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ABBREVIATIONS 

ACN                  Acetonitrile  

CC                     Column chromatography  

CDCl3                Chloroform  

CH2CL2              Dichloromethane  

13C NMR           Carbon Nuclear magnetic resonance  

COSY                Correlation spectroscopy  

DMSO               Dimethyl sulfoxide  

DPPH                 1,1-Diphenyl-2-picrylhydrazyl  

EtOAc                Ethyl acetate  

EtOH                  Ethanol  

1H                       Proton Nuclear magnetic resonance 

HMBC               Heteronuclear multiple-bond correlation spectroscopy 

HSQC                Heteronuclear single-quantum coherence spectroscopy 

MeOH                Methanol  

MP                     Mobile Phase 

NP-FC               Normal phase flash chromatography 

NMR                 Nuclear magnetic resonance  

NO                     Nitric Oxide 

OS                      Oxidative stress   

Pd/C                   Palladium on carbon 

RNS                   Reactive nitrogen species  

ROS                   Reactive oxygen species 

RP-FC                Reverse phase flash chromatography  

r.t.                      Room temperature 

SAR                   Structure-activity relationship 

SERCA              Sarco/endoplasmic reticulum Ca2+- ATPase 

SP                      Stationary Phase 

TCM                  Traditional Chinese Medicine 

TLC                   Thin layer chromatography  
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1 INTRODUCTION 

In modern medicine, herbal drugs and natural products are important raw materials for the 

pharmaceutical industry, and isolated pure compounds serve as leads in drug discovery and 

development. The evolving recognition of a significant number of natural, nature inspired 

compounds  among approved drugs demonstrates well the importance of natural products 

research, therefore it is considered that this area of research should be expanded 

significantly [1]. Among natural products, phenolic compounds have attracted a 

particularly high attention over the last decades due to their antioxidant potential [2]. 

Several studies suggest that the antioxidant property of various classes of phenolic 

compounds might be beneficial in the prevention and/or treatment of diseases whose 

pathomechanism and/or progression is closely connected to oxidative stress [3-6]. 

Prenylated phenolics are an outstanding subclass of naturally occurring phenolic 

compounds with relatively narrow distribution among plant species according to 

phytochemical literature [7, 8]. The prenyl, isoprenyl or 3-methyl-2-buten-1-yl is a 

terpenoid side chain present at one or more specific positions of the phenolic skeleton, 

connected via carbon or oxygen, or both. A major advantage of carbon-carbon type prenyl 

substitution is that such a bond is non-hydrolyzable and generally stable, and therefore it 

leads to a stable increase in the lipophilicity as compared to the non-substituted compound 

[8]. Accordingly, the combination of prenyl group(s) with a phenolic backbone leads 

to an interesting combination of physicochemical properties, and compounds that join 

the properties of terpenoids and phenolic compounds. This frequently leads to 

interesting bioactivity [9-12] profiles. Chemical diversity of such compounds is also 

greatly increased by the possibility of forming adducts through enzymatic Diels-Alder type 

reactions between the prenyl groups of the aromatic backbone and other olefins e.g. that 

present in chalcones [13]. Subsequent natural oxidation and cyclization reactions of such 

Diels‐Alder adducts can result in highly complex structures. This attracted a significant 

attention from synthetic chemistry, and many related semi-synthetic analogs have been 

prepared to serve as lead compounds for possible drug discovery initiatives [14, 15]. 

The majority of prenylated phenolics have been isolated from the Moraceae plant family, 

with few arising from other genera [8]. Morus, a genus from the Moraceae family, has 

provided several traditional medicines in Asian countries. Because of the ancient tradition 

of sericulture, i.e. silk farming, Morus alba is the dominant and best studied Morus species. 
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However, a survey of the pertinent literature indicates that M. nigra (black mulberry) 

is an at least similarly rich source of phenolic compounds as M. alba (white) but is 

much less studied even though it had also been naturalized in Europe centuries ago.  

 

2 LITERATURE OVERVIEW 

2.1 Morus nigra – history and botanical aspects 

The Morus genus, belonging to the Moraceae family, comprises twenty-four species with 

one subspecies, and has ca. one hundred known varieties to date [16, 17]. Well known as 

the “black mulberry tree”, Morus nigra L. has long been valued for its fruit, which has also 

been claimed as a “super fruit” that has various health benefits and promotes longevity 

[18]. Morus nigra is a wildly growing rustic plant that is also present in many gardens and, 

similarly to other Morus species, and M. alba in particular, it was also used for sericulture 

[19, 20]. The plant has a long and remarkable history. Likely introduced to Europe 

originally from Persia, its cultivation on the Continent appears to date back thousands of 

years [21]. The ancient Greeks dedicated the fruit to Minerva, the goddess of wisdom 

recognizing its medicinal value. Black mulberry was abundant in Italy during the Roman 

era; it was also depicted in the paintings from Pompeii (Georgics ii verse 121). The fruits 

pips have been found from the House of the Vestals and the House of Hercules’ Wedding 

in Pompeii [22], and the Desiccated pips have been recovered from the Roman quarry 

settlement of Mons Claudianus in the eastern desert of Egypt [23] suggesting its cultivation 

in ancient Egypt. Mulberry has also been acknowledged in the Bible (I Maccabees 6:34; 

Luke 17:5-6). Black mulberry leaves were considered as the feed for Italian silkworms 

until 1434 A.D. when Morus alba was introduced from the Levantine lands [24]. During 

the “silk revolution” in 1608, the practice of sericulture was introduced to Britain by 

promoting mulberry cultivation [25]. Although its medicinal use was an ancient practice, it 

was the growing silk industry that brought this plant into the spotlight, resulting in the 

worldwide spreading of mulberry trees to satisfy industrial needs for mulberry leaves [26]. 

Despite black mulberry is, in fact, more nutritive than M. alba, the white mulberry [27], its 

importance has been surpassed because of its weaker success in feeding silkworms. The 

nutritive richness of black mulberry, however, still makes it an excellent animal feed that 

also enhances the milk yield of dairy animals [28]. 
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As far as morphological characteristics are concerned, mulberry is a slow-growing 

perennial deciduous moderate-size tree or shrub with vigorous branches forming crown 

producing a shady canopy. The plant has a deep taproot, lateral or horizontal roots that 

remain in the first 24 inches of soil with root hairs. The stem is erect, strongly covered with 

green, grey to pink or brown bark, depending upon the species, climate, and origin. The 

shoot of a mulberry tree may reach up to 6 to 9 meters in height. M. nigra often produces 

leaves of different shapes, and these multilobed leaves can appear on the same branches. 

The leaves are alternate, simple, serrate or dentate, ovate to broadly ovate, and two to 

seven inches long. High temperatures, strong light and long days favor maleness in 

mulberries, with their opposites, as well as high humidity, favoring the production of 

female flowers. The inflorescence in the mulberry plant is considered as a catkin and the 

plant is either monoecious or dioecious. The flowers are small, greenish, crowded in 

clusters, and hanging in the form of, male and female catkins. The pollinated female catkin 

forms a thick collective fruit. The fruit is blackberry-shaped typically black but sometimes 

dark blue with a sweet taste. Despite popular belief, the color of the fruit alone does not 

determine the mulberry species; instead, the leaves and wood characteristics should be 

considered for exact identification [20]. The longevity of plants is due to their ability to 

withstand harsh conditions such as tolerance of droughts, infertile and rocky soil, resistance 

to cold giving it a life expectancy of more than 500 years [25]. 

 

2.2 Traditional applications of Morus nigra 

Black mulberry is valued not only for its nutritional qualities and flavor but also for its use 

in traditional medicine. The long medicinal history of M. nigra includes its therapeutic use 

in practically every era of traditional medicine, under different names, and with various, 

frequently different uses in each system [29]. For example, preparations from the plant had 

been used by the ancient Egyptians for corroding ulcers, dispersing inflamed tumors and 

healing of wounds. The juice of bark was used as an antidote to the venom of deadly 

snakes [30]. During medieval times in the eastern Mediterranean, M. nigra had been 

popular for the treatment of renal stones and urinary disorders [26, 31]. Drugs of M. nigra 

are well-known ingredients for many preparations in the Ayurveda, one of the oldest holistic 

healing systems dating ca. 600 B.C. [32, 33]. Many of these formulations are still in use in 

different systems of medicine, for example, “Tut-i-aswad” in Unani medicine for cancer, 
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contains fruits of black mulberry [34], or Rub-e-toot siyah, an ayurvedic remedy for a sore 

throat or laryngitis [35]. The roots of Morus plants were recorded in the Chinese 

pharmacopeia in 500 B.C. collectively known as Sang-Bai-Pi often used for treating lung 

heat, cough, edema, and oliguria [36]. During the 16th century, the tincture of M. nigra 

roots was used to gain relief from toothache [37]. Bark and leaves of black mulberry are 

known folk remedy used for lowering and controlling blood sugar and is widely used in tea 

blends for diabetes [38]. They also can treat conjunctivitis, lower limb swelling, keratitis, 

hypertension and skin rashes [16, 37, 39-41]. The bark is used to expel tapeworms, and as a 

diuretic agent [42, 43]. The root bark is anthelmintic and it is used to treat bronchitis [44]. 

The decoction of the root bark is bitter but it is believed to help in “detoxing the belly” 

[45]. The plant has been used in traditional medicine to treat gastrointestinal ailments [46]. 

This wide range of traditional uses indicates well the pharmacological versatility of M. 

nigra and the chemical complexity of its secondary metabolite composition behind.  

The root bark of M. nigra also plays an important economic role through its various uses 

providing livelihood to people. The pruned and dead roots are suitable for firewood. The 

root barks and leaves yield a yellow dye, used mainly for heightening the sheen on silk. In 

Japan, a textile fiber is extracted from the bark. It is also used to prepare ‘artificial cotton’ 

paper and clothes [19, 47]. 

 

2.3 Chemical overview of the Morus nigra roots 

Bioactive constituents of Sang-Bai-Pi, the root bark of various Morus plants, have been 

studied extensively in the last few years, and this indicates well the very high current 

scientific interest in these plants. The most characteristic compounds of Morus species are 

phenolics including flavonoids, stilbenes, 2-arylbenzofurans, and a variety of Diels–Alder 

adducts [48, 49], and, according to many comparative studies, M. nigra appears to be the 

richest of all in this regard [16, 50-52]. As an example, a comparison with M. alba revealed 

that M. nigra has a higher content of reduced ascorbic acid, titratable acidity, iron, total 

flavonoids and total monomeric anthocyanins [53].  

In particular, the root bark of M. nigra contains a remarkable variety of prenylflavonoids 

isolated in the last several years with a chemical diversity due to their variability in their 

substitution pattern, and many of these substituents open possibilities to further 

cyclization as summarized in Figure 1 [52, 54-60]. Structurally, the prenyl side chain on 
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flavonoids predominantly occurs as C-prenylated, at positions 6 and/or 8, as well as 3′ 

and/or 5′, whereas a few studies also reported occurrence of O-prenylation [7]. Three 

geranylflavonoids, each containing the geranyl group connected to C-5ʹ on the B-ring, have 

also been reported from the roots, one flavone and two flavanones [60]. Such a longer side 

chain may facilitate transport of a phenolic substance into and through the cell membranes 

and sometimes may also contribute to the biological activity. Most of the reports suggest 

that the position and the nature of these side chains lead to some relevant SAR conclusions 

concerning a broad spectrum of biological activities [61, 62].  

 

Figure 1. Prenyl and geranylflavonoids from Morus nigra roots 

 

Prenylflavonoids

Albanin C Cudraflavanone A Cudraflavanone B Cudraflavone C

Cyclocommunol Cyclomorusin

Morunigrol A

Morusin

Morunigrol B Morunigrol E Morunigrol F

Morusin hydroperoxideMorusinol

Geranylflavonoids

5'-geranyl-5,7,2',4'-tetrahydroxyflavone Kuwanon E Kuwanon U

Kuwanon C

Steppogenin-7-O-β-D-glucoside : 
R1=OGlc, R2=H
Steppogenin-7,4’-di-O-β-D-glucoside :
R1=OGlc, R2=OGlc

Morin-7-O-ᵝ-D-glucoside
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Chalcones were isolated as minor compounds from the roots and an immense variety of 

Diels–Alder, often formed by the [4+2]-Cycloaddition of a conjugated diene and a 

dienophile to form a six-membered derivative are known to occur in the M. nigra, roots as 

summarized in Figure 2 [60]. The structural complexity of these compounds results in 

promising bioactivities [63].  

 

 Figure 2. Diels–Alder type adducts and Chalcones from the roots of Morus nigra. 

Chalcones

2,4,2',4’-tetrahydroxychalcone Morachalcone A

Diels-Alder type adducts

Albafuran C Chalcomoracin Kuwanol E

Kuwanon G: R=H
Kuwanon H: R=Prenyl

Kuwanon L: R=H
Kuwanon O: R=Prenyl

Kuwanon R

Moracenin D
Mulberrofuran G Mulberrofuran J

Sanggenon B 
Sanggenon D 

Sanggenon E

Soroceal

O O

H HOH

O
OH

H

O

OH
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M. nigra has been widely acknowledged as a rich source of bioactive benzofuran 

derivatives and stilbenes, among which the 2-arylbenzofurans are commonly substituted by 

prenyl and geranyl groups. [64]. Various bioactivities (e.g. antifungal, antibacterial, etc.) 

associated with benzofuran derivatives make these compounds attractive subjects for 

medicinal chemistry studies [65, 66]. Similarly to prenylflavonoids, benzofurans can also 

inhibit nitric oxide synthase, thus indirectly inhibiting the release of a major inflammatory 

mediator, nitric oxide [57, 59, 60]. 

 

 

Figure 3. 2-Arylbenzofurans and stilbenes from the roots of Morus nigra. 

