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Abstract
Study success includes the successful completion of a first degree in higher education to 
the largest extent, and the successful completion of individual learning tasks to the small-
est extent. Factors affecting study success range from individual dispositions (e.g., motiva-
tion, prior academic performance) to characteristics of the educational environment (e.g., 
attendance, active learning, social embeddedness). Recent developments in learning ana-
lytics, which are a socio-technical data mining and analytic practice in educational con-
texts, show promise in enhancing study success in higher education, through the collection 
and analysis of data from learners, learning processes, and learning environments in order 
to provide meaningful feedback and scaffolds when needed. This research reports a sys-
tematic review focusing on empirical evidence, demonstrating how learning analytics have 
been successful in facilitating study success in continuation and completion of students’ 
university courses. Using standardised steps of conducting a systematic review, an initial 
set of 6220 articles was identified. The final sample includes 46 key publications. The find-
ings obtained in this systematic review suggest that there are a considerable number of 
learning analytics approaches which utilise effective techniques in supporting study suc-
cess and students at risk of dropping out. However, rigorous, large-scale evidence of the 
effectiveness of learning analytics in supporting study success is still lacking. The tested 
variables, algorithms, and methods collected in this systematic review can be used as a 
guide in helping researchers and educators to further improve the design and implementa-
tion of learning analytics systems.
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Introduction

To date, the study of learning analytics has tended to evolve exponentially from the 
early 2010s in the areas of education and psychology, as well as computing and data 
science (Prieto et  al. 2019). As a result, while the concept of learning analytics is 
vaguely defined, it sees a plethora of conceptual variations, including school analyt-
ics (Sergis and Sampson 2016), teacher or teaching analytics (Sergis and Sampson 
2017), academic analytics (Long and Siemens 2011), assessment analytics (Nouira 
et al. 2019), social learning analytics (Buckingham Shum and Ferguson 2012), or mul-
timodal learning analytics (Blikstein and Worsley 2016). For this systematic literature 
review with a specific focus on learning analytics in higher education and its link to 
study success, learning analytics are defined as “the use, assessment, elicitation and 
analysis of static and dynamic information about learners and learning environments, 
for the near real-time modelling, prediction and optimisation of learning processes, 
and learning environments, as well as for educational decision-making” (Ifenthaler 
2015, p. 447).

The success of learning analytics in improving students’ learning has yet to be 
proven systematically and empirically (Lodge and Corrin 2017). There have been a 
number of research efforts, some of which focused on various learning analytics tools 
(Atif et  al. 2013), some on practices (Sclater et  al. 2016) and policies (Tsai et  al. 
2018), and some, which related to learning analytics system adoption at school-level, 
within higher education institutions, and at national level (Buckingham Shum and 
McKay 2018; Ifenthaler 2017). Thus, the increased importance of data in education 
has led to an upsurge in primary research publications in learning analytics (Prieto 
et al. 2019), which indicate that the analysis of digital traces of learning and teaching 
may reveal benefits for learners, teachers, learning environments, or the organisation 
(Gašević et al. 2015). Although there are initial systematic reviews on learning analyt-
ics, such as on policy recommendations for learning analytics (Ferguson et al. 2016), 
identification of learning analytics research objectives and challenges (Papamitsiou 
and Economides 2014), learning analytics in the context of distance education (Kilis 
and Gulbahar 2016), and more recently on the efficiency of learning analytics interven-
tions (Larrabee Sønderlund et  al. 2018), there exists no current and comprehensive 
systematic review focusing on learning analytics for supporting study success.

Study success includes the successful completion of a first degree in higher educa-
tion to the largest extent, and the successful completion of individual learning tasks to 
the smallest extent (Sarrico 2018). Factors affecting study success range from individ-
ual dispositions and characteristics such as age, gender, motivation or prior academic 
performance to features of the educational environment, such as curriculum design, 
learning tasks or social components (Bijsmans and Schakel 2018; Tinto 2005). The 
essence of study success is to capture any positive learning satisfaction, improvement, 
or experience during learning. Pistilli and Arnold (2010) have been among the first 
researchers to identify the potentials of learning analytics for supporting study success.

