
UNIVERSITY OF NAPLES FEDERICO II 

 
XXXI CYCLE OF PHD IN 

CIVIL SYSTEMS ENGINEERING 
 

 

DEPARTMENT OF CIVIL, ARCHITECTURAL AND ENVIRONMENTAL 

ENGINEERING 

 

 

 

PHD THESIS 

Investigating the potential of the 

combination of random utility models 

(CoRUM) for discrete choice modelling and 

travel demand analysis 

 
Supervisor:                                                                   

Prof. Andrea Papola 

                 

PhD Program Coordinator:         PhD candidate:                                       

Prof. Andrea Papola        Fiore Tinessa                

 
 

DECEMBER 2018  



Investigating the potential of the combination of random utility models (CoRUM) for discrete 
choice modelling and travel demand analysis 

2 
 

 

 

Alla mia famiglia, 

perché tutto il tempo  

che non le ho potuto dedicare 

 è stato impiegato per questo. 

  



Investigating the potential of the combination of random utility models (CoRUM) for discrete 
choice modelling and travel demand analysis  

3 
 

Summary 

Summary ............................................................................................................................. 3 

List of figures ...................................................................................................................... 7 

List of tables ........................................................................................................................ 9 

Chapter 1 : Introduction .................................................................................................... 11 

1.1 Overview of choice modelling issues .................................................................................... 11 

1.2 The CoRUM basic idea ........................................................................................................... 13 

1.3 Objectives and contributions of the thesis ........................................................................... 14 

1.4 Thesis canvas ............................................................................................................................ 15 

Chapter 2 : State of the Art ............................................................................................... 17 

2.1 Random utility theory – general assumptions ...................................................................... 17 

 Random utility .................................................................................................................... 17 

 Additive and multiplicative approaches ................................................................................. 18 

 Maximizing benefit behaviour .............................................................................................. 18 

 Random utility maximization models (RUMs) .................................................................... 19 

2.2 State of the art of RUMs ......................................................................................................... 21 

 Error structure .................................................................................................................... 21 

2.2.1.1 GEV models ............................................................................................................ 22 

Multinomial Logit ................................................................................................................ 22 

Nested Logit ......................................................................................................................... 25 

Cross Nested Logit and further generalizations .............................................................. 26 

FinMix ................................................................................................................................... 28 

2.2.1.2 Multinomial Probit .................................................................................................. 29 

2.2.1.3 Mixed models ........................................................................................................... 32 

Error Component Logit ..................................................................................................... 32 

Normal alternative specific Error Component GEV ..................................................... 34 

 Taste heterogeneity ............................................................................................................... 34 

2.2.2.1 Observable taste heterogeneity.............................................................................. 35 

2.2.2.2 Parametric approach ............................................................................................... 36 

Probit with random coefficient formulation .................................................................... 36 



Investigating the potential of the combination of random utility models (CoRUM) for discrete 
choice modelling and travel demand analysis 

4 
 

Random coefficient Logit ................................................................................................... 37 

Posterior analysis and individual-level parameters on continuous distributions ......... 38 

2.2.2.3 Nonparametric approach ....................................................................................... 39 

Latent class MNL ................................................................................................................ 40 

Discrete mixture of MNL ................................................................................................... 41 

Variation on the theme ....................................................................................................... 41 

Posterior analysis with discrete distributions ................................................................... 42 

2.2.2.4 Semi-nonparametric approach .............................................................................. 42 

Mixed Logit as mixture of parametric distributions ........................................................ 43 

Latent class MNL with endogenous segmentation ......................................................... 43 

Logit-Mixed Logit model .................................................................................................... 44 

Latent class as a finite mixture of continuous distributions (Latent class Mixed Logit)
 ................................................................................................................................................ 44 

2.2.2.5 Variation on a theme – the scale heterogeneity .................................................. 45 

 Unified framework .............................................................................................................. 46 

Probit and Mixed Logit with joint EC/RC specification ............................................... 46 

Mixed GEV .......................................................................................................................... 47 

Mixed Probit ......................................................................................................................... 48 

Latent class GEV ................................................................................................................. 48 

 Going further ....................................................................................................................... 48 

2.3 Application of RUMs to route choice ................................................................................... 50 

 Route choice modelling: general issues .................................................................................... 53 

 Logit based route choice models ............................................................................................. 54 

2.3.2.1 Multinomial Logit - Dial’s algorithm .................................................................... 55 

2.3.2.2 C-Logit ...................................................................................................................... 57 

2.3.2.3 Path-Size Logit......................................................................................................... 58 

2.3.2.4 IAP Logit .................................................................................................................. 59 

 GEV models for route choice ............................................................................................... 59 

2.3.3.1 Link Nested Logit ................................................................................................... 60 

2.3.3.2 Pair Combinatorial Logit ........................................................................................ 61 

2.3.3.3 Link Based - Network GEV .................................................................................. 62 

2.3.3.4 Multinomial Weibit ................................................................................................. 62 

 Error component models ....................................................................................................... 63 

2.3.4.1 Multinomial Probit and Monte-Carlo algorithm ................................................. 63 

2.3.4.2 Mixed Logit .............................................................................................................. 64 

 Going further ....................................................................................................................... 65 



Investigating the potential of the combination of random utility models (CoRUM) for discrete 
choice modelling and travel demand analysis  

5 
 

2.4 The Combination of random utility models (CoRUM) as a unified framework ............. 67 

Chapter 3 : CoRUM for taste heterogeneity ..................................................................... 70 

3.1 Background and motivation: the Mixed GEV as a practical solution to joint EC/RC 
Mixed Logit model ............................................................................................................................ 70 

3.2 Mixed RUMs: notation and formulation............................................................................... 73 

3.3 The Combination of RUMs (CoRUM): a generalization for taste heterogeneity............ 75 

3.4 Application on real data .......................................................................................................... 78 

 Stated preference survey ........................................................................................................ 78 

 Utilities specification ............................................................................................................ 78 

 Models error structure .......................................................................................................... 79 

 Estimation results................................................................................................................ 82 

3.5 Conclusions and future research ............................................................................................ 83 

Appendix 3/A: Estimation results on real data ............................................................................. 85 

Chapter 4 : Random utility models: regression vs forecasting .......................................103 

4.1 Closed-form R.U.M. and forecasting .................................................................................. 103 

4.2 Model’s elasticities .................................................................................................................. 104 

4.3 Experimental analysis ............................................................................................................ 105 

 Experiment setting ............................................................................................................ 105 

 Specification of the structure of the tested models .................................................................. 106 

 Experimental results.......................................................................................................... 106 

4.4 Conclusions and future steps ................................................................................................ 114 

Chapter 5 : The CoNL route choice model ..................................................................... 115 

5.1 Background and motivation ................................................................................................. 115 

5.2 The CoRUM model and its CoNL particularization ......................................................... 117 

5.3 A CoNL specification for route choice modelling ............................................................ 118 

 CoNL route choice: model structure .................................................................................... 120 

 CoNL route choice: model parameters ................................................................................ 122 

5.4 The CoNL route choice model with implicit probability statement ............................... 124 

 Specification of mixing components and model structure ....................................................... 124 

5.4.1.1 Double-step algorithm .......................................................................................... 125 

5.4.1.2 Single-step algorithm ............................................................................................ 128 

 Calculation of model parameters ......................................................................................... 129 

5.5 Experimental analysis ............................................................................................................ 130 

 Four links-three routes network.......................................................................................... 130 

 Braess’ network ................................................................................................................. 132 

 Mesh network with long bypass .......................................................................................... 134 



Investigating the potential of the combination of random utility models (CoRUM) for discrete 
choice modelling and travel demand analysis 

6 
 

 Grid network .................................................................................................................... 137 

 Sioux-Falls network .......................................................................................................... 137 

 Summary of experimental analysis ...................................................................................... 140 

5.6 Conclusions and research prospects .................................................................................... 140 

Chapter 6 : Some advance on CoNL route choice model ...............................................142 

6.1 Route choice modelling issues – a brief recap.................................................................... 142 

 The computational problem in route choice: implicit enumeration algorithms ......................... 142 

 The overlapping problem in route choice .............................................................................. 144 

6.2 An implicit enumeration algorithm for CoNL route choice ............................................ 146 

 CoNL recursive equations ................................................................................................. 146 

 Specification of mixing components algorithm without explicit enumeration ........................... 149 

 SNL CoNL algorithm ..................................................................................................... 150 

 Simplified SNL CoNL algorithm ..................................................................................... 152 

 Experimental results.......................................................................................................... 153 

6.3 An in depth analysis of CoNL route choice and Daganzo and Sheffi correlations ...... 159 

6.4 Experimental results on real data with unrestricted acyclic choice set ........................... 168 

6.5 Conclusions and future steps ................................................................................................ 170 

Chapter 7 : Conclusions of the thesis ..............................................................................172 

Contributi a questo lavoro ...............................................................................................176 

Ringraziamenti personali ................................................................................................178 

References ........................................................................................................................179 

 
  



Investigating the potential of the combination of random utility models (CoRUM) for discrete 
choice modelling and travel demand analysis  

7 
 

List of figures 

Figure 3.1: Model estimation on SP survey for six alternatives mode choice Naples-Milan - 
Nested Logit specifications for error structure. ................................................................................ 80 

Figure 3.2: Model estimation on SP survey for six alternatives mode choice Naples-Milan – 
Cross Nested Logit specifications for error structure. ..................................................................... 81 

Figure 4.1: Model’s specification for three alternatives-context. ................................................... 108 

Figure 4.2: Model’s specification for four alternatives-context. .................................................... 108 

Figure 4.3: 0.95-0-0 correlation scenario – synthetic performance plots indicator for forecasting 
(column 1) and regression (column2 and 3)..................................................................................... 109 

Figure 4.4. 0.5-0.5-0 correlation scenario – synthetic performance plots indicator for forecasting 
(column 1) and regression (column2 and 3)..................................................................................... 109 

Figure 4.5: 0.7-0.7-0 correlation scenario – synthetic performance plots indicator for forecasting 
(column 1) and regression (column2 and 3)..................................................................................... 110 

Figure 4.6: 0.3-0.3-0.1 correlation scenario – synthetic performance plots indicator for 
forecasting (column 1) and regression (column2 and 3). ............................................................... 110 

Figure 4.7: 0.5-03-0.3 correlation scenario – synthetic performance plots indicator for 
forecasting (column 1) and regression (column2 and 3). ............................................................... 111 

Figure 4.8: 0.6-0.3-0 correlation scenario – synthetic performance plots indicator for forecasting 
(column 1) and regression (column2 and 3)..................................................................................... 111 

Figure 4.9: 0.8-0.4-0.2 correlation scenario – synthetic performance plots indicator for 
forecasting (column 1) and regression (column2 and 3). ............................................................... 112 

Figure 4.10: 0.9-0.7-0.33 correlation scenario – synthetic performance plots indicator for 
forecasting (column 1) and regression (column2 and 3). ............................................................... 112 

Figure 4.11: 0.95-0-0-0.3-0-0 correlation scenario – synthetic performance plots indicator for 
forecasting (column 1) and regression (column2 and 3). ............................................................... 113 

Figure 4.12: 0.9-0.4-0.5-0.3-0.2-0.7 correlation scenario – synthetic performance plots indicator 
for forecasting (column 1) and regression (column2 and 3). ......................................................... 113 

Figure 5.1: Topology of a toy network to showcase throughout the chapter the definitions of 
the proposed CoNL route choice model.......................................................................................... 120 

Figure 5.2: Example of CoNL structure for the o-d pair 1-4 in the network in Figure 5.1....... 121 

Figure 5.3: Efficient choice sets with respect to the o-d pair 1-4 in the example of Figure 5.1.
 ................................................................................................................................................................ 125 

Figure 5.4: CoNL specification provided by the double-step algorithm for the o-d pair 1-4 in 
the network in Figure 5.1. ................................................................................................................... 128 

Figure 5.5: Daganzo and Sheffi (1977) test network: topology and link cost structure. ............ 130 

Figure 5.6: Daganzo and Sheffi (1977) network: CoNL network levels for o-d pair 1-3 (top) and 
CoNL structure for destinations 2 and 3, given origin 1 (bottom). .............................................. 131 

Figure 5.7: Daganzo and Sheffi (1977) network: network levels and mixing components 
resulting from the application of the single-step illustrated in Section 5.4.1.2. ........................... 131 

Figure 5.8: Braess’ network: link costs .............................................................................................. 132 

file:///C:/Users/Utente/Dropbox/Professione/Dip.%20Trasporti/Tesi%20rev22%20con%20Capitolo%206%20-%20Copia.docx%23_Toc534737721
file:///C:/Users/Utente/Dropbox/Professione/Dip.%20Trasporti/Tesi%20rev22%20con%20Capitolo%206%20-%20Copia.docx%23_Toc534737722


Investigating the potential of the combination of random utility models (CoRUM) for discrete 
choice modelling and travel demand analysis 

8 
 

Figure 5.9: Braess’ network: CoNL structure for o=1 and d=2,3,4 respectively. ....................... 133 

Figure 5.10: Mesh network: topology and link costs. ..................................................................... 135 

Figure 5.11: CoNL mixing components and corresponding nesting structure (elemental 
alternatives not illustrated for the sake of brevity) for the network of Figure 5.10, o-d pair 1-12
 ................................................................................................................................................................ 135 

Figure 5.12: Sioux-Falls network, South Dakota. ............................................................................ 138 

Figure 6.1: Regione Campania zoning (TransCad screenshot). ..................................................... 168 

Figure 6.2: Grid network (Figure 5.1): CoNL specification for o-d pair 1-4 with the exhaustive 
acyclic choice-set. ................................................................................................................................. 169 

Figure 6.3: Screenshot of the SNL software developed in Matlab R2018a. ................................ 170 

 



Investigating the potential of the combination of random utility models (CoRUM) for discrete 
choice modelling and travel demand analysis  

9 
 

List of tables 

Table 2.1: GEV generating functions for well-known GEV models. ............................................ 23 

Table 3.1: Model estimation on SP survey for six alternatives mode choice Naples-Milan - 
Attributes for the six alternatives choice scenario. ............................................................................ 79 

Table 3.2: Model estimation on SP survey for six alternatives mode choice Naples-Milan – 
Multinomial Logit and Nested Logit estimation results. .................................................................. 86 

Table 3.3: Model estimation on SP survey for six alternatives mode choice Naples-Milan – 
CoNL estimation results. ...................................................................................................................... 88 

Table 3.4: Model estimation on SP survey for six alternatives mode choice Naples-Milan – 
Cross Nested Logit estimation results. ............................................................................................... 92 

Table 3.5: Model estimation on SP survey for six alternatives mode choice Naples-Milan – 
Mixed Logit estimation results. ............................................................................................................ 95 

Table 3.6: Model estimation on SP survey for six alternatives mode choice Naples-Milan – 
Mixed CoNL estimation results. .......................................................................................................... 97 

Table 3.7: Model estimation on SP survey for six alternatives mode choice Naples-Milan – 
Mixed CNL estimation results. .......................................................................................................... 102 

Table 4.1: Experimental setting. ........................................................................................................ 107 

Table 5.1:– Illustration of the iterations of the algorithm described in Section 5.1.1 for the o-d 
pair 1-4 and the efficient routes depicted in Figure 5.3. ................................................................. 128 

Table 5.2: Daganzo and Sheffi (1977) network: route choice probabilities for the o-d pair 1-2, 
under the link cost configuration c→10, h→0 and k=1 ................................................................ 132 

Table 5.3: Braess’ network: route choice probabilities for the o-d pair 1-4. ................................ 134 

Table 5.4: Route choice probabilities for the o-d pair 1-12, on mesh network with long bypass 
in Figure 5.10. ....................................................................................................................................... 136 

Table 5.5: Route choice probabilities for the network in Figure 5.1, o-d pair 1-4, with the link 
cost configuration c1-2=c8-4=3, c7-3=2 and 1 for all remaining links. ............................................ 137 

Table 5.6: Route choice probabilities for the Sioux-Falls network of Figure 5.12, o-d pair 1-15.
 ................................................................................................................................................................ 139 

Table 6.1: SNL CoNL algorithm without explicit enumeration of routes. .................................. 152 

Table 6.2: Simplified SNL CoNL algorithm without explicit enumeration of routes. ............... 153 

Table 6.3: Braess network, o-d pair 1-4 – Comparison of link flows. .......................................... 155 

Table 6.4: Mesh grid network with bypass, o-d pair 1-12 – Comparison of link flows. ............. 156 

Table 6.5: Sioux-Falls network, o-d pair 1-15 – Comparison of link flows. ................................ 158 

Table 6.6: Sioux-Falls network – Computation time. ..................................................................... 159 

Table 6.7: Braess network – Target correlation matrix and reproduced correlation values for the 
compared route choice models. ......................................................................................................... 162 

Table 6.8: Mesh network with bypass, o-d pair 1-12: ID of the routes. ....................................... 163 

Table 6.9: Sioux-Falls network, o-d pair 1-15: ID of the routes. ................................................... 163 



Investigating the potential of the combination of random utility models (CoRUM) for discrete 
choice modelling and travel demand analysis 

10 
 

Table 6.10: Mesh network with bypass: target Daganzo and Sheffi correlation matrix for routes 
connecting the o-d pair 1-12. .............................................................................................................. 164 

Table 6.11: Sioux-Falls network: target Daganzo and Sheffi correlation matrix for routes 
connecting the o-d pair 1-15. .............................................................................................................. 165 

Table 6.12: Mesh network with bypass, o-d pair 1-12 –MSE indicator for reproduced 
correlation values. ................................................................................................................................ 166 

Table 6.13: Sioux-Falls network, o-d pair 1-15 - MSE indicator for reproduced correlation 
values. .................................................................................................................................................... 167 

Table 6.14: Log-likelihood computation for the compared models. ............................................ 170 

  



Investigating the potential of the combination of random utility models (CoRUM) for discrete 
choice modelling and travel demand analysis  

11 
 

Chapter 1: Introduction 

1.1 Overview of choice modelling issues 

People make choices every day. Many choices have a strong impact on the quality or their life. 
Each day a person wakes up and chooses which action he1 wants to do before, what to have for 
breakfast, what to wear, what time to go outside, how to manage his/her day by virtue of the 
budget and time constraints, which place to move to and how, which activity to do, which one 
to do before or after and so forth. There are choices that are not made every day, but they have 
a strong impact on the decision maker’s well-being. In fact, sooner or later, a person will decide 
his household location, whether to own a car, the typology and the vehicle model, whether to 
own a pet, which breed or size, how many children to have, in which school register them and 
much more.  
Some of the above-mentioned choice examples involve mobility. Thus, it is easy to recognize 
why these kind of choices form the basis for the planning and policy actions in the transport 
field. What is called, at aggregate level, congestion or traffic, represents the sum of individual 
choices that everyone makes at different levels: do I move? What time do I move? Where I 
want to go? Which transport mode do I want to use? What itinerary do I travel? 
This kind of choices, that can be termed transport choices, relating the so-called travel behaviour, are 
characterized by a significant modelling complexity. If, for example,  an analyst wants to model 
the choice of the place to go (destination choice), this means that he should, in order: identify the 
set of all the feasible destinations, understand which sub-set a decision maker actually considers 
and consider the factors influencing the choices of a place rather than another one. Modelling 
the route choice means: representing all the elemental phases to make a trip, taking into 
account the significant quantity of alternatives depending on them, taking into account the 
similarities between the alternatives and how the perception of the choice set is influenced by 
these similarities, understanding which routes are more relevant (fast routes, highways, no 
lights, sightseeing roads), just to name a few aspects. 
Many typologies of choices can be involved. Some of them are discrete, i.e. made in a finite 
choice set (e.g., transport mode to be used), while some of them are continuous, i.e. made on 
an infinite choice-set (e.g., time of departure to go outside). Moreover, the strategies of the 
decision makers could be different when choosing an alternative: maximizing the benefit, 
minimizing the undesirable effects, minimizing the risks, choosing the first alternative that 
allows for a minimum degree of satisfaction, choosing by thinking of collective benefits or on 
the basis of other people choices and so forth. 
The random utility theory represents the most widely used paradigm in modelling the behaviour of 
people who make choices. It starts form the homo-economicus assumption, which states that the 
decision makers want to maximize their benefit when they choose a certain alternative. Quoting 
Simon (1978): 

                                              
1 In the current work, the decision maker and the analyst will be indicated always with “he”. 
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“The rational man of economics is a maximizer, who will settle for nothing less than the best.” 

 
The random utility models (RUMs2) are discrete econometric models. The term “econometric” 
refers to the fact that they are generally used downstream of having performed a regression on 
real data. The term “discrete”, instead, indicates that their outcomes (the dependent variable) 
assume a finite number of values. Going back to Taussig (1912), as reported in McFadden 
(2001): 
 

“An object can have no value unless it has utility. No one will give anything for an 
article unless it yield him satisfaction. Doubtless people are sometimes foolish, 

and buy things, as children do, to please a moment’s fancy; but at least they think at 
the moment that there is a wish to be gratified.” 

 
Practically, the RUMs are mathematical models simulating the behaviour of a decision maker, 
whose choice set is finite, whose alternatives are distinct from each other, by means of an entity 
called perceived utility. This perceived utility, unknown to the analyst, can be represented as a 
random variable. This randomness, according to the econometric approach, is given by a lack 
of knowledge that an analyst has when modelling people’s behaviour. According to the 
psychometric approach, instead, the randomness is inherent in the decision maker. 
Generally, such perceived utility is defined as a function of observable quantities 
(attribute/regressors), and the choices are reproduced (with some model errors) as a non-linear 
function of such utilities. In other words, it is impossible to reproduce deterministically a value 
of 1 or 0, respectively, if the decision maker chooses or does not choose the given alternative. 
Thus, an intermediate value can be reproduced, which can be interpreted as the probability of 
choosing the given alternative. Such a choice probability operationally needs the density 
function of the perceived utilities, and therefore, in general, involves some multi-dimensional 
integral computation. Sometimes (as deepened in Chapter 2) the choice probabilities can be 
computed with an analytical closed-form, while sometimes not and, therefore, the integral form 
stays, requiring simulation. 
The issues that an analyst must face when he models choice probabilities are multiple. Mainly, 
the choice criteria could be different among the individuals (decision rule).  The choice set could 
be different (choice set formation). The relevant quantities playing a role or, in other words, the 
utility functions, could be different (relevant attributes). Each measure of the observable quantities 
can be affected by some errors (error measures). The tastes, i.e. the importance that the decision 
makers attach to a certain attribute, can be different (inter-respondent taste heterogeneity), just like for 
the same decision maker they could vary over time or across different choice scenarios (intra-
respondent taste heterogeneity). Two or more alternatives can be perceived as very similar and thus 
not perfectly disjoint (inter-correlation among alternatives or substitution pattern). For some 
alternatives, the perception of the utility could be affected by more randomness 
(heteroskedasticity). There may be more random decision makers than others (scale heterogeneity). 
There can be factors that are latent but they influence the choices (latent constructs). The past 
(history), the personal inclinations (attitudes) and the habits to choose always a given alternative 
only because previously made (inertia) can strongly influence the current choices. Some 
unobservable components can influence the observable quantities (endogeneity). When an 

                                              
2 Sometimes the acronym RUM means Random Utility Maximization, and the relative models are indicated with RUM 
models.  
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individual states a choice on some hypothetical scenarios, he/she could make some errors due 
to the fact he/she has a biased perception of the scenario itself (stated preference effect). 
For facing these modelling issues, the analyst needs models that are theoretically robust, i.e. 
capable to handle different problems in different situations. However, such models must be 
also operational. The theoretical background of a model is essentially represented by the 
stochastic assumptions made on the random part of it, that is on the perceived utilities. The 
fact of being operational, on the other hand, depends on the degree of simplicity, intuitiveness 
and computational cost necessary to work with it. 
In this regard, obtaining a complex model as a mere combination of easier component models, 
may represent a good answer to these two questions. In fact, if the constituent bricks are 
chosen appropriately, combining models allows leading to a more general theoretical model. 
Moreover, it can help to better understand the complex model obtained and, consequently, to 
make it more easily operational. 

1.2 The CoRUM basic idea 

The conceptual-vehicle of the Combination of random utility models (CoRUM; Papola, 2016) is just 
the one described in the premise, i.e. obtaining a complex model by combining easier models. 
The idea is to fill the gaps of the existent models, creating a simple way for unifying their 
advantages. Combining partially general models could allow obtaining a model that is more 
general. This is the idea behind the CoNL model, a particular specification of the CoRUM, 
investigated by Papola (2016). The target of the CoNL is mainly reproducing the inter-
correlation effects among utilities of the alternatives in a flexible way. Furthermore, the CoNL 
has the computational advantage of being a closed form models, thus not requiring simulation. 
It has been tested in a transport mode-choice survey on a dataset of about 1000 individual 
choices in a seven alternatives scenario. The seven alternatives were: car, high-speed train (1st 
and 2nd class), Eurostar train (1st and 2nd class) and Intercity train (1st and 2nd class). This was a 
typical context wherein the inter-correlations among the alternatives have an high impact on 
the choice probabilities. In fact, six alternatives of the total seven were train alternatives, 
divided into 3 different kinds of train, each one with its 1st and 2nd class options. The proposed 
CoRUM showed both the best goodness of fit and the best prediction results, compared with 
other complex models available in literature.  
However, the CoRUM framework seems much more general and it potentially allows 
accommodating other crucial choice modelling issues. To date, in fact, there are some complex 
general models (see Mixed Logit; McFadden and Train, 2000) that require multi-dimensional 
integral simulations. But, by now, the latter do not scare when the integral simulation is 
performed on a few dimensions. However, in order to be more flexible, they need to add many 
dimensions of integration, with a prohibitive computational burden. In addition, there are other 
difficulties in estimating them, especially when using classic gradient-based methods. Under the 
CoRUM framework, instead, this generality can be achieved, for example, by combining a basic 
complex model formulation with other easier models formulations. 
Another relevant question arises when using complex models, I whatever way they are 
obtained. How does their adding complexity reflect on the forecasting capability? Can we 
measure the danger of creating an instrument very capable of fitting real observations but 
incapable to make correct predictions? This is an interesting aspect to be investigated, to better 
understand the trade-off between adding complexity and effectiveness in different choice 
scenarios.  
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Furthermore, with reference to specific problems of travel demand estimation, the advantage of 
such a general framework can be used for solve some important theoretical and operative 
problems. For example, the route choice modelling have some peculiarities. The similarities 
among alternative routes, given by their physical overlapping, surely represents one of these. 
This similarity generates a positive correlation between their perceived utilities. Moreover, the 
number of routes generally involved is very high, if we compare it with other choice contexts, 
given the size of a real-world network. That means the correlation scenario can be very 
complex, thereby requiring a model with robust theoretical assumptions. The CoRUM, 
particularly the aforementioned CoNL specification, can be the answer to this complex 
operational question. 

1.3 Objectives and contributions of the thesis 

This thesis, as far as the general discrete choice theory is concerned, focuses on some of the 
choice modelling problems mentioned at the end of Section 1.1. Particularly, these problems 
are the substitution patterns among the alternatives, the inter/intra-respondent taste 
heterogeneity and the heteroskedasticity. The latter have certainly received the most attention in 
the discrete choice literature over the last five decades. Particularly, in the current thesis, 
concerning the inter-intra respondent taste heterogeneity and heteroskedasticity problems, a 
new model formulation has been proposed, aiming at providing a more practical formulation 
than that currently implemented in the software and analysed in the literature, obtained by a 
generalization of the current CoRUM framework (Chapter 3). The inter-correlations impact, on 
the other hand, has been analysed both in terms of ability to reproduce observed choices and in 
terms of predictive unbiasedness, analysing the main closed-form models of the literature, and 
contrasting them with the CoNL model (Chapter 4). These proposed advances are general and 
crosscutting to several other scientific fields than transport. The main application of Chapter 3, 
however, refers to a typical inter-urban transport mode choice. Furthermore, the formulations 
proposed in Chapter 3 could be easily introduced as kernel within other theoretical paradigms. 
In fact, sometimes the framework of the mathematical models used under different discrete 
choice theories can be equal (for example, the random utility models and the random regret 
minimization models have the same structure, but their arguments are different: in the first case 
is the perceived utility, to be maximized, in the second case is a combination of unpleasant 
effects, to be minimized). 
The other advances proposed in the current thesis, on the other hand, are transport field-
specific. The main transport problem addressed in the current thesis relates the route choice. In 
fact, as described in Section 2.3, the route choice models represent the core of traffic 
assignment problem and, therefore, of the traffic simulation. It surely represents the more 
demanding choice dimension (Cascetta, 2009) to be modelled, given its inherent complexity. A first 
problem comes from the size of a real-world network and the number of feasible alternatives 
that a decision maker could consider. A second problem is how the decision maker considers 
the alternatives that are highly overlapped and what is the impact on the probability that he 
chooses one of them3. The latter is a very challenging theoretical problem. Several existing 
models, with different basic assumptions, try to address it. Some of them consider the 
overlapping problem roughly, but they have proven to fail in several contexts (see Section 2.3.2 
for relevant papers quoting this aspect). Other models address it with specific theoretical 
assumptions, but they can be very difficult to be used, given their computational complexity. 

                                              
3 Other route choice modelling issues not directly addressed in the current thesis will be briefly recalled in Section 2.3.5. 
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Consequently, in order to make them operational, it is necessary to formulate simplified 
hypothesis, which, however, imply the introduction of a bias in the choice probabilities they 
compute. This thesis proposes a new route choice model, namely the CoNL route choice 
model (Chapter 5), which allows very complex correlation patterns. The model is made 
operative by means of opportune algorithms that allow it to work on any network, without 
requiring neither the estimation of a large number of parameters, nor simulation procedures. 
Chapter 6 goes further, providing some advance on route choice modelling and, particularly, on 
the novel CoNL route choice model, allowing implementing an algorithm, that is theoretically 
consistent with the CoNL route choice model, for computing traffic flows, without the need to 
explicitly consider the routes, thus avoiding the operation computationally more onerous at 
stake. This and other algorithmic advances are proposed and tested on various aspects: choice 
probabilities, correlations reproduced and computed traffic flows. Several applications are 
presented both on toy networks and on a real big network (more than 500.000 road links), to 
show the goodness of fit measures of the CoNL model with reference to models of literature 
that are mainly implemented within the commercial software. 

1.4 Thesis canvas 

The thesis is structured as follows: 
 

 Chapter 2 reviews the state of the art on random utility theory and its application to 
route choice. In particular, the Section 2.1 provides the basic setup for the description of 
RUMs; Section 2.2 reviews the random utility models available in the literature, with 
reference to the two main problems of the error structure (inter-correlations and 
heteroskedasticity problems) and the inter/intra-respondent taste variation; Section 2.3 
briefly summarizes the main applications of the random utility theory to the route 
choice problem; Section 2.4 describes the main assumptions of the Combination of 
random utility models (CoRUM) as a general framework for modelling discrete choices, 
with particular reference to travel choices. 
 

 Chapter 3 investigates more general specifications of the CoRUM than those previously 
analysed, allowing accommodating also the taste heterogeneity and the 
heteroscedasticity, in particular by combining mixtures of RUMs. To this end, the 
chapter proposes a theoretical generalization of the CoRUM framework and a real-
world application on data collected on a stated survey of 1688 observations of 211 
respondents. This is a forthcoming paper named: 
 
Tinessa, F., Marzano, V., Papola, A., (forthcoming). “Combination of random utility models 
for accommodating taste variation and flexible substitution patterns”. 
 

 Chapter 4 represents an estimation exercise with applications on future scenarios on the 
main closed form random utility models, on synthetic datasets with variable sample sizes 
and complex underlying correlation scenarios. Such correlation scenarios, on the other 
hand, can be representative of typical mode choice or route choice contexts. The aim of 
this chapter is investigating the potential of the CoNL (and the other models) in terms 
of forecasting, and comparing it with the models goodness of fit performances. The 
chapter entirely reprises and extends the set of experiments of the work published as: 
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Tinessa, F., Papola, A., Marzano, V., 2017. “The importance of choosing appropriate random 
utility models in complex choice contexts”, M.T.-I.T.S. Conference Proceedings, 26-28 June 
2017, Naples. 
 

 Chapter 5 proposes a new route choice model obtained under the CoRUM framework. 
It describes an algorithm to generate a CoNL specification, allowing detecting a set and 
a composition for the components of the model, and a way to compute all the structural 
model parameters, whatever the network. It has been published as: 
 
Papola A., Tinessa F., Marzano V., 2018. “Application of the Combination of Random Utility 
Models (CoRUM) to route choice”, Transportation Research Part B (111), 304-326. 
 

 Chapter 6 is currently an original contribution of this thesis and describes several 
advance compared to the published work in Chapter 5. In particular, an implicit 
enumeration algorithm theoretically consistent with the CoRUM route choice model,is 
proposed and tested on toy networks; an in-depth analysis of the complex route choice 
models is carried out on their ability to reproduce complex correlation scenarios, 
drawing important conclusions, both theoretical and applicative, on the novel CoNL 
route choice model, proposed in Chapter 5, and on the existent Link Nested Logit 
model; some practical advance on the original route choice model is proposed and 
tested both on toy networks and on a real network (Region Campania network). The 
goodness of fit of the CoNL route choice has been analysed and compared with the one 
of the other route choice models, using real observations collected by means of GPS 
detection of about 200 trajectories. 
 

 Chapter 7 reports a summary of the conclusions reached in the whole thesis and 
proposes several ideas for future research steps. 

  



Investigating the potential of the combination of random utility models (CoRUM) for discrete 
choice modelling and travel demand analysis  

17 
 

Chapter 2: State of the Art 

2.1  Random utility theory – general assumptions 

The choice modelling discipline is very broad and it embraces several sub-areas. The current 
thesis work focuses on random utility theory. The random utility models (RUMs) start from 
neoclassic micro-economic assumption that a decision maker searches for the maximum 
benefit in his choices. Particularly, it is assumed that the decision maker is rational, he considers 
a choice-set of alternatives and chooses the one that maximized his perceived utility. The latter, 
in general, can be seen as a function of several quantities that are observable (sometimes 
measurable or, eventually, ranked or dummies) and other quantities that are not observable. 
Since the presence of the latter, the perceived utility is an unknown quantity for the analyst. 

 Random utility 

Attempting to embrace various formalizations of the problem (McFadden, 1974; Ben-Akiva 
and Lerman, 1985; Swait and Bernardino, 2000; Bierlaire, 2003; Train, 2009) in a general way, 
this thesis starts from the assumption that the perceived utility of the alternative i, for the decision 
maker n, facing a choice scenario (or choice task) t for a number of alternatives m, can be 
expressed as: 

 
, , , , ,( ; ) Cn t n t n t n t n t

i i i iU U V i    (2.1) 

where: 

 Ui
n,t

  is the value of the perceived utility of the alternative i, for the decision maker n, facing 
the choice scenario t; 

 Vi
n,,t

 is the expected value, so called systematic utility4, of the perceived utility of the 
alternative i, for the decision maker n, facing the choice scenario t; 

 i
n,t is the unobservable term of Ui

n,t, so called random residual5 (Cascetta, 2009) or disturbance 
or error. This term includes, with reference to the econometric approach, all that is 
unknown to the analyst, while according to the psychometric approach, all that is intangible 

to the decision maker. The assumption is that E[i
n,t]=0, ,Cn ti  i , as in the regression 

models; 

 Cn,t is the choice set considered by the decision maker n, facing the choice scenario t; 

                                              
4 Sometimes improperly called observable part of the utility, in the current work, the Vi

n,,t simply means the expected value 
of the Ui

n,t
..  

5 Here it is assumed a different meaning for the random term i
n,t , that is “less inclusive” with reference to the definitions of 

Train (2009) and Cascetta (2009). It does not include all the randomness inherent the behavioural analysis, because some of 
them will be explicitly included into the taste coefficients, for better setup the discussion of the successive topics of the 
thesis. 
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The systematic utility Vi
n,t, in turn, can be expressed as a function of quantities that are 

observable Xk,i
n,t, so called attributes/regressors or explanatory variables6, and other quantities 

k,i
n,t, so called parameters/coefficients, representing the marginal utility for the alternative i with 

reference to the attribute k. In other words, the generic k,i
n,t quantifies the importance that the 

decision maker n in the choice task t gives to the kth attribute of the ith alternative’s perceived 
utility. 
Consequently, the expression (2.2) can be written as: 

 
, , , , , ,

, ,( ; ; ) Cn t n t n t n t n t n t

i i k i k i iU U X i     (2.2) 

 Additive and multiplicative approaches 

Two main approaches can be adopted, depending upon how the systematic term Vi
n,t is 

combined with the unobservable random term i
n,t: 

 
additive R.U.M.)    , , , , , ,

, ,( ; ) Cn t n t n t n t n t n t

i i k i k i iU V X i      (2.3) 

Wherein the random residuals i
n,t are adding noises with reference to the  Vi

n,t.  
 
multiplicative R.U.M.) , , , , , ,

, ,( ; ) Cn t n t n t n t n t n t

i i k i k i iU V X i      (2.4) 

 Wherein the random residuals i
n,t are amplifiers of the disturbances as increasing 

functions of the expected values of the perceived utilities Vi
n,t. Furthermore, Dagsvik (1995) 

generalized the definition of random utility models with the definition of interpersonnel RUM. 
However, the current thesis focuses on the additive random utility models (ARUMs). 
Particularly, a linear in parameters specification of the systematic utility will be always assumed. 
In this way, the (2.3) can be expressed as: 

 

, , , , ,

, , Cn t n t n t n t n t

i k i k i i

k

U X i       (2.5) 

In the (2.5), obviously, the notation Xk,i
n,t can indicate, in general, a function of observable 

quantities. In the following, the (2.5) will be the main vehicle to show the main differences 
among all the random utility models described in Section 2.2.  

 Maximizing benefit behaviour 

Defining yi
n,t as a binary variable assuming values 0/1, respectively, if the actual choice of the 

individual n in the choice task t is or is not represented by the alternative i, what has been said 
in the premise of the current chapter can be easily formalized as follows: 

 
, , , ,(U ;C )n t n t n t n t

i iy d  (2.6) 

where dn,t indicates the decision rule, i.e. the synthesis of all the rules according to which the 
decision maker n chooses i when facing t, in the choice-set Cn,t. In the random utility theory 
case, dn,t summarizes the assumption of homo-economicus above described, who chooses the 
alternative that maximizes his/her perceived utility. Thus, the (2.6) can written more explicitly 
as: 

                                              
6 It will be assumed the exogeneity hypothesis, i.e. that the attributes and the random terms are stochastically independent. 
For a comprehensive discussion about the endogeneity problems the reader refer to Louviere et al. (2005) and Train (2009). 
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, , , ,

,

1 , C ,

0

n t n t n t n t

j j i

n t

j

y U U i j i

y otherwise

      




 (2.7) 

Extending the concept, by suppressing the superscript t, we can indicate with yi
n the result of a 

sequence of choices for the individual n.  
A choice obeying the maximizing benefit behaviour must respect three intuitive axioms 
(Debreu, 1954; Block and Marschak, 1959): 

- Completeness: a decision maker is always able to make a binomial choice between 
whatever pair of alternatives a and b. In this case, the exact term is weak preference 
between the two, because, in a repeated choice situation with the same scenario, the 
decision maker could actually make another choice. The strong preference represents the 
opposite concept, i.e. the decision maker do prefer a to b always if he faces the choice 
task infinite times. 

- Transitivity: if a decision maker prefers a to b and b to c, he will prefer a to c; 
- Continuity7: an infinitesimal variation in a relevant attribute value does not vary the 

preference of a certain alternative; 
In the following, a general framework will be presented, i.e. the random utility theory, wherein 
the three above-mentioned axioms represent a pre-condition for make a model operative. 

 Random utility maximization models (RUMs) 

Starting from (2.7), a generic random utility model is a mathematical relationship whose 
outcome is the probability of observing that a given alternative j is chosen by decision maker n 
in the choice task t within the choice set Cn,t: 

    , , , , , , ,( ) Pr , C , Pr 0, C ,n t n t n t n t n t n t n t

j i j ip j U U i j i U U i j i            (2.8) 

And given (2.3) it (2.8) can be also written as: 

  , , , , , ,( ) Pr , C ,n t n t n t n t n t n t

j i i jp j V V i j i         (2.9) 

That is needed just to emphasize three relevant aspects. First, such probability depends entirely 
on the utilities differences, while the absolute values of the utilities do not matter. This 
represents a fundamental of the random utility theory, implying that the only parameters that 
can be estimated are the ones that allow to define the utilities differences. Second, when 
multiplying the utility values for a scale factor, the pn,t(j) does not change. This leads to another 
fundamental of the random utility theory, i.e. that the scale does not matter. Thus, quoting 
Train (2009), “only differences in utility matter and the scale is arbitrary”. Third, the choice probability 
essentially depends on how the random terms within the perceived utilities is distributed. As 
better described in the following sub-sections, the scale is directly linked to the variance of the 
perceived utilities. 
A different interpretation for the pn,t(j) can be given in a similar linear regression fashion. The 
probability pn,t(j) is the regression value of yn,t

j affected by an error, averagely distributed with 0 
mean (Dagsvik, 2004). As it will be seen, a random utility model is effectively a non-linear 
regression model in regressors with a discrete outcome. 
The (2.8) can be translated into an operative formulation, by assuming the vector U of the 
perceived utilities Ui

n,t distributed with a specific density function f(U), as: 

                                              
7 Actually, some authors refers the third axiom as the fact the decision maker faces a finite choice set (Marzano, 2006). 
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, , , , , ,
m , ,1 m 1

, , , ,
m1 m 1

, ( ) .... ( )

n t n t n t n t n t n t
j j j j n t

n t n t n t n t
j

U U U U U U U

n t

U U U U

p j f d




   

   

     U U  (2.10) 

And the (2.9), indicating with  and , respectively, the vectors of the i
n,t ‘s and the k,i

n,t’s, leads 
to: 

 

, , , , , , , , , ,
m1 m 1

, , , ,
m1 m 1

, ( ) ... ( , )

n t n t n t n t n t n t n t n t n t n t
j j j j j j j

n t n t n t n t
j

V V V V V V

n tp j f d d

   

   





      

   

     
β

β ε β ε  (2.11) 

wherein f(,) is the joint distribution of the  and the. It has been noted that in the range 

bounds of each integral the Vi
n,t appears as a function of the k,i

n,t, under this framework 
assumed in Section 2.1.1. Thus, the (2.10) and (2.11) integrals are multi-dimensional, with 

dimension m in the space of the U. The same is an integral with m + n dimensions in the 

space of the  and  wherein n represents the number of the coefficients k,i
n,t’s. However, 

they can be expressed in the space of the differences between the perceived utilities, leading to 

an (m-1)-dimensional integral. The same applies when working in the space of the and 

leading to an (m-1+ n)-dimensional integral. The difference can be made with reference to 
anyone of the alternatives utilities/random terms taken as touchstone. For example, taking the 
alternative j as touchstone, indicating with Wj the vector of the differences Ui

n,t – Uj
n,t, and with 

j the vector of the differences i
n,t – j

n,t, the choice probability can be expressed as: 

 

, , , , , , , ,
m1 2 m 1

, , , , , , , ,
m1 2 m 1

0 0 0 0

, ( ) ... ( )

n t n t n t n t n t n t n t n t
j j j j

n t n t n t n t n t n t n t n t
j j j j

U U U U U U U U

n t j j

U U U U U U U U

p j f d




       

       

     W W  (2.12) 

 

, , , , , , , , , , , , , , , ,
m m1 1 2 2 m 1 m 1

, , , , , , , ,
m1 2 m 1

, ( ) ... ( , )

n t n t n t n t n t n t n t n t n t n t n t n t n t n t n t n t
j j j j j j j j

n t n t n t n t n t n t n t n t
j j j j

V V V V V V V V

n t j jp j f d d

       

       

 



           

       

     
β

β Λ β Λ  (2.13) 

Another representation of choice probability is very interesting for our purposes. Quoting the 
introduction chapter of Train (2009), and adapting it with the introduced (2.2) (wherein, 
differently from Train, the marginal utilities are, in general, variable with individual n and choice 
situation t) consistently with the notation above defined, a binary 0/1 indicator Ij

n,t can be 
defined as a function of observable and non-observable quantities, as: 

 

 

 

, ,

,

I ( , , ) 1 1

I ( , , ) 0

n t n t

j j

n t

j

h j if y

h j otherwise

   


 

X β ε

X β ε
 (2.14) 

This means, the probability of choosing the alternative j can be seen as the expected value of 

Ij
n,t over joint density f(,). Such expected value can be expressed as: 

 
 , ,( ) I ( , , ) ( , )dn t n t

jp j h j f d   
β ε

X β ε β ε β ε  (2.15) 

Other authors (for instance, see Train,2009) refer this formulation, giving to  the meaning of 

the whole random part of the perceived utility, i.e. incorporating the random part of . 
However, assuming the current thesis framework, the assumption on the joint density is 

generally that  and  are independent, thus giving f(,)=f()f(). 
Whatever definition of pn,t(j) is made, it is clear that (2.15) represents a multidimensional 
integral, in the differences or in the single alternatives random terms space, and it has to be 
analytically solved or simulated. As described in Section 2.2, under opportune assumptions, the 
integral have a closed form solution. 
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The following section contains a review of the state of the art of the main random utility 
models analysed in literature. 

2.2 State of the art of RUMs 

The literature on choice modelling is very wide, being the latter a powerful transversal tool for 
many scientific areas. A lot of general and theoretical contributes to this discipline are trackable 
in economic, psychometric, transport, biological, healthcare and several others scientific fields. 
In fact, not infrequently a general mathematical model has been proposed to answer some very 
specific problem. This thesis work does not embrace all relevant issues analysed in scientific 
literature, but mainly focuses on some well-established lines of research. In Chapter 1, several 
choice modelling issues have been mentioned. Particularly, two main problems has always been 
recognized as very relevant, not only for transport aims the error structure assumptions on 
random terms and the taste heterogeneity. The proposed state of the art investigates the main 
random utility models, with reference to these two fundamental problems. 

 Error structure 

The main assumption of the current sub-section is that marginal utilities j,k
n,t ‘s are not 

randomly distributed across population of individuals n and choice scenarios t, i.e. f() and its 
dimensions of integration are suppressed from (2.15). As clarified in the previous section, this is 
just a pedagogical assumption, to create a clear cut between the two phenomena. Actually, in 
real-world applications there is not the possibility to create such separation between the two. 
As mentioned in Section 2.1.4, a random utility model involves some multi-dimensional 
integrals computations. Whenever (2.15) does not have a closed form solution, this means 
involving simulation.  
The first random utility models family totally avoids this computational problem, by making 

some appropriate assumptions on f() and, therefore, on f(U). Unfortunately, it is not always 
possible to resort to these easier tools, and, in general, closed form models actually exhibit 
some limitations. Other models that do not have closed form solution need to be specified in a 
way to ensure the computation of the integral is feasible. Although these models are harder to 
work with, the advantages, whenever possible, are not negligible. Particularly, three main 
problems can be identified, with reference to error structure of random terms: 

- Heteroskedasticity; 
- Substitution across alternatives; 
- Correlation of the random terms over time; 

For a more comprehensible discussion, it is better to make the more didactic, but unrealistic 

assumption, that parameters k,i
n,t do not vary across respondents and choice situations. This 

problem, i.e. the second one presented in the premise of this chapter (taste heterogeneity), will 
be discussed in Section 2.2.2. In this sub-section, the choice to isolate the two effects has 
exclusively a clarifying aim. Another assumption of the section, that is actually very common in 

literature, is that the error structure of the j
n,t ‘s is keep fixed across the observations. The 

reader can refer Swait and Bernardino (2000) for a relaxation of this assumption in a three tran-
oceanic air travels choice context. 
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2.2.1.1 GEV models 

The GEV family (Mac Fadden, 1978) represents a wide class of random utility models. The 
underlying assumption on random residuals is that they are distributed as Multivariate extreme 
value (MEV). Although chronologically this brilliant generalization has come after the existence 
of the simplest and best-known GEV family exponent, i.e. the Multinomial Logit (Luce, 1959), 
the GEV family will be presented at first, and the main GEV models will be summarized in the 
following sub-sections, briefly describing their properties and limitations. 
Specifically, a GEV model can be always represented in this way: 

 

, ,,
, ,

, , ,

exp( )
( )

exp( )

n t n tn t
j jn t n t

jn t n t n t

j

V YG
p j G

G V G 


   

  
 (2.16) 

Wherein G is the so termed GEV generating function and, apart from superscripts n and t, Gj 
represents its first order derivative with reference to Yj, in turn defined as the exponential of 
systematic utility of j, while m is a constant defining the degree of homogeneity of the function 
G. The latter is defined strict utility function in psychologists’ literature (Domencich and 
McFadden, 1975). Thus, the GEV family models represent a wide class of closed form models, 
whose underlying distribution and the choice probabilities (2.16), are defined by assuming an 
appropriate formulation for the function G. 
McFadden (1978) and successive generalizations (Ben-Akiva and Francois, 1983) exposed the 
main properties of the GEV generating function G, to give a GEV model, as follows: 

1) Non-negativity ∀ Vj
n,t, i.e. ∀ positive value of Yj

n,t (Daly and Bierlaire, 2006); 

2) Homogeneity of degree ;  
3) Positive divergence when each Yj

n,t. goes to  +∞; 
4) Non negativity of kth cross partial derivatives in Yi

n,t , with j≠i, when k is odd number; 
5) Non positivity of kth cross partial derivatives in Yi

n,t , with j≠i, when k is even number; 
It is possible to demonstrate (Cascetta, 2006), that: 

- a cumulative distribution function of residuals given by ( ) exp( )F G ε , where F is a 

function of the residuals as (exp( ))G G ε , is MEV distributed; 

- the mean of maximum between perceived utility values is equal to 

,

, ,1max[ ] ln( )
n t

n t n t

j

j C

E U G 




  
      

  

 where  is the Euler-Mascheroni’s constant 

(0.57721566…); 
and, obviously, the (2.16). 
Dagsvik (1994) analysed the generality of the GEV models, indicating that a GEV model could 
theoretically mimic effectively every possible random utility structure. 
Based on the above mentioned properties, several models will be presented. The assumptions 
on G for the main models is reported in Table 2.1. All indexes involved in the formulations will 
be discussed in the following sub-sections. 

Multinomial Logit 

Multinomial Logit, as mentioned above, represents the first GEV family member, but its birth 
comes before the GEV class birth. Luce (1959) was the first to propose the following Logit 
formula: 
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Table 2.1: GEV generating functions for well-known GEV models. 
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Wherein  is the inverse of the so-called scale parameter. In additive models, the scale of 
systematic utilities does not affect the choice probabilities. Luce started from the assumption of 
Independence of irrelevant alternatives, or, as more intuitively called by Block and Marschak (1959), 
the independence from added alternatives. Actually, Luce saw this property as desirable, expressing the 
following concept: if a new alternative k is added to the choice set, the ratio between the choice 
probabilities of any pair of alternatives j and s does not change. In fact, according to (2.22), the 
ratio would be: 
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i.e. it is not affected at all by the introduction of k. This ensures the consistence with the 
maximizing utility axioms (Marschack, 1960). Marley (Luce and Suppes, 1965) demonstrated 
that the (2.22) descends from an i.i.d. Gumbel assumption on random residuals. McFadden 
(1974) demonstrated the Logit formula necessarily implies extreme value distribution for 
random residuals. Thus, the i.i.d. Gumbel assumption is both necessary and sufficient for 
(2.22). Recently Ye et al. (2017) proposed a practical test for the validity of the Gumbel 
assumption when estimating a MNL on a given sample. This is consistent with (2.17), because: 
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that represents the product of identical Gumbel distributions for each i. This means the 
Multinomial Logit assumption is that residuals are independently distributed as Gumbel with 

the same variance parameter . More succinctly, this is well-known in literature as the i.i.d. 