 
Coumarin glycosides are also known to be present in the roots of Morus nigra. Among 

these, mulberroside B is a C-glycoside at C-6, while the others are O-glycosides containing 

one or two sugar components connected to the coumarin skeleton. In each of the latter 

ones, the coumarin bears an O-β-D-glucoside at C-7, which can be further glycosylated 

with a 6-deoxymannose or an apiose.  

Arylbenzofurans

Albafuran A: R1=H, R2=H, R3=OH, R4=H, R5=H, R6=OH, R7=geranyl
Albafuran B: R1=H, R2=H, R3=OH, R4=H, R5=geranyl, R6=OH, R7=H
Moracin C: R1=H, R2=H, R3=OH, R4=H, R5=prenyl, R6=OH, R7=H
Moracin M: R1=H, R2=H, R3=OH,R4=H,R5=H,R6=OH, R7=H
Moracin N: R1=H, R2=prenyl, R3=OH,R4=H, R5=H,R6=OH, R7=H
Mulberrofuran B: R1=H, R2=H, R3=OMe,R4=geranyl, R5=H,R6=OH, R7=H
Mulberrofuran L: R1=H, R2=H, R3=OH, R4=geranyl, R5=H, R6=OH, R7=H

Stilbenes

Macrourin B

Moracin O

Moracinoside M

Morunigrol D

Morunigrol C

Mulberroside A: R1=OH, R2=OGlc, R3=Oglc
Oxyresveratrol: R1=OH, R2=OH, R3=OH
Oxyresveratrol-2-O-β-D-glucopyranoside: R1=OGlc, R2=OH, R3=OH
Oxyresveratrol-3-O-β-D-glucopyranoside: R1=OH, R2=OH, R3=OGlc
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Figure 4. Coumarins from the roots of Morus nigra. 

2.4 Pharmacology of phenolic compounds present in Morus nigra root bark 

Since the roots of Morus nigra are very rich in phenolic compounds, several biological 

effects might reasonably be expected to significantly contribute at least to some of the 

health benefits of the drug [67]. 

2.4.1 Antioxidant activity of Morus nigra root bark 

Numerous publications reported in vitro antioxidant studies of root bark and its 

constituents. Strong free radical scavenging effect was reported on various extracts of 

black mulberry fruits, leaves or roots [37, 68] and/or phenolic constituents in a number of 

in vitro experimental models, and the inhibition of xanthine oxidase or lipid peroxidation 

was also reported [50, 69, 70]. Among individual compounds, morusin, a major constituent 

of M. nigra roots, was reported to inhibit superoxide formation from rat neutrophils 

stimulated with phorbol myristate acetate (PMA) [71]. The benzofurans moracin C and N 

were reported to scavenge superoxide anion radicals and inhibit lipid peroxidation [72]. In 

a study aiming to assess the antioxidant activity of four arylbenzofuran derivatives, 

moracin C, P, and M, and mulberroside C, two compounds, moracin C and M were found 

particularly effective in the inhibition of malondialdehyde production during microsomal 

lipid peroxidation induced by ferrous cysteine [73]. The stilbene oxyresveratrol exerted 

considerable superoxide scavenging effects [74]. Among many other compounds in a series 

of studies, albanol B, moracin M, and mulberrofuran G were found particularly effective in 

Mulberroside B

5,7-dihydroxycoumarin-7-β-D-
glucopyranoside

7-[[6-O-(6-deoxy-α-Lmannopyranosyl)-
β-D-glucopyranosyl]oxyl]-2H-1-
benzopyran-2

5,7-dihydroxycoumarin-7-(6-O-β-D-
apiofuranosyl-β-D-glucopyranoside

Xeroboside
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the two most common in vitro test for free radical scavenging, namely the 2,2´-azinobis-3-

ethylbenzothiazoline-6-sulfonic acid (ABTS) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) 

assays [75, 76], while for example the prenylflavonoids morusin and kuwanon C showed 

moderate DPPH radical scavenging activity [77]. Reports on the in vivo antioxidant 

activity of M. nigra are only available for the fruits and leaves, whose compositions 

certainly show overlaps with that of the roots. Oral administration of crude, 95% ethanol 

extract of M. nigra fruits to mice resulted in decreasing malondialdehyde (MDA) content 

in the serum and liver, accompanied by an increase of superoxide dismutase (SOD), 

catalase (CAT) and glutathione peroxidase (GSH-PX) activity[78]. In another study, the 

leaves of Morus nigra were tested for their antidiabetic and antioxidant activity on 

streptozotocin-induced diabetic rats, focusing on the maternal-fetal outcome. The aqueous 

extract was used, and while it was unable to control blood glucose levels, it demonstrated a 

potent in vivo antioxidant activity: increased SOD activity, decreased MDA levels were 

found, and the offsprings from diabetic dams showed a reduced incidence of skeletal and 

visceral anomalies upon treatment [79]. Concerning the in vivo antioxidant activity of 

isolated pure compounds, a number of studies have been published on the stilbene 

mulberroside A, a diglycoside of oxyresveratrol, obtained from Morus bombycis but also 

reported from Morus nigra roots. Antioxidant properties of this compound have been 

reported in connection with its antidiabetic and liver protective activity. Oral treatment of 

STZ-induced diabetic rats with 200-800 mg/kg of mulberroside A led to an improvement 

in several diabetic markers including a slight decrease in blood glucose, significant 

decrease in serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), and 

blood urea nitrogen, and significant increase in plasma insulin levels. In addition to this, 

mulberroside A effectively decreased lipid peroxidation, so that no significant difference 

was found in this regard between the diabetic control animals and those treated with the 

smallest dose, 200 mg/kg [80]. Mulbrroside A also displayed a dose-dependent superoxide 

scavenging activity (IC50=430 µg/mL) in vitro, the oral administration of 100-600 mg/kg of 

mulberroside A 30 min before inducing hepatotoxicity with CCl4 to rats exerted a similarly 

strong protective activity as silymarin, and significantly decrease AST and ALT levels[81]. 

Hepatoprotective activity exerted through an antioxidant action was also confirmed by the 

inhibition of in vitro lipid peroxidation on rat liver homogenate in the presence of 

Fe2+/ascorbic acid and by the prevention of serious histopathological changes caused by the 

CCl4 treatment [81, 82]. 
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2.4.2 Anti-inflammatory activity of Morus nigra root bark 

Anti-inflammatory effects of M. nigra root bark were reported along with the isolation of 

two of its constituents, morunigrol D and norartocarpetin, both of which showed potent 

anti-inflammatory activity by inhibiting the release of β-glucuronidase from rat 

polymorphonuclear leucocytes [83]. In a dose of 100–300 mg/kg, the methylene chloride 

extract of M. nigra showed promising results in animal models by reducing carragenan-

induced paw edema , and significantly inhibited the formation of granulomatous tissue 

[40]. 

Many compounds reported as anti-inflammatory in the literature have also been isolated 

from M. nigra roots. Morusin, oxydihydromorusin (morusinol), kuwanon C, mulberrofuran 

A, kuwanon G, kuwanon H, sanggenon D, and mulberrofurans G and J showed 

considerable inhibition on arachidonate metabolism in rat platelets [84, 85]. Morusin, 

kuwanon C, and sanggenons B, D and E inhibited cyclooxygenase activity [4, 86, 87]. 

Oxyresveratrol inhibited the LPS-stimulated increase of inducible nitric oxide synthase 

(iNOS) expression [88]. Nitric oxide production was inhibited by moracins C, O and P,  

albafuran A, mulberrofurans J, kuwanons C and E, sanggenon F, and morusin [89, 90]. 

Kuwanon J and R inhibited NF-κB activity [91]. Cudraflavone B inhibited the gene 

expression and secretion of tumor necrosis factor alpha (TNF-α) by blocking the 

translocation of NF-κB [92, 93]. Kuwanons E and G, and norartocarpanone significantly 

inhibited IL-6 production in lung epithelial cells (A549) and NO production in lung 

macrophages (MH-S) [94]. Moracin C, mulberrofuran Y, kuwanons C and E, 

oxydihydromorusin, and sanggenons E and H inhibited the secretion of TNF-α and IL-1β, 

and NF-κB nuclear translocation in LPS-stimulated macrophages [59]. 

2.4.3 Antidiabetic effects of phenolic compounds from Morus nigra root bark 

The aqueous extract of M. nigra leaves reduced MDA, Cholesterol, triglycerides and 

VLDL levels along with decreased placental index and weight. The fetuses of diabetic rats 

treated with M. nigra extract showed the frequency of skeletal and visceral anomalies as 

compared to the diabetic group [79]. The ethanol extract of M. nigra leaves reduced fasting 

and postprandial glycemia, improved oral glucose tolerance, increased insulin production, 

reduced lipolysis and proteolysis in diabetic rats, diminished lipid peroxidation, inhibited 

low-density lipoprotein (LDL) atherogenic modification and lipid peroxides formation, and 

increased the expression of adipogenic marker proteins, such as peroxisome proliferator-

activated receptors γ (PPARγ) and GLUT4 (glucose transporter 4) [95-97]. 
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Much of anti-hyperglycemic activities attributed to some functional components such as 

morusin, cyclomorusin, neocyclomorusin, kuwanon E, moracin M, steppogenin-4ʹ-O-β-D-

glucoside, mullberroside A [80]. Inhibitors for protein tyrosine phosphatase 1B (PTP1B) 

include mulberrofuran C, kuwanon L [75], albafuran A, kuwanon J, kuwanon R, [98]. 

Anti-hyperlipidemic compounds include mulberrofuran G, albanol B, morusin, sanggenon 

F [90], mulberroside A and oxyresveratrol [99]. 

2.4.4 Antitumor effects  

The dimethyl sulfoxide extract of M. nigra fruits was investigated for its action on prostate 

cancer cells. The fruit extract showed potential cytotoxic activity through G1 phase cell 

cycle arrest of the in PC-3 cells at the along with the induction of apoptosis via increased 

caspase and reduced mitochondrial membrane potential [100]. The anticancer activity of n-

hexane and aqueous methanol extract of M. nigra leaves were tested against the HeLa 

cancer cell line, and both extracts decreased viability of cancer cells in a dose-dependent 

manner [101].  

Regarding individual cytotoxic compounds reported from the roots, morusin, a major 

constituent isolated from the root bark, has recently been thoroughly studied for its anti-

tumor effects on cancer cell lines of various origins, including e.g. pancreas, cervical and 

colorectal [102-104]. Morusin induced apoptosis in HT-29 colorectal carcinoma cells 

through caspase 8 subsequently leading to the activation of caspase 9 and 3, and it was 

suggested to decrease phosphorylation of PDK1, PI3K, and Akt, leading to the 

downregulation of IKK-α, IKK-β, and IκB-α, hence suppressing NF-κB [103]. Morusin 

also demonstrated anti-invasive activity on SK-Hep1 cells in non-cytotoxic concentrations, 

and two key mechanisms were suggested to this: the suppression of the signal transducer 

and activator of transcription 3 (STAT3; an oncogene with an important role in cancer cell 

survival and proliferation), and the inhibitory effect on NF-κB signaling. The in vitro 

results were also confirmed in nude mice, whose lung metastasis upon intravenous 

injection with SK-Hep1 cells was reduced when pre-treated with morusin, and western 

blots of the lung tissues also gave consistent results with those observed in vitro [105]. 

STAT3 inhibition by morusin was also reported in various pancreatic carcinoma cell lines. 

Interestingly, morusin treatment led to an accumulation of different phases in the cell cycle 

depending on the tested pancreatic cell line, and induced both early and late apoptosis 

[102]. Considerable selectivity in the in vitro cytotoxic activity of morusin was observed in 

a variety of breast cancer cell lines as compared to immortalized normal breast MCF10A 
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cells. When studying apoptosis-related proteins regulated by STAT3, suppression of the 

anti-apoptotic protein survivin and overexpression of the pro-apoptotic protein B-cell 

lymphoma 2-associated-x protein (Bax) was observed. The rate of apoptosis, however, was 

found lower than expected from the corresponding cytotoxicity results, suggesting that the 

effect of morusin also involves necrosis and/or autophagy [106]. This appears to be 

consistent with parallel results: morusin was found to indeed induce autophagy through 

activating AMPK and inhibiting mTOR, which increased cell survival. Co-treatment with 

the autophagy inhibitor 3-methyladenine, however, greatly increased the rate of apoptotic 

cells [107] 

Several in vivo studies confirmed the above observations on the antitumor potential of 

morusin. It had a marked antitumor effect on H22 hepatocarcinoma-transplanted mice and, 

as a possible mechanism, the activity of morusin on the expression of p53, Survivin, 

CyclinB1, and particularly on that of caspase-3 and NF-κB was identified [108], coherently 

with previous reports. Morusin was most recently reported as an anti-angiogenetic agent: it 

was found to inhibit the proliferation, migration and tube formation of human umbilical 

vein endothelial cells (HUVECs) in vitro, and this was also confirmed by the in vivo 

inhibition of hepatocellular HepG2 xenografts’ tumor growth and angiogenesis. Both 

constitutive and interleukin-6 (IL-6)-induced phosphorylation of STAT3 was inhibited by 

morusin, and VEGF, MMP2, MMP9, and VEGFR2 were down-regulated both in vitro and 

in vivo [109]. Interestingly, low-dose morusin treatment forced breast cancer cells and 

xenograft tissue to differentiate into adipose like cells accumulating lipid droplets and 

over-expressing transcription factors C/EBP β and PPARγ, as well as adipogenic proteins 

adipsin D, and perilipin [110]. Most recently, morusin was found to inhibit gastric cancer 

cell proliferation and tumor growth by down-regulating the oncogene protein c-Myc both 

in vitro and in vivo, and it was also found that cells engineered to over-express c-Myc can 

bypass the G1 phase cell cycle arrest induced by this compound [111]. 

