replica-

tion outperforms no-replication at the optimal processor counts of no-replication, which in

turn means that the global normalized expected completion time has the form depicted in

subfigure (a) in Figure 19. However, the two limiting factors in the theoretical analysis were

i) the contributions from restart time, R, and the downtime, D, both of which are non-zero

in practice, were ignored for the case of perfectly parallel workloads, and ii) the expression

for Hrep(P) is an approximation since it uses the approach in Figure 12, unlike Hnorep(P),

for which we have the exact expression using Equation 3.1. Therefore, in this subsection I

use simulation to investigate if the results of the theoretical analysis hold in practice, despite

the above mentioned limitations. Therefore, I obtain Hrep(P
∗
norep) as follows:

1. For a given set of parameters (λ,C,R and D), we first numerically find the optimal P ∗norep

of Hnorep(P), using its exact formula.

2. For the P ∗norep found in step 1, we use our simulator to estimate Hrep(P
∗
norep).

Figure 20 compares Hrep(P
∗
norep) obtained using the steps above versus the expression for

46

Figure 20: The normalized expected completion time, H(P ∗norep) of no replication and repli-

cation. For both figures, C = 300 seconds. Note: Y-axis scale is different in the two plots.

Hnorep(P
∗
norep), for the two cases of parallelism (i.e. perfectly parallel and α > 0). It can be

seen that, with other parameters being the same, replication always has lower normalized

expected completion time than no-replication. Remember that for perfectly parallel jobs

(α = 0), our theoretical analysis was carried out with the assumption that R = D = 0. While

that analysis is validated by the figure, we also see that the difference in the performance

of replication and no-replication is even greater for the α = 0 case when R and D are non-

zero. Hence, the results from our empirical analysis further strengthen our conclusion that

replication outperforms no-replication at the optimal processor counts for no replication.

Based on the theoretical and empirical results in this section, we can conclude that, for

all practical values of the platform parameters, by the time the optimal number of processors

for no-replication is reached, replication already offers better performance. Thus, the global

speedup (= min(Hnorep(P),Hrep(P))) is monotonic with respect to the number of processors

up until the optimal count of processors for replication is reached. Furthermore, the global

optimum is achieved at processor counts that are optimal for replication.

47

3.5 Overhead of Replication

The assumption so far in this chapter has been that the only hit to replication is the

doubling of failure free execution time of the parallel part of a job because of duplicated work.

However, as several prior studies on replication[29][27][26][43] have noted, replication also

induces an additional overhead to message passing applications because of several factors,

such as the additional communication required between replicas in order maintain consistency

among them, increase in memory utilization and network congestion. In this section I assess

how this additional overhead affects the reliability aware speedup of replication, in contrast

to no-replication which does not suffer from any such overheads.

For the cost of replication, I use the model of [29]. They analyzed the overhead of

replication on several message passing applications and used curve fitting to infer that the

growth of the overhead of replication is proportional to the logarithm of the number of

processors, P . Thus, I assume that the extra overhead induced by replication, as a fraction

of the original time, is equal to δ logP , where δ is an application specific constant. To obtain

a formula for the speedup, assume the original work to be completed takes W units of time

on a single processor without failures and fault tolerance. Without the additional overhead

of replication, the same time, using P total processors, would become W (α + 2(1 − α)/P)

in the absence of failures and without C/R. With the additional overhead of replication,

this time would become W (α+ 2(1− α)/P)(1 + δ logP). The failure free speedup can then

be obtained as Srep(P) = W
W (α+2(1−α)/P)(1+δ logP)

= 1
(α+2(1−α)/P)(1+δ logP)

. Thus, we update

Hrep(P) to use this expression for Srep(P).

Figure 21 shows the impact of overhead with different values of δ. For no-replication, the

curve is generated through the exact expression for Hnorep(P). For replication, I evaluate

Hrep(P) through simulation with the updated expression for Srep(P) as described above. We

can see from the figure that, for values of δ = 10−2 or lower, replication still outperforms

no replication before no replication reaches its optimal. It should also be mentioned that

the value of δ determined in [29] for the application with the highest overhead of replication

was of the order 10−3. Moreover, this value could be even lowered by leveraging application

specific properties of most message passing applications[52]. Thus we can say that the

48

Figure 21: Normalized expected completion time versus the number of processors. Node

MTBF = 10 years, while C = R = D = 300 seconds. Note: Y-axis scale is different in the

two plots.

overhead of replication, as long as it is not unreasonably high, does not change the form of

the global speedup function, which would still behave according to scenario (a) in Figure 19.

We can also see from Figure 21 that the performance of replication at its optimal is su-

perior to the optimal performance of no replication for all values of δ. This means that even

if the replication overhead grows large enough, the form of the global speedup function shifts

from that in scenario (a) to that in scenario (b) in Figure 19. We did observe in our investiga-

tions that further increasing δ does cause the speedup to behave as in scenario (c) in Figure

19, which would render replication infeasible at any processor count. However, this behavior

is only exhibited when unreasonably high values for the parameter δ are assumed. Finally,

we note from Figure 21 (right) that, when α > 0, the crossover between no-replication and

replication happens much closer to the optimal processor count of no-replication. However,

all the observations made above regarding the form of the overall global speedup hold for

both cases, i.e. α = 0 and α > 0.

We can thus conclude from this section that, while impact of the overhead of replication

is to diminish the reliability-aware speedup of replication, it does not change any of the

49

conclusions in this work about how replication fares against no-replication with scale. Only

if the overhead is impractically high, replication may be rendered suboptimal at any processor

count in comparison with the optimal performance of no-replication. However, for overhead

numbers observed for replication in practice, the reliability-aware speedup still outperforms

no-replication at the optimal processor counts of no-replication, and can significantly improve

on the optimal performance that is possible without using replication.

3.6 Related Work

The most closely related body of work to this chapter is the study of reliability-aware

speedups. In that domain, [46] and [82] formulated reliability aware speedups for checkpoint-

restart (C/R) and [82] numerically computed the optimal number of processors. [12] provided

theoretical results on the optimal number of processors for non-perfectly parallel jobs. I

follow their approach in formulating the optimal processor count problem, and also extend

their results to cover the case of perfectly parallel jobs. All of these works, however, consider

C/R only without replication.

There have been several studies in the HPC domain that have studied the idea of com-

bining replication with C/R. [29] suggested replication as a viable fault tolerance scheme for

exascale HPC systems by showing that, at sufficiently large scales, C/R alone will be less

efficient that C/R with replication. [11] theoretically studied replication and derived a sum-

mation based formula for the mean-time-to-interrupt (MTTI) of a replicated execution. The

authors in [7] recently derived a closed form expression for the MTTI in the case of dual repli-

cation. There have been several other works investigating both the implementation[27][52]

and theoretical[5] issues surrounding replication. These works do not consider the problem

of finding the optimal number of processors using replication, with the exception of [5].

However, [5] focuses primarily on silent errors because of which their model considers the

failure of even one processor (silent or fail-stop) in a replica-pair as a failure for the entire

job. Thus, their results are not applicable to the fail-stop model in which only the failure

of both processors in the replica-pair causes a failure to the job, which is what I study in

50

this dissertation. Additionally, none of the above works on replication assess how replica-

tion can impact the overall form of reliability-aware speedups, which I do in this chapter

by showing that replication doesn’t simply start outperforming no-replication after some

system scales, but rather outperforms the optimal achievable by no-replication and that the

crossover happens before or close to the optimal system scale for no replication.

3.7 Summary

In this chapter, I studied the reliability-aware speedup of a replicated execution, and

contrasted it with the reliability-aware speedup without replication. I derived novel results

on how the optimal processor counts of replication and no-replication relate to the individual

node failure rate λ. I further showed that replication generally starts outperforming no-

replication before or close to the point where no-replication reaches its optimal processor

counts. Taken collectively, the results in this chapter indicate that replication significantly

enhances reliability-aware speedup beyond what is possible without replication.

51

4.0 Partial Replication under Heterogeneous Failure Likelihoods

The previous chapter strengthened the case for considering dual replication, paired with

checkpoint-restart (C/R), as a superior fault tolerance scheme to C/R alone without replica-

tion when system scale is large. In this chapter, I investigate how replication can utilize, and

be affected by, the heterogeneity in failure likelihoods. The main contribution of this chapter

is to demonstrate that such heterogeneity is the key to making partial replication feasible1. I

first start with a discussion on the motivations behind considering partial replication instead

of full replication.

4.1 Motivation Behind Partial Replication

In pure replication with dual redundancy, all work is duplicated on separate hardware

resources. This allows the application to continue execution even in the presence of failures

as long as both processes (or nodes) that are replicas of each other have not failed. This

significantly improves the mean time to interrupt (MTTI) of the system[29][11], requiring

fewer checkpoints compared to the case without replication. However, it comes at the cost

of system efficiency, which is capped at 50%. Hence, the argument for pure replication as

a fault tolerance mechanism holds weight only at system scales at which the efficiency of

checkpointing alone drops below 50%.

To break the 50% efficiency barrier of pure replication, [26] studied partial replication

where only a subset of application visible nodes are replicated. However, neither [26] nor any

other works since then have established any range of node counts for which it makes sense

to only partially replicate an execution. In this chapter I revisit partial replication under

the assumption that node failure likelihoods in the system are not necessarily identical and

show that this change in the assumption makes partial replication superior to full and no

replication for a range of system scales.

1This work appeared in Supercomputing (SC) 2018.

52

4.2 Replica Selection and Pairing

I start with the question of how, knowing the number of nodes to replicate, should the

replicated nodes be selected and paired. Consider a system with N nodes with individual

node failure density functions given by hi(t), 1 ≤ i ≤ N , where t > 0 is the time. These

functions are typically taken to be exponential or Weibull, and characterized by failure rate

λi, where λi is the inverse of node i’s MTBF. We assume without loss of generality that the

nodes are ordered by their failure rates, such that λi(t) ≤ λi+1(t) for all 1 ≤ i ≤ N − 1.

In order to answer the question of optimal selection and pairing of replicas, it is simpler

to work with the nodes’ probability of survival until time t (or reliability) given by gi(t) =

1 −
∫ t
0
hi(x)dx, 1 ≤ i ≤ N . With the nodes sorted by increasing failure rates, we see that

gi(t) ≥ gi+1(t) for all 1 ≤ i ≤ N − 1.

Assume, for now, that a particular job requires n nodes to execute in parallel, where

n ≤ N . Moreover, assume that the remaining N − n nodes are to be used as replicas of

some of the n nodes, in order to provide better protection from failures. We will relax

these assumptions in subsequent sections to make n variable in order to explore if partial

replication is beneficial at all. For now, however, I try to answer the first question: Which

of the n nodes should have replicas, and how should they be paired with the other N − n

nodes to form node-replica pairs? We restrict ourselves to maximum dual node replication

only, so N/2 ≤ n ≤ N . In such a configuration, let a = n − (N − n) = 2n − N be the

number of non replicated nodes, and b = n−a = N −n be the number of node replica pairs,

such that a + 2b = N and a + b = n. The partial replication factor, r, will thus be given

by r = (a + 2b)/(a + b), and 1 ≤ r ≤ 2. The original question can thus be reformulated

as: Given values of a and b and reliability gi(t), 1 ≤ i ≤ N , which 2b out of the N nodes

should be replicated and how should the replicated nodes be paired so that overall system

reliability is maximized? The answer is to pick the least reliable 2b nodes for replication.

Among those 2b nodes, the least reliable node should be paired with the most reliable node,

and so on. This is shown in Fig 22, and formally stated in the following theorem:

Theorem 4. Given a, b and an N node system (a+ 2b = N) with node reliability given by

gi(t) and gi(t) ≥ gi+1(t) for 1 ≤ i ≤ N − 1, let A ⊆ {1, 2, . . . , N}, |A| = a, be the set of

53

Figure 22: Selection and pairing of replicas to maximize reliability.

non-replicated nodes and B = {(j, k) | j, k ∈ {1, 2, . . . N}−A and j 6= k}, |B| = b, be the set

of node-replica pairs. Maximum overall system reliability is achieved when A = {1, 2, . . . , a}

and B = {(j, 2(a+ b) + 1− j) | j ∈ {a+ 1, a+ 2, . . . a+ b}}.

To determine the overall reliability for a given partial replication configuration, we ob-

serve that, for a node-replica pair (j, k), application failure occurs when both nodes in the

pair fail. Hence, the reliability of pair (j, k) is given by 1− (1− gj(t))(1− gk(t)). For sets A

and B as defined above, the overall system reliability R(t) can thus be written as

R(t) =
∏
i∈A

gi(t)
∏

(j,k)∈B

(1− (1− gj(t))(1− gk(t))) (4.1)

For simplicity, we remove variable t and obtain

R =
∏
i∈A

gi
∏

(j,k)∈B

(1− (1− gj)(1− gk)) (4.2)

I prove the above theorem in two lemmas. First I will prove that maximum reliability is

achieved when the set of non-replicated nodes consists of the most reliable nodes.

Lemma 3. R is maximized when A = {1, 2, . . . , a}.

54

Proof. Assume by contradiction that we have a configuration in which A 6= {1, 2, . . . , a}.

This means there is a node with higher reliability in the replicated set and a node with

lower reliability that is not replicated. In other words, ∃gi where i ∈ A and i > a and ∃ a

pair (j, k) ∈ B such that at least one of j or k is in {1, 2, . . . , a}. Assume without loss of

generality that j ∈ {1, 2, . . . , a}. This means that j < i, and we know, from the ordering of

node reliability, that gj ≥ gi. The contribution of nodes i, j, k in this configuration to system

reliability, R, is given by gi(1− (1− gj)(1− gk)) = gi(gj + gk − gjgk). We have

gi(gj + gk − gjgk) = gigj + gigk − gigjgk ≤ gigj + gjgk − gigjgk = gj(1− (1− gi)(1− gk))

(4.3)

Since gi(1−(1−gj)(1−gk)) ≤ gj(1−(1−gi)(1−gk)) with equality iff gj = gi, we observe that

if we exchange nodes i and j between sets A and B, while keeping everything else the same,

we obtain a system with reliability R′ such that R′ ≥ R. We can keep performing these

exchanges as long as A 6= {1, 2, . . . , a}. Each exchange step will either improve the system

reliability, R, or keep it the same. Hence, R will be maximized when A = {1, 2, . . . , a}.

We now move to the second part of the theorem regarding the pairing of replicas. Rewrit-

ing R = RARB where RA =
∏

i∈A gi and RB =
∏

(j,k)∈B(1− (1− gj)(1− gk)), we focus solely

on RB since RA is determined from lemma 3. Our job, then, is to show that, given 2b

numbers g1 ≥ g2 ≥ · · · ≥ g2b, RB is maximized when B = {(j, 2b+ 1− j) | j ∈ {1, 2, . . . b}}.

To simplify the expressions, we will rewrite RB in terms of the node failure probabilities,

pi = 1− gi, 1 ≤ i ≤ 2b as RB =
∏

(j,k)∈B(1− pjpk). The ordering of the failure probabilities

then becomes p1 ≤ p2 ≤ · · · ≤ p2b.

Lemma 4. RB is maximum when B = {(j, 2b+ 1− j) | j ∈ {1, 2, . . . , b}}.

Proof. I prove this through induction on b. When b = 1, there are only 2 nodes, and only

one possible pairing, so B = {(1, 2)} trivially.

For the inductive hypothesis, assume that the lemma is true for b = k. For b = k + 1,

we first prove that, for RB to be maximum, (1, 2k + 2) ∈ B. Assume by contradiction that

(1, 2k+2) 6∈ B. This means that ∃(1, i), (j, 2k+2) ∈ B where i, j ∈ {2, . . . , 2b−1 = 2k+1}.

Similar to lemma 3, we will show that swapping the nodes in the two pairs to get B′,

55

where (1, 2k + 2), (i, j) ∈ B′, will improve system reliability. The contribution of pairs

(1, i), (j, 2k + 2) to RB is given by (1− p1pi)(1− pjp2k+2). We have

(1− p1pi)(1− pjp2k+2) = 1− p1pi − pjp2k+2 + p1pipjp2k+2

≤ 1− p1p2k+2 − pipj + p1pipjp2k+2 = (1− p1p2k+2)(1− pipj)
(4.4)

The inequality is obtained by noting that p1 ≤ pj and pi ≤ p2k+2. By rearrangement

inequality[73], we know that p1pi + pjp2b ≥ p1p2k+2 + pipj which leads to the inequality

obtained above. This means that for any B such that (1, i), (j, 2k + 2) ∈ B, we can get

RB′ ≥ RB where B′ = (B − {(1, i), (j, 2k + 2)}) ∪ {(1, 2b), (i, j)}. Using the same argument

as in lemma 3, we conclude that RB is maximum when (1, 2k + 2) ∈ B. We can thus write

the maximum RB as RB = (1−p1p2k+2)R
′
B where R′B is the combined reliability of all node-

replica pairs other than (1, 2k + 2). R′B can also be considered as the reliability of 2k nodes

making k pairs which, according to the inductive assumption, is maximum when the 2k

nodes are paired as stated in the lemma. The overall reliability, RB, is therefore maximized

when B = {(j, 2(k + 1) + 1− j) | j ∈ {1, 2, . . . k + 1}} which concludes the proof.

Lemma 3 and lemma 4 combined complete the proof of the theorem.

At this point, one may also wonder if a similar result can be obtained for replication

degrees greater than 2, for example if triple replication is also allowed. In that case, the only

result I could obtain is the following

Lemma 5. If B contains replica groups with degrees ≥ 2, i.e. x ∈ B → |x| ≥ 2, R is still

maximized when A = {1, 2, . . . , a}.

Proof. The proof proceeds by contradiction in the same way as lemma 3 by taking a tuple

in B which has an element i where i ≤ a, and similarly a j ∈ A where j > a. It can then

be shown that swapping i and j between the two sets causes R to increase. We omit the

detailed steps since they are identical to that of lemma 3.

The same result, however, does not extend to the case of deciding, for example, which

nodes should be doubly replicated and which should be triply replicated.

