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ABSTRACT

Rock typing is an essential tool used to distribute reservoir rock and fluid 

properties in reservoir models. It provides more accurate estimates of oil reserves 

during field studies and prediction of reservoir performance. These properties are 

required inputs for static and dynamic models to populate porosity, permeability, and 

shale volume which influence reservoir productivity. During field development studies 

(FDP), the technical main aim is to design a fit for purpose project within budget to 

produce commercial volume of hydrocarbons in the field and reduce residual oil in the 

reservoirs. However, geomodellers frequently faced challenges in integrating 

geological facies with rock characteristics and fluid flow to predict petrophysical 

properties due to limited correlation between geological features and engineering 

concepts. This thesis examined Petrophysics rock types based rock classification 

scheme by comparing the approaches using rock samples. Among the trimmed 

approaches are Hydraulic Flow Unit(HFU), Global Hydraulic Elements(GHE), 

Winland R35, Pore Geometry Structure (PGS). Also presented is the use of electrical 

and nuclear log data obtained from the well Neutron-Density to produce relationships 

that tie pore geometric attributes, pore structures, and hydraulic flow characteristics. 

The study selected Hydraulic Units and GHE methods among others to be robust in 

Rock Typing based on consistencies observed between porosity and permeability 

relationships in typical clastics reservoirs. Thus, it reduces the uncertainties in 

reservoir models. Using capillary data to derive saturation height functions, the 

Hydraulic units demonstrated consistent results of rock types that integrates geological 

description with engineering hydraulic features.
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ABSTRAK

Pengkelasan batuan adalah satu keperluan untuk mengagihkan jenis atau kelas 

batuan dalam model takungan. Ini akan membantu anggaran simpanan minyak dan 

ramalan pencapaian takungan dengan lebih tepat. Jenis batuan berkait rapat dengan 

sifat takungan seperti keliangan, keterlapan, jumlah shale dan semua ini 

mempengaruhi pengeluaran sesebuah takungan. Semasa kajian pembangunan 

takungan, tujuan utama ialah untuk membuat proj ek yang memenuhi kehendak optima 

ekonomi. Tetapi ahli model kajibumi sering berhadapan dengan masalah mengabung 

data geologi, sifat batu batuan, keboleh aliran, sifat petrofizik disebabkan kurang 

pemahaman di antara sifat geologi and konsep kejuruteraan. Thesis ini mengkaji skim 

pengkelasan batuan berlandaskan Petrofizik dengan membandingkan pendekatan yang 

menggunakan sampel batuan. Antara pendekatan yang dikaji ialah Unit Aliran 

Hidraulik, Elemen Hidraulik Sejagat, Kaedah Winland R35 dan Struktur Geomteri 

Liang. Turut dikajikan ialah pengunaan data berlandaskan elektrik dan nuklear yang 

didapati dari telaga, dan mengaitkan hubungan antara skim ini dengan tujuan 

memahami hubungan antara asas geometri, struktur keliangan dan sifat aliran 

hidraulik. Kajin ini memilih Unit Aliran Hidraulik, dan Elemen Hidraulik Sejagat 

sebagai skim pengkelasan yang sesuai digunakan dalam takungan jenis batuan klastik 

berdasarkan hubungan yang konsisten dianatara keliangan dan kebolehaliran. Oleh itu 

ia boleh menggurangkan ketidakpastian dalam model takungan. Menbanding 

keputusan ketepuan dari model kapilariti dan Unit Aliran Hidraulik, ia menunjukkan 

keputusan yang seragam atau konsisten, membolehkan teknik ini boleh dipercayai. Ini 

menunjukkan ia mampu menggabung asas geologi dan sifat kejuruteraan
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CHAPTER 1

1. INTRODUCTION

1.1. Background

Reservoir characterization has always been a challenging domain in oil and gas 

industry for a long time. There are many approaches and methodologies that are 

applied with the aim of establishing statistically significant correlations between 

reservoir storage and fluid flow characteristics. Ranking of obtained correlations and 

their optimized clustering are used for rock typing that aims to derive representative 

model equations for static modelling. However, selection and validation of these 

methods of clustering the similarities still face hurdles due to complexities in pore- 

space conditions and reservoir geometry. Petrophysicists need to adequately 

understand these complexities in order to derive representative models for accurate 

predictions of petrophysical characteristics, mainly, between fluid flow (permeability) 

and reservoir storage (porosity) across the field.