(independently and identically distributed) Gumbel assumption on random residuals. Being  
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the same for all alternatives, the model (as all GEV models) is homoscedastic. The variance 
parameter is the inverse of the scale and it flattens the differences between choice probabilities 
when it rises. Conversely, when it decreases, it emphasizes the choice probability of the 
maximum systematic utility alternative, that goes to 1. On the other hand, an infinite dispersion 
means null capacity of the analyst to explain the phenomena, whilst 0 variance means perfect 
knowledge, i.e. a deterministic scenario. 
However, (2.23) actually represents the main limitation of Multinomial Logit. In fact, (2.23) 
implies proportional substitution across alternatives. In other words, when a Vj

n,t 

rises/decreases is immediate to recognize that the choice probabilities of j rises / decreases and 
the other choice probabilities decrease/rise the same relative quantity. This has potentially 
undesirable forecasting implications, because several could be the situations wherein the market 
share choosing an alternative could be penalized more than the one of another alternative. 
Famous example of the counter-intuitiveness of this result are reported in Chipman (1960), 
Debreu (1960), Daganzo and Sheffi (1977), Ortuzar (1983), Brownstone and Train (1999), 
Cascetta (2006), Train (2009). The most known are maybe the red bus/blue bus problem and 
the Daganzo network. 
Thus, Multinomial Logit, as evident by the i.i.d. assumption (Gumbel is not relevant), does not 
allow for heteroscedasticity and inter-correlations between alternatives or random terms over 
time, i.e. none of the three problems mentioned in the premise of Section 2.2.1. A different 
approach for generalizing the Multinomial Logit model, whilst not renouncing to a closed-form 
expression for the choice probability, is represented by the Mother (or Universal) Logit model 
(McFadden, 1975). The idea is putting, in some ways, the observable attributes of the other 
alternatives within the utility of the examined alternative8. Thus, no different assumptions on 
random residuals are made, but, substantially, a different utility specification within the 
observable part. Examples of this framework are, with various declinations, the Dogit model 
(Gaundry and Dagenais, 1978), the Parametrized Logit Captivity model (Swait and Ben-Akiva, 
1987), but, above all, the C-Logit (Cascetta et al., 1996) and the Path-Size Logit model (Ben-
Akiva and Ramming, 1998). The last two, in particular, are route choice models, and they will 
be described in Section 2.3.2.2 and 2.3.2.3. 
For an heteroskedastic formulation of Logit the reader can refer to Bhat(1995), who 
hypothesized a multivariate Gumbel distribution with different variance parameters for the 
alternative utilities. This leads to a formulation without closed form. It has received no interest 
in the practical applications given the successive strong development of the more general 
Mixed Logit model (see Sections 2.2.1.3 and 2.2.2.2). Other formulations that have not received 
an interest in the literature is the Negative Exponential model (Daganzo, 1978a) and the 
Weibull model (Beilner and Jacobs, 1971), both described in the book of Daganzo (1979). A 
model with an underlying Weibull assumption will be deepened in Section 2.3.3.4 for route 
choice applications, under some specific assumptions.  
The strong limitations of Logit model, although its appealing great simplicity and the 
incomparable computational efficiency of its parameters estimation, has driven the researchers 
to move towards other more complex formulations. Although there are many situations 
wherein, with a good utility specification, it is possible to reduce the undesirable effects of Logit 
(it has been reminded that all the problems mentioned regards the unobservable components 

                                              
8 This idea is very similar to the one of the Random Regret minimization (RRM) theory, as described in Mai (2017) for route 
choice. However, in the RRM, the decision maker is assumed to choose the alternative who minimizes the perceived regret, 
rather than maximizing the perceived utility. 
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of the perceived utilities), unfortunately, in the practical applications, often it could be 
convenient to opt for other models. 

Nested Logit 

The Nested Logit model (partially) relaxes the assumption of independence of random 
residuals of alternatives, allowing for correlations among some groups of alternatives. 
Practically, the alternatives are clustered into groups k, called nests, identifying positively 
correlated alternatives. Also the Nested Logit formulation comes before GEV family and its 
GEV membership demonstration. Several authors (Ben-Akiva, 1974; Domencich and 
McFadden, 1975; Williams, 1977; Daly and Zachary, 1978), probably independently, proposed 
the following framework for choice probabilities, in an intuitive conditional form: 

 
, , ,( ) ( / ) ( )n t n t n tp j p j k p k   (2.25) 

For creating a correlation within a nest of alternatives, the generic random residual can be 
viewed as portioned in two adding i.i.d. Gumbel random residuals: 
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The part k
n,t represents the part that is shared among the correlated utilities. In fact, the 

correlation is the tendency of two random variables to go in the same direction with reference 
to their average values. Sharing a random portion with the same sign, a positive correlation is 
induced. In other words, two utilities are positively correlated if an unobservable factor 
influences both of them. 

Thus, the integral (2.15) involves the joint distribution f(k
n,t,j/k

n,t), represented by the product 

between f(k
n,t) and f(j/k

n,t), being the two random portions independent one from the other. 
Therefore, the integral in the second part clearly becomes the Multinomial Logit formula 
applied to alternatives within the nests. In other words, the first term of the (2.25) is the Logit 

formula involving all alternatives a ∈ k, within which in the denominator of the exponential’s 

argument there is the variance of the parameter of the j/k
n,t. It is clear to recognize that the 

variance of the total random residuals is given by the sum of the variances of the two portions 
in (2.26)(the covariance is null), so, the variance within k will be smaller than the total variance. 

This means k is smaller than . 

The second term is Gumbel distributed with variance given by the difference (k
2) times 

2/6. For the nest probability, it is worth to think of the perceived utility of a group. It is 
defined as the maximum of utilities of alternatives within the group, so the systematic utility is 
defined as: 
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So, inasmuch as maximum of Gumbel random variables with the same k is always a Gumbel 

with parameter k and mean given by: 
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The closed form expression (2.28) for the log-sum, according to McFadden (2001), seems due 
to the PhD thesis of Ben-Akiva (1972). 

The Uk
n,t is characterized by a random residual distributed as j

n,t, i.e. with variance . 
Consequently, the choice probability for nest follows the Logit formula extended to all nest 

utilities (2.28) and variance parameter  to the denominator. Definitely, given these premises 
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and substituting (2.28) in a Logit for the second term of (2.25), the final choice probability for 
alternative j is given by: 
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Wherein K is the set of the nests, a and a’ represent, respectively, the alternatives within nests k 

and k’∈ K. The parameter k is defined as the independence parameter and represents the ratio 

k/. The name of this parameter derives from the fact that the correlation between a generic 
pair of alternatives i and j belonging to the same nest k can be expressed as: 
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That means when k rises the covariance decreases and vice versa. Its values is constrained 

between 0, for the non-negativity of the variances, and 1, for the relationship k≤. This 
condition is always been considered as necessary to ensure the consistence with stochastic 
utility maximization, particularly with reference to stochastic transitivity and regularity 
(McFadden, 1978; Daly and Zachary, 1978; Borsch-Supan, 1990). Actually, more recently, 
Batley and Hess (2016) analysed this issue more in details. They showed how the lower bound, 
in some cases, may be greater than 0 to ensure the transitivity property, thus restricting 
inferiorly the interval. Furthermore, they showed the upper bound is not constrained to 1 
neither by regularity nor transitivity. 
The Nested Logit above described is also called Hierarchical Logit or one-level Nested Logit 
or, by several authors, two-levels Nested Logit, computing the nest level as a level. Ortuzar 
(2001) provided a good historical reconstruction of the Nested Logit with one level. More 
levels can be added (McFadden, 1978; Ben-Akiva and Lerman, 1985), to improve the 
correlation structure of the model, but not totally relaxing the independence assumption. In 
fact, within the nests the I.I.A. property remains and, furthermore, the property holds also 
between nest probabilities. Train (2009) calls the latter as independence from irrelevant nests (I.I.N.). 
However, in presence of multiple levels, the (2.25) and (2.29) can be easily extended, adding 

more conditional probabilities. The (2.30) can be updated, by substituting the ratio k/ with a 
product of ratios, each one referred to a level and its previous one (Daganzo and Kusnic, 1993). 
Definitely, Nested Logit is the first model that partially solves only one of the three problems 
above presented, i.e. it goes towards a more flexible substitution pattern amongst alternatives, 
but is still an homoscedastic model with limitations in reproducing covariance matrices and it 
does not allow for correlation over time of the residuals. 

Cross Nested Logit and further generalizations 

The idea of Cross Nested Logit is allowing for an alternative j belonging to more than one nest 
k. Therefore, there is no more clustering but a sort of fuzzy division of the alternatives in a set 
of nests. That means creating a greyscale membership of each alternative into the nests, 
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defining a positive degree of membership jk. Based on this conceptual vehicle, the Cross Nested 
Logit has been proposed under several names and with different particularisations. Maybe the 
first one who proposed it was Chu (1981) and, more notoriously, always Chu (1989). The 
model was named Pair Combinatorial Logit (PCL), and the alternatives was divided into pair 
nest, one for each feasible couple of alternatives in the choice set. The intuition was allowing 
for a correlation among each pair of alternatives. Another contribute, that generally each author 
refers, is the so-called Ordered GEV model (Small, 1987), wherein the peculiarity was that the 
alternatives were ranked (ordered) and the correlation depended on the closeness in the order. 
However, the first contribute to the Cross Nested Logit in the most similar form for what is 
known nowadays is due to Vovsha (1997). The name itself (abbreviate CNL) is certainly due to 
that contribute, wherein the author performed an application of the model on mode choice in 
Tel Aviv Metropolitan area. After this, several works have generalized the model and its 
properties (Ben-Akiva and Bierlaire, 1999; Papola, 2000; Wen and Koppelman, 2001, Bierlaire 
2001, Papola, 2004, Abbe et al. 2007, Marzano and Papola 2008).  
The CNL choice probability can be written in a conceptual form as: 
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With the notation clarified in the previous sub-section, (2.31) can be expressed as a function of 
the degrees of membership (also called inclusion or allocation parameters): 
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Some authors, starting from Wen and Koppelman (2001), refers to it with the name of 
Generalized Nested Logit model (GNL), that theoretically differs from the CNL proposed by 

Vovsha (1997) for the presence of different values of k for each nest. However, naming it 
CNL is not imprecise and giving a different name for a very slight increase of generality appears 
to be excessive. 

For giving the same average value on random residuals the jk must satisfy the constraint that: 
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Generally, the positive constant h is normalized to 1.  
The derivation of CNL from GEV theory is due to Papola (2004). The CNL totally relaxes the 
independence assumption of the simple MNL, allowing for a very flexible substitution pattern 
of correlations. Unfortunately, the covariance for CNL is not computable with a closed-form 
expression, involving a double-integral simulation (Abbe et al., 2007). Papola (2004) provided a 
conjecture that is very useful for reproducing covariances in boundary cases:  
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Marzano and Papola (2008) explored the capability of the CNL to reproduce all the feasible 
homoscedastic covariance matrices domain underlying the CNL (i.e. the domain of matrices 
satisfying the maximum rank condition), and they showed the CNL is not able to reproduce the 
whole domain. They tested also the flexibility of various nesting structures, finding in the full-
nest structure, i.e., a double nest error structure with nests containing all the alternatives, the 
most flexible structure. Thus, the Pair Combinatorial Logit specification (Chu 1989; 
Koppelman and Wen, 2000), that is very interesting and widely used in route choice, as 
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described in Section 2.3.2, does not represent the best strategy in terms of covariances 
flexibility. Marzano et al. (2013) demonstrated the possibility to express the covariance 
expression in a single-integral form, reducing considerably the computation time. In a 
successive work, Marzano (2014) brilliantly generalized the procedure for all GEV models. 
Therefore, the CNL introduces a great flexibility in substitution across alternatives, but it is still 
an homoscedastic model and does not allow for correlation of random residuals over time. 
However, Fosgerau et al. (2013) carried out a very hard demonstration of how the Cross 
Nested logit model may theoretically approximate any ARUM, but no guidance on how to 
specify a CNL for this purpose has been provided. 
Further developments on the topic of the correlations have been: the cross correlated Logit 
(Williams, 1977; Williams and Ortuzar, 1982), the Tree Extreme Value model (TEV; 
McFadden,1981), the principles of differentiation model (PD; Bresnahan et al., 1997), the Generalized 
MNL (also called Choice set generation Logit or GenL; Swait, 2001) and the Fuzzy Nested Logit9. 
The most known generalization of the CNL is the Recursive Nested Extreme Value model 
(RNEV), proposed by Daly(2001b) and successively reprised by Daly and Bierlaire (2006) and 
Newmann (2008). The model represents an extension of the CNL to more levels. The principle 
is that the choice can be represented by a graph, with the alternatives represented by a set of 
nodes at the lowest level, without successors. For each level, a set parameter can be associated, 
and a GEV generating function can be computed as a function of these parameters and the 
GEV function of the lower level. In fact, according to Daly and Bierlaire (2006), the GEV-
inheritance theorem ensures the resulting function is always a GEV function. But, apart from route 
choice (Papola and Marzano, 2013), the model has not received a strong interest in real-world 
applications for the excessive numbers of parameters it introduces and the very quite 
incremental improvement in terms of correlations reproduced, when comparing it with a 
simpler CNL. 

FinMix 

The FinMix model (Swait, 2003) is recalled mainly for its structure, very similar, but not 
identical, to the one of the CoRUM model. The conceptual vehicle is always the same, i.e. 
allowing for flexible correlation patterns. With this purpose, the author derived the model by 
combining GEV generating function of different models in the way described in (2.21). In the 
formula, c is the generic generating function component and C is the set of all generating 
functions involved. In fact, FinMix is the abbreviation of “finite mixtures”. The resulting 
function is always a GEV function, given by: 

 
 

',0

0
'

' C

c

c

c

G G







  (2.35) 

Wherein c’ represents the generic generating function, while the generic c’,0 is the first level (or 

0-level) variance parameter of the model underlying the cth generating function and 0 is the 
total variance parameter. 
The resulting probability expression is a weighted combination of choice probabilities, each one 
obtained from its underlying generating function Gc’ in a conditional form: 
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9 The idea of Fuzzy Logit, i.e. a multi-level CNL, is due to Vovsha, but it is unpublished. It is briefly described in 

Koppleman and Sethi (2000), with reference to an email sent by the author. 
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However, in this case, the pn,t(c’) has a different meaning than the nest probability pn,t(k) of the 
NL. In fact, it represents a weight indicating the probability of belonging to that generating 
function c’. As it will be seen, the conceptual vehicle is very similar to the one of the latent class 
models for reproducing taste variation (see Section 2.2.2.3). It can be seen as a latent preference 
for GEV function c, in a latent class fashion. However, differently from latent class models, 
wherein the assumption made on the variable indicating a generic class (analogously here the 
generating function c’) is not explicit, here the assumption is explicitly made through Gc’. In 
other words, the latent class are generally modelled with a non-parametric assumption on the 
distribution of the variable that is considered to be latent, while here there is an explicit 
parametric assumption on each c’. Thus, the resulting random residuals distribution is a 
combination of known random residuals distributions. 
Particularly, the formulation for pn,t(j/c’) strictly depends upon the assumption on Gc’. For 
instance, assuming (2.17) gives the MNL formula (2.22), while (2.18) gives the entire NL 
formula (2.29) and so on, without any limitations. 
The pn,t(c’), instead, can be expressed as a function of all the Gc as: 
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In a tree representation, this first choice-level is perfectly analogous to the first level (or 0-level) 
of the NL, while the successive are the choice trees depending on the assumption on Gc’. 
The probability pn,t(j/c), thus, represents an endogenous weight for the sum (2.36), given the 
fact that its value entirely depends on the structural parameters of all the component models. In 

fact, it is easy to recognize that it is impossible to identify the value of 0 per se, given the 
indifference of the random utility models with reference to the scale. 
A very interesting example of FinMix is obtained mixing several (2.18) in (2.35). in this case Gc’ 

is the denominator of the NL probability raised to a power of the ratio c’,0/0. This 
specification will be analysed on the basis of several synthetic experiments in Section 4.3. 

2.2.1.2 Multinomial Probit 

It can be said that the random utility theory was born with Probit model. The first intuition 
about the framework goes back to Thurstone (1927), who tested the binomial choice behaviour 
of his students with reference to a panel of repeated choice situations. He noted that, a person 
who faced more than once the same binomial choice scenario sometimes chose a different 
alternative. He came at the intuition of a similar framework to (2.3), wherein he interpreted the 
random term as a disturbance in the decision-maker perception, i.e. an imperfect awareness due 
to the human imperfection. The disturbance he considered was related to what he called stimuli, 
that represented a sort of precursor concept of the one of perceived utility. He assumed this 
disturbance to follow a Normal distribution. This led to a bivariate Normal density for the 
disturbances, and, thus, for the likelihood of preferring an alternative to the other. The first 
transport application of the binary Probit model is probably due to the PhD thesis of Lisco 
(1967) and the first book entirely dedicated to this topic is the one of Finney (1971).  
However, the Multinomial Probit model, as it is known nowadays, is generally attributed to the 
paper of Hausman and Wise (1978) and the book of Daganzo (1979). The main assumption is 
that random residuals follow a Multivariate Normal distribution: 

 
, ( , )n t
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Where 0 represents the null vector mean and  is whatever feasible covariance matrix. Given 
(2.15) this leads to a choice probability defined as: 
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where the integral form holds because a closed form is not available for (2.39).  
The MNP can be considered a benchmark in terms of flexibility in reproducing correlations 
effects. In fact, the MNP overcomes each one of the three problems mentioned in the premise 
of this section. The MNP is an heteroskedastic model, it is flexible in reproducing covariances 
alternatives and it allows for random terms to be correlated over time. In fact, it has been noted 

that  indicates the vector of i
n,t, and in a context wherein random residuals are expected to be 

correlated over time, the integral (2.39) becomes an (m x T) dimensional integral and  is the 
(m x T) quadratic covariance matrix of each residual i in a choice scenarios t. 

It has been noted that, differently from GEV models, here the covariance matrix  explicitly 
appears. Actually, reminding that only utility differences matters, without any importance for 
level and scale, (2.39) can be written as a function of differences in random residuals (Hausman 
and Wise, 1978): 
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Wherein  is the (m-1)-vector of the differences in random residuals, while  represents the 
covariance matrix of them, with reference to whatever alternative random residual. This implies 
the independent covariance matrix elements of (2.39) that are identifiable are not m(m+1)/2, 
but (m-1)m/2-1 (the -1 indicates the possibility to normalize the value of one of them, because, 
as already said, scale does not matter). Thus, when one wants to estimate a MNP model can 
follow two strategies: directly specifying the error structure in the space of differences among 
utilities, that is a (m-1) dimensional space, or in the space of utilities, that is a m-dimensional, 

but conscious of the fact that only (m-1)m/2-1 terms of  are actually identifiable. However, 
specifying an MNP in terms of differences and, in general, specifying an MNP in contexts with 
an high number of alternatives could be prohibitive. The reason will be better explained below. 
Daganzo (1979) explains also a procedure for reducing the number of integration to (m-2) with 

a transformation that exploits the  and the Choleski lower triangular matrix of . 
The integral solution, as mentioned, needs performing simulation. The first method is using the 
classical quadrature method for computing multi-dimensional volume of (2.39) or (2.40) (Butler 
and Moffit, 1982; Guilkey and Murphy, 1993; Geweke, 1996) but, unfortunately, it is too 
onerous to perform in contexts with more than 4/5 alternatives. The Monte-Carlo simulation 
(with the A/R (acceptance/rejection) method is the first simulated procedure adopted for 
MNP (Lerman and Manski, 1977). Practically, the MNP probability is simulated drawing many 
times from the density f(U), therefore, under the assumption of the current section (no taste 

variation), from the density f(, and assigning a deterministic probability of 1 to the alternative 
who exhibits the maximum Ui

n,t,r  in the drawing r and 0 to the other. The simulated MNP 
probability results in a ratio between the favourable cases (i.e. the sum of the p(i)n,t,r with 
assigned value of 1) and the total of draws R: 
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wherein r indicates the generic vector of i
n,t,r  drawn from f() and p(j/r)det

 n,t,r is the 
conditional deterministic probability. 
A very comprehensive analysis on simulation procedure for MNP is reported in Hajivassiliou et 
al. (1996), whose paper investigates a lot of simulators, namely: Crude Frequency (CFS), 
Normal Importance Sampling (NIS), Kernel-Smoothed Frequency (KFS; McFadden, 1989), 
Stern Decomposition (SDS; Stern, 1992), GHK(Geweke, 1992; Borsch-Supan and 
Hajivassiliou, 1993; Keane, 1994; Hajivassiliou et al., 1996), Parabolic Cylinder Function (PCF), 
Deak Chi-Square (DCS; Deak, 1980a,b), Acceptance/Rejection (A/R), Gibbs Sampler (GSS; 
Hajivassiliou and McFadden, 1990), Sequentially Unbiased (SUS) and Approximately Unbiased 
(AUS). The authors stated the superiority of the GHK simulator that seems to be the most 
used simulator for MNP (Train, 2009). Another simulator frequently used in the first MNP 
application is the Clark’s algorithm (Clark, 1961), adopted for MNP first by Daganzo et al. 
(1977a). But Horowitz et al. (1982) showed this algorithm may be inaccurate in some situations. 

However, the MNP needs to be specified for allowing a maximum degree of flexibility for  or, 

more precisely, for . The first way to specify the MNP for allowing a flexible correlation 
pattern is the error component specification. The concept is analogous to that of NL model when a 
correlation among two alternatives is introduced sharing a portion of random residual. Each 

random residual n,t
i is specified as a sum of mono-variate normally distributed error 

components n,t
ij~N(0,

ij), where the subscript ij indicates the membership of the error 

component to the specification of residualsn,t
i and n,t

j. Obviously, each random term is 

specified with an own n,t
ii, allowing for reproducing alternative specific variances. Thus, 

m(m+1)/2 random terms can be inserted into the random residuals specification. However, 
taking into account the identification issues due to scale and level above mentioned, only (m-

1)m/2-1 parameters (namely the variances 
ij) can be estimated. This means specifying the 

error component structure in the space of differences among utilities or specifying in the space 
of utilities with some devices. For instance, a random residual can be imposed to be 0 for each 
individual and choice scenario, leaving only (m-1)m/2 error components in the (m-1) remaining 

residuals, and whatever remaining error component variance 
ij can be set to 1, or whatever 

positive value. Bunch (1991) provided an easy explanation of this procedure expressing 
covariances in utilities differences as a function of covariances in utilities. 
Another well-known method for drawing from a Multivariate Normal density is the Factor 

Analysis (Fishman, 1973). It is a similar specification to Error Component, expressing j
n,t as a 

combination of coefficient fjk and Standard Normal variables zj
n,t. The coefficients are 

computed by the Choleski decomposition of a given covariance matrix . Thus, when one wants to 

estimate a MNP model he must hypothesize, for each estimation iteration, a matrix , compute 

a Choleski lower diagonal matrix F and operate the scalar product ,n t

j  ΣF z , where z is the 

vector of the standard Normal draws zj
n,t. However, the problems due to level and scale holds 

and the analyst must preliminarily verify his assumption on error structure on  to ensure its 
identification. 
In a panel data context, one wants to take into account that each individual n faces several 
scenarios t, treating all choices of the same individual as a unique choice being a sequence of 

them. It can be made the assumption that j
n,t does not vary across choice tasks t. Practically, 

for each individual, the same random residual j
n is considered. 

The simulation issues above described explodes when estimating parameters of the MNP. In 
fact, different estimators than the closed form models case must be used. Generally, the MNP 
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is estimated through the maximum simulated log-likelihood estimator. Unfortunately, this 
estimator has several issues of stability, as widely described in Train (2009) in his chapter 8. 
Furthermore, especially when using the A/R simulator, the simulated choice probability is a 
discontinuous function in parameters. In fact, it is easy to recognize that computing the 
probability as quantity of successes on the total number of draws means obtaining a step 
function of the pn,t(j) in parameters. This means the first order derivatives of simulated choice 
probability is 0 or undefined, making impossible using the classical gradient-based algorithms 
for maximizing the simulated log-likelihood function. This is the reason that drove McFadden 
(1989) creating a simulator for computing MNP probabilities that were smoothed in 
parameters, i.e. twice differentiable. The simulator is obtained simply computing a MNL 
conditional probability for each vector of drawn perceived utilities, instead of a deterministic 
(accept/reject, i.e. 0/1) probability. The resulting simulated log-likelihood represents an 
efficient, unbiased and, as said, smooth estimator for the parameters. This operative intuition 
seemed to introduce a bias in the MNP choice probability but, actually, it represents the first 
intuition towards a new general and powerful model, i.e. the Mixed Logit.  

2.2.1.3 Mixed models 

A mixed model assumes random residuals distributed as sum of two terms (Ben-Akiva and 
Bolduc, 1996): 

 
, , , ,Cn t n t n t n t

i i i i       (2.42) 

wherein i
n,t is generally Multivariate Normal distributed, while i

n,t is, generally, an extreme 
value term (see Section 2.2.3 for other more general examples such as Mixed Probit model).  
The perceived utility, according to the assumption made on marginal utilities in this section, 
becomes: 
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This means, the general (2.15) becomes an integral in joint density f(,), that are generally 

assumed to be independent from each other, giving f(,)=f()f(). Thus, the integral becomes 
(Train, 1995; Train, 2009): 
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 (2.44) 

The integral within g() is a conditional function of . According to the i.i.d value assumption 

on , g() is solvable in closed form.  

Error Component Logit 

The Mixed Logit (also called mixture of Logit’s and abbreviated as MMNL) is by far the model 
who received more interest in literature in the last decades. Here is presented in a pure error 
component specification, so it will be called error component Logit. The error component 

Logit assumption is that i
n,t is an i.i.d. Gumbel term. This leads the g() becoming the 

Multinomial Logit formula, conditional on values of  (that needs to be drawn). 
Thus, integral in (2.44) becomes: 
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The integral (2.44) needs to be simulated, but it is easy to recognize that the Smoothed A/R 
estimator described in the previous section is opportune for this purpose. This means that the 
Mixed Logit seems a random utility model born for justifying a biased estimator for the 
Multinomial Probit. 
Ben-Akiva and Bolduc(1996) provided the first formalization of the model proposing the 

(2.42), naming it “Probit with Logit kernel”, and presenting the Factor analytic specification for  
and the random coefficient form for (2.45) (that will be discussed in Section 2.2.2.2). However, 
the generality of the Mixed Logit model has been demonstrated by McFadden and Train 
(2000). The authors showed that a Mixed Logit allows to approximate any RUM with a certain 
degree of closeness. This very hard mathematical demonstration is often used as a justification 
to use Mixed Logit model for any context. However, it is worthy to note that Train (2008a) 
itself pointed out that no guidance was proposed to obtain a specification of the Mixed Logit 
for ensuring it to mimic a target model. By the way, Train (2009) gives a more intuitive 
explanation of this powerful property in chapter 6 of his book.  

The specification of  can be made in the same ways described for MNP, namely Error 
component and Factor analysis. However, in the error component Logit, one more parameter 

than the MNP is present, i.e. the homogeneous variance of the i
n,t’s. 

A very in-depth analysis on the identification issues of the Normal error component Logit 
model (NECLM) is reported in Walker (2002) and, above all, Walker et al.(2007), who 
investigate all the conditions required for the  identification of the parameters.  
The proposed procedure for identification of a NECLM is summarized as follows in a what-if 
logic: 

- Hypothesize a covariance matrix (in a factor analytic fashion); 
- Determine the covariance matrix of utility differences; 
- Apply the order condition: this practically means checking that the number of parameters 

does not exceed m(m-1)/2-1, as described in Section 2.2.1.2 for MNP. It actually 
represents only an upper limit to the number of identifiable parameters (Bunch,1991); 

- Apply the rank condition: this is a check on the rank of the Jacobian matrix of all the 
variances/covariances of utility differences expressed as a function of the covariances of 
utilities. Practically, the analyst must compute each first-order cross derivative of 
variances/covariances in utility differences (on the rows) with reference to all 
variances/covariances in utilities (on the columns). The rank of the resulting matrix 
minus 1 is another upper bound to the number of identifiable parameters. This 
condition is more restrictive than the order condition. 

- Apply the equality condition: it is a check that the scale effectively does not affect the 
probabilities. This means the analyst must verify that normalization imposed to the 
covariance matrix of the utility differences (for instance fixing the variance parameter of 
Gumbel disturbance), does not make change in the value of the probabilities with 
reference to the non-normalized case. In other words, to keep the probabilities to the 
same value, the matrix of covariances of utility differences after normalization must be 
exactly equal to the one before normalization.  
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Notwithstanding the very high interest in literature for Mixed Logit, the error component 
specification remains a not so easy instrument to manage. In fact, it easy to recognize that, 
although all mentioned upper bounds to the identifiable parameters, their number rises when 
the number of alternatives raises. This means the NECLM can be easily estimated in contexts 
wherein there are many alternatives but a few parameters (Brownstone and Train, 1999). But, it 
is intuitive to recognize that using the NECML with this constraints can considerably reduce its 
flexibility. However, the Mixed Logit always remains the most used random utility framework 
for modelling taste variation across/within respondents (see Section 2.2.2.2). 

Normal alternative specific Error Component GEV 

The model (2.44) can be partially solved in closed form also with other GEV distribution 

assumptions for the i
n,t’s. The resulting probability statement represents a Mixed GEV model. 

The utility of a more complex Error component GEV formulation seems very irrelevant, given 
the generality of the Error component with a Logit kernel. However, it can be justified when 
one wants to catch the inter-alternatives variance effects with a Normal error component 
structure, but the covariances effects with a less burdensome closed form GEV model. This 
allows to considerably reduce the random terms involved in the integral simulation (the integral 
involves a maximum of m-1 dimensions) and also to relax the homoscedastic assumption of 
the simple GEV model. 
Although the advantage can be relatively smaller, with reference to the complexity to 
implement a more sophisticated GEV model, in a joint random coefficient error component 
specification this can represent a gain in terms of goodness of fit and allows for reducing the 
misleading about the taste variation effects and the variances/covariances effects. This 
framework will be deepened in 0, with reference to the CoRUM model. 

 Taste heterogeneity 

The second relevant problem faced by this thesis work refers the taste heterogeneity. In 
general, the concept, as briefly introduced in Chapter 1, is that each decision maker gives a 
different importance to a generic variable involved in a utility function. It is knowable that 
several personal variables could affect the perception of a given attribute: social status, 
demographic condition, attitude, habits and so on. For instance, when the analyst wants to put 
the monetary cost in systematic utility, he should consider that the marginal (dis)utility due to 
monetary cost can be heavily affected by: personal income with reference to the level of welfare 
of the community, sex, attitude to spend money for that specific alternatives, personal 
inclination to spend money in general and so forth. Furthermore, the individual can vary his 
inclination over time or decision tasks, because one of the mentioned conditions can vary, or 
simply because his personal inclination could arise differently in different choice scenarios. 
The failure to take account this inter/intra-personal variation can strongly affect the assessment 
on the weight of some attribute in forecasting.  
However, similar to Section 2.2.1, considering one by one all the random effects, at less from a 

conceptual standpoint , it is assumed that all randomness lies in the I,k
n,t, while  i

n,t is fixed to 
be 0: 

 

, , , ,

, , Cn t n t n t n t

i k i k i

k

U X i     (2.46) 

It has been pointed out that (2.46) does not exclude the correlation effects. In fact, the (2.46) is 
random within the coefficients, thus a variance into the utility is present, and a covariance 
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among the utilities sharing the coefficients is induced (see Daganzo, 1979; Ben-Akiva and 
Lerman, 1985; Cascetta, 2009). However, the focus of this section is on the taste variation. For 
further details on the variances and covariances induced by (2.46) the reader can refer the 
insights of Chapter 3.  
Under the assumption (2.46), the current section will consider a particularization of (2.15) given 
by: 
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The following sub-sections illustrate the procedures generally adopted for taking into account 
this problem. Firstly, they are presented some approximate techniques for treating as systematic 
the taste variation (see Section 2.2.2.1). Second, all the stochastic approaches are described, 
namely the parametric, nonparametric and semi-nonparametric approaches. All models 
implementing these approaches will be treated with reference to all main contributes to the 
scientific literature. 

2.2.2.1 Observable taste heterogeneity 

As an initial approximation, the random taste heterogeneity can be treated as systematic 
heterogeneity. Although this is not a complete approach from a theoretical standpoint, this can 
considerably improve the goodness of fit measure and, in some cases, it avoids to moving 
toward formulations that are more complex. 
In fact, the reader must remember that all the integration variables in (2.15) refer the 
unobservable components. The impossibility to observe some attribute can be considered 
always a limit of the analyst in that particular choice context and with that particular dataset. In 
fact, it can be said that Multinomial Logit does not fail in a certain choice context per se, while 
it fails given the lack of knowledge of the variables influencing choice probabilities. In other 
words, from a pure theoretical standpoint, if the analyst is able to observe all the variables that 
induces a choice, the problems of random correlations / random heteroscedasticity /random 
taste heterogeneity and so on reduce their importance. In fact, given the additive framework 
(2.3), it is immediate to recognize that everything that is observable to the analyst is put into the 

systematic utility and it is taken off from random residual. Thus, the relative importance of i
n,t 

in Ui
n,t decreases, and the random effect fades. Practically, if one put the right variables into the 

utility of bus and car in the famous red bus/blue bus paradox, maybe the systematic utilities of 
the three alternatives considerably change their value, the random term tend to be null and the 
model reproduces the expectations in terms of choice probabilities. 
The same concept applies to taste heterogeneity. When treating it as function of observable 
attributes, the necessity of resorting to complex multi-dimensional integrations consistently 
reduces. Practically, doing it means adding more attributes to the systematic utility specification. 
Each choice context is substantially different from another, so giving general rules is obviously 
an unrealistic pretence. However, some interesting example for travel demand can be shown. 
Considering, for instance, the monetary cost above mentioned. It can be entered into the 
systematic utility of a certain transport mode (car, train, air, bike etc.) and it is surely expected 
to be very variable across the population. Firstly, it can vary as a function of the personal (or 
family) income. Particularly, it is expected that the income increases the utility, so, when putting 
the income in the formulation as an adding variable the analyst must estimate another 
parameter, expected to be positive. The estimation of another parameter can be avoided, 
obtaining the income effect on the utility by putting it in the denominator of the monetary cost. 
This implies when the income rises, the ratio between monetary cost and income drops, giving 
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a plausible effect on the systematic utility, without requiring other parameters to be estimated, 
or worse, a randomness introduced in the marginal utilities. This strategy can be surely refined. 
For example, a ratio between average income and individual income can be put into the utility 
for adjusting the relative importance of rising individual income. This ratio can be also used in a 
non-linear way, elevating to the power of a certain exponent. Other socio-demographic 
information can be put into the utility, multiplying it for the same monetary cost coefficient. 
Some examples are the age, the gender (dummy variable) or the professional condition (ranked 
variable).  The reason for what a decision maker makes a trip could certainly influence his 
willingness to spend money (willingness to pay), so another dummy variable can be inserted 
multiplying it for the monetary coefficient.  
Regarding the time coefficient the same concept applies. The analyst can try to improve his 
specification, detecting all the relevant variables that are observable. It is expected, for example, 
that a time spent on board a train can be influenced from some service attributes. If a decision 
maker knows he can access to a Wi-Fi, or a bar/restaurant, or a comfortable seat, he will be 
more willing to spend time on board for that class of that train. And surely, the mentioned 
variables could also impact on willingness to spend money. 
Apart from the addition of attributes, the analyst can try to use the same attribute, but 
introducing more than one parameter for it (segmentation). For example, when using the income 
together with the cost, one can estimate more values, one for each income bracket. The same 
can be made on the age and so on. 
Definitely, before resorting to models that are more complex (see Sections 2.2.2.2, 2.2.2.3 and 
2.2.2.4), the analyst should improve the utilities specification adding more observable 
information within them. This reduces the presence of randomness in the perceived utilities, 
limiting the benefits (but also the burdens) that one obtains from models allowing for random 
taste variation. Unfortunately, sometimes it is impossible for the analyst observe all the sources 
of taste variation, potentially leading to inconsistent parameters estimates (Chamberlain, 1980). 
This is the reason why, after a good specification work, often the analyst has to resort to 
formulations accounting for the random sources of taste heterogeneity. 

2.2.2.2 Parametric approach 

This sub-section provides a brief recap of the random utility models that explicitly take into 
account the random taste heterogeneity. A first statistical approach is the parametric one. With 
this approach, the analyst must explicitly make an assumption on the shape of the random 
distribution of the marginal utilities. Thus, for operationalizing the model, he must estimate the 
parameters from which the parametric distribution depends on.  
When using a parametric approach the underlying model specification is generally called random 
coefficient. The latter has a long history in econometrics applications, before being applied to 
discrete non-linear models.  Initially, it was used mainly within the linear regression models, to 
relax the assumption that the coefficients of the regression were fixed (see Hildreth and Houck, 
1968, Swamy, 1972, Rao, 1973 and Greene, 2001 for a summary of the main contributes). In 
the following sub-sections the most relevant random utility models specified as random 
coefficient will be discussed, namely the MNP and the MMNL. 

Probit with random coefficient formulation 

The Probit with random coefficient specification (Hausman and Wise, 1978; Akin et al., 1979) 
represents the first model taking explicitly into account the random taste variation. The 
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framework is perfectly analogous to that of (2.39) but, in this case, the random vector  

replaces : 
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wherein  represents the covariance matrix among the n,t
j,k’s considered to be distributed as 

~ MVN(𝛃̅,). Generally, the Normal distributed n,t
i,k are simply assumed to be 

independently distributed. Thus, this means simulating the integral (2.48) by drawing each 
parameter from a mono-variate Normal density as: 
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wherein , ,

,

n t r

i kz  is the Standard Normal rth draw from the density of the generic n,t
i,k. 

When hypothesizing a correlation among the parameters, the Choleski factorization can be 
adopted. Obviously, it implies estimating also the Choleski constants and, indirectly, also the 
covariances among the parameters.  
However, nowadays the MNP is no longer used, because of its already mentioned problems of 
estimation, while the pure random coefficient Logit (or Mixed Logit random coefficient) is by 
far the most used parametric model in the practical applications. 

Random coefficient Logit 

Although the Mixed Logit with random coefficient is often considered born with Ben-Akiva 
and Bolduc (1996) paper, an earlier literature faces the problem of mixtures of MNL with 
random coefficient. For example, Cardell and Dunbar (1980) and Boyd and Mellman (1980) 
tried to simulate an integral referred to market share, rather than a single decision maker, in an 
automobile demand model. In McFadden and Train (2000) several other previous works are 
mentioned (Talvitie, 1972; Westin, 1974; McFadden and Reid, 1975; Westin and Gillen, 1978) 
and many other successive works. 
However, the random coefficient Logit (or Mixed Logit random coefficient, or mixtures of 
MNL) has incredibly increased its popularity in the first decade of the 2000’s. It is very hard to 
embrace all the relevant literature on it. 
Anyway, the random coefficient is perfectly similar to the error component Logit (sometimes 
said to be mathematically equivalent to it, except for putting random term inside or outside the 
systematic utility) and analogous to the MNP random coefficient. The choice probabilities 
descends from the assumption that the perceived utility is defined as: 
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Wherein all the involved variables has the meaning already clarified in the previous sections, but 

the n,t
i,k can be distributed in any way. It is clear that the MNP model can be seen as a 

particular case of (2.50), wherein n,t
i is fixed to be 0 and the  n,t

i,k ‘s are Normally distributed. 
The choice probability formula is given by: 
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 (2.51) 

wherein f() represents the density function of  characterized by a set of parameters  that 
need to be estimated. The (2.51) can be seen as the average value of the MNL choice 
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conditional probabilities (conditional to ), i.e. a sum of infinite terms, each one weighted with 

the corresponding f()d. 

The choice of distribution shape f() is the most important step to make the model 
operative. In fact, starting from such assumption, the integral is simulated in different ways. 

The Normal distribution for , anyway, still represents a widespread used assumption. 
However, a lot of other distributions have been tested in literature. The issue of the 
Multivariate Normal is that it is unrealistic because of it is an unbounded and asymmetric 
distribution.  Apart from the problem of considering also very big values, it is undesirable 
because, often, one would estimate a positive/negative definite distribution. For example, in the 
monetary cost case, it is weird to observe positive values of its marginal utility, because it would 
mean a decision maker gets a benefit from spending more money. The same applies to the time 
coefficient and many other cases. Unfortunately, drawing from a truncated Multivariate Normal 

can be computationally intensive, because an A/R simulator for a vector of random variables  
should reject all the values outside the intervals, and this may give a high number of rejects, 
stretching the computational time. Thus, the analyst can use semi-definite distributions or 
limited distributions. To name a few, the log-Normal, the Triangular (symmetric or not), the 
Rayleigh, the Gamma, the skew Normal, the logistic transformation of Normal and the general 
Sb-Jhonson and even the Uniform are applied. The reader can see Mehndiratta (1996), Revelt 
and Train (1998), Bhat (1998a), Revelt (1999), Revelt and Train (2000), Bhat (2000), Train 
(2001), Siikamaki (2001), Siikamaki and Layton (2001), Hensher and Greene (2003), Train and 
Sonnier (2005), Burda et al. (2008), Bhat (2011), Bhat and Sidharthan (2012) Keane and Wasi 
(2013) and Dekker (2016) for examples of applications. 
Another problem influencing the choice of the distribution is the space considered for the 

estimation. When using the preference space, i.e. estimating the distribution of coefficients n,t
i,k 

as put into (2.50), it is possible that the analyst cannot understand the distribution of some 
interesting transformation of them. The classical example is the willingness to pay (WTP), 
generally fundamental in the transport mode choice. If one want to know the actual 
distribution of the WTP, but he has made the assumption of Normal distribution for the cost 
and the time coefficient, he cannot say anything about the distribution of WTP, because the 
ratio between two Normal is no longer a Normal. This can be solved by hypothesizing a log-
Normal distribution, because of the ratio between two log-Normal is still a log-Normal (given 
the exponential properties). Another way is to estimate the model directly in the WTP (or 
evaluation) space (Ben-Akiva et al., 1993), i.e. explicitly putting the WTP measure (for example 
the value of travel time VTTs) into the systematic utility. Making a parametric assumption on it 
allows for estimating its distribution. Unfortunately, neither log-Normal distributions nor 
estimation in WTP space are always simple to be estimated. 
However, the random coefficient Logit allows for incredible improvements in goodness of fit 
when using panel data (Revelt and Train, 1998), as already mentioned in Section 2.2.1.2 for 
MNP model. This is the main reason for what it is the most used parametric model for 
capturing the random taste variation. 

Posterior analysis and individual-level parameters on continuous distributions 

The Mixed Logit allows for taste variation and estimating a precise distribution, dependent 
from the assumption made on it. However, in terms of prediction, this represents a limited 
utility (Hess et al., 2010), because of the analyst, when applying the estimated MNP or (more 
suitably) MMNL, must simulate the integral over the density across the observations. This 
means he cannot know exactly where a particular decision maker lies in that distribution.  
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To overcome this limitation, a powerful tool for prediction is the posterior analysis. The concept 
is that the information about past choices of the individual can be used to make inference on 
the individual, in a Bayesian fashion. If the analyst considers m alternatives, and thus m 
observed market shares in a revealed choice experiment, the revealed choices can be used to 
build m distributions conditional on the revealed choice. Thus, for each decision maker, it will 
be more appropriate to draw from the density representative of his own marker share. This 

means passing from an unconditional distribution on the whole population f() to a 

conditional distribution g(/ys,t, indicating the distribution of people s that would choose 
the alternative y when faces the choice scenario t when the parameters of the whole population 

are . 
This easy concept can be stressed and extended at the individual level. In fact, given a sequence 
of choices (for example in a panel data of observed choices or in an SP survey) for a single 

individual yn, the conditional likelihood L(/yn,) of the decision maker to have a certain 

vector of values for  can be computed. Practically, applying the Bayesian rule, this is: 
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The term p(yn/) represents the product of T conditional MNL probabilities of the choices j(t) 
that a decision maker makes in his choice sequence: 
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f(/) is the estimated density function and the p(yn/) represents the Mixed Logit formula 
applied to a sequence of choices yn. In other words, it is: 
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The formula (2.52) needs simulation but all the quantities within it are computable after the 
model estimation. The mean of the individual level parameter can be computed as: 

 
L( / y , ) dn  

β

β β β Φ β  (2.55) 

This represents the basic idea on what the Bayesian estimation is founded. In fact, in a Bayesian 

procedure the f(/) represents the prior, i.e. the summary of all the information that are 
available for the analyst, previously to the estimation. Starting from such prior, the procedure 
searches for the parameter of the new conditional distribution, avoiding optimization problems 
and relative issues. 
This can be an advantage in terms of prediction, but it has been noted that it can be made only 
with individuals whose past choices are available. However, with the increasing availability of 
micro-data, this problem looks set to become relatively less significant. 

2.2.2.3 Nonparametric approach 

The parametric approach for taste variation and, particularly, the use of Mixed Logit, has an 
“original sin”. In fact, making a specific assumption on the shape of the density function is very 
restrictive. Whatever distribution hypothesized by the analyst, the estimation procedure will 
provide some parameters for that distribution, even if it is a very wrong assumption. Generally, 
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a Mixed Logit model exhibits a better goodness of fit than the simple MNL, but a wrong 
distribution may lead to biased predictions. Furthermore, the posterior analysis is strongly 

dependent from the density function f(/) estimated.  
Thus, it is easy to recognize that an approach avoiding a preliminary assumption on the 
distribution can be suitable for many applications, especially when a knowledge of the 
approximated shape of distribution is not available a priori. From an operative standpoint, this 

means assuming the continuous function f(/) approximated by a discrete set of mass points, 
for what no assumption on the reciprocal position is made. For each mass point, the analyst 
must estimate the value of the variable and its mass probability. This practically means 
transforming the multi-dimensional integral in (2.48) in a finite sum over a discrete set of 
points(segments) s, as: 
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Where S is the total number of discrete points and p(s) is the mass probability of the vector s. 
The next sub-sections show some applications of (2.56). 

Latent class MNL 

Quoting Greene and Hensher (2003), just like Mixed Logit, the latent class models history 
starts before the one generally reported in transport literature. However, the first applications 
of the latent class model with Logit kernel for a multinomial choice seems owing to the works 
of Kamakura and Russel (1989), Swait (1994), Gupta and Chintagunta (1994) and the PhD 
thesis of Gopinath (1994). 
The latent class models represent an interpretation of the finite sum in (2.56) assuming the 
membership to a segments s as a latent characteristic of the individuals. The segment is called 

class, with reference to an opportune combination of parameters in vector s. When the analyst 
is interested in reproducing only taste variation, the indicator I in (2.56) can assume the simple 
MNL formula (LC-MNL). Thus, the resulting expression is very similar to the integral (2.51), 
except for the sum that replaces the integral: 
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 (2.57) 

wherein the parameters to be estimated are the S vectors s and (S-1) mass probabilities p(s) 
(called class allocation probabilities). Therefore, the number of parameters rises quickly when S 
rises. For a discussion on the correlations and the elasticities with reference to the taste 
parameters it can made reference to Hess et al. (2009). Thus, the latent class model can be 
difficult to estimate when the number of classes S exceeds three or four, especially when the 
segment is referred to a big number of parameters (Yuan et al., 2015). The number of classes 
itself should be a variable to estimate. Generally, a trial and error process is carried out and 
some validation tests, like the likelihood ratio test or Akaike Information Criterion (Louviere et 
al., 2000), is performed a posteriori. 
Furthermore, the classic estimation procedures for searching the optimum can be instable with 
this finite mixture of models (Redner and Walker, 1984; McLachlan and Basford, 1988; Bhat, 
1997). Bhat (1997) proposed the Expectation Maximization (EM) algorithm (Dempster et al., 
1977) for such model, which has become a common practice. In the same work, he also 
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proposed an endogenous segmentation version of the (2.57). However, it is often referred 
under the semi-parametric approach (Hensher and Greene, 2003), thus it will be shown in 
Section 2.2.2.4. 
Notwithstanding also the latent class model can exhibit some estimation issues, several cases in 
literature show it can be superior, in terms of fit, with reference to the random coefficient Logit 
(see Greene and Hesnher, 2003; Shen, 2009; Sagebiel, 2011 to cite someone). 

Discrete mixture of MNL 

The models in (2.57) can be made more flexible by relaxing the assumption that a segment s 

must have the parameter value within the vector s. This kind of specification is generally 
referred in literature as discrete mixture, and, when taking an MNL as a kernel (DC-MNL), can 
be formalized as follows: 
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 (2.58) 

Indicating with  the generic combination of the K coefficients for which the heterogeneity is 

assumed, each one with its mass point si and p(si) is the mass probability of each one of them. 
The product of the mass probabilities represents the mass probability of observing the segment 

with the combination of that si. 
This surely generalizes the simpler Latent Class MNL, but it also introduces a big number of 
adding parameters to estimate. In this case, the number of mass points to estimate is always S 
times K, but the number of mass probabilities is (S-1) for each parameter, i.e. a total of K(S-1). 
It means that, with only 3 parameters and 4 classes, a latent class model needs 12 mass points 
and only 3 mass probabilities to be estimated, while a discrete mixture of MNL needs always 12 
mass points but 9 mass probabilities to be estimated. Furthermore, the sum in (2.58) becomes 
larger. In the example mentioned, with the LC-MNL the sum consists of 4 terms, while in the 
DM-MNL case it involves 12 terms. This becomes quickly impractical when the number of 
classes or random parameters rise. 

Variation on the theme 

Several variations have been presented in literature, with reference to the model described in 
this sub-section.  
For example, Bajari et al. (2007) and Train (2008) proposed a finite mixtures distribution where 
the mass points were fixed. This led to a multi-dimensional grid in the coefficients space, 
wherein all mass points were independent variables with values fixed by the analyst. The 
advantage is that only mass probabilities need to be estimated. Train (2008) successfully 
estimated a multi-dimensional discrete distribution with 233.280 mass points. The question 
arises on how the prior analyst choice about the location of the mass points may influence the 
estimation of the model. Successive works (Bastani and Weeks, 2013; Train, 2016) tried to face 
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this problem by fixing exogenously the grid, after a prior estimations carried out on smaller 
grids. 
Dong and Koppelman (2014), instead, tried to fix endogenously the grid and the mass 
probabilities. Starting from this framework, a recent work of Vij and Krueger (2017) 
implemented a Mixed Logit with a nonparametric multi-dimensional grid in the coefficient 
space, with equal or unequal intervals between successive points along the same dimension. 