56

It should be noted that, although the proof in this section is formulated in terms of node

reliabilities, the result holds for any time interval in which the relative ordering of the indi-

vidual nodes’ likelihoods of failure is known. This means that if, at different time intervals,

the ordering of nodes based on their likelihoods of failure changes, the optimal configuration,

while still determined based on the result in this section, will be different during different

time intervals. Handling such configuration changes in practical settings may be possible

through an adaptive method to switch replicas on the fly, as in [31]. A theoretical analysis

to determine when to change the configuration, taking into consideration the cost of recon-

figuring the system during execution, is left for future work. In this dissertation, I will only

consider cases where the nodes failure densities are exponential, or Weibull with the same

shape parameter. In both of these cases, the relative ordering of node reliabilities remains

the same throughout the lifetime and is determined from the individual node MTBFs.

4.3 Expected Completion Time

In the previous section, we looked at how the nodes should be grouped into replicas when

the number of nodes to be replicated is fixed. In other words, the number of application

visible nodes n was already decided, and the goal was to intelligently pick nodes to be

placed in replicated and non-replicated sets based on their individual reliability. Now we

attempt to answer the more general question: Given an N node system with node reliability

g1(t) ≥ g2(t) ≥ · · · ≥ gN(t), how many of the N nodes should be used and how many

should be replicated? This question cannot be answered by considering system reliability

alone. Although a higher value of n will reduce the work per node due to parallelism, system

reliability will go down making failures more likely. On the other hand, higher replication

factors are likely to add more runtime overhead to the application, although they lead to

a more resilient configuration. These trade offs can only be captured by computing the

expected completion time for given number of nodes and replica pairs, and then picking the

values of these variables that yield the minimum completion time.

57

4.3.1 Job Model

The first thing to determine, as n becomes variable, is the amount of work that will be

distributed over each node and executed in parallel. Similar to the previous chapter, we use

Amdahl’s law to determine Wn, the time required to execute the job on n parallel nodes

without failures:

Wn = (1− α)W/n+ αW (4.5)

where 0 ≤ α ≤ 1 represents the sequential part of the job. Since the focus of this dissertation

is on HPC applications that usually have a high level of parallelism, most of the analysis we

perform and the results we report will be for values of α equal to, or close to, 0.

4.3.2 Overhead Model for Partial Replication

As mentioned in the previous chapter, in addition to reducing the nodes over which work

is parallelized, replication also induces additional overhead to message passing applications

because of the communication required between replicas in order maintain consistency among

them. Naturally this overhead increases when the replication degree increases, since more

replicas mean more messages being duplicated. An approach to model the overhead versus

the degree of replication was proposed in [26] using γ, the ratio of application time spent

in communication under no replication. We use their idea but update the model so that it

agrees with the experimental results reported subsequently in [27]. According to this model,

for an application executing under partial replication factor r, the time, Wr, that includes

the overhead of partial replication, is given by

Wr = Wn +
√
r − 1γWn (4.6)

This estimate provides a more pessimistic overhead for partial replication compared to the

original model of [26]. Moreover, it matches with the experimental result of [27] on real sys-

tems since, for r = 1.5, the overhead will be 1/
√

2 ≈ 71% of the overhead of full replication.

We, therefore, use Eq. 4.6 to compute and add the overhead of partial replication.

58

4.3.3 Combining with Checkpointing

Having figured out the failure-free execution time, Wr, of a partially replicated applica-

tion, we now proceed to compute the expected completion time of such an application under

failures. For that, however, we first need to determine the checkpointing interval, which in

turn depends on the mean time to interrupt (MTTI). The MTTI, M , can be computed using

the reliability as:

M =

∫ ∞
0

R(t)dt (4.7)

where R(t) is the overall reliability for a a given partial replication configuration. Although

we mentioned in the previous chapter the closed form formula for MTTI of dual replication

as derived in [7], in general, with partial replication, it is not always possible to evaluate the

integral in Eq. 4.7 analytically. We, therefore, resort to numerical integration to obtain the

MTTI for our results. For the results we compute numerically, we will be using the more

accurate higher order approximation by Daly[20] to calculate the checkpointing interval, τ .

In order to determine the expected completion time, we employ the same approach used

in the previous chapter for non-exponential distributions, which is based on the works of [53]

and [68]. As a brief recap, this involves computing the extra work, which consists of the time

spent writing checkpoints and the lost work due to failures. By considering each failure as a

renewal process, the average fraction of extra time during an execution can be taken to be

the same as the fraction of extra time between two consecutive failures. Let F (t) = 1−R(t)

be the cumulative failure distribution and f(t) = F ′(t) be the failure density function. The

extra time between consecutive failures will then be given by

E(extra) =

∫ ∞
0

Ct

τ
f(t)dt+ kτ =

C ∗M
τ

+ kτ (4.8)

where k is the average fraction of work lost during a checkpointing interval due to failure

and can be evaluated numerically[53].

Once we obtain E(extra), the expected time to finish work Wr will be given by

E(Wr) = Wr
M

M − E(extra)
(4.9)

where Wr is determined from Eq. 4.6. This is the equation that we use to compute and

compare the expected completion time of a system under different partial replication factors.

59

4.3.4 Optimization Problem

The purpose of computing the expected completion time was to find the replication factor

r that minimizes it for a given system. We thus formulate the search for r as an optimization

problem as follows:

minimize
a,b

E(Wr)

subject to a+ 2b ≤ N

n = a+ b ≥ 1

where r = (a+ 2b)/(a+ b) and a and b can only take nonnegative integer values. The inputs

include work W , total number of system nodes N , individual node reliability functions

1 > g1(t) ≥ · · · ≥ gN(t) > 0, checkpointing cost C, the parameter α, and communication

ratio, γ. In the next section, we will discuss our findings and results about the optimal r for

different kinds of systems. In our results, we report the expected completion time normalized

by WN , which is calculated from Eq. 4.5, and represents the time it takes to execute the job

on all N nodes without replication or checkpointing and under no failures.

4.4 Results

This section discusses the results from the analysis and the optimization problem on

specific types of large scale systems, starting with a system where all nodes have the same

failure rate and then moving on to systems with multiple classes of nodes, where nodes in

the same class have the same failure rate, different from the other classes. We only study

exponential and Weibull node failure distributions. Our goal is to explore whether there are

cases in which partial replication, where r is strictly between 1 and 2, results in the lowest

expected completion time.

4.4.1 System with IID Nodes

I start off with the simplest possible scenario, a system where the individual node failure

distributions are identical. This has been the traditional assumption when analyzing fault

60

Figure 23: Normalized Expected Completion Time for different values of r. Node MTBF =

5 years. Checkpointing cost is taken to be 60 seconds. α = 0 and also γ = 0.

tolerance techniques in HPC systems. Our goal is to explore whether there are cases in

which partial replication, where r is strictly between 1 and 2, results in the lowest expected

completion time. It should be noted that, since all nodes are identical, it does not matter

which individual nodes are picked for replication or how they are paired together.

4.4.1.1 Exponential Distribution I first consider a system where node failure prob-

abilities are exponentially distributed. When taking both γ and α as 0, our optimization

never yielded an optimal value of r strictly between 1 and 2 for any scenario we tested. This

can also be seen in figure 23 where the expected completion time according to Eq. 4.9 (nor-

malized by the time it takes to run the same job on N nodes without any fault tolerance and

without failures) with different partial replication degrees is plotted against the total number

of nodes in the system. We see that the minimum time is always attained either when r = 1

or r = 2. The trend was the same for other node MTBF values, with the crossover between

full and no replication occurring at higher node counts as the node MTBF increases.

I further investigate this scenario analytically with the goal of determining if 1 < r < 2

is ever optimal for uniformly exponential node distributions when γ and α are both 0.

Assuming that the configuration uses all of the system nodes N , so that a + 2b = N , and

61

individual node failure rate is λ, we can write the MTTI, M , as:

M =

∫ ∞
0

e−aλt(1− (1− e−λt)2)bdt = 2N
∫ ∞
0

(e−λt/2)N−b(1− e−λt/2)bdt (4.10)

Since obtaining a closed form expression for the above integral is not possible, we try to

provide a closed form approximation for M . Setting x = e−λt/2 ⇔ t = −ln(2x)/λ in the

above expression, we get

M =
2N

λ

∫ 1/2

0

x(N−b−1)(1− x)bdx (4.11)

I employ Laplace’s method of approximating integrals[74] to derive an approximation of the

above expression. We can rewrite the function inside the integral as x(N−b−1)(1 − x)b =

e(N−b−1)f(x) where f(x) = ln(x) + bln(1 − x)/(k − b − 1). Assuming 2b < N , within the

interval of integration f(x) is maximum at x = 1/2 which is the endpoint of the integration,

so the integral can be approximated as∫ 1/2

0

x(N−b−1)(1− x)bdx ≈ e(N−b−1)f(1/2)

(N − b− 1)f ′(1/2)
=

(1/2)N

N − 2b− 1
(4.12)

Plugging this into the expression for MTTI above we obtain M ≈ 1/λ(N − 2b − 1). This

reasonably approximates the MTTI as long as 2b is not close to N , which corresponds to the

full replication case. To the best of our knowledge, this is the first closed form approximation

of the MTTI of a partially replicated system with exponential node failure distributions with

rate λ.

Having obtained a closed form approximation for M in terms of N and b, we will infer

the behavior of the expected completion time. Using Young’s[76] expression for the expected

completion time we get

E(W) = W (1 +
C

τ
+

(τ + C)2

2τM
) (4.13)

where we take τ =
√

2CM which is also Young’s approximation for the optimum checkpoint

interval. Assuming that a perfectly parallel job takes unit time on N nodes without check-

points and failures, the work per node will be r units when the system is partially replicated,

since r = (a+ 2b)/(a+ b) = N/n. This means that Wr = r, and E(Wr) then is given by

E(Wr) = r(1 +

√
2C

M
+
C

M
+

C2

2M
√

2CM
) (4.14)

62

Figure 24: Expected Completion Time for different values of r for exponential node distri-

bution. Node MTBF = 5 years, α = 0.00001, Checkpointing cost = 60 seconds, γ = 0.2

Since both r and M can be defined in terms of b and N , and since N is fixed, E(Wr) is

a function of b. By taking the first and second derivative of this expression wrt b, we find

that this expression has no local minimum over the range 0 ≤ b < N/2 as long as M > C.

For conciseness, we omit the calculations. This means, though, that the minimum of E(Wr)

occurs only at one of the endpoints of r which correspond to either no replication or full

replication. While Equation 4.14 is an approximation for the expected completion time,

this analysis supports our numerical results that partial replication never yields optimal

performance for jobs with α = γ = 0 and when individual node failures are iid with expo-

nential distributions. This is also consistent with the findings of [67] where it was observed

that in cases where replication is better than no replication, full replication offers the best

performance.

When γ > 0, it may theoretically be possible to have cases where the optimal r is strictly

between 1 and 2. This is because there can be cases in which the expected completion time

with γ = 0 (i.e. no additional overhead of full or partial replication) is minimized when

r = 2, but that minimum may shift to r < 2 if γ > 0. That being said, I did not observe

this for any values of parameters that I tried. As for when α > 0, although it may be

possible for 1 < r < 2 to be optimal, I again did not observe any such case. Figure 24

63

Figure 25: Expected Completion Time for different values of r with Weibull node failures.

For the distribution, shape parameter = 0.7 and MTBF = 5 years. Checkpointing cost =

60 seconds and α = γ = 0.

shows one example with both α > 0 and γ > 0. We observe that, although the crossover

between full and no replication happens earlier compared to Fig. 23, partial replication

again does not win against the two extremes. Hence, the conclusion from this subsection is

that partial replication is almost always never optimal for systems with iid exponential node

distributions.

4.4.1.2 Weibull Distribution The Weibull failure distribution consists of a shape pa-

rameter as well as the rate parameter λ. In practice, values of the shape parameter between

0 and 1 are used for real world failures. In this chapter, I show results with the parameter

value of 0.7. I also considered several examples with a value of 0.5 and observed similar

trends as those with shape parameter set 0.7.

Fig. 25 shows one example with Weibull node failures where the completion times are

plotted against system scale. When comparing with Fig. 23 (which used similar parameter

values but with exponential failures), several differences stand out. Firstly, notice that the

crossover between full and no replication happens at much smaller scales. Since Weibull

distribution is generally considered to be a closer fit to actual system failure distributions,

64

this would mean that, in practice, as we move to larger scales, the need for some type of

replication would arise earlier than the estimates generated using exponential distributions.

Another difference from exponential failures is that there are node counts where partial

replication (for example, r = 1.25 and r = 1.5 in Figure 25) has the lowest completion times.

The range of node counts for which this happens is still quite small, however.

I observed similar behavior as in Figure 25 with non-zero values of the parameters α

and γ, except that the crossover point is shifted. The effect of increasing γ is to shift the

crossover points to the right. For example, with γ = 0.2, I found that the crossover between

no replication and r = 1.25 happens around 9000 nodes instead of 7000 nodes. Increasing α,

on the other hand, brings the crossover points to the left towards smaller node counts. For

example, α = 10−5 caused the crossover between r = 1 and r = 1.25 to happen at 6500 nodes

instead of 7000 nodes. Moreover, just like in Figure 25, when α and/or γ are non-zero, there

is only a very small range of node counts for which partial replication provides the lowest

completion time.

The main takeaway from this section is that when the nodes in the system have identical

failure distributions, which has been the traditional assumption in fault tolerance research

for HPC, partial replication rarely provides any gains in performance against full and no

replication. Depending on the number of nodes in the system, the choice should then only

be between running an application under full replication or running it with no replication at

all.

4.4.2 System with Two Types of Nodes

I now move one step further by considering a system where nodes are of two kinds: i)

Good, which have a low probability of failure, and ii) Bad, which have a higher probability

of failure. We assume that all the Good nodes have the same failure distribution and all

the Bad nodes have the same failure distribution. This can be a scenario in a system where

individual system nodes can be approximately divided into two categories: those which are

more prone to failures and those which are less prone to failures.

65

Figure 26: Possible cases of partial replication for system with Good and Bad nodes. Nodes

within the replicated set are paired according to the arrangement depicted in Figure 22.

Let NG be the number of Good nodes and NB be the number of bad nodes, such that

NG+NB = N . Thanks to the main result of section 4.2, we know that if partial replication is

to be employed, we should start replicating from the lower end. Moreover, within the nodes

to be replicated, pairing should be done as indicated by Figure 22. Using this knowledge,

we can enumerate all possible cases for different partial replication degrees of a Good-Bad

node system. This enumeration is depicted in Fig. 26. Starting from the no replication

case, increasing replication degree would mean initially replicating the Bad nodes among

themselves. Case 3 is the boundary of case 2, when all of the Bad nodes have been replicated.

As the replication degree is further increased, some of the Good nodes enter the replicated

set as well. Case 4 thus contains two kinds of replica pairs: a Good node paired with a Bad

node, and a Bad node paired with a Bad node. Case 5 is again a boundary of case 4 where

all replica pairs consist of a Good and a Bad node each. The full replication case contains

additional node pairs depending on the difference between the number of Good and Bad

nodes. I will explore below how the average completion times of these different cases fare

against each other in different settings.

66

4.4.2.1 Exponential Distribution Assuming all the nodes in the system have expo-

nential failure distribution, we can take the failure rate of Good nodes as λg and the failure

rate of the Bad nodes as λb, where λg ≤ λb. Since case 2 in Fig. 26 is quite similar to the

partially replicated iid system in section 4.4.1, we first attempt to approximate its MTTI.

For this case, we can write the reliability of the system as

R(t) = e−NGλgte−(NB−2b)λbt(2e−λbt − e−2λbt)b (4.15)

where 2b is the number of Bad nodes that are replicated. To obtain the MTTI of such a

system, we can follow the same approach as in section 4.4.1 to approximate the integral of

R(t). This yields the following approximation for the MTTI, M , of the system in case 2

M ≈ 1

NGλg + (NB − 2b− 1)λb
(4.16)

This expression again reasonably approximates the MTTI as long as 2b is not close to NB.

Similar to section 4.4.1, I use Equation 4.16 to understand the behavior of the expected

completion time of the application wrt b when α = γ = 0. We plug M into eq. 4.14 along

with r for this case, which is equal to (NG+NB)/(NG+NB−b). Taking the first and second

derivatives of the resulting expression wrt b, we again conclude that the function has no local

minima and thus the minimum occurs only at the extremes, i.e. b = 0 (no replication), or

b = NB/2 (all Bad nodes replicated among themselves). This indicates that, between cases

1, 2 and 3, the minimum expected time can only be achieved by cases 1 and 3 for exponential

node failures with α = γ = 0. We again mention that while this derivation holds only for the

approximations of M and expected completion time, our numerical search also never yielded

any scenarios in which case 2 resulted in lower average time than both cases 1 and 3.

While we were unable to obtain an approximation of MTTI for case 4, our numerical

search indicates that the minimum average completion time occurs again at the boundary

cases, i.e. 3 or 5. This means that, in general, we need only consider the boundaries

of partial replication in a Good-Bad node system. As an example, Figure 27 shows the

expected completion time of full and no replication along with cases 3 and 5 from Figure

26. From the plot on the left in Figure 27, we see that replicating the Bad nodes among

themselves (Case 3) yields the lowest completion time. Case 5, which replicates each Bad

67

Figure 27: Execution time of different partially replicated executions. NG = 106, NB =

8 × 105, λg = 1/50 years, C = 60 seconds and α = γ = 0. Y-axis scale is different for each

of the two figures.

node with a Good node, offered almost the same performance as full replication. While we

do not show the results with higher Bad node MTBF, we saw that no-replication started

outperforming Case 3 when Bad node MTBF went above 20 years, with the same parameters

as in Figure 27.