It has become Industry standard to come up with Petrophysical Rock Types 

that are used as inputs in saturation height models and in three dimensional (3D) 

reservoir characterization models. The ultimate goal is for accurate initial water 

saturation distribution, hydrocarbon volumes determination, fluid contacts 

determination (hydrocarbon-water contacts), free water level confirmation and 

evaluation of various uncertainties.

Integration of routine core analysis data, mineralogical studies such as XRD, 

petrographical studies as thin-sections, SEM, CT-Scan, and pore geometry 

information from SEM analysis are used to determine Petrophysical Rock Types 

(PRTs). Other important information is obtained by incorporating Special Core
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Analysis (SCAL) mercury injection capillary pressure (MICP or HPMI) data. In 

complex lithologies, such as carbonate formation, NMR T2 distributions on water 

saturated samples are valuable in detecting connected vugs, that will reveal large pore 

body sizes in the absence of large pore throats on MICP. On the other hand, mercury 

injection experiments are carried out on core samples, and the results are used to 

determine pore-size-distributions for subject rocks. As for confirmation, the pore size 

distributions obtained from RFT and core analyses are compared. The information on 

pore-throat-size distribution, can only be used for rock typing when comparison 

indicates appreciable agreement.

The most well-known petrophysical rock type characterization based on pore 

throat radius indicators (PTRi) are: Winland, Pittman, Leverett k-PHI Ratio, Lucia 

Rock Fabric Number (RFN), Flow Zone Indictors (FZI), Reservoir Quality Index 

(RQI), and Aguilera. In this characterization, four rock properties to be studied are 

Permeability, Lithology, Porosity and Lithofacies. It is imperative to note that none of 

the standard Pore Throat Radius indicators (PTRi) directly account for multi-modal 

pore geometries leading to poor representation and typing for complex reservoir rocks.

Static and dynamic models are mostly depending on reservoir energy through facies 

classification that are driven by shape and pore geometry. The objective is to distribute 

porosity, permeability, thickness and net-to-gross in three dimensions using various 

mapping techniques provided that the similarity grouping (i.e. rock typing) is done 

appropriately. However, distributing initial and irreducible water saturation remains 

extremely challenging for reservoir engineers because of several factors such as 

diagenesis that often affect flow characteristics which is therefore the cause of 

volumetric reduction.

The ultimate goal of PRTs is to provide users with transforms for flow 

characteristics and volumetric parameters that are important inputs for three 

dimensional dynamic reservoir simulators and reservoir characterization software. 

This thesis aims to study effects pore-throat-size-distribution in defining Petrophysical 

Rock Typing by using both core and log data and enhance the relationship between 

capillary properties, permeability and porosity correlations and hydraulic flow units.

2



1.2. Problem Statement

Clastic formations often have variation in rock properties as a function of 

location. This rock character is termed as reservoir rock heterogeneity. It’s a property 

of the reservoir rocks that has a huge impact on petroleum system modeling, formation 

evaluation and reservoir simulations which are critical in maximizing production from 

shaley reservoir sands. Static and dynamic models are incapable of modelling volume 

of shale (silt and clay) due to this heterogeneity. In order to build a robust static and 

dynamic reservoir models, it therefore becomes essential to come up with 

Petrophysical Rock Types. These Petrophysical Rock Types act as the bases of relating 

permeability and porosity to execute a successful drilling, production, injection, 

reservoir studies and simulation models.

Rock Types give crucial insights on how pore size and pore throat size 

distribution relates to saturation height models that helps in calculating saturation away 

from well location in a 3D sense based on the established physics of buoyancy and 

capillary pressure in a rock-fluid system. Also, a correlation between permeability and 

porosity can be established to distinguish reservoirs based on rock quality. In such 

correlations, we expect to see small pore-throat size represents poorer rocks and large 

pore-throat-size indicates better rock quality. Armed with these valuable informations, 

the team can characterize formations that may contain large amount of hydrocarbons 

but not commercial due to low permeability across the field. This study will provide 

essential tools to recommend suitable approach to recover these hydrocarbons.