Morusin showed promising results when tested against cancer stem cells (CSCs) that seem 

to play a major role in the frequent failure of chemotherapy: due to their chemo-resistance, 

self-renewal and tumor-initiating capacity, the surviving CSCs can induce tumor relapse. 

Accordingly, it is insufficient to achieve tumor regression, but special attention is needed 

to also eradicate the rare CSC population [112]. When testing morusin against cervical 

CSCs, obtained through a non-adhesive culturing of HeLa cells, it was found to dose-

dependently suppress their proliferation, tumor sphere formation, and migration, and it was 
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inducing high rates of apoptosis at as low as 2-4 µM concentration [113]. In a most recent 

study by the same group, morusin was investigated for its potential against glioblastoma 

stem cells (GSCs). Glioblastoma multiforme is one of the most aggressive types of cancer 

with a very poor prognosis, and GSCs are believed to play a central role in this. Morusin 

was able to target GSCs with a ca. 2-fold selective in vitro cytotoxicity over that exerted on 

parental glioblastoma cells and ca. 10-fold over that on normal liver cells, and it could 

significantly inhibit the growth of in vivo glioblastoma xenografts initiated by GSCs [114]. 

Coherently with the above-mentioned results of [110] on breast cancer cells, GSCs could 

also be differentiated to adipocytes by lower, non-cytotoxic, 0.5-2.0 µg/mL doses of 

morusin, with a significant decrease of stemness marker proteins CD133, nestin, Oct4, and 

Sox2, and with a significant increase of PPARγ, adipsin D, adipocyte lipid-binding protein 

(ap2), and perilipin [114]. On the other hand, slightly higher, 3-5 µg/mL doses of morusin 

already induced apoptosis in GSCs.  

Several other compounds with different antitumor mechanisms have also been reported 

from black mulberry roots. Kuwanons G and H were found to be specific antagonists for 

gastrin-releasing peptide (GRP)-preferring receptor [115]. Oxyresveratrol and kuwanon Y 

were shown to inhibit protein kinase C (PKC) [116]. Sanggenon C inhibited tumor cellular 

proteasomal activity and cell viability [117]. Mulberrofurans G and H, moracins O, P and 

Q, albafuran A, and kuwanon J were found to inhibit the accumulation of hypoxia-

inducible factor-1 (HIF-1) [118]. Mulberrofuran G induced apoptotic cell death via parallel 

activation of the cell death receptor pathway and the mitochondrial pathway [119]. 

Cudraflavone B, kuwanon E, and kuwanon U exerted antiproliferative and anti-

inflammatory activities [93]. 

2.4.5 Other pharmacological effects  

Several other biological effects have also been demonstrated by the compounds present in 

M. nigra roots. For example, cyclomorusin [120], morusin, and kuwanon C [121], have 

anti-platelet effects. Morusin has an anti-nociceptive effect [54]. Mulberroside A showed 

liver protective and P-glycoprotein inhibitory effects [81, 122]. Sanggenons D and morusin 

are positive GABA-A receptor modulators [123]. Kuwanons C, E, and U, 5ʹ -geranyl-4ʹ-

methoxy-5,7,2ʹ-trihydroxyflavone and morusin exhibited cholinesterase inhibitory effects 

[124]. Cudraflavone B and oxyresveratrol have hepatoprotective effects [74]. Moracins C 

and M, oxyresveratrol, morusin, kuwanons E and U, mulberrofuran G, and mulberroside A 

[104, 125, 126] have neuroprotective effects. In addition, kuwanon C, sanggenon D [127], 
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5ʹ-geranyl-5,7,2ʹ,4ʹ-tetrahydroxyflavone, steppogenin-7-O-β-D-glucopyranoside, 2,4,2ʹ,4ʹ-

tetrahydroxychalcone, moracin N, kuwanon H, mulberrofuran G, morachalcone A, 

oxyresveratrol-2-O-β-D-glucopyranoside, oxyresveratrol-3ʹ-O-β-D-glucopyranoside, 

mulberroside A, oxyresveratrol-3-O-β-glucopyranoside, oxyresveratrol, and moracenin D 

exhibited tyrosinase inhibitory activities [60, 128-130]. 

 

2.5 Semi-synthesis of prenylflavonoids  

Semi-synthesis is a useful strategy to obtain structural analogs with enhanced bioactivity 

and/or pharmacokinetic properties as compared to the natural compound, and its relevance 

in lead optimization is well shown by the fact that ca. 5-times more approved drugs are 

semi-synthetic (ca. 21%) than purely natural (ca. 4%) [1]. Further, semi-synthesis is also a 

useful tool in the study of structure-activity relationships. During this Ph.D. work, morusin 

was isolated as a major constituent from M. nigra root bark. This compound demonstrated 

a wide range of pharmacological activities [54, 71], and particularly its anti-cancer 

properties attracted much attention. As detailed above, morusin inhibits angiogenesis and 

tumor progression, triggers apoptosis, cell cycle arrest and autophagy in various cancer cell 

lines and in tumor xenografts. To allow scale-up preparation of this promising compound, 

its total synthesis was developed and reported [131]. However, there are only a few 

publications on the structural modification of morusin [132-134] . This gave us a good 

starting point to engage in the semi-synthesis of this versatile bioactive compound, to 

prepare new derivatives with altered / improved pharmacological properties. Chemical 

modifications by oxidation and hydrogenation were selected; the literature background to 

these is briefly summarized below. 

Oxidation. Oxidative transformation of morusin may result in diverse compounds whose 

bioactivity has previously not been studied. The oxidative cyclization of morusin using 

manganese dioxide was reported by Nomura et. al. [132]. They identified morusin 

hydroperoxide as the major product, whereas the same product was also obtained through 

photo-sensitized oxidation of morusin [133]. Geo et al. reported the palladium-catalyzed 

oxidative cyclization of Kuwanon F, and the reaction resulted in the formation of 

cyclomorusin as the major product [134]. Hypervalent iodine chemistry has long been of 

interest in the oxidation of phenols [135], but the use of such reagents has not been 

reported for oxidizing morusin.  
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Hydrogenation. Awouafack et al. reported the hydrogenation of prenylated flavonoids 

khonklonginol A and lupinifolinol isolated from the roots of Eriosema chinense [136]. 

The catalytic hydrogenation of cyclomorusin using Pd/C was reported by Guo et al. 

resulting in the formation of dihydrocyclomorusin as the major product [134]. The 

hydrogenation of morusin has not been reported before.  

 

2.6 Methods in the isolation of phenolic compounds 

A very large number of articles describe the preparative separation of phenolic compounds 

in literature. As it is generally true for natural product isolation, optimization of workload 

needs a well-designed strategy. Scale of the work may be limited by the availability of 

plant material and research facilities (i.e. laboratory or industrial scale). On the other hand, 

processing a larger amount of plant material may result in numerous phenolic compounds 

in amounts high enough for bioactivity studies, and, at the same time, it may lead to the 

discovery of minor components that may otherwise remain untraceable. After extraction 

with an appropriately selected solvent, both conventional (liquid-liquid extraction) and 

modern methods (solid-phase extraction) are used for pre-purification [137, 138]. In the 

processing of larger amounts of sample, the purification is typically achieved by repeated 

chromatographic steps using a different combination of solvent and stationary phases. Final 

purification is generally carried out by HPLC [139]. When purifying smaller amounts of 

crude extracts, consecutive steps of NP and RP-HPLC separations may also be sufficient. 

Setting up an acidic pH may be necessary for the successful separation of more polar 

phenolic compounds. Since phenolic compounds are frequently glycosylated, it is not 

unusual to apply an acidic hydrolysis as a pre-treatment to release the aglycones [140]. Of 

the liquid-liquid partition-based chromatographic methods; countercurrent chromatography 

(CCC) is quite effective in the separations of a complex mixture of phenolic compounds 

with different polarities. Concerning detection, UV detectors are widely employed since 

phenolic compounds are usually UV-active and their UV–Vis spectrum is frequently 

characteristic, and therefore it is also useful in providing some structural information. The 

use of MS detectors is now common also in assisting preparative chromatography, because 

of the typically good ionization yield that these compounds provide when using 

electrospray [141, 142] 
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3 OBJECTIVES  

As evident from the above literature overview, Morus nigra is a particularly rich 

source of phenolic compounds whose structural diversity and versatile pharmacology 

makes them of high value when searching for new bioactive compounds. Further, 

semi-synthetic modifications of such compounds provide ample opportunities to obtain 

new compounds with improved physicochemical and biological properties.  

Thus, the following objectives were set up for this Ph.D. work. 

 

Isolation of phenolic compounds from Morus nigra root bark. It was our aim to use 

a strategic combination of different separation techniques to isolate and purify 

biologically active compounds from the root bark of M. nigra. This includes the 

identification of phenolic compounds already known from other Morus species, 

thereby extending the available knowledge on the plant part. 

 

Preparation of semi-synthetic derivatives. To increase the chemical diversity of the 

compounds obtained, we aimed to perform a set of structural modifications on selected 

compounds. It was our aim to perform oxidation by using different oxidizing agents, and 

hydrogenation 

 

Biological evaluation of the isolated and synthesized compounds. The biological 

studies on the isolated compounds were planned in scientific cooperation. It was our 

objective to study selected compounds for antispasmodic activity, effect on the 

sarco/endoplasmic reticulum Ca2+-ATPase (SERCA), and/or for their antitumor 

potential. 

 

Evaluation of structure-activity relationships. In connection with the bioactivity 

testing, it was our aim to evaluate the possible role of different structural elements in 

the bioactivity of the compounds.  
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4 MATERIALS AND METHODS 

4.1 Plant Material 

The roots of Morus nigra (black mulberry) were collected in December, 2013, from a 

farm nearby Ásotthalom, Hungary. After air-drying, a voucher specimen was deposited in 

the Institute of Pharmacognosy, University of Szeged, Szeged, Hungary. 

4.2  Reagents and Chemicals 

Organic solvents used for TLC, FC, and CC (analytical grade) were purchased from 

Sigma-Aldrich (Budapest, Hungary), and HPLC solvents were purchased from Avantor 

Performance Materials (Poland). Papaverine was purchased from Takeda Pharma Ltd. 

(Budapest, Hungary). Morin hydrate was purchased from Sigma-Aldrich (Budapest, 

Hungary). Chemicals namely PIDA, PIFA, Pd/c, PhenoFluor Mix were purchased from 

Sigma-Aldrich (Budapest, Hungary). 

4.3 General experimental procedure 

4.3.1 Procedure for separation 

Polyamide gel (CC 6) 0.05-0.16mm mesh (MP Biomedicals, Eschwege, Germany) or silica 

gel 60 (Merck, Darmstadt, Germany) was used as stationary phase for column 

chromatography undertaken in a glass column of MN-polyamide CC 6 [Column 1]  500g  

(162 cm × 5.5 cm). The solvent system applied for the Polyamide gel column was 

mixtures of ethyl acetate and methanol in different concentrations. Column 

chromatography on Silica gel 60 was afforded with the different proportions of n-

hexane and ethyl acetate. Flash chromatography (FC) was performed on a CombiFlash 

Rf+ Lumen instrument equipped with an integrated evaporative light scattering detector 

(ELSD) from Teledyne Isco, Lincoln, USA. NP-FC was performed on silica gel 60 as a 

stationary phase with a solvent system of n-hexane-ethyl acetate, or on polyamide gel with 

methanol-water as mobile phase. Columns used were 80g HP Silica RediSep Gold                      

[Column 2] and 13g MN-polyamide CC 6 [Column 3]. Concerning mobile phase 

compositions specified in the thesis, always v/v ratios are given. 

Analytical TLC was used for the monitoring of every chromatographic step up until 

the HPLC. In NP-TLC, DC-Alufolien Kieselgel 60F254 (Merck, Darmstadt, Germany) 

was used with the following solvent systems: 1. toluene-ethyl acetate-formic acid 

(5:4:1); 2. n-hexane-ethyl acetate (1:1); 3. toluene-ethanol (9:1). In RP-TLC, Whatman 

KC18F sheets (Whatman, Clifton, NJ, USA) were used with the following solvent 
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systems: 4. methanol-water (6:4); 5. acetonitrile-water (5:5). Phenolic compounds 

were detected under UV Light (Camag UV-Lamp, Camag, Muttenz, Switzerland) at 

254nm (dark spots), after spraying with a vanillin-sulfuric acid reagent in UV light at 

366nm (Fluorescent spots) and in daylight usually yellow-colored spot. 

Semi-preparative and preparative scale RP-HPLC was used for the final purification of 

the phenolic compounds on the following instruments: (i) a Jasco PU2080 HPLC 

pump and a Jasco UV2075 detector connected to Jasco Borwin v1.50 chromatographic 

software, (Analytical HPLC)(ii) Jasco PU2080 HPLC pump and a Jasco UV2075 

detector connected to Hercule 2000 chromatographic interface (Semi-Preparative) (iii) 

a Waters 600 pump and Waters 2998 dual absorbance photodiode array detector 

connected via Waters Empower  software. (iv) Armen Spot Prep equipped with a dual-

wavelength UV detector connected via Armen Glider Prep software. Columns used: 

Kinetex ® XB C18 [Column 4]  ( Torrance, CA, USA, 5 µm, 250 x 4.6mm,analytical), 

Gemini C18 [Column 5]  ( Torrance, CA, USA,5 µm, 250 x 10mm,semi-preprative), 

Kinetex® XB C18 [Column 6]   (Torrance, CA, USA,5 µm, 250 x 21.2 mm, 

preparative), Kinetex® Biphenyl [Column 7]  (Torrance, CA, USA,5 µm, 250 x 21.2 

mm preparative). 

The flow rate was usually 1ml/min in case of analytical RP-HPLC, 3ml/min for semi-

preparative RP-HPLC and 16ml/min for preparative RP-HPLC.  