In order to find out if there can be a scenario where Bad node MTBF is so low that not

using the Bad nodes, replicated or not, at all is the best performing scheme, we reduced the

Bad node MTBF to the order of days and also compare with a no replicated configuration

using the Good nodes only (a = NG, b = 0). The plot on the right in figure 27 depicts the

results. We see that only in the unrealistic case of individual Bad node MTBF dropping to

the order of a few day does using Good nodes only outperform Case 3. We deduce from

this that, as long as Bad node MTBF is larger than a few days, utilizing the Bad nodes

results in lower completion time on average instead of not using them at all. Whenever Bad

node MTBF is so low that using them without replication hurts application runtime, the

lowest expected time can be achieved by replicating the Bad nodes among themselves and

still utilizing them along with the non-replicated Good nodes.

Figure 28 shows the behavior of the schemes with varying percentage of Bad nodes in

68

Figure 28: Expected time vs % of Bad Nodes in the system. N = 2×106. Bad Node MTBF

= 5 years. Other parameters are the same as in Fig 27.

the system, while the total number of nodes, N , is kept constant. When all nodes are Good,

no replication is the best choice. However, as further nodes are added, no replication has a

much higher normalized time. The normalized time for the no replication scheme which uses

the Good nodes only also increases as % of NB in the system increases. This is because the

time is normalized by WN which is the failure free time of running the job on all N system

nodes. In all cases, however, we see that Case 3 offers the best expected completion time.

Figure 29 shows the behavior of the different partial replication schemes for different

values of γ. The time for all the partial replication schemes increases with increasing γ.

However, since Case 3 has smaller replication factor than Cases 5 and 6, the impact of γ

is much smaller. Only when γ ≥ 0.8 does partial replication of Case 3 start losing to no

replication using Good nodes only. Hence, we can say that for most practical values of γ,

using the Bad nodes with full replication amongst themselves is still better than not using

them at all. Although we do not present similar plots for the parameter α, the impact of

increasing α is to favor more the cases with higher replication factor, r. Hence, as α increases,

the lowest completion time shifts from case 3 towards full replication (r = 2).

69

Figure 29: Expected time for different values of γ when Bad Node MTBF = 5 years. Other

parameters are the same as in Figure 27. The expected time for no replication using all

system nodes is much higher than all other schemes so it is omitted from the plot.

4.4.2.2 Weibull Distribution For node failures given by the Weibull distribution, we

assume that all nodes’ distribution have the same shape parameter. Only the rate parameter,

λ, is different for the Good and Bad nodes. With this assumption, and again taking λg ≤ λb,

the Good node will always be more reliable than the Bad node throughout its lifetime.

Hence, this assumption allows us to apply the theorem of section 4.2 when deciding the

pairing of nodes and so the possible partial replication schemes will still be given by Fig. 26.

Figure 30 shows the normalized runtimes of different partial replication cases similar to

the exponential distribution subsection, but over a larger range of Bad node MTBFs. We

again see that with lower Bad node MTBF, replicating Bad nodes among themselves yields

the lowest expected completion time. Moreover, this happens at system scales much smaller

than the ones for exponential distribution. We omit the plots for the cases when γ > 0. The

trends, however, were the same as the ones observed for exponential distribution.

Based on the results from both exponential and Weibull distributions, we conclude this

section with the following insight: If an HPC system has some nodes that are more likely

to fail than others, those nodes can still be utilized to achieve performance gains. When

the likelihood of failures in such Bad nodes is not too high, those nodes can simply be used

70

Figure 30: Execution time of different replication schemes with Weibull node failures. NG =

104, NB = 8 × 103 and Good node MTBF = 50 years. The other parameters are the same

as in Fig. 27.

alongside the rest of the system nodes to execute a job in parallel, without replication. If,

however, the likelihood of failures in those nodes increases, they can be replicated among

themselves and still be used along with the other system nodes to provide better performance

compared to the case of not using such nodes at all.

4.5 Systems beyond two categories of nodes

The optimization problem formulated in section 4.3 is capable of finding the optimal

r for a system with any set of non-uniform node reliability values gi(t), as long as they

maintain the ordering g1(t) ≥ g2(t) ≥ · · · ≥ gN(t). This is useful when all the individual

node reliability functions are known. However, we do not present any results for such a

generic system because they don’t provide any interesting insights about r or the behavior

of the expected completion time. We, therefore, only present one example of a system

with 5 categories of nodes. The MTBFs of the five categories range from 1 to 5 years in

increments of 1 year, with each category having the same number of nodes. Figure 31 shows

71

Figure 31: Expected completion time versus r for different values of γ. The values of other

parameters are: α = 0, C = 30 seconds and each category contains 100k nodes, for a total

of 500k system nodes.

the normalized expected completion time, using Eq 4.9, versus the partial replication factor,

r, for different values of γ. We kept a + 2b = N instead of the inequality a + 2b ≤ N . This

is because, similar to the conclusions for the Good-Bad node system, we usually found that

using all the nodes in the system is beneficial, as long as the lowest MTBF nodes do not

have unrealistically low values of the MTBF.

We can make several observations from Fig. 31. For all values of γ, the optimal r is

less than 2. For γ = 0, optimal value of r ≈ 1.42, but for other values of γ, the optimal

value of r = 1.25. These results highlight the importance of having and utilizing a deeper

understanding of the failure characteristics of the underlying system. If, for example, instead

of considering the 5 categories of nodes, one were to assume uniform node failure likelihoods

and take the average value of the node MTBF over all classes, and then use that to decide

the replication degree, the answer would be to fully replicate the execution. However, as

we can see in the figure, partially replicating the right nodes can result in lower expected

completion time than full replication. In fact, if the decision to fully replicate is made without

the knowledge of the different categories of nodes, the replica pairing may not be the same

as that described in section 4.2, and may lead to even higher expected completion time.

72

We make one final remark about the behavior versus r. We see in Fig. 31 that the

curve is piecewise smooth in segments. The values of r at the boundary points of these

segments correspond to the boundary cases of different partial replication configurations.

So, for example, if only the nodes in the lowest MTBF category are all replicated among

themselves, we get r = 1.1. We see in Fig. 31 that for 1 ≤ r ≤ 1.1, the curve is smooth.

Similarly, the next smooth segment finishes at r = 1.25, which is the boundary case achieved

when the lowest MTBF category is fully replicated with the next lowest category. Although

we do not have any analytical results about this, our investigations of multiple scenarios

always yielded the optimal r on one of these boundary cases. This indicates that, in cases

where node MTBFs take a small set of discrete values, rather than doing a full search for

the best r, it may be a reasonable heuristic to only consider boundary cases and pick r with

the lowest completion time.

4.6 Related Work

Full[29] and partial[26] replication were both proposed for large scale systems when fail-

ures become frequent. A deeper analysis of pure replication and its comparison with simple

checkpoint/restart was carried out in [11]. For partial replication, [67] provides a limited

analysis and comparison with full and no replication. Even though my focus in this dis-

sertation is on systems with non-uniform failure distributions of individual nodes, section

4.4.1 provides a more detailed analysis of partial replication with iid node failures. I provide

theoretical results for the MTTI and evidence that partial replication is never optimal on

such systems.

All of the above have assumed systems with identical nodes in their analyses. We are only

aware of two works that distinguish between different failure likelihoods in the underlying

hardware. [6] considers two instances of an application running on two different platforms,

that execute at different speeds and are subject to different failure rates. Our work differs

from it in several aspects. Firstly, the paper considers group replication, where a complete

instance of the parallel application is executed redundantly, rather than replicating individual

73

processes. This avoids communication between instances but a single failure causes the whole

instance to fail. Secondly, the framework does not allow for partial replication. Thirdly,

their work assumes a single platform failure distribution, without considering the underlying

nodes in the system. [61] is closer to our work since it considers individual node failure rates.

However, it only performs a post hoc analysis based on failure logs to determine which nodes

have the most failures and how many of those failures could be eliminated by duplicating

those nodes with spare nodes. Moreover, this work only considers the improvement in MTTI

without looking at the impact on completion time. Our work provides a comprehensive

theoretical framework which not only determines how the nodes should be duplicated, but

also when it pays off to duplicate some nodes in the system.

While our work looks at partial redundancy in the presence of non-identical node fail-

ures, there are papers that consider the problem of selectively replicating tasks based on

criticality[69][70][71]. These works replicate tasks from an application task dependence graph

by measuring the criticality of an individual task. The idea of criticality is orthogonal to the

task of selectively replicating nodes based on their individual reliability. Our work, addi-

tionally, is application agnostic since it only considers the failure distributions of individual

nodes.

4.7 Summary

In this chapter, I explored partial replication for HPC systems where individual nodes

have non-identical failure distributions. I obtained theoretical results on the optimal way

to divide the nodes into replicated and non replicated sets and to pair the nodes in the

replicated sets. By computing the MTTI and expected completion time of a job executed

in a partially replicated configuration, I also investigated the optimal fraction of replication.

The takeaway from this chapter is that, while rarely optimal for IID node failure platforms,

partial replication can yield the best performance for systems comprising of nodes with

heterogeneous failure rates.

74

5.0 Co-located Shadows for Fault Tolerance

This chapter discusses the design and implementation details of a fault tolerance scheme

based on co-located shadows, which are essentially replica processes that execute at slower

speeds than the original application processes, or mains [16][57]. The motivation for co-

locating shadows with mains stems from their potential to cut down on the re-execution

time in case of failures, for MPI applications that spend a significant percentage of their

execution time waiting for communication to complete. The primary source of that idle

time is the imbalance among the different processes in a parallel computation, which can be

considered another form of heterogeneity within the context of HPC. In principle, therefore,

the goal of this chapter is to explore the possibility of utilizing such idle times for fault

tolerance.

5.1 Nature of HPC Workloads

I provide justification for this approach by first discussing the characteristics of message

passing applications and their underlying implementation in the Message Passing Interface

(MPI). The MPI standard defines several routines for communication between processes,

which encompass both point to point communications (such as send and receive) and

collectives (such as broadcast and reduce). Each of the communication routines has a

blocking and a nonblocking version. Typically, the blocking function calls are internally

implemented as a busy-wait until the requested operation completes. The rationale for this

is the assumption that there is only one MPI process running on a processor. Since no other

process is sharing the processor with that MPI process, it makes sense from a performance

point of view to just perform a busy wait rather than relinquish the processor for any

amount of time. Moreover, since MPI already provides the nonblocking versions of most

communication operations, the programmer can reduce the times spent in these busy-waits

by overlapping computation and communication using nonblocking communication.

75

Although MPI applications can reduce idle times during communication by using non-

blocking operations, this still allows only a coarse-grained overlap of computations and com-

munications. The time for a communication operation to finish is variable and depends on

a lot of factors independent of the application, such as the state of the interconnect, system

buffers, and so on. Hence it is difficult to predict this time beforehand. Even if the appli-

cation makes a nonblocking communication call, performs some other operations and then

calls MPI_Wait (the function that tests and waits until the nonblocking communication has

finished), there is no guarantee that the communication operation would have finished by

this time. Thus, the program may again be forced to do a busy-wait until the requested

communication operation completes.

To test how much of the application’s execution time is composed of these busy-waits, I

performed an experiment where I used OpenMPI’s (a popular implementation of the MPI

standard) profiling interface PMPI to trap all of the blocking OpenMPI communication calls,

both point to point and collectives, made by an application and replaced them by a call to

their nonblocking counterpart followed by a loop which continuously tests or probes to see

if the operation has completed. For example, a call to MPI_Reduce would be replaced by a

call to MPI_Ireduce (the nonblocking version of reduce operation) followed by a loop which

repeatedly calls MPI_Test on the request handle returned by MPI_Ireduce until it sets the

flag to true, indicating the operation has finished. Similarly, a call to MPI_Wait would also

be translated to a loop of MPI_Test that exits when the test sets the flag to true. I timed

the loops only and not the calls to the nonblocking operations, so that I only capture the

idle time spent waiting for the operation to finish and exclude any time spent setting up

the buffers or doing other bookkeeping. I performed this experiment on a number of MPI

benchmarks that represent HPC applications, the results of which are presented in Table 3

below.

It can be seen from Table 3 that the average idle time for most of the benchmarks is in

the 10-20% range, except for PENNANT, which spends most of its time (≈ 70%) waiting

for communication to finish. This indicates that there is the potential, especially for some

applications, to utilize the processors that are idle during the communication routine for

fault tolerance.

76

Table 3: Average idle time as a percentage of total execution time

Benchmark Minimium Maximum Average

HPCCG[39] 7.7 17.9 13.0

CoMD[40] 2.4 20.8 6.9

LULESH[48] 6.8 32.3 17.6

PENNANT[28] 49.8 69.9 65.1

miniFE[38] 7.6 15.3 10.1

5.2 Co-Located Shadows Model

Since the primary purpose of this scheme is to utilize the idle processor time for fault

tolerance, at its heart, the design consists of shadow processes co-located with main processes.

However, in order to provide effective fault tolerance for message passing applications, this

setup needs additional ingredients. In this section, I will describe those ingredients needed

to make the co-located shadows capable of providing fault tolerance, as well as a theoretical

analysis of the basic setup. Specific implementation details, as well as a description of how

the shadows are used to capitalize on the idle times, are presented in the next two sections.

5.2.1 Basic Setup

This model consists of one shadow process for each main process, resulting in twice the

number of original application processes. Each shadow is placed on the same core as one

other main. Depending on whether failures can strike individual cores or individual nodes,

which comprise multiple cores, the core/node on which the shadow is located should be

different from the main it is responsible for rescuing. An example of this is shown in Figure

32. This will allow the shadow to be used for recovery when its main on another processor

fails. Conceptually, therefore, this approach can recover even if a failure strikes multiple

processes, as long as no main and its shadow simultaneously fail. The main purpose of the

77

Figure 32: Difference between Pure replication, which requires twice the original number of

processors, and co-located shadows, which do not require extra processors.

shadow is to do the work of its main if the main fails. The shadow therefore executes the

same code as the main, and can be thought of as a lazy replica.

5.2.2 Failure Free Execution

During normal execution, the shadows do not execute at the same speed as the mains.

In fact, they should ideally execute only when the co-located main is idle waiting for a

communication to finish. Since the amount of time that each shadow may get to execute

is variable, we need a mechanism that allows each shadow to make progress independently.

This necessitates the need for message logging. I employ receiver based message logging in

which each main forwards the messages it receives to its shadow. These messages are buffered

at the shadow and consumed by the shadow at its own pace. The forwarding of messages

and their reception and buffering at the shadows may add an overhead to the failure free

execution of the application. I model this overhead by the parameter β ≥ 0 which represents

the ratio between the extra time taken and the original time without overhead.

5.2.3 Recovery from Failures

Due to the tightly coupled nature of message passing applications, when a main fails,

all other mains are also blocked and so suspend their execution until recovery. The shadow

of the failed main is used for recovery by executing it till the point of failure. The shadow,

78

while executing, suppresses all send message operations, and consumes all the messages to be

received from its local buffer. While the recovering shadow is executing, either the resource

on which the failed main resided is rebooted or a new spare is brought in its place. In either

case, the fresh resource hosts a new process which can take over as the main. Here we see

one advantage of this scheme: recovery can happen in parallel with the reboot, since they

both involve different resources.

In order to bring the new process to the same stage in execution as before the failure, we

use the idea of leaping[18] to transfer the shadow’s state to the new process, which replaces

the failed main. The idea is similar to application level checkpointing, and involves a state

transfer between a process at an earlier stage in the computation and a process that is

performing the same computation but is at a more advanced stage in execution. Section

5.3.4 provides details on how leaping is implemented. The result of this mechanism is that

total recovery time will be given by the sum of: i) maximum of restart and reexecution time,

and ii) the time it takes to leap the restarted main to the state of its shadow. We can,

therefore, model it as

Trec(wf) = max(R,wf) + Lc (5.1)

where R is the restart time, wf is the time it takes the shadow to execute the lost work, and

Lc is the time it takes to leap the new process to the shadow’s state. Both R and LC are

assumed to be constants.

All the surviving mains whose executions are suspended during recovery can also be used

to leap their shadows to their current state while recovery is happening. Therefore, once

the recovery is complete, all the shadows are at the same stage as their mains, giving the

effect of Checkpoint on Failure[9]. This gives us the advantage that the recovery time for

a subsequent failure will be bounded by the time between current and the previous failure.

Moreover, this also results in a clearing of the message logs accumulated up until that point.

5.2.4 Periodic Leaping

Similar to periodic checkpointing, I also perform a periodic updating of all the shadows

by their mains. This is accomplished by using the idea of leaping[14], where the current state

79

of the main, captured by the values of its local variables, is transferred to its shadow. This

has the same effect as checkpointing, since the earliest point a shadow will start to execute

from, if a failure happens, will be the point of the latest periodic leap. For the analysis in

the next subsection, I will assume the interval for the periodic leap to be the same as the

optimum checkpointing interval.

5.2.5 Analysis

We now have the basic ingredients to model the performance of co-located shadows

(without utilizing the idle time) and contrast it with coordinated C/R. I derive the expected

completion time of co-located shadows within a single periodic leaping interval. The total

expected completion time can then be obtained by multiplying the expected time for one

interval by the number of intervals, similar to checkpointing. I assume individual failure

probabilities to be independent and identically distributed (iid) and driven by an exponential

distribution with rate λ. Depending on what the unit of failure is, for a system with n such

independent failure units, the system failure rate becomes nλ.

Let Wi be the time to complete the work within a leaping interval without failures and

without the overheads involved with co-located shadows. Thus, if no failure strikes within

the interval, the completion time will be Wi(1 + β), β being the failure-free overhead of

co-locating shadows. If, however, a failure strikes at time t < Wi(1 +β), recovery time given

by Trec(t/(1 + β)) will be added to the completion time. Note that I add Trec(t/(1 + β))

instead of Trec(t) since the shadow simply consumes messages from its buffer and so none of

the overheads related to message logging and processor sharing are present during recovery.