Posterior analysis with discrete distributions 

The Bayesian rules can be applied also when estimations are performed on discrete mass 
probability functions, as in the LC-MNL and DC-MNL models case. Analogously to MMNL 

model, wherein it is interesting to compute the conditional likelihood L(/yn,), here it is 
interesting to compute the conditional probability of an individual n belonging to a class s, 

given his previous choices yn. Indicating this probability as pn(s/yn), for the LC-MNL it is: 
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On the right side, pn(yn /s) is the conditional probability of observing the sequence of choices 

yn, given the vector of values s, i.e. the Logit formula that appears in the sum in (2.57) and 

(2.58), pn(s) is the mass probability of the vector s (estimated) and the denominator is simply 
the unconditional LC-MNL individual choice probability. In this case, the superscript t is 
suppressed by virtue of fact that the probability is referred to the sequence of all the individual 
choices t. In other words, here pn(yn) is: 
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where pn,t[i(t)] is the choice of individual n in the choice situation t. 
The advantage of (2.59) is that it does not involve any integral simulations. Its generalization 
for DC-MNL is easy, but in this case, the probability does not refer to a class s, but to a generic 

vector containing a combination of values si. 

2.2.2.4 Semi-nonparametric approach 

In Sections 2.2.2.2 and 2.2.2.3 the advantages and limitations of parametric and nonparametric 
approaches have been deepened. It is clear that, choosing one is generally based on trying both 
of them and verifying the one who provides the best goodness of fit. The parametric approach 
gives the advantage of estimating a continuous distribution, but needs performing simulation, 
and making a precise choice of the shape of distribution, with the impossibility to handle 
particular realistic shapes of distribution (e.g. multi-modal). The nonparametric approach 
theoretically allows mimicking any kind of distribution but, when the required precision rises, it 
wrestles with the operative constraints of estimating an high number of parameters. Thus, it 
can be inadequate “to capture the full extent heterogeneity in the data” (Allenby and Rossi, 
1998). Thus, it is plausible trying to merge the advantages of both approaches in a unified 
framework (semi-nonparametric approach). In fact, also a finite mixture of continuous distributions 
theoretically allows handling any shape of distribution.  
This section describes the main formulations adopting this approach, with reference to the 
applications to the models already analysed. 
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Mixed Logit as mixture of parametric distributions 

Generally, the semi-nonparametric approach refers the applications of Mixed Logit with a 
distribution built on some transformations of parametric distributions. In the last ten years, 
several interesting examples have been proposed. Although the first applications of Mixed 
Logit with mixtures of Normal densities were referred as nonparametric Mixed Logit (Fosgerau 
and Hess, 2007) it will be referred here as semi-nonparametric, because it represents a 
combination of parametric distributions. 
A very comprehensive state of the art of the recent works on this topic is reported in Vij and 
Krueger (2017). Fosgerau and Hess (2009) and Bujosa et al.(2010) combine mono-variate 
Normal distributions, while Greene and Hensher (2013) combine mono-variate triangular 
distributions. An interesting proposal for mono-variate distributions is due to Fosgerau and 
Mabit (2013), who propose this framework for drawing from a density of a parameter with an 
unknown distribution: 
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Wherein the generic rth draw for i,k
n,t,r is obtained by combining Normal draws, as a function 

of coefficient ah to estimate in a power series. The (2.61) includes the Multinomial Logit case 
(h=0) and the Normal Mixed Logit case (h=1). The use of h≥2 for even numbers, tends to add 
only strictly positive values to the distribution, making more appropriate the shape of 
distribution in the case a positive distribution (or negative if the estimated coefficient is <0)  is 
expected. The (2.61) is an example of the so called sieve estimators, i.e. estimators that tries to 
approximate a function whose distribution is unknown, with a series of basic functions. 
Unfortunately, the (2.61) allows only for considering mono-variate distributions. 
Other applications of this concept are the Legendre polynomials (Fosgerau and Bierlaire, 2007), 
the cubic B-Spline (Bastin et al., 2010), but they are applicable only to mono-variate 
distributions, as in the previous case. 

Latent class MNL with endogenous segmentation 

As mentioned in Section 2.2.2.3, Bhat (1997) proposed an endogenous segmentation version of 

the (2.57), for computing the mass probability of each s. Particularly, he computed the mass 

probability p(s) as a function of socio-demographic variables. The fact that the distribution of 

the  depends on observable attributes, leads often to classify it under the semi-parametric 
approach, and this the reason why it is presented in this sub-section. Particularly, (2.57) 
becomes: 
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Wherein s is the vector of other coefficients that are relative to the class of people s and zn is 
the vector of the individual socio-demographic and trip related variables. In this case, the 
advantage is that class allocation probabilities are individual-specific. Often, the latent class 
models are used under this framework. 
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Logit-Mixed Logit model 

Train (2016) proposed the so called Logit Mixed Logit model, unifying two frameworks, i.e. the 
parametric nature of the Mixed Logit and the nonparametric nature of the latent class Logit. 
Particularly, the concept is that a Mixed Logit consists of two parts: the conditional individual 

Logit formula given a vector of values for  and the density function f(/) (see Section 

2.2.2.2 for notation). This means assuming a continuous cumulative function F(/) whatever 
shape of distribution is hypothesized. Train assumed this cumulative function as a set of pre-
fixed mass points, computing the mass probability of each mass point with the Logit formula. 
The definitive formula is: 
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Wherein ’ is a vector of parameters of the second Logit formula and they have to be 

estimated, while g(s’) is a vector-valued function of s’ itself. 
The framework seems very similar to Bhat (1997), but it has been noted that Bhat expressed 
the mass probability as endogenous function of socio-demographic and trip specific attributes, 
while Train proposes a mass probability that is a function of the location of parameters 
themselves. He also demonstrated how this framework can accommodate, in a boundary case, 
the common Normal, log-Normal, step functions and splines. 
This framework is still an open topic in the literature and recently Bansal et al. (2018) 
generalized it for the simultaneous presence of fixed and random parameters. 

Latent class as a finite mixture of continuous distributions (Latent class Mixed Logit) 

The Mixed Logit, whatever distribution assumed, does not allow for a multi-modal distribution, 
because of its nature of parametric model. This can be accommodated by assuming as a kernel 
of the Mixed Logit the latent class Logit formula (Bujosa et al., 2010; Greene and Hensher, 
2012). This means, once again, mixing two approaches, namely the parametric approach of the 
MMNL and nonparametric of the LC-MNL. This can be viewed, on the contrary, also as a LC 
model with an MMNL inside each class. 
The resulting probability statement is: 
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wherein the meaning of all parameters has been already clarified, except for f(s/s) that is the 
continuous distribution within each class. This can give an high improvement when searching 
for multi-modalities of taste distribution within the sample. However, this could imply very 

hard computations, because of the presence of: more parameters (each set s of parameters of 
each class distribution), integral simulation and the already mentioned problems of the LC 
model with reference to the classical gradient-based optimization algorithms. 
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2.2.2.5 Variation on a theme – the scale heterogeneity 

Considering the general framework (2.5), it is easy to recognize that all the randomness within 
the formula represents a lack of knowledge of the analyst. The relative importance of the 
random terms with reference to the perceived utility says how much the analyst is far from a 
perfect knowledge (and so, a deterministic scenario) of the behavioural phenomenon. In other 

words, when the i
n,t ‘s rise, or the i,k

n,t ‘s are farther from their mean value, the individual n, for 
that choice task t is more random from the analyst standpoint. It is clear that, in general, an 
analyst has not an equal knowledge about the individuals and choice tasks specific choices. This 
aspect is known, in literature, as scale heterogeneity. Thus, the latter is directly related to the error 
variance of the random terms, that, in turn, appear within a ratio with the systematic utility (see 

Logit formula with the exponential of Vi
n,t/). Consequently, all the models present a ratio 

among the marginal utility and a variance coefficient (that is the inverse of the scale).  
A way to consider the scale heterogeneity is assuming a scaled Mixed Logit model (S-MMNL), i.e. a 

random coefficient Logit (2.51) with fixed coefficient and  variable across individuals and 
choice tasks. It is easy to understand that it represents a very strong assumption, imposing 
unrealistic homogeneous marginal utilities across the observations. 
Several researchers (Louviere et al., 1999; Fiebig et al., 2010; Greene and Hensher, 2010; Hess 
and Rose, 2012; Hess and Train, 2017) asked themselves how much of the randomness lies in 
the differences in tastes and how much lies in the differences in scale. The first one refers the 

i,k
n,t, while the second one refers the error variance (for example, the  within the Mixed Logit 

formula). Assuming a homogenous scale means potentially overstating the taste heterogeneity 
in estimation, because all the heterogeneity will refer the marginal utilities.  
The assumption of Multivariate distribution for the marginal utilities is particularly suitable to 
prevent the confounding effects between random taste heterogeneity and scale heterogeneity. 
Although it is impossible to disentangle between the two phenomena, estimating the 
correlations between two coefficients can say how two parameters tend to increase or decrease 
together. It can help the analyst to understand how much of this variation is due to differences 
in tastes and how much to differences in scale. In fact, in general, some randomness is 
coefficient specific, while another part can be shared across the coefficients. A model that 
allows for correlated coefficients thus allows for estimating this effect by assuming only the 
coefficients as random, i.e. avoiding assuming the scale as random. As shown in (Hess and 
Train, 2017), this is a critical assumption that, under no circumstances allows for disentangling 
among them. For fixing the ideas, it can be considered that a greater/smaller variance (i.e. scale) 
for an individual implies a smaller/greater value of all the coefficients for that individual. When 
two coefficients are correlated, they tend to rise/decrease together. Thus, the scale 
heterogeneity is itself a form of correlation among the utility coefficients. Another way to view 
this phenomenon is thinking of the (2.5), considering the random term in as product of a 
random term and its standard deviation. Since the scale of the utility does not matter, the same 
is obtained by dividing it by the standard deviation. Thus (2.5) will present all the coefficients as 
divided by the standard deviation, which is equivalent to view all of them as multiplied by the 
same coefficient. It is easy to recognize that, in the same error component fashion, it induces a 
positive correlation among the random coefficient. 
However, it is not possible to disentangle the various sources of correlation among coefficients. 
In fact, an individual could perceive as correlated two coefficients, not only for the influence of 
the unobserved factors. Thinking of transport problems, a person who is not willing to spend 
money could be more willing to spend time on board, i.e. the two coefficients can be 
(negatively) correlated per se. 
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Differently from the S-MMNL, the Generalized Multinomial Logit model (G-MNL; Keane, 2006; 
Fiebig et al., 2010; Greene and Hensher, 2010) defines a random coefficient as a combination 
of two parts, taking into account the two phenomena. But, the scale part is able to reproduce 
the whole correlation among the coefficients, without possibility to disentangle among the 
sources of correlation. Thus, the problem persists and the same applies to the Mixed Logit, 
both in preferences and in WTP space, to Latent class models and to another models called 
Scaled Adjusted Latent class (Magidson and Vermunt, 2005). In fact, none of these are able to 
disentangle the various forms of correlations. However, assuming a multivariate distribution for 
the coefficient with a full correlation matrix represents the best options to incorporate the 
effects of correlation due to scale heterogeneity and the other sources. The conclusions of this 
paragraph are entirely deepened in Hess and Train (2017), who give several suggestions for 
interpreting the results when different models are used. 

 Unified framework 

The two main problems faced by this thesis have been presented in separate sub-sections, 
assuming a more restrictive framework for the general (2.5) for each of them, with the purpose 
of presenting them as isolate phenomena. It has just a representative value. In the real-world 
applications, it is practically impossible to disentangle between the two phenomena and, in 
general, between all the phenomena mentioned in Chapter 1. However, all the frameworks 
presented separately in Section 2.2.1 and Section 2.2.2 can be merged in an opportune way. In 
this section the most relevant applications of this unified framework models are briefly 
described. Thus, the more general (2.5) represents the assumption of this section. 

Probit and Mixed Logit with joint EC/RC specification 

It is immediate to recognize that the general integral in (2.15) lends itself immediately to the 

Multinomial Probit model, making the assumption that the joint density function f(,) refers a 

Multivariate Normal distribution. Adopting the independence between f() and f() does not 
represent any loss of generality. 
However, as widely described in the previous sections, the Multinomial Probit can be actually 
seen as a particular, restrictive, and quite undesirable case (from a computational standpoint) of 
the Mixed Logit. This is the main reason for what the MNP is “out of fashion” in all practical 
applications. The Mixed Logit surely represents the most used framework for capturing the 
effects of the error structure and the random taste heterogeneity. 
When using a joint error component random coefficient formulation for it, the underlying 
assumption is that (2.5) becomes: 
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Where, differently from (2.43), the parameters i,k
n,t. are individual and choice task specific, and 

differently from (2.50), the residuals involves also the Multivariate error term i
n,t. The integral 

takes the general form: 
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This surely represents the most flexible parametric formulation. However, combining the two 
formulations in a unified framework means also combining all their problems above described. 
Particularly, adding more random parameters could worsen the computational issues of the 
error component. It is particularly relevant when the number of alternatives is high and the 
error components structure is as general as possible. Definitely, resorting to (2.66) can be 
computationally efficient and reliable in a context with a small number of alternatives, or when 

some constraint is applied to the covariance matrix of the  (see Section 2.2.1.3). In different 

cases, moving towards a different assumption on  and  can be a best option. 

Mixed GEV 

The problems described in the previous sub-section makes the integral in (2.66) practically 

impossible to manage in several situations. Thus, it has been noted that, by suppressing  and 

assuming a MEV distribution for, leads to a Mixed GEV formulation. In fact, reminding the 
logic behind the (2.44), the assumption leads to the general choice probability statement: 

 

, ,( ) ( / ) ( / ) dn t n tp j L j f  
β

β β Φ β  (2.67) 

Where the integral in  still holds, but the integral in  disappears and the integral in  resolves 

in Ln,t(j/), representing the conditional GEV likelihood of the alternative j, for individual n 

and choice task t, given the values of vector . It can be particularly useful when one wants to 
catch both the phenomena, without increasing the number of random terms. In other words, 

the assumption of whatever density function f( /) deals with the random taste heterogeneity, 

while the Ln,t(j/) deals with catching the correlations between alternatives. 
A first application on this framework is due to Bhat and Guo (2004), who proposed a so-called 
Mixed Spatially Correlated Logit. This model consisted of a Mixed Pair Combinatorial formulation, 
wherein the alternatives (residences) were assumed to be correlated or not if they were 
contiguous. Thus, the specification related a not flexible correlation pattern and, furthermore, 
they estimated a unique parameter (the dissimilarity parameter of the PCL), with a very poor 
gain in goodness of fit with reference to a simple MMNL. Sener et al. (2011) reprised the model 
relaxing the assumption on the contiguity as a condition to consider two alternatives as 
correlated. Hess et al. (2005a) tried to use a Mixed NL and a Mixed CNL formulation on the 
Swiss Metro stated survey, wherein the three alternatives involved were the train, the car and 
the hypothesis to use the Swiss Metro. The mixed models were specified adding a few 
parameters with reference to the MMNL. However, the Mixed NL exhibited a good 
improvement in goodness of fit, while the Mixed CNL, although better than MMNL, did not 
go better than the Mixed NL. The Mixed NL formulation, indeed, seems to be the preferred 
solution, until now, because of the problems of the complexity in estimation introduced by a 
Mixed CNL formulation. For other examples of applications of random coefficient NL the 
reader can refer to Teye et al. (2014), Cheng and Yang (2015), Haghani et al. (2015). 
It has been noted that the random coefficient specification, per se, induces also 
heteroscedasticity and correlation among perceived utilities. Thus, this framework adds 
generality to the correlation reproduced. 
Furthermore, although apparently not so interesting, the (2.67) can be further generalized, 

adding the presence of the Multivariate Normal error term i
n,t: 
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The (2.68) could seem a very redundant formulation, since flexible correlation patterns are 
already captured by (2.67). However, apart from adding even more flexibility, an interesting 

particularization of (2.67) occurs when  is assumed to be independently distributed. In this 
way, it is possible to give an alternative specific variance to each perceived utility, thus 
improving the capability to handle heteroscedasticity. But, it is also a double edge sword. In 
fact, it is easy to recognize that adding an alternative specific variance term tend to reduce the 
correlation reproduced (the variances are present within the denominator of the Pearson 
correlation coefficient). Therefore, it is necessary to pay attention when using such formulation. 
The potential of a specification mixing GEV models will be proposed and deepened within 
Chapter 3. 

Mixed Probit 

Another way to implement a different formulation in a (2.67) fashion, is introducing a standard 

Multinomial Probit formula for the conditional likelihood Ln,t(j/). The first advantage is that a 
MNP is less difficult to estimate when it is specified as error component (Train, 2009), because 
there is no presence of i.i.d. Gumbel error term. The second advantage is that a conditional 

MNP formula for Ln,t(j/), when computing it with the GHK simulator, needs much less 
draws from the Multivariate density than an unconditional MNP formula (Train, 2009). 
However, it is not faster to estimate than a Mixed GEV model. Recently, Bhat and Sidhartan 
(2012) and Bhat and Lavieri (2018) analysed the Mixed MNP with different non-normally 
marginal coefficients distributions for different coefficients, and propose a methodology for 
estimating the model. 

Latent class GEV 

A natural way for extending the (2.57) and, in a sense, particularizing the (2.67) for the discrete 
case, is assuming a more flexible GEV formulation within the latent class model. Therefore, the 
formulation for the choice probability becomes, in general: 
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being Ln,t(j/s) the conditional GEV likelihood for the alternatives j, individual n and choice 

task t, given the vector of parameters s of the class s. The first example of it is represented by 
the latent class NL (LC-NL) applied by Kamakura et al. (1996), followed by Swait (2003) and 
Bodapati and Gupta (2004). Most recently this framework has been reprised by Wen et al. 
(2011) and Oviedo and Yoo (2017). Wen et al. (2013) applied a Latent class GNL (LC-GNL) 
for modelling carrier choice, estimating it with a simple gradient based procedure for 
maximizing the log-likelihood and giving slight improvement in goodness of fit than LC-NL. 

 Going further 

The previous sub-sections describe the random utility models under the framework of 
maximizing benefit behaviour. The rationale behind the RUMs lies in the assumptions that 1) 
an individual considers a discrete choice set of alternatives 2) investigates each alternative 
according to each observable attribute 3) expresses a preference for the alternative that 
maximizes his perceived benefit / utility and 4) makes the choice. However, there are many 
other interpretations of the choice problem in literature, spacing from economics, psychometric 
and many other disciplines contributes. In fact, preserving the assumptions 1), 2) and 4), there 
are other paradigms considered for modelling choice behaviour. For example, the random regret 
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minimization theory (RRM; Chorus et al., 2008) considers the decision maker, in some 
circumstances, as a minimizer of regret, rather than a minimizer of benefit. It founds on the 
random regret theory under uncertainty (Loomes and Sugden, 1982), but it has been recently 
operationalized by Chorus et al. (2008) and Chorus (2010), in a way that enables the use of the 
same models described within the current section and the possibility to use smooth estimators 
for them. In fact, the framework is perfectly analogous to that of RUMs, but it replaces the 
systematic utility with a figure of merit termed regret, that represents the opposite concept. 
Furthermore, it considers the attributes of all the other alternatives within the regret of the 
considered alternative, as a way to incorporate all the trade-off effects among the various 
attributes playing a role. This ensures the non-occurrence of the IIA property, also when using 
a simple MNL model. Another interesting property of the RRM models lies in the fact that they 
are able to accommodate also semi-compensatory effects. In fact, in the classic RUM models, 
any attribute of quality may numerically compensate whatever other attribute of service. In 
other words, in the classic linear in parameters RUM framework, a surplus of an attribute 
induces an equal deficit into the utility of the other alternatives (becase only difference in 
utilities matters). In the RRM models, instead, this effect is alleviated, thanks to the 
consideration of the so-called binary regrets. Practically, the regret is expressed as a logarithm 
of all the cross differences among the attributes, each one weighted with coefficients that are 
consistent with the ones in (2.5). It is receiving a strong interest for transport studies and 
several recent contributes to generalize the RRM models have considered the possibility to 
build an hybrid RRM-RUM (Chorus et al., 2013), or a latent class RUM-RRM (Hess et al., 
2012), i.e. a model that considers two classes of preference paradigms (respectively RRM and 
RUM) that are latent. Other interesting paradigms are the Prospect theory (PT; Kahneman and 
Tversky, 1979) and the Elimination by Aspects theory (EBA; Tversky 1972a,b). Their fundamentals 
will be briefly described in Section 2.3.5 for route choice applications. Another framework that 
is receiving a growing interest is represented by the Decision Field Theory (DFT; Busemayer and 
Townsend, 1992; 1993; Diederich, 1997; Roe et al., 2001). The DFT has been inherited from 
the mathematical psychology, and it is a dynamic cognitive model that relaxes the assumption 
of individual preference as stationary concept across the time. The fact of being a dynamic over 
time model allows treating those choice contexts characterized by risk or time pressure. In fact, 
substantially, the decision maker of the DCT makes choices in two ways: when he reaches an 
internal threshold value or when some external factors occurs, like the response time that 
finishes (Hanckock et al., 2018). The main assumption is that a preference at each instant t can 
be expressed as a function of the preference in the previous instant (t-1), weighted by a so-
called feedback matrix, and a so-called valence vector at each instant t, which depends on the 
observable attributes. Thus, the preference at each time t can be expressed as a series of 
powers. This makes the model very general, but also very complex to manage, and its potential 
must be still investigated, although some comparison with RUM and RRM models has been 
already carried out (see Hanckock et al., 2018 for a comprehensive review of all the main case 
studies proposed in the recent literature), showing good performances of the DFT. Another 
theory that explores a different paradigm than 3) is the Satisficing theory (ST). It is based on the 
works of Simon (1955; 1956), who postulated three principles, particularly realistic in complex 
choice situations, like the ones characterized by a big number of alternatives. In fact, in these 
contexts, a decision maker tends to choose the first alternative that allows for a reference value 
of satisfaction or, in other words, the first that is “good enough”. In such contexts, it takes a 
crucial importance the concept of search order, which decisively influences the final choice. The 
first principle states that a decision maker does not actually consider a continuous outcome 
(like the perceived utility), but rather some simplified outcomes, like the fact that the alternative 
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is acceptable or not and, in the last case, he immediately discards it. The second principle relates 
the cost of the information. Substantially, it states that higher is the cost of the information of 
the choice context and simpler will be the cognitive process leading to the choice. It means that 
a decision maker does not actually consider all the attributes or alternatives (as well as EBA), 
thus relaxing the assumption 2), while it considers only a subset of the total choice set, strictly 
dependent upon the search order. The third principle states that some attributes are not easily 
comparable, such as quality and service attributes. Thus, according to ST, the decision maker 
considers the attributes independently, evaluating if the alternatives are acceptable or not with 
reference to them. The operationalization of a model consistent with all the three principles 
appears as an open research topic, but recently Gonzalez-Valdez and Ortuzar (2018) tried to 
provide a solution. However, this framework can be particularly appropriate when more than 
one alternative allows reaching the minimum degree of satisfaction, while in the other cases, 
other paradigms like RUM or RRM can be more suitable, given their operational simplicity. 
When the hypothesis of discrete choice set of alternatives in 1) is not appropriate, one may 
resort to other continuous formulations, such as the mixed discrete continuous models 
(MDCEV). In fact, some transport choice dimensions (e.g., the departure time) can be directly 
considered as continuous choice. The most prominent contribution to the field is the paper of 
Bhat (2005). 
Finally, when the main objective is not only reproducing choices, i.e. extending the 4), other 
paradigms are available. In fact, there are aspects other than choices an analyst could be 
interested in. In the last twenty years, there has been a growing interest in reproducing also the 
attitudes of the decision makers, to accommodate all the factors that are unknown not only to 
the analyst, but also to the decision makers themselves. This means relaxing the assumption the 
random utility models are founded on, i.e. perfect knowledge of the decision maker and 
imperfect knowledge of the analyst, allowing the decision maker being affected by some factors 
he ignores (latent variables). This implies an endeavour of cross fertilization among two different 
approaches, namely the econometric approach, more interested in prediction, and the 
psychometric approach, more interested in deconstruction of the cognitive process (Ben-Akiva 
et al., 1999; 2002). These kinds of models, so-termed hybrid choice models (HCM), try to 
incorporate other psychological factors than the classic RUMs, such as history or latent 
psychological constructs (generally attitudes or perception). The classic RUMs are a simplified 
version of that, wherein the operational path starts from the observable explanatory variables, 
passes through the decision process (utility maximization) and arrives to the choice as final 
step. The HCM construct is more general, allowing to incorporate also latent variables or latent 
segmentations (like latent classes) in an unifying framework. They allows reproducing the 
choices and also some attitudinal indicators (e.g. risk attitude), and they are often termed 
Integrated Choice and Latent Variable (ICLV; Vij and Walker, 2016). However, their higher 
complexity is the main reason to accurately assess the gains and losses of using them rather 
than the classic, easier choice models. In fact, when the analyst is not so interested in 
understanding the unobservable factors behind the cognitive process, maybe it makes more 
sense resort to the choice models falling into the target 4) 

2.3 Application of RUMs to route choice 

The level of service (generalized costs) and the level of congestion (flows) of a transport system 
represent the main outcomes of a transport problem. Generally, the analysts is interested in 
computing these quantities for all the elemental components of the transport system. The 
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topology of a transport network is modelled through a graph G{L,N}, wherein L is the set of 
links and N is the set of nodes of the network. Therefore, the elemental components are 
represented by the links belonging to the set L. The generalized costs and link flows 
computation are performed in an assignment procedure, representing a unique system of equations 
sharing all the modelling components equations of a transport system (supply model equations and 
demand model equations). A general behavioural concept is recognizable, namely that the supply 
system and the demand system interacts themselves. In other words, when the level of traffic 
increases, the costs increase but, in turn, the latter influence the choices of people and, thus, 
again, the level of traffic.  This concept is the basis of the User Equilibrium problem. Thus, for 
computing the link flows, a general problem must be solved, involving all the mathematical 
relationships for computing the costs of each single component of the network.  
The assignment approaches may be several. A link flow is the sum of trips that, at a 
disaggregate level, the users make for moving from an origin o, towards a destination d, with a 
transport mode m. This trip can be represented in various ways. The classic approach consists 
of assuming the total trip of each user as a sequence of links of the network, connecting the o-d 
pair, with o and d representing, respectively, the first and last nodes of the path10. This work 
will refer such sequence as path or route (the two terms will be used indifferently) and it will be 
indicated with the notation k. Furthermore, k will assume the meaning of acyclic path, i.e. a path 
that does not pass more than once through whatever node of the network. Thus, the 
computation of the link flows needs, in some way, the computation of the path flows. The latter 
represents a main prerogative of the demand models. 
The travel demand estimation involves the simulation of several users choice steps, defined as 
choice dimensions (Cascetta, 2009). The following notation will be fixed with reference to the 
explicit paths enumeration approach. This approach needs the definition of each path with reference 
to each o-d pair, for the specific mode m whose the analysed network refers. Generally, with 
reference to the simple four-stages model (without any loss of generality), once computed the 
travel demand for each o-d pair, with reference to each transport mode m, one wants to 
compute the paths flows Fk for each path connecting the o-d pair with the mode m. The 
random utility models are generally applied for all the choice dimensions and, particularly, for 
the route choice. 
Under the random utility framework, the perceived utility of a path can be surely assumed as a 
combination of parameters and attributes. Generally, the assumption made is: 

 
, , , ,

odKn t n t n t n t

k k kU C k      (2.70) 

being Ck
n,t 11 the systematic dis-utility fo the path k, here called generalized path cost, for individual 

n in choice task t, and Kod
n,t represents the choice-set of paths connecting an o-d pair, by the 

individual n in the choice task t (it represents the particularization, for the route choice 
problem, of the Cn,t of the previous section). The assumption made on the perceived utility is 
that: 

                                              
10 Another more complex representation, very common into the transit systems simulation, consists of assuming the trip 
within an hyper-path, i.e. a set of paths that the user considers, without a priori deciding which one will adopt. This kind of 
travel strategy, defined as en-route choice behaviour, considers the user adapting himself to the events happening. The hyper-
path assumption can be used also for road systems, but the purpose of the thesis is analysing the route choice behaviour 
without en-route choices.Other approaches refer a trip in different, more simplistic ways (see Section 2.3.5 for some 
examples). 
11 The notation Ck

n,t is quite general, although in the route choice literature, generally the superscripts n and t does not 

explicitly appear. However, the application of a route choice model at a disaggregate level on a panel dataset requires this 
distinction and I hold it. In the following, when presenting the route choice models, the two superscripts will be deleted for 
the sake of simplicity. 
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in which two parts play a role. The first sum expresses the part of the path utility that is 
perceived as a sum of the perceived utilities of the links l belonging to the path k (additive costs), 
being alk the generic 0/1 element of the link-path incidence matrix12. The second term (non-additive 
path cost) represents the contribution to the utility of all the quantities that cannot be related to 
the links l (for example a fixed road toll, a quantity of crossing or lights that is bigger than a 
prefixed value, the u-turns, the left-turns and so on). Therefore, the random residual lies both in 
the additive and in the non-additive parts of the perceived utility. Furthermore, the variance of 

the perceived utility of the cost, indicating with the notation  the random residuals of the 
components playing a role, is: 
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since alk are 0/1 element, so alk
2 is equal to alk. The same applies to the covariance among two 

routes k and h, assuming the random residual l
n,t between the various links being stochastically 

independent: 
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It has been noted that, when the non-additive component of the utility is considered to be null, 
the covariance reduces to the variance of the shared links among routes k and h. 
The generalized path cost within (2.70) can be expressed as a function of the generalized link 
costs cl

n,t, in the same way of (2.71): 
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Each term cl
n,t generally includes the travel time and the monetary cost for the link l. In general, 

the link cost is a function of the link flows. This means assuming the following relationship: 

 ( ) Ll lc c l  f  (2.75) 

being f is the (nLx1) vector of flows influencing the cost of the link l. The (2.75) is called link 
cost function. Assuming the non-separable-cost function hypothesis, (2.75) simplifies because f represents 
only fl. 
By virtue of what previously said, the generic fl is computed with the so called Network Flow 
Propagation (NFP; Cascetta, 2009) model as: 

                                              
12 It represents the matrix A whose generic alk assumes value of 1 when the generic link l belongs to the path k, 0 otherwise. 
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k
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Narrowing it down to a specific transport mode m in the specific time interval h, the path flow 
Fk is the output of the demand model: 

 
,

o-d od( / o-d) Kn t

kF d p k k     (2.77) 

in which do-d represents the generic o-d matrix entries for the underlying transport mode, while 
p(k/o-d) is the route choice probability applied at an aggregate level. 
Indicating with Cn,t the vector of path costs that the individual n considers in the choice task t, a 
route choice model at disaggregate level is a relationship representing the probability of 
choosing k as a function of Cn,t: 

 
, , ,( ) ( )n t n t n tp k p C  (2.78) 

The assignment equilibrium system can be formalized as follows: 
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C c A F C
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 (2.79) 

being: 
- C is the (nk x 1) vector of path costs; 
- A is the (nL x nk) link-path incidence matrix; 
- c is the (nL x 1) vector of link costs; 
- CNA is the (nk x 1) vector of non-additive path costs; 
- F is the (nk x 1) vector of path flows; 
- P is the (nk x no-d) matrix of path choice probabilities for each o-d pair (no-d represents 

the total amount of o-d pairs) 
- d is the (no-d x 1) vector containing all the o-d matrix entries for the specific mode 

considered; 
These general assumptions will be used in the following sub-sections, for describing the major 
issues of route choice modelling and the main route choice models proposed in the state of the 
art. 

 Route choice modelling: general issues 

Concerning what said in the introductory part, the route choice problem represents the core of 
the assignment problem. However, several problems characterize this choice dimension, 
making it the more complex dimension to model in the demand analysis.  
The first issue in choice modelling concerns the size of the network. A graph of a real network 
is generally modelled with several thousands of nodes and links, and several hundreds of zones 
or centroids (Cascetta, 2009), representing the origins and the destinations of the network. Thus, 
the complexities are manifold, because a big number of centroids implies a big number of o-d 
pairs and, at the same time, a big number of nodes and links implies a big number of feasible 
paths connecting each o-d pair. Consequently, the first relevant problem lies in modelling the 
real set Kod

n,t considered by an individual n in a specific choice scenario t. In fact, it is not 
plausible that a user considers thousands of feasible paths when choosing his itinerary for 
moving from o to d. However, selecting a sub-set of paths could be a double-edge sword, 
because it reduces the complexity but it creates the risk of not including the real path that a user 
may chooses. Two main approaches are available in literature: the explicit paths enumeration 
and the implicit paths enumeration. The explicit paths enumeration needs the paths involved being 
explicitly detected as a sequence of links of the network. This means storing in memory a great 
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amount of data and increasing the computational time. The implicit paths enumeration, instead, 
provides the link flows fl without need of path enumeration. This is possible by means of 
algorithms that, given a specific assumption on (2.78), are able to compute the link flows 
directly once computed the (2.75) and the do-d, totally avoiding the computation of (2.78) itself. 
Actually, these algorithms, whenever possible (and often, under some restrictive assumptions), 
operates a sequence of equations giving a perfectly equivalent result, in terms of flows, than one 
obtained when using explicitly (2.78). Each one of these approaches can be declined in two 
different ways: the exhaustive approach and the selective approach. The two approaches consider 
(explicitly or implicitly), respectively, the set of all feasible paths or an opportune sub-set of it. 
Generally, the explicit enumeration paths methodology uses the selective approach (for a 
comprehensive list of criteria for selecting paths see Cascetta, 2009), while the implicit 
enumeration methodology, depending on the model, can be used with both of them. In the 
following section, several example of models using the exhaustive or the selective approach will 
be described. 
The second relevant problem is due to the overlapping among the routes. The actual 
perception of the alternatives can be strongly influenced by this aspect. In fact, although 
thousands of routes connecting an o-d pair may exist, the most of them will be not considered 
as perfectly distinct from each other, because overlapped to some degree. Therefore, from a 
behavioural standpoint, the users do not perceive the utilities of the alternatives as independent, 
but as stochastically correlated. Given the number of alternatives involved, the correlation 
structure may be very complex. As discussed in the next Section, there are route choice models 
that take into account deterministically, i.e. as a function of the observable attributes, the effects 
of the correlations, and route choice models that take into account them stochastically, i.e. as 
hypothesis on the error structure. 
In summary, a route choice model should own the following desirable characteristics: 

- A closed form expression for (2.78), in order to avoid computational burdens due to 
simulation; 

- Flexibility in reproducing the overlapping effects on the choice probabilities; 
- Easy computation of the structural parameters by means of the available observable 

information (i.e. low number of parameters to estimate); 
- The possibility to implement an implicit enumeration algorithm for computing the link 

flows, , consistent with the model, in order to avoid the burdens of the preliminary 
paths enumeration; 

This section described the peculiarities of the main route choice models available in literature. 
Section 2.3.2 describes the application of the models that take into account the overlapping 
effects deterministically, using the Multinomial Logit framework; Section 2.3.3 describes the 
main applications of models belonging to the GEV family; Section 2.3.4 describes the models 
involving simulation; in the end, Section 2.3.5 provides some references of alternatives 
approaches for the route choice problem. 

 Logit based route choice models 

The MNL for route choice derives from the assumption of i.i.d. Gumbel distribution of 
perceived utilities of the paths belonging to the considered choice set. The general formula for 
the route choice probability is the application of (2.22) for route choice context: 
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wherein the superscript n and t will be suppressed, k automatically identify the o-d pair 

connected by it and  is the variance parameter for that o-d. The MNL-based formulations will 
be described in the following sub-sections. 

2.3.2.1 Multinomial Logit - Dial’s algorithm 

The MNL as presented in (2.80) is generally implemented by means of the Dial’s algorithm 
(Dial, 1971). Assuming that of only additive link impedances exist, (2.80) becomes: 
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 (2.81) 

Defining the generic p[l’/h(l’)] as the conditional probability of choosing the link l when coming 
from the node h(l’). Indifferently, (2.81) can be written as a function of p[l’/t(l’)] with analogous 
meaning. 
The algorithm allows for computing link flows consistent with the (2.81), without need of 
explicitly enumerating the paths. Dial defined the following recursive equations: 
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The wl’s and Wt(l)’s take the names, respectively, of Dial link weights and node weights. As 
better described in Section 6.2.1, these assumptions lead to the Logit formula in (2.81). Dial 
provided a two steps - algorithm for the computation of the weights and the link flows. The 
first step consist of computing the weights in (2.82). The second step allows computing the link 
flows with the following recursive equations: 
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It has been noted that none of the (2.82) and (2.83) depend on any routes definition. 
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The algorithm works on a subset of the exhaustive set of paths connecting the considered o-d 
pair, named efficient paths. An efficient path, with reference to the origin o, is a sequence of 
efficient links, i.e. links l verifying the following condition: 

 o ( ) o ( )t i h lC C   (2.84) 

Where Co-t(l) and Co-h(l) represent the minimum path costs for reaching, respectively, t(l) and h(l), 
starting from the origin o. In other words, an efficient link allows for walking away from the 
origin o. The efficient network does not include a sub-set of links for each considered origin o, 
i.e. it is a sub-network of the whole network, given an origin o. The same concept applies with 
reference to the destination d. Particularly, a link is efficient with reference to a destination, 
when it allows for moving toward it. Applying both definitions means working on a sub-
network that is doubly efficient, namely it is efficient with reference to the origin o and the 
destination d. Then, the resulting sub-network has a lower cardinality than the sub-network 
with the simple efficiency. 
Thus, the first step of the algorithm allows computing the weights, given an o-d pair, for the 
efficient links l, with reference to that o-d pair, in a forward exploration of the network, starting 
from o. In the second step, the link flows are computed, by assigning the do-d in a backward 
exploration of the network (from d). This is called double-step Dial’s algorithm, where the 
definition “double-step” indicates that the algorithm makes the two exploration steps for each 
o-d pair. Indicating with nC the number of centroids of the network, this algorithm has a 
computational complexity growing up with nC

2. 
A simplified version of the algorithm is often used in the real applications, namely the single-
step Dial’s algorithm, by simplifying the variance parameter for each o, rather than each o-d 

pair. Keeping fixed the variance parameter  for each o-d pair, the procedure can be performed 
with reference to each origin o, considering simultaneously each destination d. In this case, it is 
sufficient applying the condition of efficiency with reference to the origin o. This algorithm’s 
version has a computational complexity growing up with nC.  
More precisely, the algorithm works from each origin o as follows: 

- As a pre-algorithm, a minimum path costs algorithm is performed; 
- a vector of minimum path costs Co and an ordered list of nodes L, with increasing 

minimum path cost from o, is computed; 
- moving forward in the list, the first two equations of (2.82) are computed for each links 

of the forward star of the node and each head of the links; 
- moving backward into the list, the link flows are computed by means of the equations 

(2.83), assigning all the do-d’ for each d’ in an unique step; 
In an equilibrium assignment, the efficient sub-network with reference to each origin o (or the 
o-d pair) must be kept fixed, to ensure an exact solution for the S.U.E.-Logit problem (Fisk, 
1980; Van Vliet, 1981; Leurent, 1997). This means keeping fixed the minimum path costs into 
(2.84), without making them varying with the traffic congestion. 
Unfortunately, the Dial algorithm has strong limitations. First, it implements a MNL formula, 
not allowing for overlapping effects among alternatives. Second, it restricts the choice set only 
to the efficient routes. Third, the single-step algorithm introduces the unrealistic assumption of 

equal variance parameter  for each o-d pair (i.e. the absolute value of the dispersion of the 
costs is supposed to be the same when o and d are very close or very far). However, its very 
low complexity explains why, despite its big limitations, the MNL with the Dial’s algorithm 
represents, even now, one of the most implemented route choice models in common 
assignment software. 
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2.3.2.2 C-Logit 

As discussed in the introduction, a way to incorporate the effects of the overlapping is trying to 
incorporate them into the path systematic utility. The C-Logit model (Cascetta et al., 1996) 
assumes the Logit formulation, with the following expression within the systematic utility: 

 od

'
'

' K

exp

( )

exp

k
k

k
k

k

C
CF

p k
C

CF





 
 

 
 

 
 


 (2.85) 

wherein the generic CFk’ represents the so called Communality Factor for path k’ 13. The authors 
expressed the communality factor in different ways, but the most known is the first one: 
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In which Lk, Lk’ and Lk-k’ represent, respectively, the size of path k, k’ and of the overlapped 

portion between k and k’, and  and 0 are parameters to be estimated. Frequently  is set to be 

1. The 0 is the parameter indicating the importance that the users give to the overlapping 
between the paths. It has been noted that each term of the sum in the logarithm is very similar 
to the Pearson correlation coefficient. 
In the same work, the authors proposed also the formulations: 
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Wherein wlk is the ratio between the length of l and the total length of k, while Nl is the number 
of paths sharing l. Particularly, the (2.88) is an interesting formulation, on what Russo and 
Vitetta (2003) proposed an implicit enumeration algorithm, in a Dial fashion. In fact, it can be 
obtained by correcting the first of the (2.82) as: 
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The wl* expresses the ratio between the length of l and the length of the minimum path, while 
Nl has the meaning already clarified. However, the latter has been computed through another 
double exploration of the network, but always in an implicit way. Although a simplification has 
been proposed by the authors, allowing for a single-step procedure, Marzano (2006) showed 
that the results are not always satisfactory. 
Another formulation has been proposed by Cascetta and Papola (1998), as a generalization of 
(2.86): 
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The C-Logit formulation for S.U.E. programming has been investigated in Zhou et al. (2012) 
and Xu and Chen (2013). 

                                              
13 The original formulation (2.85) did not contain the variance parameter . This is a dimensionally corrected formulation, 
derived from Marzano (2006).    
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2.3.2.3 Path-Size Logit 

On the heels of the C-Logit, another Logit formula with deterministic correction for 
overlapping has been proposed first by Ben-Akiva and Ramming (1998), but often attributed to 
Ben-Akiva and Bierlaire (1999b). The model, perfectly analogous in the framework to (2.85) 
proposed the so-called path-size factor, derived from notion of elemental alternatives and size 
variables (Ben-Akiva and Lerman, 1985): 
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 (2.91) 

where the PSk is computed as (Ben-Akiva and Bierlaire, 1999b): 
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(2.92) 

where 
o-d ,minCL represents the length of the path with minimum cost connecting the o-d pair. A 

generalized expression of (2.92) is due to Ramming (2002) and Hoogendorn-Lanser et al. 

(2005), with the introduction of a coefficient  to be estimated: 
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(2.93) 

However, the introduction of the  adds burdens in the estimation process and the behavioural 
interpretation of the value estimated, often within a range of 10 and 15 (Prato, 2009), can be 
difficult. Bovy et al. (2007) proposed the following logarithmic expression for the so-called Path 
Size Correction: 
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 (2.94) 

Turning (2.91) into: 
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It has been noted that the PSCk varies within the range of all negative values, while the original 
PSk varies from 0 to 1. 
Finally, holding (2.91), Frejinger et al. (2009) proposed a correction of the (2.93) called the 
individual Expanded Path Size factor, as: 
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(2.96) 

being the choice-set considered by the individual n, and k,n is the expansion factor defined as a 
function of a sampling protocol, depending on the individual probability of considering k in the 
choice-set Kn

od. 
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The S.U.E formulation for the PS-Logit has been analysed in Chen et al. (2012). 

2.3.2.4 IAP Logit 

The framework of the Implicit Availability Perception Logit (Cascetta and Papola, 2001; Cascetta et 
al., 2002) is analogous to the C-Logit and PS-Logit ones. However, the target is different. While 
(2.85) and (2.91) occur to reproduce the effects of the physical overlapping between the routes, 
the IAP Logit want to simulate the effect of the perception of an alternative within the 

individual choice set. This effect is taken into account by means of a degree of membership k
n 

of the alternative k in the individual choice-set Kn
od, adopting a fuzzy logic. 

Particularly, the formulation of the route choice probability is: 
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The k
n represents a latent random variable whose individual value is unknown for the analyst. 

By expressing it as a function of a vector Y of availability/perception attributes, and expressing 
its expected value as Taylor series stopped to the second term, the (2.97) can be expressed as: 
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The IAP correction occurs to penalize the path utility for which the users are not much aware 
of. However, no S.U.E. formulations have been proposed for the IAP Logit until today. 
Definitely, several modified Logit formulations exists, with the aim of taking into account some 
stochastic effects in a deterministic way, by correcting the systematic utility of a route. But, the 
lack of theoretical assumptions behind these models, often is the cause of counter-intuitive 
results provided by them (see Prashker and Bekhor, 1998; Prashker and Bekhor, 2004; 
Marzano, 2006, Frejinger and Bierlaire, 2007; Papola and Marzano, 2013; Papola et al., 2018).  

 GEV models for route choice 

The GEV class, as described in Section 2.2.1.1, is a very flexible and useful class of 
homoscedastic random utility models, characterized by a closed form of the choice 
probabilities. Several applications of GEV models have been proposed in literature for route 
choice but, unfortunately, they did not receive a strong interest in the practical applications. As 
described in the previous sub-section, the Logit model, with or without correction accounting 
for overlapping of other phenomena, represents an appealing formulation, due the simplicity of 
its framework. In fact, a very low number of parameters must be estimated. Conversely, 
moving toward more complex specifications, to take into account the overlapping problem 
under stochastic hypothesis on unobservable components, needs a practical way for computing 
the structural parameters of the model. In fact, given the number of the involved o-d pair and 
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the potential very complex specification of the error structure, the number of parameters can 
easily overcome the thousands of units. This means that, although the closed form statement 
for the probabilities, the main problem of such formulations is that they may not be operative. 
Thus, for making practical the use of these models, the computation of the parameters must be 
necessarily dependent on the network and its observable quantities. This is the reason why, in 
the route choice modelling, often the term “route choice model” implies a peculiar specification 
for the general model to which it is related. For this purpose, some significant route choice 
GEV operationalisations will be described in the following sub-sections.   
The first two mentioned models are derived under the Cross Nested Logit framework, the third 
one refers the more general Network GEV model and the fourth one is a recent development 
of the Weibit model for route choice. 

2.3.3.1 Link Nested Logit 

The Link Nested Logit (LNL; Vovsha and Bekhor, 1998) represents the natural 
particularization of the Cross Nested Logit for the route choice. In fact, an intuitive 
specification of a CNL can be obtained by considering all the links l of the network as nests, 
and the routes k sharing a link l as alternatives belonging to the nest l. In this way, the inclusion 

parameter kl for the route k in the nest l can be computed as the ratio: 
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C
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The presence of alk on the right side clearly indicate that a route k is allocating into nest l if and 
only if k includes l, and clearly (2.99) is consistent with the constraint (2.33), assuming in the 
latter a value h=1. In the original work, in addition to provide the S.U.E. formulation for the 

LNL, the authors have been limited to analyse the boundary case of l=0 for each nest. This 
particular allows for a stochastic network loading procedure with the implicit path enumeration, 
by considering that the nest probability becomes: 
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 (2.100) 

wherein the further subscript l into the path costs and the inclusion parameters indicate, 
respectively, the minimum cost of the minimum path passing through the link l and the 
inclusion parameter of the minimum cost passing through the link l. Furthermore, the 
conditional route choice probability is: 
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Where nl is the number of paths verifying the minimum cost condition on the right side, while 
Kod,l is the set of paths connecting the o-d pair passing through l. 
The expressions (2.100) and (2.101) allow for a double-step procedure. However, the 

implications of using l→0 can be undesirable, as deepened in Section 6.3.  
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For obviating to this lack for the nesting parameters, Bekhor and Prashker (2001) proposed 
another expression, expressing them as a function of the inclusion parameters: 

 odK
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where the nesting parameter of l is supposed to decrease with the presence of multiple paths 
sharing the link l. Another formulation is proposed in Marzano (2006), computing a geometric 
mean, instead of the arithmetic mean of the previous formulation: 
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The S.U.E. problem with the LNL model has been analysed in Bekhor and Prashker (1999), 
Bekhor and Prashker (2001), Prashker and Bekhor (2004) and Bekhor et al. (2008). 

2.3.3.2 Pair Combinatorial Logit 

The Pair Combinatorial Logit (PCL) specification, although not appealing for many other 
discrete choice applications, principally because of the proliferation of parameters and the 
limited flexibility in reproducing covariances (Marzano and Papola, 2008), represents, instead, a 
more suitable formulation for route choice. The concept is, differently from the LNL, creating 
a nest for each pair of routes, thus not involving the links as nests. It implies the impossibility 
of working with an implicit path enumeration. However, the structural parameters can be 
operationalised through the observable quantities, as in the LNL case. 
The PCL route choice probability is defined as: 
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or, alternatively: 
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Gliebe et al. (1999) assumed the similarity parameter of the second formulation as: 
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Prashker and Bekhor (1998) proposed a second formulation as: 
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The S.U.E. – PCL formulation has been analysed in Prashker and Bekhor (1999). 

2.3.3.3 Link Based - Network GEV 

A formulation for adapting the Network GEV model for route choice has been proposed in 
Papola and Marzano (2013), under the name of Link Based-Joint Network GEV (LB-JNG) 
model. The basic idea is to obtain a particular Network GEV formulation by putting in 
sequence the choices at each choice stage of the so called joint choice context. A joint choice 
context is characterized by m choice dimensions, and for each one of these a set of alternatives 
is available. In a route choice context such sequence can be related to the sequence of links. 
The probability of choosing an alternative (i,j) in a specific choice stage i is a conditional 
probability expressed as a function of the GEV generating functions at that stage, and some 
structural parameters. The latter are computed as a function of the minimum path cost from an 
origin o towards the tail of the considered link, the cost of the link and the number of paths 
connecting o with t(l). It has been noted that the latter can be implicitly computes and the 
authors provided an implicit enumeration procedure for the stochastic network loading on the 
efficient sub-network, in a Dial fashion. 
The S.U.E. problem with the Network GEV model for route choice has been analysed in Hara 
and Akamatsu (2014). 

2.3.3.4 Multinomial Weibit 

It is known that the Weibull distribution, as long as the Gumbel distribution, is a particular case 
of the more general Generalized Extreme Value distribution. The latter, in general, depends on 

three real parameters (v,,). The Weibull distribution is obtained when the parameter <014. 
Castillo et al. (2008) have led to a closed-form expression for the route choice probability by 
assuming the random residuals (of the perceived path costs) as independently Weibull 
distributed. The identical distribution assumption is then relaxed, leading to an heteroskedastic 
(but independent) model. Particularly, the choice probability expression of the resulting model, 
called Multinomial Weibit (MNW), is:  
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Where the v0 is assumed by the author with the meaning of minimum possible travel time and 
the generic tk’ represents the total travel time for the path k’. Furthermore, the authors made 
note that assuming a logarithmic transformation in the MNL formula, the (2.108) could be 
obtained. In other words, the Weibit can be seen as a Multinomial Logit formula wherein the 
Gumbel distributed utility is expressed as the natural logarithm of the a Weibull distributed 
term (in fact, a logarithm of a Weibull is a Gumbel). This is the reason why often the Weibit is 
related to the multiplicative random utility framework (Fosgerau and Bierlaire, 2009). In fact, as 

                                              
14 The Gumbel case is obtained for →0, thus the remaining v and  represent, respectively, the mean and the variance 

parameters. When >0 the GEV distribution gives the Frechet distribution. 