1.3. Objectives

The main of this thesis is to integrate core data and well logs to enhance 

reservoir characterization through reservoir rocks classification in a geologically and 

petrophysically consistent manner. The main objective is to investigate scientific

3



approaches of utilizing rock data at different time and length scales to describe 

reservoir rock-fluid systems consistent.

a. To determine Petrophysical Rock Types through quantitative methods 

that derive pore-sized distribution functions from MICP data to 

characterize complex pore system.

b. To integrate multiple pore system attributes defined in (a) to detect 

petrophysical variation between pore systems that improves 

petrophysical ranking of rock types.

c. To recommend the best petrophysical rock typing approach that reflects 

coherency in saturation height functions (consistency in J-Function).

1.4. Hypotheses

a. Pore Throat Size distribution relate pore geometry to reservoir properties 

(Controls of conduit size for effective fluid flow). Small Pore Throat 

Radius indicates poor quality rock.

b. Petrophysical Rock Typing provides more accurate reservoir 

characterization to minimize errors in reserves estimation.

c. Provide important insights to recommend proper development strategies 

to produce economical amount of hydrocarbons in particular formations to 

reduce residual oil.

1.5. Research Scope

Conventional and Special Core analysis data will be used to calibrate well log 

data. Capillary pressure curves(from MICP data) will be used to distinguish

4



Petrophysical Rock Types into poor and good quality rock as a function of Pore Throat

Radius.

Scope 1: Characterizing PRTs using core description

a. Petrographic analysis (Mineralogical study such as XRD, thin section, 

SEM and CT-scan)

b. Establishing relationship between pore geometry and pore size 

distribution using core description and analysis (lab measurement- MICP)

i. Using RQI/FZI equations

ii. Poro-perm transform to predict permeability away from well 

location.

Scope 2: Integrating lithofacies from core data with log characters to group rocks into:

a. Rocks with similar flow behavior and rocks with same reservoir storage

b. Selecting rock with similar geological attributes to relate rocks-fluid 

interactions

Scope 3: Using Special Core Analysis to construct Cap Pressure curves and construct

SHF according to:

a. Cluster rocks that exhibit similar fluid flow behavior

b. Determine consistency in J-Function curves for a given saturation (Sw) 

for any height above free water level in reservoir

c. Comparing the permeability generated from other empirical equations 

with log derived permeability to recommend a suitable approach for 

clastic formations in Sabah fields.

1.6. Significance of Study

Modern volumetric estimation approach requires petrophysical rock typing 

which are controlled by porosity and permeability. Each rock type represents

5



distinctive pore geometry/morphology that signifies specific pore throat size 

distributions. For a particular rock type there is a single saturation height function that 

exhibits a certain set porosity and permeability is constructed.

Although pore throat radius is not the only thing, but one of the controls of 

permeability since it shapes up the conduit size for the flow. Permeability has no direct 

downhole measurement other than complex and lengthy pressure testing and flow 

measurements because it is a dynamic reservoir property. Permeability controls fluid 

flow because it is a function of the rock’s microscopic properties such as pore size, 

grain sorting, tortuosity, cementation, and compaction. If pore throat radius 

distributions derived from mercury injection are similar, the rock pore geometry shows 

similar trends. These trends are characteristics of permeability which is intrinsic 

hydraulic property that control fluid flow. High permeability rocks result in high 

production rate as a function of pressure drop during drawdown.

Thus, it would be of great advantage if the most of reservoirs parameters can 

be predicted within great certainty. This project will therefore, assist in:

a. Providing accurate reservoir characterisation by assigning representative 

Petrophysical parameters for hydrocarbons volumetric calculations.

b. Establishing appropriate correlation to predict fluid flow characteristics far 

away from well location in a field wide.

c. Recommend proper development strategies to produce economical amount 

of hydrocarbons in these particular formations to reduce residual oil.

1.7. Thesis Summary

This project will be organized by covering the sections summarized below:

a. Sufficient, for data acquisition and analysis on each procedures & compilation

b. No equipment or lab experiment needed

6



c. Using Capillary Pressure data to established the relationship between PRTs and 

PTR

d. Sufficient research SPE papers/journals: One petro website

e. Reference from industry standards, books & manual available.
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