The time to finish work Wi can then be written as a recursive equation:

T (Wi) =
Wi(1 + β) tf ≥ Wi(1 + β)

tf + Trec(
tf

1+β
) + T (Wi − tf

1+β
) tf < Wi(1 + β)

(5.2)

where tf represents the time at which the failure strikes. Note that the remaining time

after recovery is given by T (Wi− tf/(1 + β) since all the other shadows not participating in

recovery are leaped to the state of their mains, and so a subsequent failure will not require

the shadow to execute the work done before the previous failure. Note also that, since only

80

one shadow is involved in the recovery, the probability of failure of that shadow can safely be

ignored in comparison with the overall system failure probability. This assumption cannot

be made for coordinated C/R, since all processes are rolled back and start reexecuting from

the last checkpoint. The expected value of T (Wi) can then be computed as

E(T (Wi)) = Wi(1 + β)e−nλWi(1+β)+∫ Wi(1+β)

0

(tf + Trec(
tf

1 + β
) + E(T (Wi −

tf
1 + β

)))nλe−nλtfdtf

(5.3)

Since Trec as defined in Eq 5.1 consists of a term that is the maximum of two values, I

compute an upper bound for Eq 5.3 as follows: I break the integral interval over Trec into

two intervals, one from 0 to R(1 + β), in which Trec = R+ Lc, and the other from R(1 + β)

to Wi(1 + β), in which Trec = tf/(1 + β) +Lc. This is an upper bound since it overestimates

E(T (Wi)) when R > Wi. Solving, for E(T (Wi)) using this approximation yields:

E(T (Wi)) = Wi(1 + β) +
e−λWi(1+β) + e−λR(1+β) − 2

λ(1 + β)

+R + (Lc +R +
e−λR(1+β)

λ(1 + β)
)λWi

(5.4)

Finally, if W is the total work to be done, the number of periodic intervals will be given by

W/Wi. Hence, the expected time to finish work W can be written as

E(T (W)) =
W

Wi

(E(T (Wi)) + Lc) (5.5)

where the additional cost Lc is due to the periodic leaping that happens after every interval.

Figure 33 shows a plot of the normalized expected completion time of co-located shadows

(without utilizing idle time) for different values of the overhead β. We see form the figure

that, when co-located shadows have no overhead (β = 0), the completion time is always

lower than traditional C/R. When the overhead is non-zero, however, it starts off worse

than traditional C/R and starts outperforming C/R at higher system sizes. For example,

with 20% overhead (β = 0.2), co-located shadows outperform traditional C/R when system

size increases beyond 30,000 nodes. With even higher overheads, though, the crossover

may happen too late. For example, when β ≥ 0.4, at system scales at which the shadow

based scheme outperforms C/R, replication has lower completion time than both schemes.

81

Figure 33: Model based performance of co-located shadows vs traditional C/R and replica-

tion. Both the checkpointing and leaping cost are taken to be 100 seconds each. Reboot

time is taken as 300 seconds.

We can therefore conclude that, provided the overhead of co-locating shadows and message

forwarding is not too high, there is a range of system scales at which this scheme can

outperform both traditional C/R and pure replication.

5.3 Implementation Background

In order to realize the fault tolerance model based on shadows discussed in the previous

section, I use the implementation of co-located shadows[19] in OpenMPI. This section will

describe the different components of the implementation, most of which are retained from the

original work in [19], with the notable exception that my implementation places shadows on

the same cores as the mains. The implementation utilizes MPI’s profiling interface, PMPI,

to wrap MPI calls with the shadow library code and thus sits between the application and

the MPI library. The implementation requires no modification to the original application

82

code, except for the specification of the variables that constitute the process state, whose

values would be transferred to the other process in case of leaping.

5.3.1 Process Management

An MPI application that originally runs N processes will start 2N processes in this

implementation from which N will be shadows. By specifying the rankfile used by mpirun,

I place a main and its shadow on different processor cores. The results in this chapter

are generated from experiments that used a simple round robin placement strategy, where

main i’s shadows is placed with main i+ 1. This spawning of shadows and their placement

is transparent to the application. When main i and its shadow, which has the original

rank i + N in the underlying MPI runtime, call MPI_Rank, they both see their rank as

i. The implementation also transforms all collective operations on the MPI_COMM_WORLD

communicator, into operations on a duplicated communicator that spans the mains only. I

will describe in Section 5.3.2 how communication for the shadows is handled.

5.3.2 Message Passing and Consistency

During normal execution, receiver based message logging is employed to log messages at

the shadows, as shown in Figure 34 (left). Hence, for a main, any MPI routine that results

in the caller receiving any data from one or multiple processes is followed by a forwarding of

the received data to the main’s shadow. The shadow, therefore, receives data only from its

main, which also ensures consistency between the main and its shadow.

An issue that arises with this forwarding protocol is the handling of forwarded messages

at the shadow, since they are not consumed immediately. For this reason, another thread,

called the helper thread, is created in the shadow process and its sole purpose is to receive the

message from the main and log it into the buffer, as shown in figure 34 (right). This thread

remains suspended and wakes up only when there is a message from the main, which it

receives, copies into the buffer, and goes back to sleep. The compute thread, which executes

the application code in the shadow and consumes messages from the buffer, is the one that

is used for recovery.

83

Figure 34: (a) Message transfer when Main i sends a message to Main j. (b) Message

forwarding from a main to its shadow. The shadow’s Helper thread receives the forwarded

message and places it immediately into its local buffer (push() operation. The slower original

thread at the shadow reads the data when it reaches the point where it needs that message

(pop() operation).

5.3.3 Failure Recovery

When a main fails, the other mains also pause execution. The shadow of the failed main

thus gets to execute at full speed and consumes messages from its buffer. Once the shadow

has executed up to the point of failure, its state is transferred to the main through application

level leaping[19], where the values of all the variables that capture the current state of the

process are transferred to the rebooted main which uses those values to update its state.

the remaining shadows that are not involved in the recovery process are simply leaped to

the state of their mains. Since this leaping can happen while recovery is taking place, these

shadows will also be up-to-date with their mains’ state once recovery is complete.

5.3.4 Buffer Overflow

When a shadow’s buffer is going to overflow, its main can simply transfer its state to its

shadow via leaping and the shadow can then flush its buffer. Every time this happens, it

adds an overhead to the main that is equal to the cost of leaping. However, this also results

84

Figure 35: Leaping in case of buffer overflow

in the shadow being up-to-date with its main, as shown in figure 35, which can result in a

lower recovery time in case of future failure. To perform leaping and buffer handling before

the shadow’s buffer overflows, a threshold, usually around 95% of the buffer capacity, is set

within the library. When the threshold is reached, the helper thread at the shadow sets a

flag and sends a message to the main notifying it that the buffer has reached its threshold.

The main continues execution until a designated point in the loop from where leaping can

take place, and then leaps the shadow. Since the main and shadow are now at the same

stage in their execution, the shadow simply flushes the buffer and the main resumes normal

execution.

5.4 Processor Sharing to Utilize Idle Times

I have so far described the design and implementation of co-located shadows with the

exception of one key detail: how to execute the shadow during the times in which its co-

located main is idle? The ideal realization of this goal would allow the shadow to execute only

when the main is in a code section where it would usually perform a busy wait. In reality,

however, scheduler characteristics and message logging requirements make this a much more

challenging task. In this section I will describe the mechanisms by which I attempt to achieve

this goal.

85

5.4.1 Processor Yielding

The first step in utilizing the idle time is to make the main relinquish the the processor

rather than do a busy wait, for which I use the sleep() call. Hence, I transform every

blocking MPI call by the main into a nonblocking call to the same operation followed by a

loop that does the following in every iteration: i) test and, if the operation has completed,

exit the loop, otherwise ii) relinquish the processor by calling sleep() for a small amount of

time ts. The sleep time ts is a lower bound on the time it will take the calling process to get

the processor back. This is a lower bound because the sleep() function works by taking the

calling process off the ready queue and setting a timer to expire when the amount of time

elapsed equals the input sleep time. When the timer does expire, however, the process is put

back on the ready queue, which means it may have to wait an arbitrary amount of time before

being scheduled back onto the processor. I observed from my tests on the sleep() call that

the lowest amount of average sleep duration would be on the order of a few microseconds,

which means that the range of meaningful values for ts starts at a few microseconds. I then

ran experiments with different values of ts, starting with 1 µs, on HPC benchmarks where

the MPI calls were transformed as described above, and found that values between 2 and 50

microseconds often yielded the best performance.

5.4.2 Behavior of Shadow Process

Note from the previous section that the shadow process consists of two threads: i) helper

thread which buffers the forwarded messages from the main, and ii) the compute thread

which executes the original application code and is used for recovery. Since the helper

thread only wakes up to log a message, it only competes with the co-located main when it

has a message pending, at which point it should quickly receive it so that the forwarding

main at the other end is not kept waiting for long. Thus the helper thread is kept at either

the same or a higher priority than the co-located main.

The compute thread, on the other hand, is the thread that we want to execute only when

the co-located main is idle. By putting the main to sleep and relinquishing the processor, I

allow the OS to schedule the shadow’s compute thread to run while the main sleeps. In order

86

to prevent the compute thread from being scheduled at other times when the co-located main

is not sleeping, I resort to Linux’s implementation of priorities using the niceness concept.

I nice the compute thread by giving it the highest possible nice value, thus reducing its

priority. Linux’s CFS tries to divide processor time between threads in the same ratio as

their priorities[54]. By making this ratio as small as possible, I minimize the possibility of

the compute thread competing with the co-located main for processor time when the main

is not idle. Also, since the scheduler is work conserving in nature, which means it would

not leave the core idle when there are runnable tasks, the expectation is that the compute

thread would run when the main goes to sleep.

There is another parameter in the Linux kernel scheduler that affects the behavior of the

implementation described above. This parameter, called sched_wakeup_granularity_ns,

controls how quickly a task that wakes up from a sleep can preempt a low priority task. If this

parameter is set to a higher value, the co-located main will have to wait longer after waking

up to be rescheduled onto the core. This disrupts the entire mechanism because the main is

unnecessarily delayed at the expense of the compute thread and the whole application might

actually end up behaving as if the main and shadow are sharing the processor equally among

themselves. To avoid this, I changed the default value of this parameter to 250 microseconds.

This does not mean that the main must wait 250 microseconds after waking up to get the

core back from the shadow. This value is scaled up or down inside the kernel scheduler based

on the relative priorities of the preempting and preempted tasks, so the main actually starts

executing much earlier than 250 microseconds after waking up.

5.5 Evaluation

To compare co-located shadows with traditional C/R, I also implemented a simple version

of in-memory checkpointing where each process stores its initial state, i.e. the values of its

local variables, in the memory of another process, known as the buddy process[80]. In case

of failure, all processes fetch their last stored state from their buddies and re-execute. The

crux of the model presented in section 5.2 deals with the behavior of CoLoR within an

87

interval, which is multiplied by the number of intervals just like in traditional checkpointing.

Hence, all the experiments were done without periodic leaping and the results represent the

behavior that should be expected within one periodic interval. Similarly, to make the results

representative of the behavior on one checkpointing interval, the checkpoint/restart (C/R)

implementation takes only one checkpoint at the beginning of the execution, with the end

of the application execution representing the end of an interval.

5.5.1 Experimental Setup

I tested the implementation on the University of Pittsburgh Center for Research Com-

puting’s cluster which contains 100 nodes, each consisting of dual socket 28 core Intel Xeon

E5-2690 2.60 GHz (Broadwell) processors and 64 GB of RAM. The nodes are connected via

100 GB OmniPath interconnect. The system runs Linux kernel version 3.10.0 and I used

OpenMPI library 2.0.2. For all of the experiments, I placed shadows with the mains as

follows: main i’s shadow is co-located with main i+ 1, except for the main with the highest

rank whose shadow is simply co-located with main 0. This mapping assumes an individual

core as the unit of failure. If, however, the failure model assumes node failures (i.e. all cores

on a node fail simultaneously), the mapping should be done so that all shadows belonging

to mains on a single node are placed on a different node. The buffer size was usually set at 1

GB. All the results reported in this section are generated after taking the average of 3 runs.

5.5.2 Failure Injection

Since failure detection and notification is beyond the scope of this work, I follow the ap-

proach of [79] to simulate a failure by inserting a inject_failure() function at an arbitrary

point in the code. The function randomly selects a process rank and an iteration number at

which it simply suspends itself if called from the process chosen for failure to strike. A limi-

tation imposed by the MPI runtime is that it kills the entire job if a process dies. Therefore,

I simulate failure by waking up the same failed process after a certain amount of downtime

after which I leap it to the state of its shadow, once the shadow reaches the point of failure,

to completely mimic the recovery process.

88

Figure 36: Performance with no and single failure injected at different point of execution,

normalized by completion time of original application under no failures.

5.5.3 Results

Fig 36 shows the performance of co-located shadows under 0 and 1 failures. To assess

the impact of 1 failure, a failure was injected in randomly selected processes at 25%, 50%,

75% and 100% of their execution respectively. All applications were run over 1024 cores,

except LULESH, which ran on 512 since it runs on cubic number of processes. The reported

time is normalized to the original execution time of the application in each case.

We can see that the failure free overhead of co-located shadows ranges from 11% (for

HPCCG) to 63% (PENNANT benchmark). In case of a failure, however, we see the po-

tential of co-located shadows to cut down on the recovery time. For all of the benchmarks,

the completion time when a failure occurs at the end of the interval/execution is lower with

co-located shadows than with simple reexecution under C/R. For the statistically represen-

tative failure point (50%), co-located shadows perform better than (or almost the same as)

C/R for three of the benchmarks, namely, HPCCG, CoMD and miniFE. For LULESH and

PENNANT, however, the failure free overhead is too high for the shadows to make it up

during recovery when failure happens at the midpoint (50%).

The two primary sources of the overhead of co-located shadows are: i) message forwarding

from main to shadow, and ii) the overhead due to the shadow’s compute thread executing

at times other than the idle periods of the co-located main. In order to distinguish between

the two overheads, I ran an experiment where I basically deactivated the compute thread in

the shadow by making it sleep until the mains finished their execution. Since only the help

89

Table 4: Impact of Shadow Compute Thread on Normalized Execution Time

Benchmark Inactive Shadow Compute Thread Active Shadow Compute Thread

HPCCG 1.03 1.14

LULESH 1.10 1.46

CoMD 1.04 1.11

PENNANT 1.73 1.62

miniFE 1.04 1.30

thread remained active, this allows us to capture the overhead due to the first source, i.e.

message forwarding. The results of this experiment are presented in Table 4. It can be seen

that the impact of the compute thread on the overhead is quite significant for miniFE and

LULESH benchmarks.

One surprising result from the above experiment is that the execution time of PENNANT

increases when the compute thread is deactivated. This suggests the possibility of there

being wasted time due to the forwarding of messages by the mains and their reception by

the co-located shadows. A distinguishing feature of the PENNANT benchmark is that it

is characterized by a large number of small messages. I postulate that this feature makes

the following scenario likely: Main A initiates the forwarding of a received message but is

preempted by its co-located shadow’s help thread before it can complete the operation. The

help thread belonging to the shadow of main A will be occupying the processor on the other

end but will simply be waiting on A to transfer the message, wasting processor cycles. The

possibility of this scenario cascading and playing out over multiple mains and shadows further

exacerbates the situation. The likelihood of such a scenario playing out increases when the

compute thread is out of the picture. To validate this hypothesis, I ran the same experiment

with PENNANT but set the scheduling policy of the help threads as real time[30], which

would mean that the help threads acquire the processor as soon as they wake up, rather than

the wait enforced on them by the default Linux scheduler. This setup should further increase

90

Figure 37: Weak scaling (*LULESH was tested on 125, 216, 512 and 1000 cores)

the likelihood of wasted time, especially when there are a lot of messages to be forwarded,

and is in fact reflected by the jump in normalized completion time from 1.73 to 6.14 when

real time help threads are used.

Finally, Figure 37 presents the weak scaling overhead of co-located shadows, when the

compute thread is active as well as when it is deactivated. We see that when the compute

thread is inactive, the overhead generally increases with scale. Although the overhead with

an active compute thread is much higher, the increase with scale is not as steep, with the

exception of LULESH.

5.6 Related Work

There have been several prior works that looked at the phases in which an HPC applica-

tion is waiting on communication to finish, with the goal of either minimizing such periods

or leveraging them to optimize other objectives. A study of the impact of imbalance on the

cost of synchronisation in MPI programs is done in [63] whereas [64] studies how idle periods

in HPC applications propagate from one process to another. The idea of using these idle

periods to reduce energy consumption has been explored in [66] and [32]. Similarly, [78] uses

these idle phases for improving the performance of in-situ workloads. In this work, I try to

capitalize on those idle times during communication to run the shadow processes and thus

91

aim to reduce the recovery time in case of a fault.

The work in this chapter builds heavily on the idea and implementation of shadow

computing[57][16]. The basic idea of shadow computing is to have redundant processes that

can execute at a slower speed than the original application processes, or mains. The model

can be tailored to different platforms [17] or failure models [15]. An implementation of

shadows for MPI applications was presented in [19], which I also discuss in Section 5.3, since

I build the co-located shadows using this implementation. The main difference between the

two implementations is that the original work in [19] requires extra resources since shadows

are placed on separate cores from the mains. In this work, however, I place the shadows on

the same resources as the original application, avoiding the need for additional resources.

5.7 Summary

This chapter explored the utility of idle times, due to imbalance in HPC applications, in

providing efficient fault tolerance. To that end, I designed and implemented a fault tolerance

scheme using co-located shadows. I conducted experimental results on real benchmarks to

investigate the overhead of co-located shadows as well as their performance under failures.

The results indicate that while there is the potential to utilize idle times in cutting down

the recovery time, further support from the system scheduler and its integration with MPI

runtime may be needed in order to fully realize the potential of co-located shadows.

92

6.0 Failure-Aware Resource Allocation under Heterogeneous Failure

Likelihoods

So far this dissertation has focused on fault tolerance under heterogeneity for individual

jobs. This chapter takes a wider view over the system, spanning multiple jobs, and focuses

on one particular area where heterogeneity leads to new avenues of exploration. Specifically,

I look at resource allocation in a cluster with non-identical failure rates, with the aim of

reducing waste due to failures. I formulate and study two objective functions that capture

the reliability of jobs to be scheduled onto the resources, which lead to two heuristics for

reliable resource allocation. Using simulation as well as analysis of job and failure traces, I

show that these heuristics can contribute towards significant reduction in system waste.