Investigating the potential of the combination of random utility models (CoRUM) for discrete 
choice modelling and travel demand analysis  

63 
 

seen in Section 2.1.2, a multiplicative random utility model can be expressed as equivalent 
additive utility model by means of a transformation of the utility in the logarithm of another 
random variable. 
The model, proposed for route choice to handle the heteroskedastic effects on the choice 
probabilities, does not allow for correlation among utilities. Furthermore, the authors did not 
provide any applications for validating the model. Kitthamkerson and Chen (2013) extended 
the potential of such heteroskedastic specification by exploring the Weibit with a Path-Size 
attribute in the systematic utility (PS-MNW). The author also provided the S.U.E. mathematical 
programming formulations for the MNW and the PS-WNW, assuming the total path travel 
cost being the product of the link costs.  Successively, Kitthamkerson and Chen (2014) 
analysed a mathematical programming problem for SUE-MNW without constrained 
optimization, while Kitthamkerson et al. (2015) analysed the SUE-MNW with elastic demand. 
Nakayama and Chikaraishi (2015) also investigated the possibility of using an unifying 
framework (generalized logit route choice model) with a  GEV distribution, obtaining the latter by 
replacing the exponential in the Gumbel cdf with the q-exponential function (a type of 
generalized exponential function; Tsallis, 1994; Umarov et al., 2008), including the MNL and 
the MNW as special cases. 

 Error component models 

In this section, the route choice models involving simulations are described. The Multinomial 
Probit model and successive applications of the Error component Logit model for route choice 
will be presented. The idea is always the same: providing a theoretically robust model, allowing 
for taking into account the overlapping effects on the choice probabilities, but allowing for the 
computation of the parameters in an easy way. The MNP and EC-MNL frameworks are very 
similar. In fact, the only difference lies in the indicator Ij

n,t in the (2.15), wherein it is assumed 
the binary 0/1 value for MNP and the conditional MNL formula for the EC-MNL. However, 
the crucial step is the computation of the covariance matrix for the Multivariate Normal 
distribution of the random terms. In the following, the operationalization of these two models 
is presented. 

2.3.4.1 Multinomial Probit and Monte-Carlo algorithm 

The Multinomial Probit model for route choice has been proposed in Burrel (1968) and 
Daganzo and Sheffi (1977). The main assumption they made is the variance of the perceived 
link costs as proportional to the link costs themselves (sometimes referred as UPC, i.e. Utilities 
proportional covariances; Papola, 2004). In vector notation, the diagonal variance/covariance 
matrix of the link costs can be written as: 

 ( )l diag Σ c  (2.109) 

Being  the proportionality constant and diag(c) the diagonal matrix of the link costs. This 
position implies, under the hypothesis of additive link costs, that the perceived utilities are 

multivariate Normal distributed, with variance/covariance matrix  given by: 

 
T T ( )l diag      Σ A Σ A A c A  (2.110) 

The single term of the (2.110) is the numerator of each term of the matrix correlation, whose 
generic element is: 
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being kk and k’k’ the path variances, with kk’ the covariance among k and k’, and with Lk and 
Lk’ the set of the links belonging to the routes k and k’. 
This assumption allows for a practical implicit enumeration computation of the probabilities, 
by means of drawings of the generic link cost from a mono-variate Normal distribution 

( , )l lN c c  . The Monte-Carlo algorithm computes directly the link flows, without need of 

paths enumeration, with the following steps: 
- Drawing of perceived link costs; 
- Minimum path costs from each o; 
- Deterministic network loading performed for each o; 
- Averaging of the deterministic link flows; 

The minimum path costs algorithm are generally single-step procedures, thus enabling the 
Monte-Carlo algorithm operating with a complexity that is proportional with nC. However, the 
MNP has the adding problem of requiring many iterations of drawing for reaching stable 
results. Furthermore, it has been noted that the Daganzo and Sheffi assumption (2.109) 

depends on a unique variance parameter . It represents undoubtedly an advantage in terms of 
estimation (in fact, only one parameter defines all the covariance matrices of the routes for each 
o-d pair), but it could lead to biased results. In fact, the (2.109) implies that the coefficient of 
variation decreases with the path cost. In other words, the dispersion of the link costs is 
assumed to decrease with the distance between an o-d pair, that could be unrealistic. Finally, a 
S.U.E. formulation (Powell and Sheffi, 1982; Sheffi, 1985, Maher and Hughes, 1997), would 
need repeating drawings from the link costs densities, that makes the searching for the fixed 
point solution of the system (2.79) (and, equivalently, the implicit enumeration version) a very 
computational burdensome process. 
Yai et al. (1997) proposed a Multinomial Probit application to the city of Tokyo, using the 

concept of structured covariance matrix, assuming the total variance matrix  as a sum of two 
matrices: the first referred to the length of the routes and the second being independent from 
the lengths of the routes. However, in their study, the MNP was estimated on a maximum of 
four alternatives for each o-d pair. 

2.3.4.2 Mixed Logit 

The Mixed Logit model for route choice has been formalized by Bekhor et al. (2002). The 
structure was perfectly analogous to that of Probit model, because it assumed the variance of 
the link costs to be proportional to the link lengths. Particularly, the perceived utilities vector 
Un of the individual n was defined as: 
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 (2.112) 

being the first product the vector of the systematic utilities, the second product the Choleski 

factorization of the matrix  and the third vector the i.i.d. Gumbel disturbances. Particularly, in 
the second product, according to Frejinger and Bierlaire (2007), the incidence matrix A appears 

as individual matrix (the choice-set is individual-specific) and the product 
nT ζ  is the Choleski 
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matrix on the l. In fact, it is easy to recognize that is T

l  Σ T T , and the covariance matrix of 

the paths, with this factor-analytic specification, is: 

 T T   Σ A T T A  (2.113) 

and it represents the same result already shown for the MNP. 
Frejinger and Bierlaire (2007) proposed a methodology for capturing the correlation effects on 
the choice probabilities, within the Error Component Logit framework, through the so-called 
subnetwork components. Practically, the overlapping effect was not computed as a function of all 
the elemental links of the network, but as a function of some relevant network roads. The 
behavioural interesting representation founded on the basic idea that an individual does not 
actually perceive all the irrelevant links of the network, but only the main ones. Mathematically, 
this means simplifying the (2.113) as: 

 
T T Q

n n n n n n n       U V ε β X F T ζ ν  (2.114) 

by means of a factor matrix loading Fn whose dimension is (nk x nQ), where nQ is the number 
of the subnetwork components and its generic element is the square root of the overlapping 
length of the generic sub-network component q with the generic path k, while TQ is the generic 
(nQ x nQ) matrix of covariance parameters of the sub-network q to be estimated. The advantage 
of (2.114) is that it significantly reduces the quantities involved, passing from a size nL to a size 
nQ<<nL for the matrix computation of the Multivariate Normal error terms. Furthermore, the 
authors tested a specification obtained by introducing a Path Size attribute, showing how the 
latter could provide better goodness of fit results. 
The Mixed Logit model provides some advantages with reference to the MNP when using the 
explicit enumeration path approach, given the smoothness of its probability estimator. 
However, a Mixed Logit formulation with implicit path enumeration is not possible15, so the 
MMNL is preferable to the simple MNP only with the explicit enumeration approach. 

 Going further 

In the sections 2.3.2, 2.3.3 and 2.3.4 the main route choice models have been described. The 
taxonomy has proposed only the relevant route choice models under the classic approach 
described in the Section 2.3.1, i.e., for example, not considering the presence of cyclic paths.  
Within the domain of the route choice models using acyclic paths, this state of the art has not 
faced the problem of how to generate a choice-set in the route choice application. It is easy to 
recognize that the latter is a crucial step in route choice modelling. In fact, as in all the discrete 
choice applications, the actual choice set considered by the decision maker is unknown to the 
analyst. But, in the route choice context, the problem explodes. The choice set are generated by 
the analyst by algorithm that are network-based. Generally, they are not exhaustive, but they 
consider only a subset of all feasible acyclic paths set. Mainly, two approaches exist in literature: 
the deterministic approach and the stochastic approach. The deterministic approach generally 
use the minimum shortest path tree algorithm many time, by changing the network costs each 
time. For example, Ben-Akiva et al. (1984) proposed the labelling approach, consisting of 
putting into the choice set all the minimum cost paths, each one computed with a different 
label, i.e. with reference to a different quantity (length, monetary cost and so on). The link 
elimination approach (Azevedo et al., 1993) removes, one for each step, a link of the shortest 
path. At each step a new searching for the minimum path on the modified network (i.e. without 

                                              
15 Some tests on the use of an algorithm computing the Mixed Logit flows averaging Dial’s algorithm flows at each iteration, 
instead of the deterministic flows, are shown in Marzano and Papola (2004). However, the Dial’s algorithm, differently from 
MNP with Monte-Carlo algorithm, works only on efficient routes, providing null flows on the non-efficient links. 
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the removed links) is performed, adding the new shortest path to the considered choice set. De 
la Barra (1993) proposed the link penalty approach, i.e. adding a big cost to strongly penalize the 
link of the shortest path, thus not changing the network. Van der Ziypp and Fiorenzo-Catalano 
(2005) proposed the constrained k-shortest path. Differently, Prato and Bekhor (2006) adapted 
the existent branch-and-bound approach for road traffic networks. The latter does not use the 
shortest path algorithm. In the domain of the stochastic approaches, surely the Monte Carlo 
algorithm can be mentioned (Powel and Sheffi, 1982), which generates routes by means of link 
costs draws. Bovy and Fiorenzo-Catalano (2007) proposed the so-called double stochastic 
approach, specifying the utilities of the path as combination of parameters and attributes that 
are both random draws. Furthermore, the approach for considering the route choice 
probability itself, conditional on the adopted choice set, can be double. It can be banally used 
the deterministic approach, directly computing the probability with anyone of the route choice 
models presented in the previous sub-sections. Instead, a probabilistic approach can be used, 
by computing the route choice probability as the combination of the p(k/Kod

n,t) of the route k, 
assuming the choice set, and the probability p(Kod

n,t) of observing the choice set Kod
n,t. It 

becomes quickly impractical given the size of the network and the feasible permutations of the 
sub-set Kod

n,t (see Ben-Akiva and Swait, 1984, Swait and Ben-Akiva 1987a,b; and Ben-Akiva and 
Boccara, 1995). Actually, the IAP Logit presented in Section 2.3.2.4 is an example of the 
probabilistic approach treated as deterministic in perceiving routes in the own choice-set. 
Recent attempts to treat the exhaustive choice set, by using more effective sampling strategies 
within it, are shown in Frejinger et al. (2009) and Flotterod and Berlaire (2013).  
A recent literature focused on the other issue, i.e. the inclusion of cyclic paths in the choice set, 
by applying the Markovian chains concept for the stochastic network loading problem. 
Practically, such methodologies view the network loading as sequence of choices in various 
states. Thus, in these cases, the path concept itself is improper, and it is replaced by the concept 
of chain in a Markovian fashion, i.e. a sequence of events without memory of the previous 
events. This framework is called Markovian Traffic Assignment (MTA) and it was proposed for the 
first time by Sasaki (1965). However, the first link with the random utility theory is due to Bell 
(1995), Akamatsu (1996 and 1997), who proposed a Markovian chain process where at each 
stage (node), a link choice was performed with a MNL formula. The main difference between 
the classic SNL and the MTA methodologies lies in the underlying choice-set. The MTA does 
not restrict the choice set only to the acyclic paths, or some sub-sets of them, but it extends the 
choice set to all the feasible cyclic paths. This means the choice-set has an indefinite size. The 
Akamatsu’s procedure was generalized by Baillon and Cominetti (2008). More recently, 
Fosgerau et al. (2013) started a new research strand proposing a recursive Logit model with 
unrestricted choice set, by linking this model to the dynamic discrete choice models (Rust, 
1987) and allowing for a disaggregate estimation of the model, based on GPS trajectories 
collection. They also tested the addition of the so called Link Size attribute to the specification 
of the utilities, allowing for taking into account the overlapping problem in a deterministic 
(similar to PS-Logit) fashion. Successively, Mai et al. (2015) extended it to a recursive Nested 
Logit, assuming an MNL formulation for each link choice with a link specific variance 
parameter, and Mai (2016) to the general Network GEV model, by means of the concept of 
contraction mapping (Rust, 1987). However, the MTA seems to exhibit various problems. First of 
all, considering an indefinite choice set of cyclic paths can be a double-edge-sword. In fact, it 
could consider also very unrealistic paths, with cycles that are behaviourally inexplicable. 
Second, the MTA could be impossible to solve, due to numerical problems (Oyama and Hato, 
2017). Definitely, the MTA approaches have been certainly deepened and their consideration of 
the cyclic paths have to be adopted with the opportune constraints. 
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Another problem is the collection and use of data in route choice. With the technological 
advance, the diffusion of smartphones applications, the GPS detection and the increasing 
availability of data (network free data), the problem is moving towards how to store in memory 
and adapting this big quantity of data. The route concept itself, defined as sequence of network 
links, could be revised. In fact, a trajectory is not collected directly as a sequence of links, but as 
a sequence of points to be matched with the topological network model (map-matching). It is easy 
to recognize that the GPS detection needs a high precision, especially within dense urban 
networks, wherein an error of a few meters can mislead about the actual link of the network 
chosen by the user. A comprehensive discussion on the problem is reported in Bierlaire and 
Frejinger (2007) and in the PhD thesis of Frejinger (2008). In the latter work, also a 
comprehensive discussion on the state of the art about the problem of the adaptive route choice 
(i.e. the route choice in the presence of real-time information; see also Gao et al, 2008 and 
2010), and some papers applying the fuzzy logic and the neural networks approach to route 
choice have been reported. 
Different paradigms have been used in route choice modelling. The maximizing utility 
framework could be not sufficient in some route choice situations. For example, the Prospect 
theory considers the possibility that a user is more risk adverse than other users. Thus, maybe 
he would reduce the risk when choosing a path, notwithstanding its cost is perceived as 
minimum. From the analyst standpoint, it means minimizing the risk, i.e. the variance of the 
perceived cost of that route (for example, in an urban area, the minimum cost could rapidly 
become a worsen path, because of the increasing of congestion in the rush-hour.). The original 
prospect theory framework is due to Kanheman and Tversky (1979). Recent contributions are 
due to Katsikopoulos et al. (2000), Avinieri and Prashker (2004), de Palma et al. (2008), Gao et 
al.(2010) and de Luca and Di Pace (2015). Another paradigm is represented by the Elimination 
by Aspects theory (EBA), proposed by Tversky (1972a,b). The framework does not have a precise 
assumption on the error structure (apart from a recent contribution of Kolhi and Jedidi, 2015), 
but it describes the choice cognitive process as a sequence of successive eliminations of 
alternatives within the original choice-set. The eliminations at each step are carried out by 
considering a specific characteristic, namely the aspect. When the alternatives within the 
considered sub-set for that step does not own that specific aspect, it is deleted from the sub-set. 
Batley and Daly (2006) successively integrated the framework, but actually the applications to 
route choice and to discrete choice in general, although the recognized appealing properties of 
the EBA (McFadden, 1981), are very limited. Recently, the Random Regret minimization 
(RRM) framework has been analysed for route choice modelling by Prato (2014) and Mai et al. 
(2017). Finally, Kazagli et al. (2016) proposed another simplified representation of the route by 
using the concept of Mental representation items (MRIs). The framework draws upon the cognitive 
sciences and intuitively searches for a representation of the route as perceived by the user that 
is more consistent with the limits in perceiving the space around him. This framework has not 
been investigated yet but, surely, the concept of route itself seems to be debated again, 
searching for more effective and (possibly) simplified representations. 

2.4 The Combination of random utility models (CoRUM) as a 
unified framework 

Recently, Papola (2016) proposed a new class of additive random utility models, whose main 
assumption is that the underlying cumulative distribution function (cdf) of the random residuals 
is a convex combination of other underlying cumulative distribution functions (cdf’s). Starting 
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from the fact that a finite mixture of cdf’s is itself a cdf, and that a sum of continuous functions 
is itself a continuous function, this class of models (named CORUM) is defined as the class of 
ARUMs whose underlying cdf is a finite mixture of absolutely continuous cdf’s. The 
assumption can be formalized as follows: 
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being Fc the cth generic cdf component and wc are exogenous weights (to be estimated) such as: 
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Since the first order derivatives of F entries into the integral in (2.15), and given that wc are 
constants, the assumption (2.115) leads to the following choice probability statement: 
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where pc,n,t (j) represents the choice probability for the ARUM component c. Moreover, the 
linear in wc expression holds for the variances and covariances: 

 C

[ ] [ ] Mc c

j j

c

Var w Var j 


     (2.119) 

 
C

[ , ] [ , ] , Mc c

j m j m

c

Cov w Cov j m   


     (2.120) 

where the superscript c for the variances and the covariances indicates the variances and 
covariance underlying the generic cth ARUM component.  
For the model’s micro-elasticities of the pn,t,c(j) with reference to an attribute of another 
alternative utility specification Xk,h, (2.115) also implies: 
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being 
,
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k h
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XE j  the generic cth ARUM component micro-elasticity. 

Substituting Nested Logit cdf’s into (2.115), the following cdf is obtained: 
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And a very useful CoRUM specification can be obtained. In fact, the choice probability 
expression can be expressed as convex combination of NL choice probabilities: 
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Defining ( , )

c

k j h as the independence parameter of the nest k(j,h) that includes the pair of 

alternatives j and h, within the NL component c, the variances and covariances can be expressed 
as: 
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yielding to the following correlation expression: 
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The resulting model, named CoNL (Combination of Nested Logit), allows for a very flexible 
correlation pattern, as shown in the estimation tests performed both on real and on synthetic 
datasets in Papola (2016). 
The CoRUM potential have been investigated only with reference to the flexibility of the 
correlation pattern reproduced. The CoRUM framework, on the other hand, may be much 
more, and this thesis work intends to investigate all its potential with reference to other crucial 
choice modelling problems, introducing the possibility to accommodate other sources of 
heterogeneity, such as the taste heterogeneity and the heteroscedasticity section (Chapter 3). 
The Chapter 4 investigates how the flexible substitution patterns of the CoNL could provide 
benefits in terms of forecasting capability, contrasting it with other flexible RUMs formulations. 
Moreover, the CoNL is the unique random utility model in literature to have this flexibility 
while maintaining a closed form expression for correlations among alternatives. The latter 
property, as already pointed out in Papola (2016), opens up interesting scenarios in contexts 
wherein a priori expectations on the values of the covariances can be made. Thus, the route 
choice dimension seems the natural candidate to exploit the benefits of such formulation. The 
Chapter 5 explains how the CoNL model can be operationalized on a real-world network, 
providing a way for building the specification, in terms of Nested Logit components and in 
terms of nests within them, and a way for computing all the structural parameters involved, 

namely the '

c

k  and the cw . The Chapter 6 goes further, providing an implicit paths 

enumeration procedure for the CoNL route choice model and an in-depth analysis of its 
properties, by means of several tests on both small size and a real size networks. 
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Chapter 3: CoRUM for taste 
heterogeneity 

This chapter introduces and investigates the properties of mixtures of the Combination of 
Random Utility Models (CoRUM) model proposed by Papola (2016). Leveraging the well-
established literature on the family of Mixed Logit models, the chapter illustrates that a Mixed 
CoRUM model, particularly if specified as a combination of Nested Logit models (CoNL) as 
kernel mixing distribution, is effectively capable to handle inter-intra respondent taste 
heterogeneity and flexible substitution patterns of correlation. Experimental results on real data 
show the Mixed CoRUM to exhibit an appreciable improvement in goodness-of-fit with 
respect to Mixed MNL and Mixed NL models, without proliferation of random parameters due 
to its error component specification of the error structure and with not increased 
computational burden. 

3.1 Background and motivation: the Mixed GEV as a practical 
solution to joint EC/RC Mixed Logit model 

Random utility theory represents, even now, the most common theoretical framework for 
modelling decision makers’ choices. The research in this field has been pursuing  two meaning 
paths: reproducing the effects of inter-correlation between perceived utilities of the alternatives 
and capturing random inter-intra respondent taste variation. 
Multinomial Logit model (Luce, 1959; McFadden, 1974), although its appealing simplicity, does 
not allow taking into account any of the above-mentioned aspects. The difficulties are well 
summarized in Train (2009). The first obstacle is the well-known limitation due to I.I.A. 
property, implying proportional substitution across alternatives. The second obstacle is 
represented by the possibility to take into account only systematic, but not random, taste 
variation. The third obstacle lies in its impossibility to handle repeated choice situation wherein 
unobserved factors are correlated over time.  
Scientific literature until early ninety focused primarily on the first problem. The GEV family 
models (McFadden, 1978; Ben-Akiva and Francois, 1983; Dagsvik, 1994) represent the first 
generalization of the simple Logit, overcoming its impossibility of reproducing correlation 
effects. Particularly, the first attempt to partially overcome the I.I.A. property was the Nested 
Logit formulation (Domencich and MacFadden, 1975; Williams, 1977; Mac Fadden, 1978; 
DalyandZachary, 1979; Borsch and Supan, 1990). The most notorious generalization of the 
latter, proposed under several names and in slightly different forms, is the Cross Nested Logit 
model (Small, 1987; Chu, 1989; Vovsha et al., 1997; Wen and Koppelman, 2001; Bierlaire 2001; 
Ben-Akiva and Bierlaire, 2003, Daly and Bierlaire 2003; Papola, 2004; Abbé et al. 2007; 
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Marzano and Papola 2008),  with a particular specification being the Pair Combinatorial Logit 
model (Chu, 1989; Gliebe et al., 1999; Wen and Koppelman, 2000). Further generalizations of 
the CNL, namely the RNEV (Daly, 2001) and the Network G.E.V. (Daly and Bierlaire, 2006; 
Newman, 2008), have been proposed, but they received some interest in real-world applications 
only in route choice context (Papola and Marzano, 2013). Discrete mixture of models is 
another way to attempt reaching the same target of CNL, i.e. maximum flexibility in 
reproducing correlation effects with a closed-form probability statement. Different models can 
be mentioned in literature. The FinMix model (Swait, 2003), for instance, is based on the 
assumption of a generating GEV function that is a finite mixture of generating functions of 
known G.E.V. models. The resulting model provides a probability statement that is 
combination of probabilities of models component, with the values of the weights depending 
on the structural parameters of the component themselves. The CoRUM model (Papola, 2016), 
instead, assumes its cdf being a convex combination of R.U.M. cdf’s. The weights are, in this 
case, parameters to be estimated. The advantage is that the resulting probabilities, correlation 
and elasticities expressions can be expressed as a convex combination of the models 
component probabilities, correlations and elasticities expressions. Particularly, a CoRUM 
specified as combination of Nested Logit – named CoNL– has the advantage of being a closed-
form model both in terms of probabilities and in terms of covariances, but unlike the simple 
Nested Logit model, provides also a very flexible substitution pattern of correlations. Recent 
applications (Papola et al., 2018) show how this can represent a big advantage in context, like 
route choice, wherein prior expectations on the covariances values can be made through 
observable attributes (Daganzo and Sheffi, 1977). 
Multinomial Probit model (Daganzo, 1979) was the first to be considered a benchmark, 
inasmuch it theoretically allows to reproduce effects of covariances among alternatives with 
maximum degree of flexibility under error component specification. The computational 
burdens of simulating the not closed form probabilities, together with the not-smoothed nature 
of the likelihood estimator, has discouraged its use in practical applications, in favour of the 
Mixed Logit model (Mc Fadden, 1989; Ben-Akiva and Bolduc, 1996). McFadden andTrain 
(2000) demonstrated the generality of the Mixed Logit framework, and the possibility to 
approximate any R.U.M., including Multinomial Probit, with the chosen degree of closeness. 
However, as author stated successively (Train, 2008), no guidance was proposed to find a 
mixing distribution that attains an arbitrarily close approximation. So, even now, the advantage 
of the error component Logit seems more theoretical than practical. Furthermore, the Normal 
Error Component Logit model suffers from several identification issues (Walker, 2002; Walker 
and Ben-Akiva, 2006). So, higher the number of alternatives, greater is the number of random 
parameters to be estimated and the burden to specify the model. 
The second problem relates the random taste variation. It has been faced from earlier 
applications of Multinomial Probit in the random coefficient specification (Hausman and Wise, 
1978; Daganzo, 1979). However, the Normal assumption restriction may be inappropriate for 
many cases and the above-mentioned problem of not-smoothed estimator for the likelihood 
holds. The random coefficient Logit (Boyd and Mellman, 1980; Cardell and Dunbar, 1980; 
Revelt and Train, 1998) has been preferred and, in the last twenty years, has surely represented 
the most popular instrument for capturing random taste heterogeneity, but some problems 
remain. The first one is just due to the parametric nature of this formulation. In fact, prior 
hypothesis must be done on distributional shape, without a priori knowing anything on the real 
distribution of tastes. This means the analyst should prove many distributions and then evaluate 
their validity, generally on the basis of the goodness of fit improvements, or on a range of 
values restriction that one distribution ensures with respect to another. A wide variety of 
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distribution, besides Normal and logNormal, have been tested for random parameters (Train 
and Sonnier, 2005; Bhat, 2011; Bhat and Sidharthan, 2012; Keane and Wasi, 2013; Dekker, 
2016), both in preference and in willingness to pay space (Ben-Akiva et al., 1993). 
Nonparametric approaches has been proposed, avoiding to make specific assumptions on 
parameters shape distribution, trying to approximate continuous distribution of parameters as 
discrete distribution, as in the case of latent class models (Swait, 1994; Gopinath, 1995; 
Kamakura et al., 1996; Bhat, 1997; Greene and Hensher, 2003; Bajari et al, 2007; Bujosa et al., 
2010; Greene and Hensher, 2012). Unfortunately, the difficulties of estimating the discrete 
distribution increases significantly with the number of random parameters and mass points 
(latent classes).  In practical applications, it is not easy to find estimates for more than three or 
four mass points for each parameter. A mixing framework to exploit the advantages of the 
parametric and nonparametric approaches is the Mixed Logit with semi-nonparametric 
approach (Fosgerau and Bierlaire, 2007; Train, 2008a; Fosgerau and Hess, 2009; Bastin et al., 
2010; Bujosa et al., 2010; Greene and Hensher, 2013; Fosgerau and Mabit, 2013; Yuan et al., 
2015; Train, 2016; Bansal et al., 2018). Recently, Vij and Krueger (2017) proposed a 
nonparametric Mixed Logit formulation that avoids a specific assumption on shape 
distribution, but reduces parameters to estimate.  
However, while a lot of solutions on better estimating the true distribution of random 
parameters have been proposed, very little has been said about a second problem, that arises in 
contexts wherein unobservable factors correlation is not due to randomness in marginal 
utilities.  In this case, a simple random coefficient Logit formulation may lead to biased 
estimation of the distribution of parameters (Hess and Polak, 2004), due to the impossibility to 
disentangle random taste variation effects from inter-correlation effects.  
This problem has been faced primarily in Bhat and Guo (2004), with a mixed spatially 
correlated Logit, wherein residential location choice was studied with a mixed Pair 
Combinatorial Logit. The model was specified to treat as correlated only the utilities of 
contiguous residential spatial units. However, the model was estimated with three random taste 
parameters and only one structural parameter, i.e. the dissimilarity parameter of the P.C.L., and 
the goodness of fit improvement was not so evident with respect to a simple MNL. The model 
was successively reprised by Sener et al. (2011) and the spatial limitation was relaxed, allowing a 
more general correlation pattern. Hess et al. (2005a) investigated the possibility of using mixed 
Nested Logit and Mixed Cross Nested Logit for a stated survey on mode choice for Swiss 
Metro rail in Switzerland. While Mixed NL provided good gains in fitting with respect to Mixed 
Logit, the Mixed CNL, although it was specified with a very basic nesting formulation, showed 
some problems in reaching global optimum, finding a better solution than Mixed MNL but a 
worst solution than Mixed NL. Other applications of random coefficient NL can be found in 
literature (see Teye et al., 2014; Cheng and Yang 2015; Haghani et al., 2015 for instance). 
Summarizing, there is a scientific evidence that mixed GEV formulations represents a good 
solution for disentangling inter-correlation and random taste variation effects, but the 
advantages showed satisficing results only with Nested Logit as kernel model, while several 
estimation issues or limitations have been encountered when Cross Nested Logit or its 
particularizations (P.C.L.) have been used. 
The third problem can be explicitly taken into account, only using the parametric or semi-
nonparametric approach, because of correlated unobserved factors involve multi-dimensional 
integral computation over the distribution of them (Train, 2009). 
This chapter proposes a parametric approach, therefore adaptable immediately for semi-
nonparametric methodologies, for disentangling inter-correlation and random taste variation 
effects, i.e. mixing combination of R.U.M. distributions. Particularly, using linear combination 
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of Nested Logit models, in the way described by Papola (2016), may represent an easier and a 
more effective way to enrich the target with respect to the Mixed CNL model, other than 
avoiding the computational and identification burdens of error component. An alternative 
specific variance Normal error component CoRUM is also investigated, for testing the capacity 
to catch the effects of heteroscedasticity. Finally a more general Mixed CoRUM model, 
allowing for both inter-correlation and random taste variation, has been tested, showing its 
superiority with respect to the equivalently specified Mixed Logit model. The methodology is 
tested on real data. The application on the real case is conducted on a mode-choice stated 
survey in a 6-alternatives choice context. The results show a good improvement, in terms of 
goodness of fit, with reference to the all models specified with random parameters (Logit, 
Nested Logit, Cross Nested Logit and error component Logit). Thus, the mixed CoRUM 
formulation allows for a not-negligible improvement of goodness of fit, with respect to Mixed 
MNL and NL, and helps to avoid a) proliferation of random parameters due to error 
component specification of the error structure b) confounding effects in estimating random 
taste variation c) convergence problems of CNL and error component formulations adding 
random parameters. 

3.2 Mixed RUMs: notation and formulation 

This section introduces the notation and the general formulation of Mixed RUMs, subsequently 
particularized to the case of the CoRUM in Section 3.3. Following the RUM theory, the 

perceived utility Un,t
j of alternative jM for individual n and choice situation t can be 

decomposed into a systematic utility Vn,t
j and a zero-mean random residual n,t

j, usually 
representing the unobservable component of the perceived utility. In turn, Vn,t

j is generally 
given by a linear combination of k observable attributes Xn,t

jk and individual-specific marginal 

utilities n,t
jk, yielding: 
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Usually (Ben-Akiva and Bolduc, 1996; Cascetta, 2009; Train, 2009), in literature the Equation 
(3.1) does not include apices n and t for the marginal utilities, and all the unobservable part of 

utility lies in n,t
j. However, to better focus the two problems mentioned in Section 3.1, i.e. the 

correlations and the taste heterogeneity effects on the choice probabilities, a general expression 
of the perceived utility Un,t

j for a mixed RUM can be expressed as: 
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wherein each marginal utility kj
n,t is decomposed into a fixed term kj and a random term kj

n,t 

with covariance matrix , j
n,t is a zero-mean error term with covariance matrix , and n,t

j is 

a random noise with covariance matrix ; all random terms may follow any distributions, with 

j
n,t  and n,t

j not identically distributed. Practically, j
n,t can be expressed also as in the right-

hand side of equation (3.2), being yt
jm be a 0/1 binary variable indicating absence/presence of 

correlation between Uj
n,t and Um

n,t and jm
n,t a mono-variate random term with variance ,n t

jm
 . 

Thus, letting  be the (diagonal) covariance matrix of order m collecting all ,n t
jm

 ’s and Y be 

the square matrix of order m collecting all yt
jm’s, it occurs ∙ Y. As a special case, if j

n,t are 

collectively MVN~(0,), the second sum can be expressed in a factor-analytic fashion 
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through the Choleski factorization of the covariance matrix  of the j
n ‘s (Ben-Akiva and 

Bolduc, 1996; Walker et al., 2007). 
Notably, the contribution of the first term in the right-hand side of equation (3.2) to the 

overall model variance can be expressed straightforwardly as  = Xn,t∙∙ Xn,t T (Hausman and 
Wise, 1978; Daganzo, 1979), being Xn,t  the vector of all attributes of the systematic utility for 
the individual n and the choice scenario t. Overall, recalling the linearity of the covariance 
operator, the individual variance-covariance matrix reproduced by the model (3.2) can be 
written as: 
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Notably, the first contribution to the overall variance is individual-specific and choice 
scenario-specific, being a function of explanatory individual attributes, whilst the others are 
constant at least across individuals. Considering the all the playing random noises constant 
among choice situations, the same applies to t. 

The probability statement of the model (3.2) takes the form: 
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β ω

β ω β ω β ω  
(3.4) 

wherein  represents the vector of parameters of the joint distribution f( , ). Usually, 

and  are uncorrelated, thus f( , )=f()∙f(, ) being  and  the vectors of 

parameters for f and f respectively.  
Expressions (3.1) and (3.2) can be particularized to obtain all models recalled in Section 3.1. 

For instance, the Mixed Logit is a special instance of (3.2) with n
j identically and independently 

EV-I (Gumbel) distributed, yielding Multinomial Logit probabilities as special case of pRUM in 
(3.4). Also, following Train (2009), two noteworthy limiting formulations are the pure random 

coefficient and the pure error component, assuming all n,t
ji’s or all n,t

ji’s respectively to be 
deterministic. 

Another special case is the alternative-specific variance Normal error component model, 

obtained by assuming in (3.2) all n,t
ii’s as mono-variate independent normal variables N~(0,

ii ) and null n
ji  i≠j, that is f(, ) is the product of mono-variate normal cdf’s. In this 

case, letting σ
ii be the vector collecting all 

ii ’s, it occurs diag(σ
ii ) and (3.3) becomes: 

 
, , , ( )

ii

n t n t n tT diag     
U β γ

Σ X Σ X σ Σ  (3.5) 

The probability statement (3.4) does not have usually closed-form primitives, thus simulation 
is needed, for instance by means of the following estimator: 

 

, , , , , , , ,

1

1
( ) ( / , )

R
MRUM n t RUM n t r n t r n t

SIM r

r

p j p j
R 

  β ω  (3.6) 

wherein r,n,t and r,n,t represent the rth vectors of draws from the joint distribution f(,), with 

r1…R, varying, in general, across individuals and choice tasks. Guidance on simulation and 
on how to draw from multivariate distributions for mixed models estimation are reported, 
amongst others, by (Train, 2009; Daly et al., 2012). Consistently, also model estimation should 
be based on simulated log-likelihood (SLL) estimators, whose formulation depends upon the 
nature of the available estimation dataset. In the case of cross-sectional data, it occurs: 

 

, , , , , , , ,

1 1 1 1 1

1
ln ( ) ln ( / , )

n nN T N T R
MRUM n t RUM n t r n t r n t

r r

n t n t r

SLL p j p j
R    

 
     

 
   β ω  (3.7) 

In the case of panel data (Revelt and Train, 1998), the SLL estimator refers the probabilities of 
observing the sequence of individual’s choices yMRUM,n  and it takes the form: 
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 
T

, , , , ,

1 1 1 1

1
ln( ) ln / ,

n
N N R

MRUM n RUM n t r n r n

r

n n r t

SLL y p j
R   

 
   

 
   β ω  (3.8) 

being Tn the number of choice situations t faced by individual n. 

3.3 The Combination of RUMs (CoRUM): a generalization for 
taste heterogeneity 

Under the framework (3.2), the assumption (2.115) can be generalized as a function of the 
perceived utilities, to take into account all the unobservable components within them. The 
CoRUM perceived utilities cdf can be thus expressed as a linear combination of a set C of nMC 
absolutely continuous cdf’s of m perceived utilities with the same weights of (2.115) and the 

constraints (2.116) and (2.117). Assuming the vector notations U=(Un,t
1,...,Un,t

m) and =(n,t
1,1, 

…..,n,t
m,q), where q is the generic number of coefficients within the utility of the alternative m, 

the (3.9) can be written as: 

 C C

( ) ( ) ( , )c c c c

c c

F w F w F
 

    U U ε β  (3.9) 

The CoRUM main assumption (2.115) can be viewed, under this framework, as a particular 

case of (3.9), wherein
,n t

kj kj   ,n t . 

Since the interest of the chapter is disentangling the effects of the random taste heterogeneity 

from the effects of the inter-correlations, the assumption that  and  are independent is made, 
and (3.9), by definition, becomes: 

 C

( ) ( ) ( )c c c

c

F w F F


  U ε β  (3.10) 

The assumptions (3.10) and (3.2) lead to the following general expression of the choice 
probabilities: 

 

, , ,( ) ( / , ) ( , ) ( , )n t c c n t c c c c

c C

p j w p j f f d d


    
β ω

β ω β Φ ω Θ β ω  (3.11) 

Proof. Indicating with  the set of parameters describing the density function of , the 
assumption (3.11) on the cdf’s implies the well-known property (see Erto, 2004 for example) 
that, for each cdf component c: 

 ( , , ) ( , ) ( , )c c c c c cf d d f d f d  β ε Ψ β ε βΦ β ε Ρ ε  (3.12) 

That, under the assumption (3.2), indicating with  the set of parameters describing the density 

function of , becomes: 

 ( , , ) ( , ) ( , ) ( , )c c c c c c c cf d d f d f d f d  β ε Ψ β ε βΦ β ω Θ ω γ Γ γ  (3.13) 

Using the convenient error partitioning procedure (Train, 1995; Train, 2009), it is easy to obtain a 
choice probability expression equivalent to (3.4) for each component c.  In fact, a function of 

the parameters ( , , )h β ε X , and an indicator  I ( , , )h jβ ε X  that take the value of 1 when 

( , , )h jβ ε X , 0 otherwise, can be assumed. Thus, the following choice probability expression 

can be obtained: 
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 (3.14) 

The integral within round brackets can be termed 
, , [ / , ]c n tp j β ω , that is a conditional choice 

probability of j, given the values  and . 
Thus, according to Papola (2016), given the linearity of the derivative operator and the (3.13), 
the assumption (3.9), leads to: 

 

 ,

1

, ,

( ) I ( , , , ) ( , ) ( , ) ( , )

[ / , ] ( , ) ( , )

n t c c c c c c c

c C

c c n t c c c c

c C

p j h j w f d f d f d

w p j f f d d





  
        

    

 
    

 

  

 

β ω γ

β ω

β ω γ X γ Γ γ ω Θ ω β Φ β

β ω β Φ ω Θ β ω

 (3.15) 

Or, since the linearity of the integral, to the equivalent expression (3.11), and the proof is given. 
 
Some restrictive cases of (3.15) are already present in literature. First, each model can be 
obtained by (3.15) when, as boundary case, only one component is assumed. In this case, the 
unique weight takes the value of 1 and the general Mixed RUM formulation (3.4) occurs, which 
is able to accommodate any random utility model (McFadden and Train, 2000). Second, other 
examples of models obtained by combination of density functions can be obtained by (3.15). 
For example, a latent class Mixed logit (Bujosa et al., 2010; Greene and Hensher, 2012) occurs 

when  vanishes and a simple conditional MNL formulation for 
, , [ / ]c n tp j β , i.e. a GEV type-I 

assumption on the , is assumed. In that case, c assumes the meaning of class, with reference to 

the distribution of the . Differently from the latter, (3.15) allows considering different density 

functions also for the 

The reader can note that a particular case of (3.15) occurs when ( ) ( )cf fβ β  and 

( ) ( )cf f c C  β β . In this case, (3.15) expresses the choice probability as a Mixed RUM 

with a kernel given by a combination of RUMs, as in (2.118). The (3.11), instead, expresses it as 
a combination of Mixed RUMs. Thus, the assumption (3.9) allows to build a model that can 
accommodate the taste variation and a flexible substitution pattern, by putting a closed form 
expression (2.118) within the general formulation (3.4) for Mixed RUMs, as in (3.15), or, 
equivalently, by combining Mixed RUMs as in (3.11). Assuming the first interpretation, in the 
following, the (3.15) will be termed Mixed CoRUM. However, it could equivalently be termed 
CoMixedRUM. 
The equations (2.119) and (2.120), according to the considerations exposed in Section 3.2, take 
the more general form: 

 

, , , , ,

C

[ ] [ ]
j j

n t n t c c n t n t

c

Var U w Var U


   (3.16) 
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, , , , , , ,

C

[ , ] [ , ]
j m j m

n t n t n t c c n t n t n t

c

Cov U U w Cov U U


   (3.17) 

However, given the generality of the (3.4) per se, it makes sense to analyse some particular 
specifications of the general (3.11). The advantage of (3.11) lies in its possibility to 
accommodate both flexible substitution patterns and taste heterogeneity, by assuming more 

restrictive assumptions on the distribution of , thus decreasing the number of random terms, 

and a closed form expression for 
, , [ / ]c n tp j β . 

In this regard, this chapter proposes the analysis of some particular specifications for (3.11). 

When assuming (2.122) for the random terms  under the framework (3.2) for the U, (3.11) 
becomes: 
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β ω

β Φ ω Θ β ω

 (3.18) 

That is a combination of Mixed Nested Logit models or, equivalently, a Mixed CoNL model. 

When deleting  from (3.2), the formulation (3.18) becomes a pure random coefficient 
CoNL. The CoNL kernel allows to accommodate very flexible substitution patterns, as shown 
in Papola (2016), without need of introducing random terms due to error components 

specification. However, the (3.18) can be used also when  are present, but assuming, some 

restrictive distribution for f(,). Consistently, a Mixed CoNL with random coefficient and 
alternative specific variance error component, i.e. a model (3.18) obtained by assuming 

independent Normally distributed error terms i, yields the following particularization of (3.5):  

 
, , , 2( ) / 6

ii

n t n t n tT diag       
U β γ

Σ X Σ X σ Ρ  (3.19) 

Interestingly, all the terms within (3.19) have a closed form expression, being  the correlation 
matrix of the kernel CoNL model, whose elements are given by (2.126).  

All considerations available on simulation, estimation and application of Mixed Logit and 
Mixed GEV models apply straightforwardly also to the Mixed CoNL, and any CoRUM 
obtained as combinations of Mixed GEV’s. According to (Walker et al., 2007), an error 
component Logit in contexts with more than m=2 alternatives, has (m-1) alternative specific 

variances 
ii that can be identified. In a Mixed CoRUM with error component structure, 

analogously to the error component Logit, only one scale parameter is added to the perceived 

utility definition, i.e. the scale introduced by GEV variance parameter that can be easily 

normalized to 62. Thus, the same conclusions about the identification properties of error 
component Logit can be extended to all error component GEV formulations, and so, to all 
CoRUM formulations combining GEV cdf’s, apart from the normalization rules for the 
specific kernel model.  

Furthermore, the shape of the distribution of the  reproduced by (3.18) can be made more 
flexible, by adopting one of the sieve estimators proposed in literature (see Vij and Krueger, 
2017 for a comprehensive review). 
In this chapter, the performances of the Mixed CoRUM, particularly the Mixed CoNL model 
(3.18), are evaluated and contrasted with competing relevant models on a real dataset. 
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However, the framework (3.11) appears to be very general, and successive works can be 
dedicated to test other more flexible specifications of it. For example it could be interestingly 
investigated by contrasting it with other well-known semi-nonparametric formulations for the 

(see Train, 2008 and Fosgerau and Mabit, 2013). In fact, since the linearity of the expression 

in the ( , )c cf β Φ , it may be more easy to estimate. Another way to deepen the potential of 

(3.11) is considering nonparametric distributions. By assuming a discrete distribution for 

( , )f β Φ and a deleting  from (3.2), in fact, the integral in (3.11) is substituted by a sum over 

the hypothesized set of mass points. When the assumption ( ) ( )cf f c C  β β is made, the 

model evolves in latent class with CoNL kernel or, equivalently, a combination of Latent class 
NL. The latter could be another interesting formulation to analyse, since the possibility to avoid 
making a restrictive parametric assumption on the shape of the distribution ( )f β . 

The performance of the proposed Mixed CoRUM and Mixed CoNL models is evaluated and 
contrasted with competing relevant models on real data in the following sub-section.  

3.4 Application on real data 

 Stated preference survey 

In March 2008, a stated preference (SP) survey was carried out on a sample of travellers on the 
multi-modal connection Milan-Naples (Italy). The reference universe is made up of all the users 
who travelled on the connection under study with High Speed (HS) trains (1st and 2nd class), the 
alternative high speed trains Italo Nuovo Trasporto Viaggiatori (NTV, 1st and 2nd class), by car on 
the motorway and airplane. The dataset considered in this application consists of 211 
respondents with 8 choice scenarios for each one, for a total of 1688 observations. 

 Utilities specification 

The utilities specification for the six alternatives take into account several socio-demographic 
and level of service attributes, summarized inTable 3.1.  
Concerning travel time and access/exit time specific parameters for the three main transport 
modes have been considered (car, air, train). About monetary cost, instead, a generic parameter 
has been specified in each systematic utility, considering the presence of more than one person 
within the utility of the car, for computing a travel cost per person. The same applies to time 
between two trips, considering a generic parameter in each utility. Other services have been 
considered, as the presence of the restaurant, the Internet, the payment modality (in particular, 
the possibility of paying without cash), especially for long trips (>400 km). As socio-
demographic variables the sex, the professional condition and the graduated condition are 
considered. The sex is considered only in the car for measuring the impact in terms of 
willingness to drive and to move with car. The professional condition is considered, instead, in 
the first class of the train modes. The latter is a proxy of the income and can influence the 
willingness to choose the first class. The graduated condition has been considered in the train 
choice. Finally, a dummy variable for the NTV knowledge has been considered in the 
systematic utility of the NTV options. Totally, 15 utility parameters are estimated.  
 
 



Investigating the potential of the combination of random utility models (CoRUM) for discrete 
choice modelling and travel demand analysis  

79 
 

 
 

Attributes Car Air HS1 HS2 NTV1 NTV2 

Travel time ✔ ✔ ✔ ✔ ✔ ✔ 

Monetary cost ✔ ✔ ✔ ✔ ✔ ✔ 

Number of person on 
board 

✔           

Access/exit time   ✔ ✔ ✔ ✔ ✔ 

Access/exit cost     ✔ ✔ ✔ ✔ 

Time between two trips 
<60 minutes 

  ✔ ✔ ✔ ✔ ✔ 

Time between two trips 
>60 minutes 

  ✔ ✔ ✔ ✔ ✔ 

Restaurant on board for 
long trips (>400 km) 

          ✔ 

Payment modality         ✔ ✔ 

All services (Internet, 
restaurant,payment 
modality) on long trips 
(>400 km) 

          ✔ 

Male ✔           

Professional condition     ✔   ✔   

Degree     ✔ ✔ ✔ ✔ 

NTV knowledge         ✔ ✔ 

Table 3.1: Model estimation on SP survey for six alternatives mode choice Naples-Milan - Attributes for the six alternatives choice 
scenario. 

 Models error structure 

In the comparison, the following models are considered: Multinomial Logit, Nested Logit, 
Cross Nested Logit, CoRUM, Mixed Logit, Mixed Nested Logit, Mixed Cross Nested Logit 
and Mixed CoRUM.  
The Nested Logit model is tested with four different specifications of the error structure. The 
first one hypothesizes a correlation between the two classes of High speed and NTV modes. 
The second one hypothesizes a correlation between the two modes in the first class and the 
same in the second class, while another nest is hypothesized for capturing the effects of being 
no-train alternatives. The third one hypothesizes a constant correlation between all the 
alternatives that are no car (i.e. grouping all the inland transport modes) and the fourth applies 
the same with a no air constant correlation (i.e. grouping all collective transport modes). The 
NL specification are shown in Figure 3.1. These Nested Logit specifications add at the most 
three nesting parameters to estimate (NL 2), but the correlations are hypothesized to be 
constant between all the alternatives within the same nest. 
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Figure 3.1: Model estimation on SP survey for six alternatives mode choice Naples-Milan - Nested Logit specifications for error 
structure. 

The Cross Nested Logit relaxes the last assumption, giving the possibility to model a very 
flexible correlation matrix. Four interesting specifications are tested for the CNL, namely: the 
Pair Combinatorial specification, the full-nests specification, the union between the first two 
and, finally, a specification that brings together all the four NL specifications depicted in Figure 
3.1. The Pair Combinatorial specification introduces 15 nests, with each alternative belonging 

to 5 nests and, thus, introducing 5 inclusion parameters (jk) to be estimated. Totally, the PCL 

needs 24 alpha’s and 15 ’s to be estimated, but allows for a flexible correlation matrix 
representation. The second specification, i.e. the full nests one, is more economic, and allows 

for an high degree of flexibility in reproducing covariances, introducing only 6 alpha’s and 2 ’s 
to be estimated. The third one represents a specification with a very labour intensive 
estimation, introducing a very high number of structural parameters to be estimated, because of 

each alternative belong to 7 different nests. Totally, we have 36 alpha’s and 17 ’s to be 
estimated. Finally, the fourth specification is consistent with all the Nested Logit specification 
presented, allowing a not general correlation matrix, because of each alternative is not 
correlated with all the others. However, the relevant correlations are introduced with the 

estimation of 12 alpha’s and 7 ’s to be estimated. The four specifications are depicted in 
Figure 3.2. 
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Figure 3.2: Model estimation on SP survey for six alternatives mode choice Naples-Milan – Cross Nested Logit specifications for 
error structure. 

The CoRUM model, as the CNL, allows for reproducing a flexible correlation scenario. It has 
been specified as CoNL in six different ways, as different combinations of the Nested Logit’s 
depicted in Figure 3.1. The specifications  and the parameters estimate are summarized as 
follows ( in parenthesis the number of parameters): 

- NL 1 + NL 2 (5 ’s and 1 CoNL weight); 

- NL 2 + NL 4 (4 ’s and 1 CoNL weight); 

- NL 1 + NL 4 (3 ’s and 1 CoNL weight); 

- NL 1 + NL 2 + NL 3 (6 ’s and 2 CoNL weights); 

- NL 1 + NL 3 + NL 4 (3 ’s and 2 CoNL weights); 

- NL 1 + NL 2 + NL 3 + NL 4 (7 ’s and 3 CoNL weights); 
The random coefficient models has been estimated with reference to all the error structure 
specifications described above. Particularly, each models has been estimated hypothesizing as 
random different combinations of parameters: 

(1) Only generic cost parameter; 
(2) Generic cost parameter and the specific travel time parameters (4 random coefficients); 
(3) Generic cost, specific travel time and specific access/exit time parameters (6 random 

coefficients); 
The shape distribution assumption represents a very sensitive operation, so seven different 
distributions have been tested, to try the one that improves at most the goodness of fit. They 
have been tested both in preferences space and in willingness to pay space. Such distributions 
are: Normal, logNormal, truncated Normal (only negative values), Uniform, Triangular, non-
truncated Sb-Johnson and Rayleigh. The multi-dimensional integrals simulation have been 
performed with a variable number of draws per individual, starting from a very small number 
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(5/10) until 1000, to assess also the stability of the results. For the sake of simplicity only the 
Normal estimation results will be shown, representing the best ones in term of fitting measures. 
Further insights and details will be discussed in the next sub-section. 
Finally, the models have been tested adding also an error component specification for random 
residuals. Particularly, the Mixed Logit and Mixed CoNL has been tested with Normal 
alternative specific variance error components. According to Walker et al. (2007), only m-1=5 
parameters can be estimated in this case. This specification is perfectly equivalent to a pure 
random coefficient specification with alternative specific constant random with null mean. 
Thus, 11 random parameters need to be estimated for it. 
Finally, the Mixed Logit is tested with an error component specification that is not alternative 
specific, but sharing Normal error components among the alternatives that are hypothesized as 
correlated. The joint random coefficient – error component specification theoretically 
represents the best that one can choose to approximate any RUM and for catching any 
correlation scenario. However, it is here analysed to better understand the gap between the 
mathematical potential of this theoretical framework and the estimation and simulation issues 
that such specification requires, because of the proliferation of random terms involved. 