 

4.3.2 Procedure for structural elucidation 
1H and 13C NMR spectra were recorded in CD3OD on a Bruker Avance DRX 500 

spectrometer for compounds 3, 4, 6 and 7, and on a Bruker Avance NEO instrument for 

compounds 1, 2 and 5 at 500 MHz (1H) and 125 MHz (13C). The peaks of the residual non-

deuterated solvent (δH 3.31, δC 49.0) were chosen as reference. Chemical shifts (δ) are 

given in parts per million (ppm) and coupling constants (J) values are expressed in Hz. 

Two-dimensional data (COSY, NOSY, HMBC, and HMQC) were acquired and processed 

with MestReNova v6.0.2-5475 and TopSpin 3.5pl7 software. Mass spectra were recorded 

on an API 2000 triple quadrupole tandem mass spectrometer (AB SCIEX, Foster City, CA, 

USA) 
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4.4 Extraction and Isolation 

4.4.1 Extraction and pre-purification of the crude extract 

The scheme for the extraction of Morus nigra root bark is shown in Figure 5. The air-dried 

root bark (590g) of M. nigra was ground to a coarse powder and percolated with MeOH 

(4L x 3) at room temperature. After evaporation of methanol under vacuum at 40°C, the 

residue (92.7 g) was diluted with 18% aqueous MeOH (850ml). Following this, the crude 

extract was subjected to solvent-solvent distribution, the residue was first extracted five 

times with n-hexane (5 x 500 mL) and then extracted again five times with ethyl acetate 

(5x 500 mL) to produce n-hexane (7.3g), ethyl acetate (54.1g) and water (36.7g) fractions. 

The ethyl acetate fraction (54.1g) was dissolved in methanol (100ml) and adsorbed on 

polyamide gel (100g), using a rotary evaporator. This was added to the top of a previously 

packed column of polyamide [Column 1]   suspended in ethyl acetate. After the column has 

been extensively washed with ethyl acetate, the phenolic compounds were eluted with a 

stepwise gradient of ethyl acetate-methanol (98%) (95:5, 9:1, 85:15, 8:2 and 7:3), and 

300ml fractions were collected. The progress of elution was monitored using NP-TLC, 

using solvent systems 1 and 2. Altogether 258 fractions were afforded through classical 

column chromatography, and these were combined based on their TLC fingerprints, 

resulting in 56 complex fractions. 

4.4.2 Isolation of phenolic compounds  

Fraction 5 (1.7g) of [Column 1], eluted with ethyl acetate-methanol (98:2) was dissolved in 

15ml of methanol. The solution was mixed with 30g of silica and taken to dryness by 

rotary evaporation. The sample was subsequently added to the top of a flash [Column 2] . 

Twenty-four fractions of 100 mL were collected, eluting with a stepwise gradient of n-

hexane – ethyl acetate (9:1, 8:2, 7:3, 1:1) five fractions of each solvent. The tenth fraction, 

eluted with n-hexane – ethyl acetate (8:2), was evaporated to dryness, and the residue 

(2.1g) was purified by using RP-HPLC gradually eluted with acetonitrile – water (7:3) 

applying on [Column 6]  to yield compound 1 (1.98g). Fractions 17-18, eluted with n-

hexane – ethyl acetate (7:3) were combined and evaporated, and the dry residue (200mg) 

was purified with acetonitrile: water (7:3) by using preparative RP-HPLC over [Column 5] 

to obtain compound 2 (85mg). 

Fraction 13 (1.2g) from [Column 1], eluted with ethyl acetate – methanol (96:4) was 

evaporated to dryness. The dried residue (1.27g) was dissolved in 5ml of methanol. The 

solution was mixed with 9g of Celite (0.02-0.1 mm) and taken to dryness by the rotary 
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evaporator. The sample adsorbed onto Celite and packed on to the top of the flash 

[Column3]. Elution was carried out with a water – methanol gradient (92:8, 6:4, 1:1, and 

4:6), and the column was subsequently washed with methanol. Altogether nine fractions 

were collected from the flash [Column 3]. The fractions eluted with water – methanol (6:4) 

were combined and evaporated to dryness. The dry residue (0.3g) was dissolved in 5ml of 

methanol and purified with the help of preparative RP-HPLC with an isocratic elution of 

acetonitrile – water (7:3) utilizing [Column 6] resulting in compound 3 (60mg). The 

Fractions eluted from flash [Column 3] with water – methanol (1:1) were combined and the 

dry residue of 0.27g was obtained. This residue was purified by semi-preparative RP-

HPLC [Column 5] by using an isocratic elution of acetonitrile – water (1:1). The fraction 

(75mg) was further separated on a [Column 7] with the help of preparative HPLC by using 

an isocratic solvent system of methanol – water (53:47). This separation allowed us to 

obtain compounds 4 (30mg) and 5 (30mg). The fractions eluted from flash [Column 3] at 

water – methanol (4:6) were combined and dried under pressure. The residue was separated 

by using [Column 5]. The isocratic elution of acetonitrile – water (1:1) afforded compound 

9 (40mg). 

Fraction 14 (0.3g) from [Column 1], eluted with ethyl acetate – methanol (95:5) was dried 

under the Rota evaporator. The dried residue was diluted with 5ml ethyl acetate. The 

solution was adsorbed over silica and went through reverse phase flash chromatography 

utilizing [Column 3] with an eluent comprises of water – methanol (94:6, 9:1, 6:4). 

Fraction 3 (0.07g) eluted with water – methanol (6:4) was purified by RP-HPLC on 

[Column 6]. The eluent used was an isocratic solution of acetonitrile – water (7:3). The 

resultant sample was dried under nitrogen and referred to as compound 3 (30mg). 

   Fraction 37 (1.1g) from [Column 1], eluted with ethyl acetate – methanol (8:2) was 

evaporated with the help of rotary evaporation. The dried residue (1.25g) was dissolved in 

5ml methanol and adsorbed on polyamide; the elution was carried out with a stepwise 

gradient of water – methanol (98:2,  9:1,,6:4, 1:1and 2:8) on flash chromatography 

[Column 3]. Twenty-five sub-fractions of 100 ml were collected. The flash fractions (0.2g) 

eluted with water – methanol (2:8,) were collected and separated with preparative HPLC 

using [Column 6]. The isocratic solvent system of acetonitrile – water (1:1) was used 

throughout the HPLC separation. Compound 6 (80mg) was obtained through this process 

whereas the residue was further purified with RP-HPLC with similar [Column 6], eluted 

with acetonitrile – water (4:6) to afford compound 8 (25mg). 
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Fraction 42 (1.02g) from [Column 1], eluted with ethyl acetate – methanol (7:3) was 

evaporated to dryness under vacuum. The residue was adsorbed onto polyamide with the 

help of rotary evaporation. The adsorbed sample was packed on top of the polyamide flash 

[Column 3]. Gradient elution was carried out with water – methanol (96:4, 9:1, 8:2, 6:4, 

3:7, and 2:8) and 25ml subfractions were collected that were combined based on TLC 

visualization resulting in 15 larger fractions of 100ml each. The flash fraction 13-15 (0.2g) 

eluted with water – methanol (2:8) were combined and evaporated to dryness. The dry 

residue was subjected to purification through preparative HPLC on [Column 6]. The eluent 

used for the purification of the major compound of this fraction was acetonitrile – water 

(1:1) to afford compound 7 (51mg). The flash fractions 8-9 (0.14g) eluted with water –

methanol (3:7) were combined and evaporated under reduced pressure. The residue was 

diluted by mixing with 5 ml of methanol. The RP-HPLC was utilized for the purification of 

major compounds present in the following fraction. The purification was done through 

[Column 7] using methanol – water (7:3) to afford compound 10 (40mg).  

Fraction 24 (0.5g) from [Column 1], eluted with ethyl acetate – methanol (9:1) was reduced 

under pressure. The residue was mixed with 5ml of methanol and was subjected to 

purification by RP-HPLC with [Column 5]. The mobile phase used in purification was the 

isocratic solution of acetonitrile – water (3:7). One major compound was possible to purify 

from this fraction naming it as compound 11 (14mg). 

The relative purity of each isolated compound was examined by analytical HPLC using 

[Column 4] with a flow rate of 1.0ml/min, 20µl of the sample was injected each time. The 

elution conditions used in this test were like those presented above.  

4.5 Preparation of semi-synthetic analogs  

Morusin was the major compound isolated from the M. nigra roots, therefore it was 

further subjected to semi-synthetic modifications.  

Oxidation of Morusin 

Hypervalent iodine oxidation. A. To a stirred solution of morusin (5mg) in 

acetonitrile – water (9:1) 5ml, 1 equivalent of PIFA [bis(trifluoroacetoxy)iodo]benzene 

(5.1mg) was added. The reaction mixture was stirred at 60ᵒC temperature for over five 

hours and the reaction was worked up by SPE over silica using (2 x 10 ml) ethyl acetate. 

The residue was evaporated under reduced pressure to give 12 mg of dry residue. 
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B. To a stirred solution of morusin (20mg) and PIDA (diacetoxyiodo)benzene (20.4mg) 

in anhydrous acetonitrile (10ml). The reaction mixture was stirred at 60% temperature for 

over seven hours and then extracted over silica using (2 x 15 ml) ethyl acetate. The residue 

was reduced under a rota evaporator to give (35mg) of the fraction. The purification was 

done with the help of RP-HPLC (ii) using a C18 column with an isocratic elution of 

acetonitrile – water (7:3 v/v) to afford compound 12 

PCC oxidation.  

Morusin (5mg) was dissolved in dichloromethane 5ml, and 1 equivalent of pyridinium 

chlorochromate (2.5mg) was added. The reaction mixture was stirred at room temperature 

for over eight hours and the reaction was worked up by extracted over silica using (2 x 5 

ml) ethyl acetate. The residue was reduced under a rotary evaporator to give (6mg) of the 

fraction.  

Copper-catalyzed oxidation.  

Morusin (5mg) dissolved in 5ml of acetonitrile – water (9:1), was added to CuSO4 

(1.8mg). The reaction mixture was stirred at 60ᵒ C temperature for over five hours.  The 

reaction was worked up by extracted over silica using (2 x 5 ml) ethyl acetate. The residue 

was reduced under a rotary evaporator to give (7mg) of the fraction. 

Synthesis of hydrogenated morusin  

50.0 mg of morusin (1) was dissolved in anhydrous ethyl acetate 10ml, 10 mg of Pd/C 

(Palladium on activated charcoal 75990-10G) was added, and the solution was stirred 

under a hydrogen atmosphere for 4 hours. Later, the catalyst was removed through washing 

with (5 x 20ml) ethyl acetate. The residue was dried under a rotary evaporator and checked 

on HPLC; the chromatogram showed the presence of two major compounds. The 

purification was processed through RP-HPLC using a C18 column with an isocratic elution 

of acetonitrile – water (7:3) to afford compounds 13 and 14. 

NMR spectroscopy of the compounds obtained 

One- (1H, 13C, APT) and two-dimensional (HSQC, HMBC, 1H,1H-COSY, NOESY) NMR 

spectroscopic methods were used in the structural elucidation process. NMR spectra were 

recorded at room temperature in methanol-d4 on Bruker Avance DRX 500 NEO 

spectrometer, however, for compound 5 the 600/150 MHz spectra were taken in 

dimethylsulfoxide-d6 on a Bruker Avance III 600 MHz spectrometer equipped with 

Prodigy cryo-probe head. Chemical shifts (δ) are given on the δ-scaled and referenced to 
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the solvents (methanol-d4: δH = 3.31 and δC = 49.1 ppm, and dimethylsulfoxide-d6: δH = 

2.50 and δC = 39.5 ppm) and coupling constants (J) values are expressed in Hz. Pulse 

programs of all experiments [1H, 13C, APT, gs-HSQC, edited gs-HSQC, gs-HMBC 

(optimized for 7 Hz), band-selective gs-HMBC and NOESY (mixing time = 300 ms)] were 

taken from the Bruker software library. The NMR signals of the products were assigned by 

a comprehensive one- and two-dimensional NMR methods using widely accepted 

strategies [143, 144]. Most 1H assignments were accomplished using general knowledge of 

chemical shift dispersion with the aid of the proton-proton coupling pattern (1H NMR 

spectra).  

4.6 Pharmacological tests  

Pharmacological investigations were performed in research cooperation with research 

groups of the following principal investigators. Antispasmodic activity: Róbert Gáspár 

(Department of Pharmacology and Pharmacotherapy, University of Szeged , Hungary); 

SERCA activity: Lubica Horakova (Institute of Experimental Pharmacology and 

Toxicology, Centre of Experimental Medicine of the Slovak Academy of Sciences, 

Comenius University, Bratislava, Slovakia); in vitro antitumor activity on human 

gynecological cancer cell lines: István Zupkó (Department of Pharmacodynamics and 

Biopharmacy, Faculty of Pharmacy, University of Szeged); efflux pump inhibitory 

activity and in vitro antitumor activity on a susceptible / multi-drug resistant mouse 

lymphoma cell line pair: Gabriella Spengler (Department of Medical Microbiology 

and Immunobiology, University of Szeged, Szeged, Hungary). 

4.6.1 Antispasmodic activity 

Animal experimentations were carried out with the approval of the National Scientific 

Ethical Committee. The guidelines of European Communities Council Directives and the 

Hungarian Act for the Protection of Animals in Research were followed.  