6.1 Introduction

One of the roles of job schedulers in large scale clusters is to assign the available compu-

tational resources to the set of jobs ready to be scheduled. Traditionally, such assignments

are done without considering their impact on the reliability of jobs, because the default

assumption is that the compute nodes have identical failure distributions, rendering all the

assignment candidates at a given time equivalent in terms of their reliability. However, with

non-identical failure distributions, allocating resources to jobs while disregarding the differ-

ences in reliabilities of those resources ends up increasing the waste incurred by the system.

This represents a missed opportunity since utilizing a finer understanding of system reliabil-

ity can lead to significant savings in processing power wasted on failed jobs. Consider, for

example, that, after a job completes, there are enough free nodes in the system to start the

next two jobs in the queue. The question that the scheduler must answer is, which nodes

should be assigned to each job, when node reliabilities are non-identical? To answer this

question, the scheduler would need a metric that quantifies the system waste as a result of

failed jobs, as well as an allocation strategy that minimizes said waste. A scheduler that is

93

equipped with such capabilities is well positioned to minimize system waste due to failures,

since it has access to the global state of the system, both in terms of the jobs present and

in terms of the current reliability of system resources, which it can gauge through different

monitoring tools and system logs that individual jobs may not have access to.

In this chapter, I specifically tackle the problem of how best to assign compute resources

with heterogeneous reliabilities whenever there are enough resources to start more than one

waiting job. I formulate two objective functions that incorporate node reliabilities to assess

the goodness of an allocation relative to others, and use those objectives to devise resource

allocation heuristics that maximize their respective objective function. A novel contribution

of this work is to study the resource allocation problem in the presence of replicated jobs.

6.2 Making Resource Allocation Failure-Aware

I start by describing the problem setting, which is typical of a computing cluster that

serves multiple users. Individual users submit job requests containing, among other things,

information on the number of nodes that the job will run on as well as the wall clock time

limit. A submitted job is placed on one of the available queues depending on the scheduling

policy in the system and starts once its scheduling priority is met and its required number

of nodes become available. Unlike a cloud environment, a scheduled job is given exclusive

access to its allocated nodes for its entire runtime, or its wall clock time, whichever comes

first.

I assume that individual compute node failures are independent and follow an exponential

distribution, albeit with different failure rates. The impact of a failure of a node is to

terminate the entire job using that node as part of its allocation, wasting the work done

from the start of the job (or the last checkpoint) to the time of failure. A failed job may be

resubmitted at a later point in time, either by the user or automatically by the system, at

which point it will be treated as any other job vying for resources. Thus, in my analysis, a

failed job’s contribution is added to the wasted work at the time of failure, after which it is

considered to have exited the system.

94

6.2.1 Problem Statement

Once the scheduler reaches the point where it needs to decide which available nodes

to allocate, if there is only one job ready to execute, the failure-aware allocation strategy

simply boils down to assigning the most reliable nodes to the ready job. However, if the

number of available nodes is enough to start more than one jobs, finding the best failure-

aware allocation for the set of ready jobs is not so straightforward. In the rest of this section

we formulate the objective functions and heuristics for finding good failure-aware allocation

strategies when there are more than one jobs ready to be executed.

Based on the above discussion, we can now formally define the problem we are trying to

solve. Let K be the number of jobs that are ready to be executed at a given instant of time.

Each job is characterized by the number of nodes it is requesting, nj, and its specified wall

clock time, tj, where j ∈ {1, ..., K}. The number of available nodes from which the K jobs

have to be assigned is N , where N ≥
∑K

j=1 nj. Each of the N nodes follows an exponential

failure distribution with failure rate λi (i ∈ {1, ..., N}). We denote by Sj the set of nodes

allocated to a job, such that |Sj| = nj. Our problem, then, is to determine the sets Sj,

j ∈ {1, ..., K}, for the K ready jobs.

6.2.2 Maximizing Reliability

An intuitive choice for a failure-aware allocation scheme would be to simply assign the

most reliable nodes to the longest job. This allocation strategy was actually proposed in

[34], though without any theoretical justification. I briefly discuss below how this heuristic

can be motivated theoretically for nodes with exponential failure rates. This is useful not

just as a theoretical exercise but also in understanding whether this intuition carries over to

the case where replicated jobs are also thrown into the mix, as we will discuss in the next

section.

The heuristic of assigning the best nodes to the longest job actually comes about if we

take the probability of success, or reliability of the K jobs, as our objective function to

maximize. To see this, let Rj denote the reliability of job j and let R denote the reliability of

the K jobs combined. Since individual node failure distributions are independent and since

95

Figure 38: Example demonstrating the difference between MaxRel and MinWaste heuristics

over two non-replicated jobs.

jobs do not share nodes, the reliability of the K jobs is simply a product of the reliability of

the individual jobs. A job succeeds if all of its nodes remain failure-free during its execution

time. Thus, with exponential node failures, we can write Rj =
∏

i∈Sj e
−λitj = e

−tj
∑
i∈Sj

λi .

The overall reliability is then given by

R =
K∏
j=1

Rj =
K∏
j=1

e
−tj

∑
i∈Sj

λi = e
−

∑K
j=1 tj

∑
i∈Sj

λi (6.1)

We can see from the above equation that maximizing R is equivalent to minimizing the

quantity
∑K

j=1 tj
∑

i∈Sj λi. Using rearrangement inequality[73], we obtain that this quantity

is minimized when the largest tj is paired with the smallest λi’s, and so on. This leads to

the simple heuristic of allocating the most reliable nodes to the longest job, and proceeding

in this manner for the rest of the jobs. Thus, the discussion in this subsection serves as a

theoretical justification for allocating the best nodes to the longest jobs. In the rest of this

paper, we will refer to this allocation strategy as the MaxRel heuristic (short for Maximize

Reliability).

6.2.3 Minimizing Waste

One aspect that the MaxRel heuristic ignores is the scale of the jobs. For example, if Job

1 requests 2 nodes for 4 hours and Job 2 requests 5 nodes for 3 hours, the 2 most reliable

96

nodes will be allocated to Job 1 under the MaxRel heuristic, as shown in Figure 38. If we

go by the first order assumption[76] that a failure, if it occurs, strikes during the middle

of an execution, then, in case of a failure in one of the jobs, Job 1 is expected to lose the

equivalent of 2 nodes’ work of done in 2 hours, while Job 2 stands to lose 5 nodes’ worth of

work done in one and a half hour. From the system’s perspective, any work wasted due to

failure translates into wasted energy expended in doing that work. Thus, the waste metric

that we will use in this paper to quantify the impact of failed jobs is the product of the

number of nodes and the time for which they were used to produce the work lost due to

failure. Going back to our two job example, the expected waste in case of a failure would

be 4 node-hours for job 1 and 7.5 node-hours for job 2, yet the MaxRel heuristic favors job

1 when allocating the nodes since it runs longer.

With this drawback of MaxRel in mind, we also propose to use the expected waste of the

K jobs as an alternate objective function to decide on a failure-aware resource allocation.

The expected waste of a job is given by the probability of job failure multiplied by the

average time of failure and the number of nodes. We follow the simplifying assumption of

[76] that a failure strikes during the middle of an execution. Thus, the expected waste of

a job can be written as Wj = nj(1 − e
−tj

∑
i∈Sj

λi)tj/2. The expected waste of all K jobs is

simply the sum of the expected waste of each job, yielding

W =
K∑
j=1

Wj =
K∑
j=1

nj(1− e
−tj

∑
i∈Sj

λi)
tj
2

(6.2)

In an attempt to understand the allocation that minimizes the waste, we further simplify

the above expression using the first order approximation for the exponential term. This

yields an approximation for the waste as W ≈
∑K

j=1 njt
2
j

∑
i∈Sj λi/2. This is similar to the

expression in the previous subsection except that we have njt
2
j instead of tj. This leads us

to the following result:

The allocation heuristic to minimize expected waste of the ready jobs is to

assign the most reliable nodes to the job with the highest value of njt
2
j and so

on.

Note that this heuristic should be applicable as long as the first order approximation is

valid, i.e the quantity tj
∑

i∈Sj λi is small, which would be case whenever the average time to

97

failure of a job, given by 1/
∑

i∈Sj λi, is much larger than the job duration tj. In the rest of

the paper, we will refer to this allocation strategy as the MinWaste heuristic. An example

contrasting this heuristic with MaxRel is shown in Figure 38.

6.2.4 Discussion

One desirable aspect of both the heuristics discussed in this section is that they do not

require actual values of the failure rates of the nodes. All that is required is the ordering

of the nodes based on their reliabilities, and the nodes can then be assigned in order to the

jobs based on one of the two heuristics.

I would also like to point out the rationale for our use of the term ‘heuristic’ for the alloca-

tion strategies discussed here, despite their being derived from theoretical objective functions

(especially the MaxRel heuristic which exactly maximizes the reliability in Equation 6.1). A

truly optimal failure-aware allocation would be based not just on the current batch of ready

jobs but also on the future batches. This is because any allocation for the current batch of

ready jobs will impact the set of nodes that become available to the next batches of ready

jobs, thus affecting their reliability as well. This means that both the MaxRel and MinWaste

allocation schemes are of the greedy variety, since they try to optimize their respective ob-

jective functions over the present set of jobs, regardless of the impacts their choices will have

on subsequent jobs, which is why we refer to both of the allocation strategies as heuristics.

At this point one may also wonder how the discussion so far would change with jobs that

take checkpoints. I assume that the decision of whether and when to checkpoint is taken by

the user before submitting their job. With this assumption, all that the scheduler needs to

be made aware of by the user, upon job submission, is the checkpointing interval of a job

that will be taking checkpoints. The specified interval for job j can then be treated as tj

instead of its wall clock time. This is because the wasted work in case of failure will be the

work done since the last checkpoint till the time of failure, which means the expected waste

of a job will be a function of its checkpointing interval and not total wall clock time.

98

6.3 Handling Job with Replication

In Chapter 4, I explored how nodes with different reliabilities should be replicated and

paired within a job. This solves the problem of deciding how best to pair nodes once

they have been assigned to a job. However, to the best of our knowledge, no results exist

when it comes to determining a reliable resource allocation to multiple jobs when some

of the jobs use replication. In this section, I investigate how to augment the MaxRel and

MinWaste heuristics to handle some cases of a job with replication, by theoretically studying

the properties of the two objective functions.

Note that, similar to the assumption regarding checkpointed jobs that I mentioned at the

end of last section, the assumption in this chapter is that the decision to replicate is made

by the user, and the job scheduler is notified of that decision upon job submission. The

scheduler’s responsibility is then to decide how to do the failure-aware allocation of available

nodes to the jobs, knowing which of the jobs will be employing replication.

6.3.1 Results on Optimizing Reliability

It may be expected that, even with replicated jobs in the mix, maximum reliability should

be attained by simply ordering the jobs based on their duration and assigning the nodes in

decreasing order of reliability to this ordered list of jobs. However, by simply computing

a few simple numerical examples, I found that this is actually not true when replicated

jobs are present. Roughly speaking, this happens because a pair of replicas only fails when

both of the nodes in the pair fail, which generally makes a replica-pair more reliable. Thus,

depending on the values of the failure rates of the individual nodes as well as the durations

of the jobs, it is quite possible that a weak pair of nodes replicated together may be less

likely to fail over a longer time period compared to the reliability of a stronger node taken

by itself even over a shorter period of time.

I also found in my investigations that, in the optimally reliable node allocation, a repli-

cated job does not always get a consecutive set of nodes, when nodes are ordered by their

reliabilities. Both of these observations suggest that the allocation problem becomes much

99

Figure 39: Some possible allocations of nodes to a replicated and a non-replicated job.

harder with replicated jobs. In the rest of this subsection, I present my theoretical result

that can cut down on the search space for finding the optimal allocation for the reliability

objective function.

Theorem 5. In the allocation that achieves maximum reliability over the ready set of jobs,

each non-replicated job j satisfies the following property:

i /∈ Sj → λi ≤ λminj or λi ≥ λmaxj (6.3)

where minj is the node with the lowest failure rate in Sj and maxj is the node with the

highest failure rate in Sj.

Proof. The statement above basically says that, even when the ready set of jobs also contains

some jobs with replication, the optimal allocation (i.e. one that maximises reliability) always

assigns a set of consecutive nodes, from the list of nodes ordered by reliability, to each non-

replicated job. Note that, when no jobs with replication are present, the result from the

previous sections already tells us that each jobs gets a contiguous sets of nodes from the

ordered list of nodes. Thus, we need to prove that in the presence of replicated jobs, every

non-replicated job still gets a contiguous set of nodes. I will prove this by contradiction

by showing that in an optimal node allocation, if a non-replicated job is not assigned a

100

contiguous set of nodes, we can always get a better allocation by swapping nodes such that

the non-replicated job moves closer to having a contiguous set of nodes.

Formally, consider a non-replicated job j that is not assigned a consecutive set of ordered

nodes in an optimal node allocation, A, as shown in Figure 39. Let λ1 be the failure rate

of the most reliable node assigned to j and λ3 be the rate of the least reliable node in j.

Based on the non-contiguous assumption, there must be a node with rate λ2, such that

λ1 < λ2 < λ3 and that node is assigned to some replicated job k. Let λ
′
2 be the failure rate

of the node paired with the node with rate λ2 (the example in Figure 39 shows λ
′
2 as being

higher than λ3, but the proof below holds for all possibile values of λ
′
2). We can write the

reliability, RA, of this node allocation as

RA = e−(λ1+λ3)tj(e−λ2tk + e−λ
′
2tk − e−(λ2+λ

′
2)tk)Rrem (6.4)

where Rrem is the reliability of the remaining nodes in the allocation. Let A1 be the modifi-

cation of A obtained by swapping the assignment of nodes with rates λ1 and λ2 and similarly

let A2 be the modification of A obtained by swapping the assignment of nodes with rates

λ2 and λ3. Both of these allocations are also depicted in Figure 39. We will now prove that

one of A1 or A2 is more reliable than A.

For simplicity, let z = e−λ
′
2tk . Now, if RA1 ≥ RA, we are done. Hence, let us assume that

RA1 < RA, which, after simplifying the expressions, yields the following inequality

e−λ1tj(z+(1−z)e−λ2tk) > e−λ2tj(z+(1−z)e−λ1tk)→ e−λ1tj

(z + (1− z)e−λ1tk)
>

e−λ2tj

(z + (1− z)e−λ2tk)
(6.5)

We now need to show that RA2 ≥ RA, which means showing that

e−λ2tj(z + (1− z)e−λ3tk) ≥ e−λ3tj(z + (1− z)e−λ2tk)

→ e−λ2tj

(z + (1− z)e−λ2tk)
≥ e−λ3tj

(z + (1− z)e−λ3tk)

(6.6)

To show that the inequality 6.6 is true if the inequality 6.5 holds, let f(λ) = e−λtj/(z +

(1 − z)e−λtk). The inequality 6.5 then becomes f(λ1) > f(λ2) and inequality 6.6 becomes

f(λ2) > f(λ3). By taking the partial derivative of f with respect to λ, it can be shown

that f is either i) strictly decreasing for all λ > 0 or ii) it initially increases with λ upto

101

Figure 40: Possible node allocations among a pair of replicated and non-replicated jobs,

when maximizing reliability. The non-replicated job always gets a contiguous set of nodes.

some value (say λthreshold) and then is strictly decreasing for λ > λthreshold. In either case, if

f(λ1) > f(λ2) as per inequality 6.5, then, since λ1 < λ2, we know that λ2 is in the region

where f is strictly decreasing. Now, since λ2 < λ3, this also means that f(λ2) > f(λ3) which

concludes the proof.

Figure 40 shows the possible ways that nodes would be allocated among a replicated and

a non-replicated job based on the above result. To see how theorem 5 reduces the search

space, let’s say we have K ready jobs requesting a total of N nodes. Assume also that there is

one job r (1 ≤ r ≤ K) that will employ replication. Without the above result, the number of

possible allocations to check would be N !/
∏K

i=1 ni!. Using the above result and the fact that

we know how to order the non-replicated jobs, the number of possible candidate allocations

drops down to
(
N+K
K

)
. While this is a substantial improvement, this number of possibilities

can still be quite large in practice. For example, with N = 1000 and K = 20, this number is

upwards of 4.15× 1041, making it practically impossible to search for the optimal allocation.

In order to make finding the optimal allocation computationally tractable I make the

simplifying assumption that the nodes’ failure rates can be discretized into a small number of

failure classes[43]. The case of nodes belonging to two failure classes actually has precedent in

the example of the Titan supercomputer[84]. With two failure classes and with our example

of K ready jobs with one being replicated, finding the optimal allocation simply means

102

determining the number of nodes of each class in the replicated job, since we know how to

do the assignment for the rest of the jobs. Thus, the number of possible allocations to check

is simply nr + 1, which is quite feasible. Therefore, in our experiments involving replicated

jobs, we will only simulate cases in which we allow only one job to be replicated from a set

of ready jobs and the simulated platform will only have two types of nodes in terms of their

failure rates.

6.3.2 Results on Minimizing Expected Waste

Switching to expected waste as our objective function to minimize, we know from the

previous section that, as long as the first order approximation is valid, the optimal allocation

will order non-replicated jobs by njt
2
j and assign nodes, ordered by their failure rates, to this

ordered list of jobs. However, with the presence of a replicated job, I again found that the

replicated job does not always get a consecutive set of nodes, making it unclear how the

optimal allocation would look like. Surprisingly, though, we were able to prove the same

result as Theorem 5 here as well, despite the objective functions being completely different.

The formal statement of the theorem and its proof is presented below:

Theorem 6. In the allocation that achieves minimum expected waste over the ready set of

jobs, each non-replicated job j satisfies the following property:

i /∈ Sj → λi ≤ λminj or λi ≥ λmaxj (6.7)

where minj is the node with the lowest failure rate in Sj and maxj is the node with the

highest failure rate in Sj.