 Estimation results 

The estimation is performed with the aid of different software. All the results that will be 
discussed are the ones obtained with a flexible estimation code developed in Matlab R2018a. 
For validation purposes, all the existent closed form models and the Mixed Logit model have 
been estimated also using BIOGEME (Bierlaire, 2003), R and Matlab itself with other existent 
codes (Train, 2007). The maximum likelihood and the simulated maximum likelihood 

estimators are primarily used for comparison. The 2, adjusted 2, Akaike Information 
Criterion and Bayes Information Criterion are also used to assess the goodness of fit. 
Opportune likelihood ratio tests between a specification and another one taken as a benchmark 
are also shown, for evaluating the significance of introducing some parameters in the 
specification. Basically, likelihood ratio test are conducted to compare the maximum likelihood 
for a model and the model itself when some parameters is added. The same is performed 
between a closed form model with the corresponding mixed model, for evaluating the 
significance of introducing random parameters. In the results, the benchmark model will be 
reported in parenthesis. Finally, the estimation time is reported for each estimation, for 
consistence, using the computation times of our own code, being it the only one implementing 
all the models that are contrasted. All the mixed models estimation times refer a 100 Normal 
draws integral simulation for each random parameters and each individual. 
The results are shown within the tables reported in Appendix 3/A, indicating for each 
parameter, the estimated value and the corresponding t-stat in parenthesis. The notation RC 
and EC mean, respectively, random coefficient and error component. Regarding CoNL model, 
the weights written in italic represents the weight obtained by the application of the constraint 
(3.10). 
The first comment to the results refers the incredible difference that, in this estimation exercise, 
comes out from the mixed and the closed-form models. Although the utility specification takes 
into account both socio-demographic and level of service attributes, a lot seems to be 
unobservable to the analyst, so explicitly considering for randomness in tastes has an incredible 

adding value to the goodness of fit (2 exceeding 0.6 or even 0.7). 



Investigating the potential of the combination of random utility models (CoRUM) for discrete 
choice modelling and travel demand analysis  

83 
 

Another interesting aspect relates the balance of powers amongst the closed form models and 
amongst the mixed models. While the Cross Nested Logit performs better than the CoNL that, 
in turn, performs better than all the simple Nested Logit’s, this trend is inverse when the taste 
variation is introduced into the models. In fact, the Mixed CoNL (see sixth specification) 
performs better than Mixed CNL with the same number of random parameters. Actually, all 
Mixed CNL estimations seem to fail in finding optimum, confirming what argued in Hess et al. 
(2005a). It means firstly that, notwithstanding the CNL can be easily estimated in a few 
seconds, even with a very demanding specification as the CNL 1 or CNL 3, the Mixed CNL 
suffers from several problems optimum research with each Matlab algorithm (inter-point, trust-
region reflective, sqp, sqp-legacy, active-set). Only Mixed CNL with 2nd specification, i.e. the 
full nest one, converge to an optimum that is better than the equivalent Mixed Logit 
formulation one, but worse than the Mixed NL here tested (the 2nd NL specification). Second, 
a Mixed CoNL formulation does not suffer from these problems. Thus, the Mixed CoNL with 
6 random parameters and exhibiting a log-likelihood of -827.56 outperforms the same 
specification for Mixed Logit (-930.71), Mixed NL(-867.9) and Mixed CNL (-918.37). 
Furthermore, the error components specifications have been tested for Mixed CoNL and 
Mixed Logit. The Mixed CoNL with only alternative specific variance (no random parameters 
for marginal utilities) performs better than Mixed Logit with joint random coefficients and 
alternative specific variance specification (-793.78 vs -798.62). The CoNL specification number 
4 has also been tested with both the 6 random coefficient and the 5 alternative specific variance 
error components, providing the best log-likelihood value (-779.52) of all estimated models. 
This result is to be compared with the error component Logit shown in Table 3.4 (fifth 
column) and with the joint error component random coefficient Logit shown in Table 3.4 
(sixth column). The first Mixed Logit attempts to catch all the correlation effects with a Normal 
error component specification, going worse than the Mixed CoNL with only specific variance 
error component (-793.78 vs -795.49). The second specification, that is more general, even fails 
in finding optima, because of the excessive number of random parameters (23), and its log-
likelihood is -932.36, that is worse than the Mixed Logit with only 6 random parameters.  

The adjusted values of the 2, AIC, BIC and the likelihood ratio tests performed between the 
Mixed CoNL and the Mixed Logit confirm the convenience of using the Mixed CoNL with 
reference to the Mixed Logit. 
Thus, it can be concluded that although the Mixed Logit with a joint error component random 
coefficient structure can theoretically approximate any RUM, with a Mixed CoNL it is easier to 
find optima and it can outperform all relevant random utility models with random parameters. 

3.5 Conclusions and future research 

This chapter investigates the potential of the CoRUM model (Papola, 2016) for taste 
heterogeneity, particularly as mixtures of combination of RUMs. Although the Mixed Logit 
theoretically allows to approximate any RUM (McFadden and Train, 2000), it is often used only 
with random coefficient specification, potentially generating confounding effects that may bias 
the estimated parameters (Hess and Polak, 2004). Furthermore, the error component Logit 
notably suffers from several identification issues, as analysed in Walker et al. (2007). Thus, 
disentangling correlation and taste variation effects with a less expensive model is an open 
topic. The combination of RUMs, particularly the combination of Nested Logit’s, has been 
analysed as a solution to this issues. The results show that  1) random coefficient CoNL 
systematically outperforms random component Logit, Nested Logit and Cross Nested Logit, 
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having the last one several problems in optimum research 2) the Mixed CoNL avoids random 
terms proliferation due to error component specification, allowing for catching the covariance 
effects with its own structure 3) Mixed CoNL outperforms Mixed Cross Nested Logit also 
when the equivalent Cross Nested Logit outperforms the CoNL 4) the CoNL with random 
coefficient and specific alternative variance error component outperforms the  Logit with 
random coefficients and a flexible error component structure, also because the latter has several 
problems in finding optimum. 
One future step is surely represented by testing more flexible combination of mixed RUMs. 
Furthermore, the applications of a nonparametric or a semi-nonparametric approach for taste 
heterogeneity seems to be natural and not so expensive with reference to the obtained results, 
allowing making less restrictive assumptions on shape distribution of the random terms. Finally, 
it would be interesting to evaluate the gains of the formulation proposed in terms of posterior 
analysis with reference to the Mixed Logit. The latter is an interesting topic, given the 
increasing availability of individual data and the possibility to use the past choices in a Bayesian 
fashion, to make better individual forecasts. 
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Appendix 3/A: Estimation results on real data 

 

Parameters 

MNL 1 NL1 NL2 NL3 NL4 

val. t-test val. t-test val. t-test val. t-test val. t-test 

cm -0,032 -11,5 -0,025 -8,8 -0,026 -9,6 -0,018 -8,4 -0,032 -7,5 

t,Car -0,029 -17,2 -0,028 -18,0 -0,028 -15,2 -0,018 -11,8 -0,029 -13,9 

t,Air -0,019 -4,1 -0,020 -4,6 -0,024 -5,1 -0,020 -5,6 -0,019 -4,0 

t,Rail -0,015 -8,9 -0,015 -9,6 -0,016 -9,8 -0,012 -10,0 -0,015 -7,2 

tAEAir -0,013 -4,5 -0,015 -5,2 -0,013 -4,5 -0,012 -5,1 -0,013 -4,4 

tAE,Rail -0,028 -10,3 -0,028 -10,6 -0,029 -10,6 -0,019 -9,6 -0,028 -8,1 

half-time<60 -0,036 -11,6 -0,033 -10,4 -0,024 -5,4 -0,013 -5,5 -0,036 -10,0 

half-time>60 -0,002 -1,7 -0,001 -1,7 -0,001 -1,9 0,000 -0,4 -0,002 -1,7 

degree 0,231 1,9 0,206 1,7 0,126 1,0 0,168 2,6 0,231 1,8 

no-cash -0,174 -1,6 0,025 0,2 0,088 1,4 -0,049 -1,0 -0,174 -1,5 

NTV-known -0,106 -0,8 0,059 0,5 -0,263 -3,9 -0,125 -2,2 -0,106 -0,8 

restaurant -1,325 -3,0 -0,633 -2,8 -1,034 -2,3 -0,578 -2,9 -1,325 -2,8 

male 0,509 3,1 0,586 3,6 0,769 4,4 0,203 2,7 0,509 3,1 

high-professional-condition 0,421 4,0 0,378 4,9 0,489 3,6 0,254 4,8 0,421 3,8 

all-services 1,816 3,8 1,061 3,9 1,520 3,1 0,753 3,3 1,816 3,5 

class1 - - - - 0,30 -12,9 - - - - 

class2 - - - - 0,69 -1,5 - - - - 

HS - - - - - - - - - - 

NTV - - 0,393 -10,5 - - - - - - 

no-Air - - - - - - 0,426 -11,6 - - 

pub.transport(No-Car) - - - - - - - - 1 0,0 

VTTs Car [euro/h] 54,13 67,06 64,18 58,84 54,13 

VTTs Air [euro/h] 35,30 48,37 56,27 64,61 35,30 
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VTTs Rail 
[euro/h] 28,56 36,91 36,40 41,07 28,56 

VTTs AE 
Air[euro/h] 24,97 35,89 30,65 40,48 24,97 

VTTs AE Rail 
[euro/h] 52,59 67,24 66,30 63,64 52,59 

maxLL -1988,97 -1964,60 -1964,58 -1971,59 -1988,97 
LL(0) -2827,65 -2827,65 -2827,65 -2827,65 -2827,65 

npar 15 17 18 16 16 

 0,2966 0,3052 0,3052 0,3027 0,2966 

 adj. 0,2913 0,2992 0,2989 0,2971 0,2909 

tcalibrazione[sec] 1,9 1,7 1,7 1,3 1,2 

tcalibrazione[min] 0,03 0,03 0,03 0,02 0,02 

LR test (MNL 1) -3978 49 49 35 0 

AIC 4008 3963 3965 3975 4010 

BIC 4767 32625 34313 30951 30986 

Table 3.2: Model estimation on SP survey for six alternatives mode choice Naples-Milan – Multinomial Logit and Nested Logit estimation results.  
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Parameters 

CoNL 1=NL1+NL2 CoNL 2=NL1+NL3 CoNL 3=NL2+NL3 
CoNL 

4=NL1+NL2+NL3 
CoNL 

5=NL1+NL3+NL4 
CoNL 

6=NL1+NL3+NL4 

val. t-test val. t-test val. t-test val. t-test val. t-test val. t-test 

cm -0,024 -5,9 -0,010 -5,4 -0,012 -6,5 -0,012 -6,5 -0,004 -4,7 -0,004 -3,4 

t,Car -0,028 -18,1 -0,018 -12,3 -0,018 -12,9 -0,019 -12,7 -0,013 -12,5 -0,013 -48,6 

t,Air -0,022 -4,4 -0,022 -6,3 -0,023 -6,7 -0,023 -6,7 -0,017 -7,2 -0,017 -5,0 

t,Rail -0,016 -9,9 -0,014 -11,3 -0,014 -11,3 -0,014 -11,2 -0,009 -12,1 -0,009 -17,1 

tAEAir -0,015 -5,7 -0,015 -6,1 -0,014 -5,8 -0,014 -5,8 -0,013 -7,3 -0,013 -6,6 

tAE,Rail -0,029 -11,4 -0,018 -9,0 -0,019 -9,5 -0,019 -9,3 -0,014 -7,9 -0,014 -4,4 

half-time<60 -0,029 -2,6 -0,009 -5,1 -0,006 -6,3 -0,007 -6,2 -0,004 -5,5 -0,004 -1,5 

half-time>60 -0,002 -1,9 0,000 -0,7 0,000 -0,3 0,000 -0,2 0,000 0,1 0,000 0,0 

degree 0,159 1,3 0,073 1,2 0,093 1,5 0,090 1,4 0,095 1,2 0,094 0,4 

no-cash 0,024 0,3 0,024 0,7 0,043 2,3 0,047 2,4 0,013 1,1 0,015 2,0 

NTV-known 0,011 -0,4 -0,111 -2,8 -0,120 -5,4 -0,121 -5,2 -0,067 -4,2 -0,071 -1,6 

restaurant -0,722 -4,8 -0,252 -2,7 -0,278 -2,9 -0,263 -3,6 -0,134 -2,9 -0,150 -12,8 

male 0,685 5,5 0,238 3,7 0,322 4,4 0,326 4,4 0,171 3,7 0,173 1,7 

high-professional-condition 0,482 1,9 0,143 3,3 0,152 3,8 0,149 4,1 0,046 2,9 0,049 1,5 

all-services 1,193 13,3 0,415 3,5 0,435 4,0 0,423 4,7 0,200 3,7 0,222 3,7 

w1 0,557 6,6 0,246 5,4 0,320 7,6 0,046 1,0 0,000 0,0 0,000 0,0 

w2 0,443 - 0,754 - - - 0,287 5,2 0,704 15,3 0,035 0,1 

w3 - - - - - - 0,667 - 0,296 - 0,693 2,5 

w4 - - - - - - - - - - 0,271 - 

class1 0,173 -11,1 - - 0,049 -46,7 0,046 -42,3 - - 0,025 -2,7 

class2 0,999 0,0 - - 0,056 -33,6 0,045 -39,1 - - 0,267 -1,0 

HS - - - - - - - - - - 
 

  

NTV 0,355 -16,3 0,077 -15,3 - - 0,025 -21,8 0,421 -1,6 0,424 -0,6 

no-Air - - 0,219 -21,9 0,217 -25,0 0,218 -24,7 0,073 -47,3 0,076 -11,1 

pub.transport(No-Car) - - - - - - - - 0,135 -20,5 0,143 -10,1 

VTTs Car [euro/h] 68,25 103,62 93,93 94,64 214,91 206,79 
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Parameters 

CoNL 1=NL1+NL2 CoNL 2=NL1+NL3 CoNL 3=NL2+NL3 
CoNL 

4=NL1+NL2+NL3 
CoNL 

5=NL1+NL3+NL4 
CoNL 

6=NL1+NL3+NL4 

val. t-test val. t-test val. t-test val. t-test val. t-test val. t-test 

VTTs Air [euro/h] 53,24 125,98 117,90 118,90 273,52 259,46 
VTTs Rail 
[euro/h] 38,54 80,33 69,38 70,21 150,12 144,26 

VTTs AE 
Air[euro/h] 36,09 86,15 71,52 71,55 209,34 201,51 

VTTs AE Rail 
[euro/h] 70,20 100,76 96,66 97,22 229,70 222,20 

maxLL -1959,02 -1958,41 -1941,51 -1941,1 -1937,48 -1937,24 
LL(0) -2827,65 -2827,65 -2827,65 -2827,65 -2827,65 -2827,65 

npar 21 20 19 22 21 21 

 0,3072 0,3074 0,3134 0,3135 0,3148 0,3149 

 adj. 0,2998 0,3003 0,3067 0,3057 0,3074 0,3075 

tcalibrazione[sec] 4,2 5,2 3,2 8 14,3 14,3 

tcalibrazione[min] 0,07 0,09 0,05 0,13 0,24 0,24 

LR test (MNL 1) 60 61 95 96 103 103 

AIC 3.960  3.957  3.921  3.926  3.917  3.916  

BIC 39.366  37.677  35.955  41.018  39.323  39.322  

Table 3.3: Model estimation on SP survey for six alternatives mode choice Naples-Milan – CoNL estimation results. 
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Parameters 

CNL 1 (PCL) CNL2 (full-nest) 
CNL 3=CNL1 + 

CNL2 
CNL 4 (=CoNL 4 

NL) 

val. t-test val. t-test val. t-test val. t-test 

cm -0,020 -10,8 -0,018 -7,3 -0,012 -8,0 -0,023 -26,8 

t,Car -0,018 -29,1 -0,019 -11,1 -0,013 -38,6 -0,021 -14,8 

t,Air -0,014 -3,4 -0,016 -4,0 -0,006 -6,9 -0,022 -6,8 

t,Rail -0,012 -11,3 -0,012 -27,1 -0,009 -18,1 -0,014 -12,3 

tAEAir -0,011 -5,3 -0,010 -10,5 -0,011 -6,0 -0,011 -6,6 

tAE,Rail -0,021 -23,5 -0,021 -9,9 -0,014 -13,8 -0,023 -12,0 

half-time<60 -0,022 -6,6 -0,015 -4,6 -0,014 -19,6 -0,010 -73,2 

half-time>60 -0,001 -2,0 -0,001 -2,0 0,000 -2,1 -0,001 -2,0 

degree 0,276 6,6 0,046 0,6 0,178 6,9 -0,048 -0,8 

no-cash -0,082 -1,3 0,186 3,9 0,137 2,9 0,172 3,9 

NTV-known 0,075 1,2 -0,149 -2,4 -0,168 -6,9 -0,073 -2,4 

restaurant -0,483 -4,9 -0,977 -2,9 -0,502 -3,1 -0,448 -3,7 

male 0,329 3,3 0,650 6,5 0,469 9,4 0,594 4,8 

high-professional-condition 0,356 5,2 0,347 3,7 0,239 8,0 0,518 4,5 

all-services 1,079 6,6 1,468 3,8 1,122 6,2 0,843 10,7 

Car-1 0,000 0,0 0,697 4,7 0,025 0,8 1,000 1,7 

Car-2 0,214 4,8 0,303 6,6 0,264 7,5 - - 

Car-3 0,208 3,9 - - 0,232 4,4 - - 

Car-4 0,325 2,3 - - 0,141 3,2 - - 

Car-5 0,253 2,0 - - 0,047 1,5 - - 

Car-6     - - 0,095 9,5 - - 

Car-7     - - 0,197 4,5 - - 

Air-1 0,070 0,0 0,901 2,1 0,005 0,5 1,000 2,0 

Air-2 0,070 0,0 0,099 7,5 0,028 0,2 - - 

Air-3 0,070 0,0 - - 0,030 0,2 - - 
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Parameters 

CNL 1 (PCL) CNL2 (full-nest) 
CNL 3=CNL1 + 

CNL2 
CNL 4 (=CoNL 4 

NL) 

val. t-test val. t-test val. t-test val. t-test 

Air-4 0,138 0,4 - - 0,028 4,1 - - 

Air-5 0,652 2,0 - - 0,439 3,4 - - 

Air-6     - - 0,041 8,6 - - 

Air-7     - - 0,429 14,7 - - 

AV1-1 0,645 15,4 0,000 0,0 0,207 8,5 0,853 5,0 

AV1-2 0,000 0,0 1,000 14,5 0,001 0,2 0,000 0,0 

AV1-3 0,000 0,0 - - 0,001 0,2 0,147 1,5 

AV1-4 0,094 1,0 - - 0,001 1,4 - - 

AV1-5 0,261 3,0 - - 0,002 0,1 - - 

AV1-6     - - 0,307 4,2 - - 

AV1-7     - - 0,481 3,9 - - 

AV2-1 1,000 18,8 1,000 3,6 0,770 4,1 0,001 0,0 

AV2-2 0,000 0,0 0,000 0,0 0,002 0,2 0,208 2,2 

AV2-3 0,000 0,0 - - 0,002 1,1 0,791 2,8 

AV2-4 0,000 0,0 - - 0,004 0,1 - - 

AV2-5 0,000 0,0 - - 0,138 3,4 - - 

AV2-6     - - 0,043 0,0 - - 

AV2-7     - - 0,043 0,0 - - 

NTV1-1 0,429 4,6 0,126 0,7 0,170 3,3 0,549 2,9 

NTV1-2 0,050 0,5 0,874 10,8 0,025 1,2 0,149 2,2 

NTV1-3 0,104 1,0 - - 0,003 0,3 0,150 2,1 

NTV1-4 0,000 0,0 - - 0,005 0,1 0,152 1,5 

NTV1-5 0,418 7,2 - - 0,040 0,9 - - 

NTV1-6     - - 0,228 5,2 - - 

NTV1-7     - - 0,529 3,7 - - 

NTV2-1 0,074 2,0 0,685 2,5 0,116 1,7 0,067 0,6 

NTV2-2 0,205 3,7 0,315 2,8 0,103 1,6 0,109 1,4 
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Parameters 

CNL 1 (PCL) CNL2 (full-nest) 
CNL 3=CNL1 + 

CNL2 
CNL 4 (=CoNL 4 

NL) 

val. t-test val. t-test val. t-test val. t-test 

NTV2-3 0,236 3,1 - - 0,011 0,2 0,238 1,9 

NTV2-4 0,000 0,0 - - 0,151 3,4 0,586 2,5 

NTV2-5 0,484 9,0 - - 0,077 1,5 - - 

NTV2-6     - - 0,079 4,5 - - 

NTV2-7     - - 0,464 3,7 - - 

1 0,504 0,0 0,811 -1,4 0,600 -1,0 0,420 -9,1 

2 0,025 -35,9 0,150 -31,6 0,027 -19,4 0,025 -19,6 

3 0,025 -28,5 - - 0,025 -25,4 0,026 -18,8 

4 0,112 -5,9 - - 0,030 -44,8 0,025 -21,0 

5 0,025 -12,7 - - 0,030 -17,5 0,170 -32,7 

6 0,528 0,0 - - 0,570 -0,5 -   

7 0,516 0,0 - - 0,516 -1,2 -   

8 0,025 -4,9 - - 0,072 -3,1 -   

9 0,025 -34,9 - - 0,051 -2,6 -   

10 0,492 0,0 - - 0,494 -1,2 -   

11 0,025 -19,1 - - 0,491 -1,0 -   

12 0,025 -57,1 - - 0,385 -0,5 -   

13 0,204 0,0 - - 0,139 -1,6 -   

14 0,530 0,0 - - 0,026 -40,9 -   

15 0,228 -9,2 - - 0,079 -2,8 -   

16 - - - - 0,026 -74,2 -   

17 - - - - 0,029 -118,0 -   

VTTs Car [euro/h] 55,57 62,92 66,77 53,90 

VTTs Air [euro/h] 41,67 54,39 32,44 57,61 
VTTs Rail 
[euro/h] 36,68 38,84 44,57 35,72 
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Parameters 

CNL 1 (PCL) CNL2 (full-nest) 
CNL 3=CNL1 + 

CNL2 
CNL 4 (=CoNL 4 

NL) 

val. t-test val. t-test val. t-test val. t-test 

VTTs AE 
Air[euro/h] 33,87 33,13 57,24 27,28 

VTTs AE Rail 
[euro/h] 62,92 70,39 71,11 60,14 

maxLL -1869,79 -1915,15 -1814,55 -1913,00 
LL(0) -2827,65 -2827,65 -2827,65 -2827,65 

npar 54 23 68 35 

 0,3387 0,3227 0,3583 0,3235 

 adj. 0,3197 0,3146 0,3342 0,3111 

tcalibrazione[sec] 38 4 46 25 

tcalibrazione[min] 0,63 0,07 0,77 0,42 

LR test (MNL 1) 238 148 349 152 

AIC 3.848  3.876  3.765  3.896  

BIC 94.892  42.654  118.413  62.906  

Table 3.4: Model estimation on SP survey for six alternatives mode choice Naples-Milan – Cross Nested Logit estimation results. 
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Parameters 

MMNL 1 MMNL 2 MMNL 3 

Random 
coefficient + 
alt.specific-
variance EC 

Mixed Logit 
pure EC 

Mixed Logit 
joint EC-RC 

val. t-test val. t-test val. t-test val. t-test val. t-test val. t-test 

cm -0.246 -9.9 -0.201 -11.4 -0.228 -10.6 -0.236 -8.8 -0.129 -8.8 -0.184 -8.1 

t,Car -0.078 -15.3 -0.289 -11.9 -0.315 -9.3 -0.199 -12.5 -0.103 -10.1 -0.434 -6.9 

t,Air -0.061 -6.2 -0.394 -5.3 -0.202 -6.6 -0.098 -5.1 -0.071 -5.7 -0.221 -4.8 

t,Rail -0.047 -10.3 -0.242 -10.1 -0.179 -9.6 -0.138 -8.6 -0.049 -5.9 -0.235 -6.6 

tAEAir -0.072 -10.1 -0.150 -11.4 -0.455 -8.3 -0.228 -8.7 -0.083 -5.8 -0.452 -6.9 

tAE,Rail -0.075 -11.8 -0.202 -9.7 -0.240 -6.1 -0.216 -5.3 -0.181 -7.9 -0.329 -6.4 

half-time<60 -0.042 -8.3 -0.061 -7.1 -0.057 -7.7 -0.049 -4.4 -0.052 -4.6 -0.055 -7.0 

half-time>60 -0.001 -1.0 -0.002 -0.1 -0.0012 -0.8 -0.008 -1.9 -0.009 -2.3 0.001 0.3 

degree 1.092 3.7 2.458 -2.4 -1.045 1.3 -0.485 -0.5 0.743 1.2 0.012 0.0 

no-cash -0.082 -0.6 0.553 2.1 0.531 3.1 0.822 1.9 -0.040 -0.1 -0.229 -1.0 

NTV-known -0.850 -5.4 -1.445 -7.6 -1.575 -7.5 -0.860 -1.9 -0.748 -1.4 -0.445 -1.6 

restaurant -1.619 -2.7 -1.915 -1.9 -1.780 -3.2 -0.486 -0.5 0.700 0.7 -0.018 0.0 

male 0.091 0.2 6.154 0.9 4.406 1.7 0.303 0.4 1.360 6.1 0.012 0.0 

high-professional-condition 0.415 2.1 2.498 6.6 2.949 7.2 1.786 4.3 2.350 4.4 0.205 1.2 

all-services 2.139 3.3 2.952 2.9 2.791 4.0 0.794 0.7 1.057 1.1 0.054 0.1 

cm 0.319 -10.7 -0.305 -13.6 0.267 11.0 0.232 9.2 - - -0.268 -7.4 

t,Car - - -0.019 -11.8 0.157 -10.1 -0.064 -8.9 - - 0.539 6.8 

t,Air - - -0.301 8.5 -0.056 6.3 -0.049 -7.4 - - 0.044 4.7 

t,Rail - - -0.184 -12.3 -0.275 10.4 0.104 9.3 - - 0.158 6.9 

tAEAir - - - - -0.229 -8.8 -0.027 -3.4 - - 0.075 6.8 

tAE,Rail - - - - -0.136 -5.0 -0.094 -6.8 - - -0.257 -7.4 

Car     
  

    -0.721 -0.6 4.630 29.7 0.097 0.1 

Air     
  

    0.848 1.4 0.566 0.8 0.108 0.2 
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Parameters 

MMNL 1 MMNL 2 MMNL 3 

Random 
coefficient + 
alt.specific-
variance EC 

Mixed Logit 
pure EC 

Mixed Logit 
joint EC-RC 

val. t-test val. t-test val. t-test val. t-test val. t-test val. t-test 

HS1     
  

    -4.174 -12.4 1.642 8.5 0.406 1.9 

HS2     
  

    2.820 8.2 3.374 17.3 0.442 2.1 

NTV1     
  

    -0.888 -2.6 -0.250 -0.7 0.184 0.2 

NTV2       - 
 

2.116 10.1 0.248 1.1 

Car-Air   
 

  - 
 

4.659 7.8 0.075 0.2 

Car-HS1   
 

  - 
 

1.967 6.4 0.383 2.0 

Car-HS2   
 

  - 
 

3.065 9.9 0.208 1.2 

Car-NTV1   
 

  - 
 

1.268 5.3 0.106 0.5 

Car-NTV2     
  

      
 

3.901 23.9 0.268 1.0 

HS1-HS2     
  

      
 

2.208 6.9 0.416 2.4 

HS1-NTV1     
  

      
 

5.131 12.3 0.232 0.9 

HS1-NTV2     
  

      
 

1.312 25.5 0.280 1.7 

HS2-NTV1     
  

      
 

0.657 3.4 0.545 4.6 

HS2-NTV2     
  

      
 

7.275 14.2 0.245 1.1 

NTV1-NTV2     
  

      
 

1.524 5.6 0.333 2.2 

maxSLL -1297.72 -946.59 -930.71 -798.62 -795.49 -932,36 
LL(0) -2827.65 -2827.65 -2827.65 -2827.65 -2827.65 -2827.65 

npar 16 19 21 26 32 38 

 0.5411 0.6652 0.6709 0.7176 0.7187 -328.7293 

 adj. 0.5354 0.6585 0.6634 0.7084 0.7074 -328.7427 

tcalibrazione[sec] 93 149 217 473 762 1044 

tcalibrazione[min] 1.55 2.48 3.62 7.88 12.70 17.40 

LR test (MNL 1) 1382.5 2084.764 2116.522 2380.692 2386.954 -1860740.06 
LR test (MMNL 
1) - 702.3 734.0 998.2 1004.5 -1862122.6 

AIC 2,627  1,931  1,903  1,649  1,655  1,864,794  
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Parameters 

MMNL 1 MMNL 2 MMNL 3 

Random 
coefficient + 
alt.specific-
variance EC 

Mixed Logit 
pure EC 

Mixed Logit 
joint EC-RC 

val. t-test val. t-test val. t-test val. t-test val. t-test val. t-test 

BIC 29,603  33,965  37,309  45,485  55,607  1,928,862  

Table 3.5: Model estimation on SP survey for six alternatives mode choice Naples-Milan – Mixed Logit estimation results. 

 

Parameters 

Mixed NL2 Mixed CoNL 6 

Mixed CoNL 6 with 
alternative specific 

variance EC 

Mixed CoNL 6 with joint 
RC and alternative 

specific variance EC 

val. t-test val. t-test val. t-test val. t-test 

cm -0,176 -10,0 -0,062 -8,3 -0,107 -8,8 -0,024 -8,9 

t,Car -0,208 -11,0 -0,239 -53,2 -0,204 -5,5 -0,092 -22,0 

t,Air -0,145 -6,4 -0,067 -3,3 -0,054 -2,2 -0,072 -5,7 

t,Rail -0,116 -9,7 -0,210 -12,6 -0,053 -3,5 -0,021 -10,8 

tAEAir -0,106 -7,7 -0,361 -28,4 0,092 4,1 -0,138 -8,9 

tAE,Rail -0,151 -6,7 -0,302 -4,5 0,114 2,6 -0,184 -35,2 

half-time<60 -0,054 -7,9 -0,019 -5,2 -0,039 -3,6 -0,004 -3,1 

half-time>60 -0,001 -0,4 0,002 2,6 -0,002 -0,7 -0,001 -1,7 

degree -0,726 -0,8 2,238 4,5 2,994 2,4 -0,193 -1,1 

no-cash 0,322 2,0 0,000 0,0 3,006 6,8 0,247 6,7 

NTV-known -1,236 -6,9 -0,332 -3,8 -1,395 -3,8 -0,259 -6,6 

restaurant -1,115 -2,0 -1,093 -4,4 -2,510 -7,5 -0,294 -3,5 

male 3,427 3,1 12,093 22,5 44,029 4,9 1,303 9,2 
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Parameters 

Mixed NL2 Mixed CoNL 6 

Mixed CoNL 6 with 
alternative specific 

variance EC 

Mixed CoNL 6 with joint 
RC and alternative 

specific variance EC 

val. t-test val. t-test val. t-test val. t-test 

high-professional-

condition 2,271 9,7 0,747 7,6 1,418 8,3 0,263 5,2 

all-services 1,941 3,1 1,378 6,6 3,997 8,1 0,478 4,7 

cm 0,202 10,4 0,080 9,9 - - -0,021 -7,3 

t,Car 0,085 9,9 0,137 13,2 - - 0,027 27,1 

t,Air 0,139 8,8 0,268 16,2 - - 0,002 1,1 

t,Rail 0,105 9,6 0,214 15,1 - - 0,024 25,1 

tAEAir 0,113 9,4 0,376 20,1 - - -0,056 -13,5 

tAE,Rail 0,170 10,0 0,367 23,3 - - -0,055 -42,9 

Car - - - - 42,537 5,1 -0,459 -6,0 

Air - - - - 18,335 3,6 -0,212 -0,5 

HS1 - - - - 5,407 9,6 0,433 9,1 

HS2 - - - - -3,105 -8,5 0,279 6,2 

NTV1 - - - - 3,088 8,9 0,136 3,8 

w1 - - 0,000 0,0 0,000 0,0 0,000 0,0 

w2 - - 0,496 10,7 0,891 12,7 0,020 0,9 

w3 - - 0,504 10,9 0,109 1,6 0,980 45,7 

w4 - - 0,000 - 0,000 - 0,000 - 

no-train - - 0,514 0,0 0,524 0,0 0,517 0,0 

class1 - - 0,506 0,0 0,664 0,0 0,557 0,0 

class2 - - 0,535 0,0 0,579 0,0 0,523 0,0 

HS 0,046 -56,4 0,025 -22,8 0,323 -4,5 0,025 -3,4 

NTV 0,343 -7,6 0,258 -9,9 0,025 -43,2 0,071 -4,8 
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Parameters 

Mixed NL2 Mixed CoNL 6 

Mixed CoNL 6 with 
alternative specific 

variance EC 

Mixed CoNL 6 with joint 
RC and alternative 

specific variance EC 

val. t-test val. t-test val. t-test val. t-test 

no-Air - - 0,025 -34,8 1,000 0,0 0,088 -66,9 

pub.transport(No-Car) - - 0,389 -9,5 0,591 -0,5 0,231 -6,1 

maxSLL -867,90 -827,56 -793,78 -779,52 
LL(0) -2827,65 -2827,65 -2827,65 -2827,65 

npar 24 31 30 35 

 0,6931 0,7073 0,7193 0,7243 

     

adj. 0,6846 0,6964 0,7087 0,7119 

tcalibrazione[sec]   2798 3498 3691 

tcalibrazione[min] 0,00 46,63 58,30 61,52 

LR test 
(NL2/CoNL4) 2193,344 2219,364 2286,928 2315,44 
LR test (MMNL 
3) 125,6 206,3 - - 

AIC 1.784  1.717  1.648  1.629  

BIC 42.248  53.983  52.228  60.639  

Table 3.6: Model estimation on SP survey for six alternatives mode choice Naples-Milan – Mixed CoNL estimation results. 
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Parameters 

MCNL 1 (MPCL) MCNL2 (full-nest) MCNL 4 (= MCoNL 6) 

val. t-test val. t-test val. t-test 

cm -0,169 -15,6 -0,162 -136,3 -0,186 -314,9 

t,Car -0,112 -14,3 -0,129 -349,0 -0,055 -75,6 

t,Air -0,067 -9,8 -0,104 -137,2 -0,108 -194,7 

t,Rail -0,096 -14,2 -0,148 -267,6 -0,131 -135,7 

tAEAir -0,224 -20,0 -0,160 -60,5 -0,180 -332,2 

tAE,Rail -0,121 -7,7 -0,063 35,6 -0,074 -120,2 

half-time<60 -0,058 -11,0 -0,052 -55,2 -0,058 -268,3 

half-time>60 -0,002 -1,0 -0,001 -1,0 0,000 0,3 

degree 0,071 0,1 -3,273 
-

1983,8 -1,571 
-

5040,9 

no-cash 0,248 1,7 0,228 317,8 0,295 258,0 

NTV-known -1,009 -6,3 -1,068 
-

1875,6 -1,303 
-

1406,0 

restaurant -1,760 -3,7 -1,068 -74,9 -1,110 
-

1490,3 

male 0,910 1,6 -1,363 3905,7 -0,058 -66,0 

high-professional-

condition 1,735 6,5 2,103 2110,2 2,154 3570,9 

all-services 2,768 5,0 1,711 719,7 2,022 1572,9 

cm 0,224 16,6 0,219 -554,1 0,201 262,5 

t,Car 0,084 9,6 0,137 47,3 0,301 596,0 

t,Air 0,010 1,6 0,014 -106,7 0,133 182,4 

t,Rail -0,026 -9,7 -0,140 -231,7 0,127 281,5 
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Parameters 

MCNL 1 (MPCL) MCNL2 (full-nest) MCNL 4 (= MCoNL 6) 

val. t-test val. t-test val. t-test 

tAEAir 0,140 10,6 0,011 41,9 0,151 88,5 

tAE,Rail -0,098 -3,5 0,093 200,6 0,083 337,8 

Car - - - - - - 

Air - - - - - - 

HS1 - - - - - - 

HS2 - - - - - - 

NTV1 - - - - - - 

Car-1 0,195 0,2 0,464 160,4 1,000 - 

Car-2 0,198 0,4 0,536 - - - 

Car-3 0,202 0,0 - - - - 

Car-4 0,245 0,5 - - - - 

Car-5 0,161 0,4 - - - - 

Car-6 - - - - - - 

Car-7 - - - - - - 

Air-1 0,225 0,3 0,519 1157,4 1,000 - 

Air-2 0,154 0,3 0,481 - - - 

Air-3 0,227 15,7 - - - - 

Air-4 0,199 0,0 - - - - 

Air-5 0,195 0,3 - - - - 

Air-6 - - - - - - 

Air-7 - - - - - - 

AV1-1 0,160 0,3 0,056 31,6 0,132 435,9 
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Parameters 

MCNL 1 (MPCL) MCNL2 (full-nest) MCNL 4 (= MCoNL 6) 

val. t-test val. t-test val. t-test 

AV1-2 0,120 0,2 0,944 - 0,605 404,1 

AV1-3 0,407 0,6 - - 0,175 481,4 

AV1-4 0,151 0,4 - - 0,088 - 

AV1-5 0,162 1,2 - - - - 

AV1-6 - - - - - - 

AV1-7 - - - - - - 

AV2-1 0,149 0,3 0,102 10,9 0,140 710,8 

AV2-2 0,146 0,3 0,898 - 0,638 647,2 

AV2-3 0,435 0,0 - - 0,170 880,1 

AV2-4 0,155 0,0 - - 0,052 - 

AV2-5 0,114 0,4 - - - - 

AV2-6   
 

- - - - 

AV2-7   
 

- - - - 

NTV1-1 0,212 0,2 0,653 927,6 0,327 331,0 

NTV1-2 0,166 0,5 0,347 - 0,086 29,8 

NTV1-3 0,167 2,5 - - 0,337 451,2 

NTV1-4 0,235 0,3 - - 0,250 - 

NTV1-5 0,220 0,3 - - - - 

NTV1-6 - - - - - - 

NTV1-7 - - - - - - 

NTV2-1 0,222 0,0 0,998 2758,0 0,341 310,6 

NTV2-2 0,173 5,6 0,002 - 0,028 807,3 

NTV2-3 0,222 0,5 - - 0,393 527,3 
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Parameters 

MCNL 1 (MPCL) MCNL2 (full-nest) MCNL 4 (= MCoNL 6) 

val. t-test val. t-test val. t-test 

NTV2-4 0,155 0,2 - - 0,238 - 

NTV2-5 0,227 0,0 - - - - 

NTV2-6 - - - - - - 

NTV2-7 - - - - - - 

1 0,980 0,0 0,996 -182,5 0,986 -12,9 

2 0,994 0,0 0,306 -774,5 0,638 -821,0 

3 0,993 -0,2 -   0,442 
-

2043,9 

4 0,578 -0,6 -   0,988 -76,8 

5 0,978 -0,2 -   0,979 -32,5 

6 0,964 -0,1 -   0,985 -18,0 

7 0,994 0,0 -   - - 

8 0,975 -0,1 -   - - 

9 0,928 -0,1 -   - - 

10 0,136 -10,3 -   - - 

11 0,984 -0,3 -   - - 

12 0,994 -0,1 -   - - 

13 0,982 -0,5 -   - - 

14 0,996 0,0 -   - - 

15 0,993 -0,1 -   - - 

16 - - -   - - 

17 - - -   - - 

maxSLL -963,25 -918,37 -937,51 
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Parameters 

MCNL 1 (MPCL) MCNL2 (full-nest) MCNL 4 (= MCoNL 6) 

val. t-test val. t-test val. t-test 

LL(0) -2827,65 -2827,65 -2827,65 

npar 60 29 39 

 0,6593 0,6752 0,6685 

 adj. 0,6381 0,6650 0,6547 

tcalibrazione[sec] 1801 550 1172 

tcalibrazione[min] 30,02 9,17 19,53 

LR test (CNL 
1/CNL 2/CNL 4) 1904 1947 1951 

LR test (MMNL 
1/ MMNL 2/ 
MMNL 3) 669 25 -14 

AIC 2.046  1.895  1.953  

BIC 103.206  50.789  67.707  

Table 3.7: Model estimation on SP survey for six alternatives mode choice Naples-Milan – Mixed CNL estimation results. 



Investigating the potential of the combination of random utility models (CoRUM) for discrete 
choice modelling and travel demand analysis  

103 
 

Chapter 4: Random utility 
models: regression vs 

forecasting 

This chapter proposes a comparative analysis of the performance of various RUMs – namely 
Multinomial Logit, Nested Logit, Cross Nested Logit, FinMix and CoNL– estimated on a 
synthetic dataset with variable sample size and correlation patterns. This experimental 
framework allows comparing model estimates in a fair, controlled environment wherein all 
relevant characteristics (coefficients, attributes, covariances, likelihood, elasticities) of the “true” 
underlying model are known.  
Models are validated especially by comparing true and estimated market share elasticities where 
the market share is the sum over all observations of the individual probabilities of a given 
alternative. Indeed, this indicator represents the real forecasting capability of a model, that is 
the main target for the analyst. Moreover, its true value can be computed when dealing with a 
synthetic database by evaluating the difference in the number of choices of a given alternative 
between future and current  scenarios, due to a difference in some attribute’s value. 
Comparisons are carried out on several choice contexts, characterized by different correlation 
matrices and variable sample size.  

4.1 Closed-form R.U.M. and forecasting 

 Random utility models (RUMs) are a powerful tool for reproducing individual choice 
probabilities in possibly complex choice contexts. A considerable variety of closed-form RUMs 
– i.e. whose probability statement is expressed by a closed-form analytical formulation – has 
been proposed, mostly belonging to the family of Generalised Extreme Value (GEV) models 
(Mc Fadden, 1978) 
The simplest model of this family is the Multinomial Logit model (MNL; Luce, 1959), which is 
based on the I.I.A. (independence of irrelevant alternatives) property and allows to reproduce 
choice contexts where the utilities of the alternatives are not correlated.  
The Nested Logit model (NL; Mc Fadden, 1978; Williams, 1977; Ben-Akiva and Lerman, 1977; 
Daly and Zachary, 1978) introduces correlations among alternatives belonging to the same nest, 
that is a block diagonal correlation structure. It has the advantage of a closed-form correlation 
expression, enabling a proper and conscious interpretation of model estimation results. 
However it has a limited correlation flexibility, i.e. capability of reproducing any correlation 
matrix.  
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Interesting, successive generalization of the NL model, overcoming NL limited correlation 
flexibility, are all the CNL logit family models, allowing each alternative to belong to more than 
one nest. Example of these kind are the Ordered GEV (Small, 1987), the Paired Combinatorial 
Logit (Chu, 1989; Koppelman and Wen, 2000) the Cross-Nested Logit (Vovsha, 1997), the 
Generalized Nested Logit (Wen and Koppelman, 2001), the Recursive Nested Extreme Value 
(Daly, 2001), the Network GEV (Daly and Bierlaire, 2006; Newman, 2008). 
Unfortunately, all these models have not a closed-form correlation expression. 
Other interesting NL generalization characterized by very flexible correlation matrix have been 
obtained as finite mixtures of NL models. Example of this kind are the FinMix (Swait, 2003) 
and the CoNL (Papola, 2016). The latter, in particular, has the advantage of a closed-form 
correlation expression. 
Generally, when estimating models in complex choice contexts, that is contexts with complex 
expectations in terms of correlation matrix, more complex models perform better in terms of 
both in-sample and out-of-sample goodness of fit tests (rho square, adjusted rho square, etc.).  
However, all these tests have a comparative value and are difficultly interpretable in terms of 
quality/price ratio by practitioners. 
In this chapter, some greater comprehension of the real operational advantage provided by 
more complex models is provided, through their estimation with synthetic dataset. The latter, 
indeed, allows evaluating model performances in terms of more interesting and interpretable 
indicators, like the real model forecasting capability, which represents the real interest in model 
application.   

4.2 Model’s elasticities 

As mentioned at the end of the previous section, the main goal when estimating a RUM is to 
maximize its forecasting capability, i.e. the capability of predicting correctly possible market 
share variations generated by variations in some of the relevant attributes. Hence, the 
forecasting capability of a RUM is well-represented by the model’s elasticity, which actually 
measures the variation of the model’s choice probabilities corresponding to a perturbation of a 
generic attribute’s value. The elasticity is generally analysed at the individual level with the 
following formulations: 
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where Xkj represents the generic attribute used for defining the utility of alternative j, while 
Ekj

p[j] and Ekh
p[j] represent direct and cross elasticities, i.e. the percentage variations of the choice 

probability of alternative j corresponding to a percentage variation of an attribute present in the 
same alternative j or in another alternative h respectively. 
Some more insights on this general concept are provided by Ben-Akiva and Richards(1975) 
Domencich and Mc Fadden(1975), Dunne (1984) and Ben-Akiva and Lerman (1977), while 
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specific application to the GEV models are provided by Wen and Koppelman (2001) and Train 
(2009). 
Elasticities (4.1) and (4.2) can be computed also by substituting individual choice probabilities 
with market shares, i.e. the sum over all observations of the individual probabilities of a given 
alternative. The result is a “market share elasticity”, i.e. the percentage variation of the total 
demand of a certain good in correspondence of the percentage variation of the value of a 
certain attribute, which, on the other hand, represents the main target for the analyst. 
Importantly, a synthetic dataset - like that used in this analysis – allows the calculation of the 
“true” value of this elasticity by calculating the difference in the number of choices of a given 
alternative between future and current scenarios, due to a difference in some attribute’s value. 
Hence, with a synthetic dataset, the real forecasting capability of a model can be evaluated, by 
comparing true and estimated values of this kind of elasticities. 

4.3  Experimental analysis 

 Experiment setting 

As mentioned in the previous sections, and following a well-established and common approach 
in the literature, the different RUMs mentioned in the first section were estimated using 
synthetic datasets, allowing estimation results to be compared in a fair and controlled 
experimental setting. 
These datasets were generated analogously to what done in Papola (2016) as described below, 
in terms of observations, choice context and definition of:   

 observable components of the utilities (systematic utilities); 

 unobservable components of the utilities (random residuals); 

 choice. 
 
Observation and choice context: The synthetic datasets encompass a variable number of 
observations (200,1000, 5,000, 10,000, 100,000, 1,000,000) related to hypothetical three-
alternatives and four-alternatives choice contexts; each observation is associated with the full 
set of alternatives. 
 
Definition of the systematic utilities. The systematic utility of each alternative is given by a linear 

combination of two specific attributes. The parameters ’s of these linear combinations do not 
vary across observations, while values of the attributes for each observation are generated 
through independent random draws from a Normal variable with mean and variance defined as 
in Table 4.1, corresponding to a coefficient of variation equal to 0.1. 
 
Definition of the random residuals. Random residuals are assumed to follow a multi-variate normal 
distribution with zero-vector mean and predefined homoscedastic covariance matrix. 
Operationally, given a covariance matrix, random residuals for each alternative can be obtained 
through its Cholesky factorization: 
  ε F z  (4.3) 

in which F is the lower triangular matrix defined by the Cholesky factorization on the variance-

covariance matrix . 
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Definition of the choice. The alternative chosen for each observation is the one with maximal utility. 
 
Knowledge of the ground truth behind the estimation sample allows estimated factors to be 

contrasted with true ones. This applies to taste parameters , to correlation matrices (whose 
estimate can be computed through model structural parameters) and, especially, to market share 
elasticities.  
Specifically, as mentioned in the previous section, the true market share elasticities can be 
computed by calculating the percentage variation in the total number of choices of a certain 
alternative in correspondence of the percentage variation of the value of a certain attribute.  
Concerning correlations, it must be highlighted that while for NL and CoNL the estimated 
correlations can be computed through the existing closed-form formulas, CNL and Fin-Mix 
correlations must be computed through integral calculation, as suggested for instance by 
Marzano et al. (2013) and Marzano (2014). 
Several types of correlation contexts are assumed, with increasing number of non-zero 
correlations, hence requiring an increasing model flexibility in terms of reproducible correlation 
matrices. 

 Specification of the structure of the tested models 

Compared models are MNL, NL, CNL, CoNL and Fin-Mix. For the sake of brevity, their 
structure - in terms of nesting structure - are depicted in Figure 4.1 and Figure 4.2. Both CoNL 
and FinMix were specified by mixing binary nests. Conversely, the CNL was specified by using 
“full nests” – i.e. nests including all the alternatives - as suggested by Marzano and Papola 
(2008).  

 Experimental results 

The estimation of the different models in the different choice contexts, with variable sample 
size, were carried out with Matlab. For validation purpose some estimation experiments were 
carried out also with different software: R, MS Excel and BioGEME (Bierlaire, 2003). Main 
outputs are taste parameters, correlations and market share elasticities which have been 
contrasted with the corresponding true values. 
For the sake of brevity, only estimation results concerning the market share elasticities are 
showed, with the aid of a set of synthetic plots. Indeed, as mentioned in the introduction, this 
indicator represents the real forecasting capability of a model and hence the main interest of the 
analyst when applying a model. 
In this plots, in particular, a synthetic elasticity indicator (Ie) is reported, representing the mean 
square error between true and modelled market share elasticities (both direct and cross). In 
more detail, for any model - characterized by a specific colour - the elasticity performances are 
plotted as a function of the sample size, in a semi-logarithmic scale. The same kind of plot is 
presented for several correlation contexts, related to the “three-alternative” (A,B,C) and the 
“four-alternative” (A,B,C,D) choice contexts.  
Conversely, the goodness-of-fit measures trend, with reference to the sample size, is shown, 
particularly the adjusted r2 and the ratio between the optimum log-likelihood value and the 
sample size (called normalized log-likelihood). The objective of the comparison is contrasting 
the errors of the analysed models in terms of forecasting and the goodness of the estimated 
models in terms of fitting. 
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A first comment refers to the great importance of the sample size which help significantly in 
reaching better performances whatever the model. The main differences are observed when 
passing form hundreds to thousands of observations.  
A second main comment is the general capability of reproducing almost perfectly the true 
market elasticities in all correlation contexts, if using the “correct” model, i.e. a model with an 
underlying correlation pattern compatible with the correlation context assumed as true. 
 

 Alternative 1 Alternative 2 Alternative 3 Alternative 4 

 Attributes Parameters Attributes Parameters Attributes Parameters Attributes Parameters 

 X1 X2 1 2 X3 X4 3 4 X5 X6   X7 X8   

Av. 8 2 1 6 5 2 2 5 4 2 3 4 2 5 5 2 

St.dv. 0.8 0.2 - - 0.5 0.2 - - 0.4 0.2 - - 0.2 0.5 - - 

Table 4.1: Experimental setting. 