However, it is difficult for educational researchers, practitioners, and decision mak-
ers to develop and implement learning analytics strategies and systems that provide the 
greatest student success (Gašević et al. 2016). Therefore, the purpose of this article is 
to identify empirical evidence demonstrating how learning analytics have been suc-
cessful in facilitating study success in higher education.
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Theoretical framework

Study success

Even though many academic support programmes have been implemented (Padgett et al. 
2013), and research on study success is extensive (Attewell et  al. 2006; Bijsmans and 
Schakel 2018; Morosanu et al. 2010; Schmied and Hänze 2015), dropout rates in higher 
education remain at about 30% in the Organization for Economic Cooperation and Devel-
opment member countries (OECD 2019). Student dropout has consequences on different 
levels, such as for the individual, the higher education institution, and for society (Larsen 
et al. 2013). For example, dropouts often represent a waste of resources for the individual 
and society, as well as reflecting poorly on the quality of the higher education institution 
(In der Smitten and Heublein 2013).

Hence, the success of students at higher education institutions has been a global con-
cern for many years (Tinto 2005). Factors that contribute to student success, which may 
influence a student’s decision to discontinue higher education are various and complex 
(Tinto 1982, 2005). Important factors for dropouts that have been consistently found in 
international studies include the choice of the wrong study programme, lack of motivation, 
personal circumstances, an unsatisfying first-year experience, lack of university support 
services, and academic unpreparedness (Heublein 2014; Thomas 2002; Willcoxson et al. 
2011; Yorke and Longden 2008). Moreover, there are several theoretical perspectives and 
models of student success in higher education (Bean and Metzner 1985; Rovai 2003; Tinto 
1982), and many share common factors, even though their emphasis varies. Such com-
mon factors, which are related to study success include students’ sociodemographic factors 
(e.g., gender, ethnicity, family background), cognitive capacity, or prior academic perfor-
mance (e.g., grade point average [GPA]), and individual attributes (e.g., personal traits, and 
motivational or psychosocial contextual influences) as well as course related factors such 
as active learning and attention or environmental factors related to supportive academic 
and social embeddedness (Bijsmans and Schakel 2018; Brahm et al. 2017; Remedios et al. 
2008; Tinto 2017). To sum up, the essence of study success is to capture any positive learn-
ing satisfaction, academic improvement, or social experience in higher education. The pos-
sibility to collect and store data for the above mentioned factors and combining them in 
(near) real-time analysis opens up advanced evidence-based opportunities to support study 
success utilising meaningful interventions (Pistilli and Arnold 2010).

Learning analytics

Early approaches of learning analytics were limited in analysing trace-data or web-sta-
tistics in order to describe learner behaviour in online learning environments (Veenman 
2013). With increased investigation of educational data, potentials for a broader educa-
tional context have been recognised, such as the identification of potential dropouts from 
study programmes (Sclater et  al. 2016). Meanwhile, an extensive diversification of the 
initial learning analytics approaches can be documented (Prieto et al. 2019). These learn-
ing analytics approaches apply various methodologies, such as descriptive, predictive, and 
prescriptive analytics to offer different insights into learning and teaching (Berland et al. 
2014). Descriptive analytics use data obtained from sources such as course assessments, 
surveys, student information systems, learning management system activities and forum 
interactions mainly for reporting purposes. Predictive analytics utilise similar data from 
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those sources and attempt to measure onward learning success or failure. Prescriptive ana-
lytics deploy algorithms mainly to predict study success and whether students will com-
plete courses, as well as recommending any immediate interventions necessary (Baker and 
Siemens 2015). The main motivations of utilising learning analytics for higher education 
institutions include (a) improving students’ learning and motivation, thus reducing dropout 
rate (or inactivity) (Colvin et al. 2015; Glick et al. 2019), and (b) attempting to improve the 
learner’s learning process by providing adaptive learning pathways toward specific goals 
set by the curriculum, teacher, or student (Ifenthaler et al. 2019). However, the success of 
learning analytics in improving higher education students’ learning and success has yet to 
be proven systematically. Only a few studies have tried to address this but limited evidence 
is shown (Suchithra et al. 2015). Nevertheless, higher education institutions are collecting 
and storing educational data (i.e., factors related to study succuss) which may be utilised 
through learning analytics systems for supporting study success.