Proof. Similar to the proof for theorem 5, I will show that if a non-replicated job has non-

consecutive nodes in an allocation, we can move one of its edge nodes inside by swapping

with a node in between that belongs to another replicated job. Using the same notations

as those in the proof of theorem 5, the expected waste for the non-replicated job j in this

allocation, A, can be written as

WA
j = nj(1− pje−tj(λ1+λ3))

tj
2

(6.8)

103

where we denote by pj the probability of success of the rest of the nodes assigned to j.

Similarly, for the replicated job r which has a node with rate λ2 (λ1 < λ2 < λ3), the

expected waste can be written as

WA
r = nr(1− pr(e−trλ2 + e−trλ

′
2 − e−tr(λ2+λ

′
2)))

tr
2

(6.9)

where pr is the reliability of the rest of the replica pairs in job r.

Again, just as in Theorem 5 and as shown in Figure 39, let A1 be the allocation which is

the same as A except that the assignments of nodes with rates λ1 and λ2 are flipped, and A2

be the allocation in which the assignments of nodes with rates λ2 and λ3 from A are flipped.

We will now prove that either WA
j +WA

r ≥ WA1
j +WA1

r or WA
j +WA

r ≥ WA2
j +WA2

r , which

means that one of A1 or A2 has smaller expected waste than A.

Assume by contradiction that both WA
j +WA

r < WA1
j +WA1

r and WA
j +WA

r < WA2
j +WA2

r .

By writing out the actual expressions, we obtain that ifWA
j +WA

r < WA1
j +WA1

r , the following

has to hold

WA
j +WA

r < WA1
j +WA1

r →
njpjtj
nrprtr

>
(e−trλ1 − e−trλ2)(1− e−trλ

′
2)

e−tjλ3(e−tjλ1 − e−tjλ2)
(6.10)

Similarly, WA
j +WA

r < WA2
j +WA2

r leads to the following

WA
j +WA

r < WA2
j +WA2

r →
njpjtj
nrprtr

<
(e−trλ2 − e−trλ3)(1− e−trλ

′
2)

e−tjλ1(e−tjλ2 − e−tjλ3)
(6.11)

By eliminating the quantity njpjtj/nrprtr(1−e−trλ
′
2), we can combine the above two inequal-

ities to obtain

WA
j +WA

r < WA1
j +WA1

r and WA
j +WA

r < WA2
j +WA2

r

→ e−trλ1 − e−trλ2
1− e−tj(λ2−λ1)

<
e−trλ2 − e−trλ3
e−tj(λ2−λ3) − 1

(6.12)

However, it can be shown, using the fact that λ1 < λ2 < λ3, that the above inequality is

not true. Rather the converse of this inequality can be proved to be true (details omitted

for brevity). This contradicts our assumption that both WA
j + WA

r < WA1
j + WA1

r and

WA
j + WA

r < WA2
j + WA2

r , which means that either A1 or A2 is a better allocation than A

in terms of expected waste, thus concluding our proof.

104

The above theorem makes the size of the search space for the allocation with the optimal

waste the same as that for the optimal allocation for the reliability objective function, which

means that the restrictions we will impose on the simulations involving a replicated job will

also apply for the MinWaste heuristic.

6.3.3 Allocation in presence of replicated job

Based on the theoretical results in the previous subsections, we can now describe how to

perform the reliability-aware assignment based on the MaxRel and MinWaste heuristics, if a

replicated job is present in the set of jobs ready to be scheduled. Note that this ready set can

have at most 1 replicated job and any number of non-replicated jobs. Both heuristics will

test nr +1 allocations, where nr is the number of nodes in the replicated job. We can denote

the possible allocations with i (0 ≤ i ≤ nr), where i will be the number of nodes of Class 1

in the replicated job. The nodes for the rest of the (non-replicated) jobs in allocation i will

be assigned by sorting the jobs by tj for the MaxRel heuristic and by njt
2
j for the MinWaste

heuristic, just as depicted in Figure 38. Thus, although the total number of allocations that

each heuristic will consider is the same (i.e. nr + 1), the allocations themselves may be

different for the two heuristics. Each heuristic will then pick, from the ones it will consider,

the allocation that optimises its respective objective function. In calculating the reliability

of the replicated job, I apply the optimal pairing as determined in Chapter 4. Note that if

the number of available nodes of a class is less than nr, the number of possibilities to check

will simply be equal to the number of nodes in the smaller class.

6.4 Empirical Results

In this section, I conduct several types of experiments to assess the utility of the failure-

aware heuristics. Table 5 lists the different systems along with their individual class MTBFs

that I use to generate failure traces in our experiments involving non-replicated jobs. I

consider a small system of 600 nodes for the validation subsection and a large system with

105

Table 5: Node and System Level MTBFs (h: hours, d : days, y : years)

Small System (600 nodes) Large System (49152 nodes)

A B C A B C

Class 1 22d 45d 67d 5y 10y 15y

Class 2 111d 134d 156d 25y 30y 35y

Class 3 201d 223d 245d 45y 50y 55y

Class 4 290d 312d 334d 65y 70y 75y

Class 5 379d 401d 423d 85y 90y 95y

Class 6 468d 490d 512d 105y 110y 115y

System-level 3.6h 5.7h 7.3h 3.6h 5.7h 7.3h

49152 nodes to match with the system whose job traces I use in the subsequent subsections.

For both those systems, I consider 3 sets of values for the node MTBF classes. The MTBF

values for the smaller system are simply scaled down from those of the (realistic) large

system’s classes, so that the overall system MTBF of the two systems match. All the

systems consist of 6 classes of nodes with each class having equal number of nodes.

6.4.1 Validation

In this subsection, I evaluate the quality of the choices made by the MaxRel and Min-

Waste heuristics by computing their waste on a single ready set of jobs whose allocations are

determined by the two heuristics. We will conduct this validation using the smaller system

from Table 5. To obtain the average waste of an allocation for a given system, we conduct

100,000 trials where, in each trial, I generate failure times for each of the 600 nodes and

pick the node with the first failure. If the failure time of that node falls within the duration

of the job it is assigned to in a particular allocation, this counts towards the waste of that

allocation. I consider three allocations: i) random, which represents the allocation which

is done without taking into consideration the failure rate of the nodes, ii) the allocation

106

Table 6: % Waste Improvement over Random Allocation for Small System B

of Job 1 nodes 60 120 180 240 300

MaxRel -5.93 -10.51 -11.206 -8.02 0.01

MinWaste 20.49 24.40 20.78 11.43 0.01

according to the MaxRel heuristic and iii) the allocation as per the MinWaste heuristic.

We start by considering a simple example of two non-replicated jobs that are ready to

be scheduled. The duration of Job 1 is set to 3 hours and the duration of Job 2 is set to

2.5 hours. We investigate different values for the number of nodes requested by each job

while keeping the total number of nodes for the two jobs fixed at 600 (i.e. total nodes in the

system). Table 6 lists the average waste improvement of the allocation heuristics over random

assignment for the system with 5.7 hours MTBF. We can see that the MaxRel heuristic does

worse than random for all sizes of Job 1 except for when it uses 300 nodes. This is because

the MaxRel heuristic always assigns the best nodes to Job 1 because of its longer duration.

However, when the number of nodes in Job 1 is less than Job 2, it’s expected waste is lower

than Job 2, which means Job 1 should be assigned the least reliable nodes. When both Job

1 and Job 2 use 300 nodes each, both heuristics will assign the best nodes to Job 1 because

of its longer duration, yielding identical allocations. Figure 41a shows how the allocations

perform for the different system MTBFs when we fix the size of Job 1 to 240 nodes and

Job 2 to 360 nodes. These results demonstrate that MinWaste actually performs a better

allocation over the current set of jobs than MaxRel.

The example above demonstrates the superiority of MinWaste over the MaxRel heuristic,

because the example results in different orderings using the two heuristics, and we see that

MinWaste does the correct ordering to minimize waste. In general, it may not always be

the case that the job duration and job size (in terms of the number of nodes it requests) are

negatively correlated as in the example just considered. Thus, we consider another example

where we have 3 jobs: Job 1 which requests 200 nodes with wall clock time of 3 hours, Job

107

(a) Job 1: Node counts = 240, Duration = 3
hours, Job 2: Node count = 360, Duration =
2 hours.

(b) Job 1: Node count = 200, Duration = 3
hours, Job 2: Node count = 300, Duration =
2.5 hours, Job 3: Node count = 100, Duration
= 2 hours.

Figure 41: Relative improvement/degradation in waste of allocations made by the failure-

aware heuristics. Note the difference in the scale of y-axis in the two plots.

2 which requests 300 nodes with wall clock time of 2.5 hours and Job 3 which requests 100

nodes with wall clock time of 2 hours. The ordering based on MaxRel will be: Job 1, Job

2 and then Job 3, whereas the MinWaste heuristic will use the ordering: Job 2, Job 1 and

then Job 3. We see that both the heuristics agree on the position of Job 3, which results in

both heuristics yielding net improvement compared to random allocation, as seen in Figure

41b. Still, MinWaste has the highest improvement because of its overall correct ordering.

6.4.2 Job Trace Description

The previous section served as validation for the MaxRel and MinWaste heuristics by

analyzing the impact of their choices in case a failure strikes in the same ready set over which

those choices are made. However, as mentioned in Section 6.2, the greedy nature of these

heuristics means that, even if they make the correct choice for the current batch of jobs,

the choice may not be optimal for the upcoming batches of jobs. Hence, I also evaluate the

impact of these heuristics over job traces using actual arrival times of the jobs.

I use the data of jobs submitted to the Mira supercomputer at Argonne National Lab.

108

(a) Counts of jobs with respect to the number
of nodes requested.

(b) Plot of wall clock time of jobs against the
number of nodes requested.

Figure 42: Job statistics from the Mira trace[50].

Mira is a 49,152 node supercomputer where the nodes are divided into 48 racks of 1024 nodes

each. Each rack consists of 2 midplanes consisting of 512 nodes. The nodes are connected

by a 5D torus interconnect. The dataset that I use is publicly available at [50]. The job logs,

at the time of this writing, span more than 5 years of job traces starting from April 2013

to February 2020, yielding a total of 451,324 job entries, where each entry contains, among

other information, the time the job entered the system, its stated wall clock time and the

number of nodes requested by the job.

Figure 42a shows a histogram of number of nodes requested by the individual jobs. We

can see that more than half of the jobs requested 512 nodes or less. In fact, more than

two-thirds of the total jobs requested either 512 or 1024 nodes. This is because the lowest

granularity of resource allocation in Mira is a midplane. Thus a job that requests 1 node

only will also be assigned a midplane consisting of 512 nodes. We also see from the scatter

plot in Figure 42b that the range of requested wall clock times is visually quite similar for

the different job sizes. In fact, the correlation coefficient between the jobs’ requested node

counts and wall clock times is 0.191, which indicates there is a positive correlation between

these two attributes of a job. Both of the observations suggest that that there are likely to

be many jobs in any given ready set over which the two heuristics will agree upon the order

109

Figure 43: Relative waste improvement using simulation over the Mira job trace.

in which the nodes should be assigned.

Although the job trace also contains the actual execution time of each job, in simulations

I use the wall clock time requested by the job as the measure of its duration. I do this

primarily because the actual execution time is not something that the job scheduler knows

apriori when scheduling the job, thus any heuristic that is to be deployed in practice will

work on the information available at the time of making that decision. However, this is not

an inherent limitation of the heuristics. There is a body of work around run-time estimation

of jobs for scheduling [3][60][72]. Hence, if an accurate estimator is present, the heuristics

can use those estimates in calculating the job ordering. Note that I use the wall clock times

in simulations only. When doing the analysis with real failures in subsection 6.4.4, the

computation of waste will be done using the actual execution times of the jobs.

6.4.3 Simulation

I simulate a FIFO scheduling strategy with a single queue, using the arrival times of the

jobs as the time they enter the queue. I generate failure traces using the MTBFs for the

larger system in Table 5 and feed them, along with the job trace, as input to the simulator.

For each system MTBF, I generated three failure traces. The waste of each allocation over

a system was thus calculated as the average of the wastes obtained using simulation over

the three failure traces. The results from the simulation, using generated failure traces, are

110

Figure 44: Distribution of failures over the midplanes.

shown in Figure 43. We see that the relative improvement increases as the system failure

rate increases (i.e. decreasing system MTBF). This is consistent with the validation results

in subsection 6.4.1. We also observe that both heuristics yield similar improvement to each

other, because of the characteristics of the trace that we discussed in the previous subsection,

such as the correlation between job duration and number of nodes.

6.4.4 Analysis with Actual Failure Data

In addition to the job traces, other system logs from the Mira supercomputer are also

available at https://reports.alcf.anl.gov/data/mira.html. I used the task history logs to

determine jobs that failed due to system events. Such jobs would have one or more of

their tasks in the task history log report an error of the form: ”abnormal termination by

signal 35 from rank 10664 due to RAS event with record ID ...” The RAS events refer to

potential failure events in the Reliability, Availability and Serviceability (RAS) logs which

contain, among other information, the location of the event. Using these logs, I found that

892 jobs failed due these RAS events. I also determined from the logs the locations of the

midplanes struck by these failures. Figure 44 shows a histogram of failure counts experienced

by the midplanes. We see that there is sufficient spread starting with some midplanes that

experienced 2 failures only, all the way to a midplane that experienced 30 failures. This

111

indicates that there is significant heterogeneity in the failure likelihoods of the individual

midplanes.

I use the failure counts obtained above to come up with a ranking of the midplanes

in terms of their failure likelihoods. I then went back to the jobs logs to determine how

many of the 892 failed jobs started with a ready set that contained more than 1 job. To get

this information, I first sorted the jobs by their ending time in the log. Between any two

jobs with consecutive ending times, we looked for the jobs that started execution between

that interval of consecutive ending times to construct the ready sets. We found that 479

of the 892 jobs started with other jobs in their ready set. For each such ready set, we

compiled a list of available midplanes based on the actual allocations of the jobs in that

set. Next, we determined allocations of those available midplanes to the jobs in the set as

per the two heuristics. If the allocations differed from the original allocation in the logs,

we would compute the difference in waste between the originally failed job and the job that

was assigned the failing midplane in a particular heuristic. We considered the time of failure

as the ending time of the originally failed job. Note that, if the job that was assigned a

failing midplane, based on a heuristic, finished before failure, we would allocate its resources

to the next ready set that came after the job that finished. With this analysis, we found

that, compared to the waste of the original 892 failed jobs, the MaxRel heuristic resulted in

a saving of 16.97% while the MinWaste heuristic yielded a saving of 17.07%. This indicates

the potential of failure-aware heuristics to save on computational resources and processing

time that are wasted on failed jobs.

6.4.5 Replication

Since prior works[29][7] have shown that replication only becomes viable at large scales

where the system MTBF is high, I simulated a projected exascale system by scaling the

number of nodes in Mira by 4x. Thus, the number of nodes requested by the jobs in the

trace were also scaled by a factor of 4. I then designated all the jobs that requested more

than half of this new system’s nodes as jobs that would be using replication. This also

ensures that, in any set of ready jobs, there would only be one replicated job. We cut down

112

Figure 45: Relative waste improvement for systems with two equal-sized classes of nodes.

For the lowest system MTBF, node MTBFs were 5 and 50 years. The system in the middle

had nodes with MTBFs of 10 and 55 years, while the system on the right had nodes with

15 and 60 year MTBFs. The waste of each allocation was averaged over three runs.

the job trace to the first 100,000 jobs, based on their arrival time, out of the total 451,324, in

order for the simulation on the large scale system to finish in a reasonable amount of time.

The results for different values of system MTBF are depicted in Figure 45. We see again

that both heuristics yield similar improvements in waste, which decrease as system MTBF

increases, consistent with earlier results involving non-replicated jobs.

6.4.6 Discussion

Based on the results in this section, I conclude that the failure aware resource allocation

heuristics do end up saving a significant portion of the energy that would normally be wasted

with an allocation scheme that is oblivious to the differences in the failure likelihoods of the

individual nodes. Of the two heuristics studied, MinWaste is closer to the optimal resource

allocation over the current set of jobs. In simulation on real job traces over a longer time

duration, both the MaxRel and MinWaste heuristics yield similar improvements.

It is also worth pointing out that the failure-aware allocation heuristics in this chapter

solely focused on the reliability characteristics of the resources, ignoring other factors that

may be considered when allocating resources. In fact, the default consideration when as-

113

signing nodes to jobs in large scale supercomputers is network performance, which is why

the usual allocation mechanism is to devise an ordered list of nodes in the system based

on network topology, where nodes closer to each other in the list generally have higher

communication performance, and to assign nodes to jobs from the list in that order. How-

ever, due to the unpredictable nature of the workloads and scheduling optimizations such as

backfilling[60], fragmentation can still occur in practice[83]. Thus, the performance impact

of reliability aware allocation due to potential degradation in network performance may not

necessarily be significant when measured at the application level. An interesting example in

this regard is the work in [84], where the authors take the list of nodes (in their case GPUs)

ordered by network topology and then do another pass over the list, moving reliable nodes

to the front of the list, essentially reordering the list with respect to reliability. They found

that, while this did increase the average hop count between nodes in a job in their simula-

tion runs, the performance impact to applications in the production run was negligible. This

indicates that in a system with few classes of nodes this 2 step ordering can be utilized to

get a list of nodes ordered by reliability such that the list maintains the network topological

ordering among nodes of the same class.

Yet another approach to preserving some of the network induced performance while

doing a failure-aware allocation could be based on our analysis in subsection 6.4.4. We took

a midplane consisting of 512 nodes as the granularity for failure-aware allocation, which

ensures that the nodes with the greatest connectivity, i.e. those within a midplane, are

allocated to the same job. Thus the general approach based on this concept would be to

use a coarser granularity for failure-aware allocation so that the network based allocation is

respected for the nodes with the highest connectivity, i.e. those within the allocation block.