On the other hand, and even more importantly, the performance of the “wrong models” can 
be significantly worse with respect to those of the correct models. 
The first experiment to be shown is the one of Figure 4.3 (three alternatives). This experiment 
is actually shown as check experiment, because its simplicity allows the reader to create a 
precise expectation on the results. This is a typical one-level Nested correlation scenario, 
wherein only one true value of the correlation is set to be different from 0. Particularly, the 
experiment wants to show  a boundary case of nested correlation (almost total), so the true 

value of AB is fixed to 0.95 (the reader can refer to the well-known Daganzo and Sheffi 
network, cited in Chapter 2 and depicted in Figure 5.5). The NL is the natural candidate to 
reproduce such situation, while the MNL fails to reproduce it, due to the limitations of the 
already mentioned I.I.A. property. In fact, in this case, MNL goodness-of-fit measures are 
clearly worse than the other models and the error in reproducing the true elasticities is 
absolutely significant. Conversely, NL reproduce very well the true elasticities (perfectly for 
sample size greater than 5,000 observations). More complex models collapse to a NL and their 
performances practically coincide among them and with those of the NL.  
The second and third correlation experiments (again three alternatives), are instead 
incompatible with a NL model. In this case, for big sizes of the sample, not only MNL but 
even NL error in reproducing the true elasticities is significant. But looking at the small sample 
sizes (200) there is the evidence of a contrasting behaviour. The models with better fitting, i.e. 
those with higher absolute value of the goodness of fit measures, perform worse in terms of 
forecasting, i.e. its mean square indicator is higher. See, for instance, the CNL, CoNL and 
FinMix in Figure 4.4 and, particularly, the FinMix in Figure 4.5. 
This “small sample effect”, probably due to overfitting problems, is clearly evident in all the 
successive figures proposed (see FinMix and CoNL in Figure 4.6 and Figure 4.7, all the 
complex models in Figure 4.8 and Figure 4.9, the CNL in Figure 4.10).In other words, to 
express an unbiased forecast, it is necessary to work with a big enough sample of data. Figure 
4.11 and Figure 4.12 enhance the same effect on the 4 alternatives context, particularly with 
reference to the CNL performance. 
Increasing  to more than a thousand observations, the forecasting capability of the appropriate 
model, i.e. the models which structurally allows to reproduce the considered correlation 
scenario, becomes stable. 
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Thus, with appropriate sample size, more complex models generally perform significantly 
better, even if their more complex expression may generate some algorithmic problems in 
finding the optimal solution: see for instance the performances of the Fin-Mix in Figure 4.10. 
In terms of estimation time, referring to the maximum sample size (106 observations), MNL 
and NL are generally very efficient with estimation times around few minutes. CNL and CoNL 
estimation times are a few dozen minutes, while Fin-Mix require generally a few hours. 
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Figure 4.2: Model’s specification for four alternatives-context. 

Figure 4.1: Model’s specification for three alternatives-context. 
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Figure 4.3: 0.95-0-0 correlation scenario – synthetic performance plots indicator for forecasting (column 1) and regression (column2 and 3). 

   

Figure 4.4. 0.5-0.5-0 correlation scenario – synthetic performance plots indicator for forecasting (column 1) and regression (column2 and 3). 
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Figure 4.5: 0.7-0.7-0 correlation scenario – synthetic performance plots indicator for forecasting (column 1) and regression (column2 and 3). 

   

Figure 4.6: 0.3-0.3-0.1 correlation scenario – synthetic performance plots indicator for forecasting (column 1) and regression (column2 and 3). 
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Figure 4.7: 0.5-03-0.3 correlation scenario – synthetic performance plots indicator for forecasting (column 1) and regression (column2 and 3). 

   

Figure 4.8: 0.6-0.3-0 correlation scenario – synthetic performance plots indicator for forecasting (column 1) and regression (column2 and 3). 
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Figure 4.9: 0.8-0.4-0.2 correlation scenario – synthetic performance plots indicator for forecasting (column 1) and regression (column2 and 3). 

   

Figure 4.10: 0.9-0.7-0.33 correlation scenario – synthetic performance plots indicator for forecasting (column 1) and regression (column2 and 3). 
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Figure 4.11: 0.95-0-0-0.3-0-0 correlation scenario – synthetic performance plots indicator for forecasting (column 1) and regression (column2 and 3). 

   

Figure 4.12: 0.9-0.4-0.5-0.3-0.2-0.7 correlation scenario – synthetic performance plots indicator for forecasting (column 1) and regression (column2 and 3). 
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4.4 Conclusions and future steps 

Despite a high number of random utility models were proposed in the literature, very few of 
them are actually used by practitioners. In this chapter the real advantage of using a more 
complex model in a more complex choice context want to be acknowledged through 
estimation experiments on synthetic datasets. In order to do that, a new elasticity indicator is 
used, i.e. the market share elasticity. Indeed, from one hand, this indicator represents the main 
target for the analyst, since it indicates the percentage variation of the total demand of a certain 
good in correspondence of the percentage variation of the value of a certain attribute; from the 
other, its true value can be computed if dealing with a synthetic dataset, by calculating the 
percentage variation in the total number of choices of a certain alternative in correspondence of 
the percentage variation of the value of a certain attribute.  
Specifically a synthetic elasticity indicator (Ie) has been used for analysis, representing the mean 
square error between true and modelled market share elasticities (both direct and cross). In 
other words, Ie represents a measure of the real forecasting capability of a model. 
On the basis of this indicator, different models, namely MNL, NL, CNL, CoNL and FinMix, 
are compared on different choice contexts, characterized by different correlation matrices and 
variable sample size. 
A first main comment refers to the great importance of the sample size which help significantly 
in reaching better performances whatever the model. In fact, the evidences show how 
overfitting issues may generate very unbiased forecasting if the sample size is too small (few 
hundreds). Also in very simple cross-sectional experiments  like these presented in the chapter, 
using a complex model able to catch better fit the data, because of its structural capacity to 
reproduce complex correlation scenarios, can be a double edge weapon if the sample is small. 
To exploit the actual capacity of these models, namely the CNL, the CoNL and the FinMix, is 
absolutely necessary to estimate their parameters with several thousands of observations. If not, 
the risk of wrong policy choices can be dramatic.  
The main differences are observed when passing form hundreds to thousands of observations.  
A second main comment is the general capability of reproducing almost perfectly the true 
market elasticities in all correlation contexts, if using the “correct” model, i.e. a model with an 
underlying correlation pattern compatible with the correlation context assumed as true. 
On the other hand, and even more importantly, the performance of the “wrong models” can 
be significantly worse with respect to those of the correct models. In other words, using the 
correct model, in each specific choice context, may improve significantly the analyst capability 
of make correct demand forecasting. 
Hence, the use of complex models in complex choice contexts should be absolutely promoted 
by practitioners.  
In terms of future research steps, this work need absolutely to be expanded, generalized and 
extended, for instance by analysing links and correlations among the different indicators: are 
the actual indicators (t-stats, rho square, etc.) able to correctly address us towards the best 
forecasting performances when specifying a model? Can we think about some more effective 
indicators? 
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Chapter 5: The CoNL route 
choice model 

The chapter illustrates a route choice model based on the recently proposed Combination of 
Random Utility Models (CoRUM) model by Papola (2016). Specifically, the CoRUM 
specification with nested logit components, termed Combination of Nested Logits (CoNL), 
accounts for any correlation patterns amongst alternatives while keeping a closed-form 
expression for both probabilities and correlations. Thus, the chapter illustrates a CoNL route 
choice model capable to target correlations between routes based on their topological 
overlapping, and characterized by a closed-form probability statement. The CoNL route choice 
model is operationalized by means of an algorithm providing automatically CoNL specification 
and corresponding route choice probabilities on a set of enumerated paths. Model performance 
is tested on various networks, with very satisfactory results. 

5.1 Background and motivation 

Route choice modelling is a key topic in transport engineering, with a well-established research 
stream spanning over more than thirty years of relevant literature, summarized in various state-
of-the-art reviews, including Ramming (2001), Prato and Bekhor (2007), Prato (2009), Papola 
and Marzano (2013). Researchers and analysts acknowledge unanimously some distinct, unique 
challenging features characterizing route choice contexts, primarily along three main 
viewpoints. 
The first deals with the behavioural framework underlying route choices by decision-makers. In 
general, the concept of route itself as elemental choice alternative can be questioned. Various 
alternative paradigms have been formulated in the attempt to explain how decision-makers 
actually perceive a route, for instance based on sequences of waypoints, or on destination-
oriented macro-directions. In terms of behavioural choice mechanism, many approaches have 
been explored with success, for instance the application of prospect theory to model risk-
seeking and risk-averse behaviour (e.g. Katsikopoulos et al. 2000; Avinieri and Prashker, 2004; 
de Palma et al., 2008; Gao et al., 2010; de Luca and Di Pace, 2015). Notwithstanding, the 
classical definition of route as an ordered sequence of links connecting an origin-destination o-
d pair and the Random Utility Models (RUMs) framework still represent the most effective 
assumptions to operationalize a route choice model for large-scale transport applications.  
The second deals with the considerable number of alternative routes usually available for each 
o-d pair. As a first consequence, assuming full knowledge/perception of the choice set by 
decision-makers is unrealistic. This problem is circumvented often by applying a route choice 
set generation method prior to the route choice model, that is selecting a subset of routes to 
choose from based on heuristic rules (Ben-Akiva et al., 1984; De La Barra et al., 1993; Azevedo 
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et al., 1993; Bekhor et al., 2001; Van der Zijpp and Catalano, 2005; Prato and Bekhor, 2006; 
Bekhor et al., 2006). In addition, the implementation of RUM-based route choice models on 
real-size network requires developing algorithms and/or procedures capable to specify 
effectively and with limited computational burden the route choice model directly from the 
graph representing the underlying transport network.  
The third deals with the presence of a complex correlation structure amongst perceived utilities 
of route choice alternatives, structurally determined by the topological overlapping of 
alternative routes in a transport network. Under the usual definition of route as an ordered 
sequence of links in the network, there is consensus in the literature towards considering the 
Daganzo and Sheffi (1977) assumption – that is, a correlation between pair of routes 
proportional to their topological overlapping, measured using a given link impedance – as a key 
reference. Along this line, Frejinger and Bierlaire (2007) proposed the so-called subnetwork 
approach, that is an application of the assumption by Daganzo and Sheffi (1977) only to a 
portion of the network given by primary, most likely perceived, roads. 
Summarizing, notwithstanding many variations on the theme, a prevailing and widely adopted 
research track in route choice modelling is to specify RUM-based route choice models with 
routes defined as ordered sequences of links and underlying correlation consistent with the 
Daganzo and Sheffi (1977) assumption.  
Within this track, many relevant contributions are available in the concerned literature. The 
simplest model was proposed by Dial (1971), who applied the Multinomial Logit model (MNL) 
to route choice with an elegant and computationally very effective algorithm to calculate route 
choice probabilities without explicit route enumeration. Unfortunately, the MNL model 
hypothesizes null correlation amongst perceived utilities of alternatives, because of its 
underlying assumptions. Thus, Daganzo and Sheffi (1977) operationalized the Multinomial 
Probit model (MNP) as a natural for embedding their assumption in a route choice model, 
thanks to the possibility offered by the MNP model to specify directly its correlation matrix. 
However, the MNP suffers from the absence of a closed-form probability statement, leading to 
computational issues related to the need to simulate choice probabilities, see e.g. Horowitz 
(1982), McFadden (1989), Bunch (1991), Geweeke (1991), Train (2009), Connors et al. (2014). 
The same also apply to Mixed Logit applications to route choice, e.g. Bekhor et al. (2002), 
Frejinger and Bierlaire (2007). 
A natural alternative research direction aimed at developing closed-form route choice models 
leveraging the class of Generalised Extreme Value (GEV) models proposed by McFadden 
(1978). Many models have been proposed so far in this context, including the Link-Nested 
Logit (LNL) model by Vovsha and Bekhor (1998); the Paired-Combinatorial Logit (PCL) 
model by Prashker and Bekhor (1998); the Path Multilevel PML model by Papola and Marzano 
(2013). A noticeable variation on the theme is represented by the so-called recursive models 
(Fosgerau et al., 2013; Mai et al., 2015; Mai, 2016). However, there is no evidence in the 
literature on their capability to target Daganzo and Sheffi (1977) correlations. Alternatively, 
several researchers tried to introduce correction/penalty factors in the systematic utility of a 
MNL model to mimic the effect of correlations on route choice probabilities, for instance the 
C-Logit model by Cascetta et al (1996), and Russo and Vitetta (2003), and the Path-size model 
by Ben-Akiva and Ramming (1998), Ben-Akiva and Bierlaire (1999), Ramming (2001), 
Hoogendoorn-Lanser et al. (2005). These models exhibit limitations in capturing the proper 
effect of route correlations on choice probabilities, as addressed amongst others by Prashker 
and Bekhor (1998), Prashker and Bekhor (2004), Marzano (2005), Papola and Marzano (2013). 
In the light of the above, an interesting opportunity for route choice modelling is offered by the 
Combination of RUMs (CoRUM) model proposed by Papola (2016), particularly its Nested 
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Logit component-based form, termed Combination of Nested Logit (CoNL). For the purposes 
of this chapter, the key feature of the CoRUM, and thus of the CoNL, is the availability of a 
closed-form statement for both choice probabilities and correlations. This allows handling 
effectively the relationship between the CoNL specification (model structure, parameters) and 
its underlying correlations, thus enabling the possibility of specifying a CoNL capable to target 
Daganzo and Sheffi (1977) correlations.  
In a nutshell, the cumulative distribution function (cdf) of a CoRUM is defined as a convex 
combination of cdf’s of other RUMs, termed mixing components of the CoRUM. All mixing 
components should embed by definition the same alternatives in the choice set, that will be the 
choice set also of the resulting CoRUM. Such specification, resembling a latent class model 
(Gopinath, 1995; Bhat, 1997; Swait, 1994; Greene, 2001; Greene and Hensher, 2003; Walker 
and Li, 2007; Vij et al., 2011), allows expressing probability statements, correlations, and 
elasticities of a CoRUM as a convex combination of the corresponding expressions of the 
mixing components. As a matter of fact, choosing Nested Logit (NL) models as mixing 
components, i.e. components with closed-form probability statements and correlations, yields a 
CoNL with corresponding closed-form expressions. In addition, as addressed by Papola (2016), 
the NL components can be specified so as to obtain a CoNL correlation matrix with maximal 
flexibility. 
Primary target of this chapter  is to explore the applicability of the CoNL model to the route 
choice context, proposing a new route choice model: (a) capable to target Daganzo and Sheffi 
(1977) correlations, (b) characterized by a closed-form expression of choice probabilities, and 
(c) operationalized by means of an algorithm providing automatically the specification and the 
route choice probabilities of a CoNL route choice model on a transport network. The structure 
of the chapter is the following: Section 5.2 recalls key features of the CoRUM and of the CoNL 
models, Section 5.3 describes the specification of the CoNL model for route choice modelling, 
Section 5.4 introduces a methodology and an algorithm for its operationalization on real-size 
networks, Section 5.5 provides tests on synthetic and real-size networks, Section 5.6 draws 
conclusions and research prospects. 

5.2 The CoRUM model and its CoNL particularization  

This section entirely reprises the Section 2.4, providing the notation for adapting it to the route 
choice. In the following, the apices n and t will be suppressed. 
Following Papola (2016), the CoRUM is an additive Random Utility Model (RUM), whose 
underlying cumulative distribution function (cdf) is the linear combination of a set I of nMC 

absolutely continuous cdf’s of n random residuals Fi(1,..., n) iI with nMC non-negative 
weights w1,..., wnMC summing up to 1, that is: 
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By definition, the properties of the CoRUM model (2.115) can be derived straightforwardly 
from well-known mathematical properties of the mixture of cdf’s. In particular, the probability 
statement of a CoRUM is given by the mixture of the probability statements of the 
corresponding mixing components, with the same weights: 
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and its variances/covariances are linked to the corresponding variances/covariances of the 
mixing components via the following expressions: 
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Expressions (2.119)-(2.120), in the light of (2.118), suggests interpreting the CoRUM as a latent 
class model wherein each class represents a contribution to the overall covariance pattern of the 
CoRUM. Papola (2016) leveraged this framework, showing that a closed-form RUM with 
flexible and closed-form covariance patterns can be obtained by mixing two-level Nested Logit 
(NL) models. The resulting CoRUM model, thus termed CoNL (Combination of Nested Logit 
models), exhibits the following cumulative distribution function: 
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being ki the generic nest associated with the i-th mixing NL, a the generic alternative belonging 
to that nest, and i

k  the structural parameter associated to nest ki. The corresponding CoNL 

probability statement is given by: 
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being Va the systematic utility of alternative a and ki(j) the specific nest of the i-th component 
containing alternative j. The corresponding CoNL variances/covariances can be derived in turn 
from (2.119)-(2.120), yielding: 
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wherein Ijm denotes the subset of all NL mixing components exhibiting a nest k(j,m) including 
both alternatives j and m. The corresponding general expression of the CoNL correlations is: 
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Thanks to the above properties, the CoNL is a natural candidate to tackle the research question 
stated in the introduction, i.e. to propose an operational closed-form route choice model with 
flexible covariances. For this aim, it is important to highlight that expression (2.126) – 
providing the mathematical vehicle to link correlations with model structure/parameters – 
indicates that a given correlation pattern can be targeted with diverse CoNL specifications, by 
varying number and structure of the mixing components. Clearly, the choice of the most 
appropriate specification should enable an effective operationalization of the CoNL route 
choice model: this aspect will be addressed in detail in the next section. 

5.3 A CoNL specification for route choice modelling 

This section introduces the proposed CoNL specification for route choice modelling. For the 
sake of clarity, all concerned definitions and terms are illustrated with reference to o-d pair 1-4 
in the network depicted in Figure 5.1, connected by eight routes labelled k1…k8 as reported in 

the bottom of Figure 5.1. Let G{L,N}be a graph representing a road network, being L a set of 



Investigating the potential of the combination of random utility models (CoRUM) for discrete 
choice modelling and travel demand analysis  

119 
 

nl links and N a set of nodes. For any lL, let t(l) and h(l) denote respectively the tail and the 
head of link l. Let Kod be a set of acyclic routes connecting the pair of centroids o and d with o, 

dN. Each route kKod is associated with an ordered set of links LkL. Consistently, let 

Lod≡{Lk kKod} be the collection of all links of all routes within Kod. In turn, each link 

lLod is associated with a set KlKod of routes including l; it obviously occurs Kod≡{Kl 

lLod}. The above definitions yield the following sets for the example in Figure 5.116: K1-4 

≡{k1,k2,…,k8}; Lk1
≡{1-2, 2-3, 3-4}, Lk2

≡{1-2, 2-3, 3-7, 7-8, 8-4}, ...; L1-4≡{1-2, 1-5, 5-6, 2-6, 6-

2, 2-3, 6-7, 3-7, 7-3, 3-4, 7-8, 8-4}; K1-2 ≡{k1, k2, k3, k4}. 

Let cl lL be an additive link impedance and let Ck=l cl lLk the corresponding route 
impedance. In a RUM context, Ck might be just one of the attributes entering the systematic 

utility Vk of route k, whose perceived utility Uk is generally expressed as Uk=Vk+k, being k a 

random residual. Recalling the introduction, the dispersion matrix K of the k’s usually resorts 
to the specification by Daganzo and Sheffi (1977), who hypothesized the covariance between 
random residuals of a pair of routes to be proportional to their topological overlapping, that is: 
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and the variance of a random residual of each route to be proportional to its impedance, that is: 
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which is a special case of (5.1) with j=m. In turn, the generic correlation corresponding to 
(5.10)-(5.2) is given by: 
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Said that, the specification of a CoNL to target route correlations (5.3) is not unique, as recalled 
at the end of the previous section. In this respect, the following subsections illustrate in detail 
an effective CoNL specification for route choice, respectively in terms of model structure and 
model parameters. 
 
 

 
 

                                              
16 In the following, a specific od pair will be denoted in bold with centroids separated by hyphen, e.g. 1-2, whilst a link will 

be denoted in italics with tail and head nodes separated by hyphen, e.g. 1-2. 
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Figure 5.1: Topology of a toy network to showcase throughout the chapter the definitions of the proposed CoNL route choice model 

 CoNL route choice: model structure 

A CoNL model structure consistent with the assumption by Daganzo and Sheffi (1977) is 
intuitively suggested by a comparison between (5.3) and (2.126). For this aim, let a link 
embedded in multiple routes for any given o-d pairs be termed a shared link, in contrast with 
links belonging to a single route. That said, given an o-d pair, (5.3) indicates that the 
specification of a CoNL route choice model should be built based on nests representing shared 
links of the network, each nest grouping together all routes sharing that link. Once identified 
the type of nests to include, the subsequent aspects to address are the definition of the number 
of CoNL mixing components and the consistent allocation of the nests across those 
components, consistent with theoretical and operational requirements.  
In terms of theoretical requirements, it should be noticed first that any feasible CoNL 
specifications should be genuine, i.e. consistent with the properties defined by Papola (2016) 
and already recalled in Section 5.2. First, for each mixing component to be a NL model, the 
following should hold: for any pairs of routes j and m, nests representing links belonging to the 

set LjLm should be necessarily accommodated into different mixing components. Indeed, if 
this condition were not met, there would be at least a mixing component with routes j and m 
belonging two more than one nest, i.e. a CNL mixing component, in contrast with the 
definition of CoNL.  
Furthermore, by definition, all alternatives (routes) should be included in each mixing 
component of the CoNL. To address this requirement, it can be necessary to allocate some 

nests, representing some of the links lLjLm, across multiple mixing components, and to add 
some routes not belonging to any nests to each mixing component.  
By way of example, Figure 5.2 illustrates the application of the proposed model structure to the 
o-d pair 1-4 in the network of Figure 5.1, whose 8 routes include 12 shared links. It is easy to 
recognize that 7 mixing components suffice to accommodate the above requirements. For 

instance, routes k2 and k3 yield Lk2
∩ Lk3

≡{1-2, 7-8, 8-4}, and the three nests corresponding to 

the shared links within L𝑘2
∩ L𝑘3   – all embedding by construction both routes k2 and k3 – are 
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included in different mixing components (#1, #5 and #7 respectively in Figure 5.2), to preserve 
the NL-genuineness of each mixing component. Moreover, all routes within K1-4 are included 
in each mixing component: for this aim, nest representing link 3-4 is included in multiple 
mixing components (#5 and #6) and, for instance, routes k1 and k2 not belonging to any nests 
are added as singletons in mixing components #2 and #3. 

   

Figure 5.2: Example of CoNL structure for the o-d pair 1-4 in the network in Figure 5.1. 

In terms of operational requirements, the application of the CoNL route choice model would 
imply the modeller to inspect manually the set of routes and identify explicitly all mixing 
components with the corresponding nesting structures to write explicitly the probability 
statement (2.123). This is infeasible in real-size networks; thus, a procedure should be 
implemented, capable to provide directly the mixing components and their nesting structure, 
without explicit inspection of the routes: that is, a CoNL specification allowing implicit 
probability statement. In addition, it is desirable to keep at minimum the number of mixing 
components of the CoNL. For this aim, a straightforward conceptual vehicle is to group 
together links of the network based on properly defined network levels, each corresponding to a 
CoNL mixing component. A recursive algorithm providing a genuine CoNL route choice 
specification with implicit probability statement, based on the concept of the network levels, 
will be illustrated in detail in Section 5.2. 
Summarizing, for each o-d pair, the proposed CoNL route choice specification adopts routes as 
alternatives and shared links as elemental nests, grouped in mixing components representing 
levels of the transport network. The nest identified by a specific shared link might appear in 
various mixing components, to guarantee that all routes will appear in each mixing component 
(genuineness of the CoNL specification). In formal terms, Il will denote the subset of mixing 
components which a link l belongs to, nMC the number of mixing components in the CoNL 
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route choice model, and i the subset of network links associated with the generic i-th mixing 
component. 

Hence, being Ijm≡{l Il,  lLjLm }, (2.126) can be rewritten as: 
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By way of example, routes k1 and k4 in Figure 5.1 yield L𝑘1
L𝑘4

≡{1-2,3-4} and I𝑘1𝑘4≡{I12 

+I34}≡{1}+{5,6}≡{1,5,6}, so (5.4) becomes: 

 𝜌𝑘1𝑘4
= 𝑤1 ∙ (1 − 𝛿12

1 2
) + 𝑤5 ∙ (1 − 𝛿34

5 2
) + 𝑤7 ∙ (1 − 𝛿34

6 2
) (5.5) 

Comparing (5.4) with (5.4), the following sufficient condition occurs on the generic link l 
shared between routes j and m for the CoNL route choice model to target Daganzo and Sheffi 
(1977) covariances: 
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From a practical standpoint, (5.6) indicates that the contribution of the topological overlapping 
of link l on the correlation between routes j and m is split in the CoNL route choice model 
across the mixing components identified by the subset Il. In turn, setting the parameters within 
(5.6) is the final key task to specify the CoNL route choice model, as illustrated in the next sub-
section. 

 CoNL route choice: model parameters 

In terms of model parameters, the first important consideration is that the nesting parameters 

within each mixing component should not be smaller than a lower bound min close to zero, i.e. 
leading to mixing components represented by NL models with deterministic choice within 
nests. In fact, the CoNL model belongs to the family of random utility models, including also 
the Cross Nested Logit model, that provides the overall correlation between a pair of 
alternatives as the superposition of the partial correlations given by the nests the pair of 
alternatives belongs to. Usually, the contribution of each single nest to the overall correlation 
depends upon the nesting parameter of that nest and a weight component (e.g. the weight of 
the mixing component in the CoNL, or the membership degree in a CNL) of that nest within 
the overall model structure. In this respect, there is evidence in the literature that choosing 
nesting parameters close to zero deteriorates the performance of such models, as highlighted in 
the route choice context amongst other by Prashker and Bekhor (2004) and Marzano (2005). 
Furthermore, for the sake of the operationalization of the CoNL route choice model, it is 
intuitive to impose the same nesting parameter to the possibly multiple nests representing link l 
across mixing components, that is: 

 min od        , L L   , Ki l

l l j mi I l j m j             (5.7) 

Consistently, (5.6) becomes: 
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Again, with reference to the CoNL model presented in Figure 5.2, (5.5) and (5.8) become 
respectively:  
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𝜌𝑘1𝑘4
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(5.9) 

Notably, the collection of expressions (5.8) leads to a system of nSL equations, as many as the 

number of links shared by all pair of routes within Kod, that is nSL=m,jKod |LjLm|. It is easy 
to recognize that such system has nSL+nMC unknowns. Indeed, each shared link identifies a nest 

by definition and (5.7) ensures the total number of  ’s to equal the total number of shared 
links. In addition, there are as many unknown weights as the number nMC of mixing 
components of the CoNL.   In the example of Figure 5.1 and Figure 5.2, all 12 links belonging 
to L1-4 are shared links, thus the collection of expressions (5.8) yields a system of 12 equations 
in 12+7=19 unknowns. 

This unbalance suggests fixing exogenously a value for each weight wi i1… nMC to balance 
unknowns and equations, and then calculating the corresponding values of the nesting 
parameters by solving the aforementioned system. 

The value of each wi i1… nMC can be determined by recalling that the weights of the 
mixing components enter with direct proportionality in equation (2.126), that defines the 
correlation between any pairs of alternatives. In addition, in accordance with the CoRUM 
definition in Section 5.2, weights are constrained to sum up to 1, thus they should be allocated 
appropriately across mixing components, consistent with the correlations each mixing 
component should reproduce. Since in the CoNL route choice model each mixing component i 
should reproduce multiple correlation contributions of type cil/Codmin, one for each shared 
link l allocated to that mixing component, each mixing component i can be considered in 
charge of targeting a correlation contribution equal to cilmean/Codmin, being cil,mean the 
average cost of the shared links belonging to that mixing component. As a consequence, the 
total unitary budget can be straightforwardly allocated to the different mixing components as 
follows: 
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With reference to the nesting parameters, expressions (5.3) should be first rewritten by 
considering that the CoNL is a homoscedastic model, thus route variances can be conveniently 
levelled on the cost of the shortest route, yielding: 
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Thus, (5.8) becomes: 
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and, recalling (5.11) and (5.7), it occurs: 
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Clearly, (5.14) holds if the radicand is nonnegative, thus, recalling (5.7), expression (5.14) should 
be rewritten as follows: 
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Overall, expressions (5.4), (5.11) and (5.15) allow particularizing the CoNL model to route 
choice contexts. The key aspect to address is how to operationalize this model, in particular 
through the proposition of a recursive algorithm providing a genuine CoNL route choice 
specification with implicit probability statement, as Section 5.4 illustrates in depth. 

5.4 The CoNL route choice model with implicit probability 
statement 

The key step for the operationalization of the CoNL route choice model proposed in Section 
5.3 is the implementation of an algorithm providing a genuine CoNL route choice specification 
with implicit probability statement, based on the concept of the network levels. Such algorithm 
is based on two main steps: the former is the specification of the mixing components; the latter 
is the calculation of model parameters. Each step is illustrated separately in the next two sub-
sections. Clearly, once known the mixing components (i.e. the model structure) and its 
parameters, calculating choice probabilities is straightforward via equation (2.123).  

 Specification of mixing components and model structure 

The mixing components of the CoNL route choice model should be specified separately for 
each o-d pair and, as it will be clarified soon, attention should be restricted only to efficient 
routes of the network with respect to the origin17 in the sense defined by Dial (1971), collected 
into a subset Kod

eff_o. Clearly, being a model with explicit route enumeration, a pre-processing 
providing such set of routes for each o-d pair should be performed. Following the notation 
introduced in Section 5.3, let Lod

eff_o be the collection of all links of all routes within Kod
eff_o, 

and Kl
eff_o the set of routes including link lLod

eff_o. Furthermore, h(l) and t(l) denote 
respectively the head and the tail nodes of link l, and EFS(n) and EBS(n) denote respectively the 
efficient forward star and backward star of a node n. Specifically, the forward star of a node n is 
the collection of links exiting from n, i.e. whose tail is represented by n; conversely, the 
backward star of a node n is the collection of links entering n, i.e. whose head is represented by 
n. 

That said, the generic mixing component i should include a set of efficient links i, 
interpretable as a level of the network for that o-d pair, consistent with the requirements for a 
genuine CoNL specification, stated in Section 5.3.1. This means satisfying the following 
conditions: 

C1. {l Kl
eff_o li}≡Kod

eff_o  iI, that is each mixing component should include all 
efficient routes connecting that o-d pair as elemental alternatives; 

                                              
17 The algorithm would clearly work also with the Dial efficiency with respect to both origin and destination, being this a 
more restrictive assumption that further limits the number of considered route. In general, the Dial efficiency assumption 
introduces a restriction in the choice set; however, as recalled by many papers in the literature, the Dial efficiency is a well-
established assumption, generally not excluding reasonable paths and hence not significantly affecting route choice 
probabilities. 
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C2. Kl1
eff_oKl2

eff_o ≡   l1, l2l1i, that is each efficient route should belong to only 

one nest in each mixing component, for the latter to be a Nested Logit. 
By way of example, Figure 5.3 illustrates the above sets with reference to the CoNL model 
structure depicted in Figure 5.2 and related to the network in Figure 5.1 for the o-d pair 1-4, 

that is: K1-4
 eff_1 ≡{keff

1, keff
2, keff

3, keff
4} with L𝑘1

eff≡{1-2, 2-3, 3-4}, L𝑘2

eff≡{1-5, 5-6, 6-2, 2-3, 3-4}, 

L𝑘3

eff≡{1-5, 5-6, 6-7, 7-3, 3-4}, L𝑘4

eff ≡{1-5, 5-6, 6-7, 7-8, 8-4}, and L14
 eff_1≡{1-2, 1-5, 5-6, 6-2, 2-3, 

6-7, 7-3, 3-4, 7-8, 8-4}. 

 
 

 

Figure 5.3: Efficient choice sets with respect to the o-d pair 1-4 in the example of Figure 5.1. 

The following sub-sections illustrate a recursive algorithm for the specification of the mixing 
components and the model structure. Specifically, Section 5.4.1.1 proposes a double-step 
algorithm (i.e. requiring a forward and a backward network exploration for each o-d pair) and 
then Section 5.4.1.2 a simplified single-step algorithm. 

5.4.1.1 Double-step algorithm 

For each o-d pair, a collection of subsets i (i.e. of mixing components) satisfying these 
conditions can be built recursively, through a forward exploration of the network, starting from 

the origin o. The i-th iteration of this recursive algorithm, allowing calculation of i given 

availability of the set i-1 identified in the previous iteration, includes the following three steps: 

1. generating a set i of candidate links for inclusion into i, given by all efficient links 

within Lod
eff_o belonging to the efficient forward stars of the head of links within i-1, 

that is i ≡{l EFS(h(l)) li-1} Lod
eff_o. It is easy to verify that i satisfies C1.  

 

Proof. By construction, i includes all links belonging to all forward stars of links 

belonging to i-1. Thus i should satisfy C1, otherwise there would be at least a route 

not including any links belonging to the forward stars of links in i-1, in contrast with 

the fact that i-1, satisfies C1. ■ 
 

On the contrary, i does not necessarily satisfy C2, because l EFS(h(l)) li-1 might 
include multiple links of the same route. 
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2. meeting condition C2 by generating a subset Λii obtained by elimination of 

“descendant links” from i. By definition, given two links l1 and l2, l2 is a descendant of 
l1 if l1 and l2 are connected in the efficient subnetwork, that is the cost of the shortest 
path from the head of link l1 towards the tail of link l2 is less than infinite. Equivalently, 
if l2 is a descendant of l1 then l1 is an ascendant of l2. In principle, a circular dependency 
might occur, i.e. having at the same time l1 depending upon l2 and vice versa. It is easy 
to prove that restricting the attention only to Dial efficient links with respect to the 
origin o is a sufficient condition to overcome this problem.  

 

Proof. Given two links a and b with a,bLod
eff_o, let b be a descendant of a, that is by 

definition: 
 cmin

eff_o
h(a)t(b)<   cmin

eff_o
oh(a)<cmin

eff_o
ot(b) (5.15) 

 
being cmin

eff_o
h(a)t(b) the cost of the shortest route kh(a)t(b) between h(a) and t(b) on the 

network including only links within Lod
eff_o. Equation (5.25) also implies: 

 cmin
eff_o

ot(a)<cmin
eff_o

oh(a)<cmin
eff_o

ot(b)<cmin
eff_o

oh(b). (5.16) 
 
As a result, h(b) is farther from origin than t(a) in a Dial sense, thus no route can exist 
on Lod

eff_o connecting h(b) with t(a), i.e. if b is a descendant of a, a cannot be a 

descendant of b. ■ 
 
It is easy to prove that Λi meets condition C2.  
 

Proof. The absence of descendant links within Λi ensures that for any links l1Λi the 

corresponding collection of routes K𝑙1

eff_o will be disjoint from any other collections  

K𝑙2

eff_o
 l2l1Λi: if there were a common route between K𝑙1

eff_o
and K𝑙2

eff_o
there would 

be a descendant/ascendant relationship between l1 and l2, in contrast with the 

definition of Λi. ■  
 
Unfortunately, Λi lost compliance with condition C1, because of the removal of some 

links from  i with their concerned routes. 

3. restoring condition C1 on Λi, by augmenting Λi with all links belonging to both i-1 

and to all efficient backward stars EBS(t(l)) of the eliminated descendant links l at step 

#2. Formally, this means augmenting Λi with the set Ai≡{ EBS(t(l))  lEi}i-1 

being Ei≡i – Λi the set of eliminated links at step #2. It is easy to prove that the 

resulting set Λi  Ai meets condition C1.  
 

Proof. The elimination of a link l from i at step #2 implies actually the elimination of 
all links belonging to EFS(t(l)): indeed, if l is descendant of another link l’, also all other 
efficient links exiting t(l) will be descendant of l’ by definition. As a result, the 
elimination of l at step #2 has implied the elimination of all routes including any of the 
links belonging to EFS(t(l)). Since such routes are also all those including any links of 

EBS(t(l)), adding all such links will contribute to restore the full set of paths Kod. ■ 
 

Also, it is easy to prove that Λi  Ai meets also condition C2.  
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Proof. There is no relationship of descendance either between links within Ai, because 

by construction Ai is a subset of i-1 that satisfies C2 by definition, or between links 
within Λi, as a direct result of step #2. Thus, it should be proved that there is no 
relationship of dependence between members of Ai and Λi. On the one hand, links 

within Aii-1 cannot be descendant of links within Λii by construction (step #1). 
On the other hand, links within Λi cannot be descendants of links within Ai. Indeed, if 

there were a link lΛi depending upon a link l’Ai by construction l should either 
belong to the forward star of l’ or be even farther in Dial sense than a link of the 
forward star of l’. In both cases, l would thus belong to the set of eliminated links at 

step #2, i.e. lEi, and this is absurd because l belongs by hypothesis also to Λi, being in 

fact ΛiEi≡. ■ 
 

Overall, this yield i≡ΛiAi. 
 

Obviously, the algorithm repeats recursively these steps, starting from 1≡{lEFS(o)}, and 

until i≡. At a glance, it can be summarised as follows: 
 

for each od 
         nMC=1 

1≡{lEFS(o)} 

2≡{l EFS(h(l)) l1} Lod
eff_o    

i=2 
do  

  i≡i  

 for each l1, l2 ∈ i  

if cmineff_o
h(l1)t(l2)<, 

 i≡i - {l2}   (step #2) 

i≡i + EBS{t(l2)}i-1 (step #3) 
end if 

  next  

  i≡i 
nMC = nMC +1 
i=i+1 

  i={l EFS(h(l)) li-1} Lod
eff_o  (step #1) 

until i≡ 
next  

 
The final output of this algorithm is the number of mixing components nMC and the 

corresponding sets of links i i1…nMC to include in the i-th mixing component of the CoNL 
route choice specification. It is easy to recognize that the computational complexity of this 
algorithm is proportional to the number of o-d pairs. Notably, as special cases, it might occur 

|Kl|=1 li, yielding mixing components characterized by a Multinomial Logit structure 
and, if the above occurs for all mixing components, the CoNL degenerates into a Multinomial 
Logit model. These special cases require ad hoc treatment, as illustrated in Section 5.4.2.  
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By way of example, the generic iteration of the proposed algorithm is illustrated in Table 5.1 for 
the choice set reported in Figure 5.3. Notably, iteration #1 starts from EFS(1), represented by 

1≡{1-2, 1-5}, whilst iteration #2 initializes the set 2≡{2-3, 5-6}. Notably, 2 clearly satisfies 
the condition C1 but does not match condition C2, because the efficient route keff

2 (156234) 
should belong to both nests representing links 5-6 and 2-3. This implies applying step #2 of the 
algorithm illustrated in Section 5.4.1.1, that is deleting link 2-3 because of its descendance from 

link 5-6. Then, it is easy to recognize that the resulting set 2≡{5-6} does not satisfy condition 

C1, thus augmenting 2 with the set 1∩EBS{2-3}≡{1-2} in accordance with step #3 in 

Section 5.4.1.1 yields the final set 2≡{1-2,5-6}, satisfying both conditions C1 and C2. The 
resulting CoNL specification for the o-d pair 1-4 is represented in Figure 5.4. 

 

Iteration i i i-1∩EBS(descendant links) i 

1 - - - 1-2, 1-5 

2 2-3, 5-6 5-6 1-2 1-2, 5-6 

3 2-3, 6-2, 6-7 6-2, 6-7 1-2 1-2, 6-2, 6-7 

4 2-3, 7-3, 7-8 - - 2-3, 7-3, 7-8 

5 3-4, 8-4 - - 3-4, 8-4 

6 - end 

Table 5.1:– Illustration of the iterations of the algorithm described in Section 5.1.1 for the o-d pair 1-4 and the efficient routes 
depicted in Figure 5.3. 

 

 

Figure 5.4: CoNL specification provided by the double-step algorithm for the o-d pair 1-4 in the network in Figure 5.1. 

5.4.1.2 Single-step algorithm 

From a practical standpoint, once determined the mixing components for each o-d pair, the 
model structure underlying the probability statement (2.123) should be built by exploring, for 

each mixing component i, the corresponding set of links i. Specifically, the nest in the CoNL 

route choice model structure corresponding to a link li should be built by identifying all 

routes kKod
eff_o such that lk. This suggests a slightly different version of the algorithm 

described so far, potentially leading to a computational time saving in some circumstances. 

mc 1

1-2 1-5

156234 156734 1567841234

mc 3

1-2 6-76-2

1234 156234 156734 156784

mc 5

3-4 8-4

1567841234 156234 156734

mc 2

1-2 5-6

156234 156734 1567841234

mc 4

2-3 7-87-3

1234 156234 156734 156784
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The conceptual vehicle for this simplification is a modification of the condition yielding i at 
step #1, consisting of removing the need to restrict attention only to links belonging to Lod

eff_o, 

i.e. imposing the less restrictive condition i ≡{l EFS(h(l)) li-1} instead of i ≡{l 

EFS(h(l)) li-1} Lod
eff_o. The practical consequence is that the algorithm keeps running 

until there are no further efficient links in the network to explore, i.e. given an origin o, all 

destinations d are processed at a glance, leading to a single set of levels *
i equal for all 

destinations. Intuitively, given two destinations d1 and d2 such that d2 is farther than d1 with 
respect to o in Dial sense, the set of mixing components associated with d2 will include that 

associated with d1. Thus, when considering, by way of example, the destination d1, a generic *
i 

will likely include links not belonging to any of the efficient routes Kod1

eff_o
. However, the nests 

corresponding to those links can be easily discarded from the CoNL route choice model 
structure related to the pair o-d1 when writing the probability statement, i.e. removing nests 

related to links l{*
i - Lod

eff_o}. 
Clearly, this leads to a trade off in the computational time of the two versions of the algorithm. 
The double-step version of the algorithm illustrated in Section 5.4.1.1 runs as many times as the 
number of o-d pairs to get the CoNL mixing components by o-d pair, but is parsimonious in 
assigning routes to nests because, at o-d pair level, the number of mixing components will be 
usually low, thus reducing the computational time needed to check the membership of routes 
to nests. The simplified version is faster in determining network levels, because they are 
processed together for all destinations given a single origin but is much slower in checking the 
membership of routes to nests, because of the remarkably higher number of nests to process. 
As a result, the modeller will have to choose between the two based on the specific topological 
structure of the network under analysis. A practical example of both versions of the algorithm 
will be presented in Section 5.5 on a test network. 

 Calculation of model parameters  

In terms of CoNL route choice model parameters, the identification of the weights of the 
CoNL model via expression (5.11) requires prior identification of ci

l,mean for each mixing 

component iI. This is easy task, once identified the set of links i associated with each mixing 
component i, thanks to the algorithm illustrated in Section 5.4.1. In turn, it is easy to iterate this 
calculation across mixing components to get the denominator of (5.11), and then the 
corresponding weight for each mixing component. 

Importantly, the average cost 
i

meanlc ,  in expression (5.11) is calculated by definition over the 

shared links within i. As a result, if the algorithm proposed in Section 5.4.1 leads to network 

levels i not including any shared links (|Kl|=1 li), i.e. to MNL mixing components, such 
mixing components would be automatically assigned a null weight and thus discarded from the 
overall CoNL route choice structure. Consistently, a null denominator of expression (5.11) 
implies all mixing components of the CoNL route choice model to be in fact MNL 

components, leading to an overall MNL route choice model. Thus, checking for 0
I'

'

, 
i

i

meanlc  

allows identifying when MNL route choice probabilities should be calculated on the set of 
enumerated paths, otherwise CoNL route choice probabilities can be calculated via expression 
(2.123).  



Investigating the potential of the combination of random utility models (CoRUM) for discrete 
choice modelling and travel demand analysis 

130 
 

5.5 Experimental analysis 

This section illustrates the performance of the proposed CoNL route choice model. Following 
a consolidated approach in the literature (Daganzo and Sheffi, 1977; Cascetta et al., 1996; 
Vovsha and Bekhor, 1998; Prashker and Bekhor, 1998; Papola and Marzano, 2013), the model 
is tested first on toy networks, wherein CoNL route choice probabilities can be contrasted with 
expected probabilities, and then on more realistic networks. 
For the sake of completeness, the CoNL route choice model is contrasted on such networks 
with the Multinomial Logit Model (Luce, 1959), the C-Logit model (specified as in Cascetta et 

al., 1996, equation 3.3 with 0==1), the Path-Size Logit (specified as in Ben-Akiva and 
Bierlaire, 1999), the LNL with two different specifications of the model parameters (Vovsha 
and Bekhor, 1998; Prashker and Bekhor, 1998) and the Paired Combinatorial Logit (Chu, 1998; 
Prashker and Bekhor, 1998; Gliebe et al., 1999). All models are specified with a variance level 
consistent with a coefficient of variation cv=0.1 and/or cv=0.2, depending upon the network. 
Furthermore, the CoNL model is applied with different lower bounds for the nesting 

parameters in equation (5.24), i.e. different min values.  
Importantly, in accordance with Section 5.3, the CoNL route choice model aims at targeting 
Daganzo and Sheffi (1977) correlations: in this respect, the Probit model (Daganzo and Sheffi, 
1977) allows introducing explicitly such correlation pattern, and thus it is natural to adopt it as a 
reference for the performances of the CoNL and of the other tested route choice models. 
Consistently, for each tested model, the sum of square errors (SSE) from Probit route choice 
probabilities is reported as aggregate measure of distance.  

  Four links-three routes network 

The first test is on the well-known four-links network proposed by Daganzo and Sheffi (1977), 
depicted in Figure 5.5,  Link impedances are such that the impedance of the bypass route 1-2a-3 
is c+k whilst the two other routes have the same impedance c. The magnitude of the correlation 
between routes 1-2a-3 and 1-2b-3 can be modified by changing the parameters h and k.  

   

Figure 5.5: Daganzo and Sheffi (1977) test network: topology and link cost structure. 

Restricting attention to origin node 1, the recursive algorithm described in Section 5.4.1 
identifies a single network level towards destination 2 and two network levels towards 
destination 3, depicted in the top of Figure 5.6, together with the corresponding structure of 
the mixing components in the bottom of Figure 5.6. For the o-d pair 1-2, there are no shared 
links, thus the algorithm reported in Section 5.4.1 yields an MNL model (with a single 
alternative represented by the sole path-link 12) as special case. In the case of destination 3, the 
second level is an MNL level, thus it occurs w2

CoNL=0 consistent with Section 5.4.2. In turn, 
this implies w1

CoNL=1 and the CoNL in this case collapses to a Nested Logit model. 

c-h

c

h+k

1
2

3

h

b

a
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Figure 5.6: Daganzo and Sheffi (1977) network: CoNL network levels for o-d pair 1-3 (top) and CoNL structure for destinations 
2 and 3, given origin 1 (bottom). 

For the sake of completeness, the single-step illustrated in Section 5.4.1.2 has been applied as 
well, leading to the CoNL mixing components depicted in Figure 5.7. In this case, the structure 
of the network levels, and hence of the mixing components, is equal for both destinations 2 
and 3, and the allocation of routes across nests allows obtaining the same structure reported in 
Figure 5.6. 

 
 

 

Figure 5.7: Daganzo and Sheffi (1977) network: network levels and mixing components resulting from the application of the single-
step illustrated in Section 5.4.1.2. 

Route choice probabilities for this network are reported in the following Table 5.2, by assuming 
c→10, h→0 and k=1.  
Results in Table 5.2 evidence the incapability of modified Logit models to target expected route 
choice probabilities in the toy network of Figure 5.6, while all the other models perform quite 
well. 
 
 
 

c-h

c

h+k

1
2

3

lev.1

lev.2

h

b

a

mc 1

1-2

12

w1
CoNL=1

o-d pair 1-2

12a3 12b3 13 12a3 12b3 13

mc 1 mc 2

1-2 1-3 2a-3 2b-3 1-3

w1
CoNL=1 w2

CoNL=0

o-d pair 1-3

mc 1 mc 2

1-2 1-3 2a-3 2b-3 1-3

12

w1
CoNL=1 w2

CoNL=0

o-d pair 1-2

12a3 12b3 13 12a3 12b3 13

mc 1 mc 2

1-2 1-3 2a-3 2b-3 1-3

w1
CoNL=1 w2

CoNL=0

o-d pair 1-3
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Efficient 
paths 
KEFF

1-3 Ck 

Probabilities (cv=0.1) 

MNL C-Logit 
PS-

Logit PCL 

LNL 

(=0) 

LNL ( 
ar. 

mean) Probit 

CoNL 

(min= 
0.1) 

CoNL 

(min= 
0.2) 

CoNL 

(min= 
0.3) 

CoNL 

(min= 
0.4) 

12a3 10 0,439 0,310 0,303 0,450 0,494 0,494 0,496 0,500 0,499 0,494 0,484 

12b3 11 0,122 0,086 0,092 0,082 0,013 0,013 0,002 0,000 0,001 0,007 0,020 

13 10 0,439 0,605 0,605 0,469 0,494 0,494 0,502 0,500 0,500 0,499 0,496 

SSE Probit 
(*103)= 21,54 52,06 55,75 9,58 0,19 0,19 0,00 0,03 0,02 0,04 0,48 

             

Efficient 
paths 
KEFF

1-3 Ck 

Probabilities (cv=0.2) 

MNL C-Logit 
PS-

Logit PCL 

LNL 

(=0) 

LNL ( 
ar. 

mean) Probit 

CoNL 

(min= 
0.1) 

CoNL 

(min= 
0.2) 

CoNL 

(min= 
0.3) 

CoNL 

(min= 
0.4) 

12a3 10 0,396 0,287 0,280 0,471 0,488 0,488 0,468 0,499 0,482 0,455 0,432 

12b3 11 0,208 0,151 0,161 0,087 0,024 0,024 0,034 0,001 0,020 0,054 0,087 

13 10 0,396 0,561 0,559 0,443 0,488 0,488 0,498 0,500 0,498 0,492 0,482 

SSE Probit 
(*103)= 46,09 50,21 55,03 5,92 0,63 0,63 0,00 2,10 0,43 0,60 4,37 

Table 5.2: Daganzo and Sheffi (1977) network: route choice probabilities for the o-d pair 1-2, under the link cost 
configuration c→10, h→0 and k=1 

 Braess’ network 

The CoNL route choice model has been applied also to the well-known Braess’ network, 
assuming the link costs reported in Figure 5.8 and hypothesizing a single origin (node 1) and 
three destinations (nodes 2 to 4). The corresponding structure of the mixing components for 
each o-d pair is reported in Figure 5.9. Interestingly, all key situations appear in this network: 
for o-d pairs 1-2 and 1-3 there are no shared links, thus in both cases the algorithm reported in 
Section 5.4.1 yields an MNL model as special case.  
Instead, for o-d pair 1-4 there is just an MNL mixing component, discarded through a null 
weight in the overall CoNL structure.  
Table 5.3 reports route choice probabilities on the o-d pair 1-4 for various models and for 
different values of the a/b ratio, thus assuming different correlations amongst the three paths.  
Table 5.3 shows that all contrasted models, apart from MNL and PCL, perform quite well. The 

CoNL yields the same results for any min≤0.33 because, being the true value of both 1-2 and 

3-4 equal to 0.33, the lower bound min is attained only if min>0.33, e.g. with min=0.4.  
 

 

Figure 5.8: Braess’ network: link costs 

a

a
b

b

b-a1
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2
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Figure 5.9: Braess’ network: CoNL structure for o=1 and d=2,3,4 respectively. 