Purpose of this systematic review and research questions

Rigorous empirical evidence on the successful usage of learning analytics for support-
ing and improving students’ learning and success in higher education is lacking for the 
large-scale adoption of learning analytics (Marzouk et al. 2016). While higher education 
institutions still lack the organisational, technical, and staff capabilities for the sustainable 
and effective implementation of learning analytics systems (Ifenthaler 2017; Leitner et al. 
2019), only very few empirically-tested learning analytics systems exist (Rienties et  al. 
2016). Another serious concern related to learning analytics is the ethically responsible and 
appropriate use of educational data (Scholes 2016; Slade and Prinsloo 2013; West et  al. 
2016), respecting data protection regulations (e.g., EU-GDPR) and privacy principles of all 
involved stakeholders (Ifenthaler and Schumacher 2016, 2019; Pardo and Siemens 2014). 
Another well advanced line of research in learning analytics focuses on the design of dash-
boards or broader visualisations of information from data analytics for supporting learning 
and teaching (Park and Jo 2015; Roberts et al. 2017). However, neither research includes a 
complete and detailed review of existing evidence on how learning analytics may contrib-
ute toward study success at higher education institutions.

Therefore, the purpose of this systematic literature review was to identify empirical evi-
dence demonstrating how learning analytics have been successful in facilitating study suc-
cess in the continuation and completion of students’ learning. In order to guide the system-
atic review, the following research questions were formulated:

1.	 What study success factors have been operationalised in relation to learning analytics?
2.	 What factors from learning analytics systems contribute toward study success?
3.	 Are there specific learning analytics interventions for supporting study success?

Method

The preparation of the systematic review followed the eight steps proposed by Okoli and 
Schabram (2010). In order to produce a scientifically rigorous systematic review, all eight 
steps are essential (Okoli 2015): (1) identity the purpose; (2) draft protocol and train the 
team; (3) apply practical screen; (4) search for literature; (5) extract data; (6) appraise qual-
ity; (7) synthesise studies; (8) write the review.
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Figure 1 shows the flow diagram of conducting the systematic review. The purpose of 
the systematic review has been presented above, including three research questions. The 
research team developed a research protocol, which described the individual steps of con-
ducting the systematic review. In order to validate the research protocol, a training session 
was conducted which focused on database handling, reviewing, and note-taking techniques. 
The practical screening followed the previously outlined inclusion criteria in the research 
protocol, namely (a) studies were situated in the higher education context, (b) were pub-
lished between January 2013 and December 2018 (2013 marks the rise of learning ana-
lytics research publications), (c) were published in English language, (d) had an abstract 
available, (e) presented either qualitative or quantitative analyses and findings, and (f) were 
peer-reviewed. Concerning overall consistency, the research team exchanged their findings 
for critical reflections. The literature search strictly followed the pre-defined research pro-
tocol, which included several steps:

(a)	 Identification of international databases: GoogleScholar, ACM Digital Library, Web of 
Science, Science Direct, ERIC (Education Resources Information Center), and DBLP 

Fig. 1   Flow diagram of the systematic literature review process
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(computer science bibliography). The initial search results included peer-reviewed 
journal articles, peer-reviewed conference papers, and peer-reviewed chapters.

(b)	 Specific search in relevant scientific peer-reviewed journals following the top 20 
ranked educational technology journals in GoogleScholar: Computers & Education, 
British Journal of Educational Technology, The International Review of Research in 
Open and Distributed Learning, The Internet and Higher Education, Journal of Edu-
cational Technology & Society, Journal of Computer Assisted Learning, Education 
and Information Technologies, Educational Technology Research and Development, 
Language Learning & Technology, Interactive Learning Environments, TechTrends, 
The Turkish Online Journal of Educational Technology, Learning@Scale, Learning, 
Media and Technology, International Journal of Artificial Intelligence in Education 
Computer Assisted Language Learning, IEEE Transactions on Learning Technologies 
International Conference on Technological Ecosystems for Enhancing Multiculturality, 
Australasian Journal of Educational Technology, as well as three additional pertinent 
journals—Journal of Learning Analytics, Computers in Human Behavior, and Tech-
nology, Knowledge and Learning. In addition, the Proceedings of the International 
Conference on Learning Analytics And Knowledge were included, as they include 
peer-reviewed contributions of the learning analytics community.