This, however, may lead to lower utilization in systems where the original allocation is done

over a finer granularity.

114

6.5 Related Work

The most closely related work to ours is [34], where the authors modeled the reliability

of different nodes in an HPC system based on the time of last failure of each node. Using

that reliability function they proposed the heuristic of assigning the most reliable nodes to

jobs longer than a threshold, similar to the MaxRel heuristic. My work differs from theirs

in several aspects. For example, their waste metric was simply the time spent by a job

before failure, whereas I take into account the scale of the job as well as the duration, using

which I derived the MinWaste allocation heuristic. Another difference is that I provide novel

theoretical results for the heuristics proposed.

Yet another closely related work that is also more recent is [84] where the authors’ goal

was to improve the reliability of the higher priority leadership jobs in a system where they

essentially had two types of nodes in terms of their likelihood of failure. Their approach was

tailor made for their specific scenario, i.e. system with two types of nodes and jobs with two

priority classes. In contrast, our allocation heuristics are more general and can be applied to

any system with arbitrary heterogeneity in the nodes’ failure likelihoods without requiring

that they specifically belong to one of two classes. Secondly, I do not enforce a fixed, binary

priority criteria for the jobs but rather order the ready jobs based on an impartial, global

criteria such as overall reliability or expected system waste.

Although several prior works have demonstrated the effectiveness of replication at large

scale[29][7][45] as well as our prior work [43] on reliable node pairing under heterogeneous

failure likelihoods, to the best of our knowledge, this is the first work that looks at the

reliability-aware resource allocation problem in the presence of replicated jobs.

6.6 Summary

In this chapter, I tackled the problem of how to find a reliable resource allocation to

jobs in clusters where the individual compute resources may have different likelihoods of

failure. I derived two heuristics for carrying out such a failure-aware allocation by theo-

115

retically analysing two objective functions that capture the reliability of the jobs that are

being scheduled. I further studied how those objective functions provide relevant theoretical

insights that can be used to augment the proposed heuristics in situations where replicated

jobs are also possible. Finally, I used simulation and analysis of real workload traces to

demonstrate the significant savings in energy that can be achieved by using the proposed

failure-aware heuristics.

116

7.0 Conclusion and Future Directions

One major theme in the research and development of Exascale systems is resilience. This

is because systems at such massive scales will be realized by a proportional increase in the

number of underlying components, thus increasing the likelihood of failures in one or more of

those individual components. Thus, there is a pressing need to explore all possible avenues

that could lead towards highly efficient fault tolerance techniques for large scale computing

systems. I explored in this dissertation one such avenue, namely heterogeneity, and showed

that it holds significant potential in making fault tolerance techniques more efficient.

In the first part of this dissertation, I explored the consequences of heterogeneity in

failure likelihoods in large scale systems for the two most popular resilience techniques:

checkpointing and replication. I showed that changing the assumption of identical failure

likelihoods to a non-uniform characterization leads to novel problems regarding checkpoint

placement and replica pairing. I provided solutions to these problems and also demonstrated

that heterogeneity can be exploited by both the fault tolerance techniques to significantly

improve their efficiency.

Another type of heterogeneity that I considered in this dissertation is the imbalance in

HPC workloads. I discussed how this imbalance can be used to provide savings in recovery

time after failures and thus lead to lower overhead of fault tolerance. I designed and im-

plemented a fault tolerance scheme using co-located shadows to capitalize on the idle times

resulting from the imbalance and demonstrated the potential of using those idle times in

reducing the impact of failures.

In the final part of this dissertation, I explored how the idea of heterogeneity in failure

likelihoods could be incorporated at the system level, in addition to its usefulness when

applied at the level of individual jobs. I studied the problem of resource allocation to jobs

in an HPC cluster and showed that techniques that take into account the heterogeneity in

failure likelihoods of the individual resources and perform resource allocations accordingly

can significantly reduce the failure induced waste in the system. This makes the case for

equipping runtime systems and job schedulers in large scale system with an awareness of the

117

heterogeneity, if it exists, in the failure likelihoods of resources within the system.

The research in this dissertation opens up further avenues of exploration with hetero-

geneity in failure likelihoods. For current fault tolerance techniques, a future direction would

be to explore even more ways in which heterogeneity can help to reduce the overheads of

resilience. For example, with checkpointing, more sophisticated encoding approaches for

diskless checkpointing could be evaluated for their feasibility in the presence of heterogene-

ity. Similarly, with replication, the investigation of reliability-aware speedups for partial and

higher degrees of replication is called for in the context of heterogeneous failure likelihoods,

based on the results in the first part of this dissertation. At the system level as well, there

are several research questions pertaining to job schedulers and resource managers that can

arise in the presence of resources with non-identical fault rates. One such research problem

would be to determine the level of responsibility assigned to the resource manager, since a

resource manager may be better suited to decide the level of fault tolerance for individual

jobs. Such research questions could radically overhaul the next generation of job schedulers

for large scale systems with heterogeneous failure likelihoods.

All in all, this dissertation demonstrates the significant potential of using heterogeneity-

awareness in making fault tolerance for current and future large scale systems more efficient

and cost effective.

118

Bibliography

[1] Abhinav Agrawal, Gabriel H Loh, and James Tuck. Leveraging near data processing
for high-performance checkpoint/restart. In Proceedings of the International Confer-
ence for High Performance Computing, Networking, Storage and Analysis, page 60.
ACM, 2017.

[2] Gene M Amdahl. Validity of the single processor approach to achieving large scale
computing capabilities. In Proceedings of the April 18-20, 1967, spring joint computer
conference, pages 483–485. ACM, 1967.

[3] Guillaume Aupy, Ana Gainaru, Valentin Honoré, Padma Raghavan, Yves Robert, and
Hongyang Sun. Reservation strategies for stochastic jobs. In 2019 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), pages 166–175. IEEE, 2019.

[4] Leonardo Bautista-Gomez, Seiji Tsuboi, Dimitri Komatitsch, Franck Cappello, Naoya
Maruyama, and Satoshi Matsuoka. Fti: high performance fault tolerance interface for
hybrid systems. In High Performance Computing, Networking, Storage and Analysis
(SC), 2011 International Conference for, pages 1–12. IEEE, 2011.

[5] Anne Benoit, Aurélien Cavelan, Franck Cappello, Padma Raghavan, Yves Robert, and
Hongyang Sun. Coping with silent and fail-stop errors at scale by combining replica-
tion and checkpointing. Journal of Parallel and Distributed Computing, 122:209–225,
2018.

[6] Anne Benoit, Aurélien Cavelan, Valentin Le Fèvre, and Yves Robert. Optimal check-
pointing period with replicated execution on heterogeneous platforms. PhD thesis,
INRIA, 2017.

[7] Anne Benoit, Thomas Hérault, Valentin Le Fèvre, and Yves Robert. Replication is
more efficient than you think. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, page 89. ACM, 2019.

[8] Keren Bergman, Shekhar Borkar, Dan Campbell, William Carlson, William Dally,
Monty Denneau, Paul Franzon, William Harrod, Kerry Hill, Jon Hiller, et al. Exascale
computing study: Technology challenges in achieving exascale systems. Defense Ad-
vanced Research Projects Agency Information Processing Techniques Office (DARPA
IPTO), Tech. Rep, 15, 2008.

119

[9] Wesley Bland, Peng Du, Aurelien Bouteiller, Thomas Herault, George Bosilca, and
Jack J Dongarra. Extending the scope of the checkpoint-on-failure protocol for forward
recovery in standard mpi. Concurrency and computation: Practice and experience,
25(17):2381–2393, 2013.

[10] Franck Cappello, Al Geist, Bill Gropp, Laxmikant Kale, Bill Kramer, and Marc Snir.
Toward exascale resilience. The International Journal of High Performance Comput-
ing Applications, 23(4):374–388, 2009.

[11] Henri Casanova, Yves Robert, Frédéric Vivien, and Dounia Zaidouni. Combining
process replication and checkpointing for resilience on exascale systems. PhD thesis,
INRIA, 2012.

[12] Aurélien Cavelan, Jiafan Li, Yves Robert, and Hongyang Sun. When amdahl meets
young/daly. In 2016 IEEE International Conference on Cluster Computing (CLUS-
TER), pages 203–212. IEEE, 2016.

[13] Zizhong Chen, Graham E Fagg, Edgar Gabriel, Julien Langou, Thara Angskun,
George Bosilca, and Jack Dongarra. Fault tolerant high performance computing
by a coding approach. In Proceedings of the tenth ACM SIGPLAN symposium on
Principles and practice of parallel programming, pages 213–223. ACM, 2005.

[14] Xiaolong Cui. Adaptive and Power-aware Fault Tolerance for Future Extreme-scale
Computing. PhD thesis, University of Pittsburgh, 2018.

[15] Xiaolong Cui, Zaeem Hussain, Taieb Znati, and Rami Melhem. A systematic fault-
tolerant computational model for both crash failures and silent data corruption. In
2018 21st Conference on Innovation in Clouds, Internet and Networks and Workshops
(ICIN), pages 1–8. IEEE, 2018.

[16] Xiaolong Cui, Bryan Mills, Taieb Znati, and Rami Melhem. Shadow replication: An
energy-aware, fault-tolerant computational model for green cloud computing. Ener-
gies, 7(8):5151–5176, 2014.

[17] Xiaolong Cui, Bryan N. Mills, Taieb Znati, and Rami G. Melhem. Shadows on the
cloud: An energy-aware, profit maximizing resilience framework for cloud computing.
In CLOSER, 2014.

120

[18] Xiaolong Cui, Taieb Znati, and Rami Melhem. Adaptive and power-aware resilience
for extreme-scale computing. In Scalable Computing and Communications (ScalCom),
2016 Intl IEEE Conferences, pages 671–679. IEEE, 2016.

[19] Xiaolong Cui, Taieb Znati, and Rami Melhem. Rejuvenating shadows: Fault tol-
erance with forward recovery. In High Performance Computing and Communica-
tions(HPCC), 2017 IEEE 19th International Conference on. IEEE, 2017.

[20] John T Daly. A higher order estimate of the optimum checkpoint interval for restart
dumps. Future generation computer systems, 22(3):303–312, 2006.

[21] Sheng Di. Logaider. Avaliable at https://github.com/disheng222/LogAider.

[22] Sheng Di, Hanqi Guo, Rinku Gupta, Eric R Pershey, Marc Snir, and Franck Cappello.
Exploring properties and correlations of fatal events in a large-scale hpc system. IEEE
Transactions on Parallel and Distributed Systems, 2018.

[23] Sheng Di, Rinku Gupta, Marc Snir, Eric Pershey, and Franck Cappello. Logaider: A
tool for mining potential correlations of hpc log events. In Cluster, Cloud and Grid
Computing (CCGRID), 2017 17th IEEE/ACM International Symposium on, pages
442–451. IEEE, 2017.

[24] Sheng Di, Yves Robert, Frédéric Vivien, and Franck Cappello. Toward an optimal
online checkpoint solution under a two-level hpc checkpoint model. IEEE Transactions
on Parallel and Distributed Systems, 28(1):244–259, 2017.

[25] Nosayba El-Sayed and Bianca Schroeder. Reading between the lines of failure logs:
Understanding how hpc systems fail. In Dependable Systems and Networks (DSN),
2013 43rd Annual IEEE/IFIP International Conference on, pages 1–12. IEEE, 2013.

[26] James Elliott, Kishor Kharbas, David Fiala, Frank Mueller, Kurt Ferreira, and Chris-
tian Engelmann. Combining partial redundancy and checkpointing for hpc. In 2012
IEEE 32nd International Conference on Distributed Computing Systems, pages 615–
626. IEEE, 2012.

[27] Christian Engelmann and Swen Böhm. Redundant execution of hpc applications with
mr-mpi. In Proceedings of the 10th IASTED International Conference on Parallel and
Distributed Computing and Networks (PDCN), pages 15–17, 2011.

121

https://github.com/disheng222/LogAider

[28] Charles R Ferenbaugh. Pennant: an unstructured mesh mini-app for advanced
architecture research. Concurrency and Computation: Practice and Experience,
27(17):4555–4572, 2015.

[29] Kurt Ferreira, Jon Stearley, James H Laros, Ron Oldfield, Kevin Pedretti, Ron
Brightwell, Rolf Riesen, Patrick G Bridges, and Dorian Arnold. Evaluating the vi-
ability of process replication reliability for exascale systems. In High Performance
Computing, Networking, Storage and Analysis (SC), 2011 International Conference
for, pages 1–12. IEEE, 2011.

[30] Ankita Garg. Real-time linux kernel scheduler. Linux Journal, 2009(184):2, 2009.

[31] Cijo George and Sathish Vadhiyar. Fault tolerance on large scale systems using adap-
tive process replication. IEEE Transactions on Computers, 64(8):2213–2225, 2015.

[32] Neha Gholkar, Frank Mueller, Barry Rountree, and Aniruddha Marathe. Pshifter:
Feedback-based dynamic power shifting within hpc jobs for performance. In Pro-
ceedings of the 27th International Symposium on High-Performance Parallel and Dis-
tributed Computing, pages 106–117, 2018.

[33] Leonardo Arturo Bautista Gomez, Naoya Maruyama, Franck Cappello, and Satoshi
Matsuoka. Distributed diskless checkpoint for large scale systems. In Proceedings
of the 2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid
Computing, pages 63–72. IEEE Computer Society, 2010.

[34] Narasimha Raju Gottumukkala, Chokchai Box Leangsuksun, Narate Taerat, Raja
Nassar, and Stephen L Scott. Reliability-aware resource allocation in hpc systems.
In 2007 IEEE International Conference on Cluster Computing, pages 312–321. IEEE,
2007.

[35] Saurabh Gupta, Tirthak Patel, Christian Engelmann, and Devesh Tiwari. Failures in
large scale systems: long-term measurement, analysis, and implications. In Proceed-
ings of the International Conference for High Performance Computing, Networking,
Storage and Analysis, page 44. ACM, 2017.

[36] Saurabh Gupta, Devesh Tiwari, Christopher Jantzi, James Rogers, and Don Maxwell.
Understanding and exploiting spatial properties of system failures on extreme-scale
hpc systems. In Dependable Systems and Networks (DSN), 2015 45th Annual
IEEE/IFIP International Conference on, pages 37–44. IEEE, 2015.

122

[37] Thomas Herault and Yves Robert. Fault-tolerance techniques for high-performance
computing. Springer, 2015.

[38] M Heroux and S Hammond. Minife: Finite element solver, 2019.

[39] Michael A Heroux. Hpccg solver package. Technical report, Sandia National Labora-
tories, 2007.

[40] Michael Allen Heroux. Mantevo 3.0 overview. Technical report, Sandia National
Lab.(SNL-NM), Albuquerque, NM (United States), 2015.

[41] Zaeem Hussain, Xiaolong Cui, Taieb Znati, and Rami Melhem. Color: Co-located res-
cuers for fault tolerance in hpc systems. In 2018 IEEE 24th International Conference
on Parallel and Distributed Systems (ICPADS), pages 569–576. IEEE, 2018.

[42] Zaeem Hussain, Taieb Znati, and Rami Melhem. Partial redundancy in hpc systems
with non-uniform node reliabilities. In High Performance Computing, Networking,
Storage and Analysis (SC), 2018 International Conference for. IEEE, 2010.

[43] Zaeem Hussain, Taieb Znati, and Rami Melhem. Partial redundancy in hpc systems
with non-uniform node reliabilities. In SC18: International Conference for High Per-
formance Computing, Networking, Storage and Analysis, pages 566–576. IEEE, 2018.

[44] Zaeem Hussain, Taieb Znati, and Rami Melhem. Optimal placement of in-memory
checkpoints under heterogeneous failure likelihoods. In 2019 IEEE International Par-
allel and Distributed Processing Symposium (IPDPS), pages 900–910. IEEE, 2019.

[45] Zaeem Hussain, Taieb Znati, and Rami Melhem. Enhancing reliability-aware speedup
modeling via replication. In 2020 IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN). IEEE, 2020.

[46] Hui Jin, Yong Chen, Huaiyu Zhu, and Xian-He Sun. Optimizing hpc fault-tolerant
environment: An analytical approach. In 2010 39th International Conference on
Parallel Processing, pages 525–534. IEEE, 2010.

[47] Saurabh Kadekodi, KV Rashmi, and Gregory R Ganger. Cluster storage systems gotta
have heart: improving storage efficiency by exploiting disk-reliability heterogeneity.
In 17th {USENIX} Conference on File and Storage Technologies ({FAST} 19), pages
345–358, 2019.

123

[48] Ian Karlin, Jeff Keasler, and JR Neely. Lulesh 2.0 updates and changes. Technical
report, Lawrence Livermore National Laboratory (LLNL), Livermore, CA, 2013.

[49] Richard E Korf. Multi-way number partitioning. In IJCAI, pages 538–543, 2009.

[50] Argonne National Laboratory. Argonne mira logs. Avaliable at https://reports.

alcf.anl.gov/data/mira.html.

[51] Gary Lakner, Brant Knudson, et al. IBM system blue gene solution: blue gene/Q
system administration. IBM Redbooks, 2013.

[52] Arnaud Lefray, Thomas Ropars, and André Schiper. Replication for send-
deterministic mpi hpc applications. In Proceedings of the 3rd Workshop on Fault-
tolerance for HPC at extreme scale, pages 33–40. ACM, 2013.

[53] Yudan Liu, Raja Nassar, Chokchai Leangsuksun, Nichamon Naksinehaboon, Mihaela
Paun, and Stephen L Scott. An optimal checkpoint/restart model for a large scale
high performance computing system. In Parallel and Distributed Processing, 2008.
IPDPS 2008. IEEE International Symposium on, pages 1–9. IEEE, 2008.

[54] Jean-Pierre Lozi, Baptiste Lepers, Justin Funston, Fabien Gaud, Vivien Quéma, and
Alexandra Fedorova. The linux scheduler: a decade of wasted cores. In Proceedings
of the Eleventh European Conference on Computer Systems, page 1. ACM, 2016.