  

mc 1 mc 2 mc 3

1-2 1-3 2-4 2-3 1-3 2-4 3-4

w1
CoNL=0.5; w2

CoNL=0; w3
CoNL=0.5;

124 1234 134 124 1234 134 124 1234 134

o-d pair 1-4

mc 1

1-2

12

w1
CoNL=1;

o-d pair 1-2

mc 1

1-2 1-3

123

w1
CoNL=0.5;

13

mc 2

2-3 1-3

w2
CoNL=0.5;

123 13

o-d pair 1-3
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Efficient paths 

KEFF
1-4 Ck 

Probabilities (cv=0.1) 

a/b=0.8  

MNL C-Logit PS-Logit PCL 

LNL 

(=0) 

LNL (  

ar. mean) Probit 

CoNL 

(min= 

0.1, 0.2, 

0.3) 

CoNL 

(min= 0.4) 

124 a+b 0,333 0,362 0,368 0,341 0,367 0,349 0,373 0,361 0,358 

1234 a+b 0,333 0,277 0,263 0,301 0,265 0,302 0,261 0,279 0,284 

134 a+b 0,333 0,362 0,368 0,341 0,367 0,349 0,373 0,361 0,358 

SSE Probit (*103)= 8,38 0,50 0,05 3,63 0,08 2,87 0,00 0,62 1,01 

           

Efficient paths 

KEFF
1-4 Ck 

Probabilities (cv=0.2) 

a/b=0.8  

MNL C-Logit PS-Logit PCL 

LNL 

(=0) 

LNL (  

ar. mean) Probit 

CoNL 

(min= 

0.1, 0.2, 

0.3) 

CoNL 

(min= 0.4) 

124 a+b 0,333 0,362 0,368 0,341 0,367 0,349 0,368 0,361 0,358 

1234 a+b 0,333 0,277 0,263 0,317 0,265 0,302 0,264 0,279 0,284 

134 a+b 0,333 0,362 0,368 0,341 0,367 0,349 0,368 0,361 0,358 

SSE Probit (*103)= 7,23 0,24 0,00 4,28 0,00 2,21 0,00 0,33 0,63 

Table 5.3: Braess’ network: route choice probabilities for the o-d pair 1-4. 

 Mesh network with long bypass 

The toy network in Figure 5.10 provides an interesting test for the proposed CoNL route 
choice model: on the one hand, it allows illustrating the rationale underlying the steps of the 
algorithm introduced in Section 5.4.1 on a more realistic network; on the other, it offers a more 
challenging correlation pattern amongst routes. In particular, the network includes 12 nodes 
and 14 bi-directional links. Restricting attention to the o-d pair 1-12, and recalling the 
assumption of Dial efficiency with respect to the origin, the choice-set K1-12

eff_1 includes 18 
efficient routes (see Table 5.4) and L1-12

eff_1 includes only mono-directional links.  
The topology of the network for the o-d pair 1-12 is designed to challenge the structure of the 
network levels (and thus of the mixing components) of the CoNL route choice model: link 3-5 
introduces an asymmetry in the mesh, leading to non-trivial descendance/ascendance 
relationships between links (see Section 5.4.1), and link 1-9 represents a bypass to include in 
various mixing components to satisfy condition C1.  
For the sake of clarity, the first iteration of the algorithm described in Section 5.4.1, 1 generates 

the initial set 1≡{1-2, 1-4, 1-9} representing the forward star of origin node 1. Then, for any 

subsequent generic iterations i with i2…5, links 9-10 and 9-11 (members of the forward stars 

of link 1-9) are included first in the set i (step #1), and then discarded because descendants of 

some other links belonging to i (step #2); finally, step #3 reintroduces link 1-9, being 

ascendant of eliminated links and member of i-1. The complete sets of network levels and the 
nesting structure of the corresponding mixing components identified by the algorithm are 
shown in Figure 5.11, wherein routes belonging to each nest are not represented for the sake of 
brevity.  
Table 5.4 reports choice probabilities for all 18 efficient routes linking o-d pair 1-12, applying 
the contrasted models. 
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Figure 5.10: Mesh network: topology and link costs. 

   

Figure 5.11: CoNL mixing components and corresponding nesting structure (elemental alternatives not illustrated for the sake of 
brevity) for the network of Figure 5.10, o-d pair 1-12 

Interestingly, the CoNL route choice model outperforms all contrasted models in targeting 

Probit probabilities, for any value of min and of the coefficient of variation (cv). Furthermore, 
for cv=0.1, all other contrasted models perform significantly worse, with similar results, whilst 

for cv=0.2, both modified Logit models and PCL outperform the LNL, especially with null . 
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Efficient paths KEFF1-12 ID Ck 

Probabilities (cv=0.1) 

MNL C-Logit PS-Logit PCL LNL (=0) 
LNL ( 

ar.mean) Probit 

CoNL 

(min=0.1) 

CoNL 

(min=0.2) 

CoNL 

(min=0.3) 

CoNL 

(min=0.4) 

1 2 3 5 6 9 10 12 1 20 0,000 0,032 0,029 0,035 0,010 0,039 0,018 0,014 0,015 0,019 0,023 
1 2 3 5 6 9 11 12 2 21 0,041 0,016 0,014 0,011 0,000 0,017 0,004 0,002 0,002 0,003 0,005 
1 2 3 5 8 9 10 12 3 20 0,057 0,033 0,029 0,036 0,010 0,041 0,021 0,013 0,013 0,016 0,022 
1 2 3 5 8 9 11 12 4 21 0,041 0,016 0,015 0,011 0,000 0,018 0,006 0,001 0,001 0,002 0,004 
1 2 3 6 9 10 12  5 19 0,080 0,068 0,077 0,094 0,149 0,090 0,114 0,119 0,118 0,115 0,109 
1 2 3 6 9 11 12  6 20 0,057 0,033 0,039 0,036 0,003 0,038 0,021 0,019 0,020 0,022 0,026 
1 2 5 6 9 10 12  7 19 0,080 0,065 0,059 0,093 0,102 0,086 0,085 0,101 0,100 0,098 0,093 
1 2 5 6 9 11 12  8 20 0,057 0,032 0,030 0,035 0,003 0,036 0,016 0,016 0,016 0,019 0,022 
1 2 5 8 9 10 12  9 19 0,080 0,067 0,061 0,093 0,106 0,089 0,100 0,102 0,100 0,096 0,092 
1 2 5 8 9 11 12  10 20 0,057 0,033 0,030 0,036 0,003 0,038 0,019 0,014 0,014 0,016 0,020 
1 4 5 6 9 10 12  11 19 0,080 0,072 0,063 0,093 0,099 0,086 0,100 0,102 0,104 0,102 0,098 
1 4 5 6 9 11 12  12 20 0,057 0,035 0,031 0,035 0,003 0,036 0,018 0,018 0,020 0,023 0,026 
1 4 5 8 9 10 12  13 19 0,080 0,075 0,064 0,093 0,104 0,089 0,099 0,103 0,103 0,101 0,097 
1 4 5 8 9 11 12  14 20 0,057 0,036 0,032 0,036 0,003 0,038 0,017 0,017 0,018 0,020 0,024 
1 4 7 8 9 10 12  15 19 0,080 0,093 0,111 0,093 0,158 0,095 0,131 0,126 0,125 0,121 0,115 
1 4 7 8 9 11 12  16 20 0,057 0,045 0,055 0,037 0,003 0,040 0,026 0,022 0,023 0,026 0,031 
1 9 10 12     17 19 0,080 0,171 0,174 0,095 0,240 0,114 0,172 0,202 0,197 0,180 0,160 
1 9 11 12     18 20 0,057 0,077 0,085 0,039 0,003 0,008 0,033 0,011 0,011 0,021 0,031 

SSE Probit (*103)= 26,77 10,62 11,59 10,25 9,69 9,59 0,00 1,87 1,56 0,59 0,81 

Efficient paths KEFF1-12 ID Ck 

Probabilities (cv=0.2) 

MNL C-Logit PS-Logit PCL LNL (=0) 
LNL ( 

ar.mean) Probit 

CoNL 

(min=0.1) 

CoNL 

(min=0.2) 

CoNL 

(min=0.3) 

CoNL 

(min=0.4) 

1 2 3 5 6 9 10 12 1 20 0,057 0,038 0,034 0,041 0,014 0,048 0,028 0,024 0,027 0,031 0,035 
1 2 3 5 6 9 11 12 2 21 0,041 0,026 0,024 0,013 0,000 0,032 0,016 0,007 0,009 0,012 0,017 
1 2 3 5 8 9 10 12 3 20 0,057 0,039 0,035 0,041 0,014 0,051 0,036 0,024 0,026 0,028 0,033 
1 2 3 5 8 9 11 12 4 21 0,041 0,027 0,025 0,014 0,000 0,034 0,017 0,005 0,007 0,010 0,015 
1 2 3 6 9 10 12  5 19 0,080 0,058 0,066 0,087 0,147 0,074 0,086 0,096 0,093 0,089 0,084 
1 2 3 6 9 11 12  6 20 0,057 0,040 0,046 0,041 0,004 0,048 0,037 0,033 0,035 0,038 0,041 
1 2 5 6 9 10 12  7 19 0,080 0,055 0,050 0,087 0,100 0,071 0,065 0,084 0,081 0,077 0,073 
1 2 5 6 9 11 12  8 20 0,057 0,038 0,035 0,040 0,004 0,046 0,028 0,027 0,030 0,033 0,035 
1 2 5 8 9 10 12  9 19 0,080 0,057 0,052 0,087 0,104 0,073 0,075 0,083 0,080 0,075 0,071 
1 2 5 8 9 11 12  10 20 0,057 0,039 0,036 0,041 0,004 0,048 0,033 0,027 0,028 0,030 0,033 
1 4 5 6 9 10 12  11 19 0,080 0,062 0,054 0,086 0,098 0,071 0,079 0,090 0,087 0,083 0,079 
1 4 5 6 9 11 12  12 20 0,057 0,042 0,038 0,040 0,004 0,046 0,034 0,028 0,034 0,038 0,040 
1 4 5 8 9 10 12  13 19 0,080 0,064 0,055 0,086 0,102 0,074 0,079 0,089 0,086 0,081 0,078 
1 4 5 8 9 11 12  14 20 0,057 0,043 0,039 0,040 0,004 0,048 0,032 0,028 0,032 0,035 0,038 
1 4 7 8 9 10 12  15 19 0,080 0,079 0,095 0,086 0,156 0,079 0,106 0,110 0,105 0,099 0,094 
1 4 7 8 9 11 12  16 20 0,057 0,053 0,066 0,041 0,004 0,051 0,047 0,034 0,040 0,044 0,048 
1 9 10 12     17 19 0,080 0,146 0,149 0,086 0,236 0,095 0,142 0,171 0,165 0,146 0,129 
1 9 11 12     18 20 0,057 0,092 0,102 0,043 0,004 0,013 0,060 0,037 0,036 0,049 0,057 

SSE Probit (*103)= 10,47 4,20 5,03 5,21 28,18 7,75 0,00 2,78 1,90 0,58 0,65 

Table 5.4: Route choice probabilities for the o-d pair 1-12, on mesh network with long bypass in Figure 5.10.
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 Grid network 

For the sake of completeness, the contrasted route choice models are also tested on the grid 
network depicted in Figure 5.1, with focus on the o-d pair 1-4, and with link costs c1-2=c8-4=3, c7-

3=2 and all remaining links. This yields a cost of 5 for routes #1 and #2, 6 for #3 and 7 for 
route #4: the corresponding route choice probabilities are reported in Table 5.5. 

  

Efficient 
paths Keff

1-4 ID Ck 

probabilities (cv=0.1) 

MNL 
C-

Logit 
PS-

Logit PCL 

LNL 

(=0) 
LNL ( 

ar.mean) Probit 

CoNL 

(min= 
0.1) 

CoNL 

(min= 
0.2) 

CoNL 

(min= 
0.3) 

CoNL 

(min= 
0.4) 

1 2 3 4   1 5 0,480 0,570 0,583 0,469 0,487 0,485 0,498 0,489 0,489 0,490 0,490 

1 5 6 2 3 4 2 5 0,480 0,395 0,380 0,421 0,487 0,483 0,492 0,489 0,489 0,490 0,490 

1 5 6 7 3 4 3 6 0,037 0,032 0,034 0,082 0,023 0,030 0,010 0,021 0,020 0,019 0,019 

1 5 6 7 8 4 4 7 0,003 0,003 0,003 0,028 0,002 0,002 0,000 0,002 0,002 0,002 0,002 

SSE Probit (*103)= 1,20 15,28 20,44 11,84 0,32 0,67 0,00 0,22 0,19 0,17 0,15 

              

Efficient paths 
Keff

1-4 ID Ck 

probabilities (cv=0.2) 

MNL 
C-

Logit 
PS-

Logit PCL 

LNL 

(=0) 
LNL ( 

ar.mean) Probit 

CoNL 

(min= 
0.1) 

CoNL 

(min= 
0.2) 

CoNL 

(min= 
0.3) 

CoNL 

(min= 
0.4) 

1 2 3 4   1 5 0,425 0,510 0,516 0,431 0,449 0,435 0,467 0,456 0,458 0,459 0,458 

1 5 6 2 3 4 2 5 0,425 0,353 0,337 0,415 0,449 0,429 0,423 0,456 0,458 0,457 0,453 

1 5 6 7 3 4 3 6 0,118 0,102 0,109 0,114 0,077 0,107 0,084 0,063 0,062 0,063 0,069 

1 5 6 7 8 4 4 7 0,033 0,035 0,038 0,041 0,025 0,029 0,026 0,024 0,023 0,022 0,021 

SSE Probit (*103)= 3,02 7,04 10,52 2,53 1,08 1,65 0,00 1,69 1,82 1,68 1,26 

Table 5.5: Route choice probabilities for the network in Figure 5.1, o-d pair 1-4, with the link cost configuration c1-

2=c8-4=3, c7-3=2 and 1 for all remaining links. 

Even this very simple network is very illustrative of how models not embedding correlations in 
their generating function – such as the modified logit models - may provide results significantly 
worst even with respect to a simple MNL. The PCL appears also far from targeting Probit 
choice probabilities, especially in more deterministic contexts (e.g. cv=0.1), whilst both the 
CoNL and the LNL models generally perform very well for both values of the coefficient of 
variation. 

 Sioux-Falls network 

For the sake of completeness, the CoNL route choice model has been applied also on the well-
known Sioux-Falls network (Figure 5.12).  
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Figure 5.12: Sioux-Falls network, South Dakota. 

Choice probabilities of the contrasted models are shown in Table 5.6 with reference to the o-d 
pair 1-15, characterized by 16 efficient routes; the corresponding structure of the network 
levels, not reported for the sake of brevity, includes 10 levels. Also in this test, the CoNL route 
choice model is able to match very satisfactorily the Probit route choice probabilities, with an 

SSE outperforming all other models for any tested values of min. 
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Efficient paths KEFF
1-15 ID Ck 

Probabilities (cv=0.1) 

MNL C-Logit PS-Logit PCL 

LNL 

(=0) 
LNL ( 

ar.mean) Probit 

CoNL 

(min=0.1) 

CoNL 

(min=0.2) 

CoNL 

(min=0.3) 

CoNL 

(min=0.4) 

1 2 6 8 9 10 15    1 32 0,001 0,002 0,001 0,000 0,001 0,001 0,000 0,000 0,000 0,000 0,000 

1 2 6 8 9 10 17 19 15  2 39 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 

1 2 6 8 16 17 19 15   3 25 0,061 0,091 0,064 0,055 0,107 0,070 0,100 0,100 0,097 0,094 0,090 

1 3 4 5 6 8 9 10 15  4 35 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 

1 3 4 5 6 8 16 17 19 15 5 28 0,011 0,010 0,010 0,006 0,003 0,010 0,001 0,003 0,003 0,003 0,004 

1 3 4 5 9 10 15    6 24 0,106 0,090 0,079 0,105 0,124 0,109 0,125 0,100 0,103 0,108 0,111 

1 3 4 5 9 10 17 19 15  7 31 0,002 0,002 0,002 0,001 0,001 0,001 0,000 0,000 0,000 0,000 0,000 

1 3 4 11 10 15     8 25 0,061 0,051 0,041 0,051 0,011 0,052 0,030 0,030 0,030 0,032 0,036 

1 3 4 11 10 17 19 15   9 32 0,001 0,001 0,001 0,000 0,000 0,001 0,000 0,000 0,000 0,000 0,000 

1 3 4 11 14 15     10 23 0,185 0,177 0,166 0,201 0,226 0,190 0,211 0,222 0,218 0,212 0,205 

1 3 12 11 10 15     11 25 0,061 0,051 0,041 0,051 0,011 0,051 0,032 0,030 0,030 0,031 0,035 

1 3 12 11 10 17 19 15   12 32 0,001 0,001 0,001 0,000 0,000 0,001 0,000 0,000 0,000 0,000 0,000 

1 3 12 11 14 15     13 23 0,185 0,181 0,168 0,201 0,199 0,188 0,196 0,203 0,203 0,200 0,197 

1 3 12 13 24 21 22 15   14 23 0,185 0,196 0,248 0,203 0,261 0,195 0,227 0,232 0,229 0,224 0,219 

1 3 12 13 24 23 14 15   15 26 0,035 0,035 0,042 0,024 0,009 0,028 0,004 0,011 0,011 0,011 0,013 

1 3 12 13 24 23 22 15   16 24 0,106 0,112 0,136 0,102 0,047 0,104 0,074 0,069 0,075 0,083 0,090 

SSE Probit (*103)= 8,35 6,89 12,32 5,19 3,02 5,07 0,00 0,93 0,64 0,50 0,79 

Efficient paths KEFF
1-15 ID Ck 

Probabilities (cv=0.2) 

MNL C-Logit PS-Logit PCL 

LNL 

(=0) 
LNL ( 

ar.mean) Probit 

CoNL 

(min=0.1) 

CoNL 

(min=0.2) 

CoNL 

(min=0.3) 

CoNL 

(min=0.4) 

1 2 6 8 9 10 15    1 32 0,011 0,017 0,010 0,003 0,007 0,009 0,005 0,003 0,003 0,003 0,003 

1 2 6 8 9 10 17 19 15  2 39 0,002 0,000 0,001 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 

1 2 6 8 16 17 19 15   3 25 0,078 0,139 0,085 0,072 0,157 0,091 0,136 0,145 0,140 0,132 0,124 

1 3 4 5 6 8 9 10 15  4 35 0,005 0,004 0,004 0,000 0,000 0,003 0,000 0,000 0,000 0,000 0,000 

1 3 4 5 6 8 16 17 19 15 5 28 0,034 0,030 0,032 0,018 0,010 0,033 0,016 0,012 0,012 0,015 0,018 

1 3 4 5 9 10 15    6 24 0,104 0,087 0,079 0,111 0,138 0,108 0,126 0,103 0,111 0,115 0,116 

1 3 4 5 9 10 17 19 15  7 31 0,015 0,013 0,011 0,005 0,008 0,012 0,003 0,003 0,003 0,003 0,003 

1 3 4 11 10 15     8 25 0,078 0,063 0,054 0,068 0,016 0,072 0,064 0,045 0,049 0,054 0,060 

1 3 4 11 10 17 19 15   9 32 0,011 0,009 0,008 0,003 0,000 0,008 0,001 0,002 0,002 0,002 0,003 

1 3 4 11 14 15     10 23 0,137 0,127 0,126 0,167 0,191 0,141 0,161 0,182 0,171 0,163 0,156 

1 3 12 11 10 15     11 25 0,078 0,065 0,055 0,068 0,016 0,071 0,063 0,045 0,048 0,053 0,059 

1 3 12 11 10 17 19 15   12 32 0,011 0,009 0,008 0,003 0,000 0,008 0,001 0,002 0,002 0,002 0,003 

1 3 12 11 14 15     13 23 0,137 0,130 0,128 0,167 0,167 0,139 0,151 0,166 0,161 0,156 0,151 

1 3 12 13 24 21 22 15   14 23 0,137 0,141 0,189 0,168 0,220 0,145 0,157 0,187 0,178 0,171 0,166 

1 3 12 13 24 23 14 15   15 26 0,059 0,058 0,073 0,042 0,018 0,054 0,027 0,025 0,027 0,030 0,035 

1 3 12 13 24 23 22 15   16 24 0,104 0,106 0,137 0,108 0,052 0,106 0,089 0,080 0,093 0,101 0,105 

SSE Probit (*103)= 7,44 5,13 12,62 5,49 11,67 4,66 0,00 2,96 1,34 0,71 0,72 

Table 5.6: Route choice probabilities for the Sioux-Falls network of Figure 5.12, o-d pair 1-15. 
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 Summary of experimental analysis 

At a glance, the CoNL route choice model has been proved to be capable to perform very well 
in all tested networks, having provided almost always the best fit with respect to Probit choice 
probabilities and, more importantly, having never failed in targeting expected route choice 
probabilities. The same did not occur for the other tested models, including modified Logit 

models, the LNL with null ’s and the PCL whose performances do vary significantly across 
tested networks.  

In terms of specification, fixing a lower bound min for the nesting parameters helps stabilizing 
the performances of the CoNL, for the motivation reported in Section 5.3.2. Importantly, the 
experimental analysis indicates that relaxing such lower bound increases the variability of CoNL 
performances, however keeping the CoNL the best model in most of the tests. Overall, a rule-

of-thumb is to set min in between the interval [0.3-0.4], so as to stabilize the CoNL 

performances; alternatively, min can be estimated of course based on disaggregated data.  
It is also worth underlining that the CoNL capability to target Probit route choice probabilities 
better than other models is a straightforward consequence of its mathematical background, that 
allows specifying directly a CoNL model consistent with an underlying correlation structure and 
its corresponding correlation values. In fact, all LNL and PCL specifications proposed in the 
literature – see for instance Gliebe et al., (1999), Vovsha and Bekhor (1998) and Prashker and 
Bekhor (1998) – belong to the family of the Cross-Nested Logit model, characterized by a non-
closed-form expression of its correlations and incapable to allow for a straightforward 
specification of the model to target a correlation matrix (Marzano and Papola, 2008; Marzano 
et al. 2013; Marzano, 2014). As a consequence, PCL and LNL route choice specifications are 
motivated only by empirically sound motivations. Conversely, the CoNL closed form 
correlation expression (2.126), clearly stating the relationship between model 
structure/parameters and corresponding underlying correlations, easily allows targeting 
Daganzo and Sheffi (1977) correlations through the route choice adaptation proposed in 
Section 5.3. 

5.6 Conclusions and research prospects 

The chapter has illustrated the application to route choice of the Combination of Nested Logit 
(CoNL) model, that is a particular specification of the Combination of RUMs (CoRUM) model 
proposed by Papola (2016), whose key feature is the availability of a closed-form statement for 
both choice probabilities and correlations. These features have allowed to propose a specific 
CoNL route choice adaptation, capable to target Daganzo and Sheffi (1977) correlations, 
differently from all the other closed form route choice models proposed so far – see for 
instance the PCL of Gliebe et al., (1999), and the LNL model of Vovsha and Bekhor (1998) 
and of Prashker and Bekhor (1998) – which should be regarded only as empirically sound 
specifications not motivated by a specific theoretical target. This more solid theoretical 
background allows the proposed model to outperform all the other closed form route choice 
models proposed so far. The proposed model has been also operationalized by means of an 
algorithm, providing CoNL route choice probabilities on a set of explicitly enumerated paths 
for a given o-d pair.  
For each o-d pair, the proposed CoNL route choice specification adopts routes as alternatives 
and shared links as elemental nests, grouped in mixing components representing levels of the 
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transport network. In particular, a network level represents a set of links such that the 
corresponding mixing component should satisfy two properties: (a) each mixing component 
should include all efficient routes connecting that o-d pair as elemental alternatives; (b) each 
efficient route should belong to only one nest in each mixing component, for the latter to be a 
Nested Logit. In this respect, an algorithm capable to detect network levels and to provide the 
corresponding mixing components on a set of enumerated paths without explicit inspection of 
the routes has been proposed, that is a CoNL specification allowing implicit probability 
statement. 
The performance of the CoNL route choice model have been tested on various networks, 
contrasting its choice probabilities with other route choice models available in the literature, 
always leading to very satisfactory results. In particular, albeit the CoNL is a homoscedastic 
model - and hence structurally unable to model heteroscedasticities - its route choice 
probabilities are always very close to the Probit route choice probabilities, i.e. the benchmark 
model under the assumption of Daganzo and Sheffi (1977) route correlation pattern. 
Two straightforward research prospects are envisaged. The former refers to the possibility of 
implementing a CoNL route choice model without explicit enumeration of the set of feasible 
paths for each o-d pair, leveraging the conceptual vehicle of the algorithm illustrated in Section 
5.4.1. The latter aims at completing the assessment of the performance of the CoNL route 
choice model by means of a disaggregated estimation on individual route choice data. 
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Chapter 6: Some advance on 
CoNL route choice model 

This chapter proposes some theoretical and practical advance on route choice modelling. The 
CoNL route choice model (Papola et al., 2018) has been presented in Chapter 5, to give an 
answer to some relevant issues in modelling choice behaviour when choosing paths within a 
network. Although its appealing property of closed-form correlation expression and its great 
robustness in reproducing target Multinomial Probit probabilities (see Section 5.5), it seems to 
have several margins of improvement. First, the model has been tested only with the explicit 
enumeration of paths and this could notoriously have a high computational burden in presence 
of large-size networks. Second, the CoNL has been tested only on efficient choice sets with 
respect to each origin, potentially leading to undesirable eliminations of paths from the choice-
set. Third, the procedure previously proposed for computing the model parameters can be 
improved, to better catch the correlation effects on route choice probabilities. With this 
regards, an implicit enumeration algorithm is proposed, implementing the CoNL route choice 
model as presented in Chapter 5, i.e. with the only restriction due to Dial-efficiency. 
Furthermore, the CoNL route choice model has been tested with an acyclic choice set, without 
Dial-efficiency restriction, and slight changes in the model parameters computing are proposed. 
A study on the correlations reproduced by the main route choice models is shown, to 
investigate the real impact of capacity to reproduce overlapping effect (Daganzo and Sheffi, 
1977) on choice probabilities. Several tests are conducted both on toy networks and on a real 
network, computing the likelihood of a real dataset of route choice observations, based on 
trajectory data of drivers moving within the Regione Campania network.  

6.1 Route choice modelling issues – a brief recap 

 The computational problem in route choice: implicit enumeration 
algorithms 

As recalled in Chapter 2, the first computational source of complexity in route choice 
modelling is represented by the size of the choice set. Assuming the classic path definition (i.e. 
a sequence of network links connecting an o-d pair), the problem on a real size network comes 
in a threefold way: 1) the number of links constituting a route 2) the number of acyclic path 
connecting an o-d pair 3) the number of o-d pairs that is generally necessary to guarantee a 
good zoning level of the area of study. 
Thus, the explicit route enumeration may represent a very burdensome operation that one 
needs to sustain before working with a traffic assignment procedure. For solving this problem, 
under some (more or less) restrictive hypothesis, several implicit enumeration methods have 
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been proposed in literature. The main assumption of all the classic implicit route choice models 
is working only with additive link costs. The reader can refer to Section 2.3 for a more 
comprehensive discussion on the main state of the art contribution.  
The first stochastic network-loading (SNL) algorithm is the Dial algorithm (Dial, 1971), 
implementing a MNL model for route choice, via the computation of entities so-called Dial 
weights, allowing for link flows computation on the basis of a simple recursive network 
exploration. However, in addition to the well-known limitations of the MNL itself, the 
algorithm presents other two problems. First, the algorithm implicitly works on a selective 
choice set, given by the so-termed efficient paths with reference to a given origin o, i.e. it works 
only with links allowing to walk away from the origin (and/or to get closer to the destination). 
Second, in its most implemented version, given an origin o, it does not allow the variance 
parameter differentiation for the different destination d. The latter represents, in general, an 
unrealistic assumption, because of bigger is the route cost and higher would be the expected 
dispersion of the residuals. 
For overcoming the MNL and Dial algorithm limitations, the MNP is commonly used, 
particularly with the Monte Carlo algorithm (Sheffi, 1985), drawing link costs from mono-
variate density distributions and exploiting, at each drawing iteration, the application of a 
minimum cost path algorithm. Despite the desirable properties of the MNL, it suffers from the 
burdens due to simulation. Performing an SNL Probit requires a big number of draws for 
reaching stable values of the flows. The problem is worsening in a S.U.E. procedure, because of 
the repetition of the simulation needed for each fixed-point research iteration. Moreover, a 
computational advantage descending from Daganzo and Sheffi (1977) hypothesis on the 
dispersion of link impedances is represented by the dependence of the entire procedure from a 
unique proportionality parameter. But this means, as explained in Section 2.3.4.1, considering a 
coefficient of variation decreasing with link costs. This could represent another unrealistic 
hypothesis in a real world application. This is the reason why several authors proposed implicit 
enumeration algorithms that, actually, did not receive a strong interest in the practical 
applications. The Link Nested Logit (Vovsha and Bekhor, 1998) gives the possibility to avoid 
the enumeration of paths, but implementing a particular case of the CNL model (Vovsha, 
1997), consisting of assuming a null value for all the nesting parameters. This assumption, as 
discussed in Papola et al.(2018), can be unpleasant, because of it enhances the effects of 
differences in systematic utility values on choice probabilities, since the choice within each nest 
tends to be too deterministic (see Section 2.3.3.1 for a discussion). 
Another route choice solution is represented by the MNL with a deterministic correction for 
the overlapping link impedances. The first formulation that has been proposed in literature is 
the C-Logit model (Cascetta et al., 1996), wherein the systematic utilities are corrected by means 
of the so-called communality factor of the route (CFk). Russo and Vitetta (2003) proposed an 
implicit enumeration paths procedure referring to one of the original formulation of the CFk. 
Nevertheless, all the approximate MNL formulations with correction of utilities have shown 
their structural limitations (see Prashker and Bekhor, 1998; Prashker and Bekhor, 2004; 
Marzano, 2006, Frejinger and Bierlaire, 2007; Papola and Marzano, 2013; Papola et al., 2018). 
Papola and Marzano (2013) proposed an operationalization of the Network GEV model (Daly 
and Bierlaire, 2001) for route choice, with the possibility of implementing the model with the 
implicit enumeration of paths, by means of a single-step procedure on the efficient sub-
network. Unfortunately, the underlying model does not allow to compute the covariances in a 
closed form. This means the model does not guarantee to catch the Daganzo and Sheffi (1977) 
covariances paradigm.  
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More recent developments on the subject are the Markovian Traffic Assignment procedures 
(Akamatsu, 1996, 1997; Baillon and Cominetti, 2008; Fosgerau et al., 2013, Mai et al., 2015; 
Mai, 2016). They are receiving a lot of attention in literature, because they allow assigning link 
flows on network with recursive algorithms, without need of restricting the set of available 
paths to the acyclic paths. This means considering an infinite choice set of cyclic paths, 
theoretically including paths with infinite cycles. It is a writer’s opinion that, even though cyclic 
paths consideration can be a benefit in some appropriate circumstances (for instance, the 
searching for parking close to the destination or the pedestrian flows in some uncertainty 
circumstances), those methodologies have not yet demonstrated their effectiveness in 
reproducing real observed choice with reference to the classic approaches. The real (great!) 
danger is considering also very unrealistic cyclic paths, because no restriction is imposed and no 
differentiation is made between a path with a cycle close to the destination and another path 
passing more than once by the origin, or whatever intermediate node of a path connecting an 
o-d pair. 
Thus, working with an implicit enumeration algorithm whose underlying choice model is 
theoretically robust, i.e. a model that structurally considers the covariances among unobservable 
factors in route choice, and that avoid simulations, represents, even now, an open research 
topic. 

 The overlapping problem in route choice 

Albeit many definitions of routes exist, and diverse choice paradigms are available, the majority 
of contributions in route choice modelling field draws upon the classical definition of route as 
an ordered sequence of links connecting an origin-destination o-d pair and upon the Random 
Utility Models (RUMs) framework (Ben-Akiva and Lerman, 1985; Cascetta, 2009; Train, 2009). 
Within this framework, an unanimously acknowledged peculiarity of the route choice context is 
the presence of a complex correlation structure amongst perceived utilities of alternative routes 
– i.e. the so-called correlations among routes – structurally determined by the topological 
overlapping of alternative routes in a transport network. In this respect, Daganzo and Sheffi 
(1977) assumed the correlation between any pairs of routes to be proportional to their 
topological overlapping, measured using a given link impedance. Such assumption can be 
applied to the network as a whole or, alternatively, only to a portion of the network given by 
primary, most likely perceived, roads, as proposed by Frejinger and Bierlaire (2007). Daganzo 
and Sheffi (1977) identified the Multinomial Probit model (MNP) as a natural to operationalize 
their assumption into a route choice model, thanks to the possibility offered by the MNP 
model to specify directly its correlation matrix. As a result, the MNP is regarded as the 
reference RUM to account for the effects of correlations in route choice modelling.  
Unfortunately, as recalled in Chapter 2, the MNP suffers from the absence of a closed-form 
probability statement, leading to computational issues related to the need to simulate choice 
probabilities. The same also applies to Mixed Logit applications to route choice, e.g. Bekhor et 
al. (2002), Frejinger and Bierlaire (2007). Thus, a challenging research question has been tackled 
by many researchers: can closed-form RUM-based route choice models be specified consistent 
with the Daganzo and Sheffi (1977) assumption?  
The Generalized Extreme Value (GEV) modelling framework, comprehensively defined by the 
GEV model by McFadden (1978), represents the most straightforward mathematical vehicle to 
deal with this issue. The simplest GEV-based route choice model was proposed by Dial (1971), 
who applied the Multinomial Logit model (MNL) to route choice with an elegant and 
computationally very effective algorithm to calculate route choice probabilities without explicit 
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route enumeration. Unfortunately, the MNL model hypothesizes null correlation amongst 
perceived utilities of alternatives, because of its underlying distributional assumptions. Thus, 
several researchers introduced correction/penalty factors in the systematic utility of a MNL 
model, as a trick to mimic the effect of correlations on route choice probabilities: relevant 
examples in this respect are the above mentioned C-Logit model (Cascetta et al., 1996) and the 
Path-size model (Ben-Akiva and Ramming, 1998; Ben-Akiva and Bierlaire, 1999; Ramming, 
2001; Hoogendoorn-Lanser et al., 2005). However, these models exhibit limitations in 
capturing the proper effect of route correlations on choice probabilities (see the references in 
given in Section 2.3.2.4 as conclusive discussion on the Logit based route choice models with 
deterministic utility correction).  
Consequently, a theoretically sound research direction is aimed at applying “more complex” 
GEV models allowing for nonzero correlations amongst alternatives – such as the Cross-
Nested Logit model (Vovsha, 1997) and the Network GEV model (Daly and Bierlaire, 2001b) – 
to route choice modelling. In this context, many models have been proposed so far, including 
the Link-Nested Logit (LNL) model by Vovsha and Bekhor (1998), the Paired-Combinatorial 
Logit (PCL) model by Prashker and Bekhor (1998), and the Path Multilevel PML (also known 
as Link Based Network GEV) model by Papola and Marzano (2013). Interestingly, there is no 
assessment in the literature on the capability of such models to target Daganzo and Sheffi 
(1977) correlations, being their performance rather evaluated just in terms of capability to target 
MNP route choice probabilities. 
The GEV models is not the sole closed-form models to apply to route choice modelling.  In 
Chapter 5 a new route choice model has been presented, i.e. the CoNL route choice model 
(Papola et al., 2018), that is a particular specification of the Combination of RUMs (CoRUM) 
model proposed by Papola (2016), whose key feature is the availability of a closed-form 
statement for both choice probabilities and correlations. 
In particular, the proposed CoNL route choice model is characterized by a closed-form 
expression of choice probabilities, and operationalized by means of an algorithm providing 
CoNL route choice probabilities on a set of explicitly enumerated paths for a given o-d pair. 
The mathematical structure of the CoRUM allows handling effectively the relationship between 
the CoNL specification (model structure, parameters) and its underlying correlations, thus 
enabling the possibility of specifying a CoNL capable to target Daganzo and Sheffi (1977) 
correlations. In this respect, however, the CoNL model is still homoscedastic, and the impact 
of the operationalization of its parameters on the values of correlations values is not fully 
explored yet. 
As a result, neither GEV-based route choice models (the LNL and the PCL, namely) nor the 
CoNL route choice model have been explored fully in their underlying correlations.  
For GEV-based route choice models, this is actually a difficult task, because of the non-closed 
form of the expression of the correlations underlying any network-GEV models, as extensively 
studied by Abbé et al. (2007) and Papola and Marzano (2008). This implies numerical 
evaluation of double-integrals with strongly nonlinear integrands, a circumstance that likely 
prevented the aforementioned correlation assessment. In this respect, however, Marzano et al. 
(2013) for the CNL model and Marzano (2014) for any network GEV models, provided a 
simpler and more effective methodology for the calculation of GEV correlations, based on the 
numerical integration of a mono-dimensional integral, thus with parsimonious calculation 
times. 
For the CoRUM (and CoNL) model, calculation of correlation is a straightforward task, thanks 
to the inherent model structure. However, the CoNL route choice model has been just released 
by Papola et al. (2018), thus a full assessment of the correlation values – being the correlation 



Investigating the potential of the combination of random utility models (CoRUM) for discrete 
choice modelling and travel demand analysis 

146 
 

pattern already consistent by definition with Daganzo and Sheffi (1977) – has not been 
exploited yet.  
Given these premises, this chapter aims at filling this gap, providing a comprehensive analysis 
of the correlation values underlying LNL, PCL and CoNL route choice models. This analysis is 
also conducted in order to set some slight changes in computing CoNL route choice model 
structural parameters, investigating the impact of correlations and the procedure on choice 
probabilities values. 

6.2 An implicit enumeration algorithm for CoNL route choice 

 CoNL recursive equations 

Briefly recalling the notation of Chapter 5, we assume: 

 G{L,N}be a graph representing a road network; 

 L a set of links l, whose size is nL; 

 N a set of nodes n, whose size is nN; 

 C a set of centroids, whose size is nC; 

 OD a set of o-d pair, whose size is nC
2; 

 t(l), h(l) respectively the tail and the head of link l; 

 EFS(n) and EBS(n), respectively, the forward and the backward star of the node n;  

 cl lL the additive link impedance; 

 Kod be a set of acyclic routes connecting the pair of centroids o and d with o, dC; 

 Ck=l cl lLk the route cost; 

 LkL the ordered set of links associated with each route kKod; 

 Lod≡{Lk kKod} the collection of all links of all routes within Kod; 

 KlKod≡{Kl lLod} the set of routes k including l; 

 nMC the number of mixing components in the CoNL route choice model;  

 i the generic mixing component of the CoNL model; 

 i the subset of network links associated with the generic i-th mixing component. 

 I the set of all i ; 

 Il the subset of mixing components which a link l belongs to; 

 Ijm≡{l Il,  lLjLm } the set of sharing links of paths j and m;  
The CoNL model (Papola, 2016) is based on the assumption (2.122) on random residuals, 
implying the (2.123) for choice probabilities. The latter can be written expressing the NL 
probabilities in using the Bayes theorem: 

 
od

I

( ) ( / ) ( ) Ki i i i i

i

p k w p k l p l k


      (6.1) 

being ki the generic nest associated with the i-th mixing NL. Note that the second term of the 
right side represents the probability of choosing path k within the nest li, while the third term 
represents the probability of nest li. 
Following the same arguments of Dial (1971), the second term can be expressed as a sequence 
of conditional link choice probabilities. Indifferently, a conditional link choice probability can 
be expressed viewing at the choice as conditioned on coming from tail t(l) or head h(l), where l 
belongs to Lk: 
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With reference to the second expression on the right-side of (6.2), the generic link choice 
probability can be expressed as a Multinomial Logit probability among the links belonging to 

the EBS(h(l)), wherein it appears  as the specific Gumbel variance parameter for that o-d pair, 
as: 

 

/(h( ))

'/(h( ))

' EBS(h( ))

t ( )

' t ( ')

' EBS(h( ))

'/(t( ))

' EBS(t( ))

' '/(t( )

exp( / )
( / )

exp( / )

exp(( ) / )

exp(( ) / )

exp(( ln( exp( / )) / )

exp(( ln( exp(

k

k

l li i

l L l l

l l

l l

l L l l

l l

l l l

l l

l l l

V
p k l

V

c Y

c Y

c V

c V





 

 

  













 

  
 

  

  


  









)

' EBS(h( )) ' EBS(t( ))

'/(t( ))

' EBS(t( ))

od

' '/(t( ))

' EBS(h( )) ' EBS(t( ))

/ )) / )

exp( / ) exp( / )

K
exp( / ) exp( / )

k

k

l L

l l l l

l l l

l l

l L l l l

l l l l

c V

k
c V

 

 

 



 





 



 

  
 


 




 

 (6.3) 

Evidently, each term of the product represent a Multinomial Logit probability on the link 
utilities and, above all, each link utility represents the utility of all the paths connecting h(l) to 
the considered destination d. Thus, (6.3) can be written as: 
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Dial(1971) expressed the last term of (6.3) as ratio between two entities, respectively called link 
weight and node weight. The conditional probability becomes: 
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being: 

 

'/(t( ))

' EBS(t( ))

( )

exp( / ) exp( / )

exp(( ) / )

l l l l

l l

l t l

w c V

c Y

 





  

  


 (6.6) 

and: 
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 (6.7) 

The computation of the link and node weights can be computed through a procedure that 
explores the nodes of the network, with a precise topological order (increasing minimum cost 
path for reaching the node), and the flows can be assigned without need of path enumeration. 
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In addition, the third term of (6.1) can be expressed as a function of Dial weights. Assuming 

the notation 
onW indicating the Dial weight of node n with reference to the origin o, the nesting 

probability can be expressed as: 
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Proof: The NL nest probability can be expressed as a MNL choice probability among the 
nesting groups (Mc Fadden, 1978): 
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Being the nest represented by the link grouping all elemental alternatives/routes sharing the 
same link/nest, the utility of the link can be expressed as the utilities of a group including all 
routes sharing l.  Thus, a generic link utility can be expressed as: 
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According to the i.i.d. Gumbel assumption on random residuals, the expected value of 
perceived link utility is the logsum of the utilities Uk sharing the same link l: 
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Looking at the last term on the right side of (6.11) it can be noted that exp( / )]lc   is a 

common term to all the adding terms of the summation in k’. Thus, it can be put in evidence 
out of the sum, and the product made on all links l’ that are different from l. This mean writing 
the (6.8) in the form: 
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Defining k’o-t(l’) as the path connecting the origin o with the tail of the generic link l’ and, 
analogously, k’h(l’)-d as the path connecting the head of the generic link l’ with the destination d, 
(6.12) can be re-written as: 
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 (6.13) 

Finally, defining as t( ) h( ),
o dl lY Y , respectively, the logsum of utilities of all paths connecting origin 

o with the node t(l) and the logsum of utilities of all paths connecting the node h(l) with the 
destination d, (6.13) can be more succinctly written as: 
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 t( ) h( )o dl l l l l lV c Y Y        (6.14) 

The numerator of the link probability can be expressed as MNL choice probability among links 
as: 
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Remembering the Dial’s assumption (6.7), the numerator can be finally re-written as the 
numerator in the (6.8) that we want to proof: 
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The proof for the denominator is immediately obtained, because of the latter is a sum referred 

to the links of the set i of the same quantities in (6.16). 
Putting together (6.5) and (6.8), the (6.1) can be purely expressed as a function of Dial’s weights 
and CoNL parameters as: 
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This means the computation of route choice probabilities can be made as a function of links 
and nodes quantities, without need of path enumeration. 

 Specification of mixing components algorithm without explicit 
enumeration 

As widely described in Chapter 5, particularly in Section 5.3.1, the CoNL mixing components 
specification represents the main step to operationalize the model. For this purpose, Section 
5.4.1 proposes a recursive algorithm able to perform it, in a double version. In both versions, 

indicating with i the generic iteration, the procedure explores the network, defining a set i of 
links representing the nests of the generic component (also defined network level) i. Then, in 
the explicit enumeration procedure, it is possible to match each path with the nests (that, in 
turn, are links included in the path). The first version, i.e. the double-step version, explores the 
network for each o-d pair, thanks to the fact that, once defined the choice set Kod, the 
procedure deduces a set Lod

eff_o of efficient links (with reference to the origin o) within which 
performing the procedure for searching the network levels. This means performing nC

2 times 
the procedure, but also that each one of them the procedure considers also the links within 
Lod

eff_o (see Section 5.4.1.1). The second version, i.e. the single-step version, instead, performs 
nC network explorations, but it does not restrict the attention to the links belonging to Lod

eff_o 
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(see Section 5.4.1.2). In an explicit enumeration procedure, it is possible to perform the single-

step version, obtaining a set of levels i, but successively matching their links with the paths 
belonging to Kod. This leads to have several empty nests (see the examples in Figure 5.7).  
The first problem to deal with an implicit enumeration procedure refers the possibility to adapt 
the procedures described in Section 5.4.1 without possibility to know the set Kod. In fact, in an 
implicit enumeration procedure there is no possibility nor to deduce Lod

eff_o  in the same way 
(i.e., starting from a choice set Kod), neither to successively match paths and nests. However, 
the set exhaustive set of the efficient links is available downstream having performed the 
minimum cost path algorithm. Thus, the procedure must consider the set Lod

eff_od of all the 
efficient links with reference both to the origin o and to the destination d. This means the 
implicit enumeration procedure restricts the set of available links. Furthermore, it is not 
possible to work with a single-step procedure, because the latter is based on the successive 
paths-nests matching. 
However, the results on toy networks applications in Section 6.2.5 show how the restriction can 
be not so relevant in many cases. Furthermore, the real network application of the explicit 
CoNL route choice model described in Section 6.4 confirms that the double-step procedure is 
by far the more computational efficient procedure in real-world cases. 
The second problem to deal is the possibility to implement the check for MNL levels. In fact, 
as described in Section 5.4.1, this is performed to avoid levels that does not contribute to 
reproduce correlations. An MNL level occurs in two ways: one alternative per nest or full set of 
alternatives in a nest. It is possible to check it thanks to the Dial weights computation. In fact, a 
nest l containing one a only alternative verifies, simultaneously, the two properties: 

 t( ) o-t( )exp( / )l lW C    (6.18) 

 h( ) h( ) dexp( / )l lW C    (6.19) 

The (6.18) derives from the consideration that if one path includes node n, then only one path 
appears in the log-sums within (6.3). In the case the (6.18) and (6.19) is verified for all the links 

belonging to i, the level is deleted from the set of levels or, equivalently, the procedure assigns 
null CoNL weight to it. The check for a unique full nest, instead, is easily performed by 
considering that the only way to obtain it is to have a one-nest level. In fact, it is not possible, 
by construction, to have an empty nest when using the double-step procedure. 
The two checks mentioned must be performed when building the mixing components 
specification. 

 SNL CoNL algorithm 

The recursive equation (6.17) contains terms that are implicitly computable, thanks to the 
(2.82), (6.5) and (6.8). The mixing components identification procedure described in Section 
5.4.1 must be preliminarily applied for identifying the network’s levels. 
Processing each levels and each link of the generic level, (6.8) must be computed as a function 
of Dial node weights. This implies, for each link, a forward and a backward exploration 
respectively from the head and the tail of the processed link. 
In terms of flows, being d(o-d) the generic (o-d) matrix entry, a final link flow can be expressed as: 
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 (6.20) 

Wherein p(l/o-d) represents the assignment map element for link l, that is obviously a function 
of all the CoNL link choice probabilities. 

Each nest li with its probability p(l/o-d), defines a portion of total demand do-d to be 
assigned on the network, passing through the link l. Thus, each fl

o-d represents also a flow to be 
distributed to all the paths connecting (o-d) that cross the link l. Thus, it is intuitive to build a 
procedure processing each level of the network (ith NL mixing components of the CoNL), each 
link l (nesting group of the generic NL) and assigning a flow fl

i,o-d,pre-load to: the link l, all links l’ 
belonging to paths connecting origin o and the node t(l) and all the links l’ belonging to the 
paths connecting the node h(l) with the destination d. This assignment can be easily performed 
exploiting the Dial’s procedure, respectively, from o to t(l) and from h(l) to d, while processing 
each link of each network’s level. 
These considerations can be summarized in the algorithm shown below. Defining: 

- →Dialweightso-dn1(n2) a sub-routine that computes the Dial weight, on the efficient 
sub-network with reference to the o-d, for the node n2, starting from node n1; 

- →Dialflowso-dn1(n2) a sub-routine that assigns the fl
i,o-d,pre-load as defined in (6.20), to all 

the links l’ of the efficient sub-network with reference to the o-d, from node n1 to node 
n2; 

Defining a coefficient of variation cv, the algorithm proceeds as shown in Table 6.1. The 
algorithm allows to compute link flows consistent with the CoNL route choice model (Papola 
et al., 2018), with the only adding restriction of the double Dial efficiency. Several tests will be 
set out in the next paragraphs. 
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SNL CoNL algorithm 
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for each li 
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p l

p l
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den
  

 → Dialflowso-d
o(t(l))  

 → Dialflowso-d
h(l)(d) 

next 
next 

next 

Table 6.1: SNL CoNL algorithm without explicit enumeration of routes. 

 Simplified SNL CoNL algorithm 

The procedure described in the previous sections, for each o-d pair substantially depends on 
the Dial weights and flows computation, for each link l of each network level i. Albeit it is 
effective for reproducing CoNL route choice flows, it requires to perform twice the 
subroutines  for weights and twice the sub-routine for link flows. This happens because a 

different variance parameter l for each link determines different Dial weights value, according 

to (6.6) and (6.7). The different values of l are due, in turn, to the different nesting parameters 

value l, because of the computation of (5.15). Accepting the simplification of keeping fixed the 
nesting parameters value makes not necessary to perform the two procedures for weights and 
flows twice for each link of each level. 
In fact, it is possible to compute once the Dial weights prior to the algorithm (the preliminary 
procedure already did it). Furthermore, this allows to update in memory a temporary matrix, 
whose generic entry is the fl

i,o-d,pre-load, loading the pairs o-t(l) and h(l)-d. However, it has been 
noted that the dimension of the matrix is not nC

2, but nN
2. 

Defining: 
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- ODtemp as the matrix whose entries are all the node to node temporary flows; 
- → Dialflowso-dn1(•) a sub-routine that assigns the fl

i,o-d,pre-load as defined in (6.20), to all 
the links l’ of the efficient sub-network with reference to the o-d, from node n1 to all 
nodes n2, in a single-step exploration; 

The algorithm can be simplified as shown in Table 6.2 and the procedure reduces significantly 
the computation time. Obviously, the resulting link flows are biased with reference to the link 
flows resulting from the rigorous version of the algorithm. However, several tests will be set 
out in the next sub-section, to compare the performance of the simplified algorithm with 
reference to the first one, showing that the last version is able to significantly reduce the 
computation time, introducing a not significant bias in the link flows computation. 
 

Simplified SNL CoNL algorithm 

 for each o-d 

o-d,min6 cv C




 
  

 minl   
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o l l d lOD OD f    

next 
next 

for each n1,n2N 
→ Dialflowso-dn1(•) 

next 
next 

  

Table 6.2: Simplified SNL CoNL algorithm without explicit enumeration of routes. 