(c)	 The searches were conducted using the search terms ‘learning analytics’ in combina-
tion with ‘study success’, ‘retention’, ‘dropout prevention’, ‘course completion’, and 
‘attrition’ in titles, keywords, abstracts, and full texts. A total of N = 6220 publications 
were located.

(d)	 The detailed analysis of all identified publications included the removal of duplicates 
or publications with irrelevant topics (N = 3057) and an in-depth abstract search (focus-
sing on relevant concepts, e.g., learning analytics in combination with study success 
factors) resulted in a final set of N = 374 publications.

(e)	 The full text analysis of the remaining publications focused on the theoretical rigor of 
the key concepts (i.e., learning analytics, study success factors), substantiality of sam-
pling technique and methodological procedure, and the empirical evidence presented 
resulted in a final sample of N = 46 key publications for the systematic review (this 
included step six of conducting systematic reviews, i.e., appraise quality). Copies of 
all publications were stored and organised in a digital literature database.

Following the three research questions, relevant information was extracted from the key 
publications and organised in an annotated table. The research team used a quantitative 
and qualitative content analysis as well as reflective exchange to extract the findings of the 
key studies. This synthesis of key publications followed the triangulation approach, as the 
final studies included quantitative and qualitative studies (Okoli 2015). The final step of 
conducting the systematic review included the dissemination of the findings through the 
writing of this paper, which documents the findings and discussion of implications as well 
as limitations.
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Results

Summary of key publications

The 46 key publications included in this systematic review were conducted in the USA 
(n = 13), Australia (n = 5), UK (n = 3), Spain (n = 3), Brazil (n = 3), Ireland (n = 2), Tai-
wan (n = 2), The Netherlands (n = 2), South Korea (n = 2), China (n = 1), Columbia (n = 1), 
Czech Republic (n = 1), France (n = 1), Greece (n = 1), India (n = 1), Israel (n = 1), Japan 
(n = 1), Pakistan (n = 1), Saudi Arabia (n = 1) and Sweden (n = 1). Most articles were 
published in 2017 (16), followed by eight articles in 2018, 2016 (5), 2015 (6), 2014 
(8), and three in 2013. The average sample size of all key studies was M = 15,981.74 
(SD = 67,388.72; Min = 29; Max = 447,977).

The key publications utilised data analytics methods, such as binary logistic regression, 
decision tree analysis, support vector machines, logistic regression and classification sys-
tems. Many of the key studies applied several statistical methods in order to determine 
which one would achieve the most accurate prediction of the intended outcome variable. 
The main predictions forecasted in the key publications were on course completion, grades 
to be obtained, and dropout rates. Table  1 provides a summary of the key publications 
focusing on learning analytics for supporting study success and includes information about 
the author(s), the country in which the study was conducted, study sample characteristics, 
measurement variables, the key aim of the study, operationalisation of study success meas-
ure, and applied interventions. The research team also evaluated the overall research rig-
our (categorised as weak; moderate; strong) of each of the key publications with regard to 
the definition of study success and learning analytics (theoretical rigour), the tested sam-
ple, variables and methods (methodological rigour), rigour of findings and implications 
(see Table 1). The average evaluation of the individual categories resulted in the overall 
research rigour score. None of the key publications were rated as strong research rigour 
(11 weak; 35 moderate), mainly because of the missing operationalisation of study success, 
lack of precise methodological approaches or limited sample size.

Conceptualisation of study success

Study success was the central element in our systematic review and we included only those 
papers that were centred on supporting study success, as can be observed by our search 
terms ‘study success’ or ‘course completion’ as positive aspects of increasing study suc-
cess and ‘attrition’ or ‘dropout’ as negative aspects which require the reduction thereof. 
Different conceptualisations of study success were provided in the articles, including the 
more precise descriptions, with positive factors of study success defined, for example, as 
‘course completion’ (n = 7) and ‘student retention’ (n = 1) and negative factors utilising 
terms relating to attrition or dropout, such as ‘student at-risk’ or ‘dropout’ (n = 14), ‘loss 
of academic status’ (n = 2), and ‘attrition’ (n = 1). Other generalised or more abstract terms 
indicating study success (or lack thereof) were also utilised, and predicted factors includ-
ing ‘student performance’ (n = 9), ‘student learner behaviour’ (n = 1), ‘low performance’, 
‘under-achieving students’ (n = 4), ‘students’ achievements and failures’ (n = 1), ‘student 
(dis)engagement and learning outcomes’ (n = 6), ‘success’ (n = 1), ‘student online behav-
iour’ (n = 1), ‘academic achievement’ (n = 1), ‘correctness of answers’ (n = 1), and ‘grades’ 
(n = 1).
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In the key publications, the above-mentioned study success factors are presented mainly 
in the keywords, or briefly in the abstract and introduction. The remainder of the articles 
are focused on utilising different data analytics methods in order to make accurate predic-
tions. Analysis and evaluations are presented accordingly and are finalised with how accu-
rate the algorithms were. Overall, throughout the articles, the publications lack an in-depth 
discussion on the relevance of the obtained findings in relation to study success factors. In 
the articles’ implications and conclusions, study success is again, rarely reinstated and dis-
cussed. Instead, the focus tends to be on the accuracy of the algorithms.