[55] Esteban Meneses, Xiang Ni, and Laxmikant V Kalé. Design and analysis of a message
logging protocol for fault tolerant multicore systems. Parallel Programming Labora-
tory, Department of Computer Science, University of Illinois at Urbana-Champaign,
Tech. Rep, pages 11–30, 2011.

[56] Wil Michiels, Jan Korst, Emile Aarts, and Jan Van Leeuwen. Performance ratios
for the differencing method applied to the balanced number partitioning problem.
In Annual Symposium on Theoretical Aspects of Computer Science, pages 583–595.
Springer, 2003.

[57] Bryan Mills, Taieb Znati, and Rami Melhem. Shadow computing: An energy-aware
fault tolerant computing model. In 2014 International Conference on Computing,
Networking and Communications (ICNC), pages 73–77. IEEE, 2014.

[58] Adam Moody. Overview of the scalable checkpoint/restart (scr) library. S&T Principal
Directorate—Computation Directorate, 2009.

124

https://reports.alcf.anl.gov/data/mira.html
https://reports.alcf.anl.gov/data/mira.html

[59] Adam Moody, Greg Bronevetsky, Kathryn Mohror, and Bronis R De Supinski. Design,
modeling, and evaluation of a scalable multi-level checkpointing system. In High
Performance Computing, Networking, Storage and Analysis (SC), 2010 International
Conference for, pages 1–11. IEEE, 2010.

[60] Ahuva W. Mu’alem and Dror G. Feitelson. Utilization, predictability, workloads, and
user runtime estimates in scheduling the ibm sp2 with backfilling. IEEE transactions
on parallel and distributed systems, 12(6):529–543, 2001.

[61] Nithin Nakka and Alok Choudhary. Failure data-driven selective node-level duplica-
tion to improve mttf in high performance computing systems. In High Performance
Computing Systems and Applications, pages 304–322. Springer, 2010.

[62] DOE Office of Science. Exascale computing project update, 2017. Avaliable at
https://science.energy.gov/~/media/ascr/ascac/pdf/meetings/201712/ECP_

Update_ASCAC_20171220.pdf.

[63] Ivy Bo Peng, Stefano Markidis, and Erwin Laure. The cost of synchronizing imbal-
anced processes in message passing systems. In Cluster Computing (CLUSTER), 2015
IEEE International Conference on, pages 408–417. IEEE, 2015.

[64] Ivy Bo Peng, Stefano Markidis, Erwin Laure, Gokcen Kestor, and Roberto
Gioiosa. Idle period propagation in message-passing applications. In High Per-
formance Computing and Communications; IEEE 14th International Conference
on Smart City; IEEE 2nd International Conference on Data Science and Systems
(HPCC/SmartCity/DSS), 2016 IEEE 18th International Conference on, pages 937–
944. IEEE, 2016.

[65] James S Plank, Kai Li, and Michael A Puening. Diskless checkpointing. IEEE Trans-
actions on Parallel and Distributed Systems, 9(10):972–986, 1998.

[66] Barry Rountree, David K Lownenthal, Bronis R De Supinski, Martin Schulz, Vin-
cent W Freeh, and Tyler Bletsch. Adagio: making dvs practical for complex hpc
applications. In Proceedings of the 23rd international conference on Supercomputing,
pages 460–469. ACM, 2009.

[67] Jon Stearley, Kurt Ferreira, David Robinson, Jim Laros, Kevin Pedretti, Dorian
Arnold, Patrick Bridges, and Rolf Riesen. Does partial replication pay off? In
Dependable Systems and Networks Workshops (DSN-W), 2012 IEEE/IFIP 42nd In-
ternational Conference on, pages 1–6. IEEE, 2012.

125

https://science.energy.gov/~/media/ascr/ascac/pdf/meetings/201712/ECP_Update_ASCAC_20171220.pdf
https://science.energy.gov/~/media/ascr/ascac/pdf/meetings/201712/ECP_Update_ASCAC_20171220.pdf

[68] Omer Subasi, Gokcen Kestor, and Sriram Krishnamoorthy. Toward a general theory
of optimal checkpoint placement. In Cluster Computing (CLUSTER), 2017 IEEE
International Conference on, pages 464–474. IEEE, 2017.

[69] Omer Subasi, Osman Unsal, and Sriram Krishnamoorthy. Automatic risk-based se-
lective redundancy for fault-tolerant task-parallel hpc applications. In Proceedings of
the Third International Workshop on Extreme Scale Programming Models and Mid-
dleware, page 2. ACM, 2017.

[70] Omer Subasi, Gulay Yalcin, Ferad Zyulkyarov, Osman Unsal, and Jesus Labarta.
A runtime heuristic to selectively replicate tasks for application-specific reliability
targets. In Cluster Computing (CLUSTER), 2016 IEEE International Conference on,
pages 498–505. IEEE, 2016.

[71] Omer Subasi, Gulay Yalcin, Ferad Zyulkyarov, Osman Unsal, and Jesus Labarta.
Designing and modelling selective replication for fault-tolerant hpc applications. In
Cluster, Cloud and Grid Computing (CCGRID), 2017 17th IEEE/ACM International
Symposium on, pages 452–457. IEEE, 2017.

[72] Dan Tsafrir, Yoav Etsion, and Dror G Feitelson. Backfilling using system-generated
predictions rather than user runtime estimates. IEEE Transactions on Parallel and
Distributed Systems, 18(6):789–803, 2007.

[73] Wikipedia. Inequality of arithmetic and geometric means.

[74] Wikipedia. Laplace’s method.

[75] Benjamin Yakir. The differencing algorithm ldm for partitioning: a proof of a con-
jecture of karmarkar and karp. Mathematics of Operations Research, 21(1):85–99,
1996.

[76] John W Young. A first order approximation to the optimum checkpoint interval.
Communications of the ACM, 17(9):530–531, 1974.

[77] Jilian Zhang, Kyriakos Mouratidis, and HweeHwa Pang. Heuristic algorithms for
balanced multi-way number partitioning. In IJCAI Proceedings-International Joint
Conference on Artificial Intelligence, volume 22, page 693, 2011.

[78] Fang Zheng, Hongfeng Yu, Can Hantas, Matthew Wolf, Greg Eisenhauer, Karsten
Schwan, Hasan Abbasi, and Scott Klasky. Goldrush: resource efficient in situ scientific

126

data analytics using fine-grained interference aware execution. In Proceedings of the
International Conference on High Performance Computing, Networking, Storage and
Analysis, pages 1–12, 2013.

[79] Gengbin Zheng, Xiang Ni, and Laxmikant V Kalé. A scalable double in-memory
checkpoint and restart scheme towards exascale. In Dependable Systems and Networks
Workshops (DSN-W), 2012 IEEE/IFIP 42nd International Conference on, pages 1–6.
IEEE, 2012.

[80] Gengbin Zheng, Lixia Shi, and Laxmikant V Kalé. Ftc-charm++: an in-memory
checkpoint-based fault tolerant runtime for charm++ and mpi. In Cluster Computing,
2004 IEEE International Conference on, pages 93–103. IEEE, 2004.

[81] Ziming Zheng and Zhiling Lan. Reliability-aware scalability models for high perfor-
mance computing. In 2009 IEEE International Conference on Cluster Computing and
Workshops, pages 1–9. IEEE, 2009.

[82] Ziming Zheng, Li Yu, and Zhiling Lan. Reliability-aware speedup models for parallel
applications with coordinated checkpointing/restart. IEEE Transactions on Comput-
ers, 64(5):1402–1415, 2015.

[83] Christopher Zimmer, Saurabh Gupta, Scott Atchley, Sudharshan S Vazhkudai, and
Carl Albing. A multi-faceted approach to job placement for improved performance
on extreme-scale systems. In SC’16: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, pages 1015–1025.
IEEE, 2016.

[84] Christopher Zimmer, Don Maxwell, Stephen McNally, Scott Atchley, and Sudhar-
shan S Vazhkudai. Gpu age-aware scheduling to improve the reliability of leadership
jobs on titan. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage, and Analysis, page 7. IEEE Press, 2018.

127

	Title Page
	Committee Membership Page
	Abstract
	Table of Contents
	List of Tables
	1. Catastrophic Failures with Full Checkpoint Placement Schemes
	2. Optimal Processors Counts
	3. Average idle time as a percentage of total execution time
	4. Impact of Shadow Compute Thread on Normalized Execution Time
	5. Node and System Level MTBFs (h: hours, d: days, y: years)
	6. % Waste Improvement over Random Allocation for Small System B

	List of Figures
	1. Traditional Coordinated C/R vs Pure replicationferreira2011evaluating.
	2. Spatial distribution of failures in the Titan Supercomputergupta2017failures.
	3. Scope of this dissertation.
	4. Average overhead due to catastrophic failures, based on the multilevel checkpoint modeldi2017toward using 2 levels. Projected exascale system paramters (taken from agrawal2017leveraging): Number of nodes = 100,000, Node MTBF = 5 years, In-memory (Level 1) checkpoint cost = 9 seconds.
	5. Some examples of full in-memory checkpoint placement schemes over 8 nodes. An arrow starts at the node whose checkpoint is to be stored in another node and ends at the node where that checkpoint is placed.
	6. Optimal checkpoint placement scheme for nodes with different reliabilities.
	7. Decomposing a larger ring into a pair and a ring of smaller size.
	8. Breaking two rings of 3 nodes each into three pairs of nodes
	9. XOR encoded checpointing with a groups size of 4 (Figure taken from moody2009overview).
	10. A histogram of the number of failures experienced by nodes in the system.
	11. Number of catstrophic failure experienced by the different grouping schemes.
	12. Average behavior between consecutive failures.
	13. Optimal number of processors when no replication is employed. The actual optimal value is calculated by writing Hnorep(P) using Equation 3.1 and numerically locating its minimum. Individual processor MTBF = 10 years while C=R=D=300 seconds.
	14. Optimal number of processors when no replication is employed. C=R=D=300 seconds. The scale of y-axis is different for the three plots.
	15. Optimal number of processors with dual replication. Checkpointing cost = 300 seconds, same as in Figure 14.
	16. Optimal number of processors with dual replication, as obtained by the simulation as well as the first order approximation (Equation 3.11). X-axis range is from =0 to =10-10. Individual processor MTBF = 10 years while C=R=D=300 seconds.
	17. Optimal number of processors with dual replication for a perfectly parallel workload. Checkpointing cost = 300 seconds.
	18. Optimal number of processors with replication. C=R=D=300 seconds. Scale of y-axis is different for each plot.
	19. Different possibilities of how the performance of replication and no replication compare to each other as the number of processors increases.
	20. The normalized expected completion time, H(P*norep) of no replication and replication. For both figures, C=300 seconds. Note: Y-axis scale is different in the two plots.
	21. Normalized expected completion time versus the number of processors. Node MTBF = 10 years, while C=R=D=300 seconds. Note: Y-axis scale is different in the two plots.
	22. Selection and pairing of replicas to maximize reliability.
	23. Normalized Expected Completion Time for different values of r. Node MTBF = 5 years. Checkpointing cost is taken to be 60 seconds. =0 and also =0.
	24. Expected Completion Time for different values of r for exponential node distribution. Node MTBF = 5 years, =0.00001, Checkpointing cost = 60 seconds, =0.2
	25. Expected Completion Time for different values of r with Weibull node failures. For the distribution, shape parameter = 0.7 and MTBF = 5 years. Checkpointing cost = 60 seconds and ==0.
	26. Possible cases of partial replication for system with Good and Bad nodes. Nodes within the replicated set are paired according to the arrangement depicted in Figure 22.
	27. Execution time of different partially replicated executions. NG=106, NB=8105, g=1/50 years, C=60 seconds and ==0. Y-axis scale is different for each of the two figures.
	28. Expected time vs % of Bad Nodes in the system. N=2106. Bad Node MTBF = 5 years. Other parameters are the same as in Fig 27.
	29. Expected time for different values of when Bad Node MTBF = 5 years. Other parameters are the same as in Figure 27. The expected time for no replication using all system nodes is much higher than all other schemes so it is omitted from the plot.
	30. Execution time of different replication schemes with Weibull node failures. NG=104, NB=8103 and Good node MTBF = 50 years. The other parameters are the same as in Fig. 27.
	31. Expected completion time versus r for different values of . The values of other parameters are: =0, C=30 seconds and each category contains 100k nodes, for a total of 500k system nodes.
	32. Difference between Pure replication, which requires twice the original number of processors, and co-located shadows, which do not require extra processors.
	33. Model based performance of co-located shadows vs traditional C/R and replication. Both the checkpointing and leaping cost are taken to be 100 seconds each. Reboot time is taken as 300 seconds.
	34. (a) Message transfer when Main i sends a message to Main j. (b) Message forwarding from a main to its shadow. The shadow's Helper thread receives the forwarded message and places it immediately into its local buffer (push() operation. The slower original thread at the shadow reads the data when it reaches the point where it needs that message (pop() operation).
	35. Leaping in case of buffer overflow
	36. Performance with no and single failure injected at different point of execution, normalized by completion time of original application under no failures.
	37. Weak scaling (*LULESH was tested on 125, 216, 512 and 1000 cores)
	38. Example demonstrating the difference between MaxRel and MinWaste heuristics over two non-replicated jobs.
	39. Some possible allocations of nodes to a replicated and a non-replicated job.
	40. Possible node allocations among a pair of replicated and non-replicated jobs, when maximizing reliability. The non-replicated job always gets a contiguous set of nodes.
	41. Relative improvement/degradation in waste of allocations made by the failure-aware heuristics. Note the difference in the scale of y-axis in the two plots.
	42. Job statistics from the Mira tracedidatasite.
	43. Relative waste improvement using simulation over the Mira job trace.
	44. Distribution of failures over the midplanes.
	45. Relative waste improvement for systems with two equal-sized classes of nodes. For the lowest system MTBF, node MTBFs were 5 and 50 years. The system in the middle had nodes with MTBFs of 10 and 55 years, while the system on the right had nodes with 15 and 60 year MTBFs. The waste of each allocation was averaged over three runs.

	1.0 Introduction
	1.1 HPC Fault Tolerance Landscape
	1.2 Heterogeneity in System Failure Likelihoods
	1.3 Research Overview
	1.3.1 Improving the State of the Art in Fault Tolerance for HPC Systems
	1.3.1.1 Checkpointing
	1.3.1.2 Replication

	1.3.2 Leveraging Application Imbalance for Fault Tolerance
	1.3.3 Heterogeneity Aware Resource Managers
	1.3.4 Thesis Statement

	1.4 Contributions
	1.4.1 Organization

	2.0 Optimal Placement of In-Memory Checkpoints under Heterogeneous Failure Likelihoods
	2.1 Introduction
	2.2 Full In-Memory Checkpoints
	2.2.1 IID Node Failures
	2.2.2 Non-Identical Node Failures

	2.3 Encoded Checkpoint Grouping
	2.4 Validation
	2.4.1 Full Checkpoint Placement
	2.4.2 Encoded Checkpoints Grouping

	2.5 Related Work
	2.6 Summary

	3.0 Enhancing Reliability-Aware Speedup Modeling via Replication
	3.1 Introduction to Reliability-Aware Speedups
	3.2 Background
	3.2.1 Expected Time without Replication
	3.2.2 Expected Time with Replication

	3.3 Optimal Processor Count
	3.3.1 Without Replication
	3.3.2 Replication

	3.4 Performance comparison of Replication with No Replication
	3.4.1 Theoretical Analysis
	3.4.2 Empirical Evaluation

	3.5 Overhead of Replication
	3.6 Related Work
	3.7 Summary

	4.0 Partial Replication under Heterogeneous Failure Likelihoods
	4.1 Motivation Behind Partial Replication
	4.2 Replica Selection and Pairing
	4.3 Expected Completion Time
	4.3.1 Job Model
	4.3.2 Overhead Model for Partial Replication
	4.3.3 Combining with Checkpointing
	4.3.4 Optimization Problem

	4.4 Results
	4.4.1 System with IID Nodes
	4.4.1.1 Exponential Distribution
	4.4.1.2 Weibull Distribution

	4.4.2 System with Two Types of Nodes
	4.4.2.1 Exponential Distribution
	4.4.2.2 Weibull Distribution

	4.5 Systems beyond two categories of nodes
	4.6 Related Work
	4.7 Summary

	5.0 Co-located Shadows for Fault Tolerance
	5.1 Nature of HPC Workloads
	5.2 Co-Located Shadows Model
	5.2.1 Basic Setup
	5.2.2 Failure Free Execution
	5.2.3 Recovery from Failures
	5.2.4 Periodic Leaping
	5.2.5 Analysis

	5.3 Implementation Background
	5.3.1 Process Management
	5.3.2 Message Passing and Consistency
	5.3.3 Failure Recovery
	5.3.4 Buffer Overflow

	5.4 Processor Sharing to Utilize Idle Times
	5.4.1 Processor Yielding
	5.4.2 Behavior of Shadow Process

	5.5 Evaluation
	5.5.1 Experimental Setup
	5.5.2 Failure Injection
	5.5.3 Results

	5.6 Related Work
	5.7 Summary

	6.0 Failure-Aware Resource Allocation under Heterogeneous Failure Likelihoods
	6.1 Introduction
	6.2 Making Resource Allocation Failure-Aware
	6.2.1 Problem Statement
	6.2.2 Maximizing Reliability
	6.2.3 Minimizing Waste
	6.2.4 Discussion

	6.3 Handling Job with Replication
	6.3.1 Results on Optimizing Reliability
	6.3.2 Results on Minimizing Expected Waste
	6.3.3 Allocation in presence of replicated job

	6.4 Empirical Results
	6.4.1 Validation
	6.4.2 Job Trace Description
	6.4.3 Simulation
	6.4.4 Analysis with Actual Failure Data
	6.4.5 Replication
	6.4.6 Discussion

	6.5 Related Work
	6.6 Summary

	7.0 Conclusion and Future Directions
	Bibliography