Sprague-Dawley rats were maintained at the normal room temperature. The animals were 

fed with a standard rodent pellet diet with tap water. Eight male rats were applied for 

isolated organ bath studies. After starving for 16 h before the experiment, rats were 

terminated by CO2 inhalation. The dissected samples of distal ileum were mounted 

vertically in an organ bath containing Tyrode buffer.  The bath was heated and carbogen 

was bubbled through it. The regular contractions were recorded for 5 min and then 25 mM 

KCl was used. The AUC of KCl evoked contractions was compared with the AUC of 
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regular contractions. For trachea tissues, after removing blood vessels these were cut 

transversally into 4-5 mm-wide rings. Rings were placed in 37 °C Krebs buffer. The 

tracheal rings were mounted with their longitudinal axis vertically by hooks and 

equilibrated for 1 h. Papaverine was applied as a positive control in the same concentration 

range as the isolated compounds. The buffer solution was renewed every 15 min. 

A 3-point assay (10-8, 10-7 and 10-6 M) was performed to determine the active compounds. 

Further, the selected compounds which showed significant activity (the maximum ileum 

contraction inhibition was higher than 30%, and the tracheal tone reduction was higher 

than 100 mg) underwent an 8-point assay (10-8.5 – 10-5 M) with cumulative concentration-

response curves. The concentrations eliciting the half of the maximum effect (EC50) and 

the maximum effects (Emax) were calculated and statistically evaluated (I). 

4.6.2 SERCA activity 

SERCA activity of SR from fast-twitch skeletal muscle of a New Zealand female rabbit 

was measured spectrophotometrically by NADH-coupled enzyme assay by modification of 

the method outlined in the literature [145]. Labeling of SERCA1 and SR vesicles incubated 

with phenolic compounds were tested as indicated in the paper (II)  

Pancreatic beta-cell line (INS-1E insulinoma) was cultured in RPMI 1640. Cells were 

incubated with individual compounds for 24 h and then submitted to lysis in an ice-cold 

lysis buffer. Protein separation SDS PAGE and identification of SERCA2b and β-actin 

using primary and secondary antibodies were performed. The bands were visualized using 

luminol (sc-2048, Santa Cruz, USA) as a chemiluminescent probe and analyzed by 

Amersham Imager 600 (GE Health Care Europe GmbH, Freiburg, Germany).  

MTT reduction assay was used as an indicator of cell damage and performed according to a 

standard protocol (Munoz-Alonzo et al., 2007). The cells were pre-incubated for 24 h with 

or without different concentrations of individual phenolic compounds. MTT reagent was 

added, and incubated for 4 h, after adding solubilization buffer (10% SDS in 0.01 M HCl) 

the mixture was stood for 15-17 h to solubilize leading to the formation of formazan. The 

absorbance was recorded at 570 nm with a microplate reader. After 24h of incubation, the 

apoptotic changes were detected using the FITC Annexin V/propidium iodide kit by flow 

cytometry. Insulin secretion was monitored through the Mercodia Rat Insulin ELISA kit.  

Docking study was performed using the modeling program (Molecular Operating 

Environment) [146]. Spartan software was used to build and optimize the structure of 

compounds. The detailed study of albanol A docked in SERCA1 was performed. Statistics 
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were performed using one-way ANOVA by the Bonferroni test[147]. Values are mean ± 

SD of at least three independent experiments, where each sample was measured in 

duplicates or triplicates. The step-by-step procedure is mentioned in the article (II). 

4.6.3 Anti-proliferative activity of synthesized morusin metabolites  

The antiproliferative properties of the prepared compounds were determined on the human 

breast cancer cell lines including estrogen receptor-positive (MCF-7) and triple-negative 

breast cancer (MDA-MB-231). The cells were purchased from the European Collection of 

Cell Cultures (ECCAC, Salisbury, UK). Both cell lines Cultivated in Eagle's Minimum 

Essential Medium supplemented with 10% fetal bovine serum, 1% non-essential amino 

acids and 1% an antibiotic-antimycotic mixture and incubated under a humidified 

atmosphere at 37°C with 5% CO2. Antiproliferative activity was evaluated by MTT assay 

[148, 149]. Cells were plated and diluted. After an overnight standing, the cells-compound 

mixture containing ten different concentrations (0.1 to 100 µM) was incubated under cell 

culture conditions. Subsequently, the MTT solution was added and incubated for another 

4hrs. DMSO was added through shaking for 60 min at 37°C. Finally, the absorbance rates 

were measured at 545 nm wavelength by using a microplate reader. Concentrations 

inducing 50% inhibition of cell growth (IC50) values were determined by using GraphPad 

Prism 5.01 (GraphPad Software, San Diego, CA, USA) for two independent experiments. 

The tested compounds dissolved in DMSO did not show any substantial effect on cell 

proliferation. 

4.6.4 Efflux pump inhibition activity of the oxidized metabolite of morusin  

Functional efflux pump inhibition by morusin, its oxidized metabolite-mixtures, and the 

isolated neocyclomorusin was evaluated using rhodamine 123, a fluorescent dye, whose 

retention inside the cells was evaluated by flow cytometry. Briefly, 2 x 106 cells/mL were 

treated with 2 and 20 µM of each compound. After 10 min incubation, rhodamine 123 

(Sigma-Aldrich) was added to a final concentration of 5.2 µM and the samples were 

incubated at 37°C in a water bath for 20 min. Samples were centrifuged (Heraeus Labofuge 

400, Thermo Fisher Scientific, Waltham, MA, USA) (2000 rpm, 2 min) and washed twice 

with phosphate buffer saline (PBS, Sigma). The final samples were re-suspended in 0.5 mL 

PBS and its fluorescence measured with a Partec CyFlow flow cytometer (Partec, Münster, 

Germany). Tariquidar was kindly provided by Dr. Milica Pesic from the Institute for 

Biological Research Sinisa Stankovic, Belgrade, Serbia, and it was used at 20 nM as 

positive control.  
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5 RESULTS 

5.1 Isolation of phenolic compounds 

The methanol extract of Morus nigra root bark was found to contain a wide variety of 

constituents. Solvent- solvent partition between n-hexane, ethyl acetate and water (1:1 

v/v), respectively, allowed the purification of phenolic compounds from both the 

highly lipophilic (n-hexane layer) and the highly polar (aqueous layer) contaminants. 

Further, the extract was fractionated by using large-scale classical column 

chromatography on polyamide. With a stepwise gradient elution (ethyl acetate –

methanol; 98:2, 96:4, 95:5, 9:1, 85:15, 8:5, 8:2, 7:5, 1:1 v/v), the phenolic compounds 

could be successfully eluted from the SP. The column matrix was eluted with pure 

methanol to wash the column thoroughly. Based on TLC, fifty-six fractions mostly 

containing phenolic compounds could be separated. After preliminary purification, an 

extensive chromatographic purification was performed using a strategic combination 

of methods of various selectivity; the outline of the procedure is shown in Fig. 5. 

 
Figure 5. The chromatographic procedure followed for the isolation of phenolic 
compounds.  

The isolated compounds were as follows: morusin (1), kuwanon U (2), kuwanon E (3), 
moracin P (4), moracin O (5), albanol A (6), albanol B (7), oxyresviratol (8), kuwanon 
C (9), mulberofuran C(10), moracin M (11). 
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For the purification of major compounds (compound 1), the NP flash chromatographic 

method was used on silica. At this point of separation, a high amount of Morusin (1) 

could be isolated using n-hexane – ethyl acetate (8:2, v/v) at a fair, ca. 94% purity. A 

further RP-HPLC purification step was performed using acetonitrile – water (7:3, v/v) to 

reach 97% purity. Fig. 6 shows the RP-HPLC fingerprint of the pre-purified extract 

(before its separation on column 1), the flash chromatogram of column fraction F5, 

and HPLC chromatogram of the isolated pure compound. 

 
Figure 6. A. RP-HPLC chromatogram of the extract, B. flash chromatogram of first 

major fraction (F5), and C. the isolated morusin (1). 

The purification of minor compound (compound 10), was facilitated by the Reverse 

phase flash chromatographic over polyamide using water – methanol (3:7). The flash 

fraction was further separated and purified using reverse phase HPLC with methanol-

water (7:3) on a biphenyl column. The compound was obtained at fair ca. 96% purity. 

Fig. 7 shows the multistep performed for the isolation of minor compound 10.  

 
Figure 7. Overview of the stepwise purification of compound 10. A. RP-HPLC 

fingerprint of the ethyl acetate layer of the extract, B. flash chromatogram of fraction 

F42, C. HPLC fingerprint of the collected flash fraction (F42/4), D. chromatogram of 

the isolated mulberrofuran C (10). 
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In the separation of our multicomponent samples, a consecutive use of 

chromatographic techniques with different selectivity was necessary. This involved the 

use of several different stationary phases with appropriately chosen solvent systems. 

When performing preparative HPLC separations, it was frequently needed to follow a 

two-step workflow to avoid longer elution times of some contaminants (isocratic 

elution) or the need of time- and solvent-consuming re-equilibration of the column in 

between consecutive injections (gradient elution).  

The example of flash fraction 13/6 may illustrate well the importance of selectivity 

during the separation (Fig. 8 and Table 1). This fraction gave the illusion of a pure 

compound when analyzing it on a biphenyl HPLC column with an isocratic elution of 

acetonitrile – water (3:7, v/v) (Fig. 8A), even though it was a mixture of compounds 4 

and 5 (Moracin P and O).  

 

 Figure 8. HPLC separation of Moracin P (4) and O (5) in different chromatographic 

conditions. A. Acetonitrile – water (3:7, v/v) on biphenyl column. B. Acetonitrile – 

water (3:7, v/v) on C18 column. C. Methanol – water (53:47, v/v) on C18 column. D. 

Methanol – water (53:47, v/v) on biphenyl column. 

For the separation of these two compounds different separation conditions were 

optimized. The mixture showed the presence of two compounds when a C18 HPLC 
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column was used with the isocratic elution of acetonitrile – water (3:7) (Fig 8B). 

Changing the eluent to an isocratic MeOH – water (57:43) solvent system greatly 

improved resolution (Rs) within a shorter elution time on the C18 column (Fig. 8C), 

whereas the separation was further improved when using the same MeOH-based 

solvent system with the above-mentioned biphenyl column (Fig 8D). Therefore, this 

system was used for the successful preparative separation of compounds 4 and 5. 

 

Table 1. Efficiency of different HPLC conditions in the separation of compounds 4 and 5. 

tR: retention time, α: selectivity factor, Rs: resolution. 

 

Column / Solvent tR (min) 
Compound 4 

tR (min) 
Compound 5 

α Rs 

Biphenyl / ACN –H2O (3:7) 18.893 18.893 - - 

C18 / ACN –H2O (3:7) 22.053 22.933 1.041 0.718 

C18 / MeOH –H2O (53:47) 10.667 12.120 1.150 1.123 
Biphenyl  / MeOH – H2O (53:47) 13.717 17 1.252 2.481 

 

5.2 Preparation of semisynthetic analogs 

Oxidation of morusin 

To obtain potentially bioactive, oxidized morusin derivatives, different oxidizing agents 

were used including CuSO4, potassium permanganate, and the hypervalent iodine reagents 

[bis(trifluoroacetoxy)iodo]benzene (PIFA) and (diacetoxyiodo)benzene (PIDA). Each 

mixture was subjected to bioactivity screening concerning their cytotoxic / antiproliferative 

activity on several cancer cell lines, and their effect on the ABCB1-mediated efflux in 

MDR cancer cells (results are not presented here). Among hypervalent iodine reagents, 

PIFA was found to be more aggressive while PIDA produced less complex mixtures, and 

even though the major product(s) could generally be observed by TLC, some mixtures 

were highly complex with several side products. Moreover, a significant amount of 

unchanged morusin also remained. Bioactivity screening results turned our attention to one 

compound present in all oxidized mixture with an increased efflux pump inhibitory activity 

as compared with morusin. This compound was successfully obtained with PIDA as an 

oxidizing agent and purification via RP-HPLC, and it was identified by 1H and 13C NMR 

spectroscopy as neocyclomorusin (12). The reaction led to the formation of one major 
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product, compound 12 was obtained in an acceptable, 25% yield. Fig. 9 shows the RP-

HPLC chromatograms of morusin and neocyclomorusin (12) obtained. 

Since the ring closure of morusin to neocyclomorusin involves the formation of a new 

chiral center, compound 12 was also evaluated by chiral HPLC that confirmed it as a 

racemic mixture (Fig. 9C). After optimizing the chromatographic conditions for the chiral 

separation (Amylose-1 column, 80% Cyclohexane in 20% isopropanol over 30 min, 1 

mL/min), semi-preparative separation of the enantiomers 12a and 12b was also performed 

and 2 mg of each enantiomer was obtained. However, since the enantiopure compounds 

showed similar bioactivity (see Section 5.4.4, Table 5), we did not proceed with further 

studies to assign their absolute configuration. 

 

Figure 9. HPLC chromatogram of a major oxidative metabolite of morusin. A. pure 

morusin B. neocyclomorusin.C. chiral separation of the enantiomers. 

Reduction of morusin  

Catalytic hydrogenation of morusin was straightforward by using Pd/C and hydrogen gas 

atmosphere (H2 balloon), and the reaction resulted in isolated yields of 20% and 40% for 

the mono and dihydrogenated products respectively. 
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solid; 9) [155], mulberrofuran C (white solid; 10) [156], moracin M (red solid; 11) [157], 

and neocyclomorusin (yellow solid; 12) [158]. 

Contradictory data have been published concerning the NMR chemical shifts of moracins P 

(4), and O (5), which may lead to a mistaken identification of these compounds. Therefore, 

compounds 4 and 5 were thoroughly studied and discussed here (see also Section 6.3). 