Factors contributing toward study success

A number of factors have been identified in the key publications as contributing to study 
success and can be organised in two categories: (1) predictors and (2) visualisation.

Predictors for study success

The application of predictive algorithms forms a significant part of the key publications 
(see Table 1). One set of predictors is based on data collected through online behaviour, 
mainly logfiles and trace-data. This includes forum interactions (e.g., posts, replies, length 
of posts) (Andersson et  al. 2016; Cambruzzi et  al. 2015; Guerrero-Higueras et  al. 2018; 
Seidel and Kutieleh 2017), engagement with learning artefacts (e.g., ePortfolio, lecture 
slides, videos, tasks, self-assessments) (Aguiar et al. 2014; Carter et al. 2015; Conijn et al. 
2018; Gong et al. 2018; Okubo et al. 2017), and overall interaction with a digital learning 
environment based on logfiles (Hu et al. 2014; Labarthe et al. 2016). For example, Chai 
and Gibson (2015) use login frequency, access of materials, submission of assignments, 
and enrolment data for predicting a student’s attrition risk. Similarly, data from websites 
or learning management systems (e.g., event-based timestamps) are used in combination 
with grades to predict students at risk of dropping out (Cohen 2017; Conijn et al. 2017; 
Elbadrawy et al. 2015; Jo et al. 2014; Manrique et al. 2018; Nespereira et al. 2015; Nguyen 
et al. 2017; Saqr et al. 2017), with the detailed analysis of clickstream or trace-data also 
being used to predict student dropout (Whitehill et al. 2017), student retention (Wolff et al. 
2013), or student performance (Yang et al. 2017).

As shown in Table 1, another set of data used for predicting study success is based on 
students’ background information, such as demographics (e.g., age, gender), socio-eco-
nomic status (e.g., family income, background, expenditure), prior academic experience 
and performance (Daud et al. 2017; Djulovic and Li 2013; Guarrin 2013). For example, 
Lacave et al. (2018) use enrolment age, prior choice of subject and information on schol-
arships in order to predict student dropouts. In addition to demographic variables (Aulck 
et al. 2017; Sarker 2014), the student’s academic self-concept, academic history and work-
related data are used to predict student performance (Mitra and Goldstein 2015), while 
others use GPA, academic load, and access to counselling (Rogers et  al. 2014), the stu-
dent’s financial background (Thammasiri et  al. 2014), or academic performance history 
(Bydzovska and Popelinsky 2014; Sales et al. 2016; Srilekshmi et al. 2016) as predictors of 
students at risk.

Other studies focus on data collected through surveys, such as students self-reporting on 
expected grades (Zimmerman and Johnson 2017), motivation, or academic and technologi-
cal preparedness (Bukralia et al.2014).
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Several predictive algorithms are formed on a multimodal basis (Blikstein and Worsley 
2016), i.e., they draw data from various sources, such as logfiles or trace-data (non-reactive 
data collection), assessments, survey data (reactive data collection), as well as from aggre-
gated information or historical data.

Visualisation for study success

In a number of studies retrieved for the systematic review (see Table 1), it was noted that 
visualisation was important in supporting study success. Visualisation is realised through 
optical signals (Arnold and Pistilli 2012) and learning analytics features, which are dis-
tinguishing elements for supporting individual learning processes (Few 2013) or aiming 
to facilitate reflection (Dorodchi et al. 2018). Learning analytics features are implemented 
on web-based dashboards—customisable control panels displaying data which adapt to the 
learning process in (near) real time or on a summative basis.

The findings of an experiment conducted by Kim et al. (2016) found that a dashboard 
can be beneficial for learners of different motivation and achievement levels. For example, 
students who received dashboard analysis obtained a higher final score than those who did 
not. However, high academic achievers who received dashboard analysis showed lower sat-
isfaction with the dashboard, i.e., it was less useful for them academically. He et al. (2015) 
used visualisations for documenting the student’s individual probability of failure, which 
could be problematic as this information may be wrongly attributed by the learners.

In summary, visualisation for study success is best realised with dashboards including 
meaningful information about learning tasks and the progress of learning towards specific 
goals.

Learning analytics interventions for supporting study success

A recent systematic review of 11 publications on the efficacy of learning analytics interven-
tions in higher education documents visual signals and other dashboard features as domi-
nant elements (Larrabee Sønderlund et  al. 2018). Beyond these findings, our systematic 
review adds further insight into interventions for supporting study success (see Table 1). 
For example, alerts to teachers enable them to give more individual attention to students 
(Darlington 2017; Dawson et  al. 2017; Gkontzis et  al. 2018; Lu et  al. 2017; Yang et  al. 
2017). Other interventions focus on facilitating peer-to-peer communication (Cohen 2017; 
Seidel and Kutieleh 2017), as well as on recommendations for adaptive learning materials, 
prior knowledge building, reduction of test anxiety, or student–teacher perceptions.

In summary, the key publications only exhibited a few intervention strategies (Cambru-
zzi et  al. 2015; Carroll and White 2017; Casey and Azcona 2017). However, the effects 
found when various interventions for supporting study success were applied, may be 
biased, as other variables may contribute to the overall effects identified.

Discussion

Different learning analytics measures, visualisations, and intervention strategies need to 
be set in place to individualise support services for various learner needs, as reasons for 
study success vary significantly (Tinto 2017). In addition, distinctive measures, visualisa-
tions, and intervention strategies may work in specific contexts for some and not for others 
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(Mah 2016). Whilst learning analytics are mainly implemented as a data-driven method for 
detecting at-risk students (Chai and Gibson 2015; Okubo et al. 2017; Rogers et al. 2014), 
higher education institutions need to supply an additional and supplementary support sys-
tem to encourage and lead these students back onto the track of study success (Viberg et al. 
2018). For some students, personal and interactive discussions are necessary to resolve 
obstacles and barriers to the studies (concerning more complex personal barriers). For 
other students, perhaps their obstacles were due to simpler barriers, such as the misunder-
standing of previous concepts or topics, or missed information due to absence, or requir-
ing more time and effort for completion (Tinto 2005). In such cases, personalised learning 
paths and encouraging interventions can be the answer to leading these students back onto 
their learning track (Howell et al. 2018).

Implications

Our systematic review indicates that a wider adoption of learning analytics systems is 
needed, as well as work towards standardised measures, visualisations, and interventions, 
which can be integrated into any digital learning environment to reliably predict at-risk stu-
dents and to provide personalised prevention and intervention strategies. While standards 
for data models and data collection, such as xAPI (Experience API), exist (Kevan and Ryan 
2016), learning analytics research and development need to clearly define standards for 
reliable and valid measures, informative visualisations, and design guidelines for pedagogi-
cally effective learning analytics interventions (Seufert et al. 2019). In particular, personal-
ised learning environments are increasingly in demand and are valued in higher education 
institutions for creating tailored learning packages optimised for each individual learner 
based on their personal profile, containing information such as their geo- and socio-demo-
graphic backgrounds (Lacave et al. 2018), previous qualifications (Daud et al. 2017), their 
engagement in the recruitment journey (Berg et  al. 2018), activities on websites (Seidel 
and Kutieleh 2017), and tracking information on their searches (Macfadyen and Dawson 
2012).

The key publications of this systematic review indicate the different valid factors that 
could be applied in learning analytics as being a combination of learners’ background 
information, behaviour data from digital platforms (e.g., learning management systems, 
games and simulations), formative and summative assessment data, and information col-
lected through surveys. Hence, measures for learning analytics need to include reactive and 
non-reactive data collection, i.e., multimodal data for supporting learning, teaching, and 
study success (Blikstein and Worsley 2016).