Moracin P (4): brown solid; [159]; m.p. 252–254 ◦C; 1H-NMR (CD3OD, 500 MHz) δ 7.23 

(1H, s, H-4), 6.89 (1H, s, H-3), 6.86 (1H, s, H-7), 6.75 (2H, d, J = 2.1 Hz, H-2ʹ ,6ʹ ), 6.24 

(1H, br t, J = 2.0 Hz, H-4ʹ ), 3.79 (1H, dd, J = 7.6 and 5.2 Hz, H-2ʹʹ), 3.12 (1H, dd, J = 16.5 

and 5.2 Hz H-1ʹʹa), 2.83 (1H, dd, J = 16.5 and 7.6 Hz H-1ʹʹb), 1.36 (3H, s, H-5ʹʹ), 1.28 (3H, 

s, H-4ʹʹ); 13C-NMR (CD3OD, 125 MHz) δ 160.1 (C-3ʹ ,5ʹ ), 156.7 (C-2), 156.0 (C-7a), 

152.7 (C-6), 133.8 (C-1ʹ ), 124.3 (C-3a), 121.9 (C-4), 117.8 (C-5), 104.1 (C-2ʹ ,6ʹ ), 103.7 

(C-4ʹ ), 101.9 (C-3), 99.8 (C-7), 78.3 (C-3ʹʹ), 70.7 (C-2ʹʹ), 32.5 (C-1ʹʹ), 26.1 (C-5ʹʹ), 21.2 

(C-3ʹʹ).  

Moracin O (5): brown solid; [159] m.p. 235–236 ◦C; 1H-NMR (CD3OD, 500 MHz) δ 7.29 

(1H, s, H-4), 6.89 (1H, s, H-3), 6.85 (1H, s, H-7), 6.74 (2H, d, J = 2.1 Hz, H-2ʹ ,6ʹ ), 6.23 

(1H, br t, J = 2.1 Hz, H-4ʹ ), 4.64 (1H, t, J = 8.6 Hz, H-2ʹʹ), 3.22 (2H, m, H2-1ʹʹ), 1.28 (3H, 

s, H-4ʹʹ), 1.24 (3H, s, H-5ʹʹ); 13C-NMR (CD3OD, 125 MHz) δ 160.1 (C-3ʹ ,5ʹ ), 160.0 (C-6), 

156.5 (C-7a), 156.3 (C-2), 133.9 (C-1ʹ ), 125.2 (C-5), 124.1 (C-3a), 117.1 (C-4), 103.9 (C-

2ʹ ,6ʹ ), 103.5 (C-4ʹ ), 102.5 (C-3), 93.3 (C-7), 91.5 (C-2ʹʹ), 72.6 (C-3ʹʹ), 31.3 (C-1ʹʹ), 25.4 

(C-4ʹʹ), 25.5 (C-5ʹʹ). 1H-NMR (DMSO-D6, 600 MHz) δ 9.43 (2H, s, HO-3ʹ ,5ʹ ), 7.34 (1H, 

s, H-4), 7.07 (1H, s, H-3), 6.97 (1H, s, H-7), 6.66 (2H, d, J = 2.1 Hz, H-2ʹ ,6ʹ ), 6.19 (1H, t, 

J = 2.1 Hz, H-4ʹ ), 4.63 (1H, s, HO-3ʹʹ), 4.60 (1H, dd, J = 9.3 and 8.3 Hz, H-2ʹʹ), 3.20 (1H, 

dd, J = 15.7 and 8.3 Hz, Ha-1ʹʹ), 3.15 (1H, dd, J = 15.7 and 9.3 Hz, Hb-1ʹʹ),1.144 (3H, s, H-

5ʹʹ), 1.137 (3H, s, H-4ʹʹ); 13C-NMR (DMSO-D6, 150 MHz) δ 158.8 (C-3ʹ ,5ʹ ), 158.3 (C-6), 

154.2 (C-7a), 154.1 (C-2), 131.7 (C-1ʹ ), 124.2 (C-5), 121.8 (C-3a), 116.1 (C-4), 102.5 (C-

4ʹ ), 102.1 (C-2ʹ ,6ʹ ), 101.7 (C-3), 92.2 (C-7), 90.0 (C-2ʹʹ), 70.1 (C-3ʹʹ), 29.5 (C-1ʹʹ), 26.1 

(C-4ʹʹ), 24.8 (C-5ʹʹ).  

 

5.3.1 Structure of the compounds 

In this study, eleven phenolic compounds were isolated from the root bark of M. nigra, 

including four prenylated flavone (1-3 and 9), three arylbenzofurans (4, 5 and 11), a 

stilbene (8), and three more complex Diels-Alder adducts of prenylated phenolic 
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fragments (6, 7 and 10). Structures of these compounds, together with those obtained 

by semi-synthesis from morusin (1), are shown in Fig. 10. 

 

 
 

 

Figure 10. Structures of the compounds prepared in this study. A. Compounds 1-11 

were isolated from the root bark of Morus nigra. B. Compounds 12-14 were semi-

synthesized from morusin (1). The racemic neocyclomorusin (12) was separated to the 

enantiopure 12a and 12b by preparative chiral HPLC, but due to the same bioactivities 

exerted by them (see section 5.4.4), their absolute configuration was not assigned. 
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5.4 Pharmacological activity  

5.4.1 Anti-Spasmodic activity 

In collaboration with the group of Dr. Róbert Gáspár (Department of Pharmacology and 

Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged), compounds 

1-7 were subjected to an ex vivo bioassay to assess their antispasmodic potential on isolated 

rat ileum and trachea. First, a primary screening was performed through a 3-points assay. 

In this preliminary bioassay, morusin (1), kuwanon E (3), moracin P (4), and albanol A (6) 

had only non-significant relaxing activity (or no action) on the rat ileal contractions. 

Additionally, except for albanol A (6), these compounds elicited a very moderate tracheal 

tone reducing effects that were also much lower than that of papaverine. However, a 

remarkable activity was found for kuwanon U (2), moracin O (5) and albanol B (7) on both 

experimental models, therefore these compounds were further studied for their efficacy 

The subsequent 8-points assay revealed that compounds 2, 5, and 7 are equipotent with 

papaverine in the inhibition of ileal contractions (Table 2). Further, each of these 

compounds showed a tendency for higher Emax value on ileal contraction than that of 

papaverine, and in the case of moracin O (5), this was statistically significant. Regarding 

the compounds’ activity on the tracheal tone, similar results were obtained. The three 

studied compounds exerted their 50% activity at the same, low nanomolar concentration 

range as papaverine. Furthermore, moracin O (5) exerted a significantly stronger maximum 

decrease in the tracheal tone as compared to papaverine. 

 

Table 2. Smooth muscle relaxant activity of compounds 2, 5, and 7 on isolated rat ileum 

and trachea.  

EC50 and Emax values on the ileal contractions and tracheal tone are presented. Papaverine 

was used as a positive control of both experimental models. *: p<0.05 as compared to the 

effect of papaverine using one-way ANOVA followed by Tukey’s post-hoc test. 

Compound Ileal contractions Tracheal tone 
EC50 ± SEM 

(µM) 
Emax ± SEM 

(%) 
EC50 ± SEM 

(µM) 
Emax 

(mg ± SEM) 
kuwanon U (2) 0.13 ± 0.04 70.5 ± 6.1 0.033 ± 0.05 247.8 ± 9.9 
moracin O (5) 1.1 ± 0.43 85.3 ± 4.4* 0.062 ± 0.01 309.5 ± 17.7* 

albanol B (7) 1.3 ± 0.98 83.2 ± 3.9 0.100 ± 0.05 254.9 ± 19.3 
papaverine 0.44 ± 0.15 63.6 ± 6.3 0.074 ± 0.03 233.7 ± 15.4 

To the best of our knowledge, this is the first report of the smooth muscle relaxant activity 

of compounds 2, 5, and 7. The bioactivity of these compounds is of high potential 
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therapeutic interest: kuwanon U (2) and albanol B (7) are equipotent with the opium 

alkaloid antispasmodic drug papaverine, and moracin O (5) exerted an even stronger effect 

than that.  

 

5.4.2 SERCA activity 

Compounds 1-7 were also tested for their activity on skeletal muscle sarco/endoplasmic 

reticulum Ca2+-ATPase 1 (SERCA1). Among the tested compounds, albanol A (6) and B 

(7) were identified as the most potent inhibitors of SERCA1 activity, whereas Moracin P 

(4) and O (5) were inactive. Binding of compounds 1-7 to SERCA1 (PDB ID: 3w5c), and 

the binding energies showed a good correlation to the compounds’ activity as SERCA1 

inhibitors. Further, based on similarities in SERCA isoforms, the compounds’ effect was 

also tested on the viability of INS-1E rat insulinoma cells, a common model of pancreatic 

beta cells that express SERCA2b; the results are shown in Table 3. 

 

Table 3. Interaction of phenolic compounds with SERCA1 and their effect on the viability 
of INS-1E beta-cells.  

Results of E score function and log P were obtained from the MOE software, SERCA1 
activity was measured by the NADH-coupled enzyme assay, and viability of INS-1E beta-
cells was assessed by the MTT assay. 

Compound MOE-E 
Score 

Log P Serca ATPase Activity Beta Cell Viability 
IC50 (µM) R Square IC50 (µM) R Square 

Albanol A (6) -12.62 5.79 18.88 0.95 18.22 0.93 
Albanol B (7) -10.85 5.77 24.56 0.96 18.17 0.85 
Kuwanon E (3) -10.03 5.24 29.43 0.97 28.65 0.96 
Kuwanon U (2) -9.43 5.64 35.62 0.91 64.82 0.95 
Morusin (1) -8.84 5.23 43.57 0.97 28.65 0.91 
Moracin P (4) -6.45 2.49 - - 108.6 0.94 
Moracin O (5) -5.21 2.83 - - 111.4 0.96 

SERCA1 binding site to the compounds was also analyzed experimentally using the 

fluorescence marker (FITC) to measure alterations in the cytosolic region, and using 

intrinsic tryptophan fluorescence to analyze alterations in the transmembrane region of the 

protein. Kuwanon E, U, Morusin, moracin P, and O showed binding in or near the ATP 

binding site as suggested by significantly decreased FITC fluorescence. Interaction in the 

transmembrane region was also observed for these compounds except for Moracin P and 

O, whereas no conformational change in either region of SERCA1 was seen with albanol A 

and B. These latter two compounds were also the strongest inhibitors with intensive 



36 

 

binding energy to SERCA1, therefore their binding mode was studied by in silico docking 

more in detail. Briefly, it was found that albanol A immerses in the luminal gate at the Ca²⁺ 

release site in the ER lumen. Kuwanon U, as a compound representing the ability to induce 

conformational changes in both the cytosolic and transmembrane regions of SERCA1, was 

also analyzed in greater detail by molecular docking. This study confirmed the binding of 

kuwanon U in both regions, and suggested the assumption that its SERCA1 inhibition is 

due to the occupation of residues Phe487 and Gln202 in the cytosolic region which may 

prevent ATP binding. 

The compounds were also tested for their potential to alter expression of SERCA2b in INS-

1E cells, to induce apoptosis, and to alter basal and/or glucose-induced insulin release in 

INS-1E cells. Briefly, the compounds’ activity on SERCA2b expression showed an inverse 

correlation with their SERCA1 inhibitory activity, i.e. albanol A and B significantly 

increased the expression of SERCA2b. Interestingly, moracin P (4) was also similarly 

active in this regard as albanol B (7). Further, a 24-hours incubation of the cells with 

albanols (6, 7), kuwanons (2, 3) and moracins (4, 5) at concentrations corresponding to the 

IC50 values led to a significant, ca. 30-35% increase in the rate of early apoptotic cells, 

while in case of morusin the change in early apoptotic cells was not significant and late 

apoptotic cells showed an over 40% increase instead. None of the compounds interfered 

with the basal insulin release, but all of them decreased the glucose-stimulated insulin 

release, and albanol A (6) and B (7) were the most potent in this regard. 

 

5.4.3 Antitumor activity on human breast cancer cells 

The in vitro anticancer activity of morusin (1) and its semi-synthetic derivatives (12-14) 

was evaluated against two human breast cancer cell lines: MCF-7 (estrogen receptor 

positive; ER+) and MDA-MB-231 (triple-negative; TNBC) by MTT assay after a 72 h 

treatment, results are shown in Table 4. 

According to our results, the oxidative ring closure between the B-ring of morusin and 

the 3-prenyl group results in a complete loss of the antiproliferative activity against 

the two tested breast cancer cell lines. In contrast with this, saturation of the olefins in 

one or both prenyl functions leads to an increased activity, and particularly in the case 

of tetrahydromorusin (14) this increase is nearly two-fold on both cell lines. It is also 
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noteworthy, that cell line specificity of morusin (i.e. ca. 1.5-times stronger effect on 

MCF-7 than on MDA-MB-231) did not change upon hydrogenation. 

 

Table 4. Antiproliferative activities of morusin (1) and its oxidized (12) and reduced (13-
14) derivatives against human breast cancer cell lines. C.I.: 95% confidence interval, n=6 
from two biological replicates (n=3 each). 

 
 
 
 
 
 
 
 
 
 
 

5.4.4 Antitumor and efflux pump inhibitory activity on an MDR cancer cell model 

Based on the ABCB1 inhibitory activity of the oxidized morusin mixtures, 

neocyclomorusin (12), isolated from such a mixture, was tested on a mouse lymphoma 

cancer cell line pair, i.e. L5178 cells and their MDR counterpart L5178B1 expressing 

the human ABCB1 transporter. Results are shown in Table 5. 

Table 5. Antiproliferative, cytotoxic and ABCB1-inhibitory activities of morusin (1) and 
the two enantiomers of neocyclomorusin (12a and 12b) on L5178 cells and multi-drug 
resistant L5178B1 cells. C.I.: 95% confidence interval, n=4. For ABCB1 inhibition, 20nM 
tariquidar was used as positive control (inh. 87.5%). Cross-resistance: CR=IC50

MDR/IC50
PAR 

 

 Antiproliferative Cytotoxicity ABCB1 
inhibition (%)  IC50 [95% C.I.] (µM)  IC50 [95% C.I.] (µM)  

 L5178 L5178B1 CR L5178 L5178B1 CR 2 µM 20 µM 
1 14.5 

[12.6 - 16.6] 
25.8 

[22.7 - 29.2] 
1.8 46.7 

[40.4 - 53.9] 
48.4 

[44.4 - 52.6] 
1.0 0 8.6 

12a 6.5 
[5.5 - 7.8] 

27.9 
[24.1 - 32.2] 

4.3 27.2 
[24.6 - 30.2] 

47.2 
[38.8 - 57.5] 

1.8 0 55.3 

12b 8.5 
[7.3 - 9.9] 

21.8 
[19.9 - 23.8] 

2.6 20.2 
[17.5 - 23.3] 

35.8 
[31.3 - 41.0] 

1.8 0 48.8 

The two neocyclomorusin enantiomers (12a and 12b) exerted similar activities, 

indicating that the configuration of the newly formed stereocenter has little if any 

impact on their bioactivity. Further, they were more potent than their parent compound 

morusin against the L5178 lymphoma cells, both in terms of antiproliferative and 

cytotoxic activity. This was not the case on the MDR cells, in other words, the ABCB1 

expressing MDR cells showed an increased cross-resistance to 12a and 12b as 

 IC50 [95% confidence interval] (µM) 

MCF-7 MDA-MB-231 

1 29.0 
[27.4 - 30.7] 

~ 48.6 

12 > 100 > 100 
13 20.8 

[19.4 - 22.4] 
30.6 

[28.0 - 33.4] 

14 
 

15.5 
[14.0 - 17.1] 

24.7 
[23.2 - 26.2] 
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compared with that to morusin. This was particularly true in the antiproliferative 

assay’s experimental setup. Further, as expected from the oxidized mixtures’ activity, 

neocyclomorusin exerted a stronger effect as an inhibitor of ABCB1-mediated efflux, 

with a ca. 50% inhibition at 20µM.  

 

 

6 DISCUSSION 

6.1 Isolation of phenolic compounds  

Bioactive compounds from Morus nigra belong to various chemical groups of a wide 

polarity range [160]. Because of this, excessive percolation with the amphipolar methanol 

was selected to extract possibly all potential target compounds, but such extracts contain a 

wide range of contaminating compounds. The phenolics present in a methanol extract can 

be separated by solvent-solvent partition, so that the n-hexane layer contains mostly the 

lipids, and the targeted phenolic constituents concentrate in the ethyl acetate layer. 

Preparative-scale classical adsorption chromatography on polyamide is also a valuable 

method in the preliminary purification. This stationary phase has a very high capacity that 

makes it economic in the separation of samples in larger amounts [161] 

Polyamide is known to strongly bind compounds with phenolic hydroxyl groups through 

hydrogen bonding [162], and the retention of such compounds depends on the number and 

positions of the hydroxyl groups [163]. Further, polyamide is an especially versatile 

stationary phase since it can be used both in normal and reverse-phase mode depending on 

the mobile phase polarity, and this fundamentally influences retention mechanisms [164]. 

To exploit this, we performed a consecutive normal- and a reverse-phase separation step on 

the same stationary phase for most of our initial fractions at the beginning of our separation 

procedure. 

After preliminary purification, a multistep procedure of combined chromatographic 

methods was performed for the isolation of bioactive phenolic compounds, following well 

established strategies for natural product isolation [165, 166], and each step was monitored 

by TLC. Other than providing an easy and convenient way to analyze chromatographic 

fingerprints of each fraction, TLC also served as a useful tool to assist choosing the 

chromatographic systems for each consecutive step. Our overall isolation strategy included 

an effort to maximize efficiency by a consecutive use of chromatographic techniques 
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representing large differences in their selectivity. A general overview of our isolation 

strategy is shown in Fig. 11. 

 

Figure 11. Scheme of the employed isolation strategy 

Fractionation of the pre-purified extract was performed by extensive flash 

chromatography on silica with a range of solvents from hexane to methanol, or 

polyamide in reverse phase mode. 

M. nigra contains a very high structural diversity of phenolic compounds many of 

which represent similar polarity [160], therefore a high chemical complexity of the 

fractions was frequently observed even at an advanced state of the purification 

procedure. For this reason, final purification was carried out by RP-HPLC with 

different isocratic programs. When selecting the stationary phase, most separations 

were developed starting with core-shell XB-C18 columns with acetonitrile-based mobile 

phases that typically showed an excellent performance in isolating our target compounds. 

In several cases, however, switching to phenyl-bonded (core-shell XB-biphenyl) columns 

became necessary; due to the fact that mechanism of retention for such columns includes π-

π interactions with the analytes [167], phenyl-bonded phases provide excellent alternatives 

to C18 columns when separating aromatic compounds of otherwise similar polarity. 

Concerning separations on phenyl-bonded columns, it is known that  methanol enhances π-

π interactions as compared with acetonitrile that weakens them [168, 169], and since these 

interactions are the main reason for extra selectivity over C18 columns, we favored 

methanol-based mobile phases on the biphenyl columns. The extent of this mobile phase 

effect on the selectivity may be well illustrated by the challenging separation of Moracin P 

(4) and Moracin O (5) in our study (see Fig. 8 and Table 1). These compounds co-eluted 

from the biphenyl column as a single sharp peak (tR=18.9 min) when acetonitrile(aq) was 

used but showed an excellent separation (tR=13.7 and 17.0 min, Rs=2.5) on the same 

column when the solvent system was methanol(aq). 
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With combined chromatographic methods, eleven pure phenolic compounds were 

isolated among them two were isolated for the first time from the roots of this plant. 

6.2 Preparation of Semi-synthetic derivatives 

Morusin, a prenyl flavonoid isolated in higher amounts, was subjected to oxidation 

under various conditions, and reduction through catalytic hydrogenation to produce 

potentially bioactive semi-synthetic analogs. 

Concerning oxidation, several oxidative conditions using transition metal catalysts 

were employed, and two hypervalent iodine reagents (PIFA and PIDA) that are known 

mild and selective phenolic oxidizing agents. PIFA and PIDA were also selected based 

on their ability to oxidize through single-electron transfer (SET) resulting in a cation 

radical, which upon deprotonation gives the same phenoxyl radical that is formed 

through hydrogen atom abstraction (HAT), a common mechanism in free radical 

scavenging by phenolic antioxidants. Therefore, these reactions led to the preparation 

of oxidized mixtures containing a wide range of potentially biorelevant metabolites. 

Bioactivity screening of the obtained mixtures (not discussed here in detail) turned our 

attention to a compound whose presence in several mixtures seemed to coincide with an 

increased inhibitory activity on the ABCB1 efflux transporter. This compound, identified 

after isolation as neocyclomorusin (12), was a major product of PIDA-mediated oxidation 

in anhydrous acetonitrile. This solvent, possessing a high ionizing power with a low 

nucleophilicity, may not only stabilize the aromatic cation radical species but it is also 

favorable for the spontaneous elimination of iodobenzene from the reagent[170, 171]. 

Neocyclomorusin (12) has previosly been isolated from another Morus species, M. 

lhou [172]. According to a recent report, the palladium-catalyzed intramolecular 

oxidative cyclization of kuwanon F under N2 atmosphere afforded cyclomorusin as a major 

product and neocyclomorusin as the side product [134]. The oxidative cyclization of 

morusin using manganese dioxide afforded morusin hydroperoxide and 

neocyclomorusin in 35% and 2% yield respectively. In another study, the use of silver 

dioxide for the cyclization of morusin favored the production of morusin 

hydroperoxide with 85% yield [132]. The photooxidation of morusin by bright 

sunlight or a high-pressure mercury lamp also produced morusin hydroperoxide (ca. 

80% yield) and this can be reduced by sodium borohydride to form neocyclomorusin 

[133]. In contrast, when we used PIDA, the reaction favored the production of 
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neocyclomorusin with a fair, 25% yield. Since we did not attempt any yield 

optimization, this reaction may serve as a starting point towards a one-step procedure 

to obtain neocyclomorusin from morusin in a more favorable manner as compared to 

the previous methods. 

The hydrogenation of Morusin was catalyzed by palladium under H2 atmosphere that is 

a commonly used strategy to prepare saturated olefins. The geometry of a molecule plays 

an important part since contact with the catalyst is of high importance [173]. Based on the 

conjugation of the D-ring with the aromatic A-ring, it was expectable that hydrogenation 

should first take place at the 3-prenyl sidechain of morusin, whereas later both the D ring 

and the prenyl moiety were hydrogenated. In a related study, the hydrogenation of 

prenylflavonoids khonklonginol A and lupinifolinol (both of which containing an 8-

prenyl group and a 2,2-dimethyl-2H-pyran ring similar to the D-ring of morusin) was 

reported to take place both at the D-ring and the prenyl chain [174]. Here we also 

succeeded in obtaining the selectively hydrogenated product (13).  

 

6.3 Structure elucidation of the compounds obtained 

The phenolic compounds isolated from the roots of Morus nigra belong to several 

compound groups such as flavonoids, arylbenzofurans, stilbenes, and Dies-Alder type 

adducts. The isolated flavonoids contain terpenic side chains namely prenyl and geranyl 

substitutions. The biosynthesis of prenyl chains involves the membrane-bound proteins 

named as flavonoid prenyltransferases strictly specific to flavonoid substrates. Compound 

(1) Morusin a prenyl flavone, has the presence of both a 3-prenyl chain and 2'-hydroxyl 

group, which can further be cyclized to form cyclomorusin[7]. Kuwanon C (9) also 

known as mulberrin is a dehydro-prenylflavone, considered to form kuwanon G through 

an enzymatic Diels-Alder reaction with a chalcone [175]. Kuwanon U (2) and Kuwanon E 

(3) are geranylflavanones, these side attachments of flavonoid compounds involve the 

action of the specific chain lengthening enzymes, geranyl pyrophosphate synthases [176]. 

Although no enzyme work has yet been reported, the enzymatic synthesis of these 

compounds may involve geranylation of the corresponding flavonoids, similarly to the 

prenylation. In addition, moracin P, O, and M (4, 5, and 10, respectively) contain furan ring 

that is often produced through cyclization of the terpenoid chains with an ortho-phenolic 

hydroxyl to yield various oxidized five-membered rings. Cyclization of the isoprenoid side 

chain seems to be catalyzed by prenyl cyclases [177]. Compound 8 was identified as the 
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stilbene oxyresveratrol, an aglycone of mulberroside A [178]. Albanol A and B, and 

mulberofuran C (6, 7, and 11, respectively) were identified as Diels-Alder adducts from a 

prenylchalcone and a dehydroprenyl-2-arylbenzofuran [159]. Interestingly, not only these Diels-

Alder adducts but also their arylbenzofuran precursor fragments (i.e. kuwanon E, 2; moracin M, 

11; and moracin O, 5) were isolated in this work.  

When comparing the NMR chemical shifts of compounds 4 and 5 with literature data, we 

found some contradictory spectral data concerning moracin P and two related 

arylbenzofurane derivatives, moracins Q and R. In the paper reporting the first isolation of 

moracins Q and R [179] chemical shifts of the prenyl-originated dimethyl-dihydropirane 

ring of moracin Q, i.e. the dimethoxy derivative of moracin P, were assigned as nearly 

identical to those previously reported for the substituted dihydrofurane ring of moracin O 

[180]. Further, the same paper [179] reported chemical shifts of the prenyl side-chain of 

moracin R nearly identical to those previously published for the analogous prenyl-

originated ring of moracin P [180].     

First, we attempted to clarify this through HRESIMS, but both compounds 4 and 5 showed 

the same elemental compositions, i.e. C19H18O5. Considering that both moracins P and O 

may be formed from moracin R by a water elimination, this may still have meant that the 

molecular ion of moracin R could not be observed. It is worth noting that moracin R was 

reported with high-resolution mass spectral data referring to the [M-H2O]+ m/z value [179]. 

Compound 4 was obtained as a brown amorphous powder. The molecular formula was 

determined as C19H18O5 by HRESIMS. Signal assignment of the 1H NMR spectrum (Fig. 

S1) revealed the presence of a disubstituted 2-arylbenzofuran moiety, a trisubstituted 2,2-

dimethyldihydropyran ring, and a 1,3,5-trisubstituted benzene ring. The 13C measurement 

showed 16 signals corresponding to 18 carbon atoms, including two methyls, one 

methylene, one sp3 oxymethyne and one sp3 quaternary carbon, and in the sp2 region 

further six methyne, three quaternary carbon and five oxyaryl carbon atoms. The HSQC 

experiment revealed the one-bond 1H/13C connections, while the HMBC measurement 

allowed the assignment of the quaternary carbon atoms through the 2JH,C and 3JH,C 

couplings. Based on the above spectroscopic evidence, compound 4 was unambiguously 

identified as moracin P. Therefore, previous assignment of the structure of this compound 

was correct [180], and this conclusion is also supported by reports on other moracin P 

derivatives [181-183]. 
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The condensed dimethyldihydropyran ring of moracin P (4) appears in an equilibrium of 

two half-chair conformations where C-2ʹʹ and C-3ʹʹ are the atoms out of a plane. The 

unambiguous identification of the chemical shifts of the cis and trans located 

methyl/methine hydrogens was achieved utilizing the two-dimensional NOESY 

measurement (τmixing = 300 ms). The 2.83/1.28 cross-peak assigned that in the preferred 

conformation H-1ʹʹ/CH3
 (δ = 1.28) are cis and take the 1ʹʹ/3ʹʹ diaxial position. The 3J(Htrans-

1ʹʹ, H-2ʹʹ) > 3J(Hcis-1ʹʹ, H-2ʹʹ) values (7.6 Hz/5.2 Hz) supported preference of the depicted 

conformation.  