A prerequisite for defining such a multimodal or holistic data set for learning analyt-
ics is a strong theoretical foundation of learning analytics (Marzouk et  al. 2016). Self-
regulated learning, affective (motivation and emotion), and social constructivism theories 
are widely discussed in the context of learning analytics research (Azevedo et  al. 2010; 
Tabuenca et al. 2015). Initial work, which will form the basis for future investigations, has 
been conducted on how to facilitate educational research by employing learning theories 
to guide data collection and examine learning analytics (Prieto et  al. 2019). Despite the 
awareness of a stronger theory-informed learning analytics practice, the findings of this 
systematic review document an obvious weakness in defining key constructs such as study 
success or retention, and operationalising key factors for reliable and valid measurements. 
Further, the predominant methodological approach identified in this systematic review on 
learning analytics and study success is of correlational nature (Wong et al. 2019). Hence, a 
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significant weakness of learning analytics research is the lack of large-scale, longitudinal, 
and experimental research focusing on how learning analytics impact learning and teach-
ing in higher education. In addition, the identified lack of a clearly defined and empirically 
tested holistic data set remains a major challenge for learning analytics research to come.

From an instructional design perspective, visualisations, features, and interventions cur-
rently being implemented in learning analytics dashboards are of a simplistic nature, i.e., 
they provide statistics which are less informative for supporting learning processes (He 
et al. 2015). As documented by Larrabee Sønderlund et al. (2018) and in this systematic 
review, learning analytics interventions need to enable active learning, such as through 
adaptive scaffolds or by helping teachers to curate and act on data about their students 
(Arthars et al. 2019; Darlington 2017; Dawson et al. 2017). This includes the provision of 
a better understanding of students’ expectations of learning analytics features to support 
learning processes and warrant study success (Schumacher and Ifenthaler 2018).

Challenges ahead

Fully automated adaptive learning analytics support systems may reduce a learner’s self-
regulation and perceived autonomy. Therefore, learning analytics need to provide opportu-
nities for personalisation, i.e., learners may adjust (customise) the information and support 
provided at any time. For example, a learner may not need support in a topic where she has 
prior-knowledge and a high interest, but may, on the other hand require scaffolding while 
working in an unfamiliar domain. At the same time, the learner may want competitive ele-
ments (e.g., group comparison of achievement) in some situations, and collaborators to 
exchange ideas in others.. Other lesser observed instructional design components in learn-
ing analytics are the social impact on learning (Buckingham Shum and Ferguson 2012) and 
the means of collaborative learning (Gašević et al. 2019).

Given the promising opportunities of learning analytics for supporting study success, 
Leitner et al. (2019) present the challenges likely to be faced in further research, includ-
ing (1) a shortage of learning analytics leadership at higher education institutions, (2) a 
shortage of equal engagement among all stakeholders, (3) a shortage of pedagogy-based 
approaches informing learning analytics practice, (4) a shortage of sufficient professional 
learning for learning analytics, (5) a shortage of rigorous studies empirically validating the 
impact of learning analytics, and (6) a shortage of policies specific to learning analytics.

To sum up, more educational data does not always make better educational decisions. 
Learning analytics have obvious limitations and data collected from various educational 
sources can have multiple meanings (d’Aquin et al. 2014). As not all educational data is 
relevant and equivalent, the reliability and validity of data and its accurate and bias-free 
analysis is critical for the generation of useful summative, real-time or formative, and pre-
dictive or prescriptive insights for learning and teaching. While the key publications identi-
fied in this systematic review had access to a wide range of data from students and their 
associated learning interactions and contexts, limited access to educational data (e.g., from 
distributed networks outside the institution) may generate disadvantages for involved stake-
holders (e.g., students, teachers). For example, invalid forecasts may lead to inefficient (or 
false) decisions for pedagogical interventions (Arthars et al. 2019). In addition, ethical and 
privacy issues are associated with the use of educational data for learning analytics (Prin-
sloo and Slade 2015). This implies how personal data is collected and stored as well as the 
way in which it is analysed and presented to different stakeholders (West et al. 2016). Con-
sequently, higher education institutions need to address ethics and privacy issues linked to 
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learning analytics: They need to define who has access to which data, where and for how 
long the data will be stored, and which procedures and algorithms should be implemented 
if further use is to be made of the available educational data and analysis results (Ifenthaler 
and Schumacher 2019; Ifenthaler and Tracey 2016).

Limitations and recommendations for future research

Systematic reviews are a good way to synthesise findings from quantitative and qualita-
tive research on a topic, but they cannot include results from all available research. The 
research methodology of this systematic review followed the eight steps suggested by 
Okoli (2015). The accurate execution of these steps is indispensable for the production of 
valid findings of a systematic review. However, even if keywords are applied, databases 
approached, and specific journals searched, some important research studies may still have 
been neglected. As shown in the initial dataset, although more than 6000 publications were 
identified, not all qualified to be included in this systematic review. Thus, the systematic 
review does not reflect all research on learning analytics and study success. In addition, 
this systematic review only included articles published in the English language. Hence, 
important findings from articles published in other languages may have been overlooked. 
However, as learning analytics research matures further, it is expected that meta-analyses 
will emerge, which may provide further empirical insights, including effect size estimates 
on how learning analytics impact study success.

Research on learning analytics is fast evolving. Hence, while writing this systematic 
review, further studies may have been published which could provide additional insights 
into the impact of learning analytics on study success. Accordingly, a continuing meta dis-
cussion of findings is required while the research area matures. Thus, further systematic 
reviews on learning analytics will help to identify important trends in the literature and 
suggest avenues for future research.

In order to add more rigour to future systematic reviews, experts in the field of learning 
analytics may be consulted in addition to standardised screening and search procedures. 
These experts may suggest studies in progress or publications in press which may inform 
the research questions accordingly and in a more timely manner. Such a procedure will add 
another step to the eight steps of conducting systematic reviews suggested by Okoli (2015).

Another issue found in the key publications of this systematic review is the theoreti-
cal clarity of the key constructs, such as definitions of study success, student retention, or 
learning analytics. When clear definitions are missing, operationalisations of these con-
structs become blurred and their valid measurement becomes impossible. This issue has 
been documented through the evaluated research rigour (i.e., theoretical rigour, methodo-
logical rigour, and rigour of findings and implications) for each of the key publications 
(11 weak; 35 moderate; 0 strong). Future research in learning analytics needs not only to 
clearly define the key constructs addressed, but also to adopt the standards of empirical 
research methodology for producing valid findings (Campbell and Stanley 1963). Moreo-
ver, in order to produce generalisable and transferable findings, future learning analytics 
research requires a stronger methodological focus on large-scale, longitudinal, and experi-
mental research designs.

Finally, empirical evidence from articles which were not eligible in forming the key 
publications in this systematic review (e.g., due to incomplete work or lack of depth) are 
available. These studies provide additional supporting evidence as to the ways in which 
learning analytics can be used to increase study success. A further investigation of these 
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publications would overwhelm the current research group. In order to invite additional 
researchers, a database including all identified studies and their initial classifications will 
be created to provide broader access to the findings.

Conclusion

Learning analytics are a socio-technical data-mining and analytic practice in educational 
contexts. Rigorous large-scale evidence to support the effectiveness of learning analytics 
in supporting study success is still lacking  (Ifenthaler 2017; Ifenthaler et  al.  2019). The 
tested variables, algorithms, and methods can be used as a guide in helping researchers and 
educators to further improve the design and implementation of learning analytics systems. 
One suggestion is to leverage existing learning analytics research by designing large-scale, 
longitudinal, or quasi-experimental studies with well-defined and operationalised con-
structs, hence connecting learning analytics research with decades of previous research in 
education. Further documented evidence on learning analytics demonstrates that learning 
analytics cannot be used as a one-size-fits-all approach, but that it requires precise analysis 
of institutional and individual characteristics to best facilitate learning processes for study 
success (Ifenthaler 2020). Also, teachers need to be encouraged to further their educational 
data literacy—the ethically responsible collection, management, analysis, comprehension, 
interpretation, and application of data from educational contexts. While further advances 
in empirical evidence are being achieved, higher education institutions need to address 
required change management processes which facilitate the adoption of learning analytics, 
an institution-wide acceptance of learning analytics, as well as the development of rigor-
ous guidelines and policies focusing on data protection and ethics for learning analytics 
systems.
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