Compound 5 was obtained as a brown amorphous powder. The molecular formula was 

determined also, in this case, to be C19H18O5 by HRESIMS. The 1H and 13C APT NMR 

spectra exhibited signals rather similar to those obtained for 4, indicating that they should 

be structural isomers. The spectra suggested the presence of a disubstituted 2-

arylbenzofuran moiety and a 1,3,5-trisubstituted benzene ring. Considering the HMBC 

correlations of the δ H-2ʹʹ (4.64 ppm) atom with the δ C-5 (125.2 ppm) and δ C-6 (160.0 

ppm), the third ring of compound 5 is a condensed dihydrofuran ring substituted with a 2-

hydroxy-propyl group (HO-C(Me2)-), suggesting that this compound should be moracin O. 

The NMR signal assignment was also supported by the HSQC, HMBC and NOESY 

spectra. It needs to be stressed that NMR measurements taken in CD3OD, or in other 

solvents where no separated OH signals can be observed, provide no information on the 

number of the OH groups. To overcome this uncertainty, we have taken the NMR 

investigations (1H, 13C, edited HSQC, HMBC) of compound 5 also in DMSO-D6. 

Clear differentiation between moracin O and moracin R can be accomplished by detecting 

the OH signals in the 1H NMR spectrum: moracin R contains five, whereas Moracin O 

only three OH groups. In the 1H spectrum, two new singlets appeared at δ 9.43 (2H) and 

4.63 (1H), and these did not give HSQC cross-peaks justifying the presence of three 

hydroxyl groups. Since the values of 1H and 13C chemical shifts have slightly changed in 

DMSO-D6 as compared to those observed in CD3OD, HSQC and HMBC experiments were 

also performed to establish a complete 
1H and 13C signal assignment. The limited 

resolution in the F1 dimension (13C) of the routine HMBC experiment (optimized for JC,H = 

8 Hz long-range couplings) did not allow the confident assignment of several quaternary 

13C signals. To achieve the required extremely high 13C chemical shift resolution, the band 

selective HMBC experiment was the method of our choice. The 9.43/158.8 ppm cross-peak 

assigned the 3ʹ,5ʹ-OH positions, and the exact δ C-3ʹ,5ʹ chemical shifts, differentiating from 
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the rather closely appearing C-6 (δ 158.3) peak. With the aid of the well-separated HMBC 

cross-peaks 6.66/154.1 and 7.34/154.2 ppm, respectively, the unambiguous assignment of 

the δ C-2 and δ C-7a values became possible. Based on the above, compound 5 was clearly 

identified as moracin O. As for the contradictory literature data, this also suggests that the 

compound previously reported as moracin Q is likely the dimethoxy derivative of moracin 

O instead of that of moracin P. Further, the chemical shifts reported for moracin R suggest 

a possible false assignment of the structure of this compound that was moracin P instead 

[179]. 

Concerning natural product isolation, it is a frequently arising question whether the 

isolated compounds are the ones present in the plant or is there a possibility for some 

of them to be formed during the process of isolation. Interestingly, several Diels-Alder 

type adducts isolated from the extract of the callus from M. nigra were different from those 

obtained from the root bark of the plant, not only for the cyclohexene ring substitution but 

also for the stereochemistry of the alicyclic ring (cis-trans in vitro in contrast with trans-

trans in vivo) [55]. However, in our current study, the HPLC chromatogram of the ethyl 

acetate layer of the pre-purified extract (that has not been affected by any adsorption 

chromatography) showed the presence of peaks corresponding to the isolated phenolic 

compounds, suggesting their presence in the (dried) roots before their isolation. 

Many studies reported the isolation of moracin O (5) from M. nigra roots, whereas 

moracin P (4) was isolated by us for the first time from this herbal drug [60]. Both 

compounds have a very similar structure and they also share nearly similar UV 

absorption maxima at 217nm and 319nm (4), and 217nm and 321nm (5). According to 

the literature, albanol A, commonly known as mulberrofuran G, has been isolated from 

roots in many studies[55], however, a similar compound albanol B having a difference 

in benzene ring was not isolated so far. In our study, both compounds albanol A (6) 

and albanol B (7) were isolated in fair amounts, 75 and 85 mg, respectively.  

 

6.4 Biological activity of the isolated compounds  

6.4.1 Antispasmodic activity of the isolated compounds 

Several prenylated phenolic compounds have previously been reported with vasorelaxant 

activity, but much higher concentrations were needed for a 50% relaxation [184, 185]. An 

extract of the prenylflavone-containing hops was reported to exert relaxant activity on rat 

ileum contractions ex vivo, but since the extracting solvent was water, it is unlikely that the 
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active constituents were prenylated phenolics [186]. As the cases of bowel motility and 

bronchial asthmatic complaints are increasing [187, 188], the need to find new, potential, 

and natural drugs for the treatment of these disorders is growing. 

Black mulberry preparations are also used as antispasmodic agents in folk medicine, but no 

related studies on this bioactivity of its isolated constituents have previously been 

available. In our study, seven phenolic compounds namely morusin, kuwanon U, 

kuwanon E, moracin P, moracin O, albanol A, and albanol B were tested. Based on our 

results, kuwanon U, Moracin O, and albanol B were identified as potential antispasmodic 

agents in both ileal and tracheal models, while kuwanon E that differs from kuwanon U 

only in a methoxy substitution was inactive. These compounds were further studied for 

their efficacy. Remarkably, the inhibition of ileal contractions revealed that kuwanon U, 

moracin O, and albanol B were equipotent to papaverine, the well-known opium alkaloid 

and approved antispasmodic drug) concerning their EC50 values in both experimental 

models. Further, each of these compounds showed a tendency for higher Emax value on ileal 

contraction than that of papaverine. With respect to the compounds’ activity on the tracheal 

tone, similar results were obtained. The three studied compounds exerted their 50% activity 

at the same, low nanomolar concentration range as papaverine. This would warrant their 

further studies in intact animals. It is also remarkable that moracin O exerted a significantly 

stronger maximum decrease in the tracheal tone as compared to papaverine. Accordingly, 

this compound was identified as a new lead molecule, which may be further developed to a 

potent new gastrointestinal or tracheal relaxant, and/or may serve as a chemical starting 

point towards the development of a new class of spasmolytic drugs. 

 

6.4.2 SERCA activity of the isolated phenolic compounds 

Phenolic compounds are also known for their interaction with various proteins. According 

to previously published virtual screening and in vitro results, such compounds may also act 

on the transmembrane enzyme sarco/endoplasmic reticulum Ca²⁺-ATPase (SERCA) [189, 

190]. SERCA transports Ca²⁺ into the ER and plays a key role in the maintenance of 

calcium homeostasis, and, through this, in cell death and survival [191]. Based on this, a 

growing body of evidence suggests that activating/restoring or inhibiting SERCA function 

may provide prospective strategies to combat various chronic diseases [191], e.g. SERCA 

inhibition may offer new ways against cancer stem cells [192]. In this study, we found that 

SERCA1 activity was effectively reduced by Albanols A and B, whereas Moracin P and O 
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showed the weakest binding energy to SERCA1, without any inhibitory effects. This may 

be at least partially due to their lower octanol/water partition coefficients (logP), i.e. 2.8 

and 2.5 for moracin O and P, respectively, as compared to the other tested compounds 

(5.2–5.8). The compounds’ effect on SERCA1 activity and the viability of insulinoma cells 

were observed in the same concentration range of treatment, which may support the 

significant role of SERCA in the regulation of these cells’ viability.  

While SERCA isoforms have distinct tissue specificity, they share functional similarities 

[193]. Therefore, the compounds were also tested for their effect on the expression of 

SERCA2b, a key regulator of the Ca2+ transport in pancreatic beta-cells [194]. Increased 

expression of SERCA2b was induced by the compounds with the strongest binding to 

SERCA1 (i.e. Albanol A and B), and a correlation was observed between the two effects, 

which suggests that the upregulation of SERCA2b may be an adaptation mechanism to 

SERCA1 inhibition. Ca2+-ATPases are involved in insulin response, and the compounds 

decreased the cells’ ability to release insulin after glucose stimulation. This was in 

correlation with the compounds’ SERCA1 inhibitory activity, and so was the ability of 

albanols and kuwanons to decrease beta-cell viability. Morusin exerted stronger effect in 

this regard as compared to that expected from its efficiency to inhibit SERCA1. This might 

be due to the capacity of morusin to decrease cell viability and induce apoptosis by other 

mechanisms, e.g. through the STAT3 signaling pathway [195]. Recent studies have 

reported a significant reduction of SERCA2b expression in pancreatic islets under diabetic 

conditions [191]. This can increase basal cytosolic Ca2+ levels, decrease insulin secretion 

and beta-cell proliferation along with an increase of beta-cell ER stress and death [196]. 

Understanding the molecular regulation of calcium homeostasis via SERCA and its 

impairment may be a novel therapeutic approach to treat diseases related to ER 

dysfunction. 

 

6.4.3 Anti-tumor activity of semi-synthetic morusin analogs  

Morusin has been thoroughly studied for its promising antitumor effects on various in vitro 

and in vivo models of tumor diseases including pancreas, cervical, breast, and colorectal 

cancer, and it also demonstrated potent activity against some cancer stem cell models 

[160]. Since this compound was isolated as a major constituent during our work, it was an 
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ideal starting material to prepare semi-synthetic derivatives with possibly improved 

anticancer activity. 

Neocyclomorusin was identified as an oxidized derivative that was able to inhibit (IC50 ca. 

20 µM) the ABCB1 multi-drug efflux transporter, unlike the practically inactive morusin. 

Acquired resistance due to the upregulation of this transporter represents a major problem 

in chemotherapy, and even though decades-long research efforts to develop selective and 

potent inhibitors have not resulted in a clinically applicable drug [197], it is still considered 

as a therapeutic target in fighting MDR cancer [198]. Several flavonoids have been 

reported to be able to inhibit this efflux pump, and prenylation at the A-ring (C-6 or C-8) is 

expected to increase the activity [199, 200]. To the best of our knowledge, our study 

provides the first comparison of the activities of morusin and neocyclomorusin in this 

regard. 

Dihydromorusin and tetrahydromorusin demonstrated superior cytotoxic activities against 

both MCF-7 and MDA-MB-231 cancer cell lines as compared with morusin. When 

searching the literature, we could not find any studies that would directly compare the 

in vitro cytotoxic activity of similar prenylflavones and their partially or fully 

hydrogenated derivatives. Nevertheless, this bioactivity increase might be connected to 

metabolic processes. Based on a study conducted with human liver microsomes, 

morusin is known to be metabolized mainly by the cytochrome P isoenzyme CYP3A4 

to various hydroxylated products, and most of these metabolic steps take place on the 

prenyl side chain [201]. Several cancer cell lines including MCF-7 were shown to 

express high levels of CYP3A4 in connection with their resistance to chemotherapy 

[202]. Based on this, it seems a reasonable hypothesis that the observed bioactivity 

increase for hydrogenated compounds may be the result of their increased metabolic 

stability as compared with that of morusin. 
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7 SUMMARY 

Results of our study, aiming to prepare and evaluate bioactive phenolic compounds from 

Morus nigra root bark, can briefly be summarized according to the following. 

Natural product isolation. The crude methanol extract was fractionated by a multistep 

separation procedure, including OCC, TLC, NP-FC, RP-FC, and RP-HPLC. The structures 

of the isolated compounds were elucidated using the spectroscopic method (NMR). Eleven 

phenolic compounds were isolated, and two of them, moracin P (4) and albanol B (7) were 

isolated for the first time from the roots of the plant. The isolated compounds belong to 

different groups namely geranyl and prenyl flavonoids, Diels-Alder type adducts, 

stilbene, and aryl benzofurans.  Contradictory literature data on the moracin derivatives’ 

NMR signal assignments, allowing misidentification, were clarified through the 

unambiguous assignment of compound 4 as moracin P and compound 5 as moracin O.  

Semi-synthesis. Morusin (1) was subjected to semi-synthetic transformations. A simple 

and effective method for the preparation of racemic neocyclomorusin (12) from 

morusin through a hypervalent iodine-catalyzed oxidation was developed, and the 

enantiomers 12a and 12b were also isolated by chiral HPLC to allow their bioactivity 

testing in enantiopure form. Further, two hydrogenated analogs of morusin were 

produced through catalytic hydrogenation. 

Bioactivity testing – antispasmodic activity. Pharmacological analysis of the isolated 

compounds revealed that several compounds possess significant antispasmodic activity ex 

vivo. Kuwanon U (2), moracin O (5), and albanol B (7) exerted remarkably strong activity 

on rat ileal and tracheal smooth muscles. Kuwanon U and albanol B were found to be 

equipotent with the approved drug papaverine, whereas moracin O was proved to be 

superior to papaverine in both models. 

Bioactivity testing – activity on SERCA. Several compounds were found efficient 

inhibitors of SERCA1, and their activity correlated with their in silico docking scores and 

with their effect on SERCA2b expression, and with their ability to modulate viability and 

apoptosis in a pancreatic beta cell model. 

Bioactivity testing – antitumor activity. Both neocyclormorusin enantiomers showed 

stronger activity as ABCB1 inhibitors as compared with morusin, while, at the same time, 

over-expressed ABCB1 conferred stronger cross-resistance to them. Saturation of one or 

both non-aromatic olefins present in morusin led to a significantly increased cytotoxic 
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activity on two breast cancer cell lines, and tetrahydromorusin was ca. twice as active in this 

regard than morusin.  

Our results demonstrate that Morus nigra roots constitute a rich source of biologically 

active phenolic metabolites with great structural diversity. The investigated compounds, as 

well as the semi-synthetic analogs, can be regarded as promising starting materials in the 

search for new pharmaceutical discoveries in the future. In consequence, the elucidation of 

their mechanism of action can be a good basis for developing new effective agents against 

several pharmacological conditions. 
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