 Experimental results 

This sub-section shows the resulting link flows of the SNL CoNL with the two algorithms 
described in Section 6.2.3 and 6.2.4. Some results are shown on the following three test 
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networks: the Braess network, the mesh network with bypass (see Section 5.5.3) and the Sioux-
Falls network. 
A comparison between the SNL Probit flows and the SNL CoNL is here proposed. 
Particularly, giving the implicit enumeration CoNL identical results of the explicit enumeration 
CoNL, the comparison relates the two algorithms proposed in the previous section (see Table 
6.1 and Table 6.2). 
The Braess network is tested with reference to the o-d pair 1-4, with a total demand equal to 
1000. For helping the comprehension of the flows differences entity, an average absolute value 
of errors indicator (AAVE) is computed, with reference to the SNL Probit flows. The results, 
reported in Table 6.3, show negligible differences between the first and the second algorithm 

for SNL CoNL. In fact, when the value of MIN and ’s, respectively, in the first general 
algorithm and in the second simplified algorithm are set to be equal, the results are practically 
identical. Thus, with reference to SNL Probit, the difference in terms of flows is very similar, 
i.e. about 33 veic/h, representing the 3.3% of the total demand. 
The second network’s results are reported in Table 6.4 with reference to the o-d pair 1-12. The 

simplified CoNL gives substantially different results when MIN is set to be small. A deepening 

about the MIN value and its meaning is widely discussed in the following section. Setting MIN 
on a value of 0.3/0.4 makes the results very similar between the two algorithms and very similar 
to SNL Probit too (2.4 and 2.5 % of the total o-d demand, respectively, for the first and the 
second algorithm). 
The Sioux-Falls network shows another interesting aspect. In fact, as shown in Section 5.5.5, 
the o-d pair 1-15 has 16 efficient routes. The Table 5.6 reports the route costs, that are very 
different from each other. For working on an exhaustive choice-set, the explicit enumeration 
CoNL needs a big number of Monte-Carlo iterations. The implicit procedure, instead, has the 
advantage of being exhaustive on the efficient sub-network. In Table 6.6, the explicit and 
implicit enumeration procedures are contrasted. In the explicit case, the computation time is 
shown as a function of the Monte Carlo iterations that are required for obtaining an exhaustive 
choice-set with reference to the o-d pair 1-15. It can be seen that the implicit enumeration 
procedure gives the advantage of being an exhaustive procedure on the efficient sub-network, 
with a computation time significantly lower. The computation times reported in Table 6.6 
appear as non-linearly increasing with the number of iterations. This is essentially due to the 
check on the unicity of the random generated path, that is performed at each iteration. In fact, 
the when the number of generated paths rises, then the number that the procedure must check 
rises. 
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Links SNL Probit 
SNL CoNL - implicit enumeration (l 

computed with (6.24))  SNL CoNL - implicit enumeration (l fixed) 

tail head =cv2*Cod,min min≤0.3 min=0.35 min=0.4 →0 =0.1 =0.2 =0.3 =0.35 =0.4 

1 2 689 639 640 642 625 629 634 638 640 642 

1 3 311 361 360 358 375 371 366 362 360 358 

2 3 311 279 280 284 271 269 267 276 278 284 

2 4 377 361 360 358 375 371 366 362 360 358 

3 4 623 639 640 642 625 629 634 638 640 642 

  AAVE SNL Probit= 33 33 32 34 35 35 33 33 32 

Table 6.3: Braess network, o-d pair 1-4 – Comparison of link flows. 
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Links SNL Probit SNL CoNL - implicit enumeration (l computed with (6.24))  SNL CoNL - implicit enumeration (l fixed) 

tail head =cv2*Cod,min min=0 min=0.1 min=0.2 min=0.3 min=0.4 min=0 min=0.1 =0.2 =0.3 =0.4 

1 2 478 412 413 416 424 437 384 392 410 427 444 
1 4 323 376 380 383 381 377 365 369 366 364 363 
1 9 199 212 208 200 196 186 252 239 224 209 193 
2 3 239 188 190 197 208 225 171 176 195 214 229 
2 5 239 224 223 219 215 212 212 217 214 213 215 
3 5 121 59 61 69 82 100 19 27 57 83 102 
3 6 124 129 129 128 127 125 152 148 138 131 127 
4 5 214 232 235 238 238 235 212 218 219 220 222 
4 7 109 144 144 145 143 142 152 151 147 144 140 
5 6 304 257 261 268 275 279 222 231 245 258 270 
5 8 264 258 258 259 259 269 222 231 245 258 270 
6 9 429 386 390 396 402 404 374 379 383 389 397 
7 8 109 144 144 145 143 142 152 151 147 144 140 
8 9 373 402 402 403 402 410 374 382 393 402 410 
9 10 655 776 771 747 709 675 973 941 825 742 690 
9 11 345 224 229 253 291 325 27 59 175 258 310 
10 12 655 776 771 747 709 675 973 941 825 742 690 
11 12 345 224 229 253 291 325 27 59 175 258 310 

  AAVE SNL Probit= 53 52 45 34 24 109 98 66 41 25 

Table 6.4: Mesh grid network with bypass, o-d pair 1-12 – Comparison of link flows. 
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Links SNL Probit 
SNL CoNL - implicit enumeration (l 

computed with (6.24))  SNL CoNL - implicit enumeration (l fixed) 

tail head =cv2*Cod,min min=0 min=0.1 min=0.2 min=0.3 min=0.4 min=0 min=0.1 =0.2 =0.3 =0.4 

1 2 160 160 157 151 144 137 184 178 169 158 146 
1 3 840 840 843 849 856 863 816 822 831 842 854 
2 6 160 160 157 151 144 137 184 178 169 158 146 
3 4 320 338 338 340 342 343 352 351 347 347 348 
3 12 520 502 505 509 514 520 463 471 484 496 507 
4 5 124 102 105 114 119 121 151 144 136 132 130 
4 11 196 236 233 226 223 222 201 206 211 214 218 
5 6 20 0 0 0 0 0 0 0 0 0 0 
5 9 118 102 105 114 119 121 151 144 136 132 130 
6 5 13 0 0 0 0 0 0 0 0 0 0 
6 8 167 160 157 151 144 137 184 178 169 158 146 
7 18 49 0 0 0 0 0 0 0 0 0 0 
8 7 49 0 0 0 0 0 0 0 0 0 0 
8 9 3 2 2 2 2 3 2 2 2 2 3 
8 16 114 158 155 149 142 134 182 176 167 155 143 
9 10 121 104 108 117 121 124 153 147 138 134 132 
10 15 255 188 192 210 226 238 189 194 213 232 246 
10 17 0 5 5 5 5 7 4 4 4 4 6 
11 10 118 88 89 98 110 121 40 51 79 102 120 
11 14 330 363 359 341 325 315 341 344 330 317 308 
12 11 252 215 215 213 213 214 180 188 198 205 210 
12 13 268 287 290 296 301 306 284 283 286 291 296 
13 24 268 287 290 296 301 306 284 283 286 291 296 
14 15 343 386 382 366 354 347 348 351 341 335 334 
14 23 7 0 0 0 0 0 0 0 0 0 0 
16 10 16 0 0 0 0 0 0 0 0 0 0 
16 17 108 158 155 149 142 134 182 176 167 155 143 
17 19 108 163 159 154 147 141 186 180 171 160 149 
18 16 10 0 0 0 0 0 0 0 0 0 0 
18 20 39 0 0 0 0 0 0 0 0 0 0 
19 15 134 163 159 154 147 141 186 180 171 160 149 
20 19 26 0 0 0 0 0 0 0 0 0 0 
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Links SNL Probit 
SNL CoNL - implicit enumeration (l 

computed with (6.24))  SNL CoNL - implicit enumeration (l fixed) 

tail head =cv2*Cod,min min=0 min=0.1 min=0.2 min=0.3 min=0.4 min=0 min=0.1 =0.2 =0.3 =0.4 

20 21 3 0 0 0 0 0 0 0 0 0 0 
20 22 10 0 0 0 0 0 0 0 0 0 0 
21 20 0 0 0 0 0 0 0 0 0 0 0 
21 22 176 194 192 181 174 170 243 232 205 187 175 
22 15 268 263 266 271 273 274 276 275 275 273 270 
23 14 20 24 24 25 28 32 7 7 10 18 26 
23 22 82 69 74 89 99 104 33 44 71 87 95 
24 21 173 194 192 181 174 170 243 232 205 187 175 
24 23 95 92 98 114 127 137 40 51 81 104 121 

  
AAVE SNL 

Probit= 21 20 18 17 18 32 29 22 18 17 

Table 6.5: Sioux-Falls network, o-d pair 1-15 – Comparison of link flows. 
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Monte-Carlo # iterations 100 500 1000 5000 10000 

Number of different efficient 
routes generated 12 13 13 15 16 

Choice-set generation/Total time 
[sec] 0.71 2.03 4.1 28 86 

 Explicit SNL CoNL/Total time 
[sec] 2.3 4.1 6.2 40 106 

 Implicit SNL CoNL/Total time 
[sec] 0.4 

Table 6.6: Sioux-Falls network – Computation time. 

6.3 An in depth analysis of CoNL route choice and Daganzo 
and Sheffi correlations 

This subsection investigates the capability of the CoNL route choice model to reproduce 
Daganzo and Sheffi (1977) target correlations. The analysis is carried out contrasting the CoNL 
with the main route choice models that are capable to handle complex correlation patterns. 
Obviously, the first model proposed in this comparison is the Multinomial Probit (MNP; 
Daganzo and Sheffi, 1977; Yai et al., 1997). As recalled in Section 6.1.2, it represents the natural 
candidate to aim this target, since its underlying hypothesis of multivariate Normal distribution 
of the random residuals and the fact that the covariance matrix enters directly into the integral 
(2.15). The second model compared is the Link Nested Logit model (Vovsha and Bekhor, 
1998). The LNL is surely the first GEV model proposed with the purpose of reproducing 
flexible covariance matrices effects on probabilities, even if it does not allow to compute 
covariances in closed form. Because of that, the investigation of its real capability of 
reproducing Daganzo and Sheffi correlations represents, to the best of my knowledge, an open 
question for route choice modelling. Three main LNL formulations are investigated, namely 
the null nesting parameters formulation (Vovsha and Bekhor, 1998), the arithmetic mean in 
inclusion’s parameters formulation (Prashker and Bekhor, 1998) and a geometric mean in 
inclusion’s parameters formulation (Marzano, 2006). The latter has not been fully explored yet 
in its potential. About the first one, instead, the further aim of this analysis is testing the 
capability of the LNL with a fixed value of the nesting parameters, since a null value for them 
actually represents an undesirable condition in many cases (see the properties of the nest 
probabilities described in Section 2.2.1.1). Another interesting particularization of the CNL is 
the Pair Combinatorial model (Chu, 1989; Prashker and Bekhor, 1998; Gliebe et al, 1999), 
because it is built on the idea of specifying the model with a nest for each pair of alternatives. 
This concept is apparently very suitable in contexts with expected high correlation effects like 
route choice. The LNL and PCL correlations are computed using both the theoretical 
formulation of the covariances between two paths utilities, i.e. the standard double integral one, 
and the (Marzano et al., 2013) and (Marzano, 2014) procedure, i.e. the more efficient equivalent 
single-integral formulation. The integral simulation is based on a Matlab R2017b code, based on 
a function of Matlab library implementing the method of global adaptive quadrature 
(Shampine, 2008). Finally, the CoNL route choice is tested also by implementing some minor 
changes in the models parameters computation. Particularly, it has been reminded that the 
application of CoNL route choice is founded on two main steps: the network levels 
identification and the nesting parameters computation. The last one is essentially based on 
(5.11) and (5.15), wherein the average value of the link costs of each level plays a central role. 
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The first small change lies in numerator and denominator computation of (5.11), wherein, the 
cl,mean value is computed in a weighted way, on the basis of how many times a generic link l 
appears in all the levels, given an o-d pair. In other words, defining nL

i as the number of links 
constituting a generic network level i, while ni

l represents the number of levels wherein the link 
l appears, the (5.11) becomes: 

 
,

L

1
I

i

i l
l mean i l

l i

c
c i

n n

    (6.21) 

The second small change consists of testing the capability of achieving Daganzo and Sheffi 
correlations by substituting the average value computed by (6.21) with the maximum and the 
minimum value of the costs.  
The comparison is carried out on some of the toy networks described in Section 5.5. For the 
first two networks, the results are directly discussed and shown in terms of correlation matrices. 
For the other networks, given their size and complexity, some appropriate synthetic indicators 
are adopted. 
The Daganzo and Sheffi (1977) network depicted in Figure 5.5, represents the simplest 
correlations scenario, given by a typical 3x3 block-diagonal (i.e. Nested structured) covariance 
matrix. The only value of interest is represented by the correlation between paths 12a3 and 
12b3. As shown in Section 5.5.1, the CoNL collapses to a simple NL, notoriously capable to 
handle this correlations scenario. Thus, the CoNL is perfectly capable to reproduce it with an 

opportune setting of the parameter MIN (see Section 5.3.2). In this case, clearly, the opportune 
value is 0. In this way, except for some numeric approximation, all the models are capable to 
reproduce the target correlation value, whatever value of h (see Section 5.5.1 for details). 
The Braess network depicted in Figure 5.8, instead, represents a typical Cross Nested structured 
correlation matrix. The case here tested is the one characterized by a ratio a/b=0.8, i.e. the same 
one examined in Section 5.5.2. 
The LNL with the first specification and the CoNL route choice perfectly reproduce the target 
correlation matrix. It has been noted that LNL with null nesting parameters is impossible to be 

simulated, so a simulation with a bigger value of ’s is required. The minimum value for ’s 
allowing for integral computation is 0.11, so the results shown in Table 6.7 actually shows a 
biased value. However, the Braess case surely represents a boundary case well analysed in 
Papola (2004) and Abbé et al. (2007) and the Papola’s conjecture comes to the aid, giving a 
perfect target value for the correlations (0.44). Thus, there is a great confidence that the actual 
result of LNL correlation value is the right one. 
The network depicted in Figure 5.10 surely represents a very challenging correlation scenario, 
since the presence of the long bypass (link 1-9). The choice set of routes connecting the o-d 
pair 1-12 consists of 18 routes with similar route costs. Another very interesting network is the 
Sioux-Falls network, already examined in Section 5.5.5., with reference to the o-d pair 1-15 and 
an efficient choice-set of 16 paths. In Table 6.8 and Table 6.9 the ID of routes are summarized, 
in order to briefly recall them in the target correlation matrix depicted in  
Table 6.10 and  
Table 6.11. For immediately evaluating the distance between the values of correlations 
reproduced by the models and the target correlation matrix, a mean square error indicator is 
used. The mean square error (MSE) indicator is computed both as a function of the 
correlations among the single alternatives and as a function of the correlations among 
differences of route utilities. The results are shown in Table 6.12 and Table 6.13, where the best 

values of the MSE as a function of MIN are bolded. The references FCM and RCM represent, 
respectively, the full correlation matrix, related to the space of the alternatives, and the reduced 



Investigating the potential of the combination of random utility models (CoRUM) for discrete 
choice modelling and travel demand analysis  

161 
 

matrix, related to the space of the utility differences. Finally, the route choice probabilities MSE 
is proposed in the third column, with reference to the Multinomial Probit probabilities. 
In the first network, the best values in terms of probabilities are given by the LNL, but with a 

different value for the ’s. In the second network, instead, the modified CoNL provides the 

best values. Particularly, increasing the value of ’s gives a positive effect on route choice 
probabilities, confirming the intuition for which null nesting parameters potentially have the 
unpleasant effect of giving too deterministic probabilities within the nests. Furthermore, the 
mathematical properties of the G.E.V. models explains this phenomenon, because the density 
function of a M.E.V. distribution does not depend exclusively on the first and second order 
moments. In fact, in a CNL generating function, a lot of terms appear (inclusion and nesting 
parameters), and often a one-to-one relationship between a given correlation matrix and a 
vector of structural parameters cannot be identified. The same concept seems to apply to 
CoNL, that is characterized by a cumulative function wherein several parameters appear (CoNL 
weights and nesting parameters). Thus, reproducing a target correlation matrix is not 
synonymous with reproducing target probabilities, differently than MNP model. This effect is 
very clear in the PCL and the other LNL formulations case. The PCL, in particular, gives the 
most biased values of correlations in both cases, but not the worst in terms of probabilities. In 
fact, Table 6.13 shows how the FCM and RCM potentially exhibit different trends. This actually 
does not represent a great improvement in the comprehension of the phenomenon, because of 
the already discussed relationship between covariances and probabilities in the G.E.V. models. 
However, it stresses the concept that reproducing a target correlation matrix helps but it can be 
not sufficient to guarantee a target probability vector. 
Finally, the results show that CoNL route choice model using (6.21) for nesting parameters 
calculation seems to work better than the original one, both in terms of correlations and in 
terms of probabilities. Particularly, substituting cl,min in (6.21) gives, in these cases, the best 
results, even better than those published in Papola et al. (2018). 
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Target (Daganzo and Sheffi, 1977) 

Paths 1234 124 134 

1234 1,00 0,44 0,44 

124 0,44 1,00 0,00 

134 0,44 0,00 1,00 
 

 

 
LNL (Vovsha and Bekhor, 1998; 

min=0.11) 

Paths 1234 124 134 

1234 1,00 0,40 0,40 

124 0,40 1,00 0,00 

134 0,40 0,00 1,00 
 

 
 
 
LNL (Prashker and Bekhor, 1998) 

Paths 1234 124 134 

1234 1,00 0,29 0,29 

124 0,29 1,00 0,00 

134 0,29 0,00 1,00 
 

 
 
 
LNL (Marzano, 2006) 

 Paths 1234 124 134 

1234 1,00 0,36 0,36 

124 0,36 1,00 0,00 

134 0,36 0,00 1,00 
 

 

PCL (Gliebe et al., 1999) 

Paths 1234 124 134 

1234 1,00 0,35 0,35 

124 0,36 1,00 0,24 

134 0,36 0,00 1,00 
 

 

CoNL route choice (MIN<0.3) 

Paths 1234 124 134 

1234 1,00 0,44 0,44 

124 0,44 1,00 0,00 

134 0,44 0,00 1,00 
 

 

CoNL route choice (MIN=0.4) 

Paths 1234 124 134 

1234 1,00 0,42 0,42 

124 0,42 1,00 0,00 

134 0,42 0,00 1,00 
 

Table 6.7: Braess network – Target correlation matrix and reproduced correlation values for the compared route choice models. 
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Routes ID Routes ID 

1 2 3 5 6 9 10 12 k1 1 2 5 8 9 11 12  k10 

1 2 3 5 6 9 11 12 k2 1 4 5 6 9 10 12  k11 

1 2 3 5 8 9 10 12 k3 1 4 5 6 9 11 12  k12 

1 2 3 5 8 9 11  k4 1 4 5 8 9 10 12  k13 

1 2 3 6 9 10 12  k5 1 4 5 8 9 11 12  k14 

1 2 3 6 9 11 12  k6 1 4 7 8 9 10 12  k15 

1 2 5 6 9 10 12  k7 1 4 7 8 9 11 12  k16 

1 2 5 6 9 11 12  k8 1 9 10 12     k17 

1 2 5 8 9 10 12  k9 1 9 11 12     k18 

Table 6.8: Mesh network with bypass, o-d pair 1-12: ID of the routes. 

Routes ID Routes ID 

1 2 6 8 9 10 15   k1 1 3 4 11 10 17 19 15  k9 

1 2 6 8 9 10 17 19 15 k2 1 3 4 11 14 15    k10 

1 2 6 8 16 17 19 15  k3 1 3 12 11 10 15    k11 

1 3 4 5 6 8 9 10 15 k4 1 3 12 11 10 17 19 15  k12 

1 3 4 5 6 8 16 17 19 k5 1 3 12 11 14 15    k13 

1 3 4 5 9 10 15   k6 1 3 12 13 24 21 22 15  k14 

1 3 4 5 9 10 17 19 15 k7 1 3 12 13 24 23 14 15  k15 

1 3 4 11 10 15    k8 1 3 12 13 24 23 22 15  k16 

Table 6.9: Sioux-Falls network, o-d pair 1-15: ID of the routes. 
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Paths k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15 k16 k17 k18 

k1 1,00 0,88 0,60 0,49 0,77 0,65 0,72 0,60 0,31 0,20 0,51 0,40 0,10 0,00 0,10 0,00 0,10 0,00 

k2 0,88 1,00 0,49 0,62 0,65 0,78 0,60 0,73 0,20 0,34 0,40 0,54 0,00 0,15 0,00 0,15 0,00 0,15 

k3 0,60 0,49 1,00 0,88 0,46 0,35 0,31 0,20 0,72 0,60 0,10 0,00 0,51 0,40 0,31 0,20 0,10 0,00 

k4 0,49 0,62 0,88 1,00 0,35 0,49 0,20 0,34 0,60 0,73 0,00 0,15 0,40 0,54 0,20 0,34 0,00 0,15 

k5 0,77 0,65 0,46 0,35 1,00 0,87 0,63 0,51 0,32 0,21 0,42 0,31 0,11 0,00 0,11 0,00 0,11 0,00 

k6 0,65 0,78 0,35 0,49 0,87 1,00 0,51 0,65 0,21 0,35 0,31 0,45 0,00 0,15 0,00 0,15 0,00 0,15 

k7 0,72 0,60 0,31 0,20 0,63 0,51 1,00 0,87 0,58 0,46 0,53 0,41 0,11 0,00 0,11 0,00 0,11 0,00 

k8 0,60 0,73 0,20 0,34 0,51 0,65 0,87 1,00 0,46 0,60 0,41 0,55 0,00 0,15 0,00 0,15 0,00 0,15 

k9 0,31 0,20 0,72 0,60 0,32 0,21 0,58 0,46 1,00 0,87 0,11 0,00 0,53 0,41 0,32 0,21 0,11 0,00 

k10 0,20 0,34 0,60 0,73 0,21 0,35 0,46 0,60 0,87 1,00 0,00 0,15 0,41 0,55 0,21 0,35 0,00 0,15 

k11 0,51 0,40 0,10 0,00 0,42 0,31 0,53 0,41 0,11 0,00 1,00 0,87 0,58 0,46 0,37 0,26 0,11 0,00 

k12 0,40 0,54 0,00 0,15 0,31 0,45 0,41 0,55 0,00 0,15 0,87 1,00 0,46 0,60 0,26 0,40 0,00 0,15 

k13 0,10 0,00 0,51 0,40 0,11 0,00 0,11 0,00 0,53 0,41 0,58 0,46 1,00 0,87 0,58 0,46 0,11 0,00 

k14 0,00 0,15 0,40 0,54 0,00 0,15 0,00 0,15 0,41 0,55 0,46 0,60 0,87 1,00 0,46 0,60 0,00 0,15 

k15 0,10 0,00 0,31 0,20 0,11 0,00 0,11 0,00 0,32 0,21 0,37 0,26 0,58 0,46 1,00 0,87 0,11 0,00 

k16 0,00 0,15 0,20 0,34 0,00 0,15 0,00 0,15 0,21 0,35 0,26 0,40 0,46 0,60 0,87 1,00 0,00 0,15 

k17 0,10 0,00 0,10 0,00 0,11 0,00 0,11 0,00 0,11 0,00 0,11 0,00 0,11 0,00 0,11 0,00 1,00 0,87 

k18 0,00 0,15 0,00 0,15 0,00 0,15 0,00 0,15 0,00 0,15 0,00 0,15 0,00 0,15 0,00 0,15 0,87 1,00 
 

Table 6.10: Mesh network with bypass: target Daganzo and Sheffi correlation matrix for routes connecting the o-d pair 1-12. 
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Paths k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15 k16 

k1 1,00 0,74 0,46 0,63 0,07 0,32 0,10 0,21 0,00 0,00 0,21 0,00 0,00 0,00 0,00 0,00 

k2 0,74 1,00 0,58 0,41 0,21 0,10 0,46 0,00 0,37 0,00 0,00 0,37 0,00 0,00 0,00 0,00 

k3 0,46 0,58 1,00 0,07 0,53 0,00 0,18 0,00 0,18 0,00 0,00 0,18 0,00 0,00 0,00 0,00 

k4 0,63 0,41 0,07 1,00 0,51 0,66 0,39 0,47 0,24 0,28 0,34 0,12 0,14 0,14 0,13 0,14 

k5 0,07 0,21 0,53 0,51 1,00 0,39 0,51 0,30 0,43 0,32 0,15 0,30 0,16 0,16 0,15 0,15 

k6 0,32 0,10 0,00 0,66 0,39 1,00 0,66 0,57 0,29 0,34 0,41 0,14 0,17 0,17 0,16 0,17 

k7 0,10 0,46 0,18 0,39 0,51 0,66 1,00 0,29 0,67 0,30 0,14 0,54 0,15 0,15 0,14 0,15 

k8 0,21 0,00 0,00 0,47 0,30 0,57 0,29 1,00 0,67 0,58 0,60 0,32 0,17 0,17 0,16 0,16 

k9 0,00 0,37 0,18 0,24 0,43 0,29 0,67 0,67 1,00 0,52 0,32 0,69 0,15 0,15 0,14 0,14 

k10 0,00 0,00 0,00 0,28 0,32 0,34 0,30 0,58 0,52 1,00 0,17 0,15 0,57 0,17 0,37 0,17 

k11 0,21 0,00 0,00 0,34 0,15 0,41 0,14 0,60 0,32 0,17 1,00 0,67 0,58 0,33 0,31 0,33 

k12 0,00 0,37 0,18 0,12 0,30 0,14 0,54 0,32 0,69 0,15 0,67 1,00 0,52 0,29 0,28 0,29 

k13 0,00 0,00 0,00 0,14 0,16 0,17 0,15 0,17 0,15 0,57 0,58 0,52 1,00 0,35 0,53 0,34 

k14 0,00 0,00 0,00 0,14 0,16 0,17 0,15 0,17 0,15 0,17 0,33 0,29 0,35 1,00 0,61 0,77 

k15 0,00 0,00 0,00 0,13 0,15 0,16 0,14 0,16 0,14 0,37 0,31 0,28 0,53 0,61 1,00 0,68 

k16 0,00 0,00 0,00 0,14 0,15 0,17 0,15 0,16 0,14 0,17 0,33 0,29 0,34 0,77 0,68 1,00 
 

Table 6.11: Sioux-Falls network: target Daganzo and Sheffi correlation matrix for routes connecting the o-d pair 1-15. 
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CoNL (Papola et al., 2018) CoNL modified with cl,mean CoNL modified with cl,min CoNL modified with cl,max 

MIN FCM RCM 
Choice 

probabilities FCM RCM 
Choice 

probabilities FCM RCM 
Choice 

probabilities FCM RCM 
Choice 

probabilities 

0 3,71 2,22 3,09 1,52 0,48 10,46 1,50 0,47 9,68 2,67 1,10 9,52 

0.1 3,87 2,31 2,78 1,64 0,52 8,18 1,64 0,53 7,43 2,88 1,17 7,15 

0.2 4,40 2,58 1,90 2,12 0,72 2,63 2,02 0,69 2,21 3,59 1,45 2,09 

0.3 5,65 3,12 0,58 3,31 1,31 0,58 2,93 1,17 0,47 5,09 2,13 0,58 

0.4 8,72 4,62 0,65 6,20 2,78 0,55 4,84 2,26 0,50 8,06 3,61 0,71 

             

 

LNL (Vovsha and Bekhor, 

1998 with 's=MIN) 
LNL (Prashker and Bekhor, 

1998) LNL (Marzano, 2006) PCL (Gliebe et al., 1999) 

MIN FCM RCM 
Choice 

probabilities FCM RCM 
Choice 

probabilities FCM RCM 
Choice 

probabilities FCM RCM 
Choice 

probabilities 

0 0,96 0,50 28,18 61,71 27,29 7,75 16,41 9,69 

3,79 124,98 76,23 5,21 

0.1 0,99 0,57 22,91 61,71 27,29 7,75 16,41 9,69 

0.2 1,20 0,92 7,70 61,74 27,34 7,68 16,41 9,69 

0.3 2,03 1,82 1,42 61,79 27,51 7,60 16,41 9,69 

0.4 4,29 3,71 0,35 61,91 27,93 7,45 16,41 9,69 

Table 6.12: Mesh network with bypass, o-d pair 1-12 –MSE indicator for reproduced correlation values. 
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CoNL (Papola et al., 2018) CoNL modified with cl,mean CoNL modified with cl,min CoNL modified with cl,max 

MIN FCM RCM 
Choice 

probabilities FCM RCM 
Choice 

probabilities FCM RCM 
Choice 

probabilities FCM RCM 
Choice 

probabilities 

0 6,01 3,56 3,65 2,96 1,87 4,99 4,96 2,52 2,41 6,26 4,06 4,05 

0.1 6,25 3,71 2,96 3,07 1,94 4,38 5,08 2,59 1,93 6,53 4,22 3,37 

0.2 7,03 4,21 1,34 3,43 2,17 2,64 5,50 2,86 0,81 7,41 4,74 1,66 

0.3 8,53 5,11 0,71 4,29 2,66 1,06 6,27 3,39 0,3 9,09 5,64 0,75 

0.4 11,07 6,49 0,72 6,16 3,62 0,4 7,52 4,30 0,26 11,85 7,06 0,73 

             

 

LNL (Vovsha and Bekhor, 

1998 with 's=MIN) 
LNL (Prashker and Bekhor, 

1998) LNL (Marzano, 2006) PCL (Gliebe et al., 1999) 

MIN FCM RCM 
Choice 

probabilities FCM RCM 
Choice 

probabilities FCM RCM 
Choice 

probabilities FCM RCM 
Choice 

probabilities 

0 3,00 0,29 11,67 

51,80 27,83 4,66 14,98 9,63 1,55 78,47 49,81 5,49 

0.1 2,94 0,34 9,96 

0.2 2,74 0,58 4,78 

0.3 2,71 1,15 1,73 

0.4 3,39 2,35 0,59 

Table 6.13: Sioux-Falls network, o-d pair 1-15 - MSE indicator for reproduced correlation values. 
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6.4 Experimental results on real data with unrestricted acyclic 
choice set 

In Papola et al. (2018) the capability of CoNL route choice model to fit real observations is not 
analysed. For bridging this gap, this sub-section presents the results of the application of CoNL 
route choice on a set of real observed route choices. A dataset of 219 trajectories of drivers 
moving inside the Regione Campania network has been collected, with the aid of a smartphone 
application for Andoid systems called Algoroute18. The Regione Campania graph consists of 
539.863 links and 244.019 nodes, subdivided in 1.112 zones (see Figure 6.1) with the aid of the 
software TransCad. After the map-matching and the data-cleaning operations, 197 observed 
routes have been considered in the analysis, each one in its time slot. 

 

Figure 6.1: Regione Campania zoning (TransCad screenshot). 

The CoNL route choice has been contrasted with Multinomial Logit, C-Logit and P.S.-Logit 
models, in terms of probabilities to reproduce the observed choices, through the log-likelihood 
computation with standard values for the parameters.  
Obviously, working with an explicit enumeration model with a restricted choice set can give 
numerical problems in the likelihood computation. In fact, a route that is not efficient with 
reference to its origin o, with the current procedure, gives null probability to be chosen and, 
consequently, a null value for the likelihood and a negative infinitive value for the log-
likelihood. Thus, using the same procedure for identifying the network levels, i.e. the efficient 
sub-network based procedure described in Section 5.4.1, the explicit allocation of routes to the 
links/nests belonging to routes has been modified. Practically, the routes are added a posteriori 
to the CoNL specification for each level. In the case no link/nest l of a generic level i belongs 
to a given non-efficient route k, the route k constitutes a single alternative-nest. For better 
clarifying the idea, consider the grid network and the choice set depicted in Figure 5.1. The 
considered levels of network are represented in Figure 5.4, but the routes at the lowest level of 
the trees representation are those of Figure 5.1. The resulting specification is depicted in Figure 

                                              
18 The Android application Algoroute has been developed by Inputspace S.r.l.., a spinoff of the Department of Civil, 
Architectural and Environmental Engineering of University of Naples Federico II. 
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6.2, wherein the whole exhaustive acyclic choice-set connecting the o-d pair 1-4 is allocated, at 
the lowest level of the representation, within the nests. 

 

Figure 6.2: Grid network (Figure 5.1): CoNL specification for o-d pair 1-4 with the exhaustive acyclic choice-set. 

For the choice-set generation and the choice probabilities computation of each model, a 
stochastic assignment software has been developed using Matlab R2018.a. Figure 6.3 represents 
a screenshot of the software menu. 
Totally, 3.599 alternative routes are generated with the Monte Carlo technique, on 142 different 
o-d pairs. 
For all the models the systematic utilities are specified purely as a function of the route costs, 
computing these as: 

 
k c k c lk l

l

V C a c k        (6.22) 

For fixing a scale and for interpreting the negative effect of the route cost on the systematic 

utility, a cost parameter c=-1 is assigned to each routes utilities. In the C-Logit model 

formulation, the parameter 0 in (2.86) is set to be 1, as well as the PS and the  for the Path 
Size Logit in (2.91). The CoNL is implemented, instead, in its original version with a practically 

null MIN. 
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Figure 6.3: Screenshot of the SNL software developed in Matlab R2018a. 

As shown in Table 6.14, the CoNL route choice provides the best performance in reproducing 
observed choices. 

 

MNL C-Logit  PS-Logit  CoNL 

LL (cv=0.1) -770,0 -708,0 -983,1 -700,7 

LL (cv=0.2) -586,6 -525,6 -793,0 -515,3 

LL (cv=0.3) -527,5 -467,2 -731,2 -455,9 

Table 6.14: Log-likelihood computation for the compared models. 

6.5 Conclusions and future steps 

The chapter proposes some advance on CoNL route choice model, with reference to the model 
version described in Chapter 5. An implicit enumeration algorithm for computing link flows 
consistent with the CoNL route choice model on the efficient sub-network has been illustrated. 
In the order, Section 6.2 provides a theoretical demonstration, some considerations on the 
adaptation of the mixing components procedure for the implicit algorithm, an operative general 
procedure, a simplified version of the latter and some experimental results on toy networks. 
Section 6.3, instead, carries out an in depth analysis on the real capability to reproduce target 
correlation matrices given by the Daganzo and Sheffi (1977) paradigm, contrasting the results 
with other models, both in terms of reproduced covariances (in the space of utilities and in the 
space of utility differences) and in terms of probabilities. Particularly, in the same sub-Section, 
some minor changes to the CoNL nesting parameters formulation are tested and general 
conclusions about the relationship between correlations and choice probabilities for the G.E.V. 
models are derived. Finally, Section 6.4 performs the validation of the original CoNL route 
choice model (Papola et al., 2018), on a dataset of real observed route choices. In addition, the 
set of observed not efficient routes is considered into the specification and a way to do it is 
proposed. 
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First, the first implicit enumeration procedure is effective to reproduce CoNL route choice 
flows on the efficient sub-network, but with an high computational cost due to the numerous 
networks explorations. Thus, the simplified procedure, i.e. the one with fixed values for the 
nesting parameters, is by far less expensive, reducing considerably (at least one order of 
magnitude) the computation times, at a cost of a very small bias in the computed CoNL flows. 
Second, the CoNL route choice and the Link Nested Logit with fixed nesting parameters values 
provides the best performances in reproducing a target Daganzo and Sheffi correlation matrix 
and a target MNP probabilities vector. The two phenomena do not go in the same direction, so 
a G.E.V. model that is capable to catch complex correlation patterns effects is very suitable, but 
the correlations are not the only parties in presence. In fact, in the G.E.V. models, there is not a 
one-to-one relationship between choice probabilities and covariances, while there is an 
influence of the moments of order higher than the second. However, weighting the link costs 
in the nesting parameters CoNL computation, and replacing the average cost value in (5.11) 
with the minimum or maximum values, can give a good improvement in terms of choice 
probabilities values, with reference to the ones already published in Papola et al. (2018). 
Third, the CoNL route choice without the restriction due to the efficient routes, shows its 
superiority in reproducing observed route choices with reference to the MNL, C-Logit and 
P.S.-Logit.  
Surely, a first future step in the current research topic is represented by a real data validation of 
the SNL CoNL with implicit enumeration, searching for a procedure that relaxes the restriction 
due to the efficient sub-network. The correlations study, insetad, can be surely improved by 
performing more tests. The real data validation for CoNL route choice with the explicit path 
enumeration can be expanded, considering a bigger set of trajectories and more utility attributes 
(socio-demographic, number of turn-lefts, number of traffic lights encountered and so on) can 
be put in the model specification, to estimate the model parameters. The set of compared 
models can be enlarged and, finally, the mathematical S.U.E. properties using CoNL route 
choice model can be analysed, to ensure the existence and unicity of the solution of the 
equilibrium fixed point problem. 
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Chapter 7: Conclusions of 
the thesis 

This thesis investigates the potential of the combination of random utility models (CoRUM; 
Papola, 2016) for travel demand analysis and any application of discrete choice modelling. In 
the current work, several theoretical advance and some specific transport-field applications are 
carried out. The CoRUM framework is very general and allows handling several discrete choice 
modelling crucial issues. The latter are of particular interest when modelling the travel 
behaviour. The thesis follows two main research paths: the analysis of the theoretical potential 
of the CoRUM (Chapter 3 and Chapter 4) and the applications of the CoRUM to the route 
choice modelling (Chapter 5 and Chapter 6). 
Chapter 1 mentions all the relevant discrete choice modelling issues. This thesis addresses, in 
particular, two of them: inter-correlations the problems related to the error structure and the 
inter-intra-respondent taste heterogeneity. The two problems represent the vehicle with which 
Chapter 2 has been presented. In the original work of Papola (2016), the CoRUM has been 
tested in its flexibility to capture flexible substitution patterns among choice alternatives, in 
discrete choice contexts characterized by different degrees of correlations. Particularly, thanks 
to its closed form of covariances, the combination of Nested Logit’s (CoNL) specification is 
appeared to be a very intuitive, simple and powerful tool to deal with the correlations problem. 
In fact, to the best of my knowledge, the CoNL model is the only one who ensures a flexible 
correlation pattern with a closed form statement for the covariances and correlations. Given 
these preconditions, the CoRUM framework, and particularly the CoNL specification, has 
opened interesting scenarios for possible applications, as well as having different possibilities to 
broaden its horizons. 
First, the possibility of theoretically generalizing the model, adding more capabilities, such as 
allowing accommodating taste variation and heteroskedasticity, seemed a natural step to be 
completed. Second, an in depth analysis on how this flexibility could improve forecasting 
power of the model appeared to be opportune. In fact, making good forecasts is essential for 
transport policy. The market shares of users who choose a certain transport alternative (e.g., 
whether to move or not, when, how, on what route and so forth) are essential quantities to 
estimate when analysing the travel demand. Therefore, the sensitivity of the market shares to 
changes in the values of the attributes involved plays a fundamental role. Finally, the particular 
CoNL specification, with its own peculiarity of being a closed form models both in terms of 
probabilities and covariances/correlations, was indicated by the author itself as a natural 
candidate for route choice modelling, wherein prior expectations in terms of correlations can 
be quantified (see paradigm of Daganzo and Sheffi, 1977). Since Papola (2016) provided only a 
few general guidelines, the operationalization of the model for route choice had not yet been 
explored. 
The first step consists of proposing a generalization of the CoRUM framework, allowing taking 
into account the taste variation and the heteroskedasticity. A Combination of Mixed RUMs 
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formulation is proposed Chapter 3. The proposed formulation allows avoiding the 
identification issues and the computational burdens of the Mixed Logit with joint error 
component / random coefficient formulation, that currently represents the theoretical more 
general formulation available (McFadden and Train, 2000). Such Combination of Mixed RUMs 
is estimated on a stated survey of 1688 observations of 211 respondents (8 choice tasks per 
person). The Combination of Mixed RUMs, especially when combining Mixed Nested Logit, 
outperforms all the other tested mixed models (Mixed Logit, Mixed NL, Mixed CNL) in terms 
of goodness of fit. In particular, the Cross Nested Logit with random parameters seems very 
hard to estimate and Nested Logit with random parameters allows only partially to reproduce 
inter-alternative correlations, apart from the rate due to the random parameters. The Mixed 
Logit with joint random coefficient and error component, instead, although its theoretical 
generality is very hard to specify to ensure identification of the parameters (Walker et al., 2007). 
In fact, such formulation requires an high awareness of its theoretical background and involves 
very complex simulations (exploding with the dimension of the choice set) and mathematical 
preliminary evaluations (see rank condition, order condition and equality condition described in 
Section 2.2.1.3 for ensuring the identification of the parameters). Thus, it seems that this 
general and powerful model have advantages that are more theoretical than practical. In the 
real-world applications, this means that for making it operational, several strong constraints 
have to be introduced (for instance, parametrized covariance matrices or non-full covariance 
matrices). Therefore, the Combination of Mixed Nested Logit is a compromise between the 
not generality of Mixed Logit with pure random coefficient specification and the computational 
hard treatability of joint Error Component / Random coefficient Mixed Logit formulations. 
However, such combination of mixed Nested Logit is widely easier to estimate and to manage. 
A future step may certainly be the extension of the study for more flexible sieve estimators (see 
description of semi-nonparametric approaches for taste heterogeneity described in Section 
2.2.2.4), or allowing more general shapes of distribution for random parameters. Another one is 
to test the capability of the CoRUM formulation under the nonparametric approach, by 
combining a continuous mixture for the random residuals with a discrete flexible mixture on 
the marginal utilities. The advantage would be to work with a closed form expression for the 
choice probabilities. Furthermore, the gains of such formulations in a posterior analysis 
prediction seems a proper step. In fact, allowing for disentangling between different effects 
(such as the correlation effects and the taste heterogeneity effects) may have a strong impact on 
the goodness of predictions about the behaviour of individuals whose previous choices have 
been observed. In the current micro-data era, this seems to be a very crucial question to 
investigate, opening very wide horizons on individual level parameters or individual models 
estimation possibilities. 
The second thesis step consists of a synthetic dataset based analysis on forecasting capability of 
the CoRUM model, particularly the CoNL specification, when contrasted with other closed-
form formulations. The advantage of building a controlled environment for analysis is the 
knowledge of all the real values (true marginal utilities and true underlying correlations). 
Moreover, with such experiment, the choices on variate scenarios can be observed, and so, the 
models can be tested in their ability to capture them. The CoNL has been compared with the 
main closed form random utility models. In particular, the models compared are the 
Multinomial Logit, the Nested Logit and other models characterized by the same flexibility in 
reproducing correlation patterns, namely the Cross Nested Logit and the FinMix models. The 
experimental results, summarized in the Section 4.4, highlight that, when making forecasting, 
the importance of the sample size the analyst are working with is crucial. In fact, the models 
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with good flexibility in reproducing correlation contexts (CoNL, CNL and FinMix) seem to be 
capable to reproduce correct forecasts in very challenging correlations scenarios, but they need 
the right number of observations In fact, also in a very simple choice scenario as the one 
proposed in Section 4.3 (three/four alternatives, no taste variation, a few parameters playing a 
role) with cross sectional data, the appropriate model (i.e. the model capable to handle that 
correlation pattern) needs rarely less than a thousand observations to make unbiased forecasts. 
The analysis confirms, instead, that using the wrong model has a strong influence also when 
predicting choices in variate scenarios, i.e. the scenarios wherein the values of the attributes 
change. Definitely, the choice of the model strictly depends upon the availability of data, not 
just on the trail and errors processes and the analyst’s expectations (necessary pre-requisites of 
choice analysis). The goodness of fit indicators values per se, in fact, can mislead the analyst 
when he must predict future scenarios but he has small samples of data. Surely, the case studies 
could be enriched (different choice contexts, more random effects in the synthetic population) 
and the set of models involved can be enlarged.  
The final step consists of some methodological advance on route choice modelling and is 
described in Chapter 5 and Chapter 6. Route choice represents the core of all assignment 
procedures and the problem is characterized by several sources of complexities. The dimension 
of the problem (dimension of network, number of involved od pairs and routes) and the routes 
overlapping effects on choice probabilities (routes perception as independent alternative) are 
the more relevant. This means an analyst, for addressing these issues, needs an instrument 
(route choice model) that is both computationally efficient but that also has a theoretical robust 
foundation. For applying CoNL model to route choice, several problems had to be solved. 
First, the creation of a network-based procedure for building the model specification. Second, a 
way to compute the prohibitive number of structural parameters of the model. Third, test the 
choice probabilities resulting from a specification procedure that is not manually built ad hoc 
by the analyst. Fourth, understand how closed form covariances based nesting parameters 
computation can improve the choice probabilities. Fifth, the possibility of implementing the 
model for computing the traffic link flows without the burdensome explicit enumeration of 
paths. The current thesis proposes some solutions to all the problems mentioned. The first 
three problems are addressed in Chapter 5. An algorithm has been proposed to specify the 
CoNL model, given any network, and an exact formulation for nesting parameters, derived 
from the Daganzo and Sheffi (1977) assumption, have been proposed. All tested networks 
(small, medium and large) confirm the theoretical robustness of the CoNL route choice model, 
with reference to all the main existing route choice models in literature. The last two problems 
are addressed in Chapter 6. The analysis on CoNL correlations effects on choice probabilities 
show the crucial importance of setting a minimum value for nesting parameters. This appears 
to be necessary for avoiding a “too deterministic” choice within a group of correlated (i.e. 
overlapped) alternatives. Finally, an implicit enumeration algorithm for CoNL route choice has 
been proposed and tested on some small and medium networks. The algorithm works on 
efficient sub-network (see Dial, 1971) and gives the same results of CoNL route choice model 
with the explicit enumeration, without the computational burdens due to the enumeration of 
paths. A simplified version of the implicit enumeration algorithm is also proposed, for 
consistently reducing computation time, with a not substantial bias of the CoNL route choice 
probabilities. Finally, the CoNL route choice model has been tested in reproducing observed 
route choices, on a dataset of about 200 trajectories of drivers moving into the network of 
Regione Campania. The model showed its superiority over other models in the literature that 
are commonly implemented in the commercial software. However, the research is still open. 
The goodness of fit of the novel CoNL route choice model must be tested in estimation on an 
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opportune dataset of observations (some thousands). The implicit enumeration algorithm could 
be tested on a real network with the availability of traffic counts. Finally, a S.U.E. mathematical 
programming formulation for CoNL route choice has to be provided, in order to ensure the 
convergence and the unicity of the fixed-point problem equilibrium solution. 
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Contributi a questo lavoro 

Quando si è studenti universitari si comprano libri solo se costretti dai docenti. Quando si è 
professionisti si acquistano volentieri libri che possano risolvere dubbi pratici in poco tempo. 
Quando si fa ricerca, invece, si pagherebbe oro pur di avere libri che sviscerano i propri 
argomenti di interesse con chiarezza, rigore e dettaglio. Avendo avuto la fortuna di vivere la 
parabola laurea-professione-ricerca, ci sono una serie di autori a cui mi piacerebbe, 
sinceramente, stringere la mano. Le citazioni che gli ho dedicato in bibliografia rendano merito 
al loro lavoro, cui sono personalmente grato per tutto ciò che ho appreso, spesso grazie a 
letture fatte in orari improponibili. 
Dall’altro lato, invece, dovrei menzionare tutti gli studenti a cui ho provato a trasferire qualche 
mia conoscenza. La responsabilità di dover chiarire loro dubbi di qualsiasi tipo, in orario di 
ricevimento o di lezione, mi ha spinto a farmi domande di qualità sempre maggiore e, dunque, a 
comprendere meglio molte delle cose che ho riportato nel Capitolo 2. Lo sforzo di includerli 
tutti sarebbe improponibile e, pertanto, mi limito a rivolgere a loro un pensiero di gratitudine. 
Premesso ciò, ci sono delle persone che, invece, ho il dovere di menzionare direttamente, 
perché, in un modo o nell’altro, questa tesi include anche i loro sforzi. 
Comincerei da quei (pochi) tesisti, il cui lavoro si è incrociato con il mio. Anzitutto vorrei citare 
il lavoro di Vittorio Fontana e Carlo Malafronte. Il loro sforzo sulla raccolta di dati da 
traiettorie GPS e il modello di offerta da loro implementato hanno prodotto la base su cui è 
stato possibile costruire il confronto su rete reale di Section 6.4, consentendo una validazione 
su dati reali del modello CoNL route choice. Vorrei menzionare anche Ciro Buonocore, che da 
poco si è aggregato al nostro ristretto gruppo di ricerca. Anche se non è parte attiva in questo 
lavoro, il fatto che si occupi di tutto ciò di cui non riesco ad occuparmi io direttamente mi ha 
consentito di lavorare più serenamente alla mia ricerca in questi ultimi mesi di dottorato. 
Inoltre, mi offre la possibilità, quotidianamente, di provare ad aiutarlo nel suo percorso di 
formazione come PhD. 
Fra le esperienze più significative di questi tre anni ci sono stati sicuramente due seminari che 
ho avuto il piacere di seguire a Londra, organizzati dall’ Institute of Choice Modelling di Leeds.  
Le lezioni che ho avuto modo di seguire in quella sede, in particolare quelle del prof. Stephane 
Hess, sono state il maggiore stimolo che ha portato alla luce il capitolo 3 di questa tesi. 
Ritengo doveroso citare anche due docenti che, in maniera del tutto gratuita e disinteressata, 
hanno espresso un parere dettagliato su questo lavoro come valutatori: il prof. Michele 
Ottomanelli del Politecnico di Bari e il prof. Stefano De Luca dell’Università degli studi di 
Fisciano. Ai consigli del secondo devo, in particolare, la struttura finale dei capitoli con la quale 
la tesi si presenta. 
Un ringraziamento particolare va al prof. Vittorio Marzano, che è stato quanto di più prossimo 
ad un co-tutor io abbia avuto in questo periodo. C’è molto del suo lavoro nei capitoli 4 e 5 di 
questa tesi. Una sua proposta è stata da stimolo per gli approfondimenti proposti in Section 6.3 
sulle correlazioni riprodotte dai modelli di scelta del percorso. Lo ringrazio inoltre per il 
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contributo sempre brillante, colto ed incisivo che riesce a dare alle nostre discussioni, nonché 
per tutti gli illuminanti consigli che ha saputo offrirmi in questi tre anni.  
Il principale ringraziamento per questo lavoro lo devo al mio tutor: il prof. Andrea Papola. Lui 
mi ha convinto a fare il dottorato di ricerca quando era ormai fuori dal mio insieme di scelta per 
il futuro. Lui ha avuto l’idea, in quel Maggio 2015, di introdurre un ingegnere che si occupava di 
strutture, senza la minima conoscenza del mondo dei trasporti e della modellazione di scelte 
discrete, nel suo gruppo di ricerca. Lui ha creduto che io potessi fare ricerca in questo campo 
quando io non lo credevo minimamente possibile. Dal suo articolo sul CoRUM sono nati tutti i 
contenuti di questa tesi, che altro non sono che la generalizzazione e qualche 
particolarizzazione della sua intuizione originaria. Sopra ogni altra cosa, lo ringrazio per la 
serenità sempre trasmessami nel lavoro, aggiungendo che augurerei a chiunque di avere un tutor 
con i suoi intuito, intelligenza, umanità ed attenzione per la persona. Infine, lo ringrazio per 
tutte le nostre discussioni, spesso davanti a un caffè, sui modelli di scelta discreta. Con la 
certezza che, da queste discussioni, siano nati tanti chiarimenti (spero reciproci) e con la 
speranza che, da esse, sia nato anche qualche avanzamento di qualità sul choice modelling. 
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Ringraziamenti personali 

Il lavoro di ricerca è qualcosa di totalizzante. Spesso, il tempo che si dedica al lavoro da un 
piacere che fa dimenticare quanto se ne stia sottraendo ad altro. In questo altro, però, c’è la 
base su cui si fonda la serenità per cui il lavoro stesso può essere affrontato. Pertanto, con lo 
sforzo di non seguire un ordine specifico, c’è qualcuno a cui è necessario che io renda merito. 
A vario titolo ho condiviso esperienze di convegni e corsi di formazione con tanti colleghi, che 
hanno reso ogni trasferta un’esperienza unica e stimolante. 
Tutti i colleghi di dipartimento con cui ho avuto a che fare lungo questo percorso hanno spesso 
fatto sì che quest’ultimo divenisse, per me, un po' una seconda casa, in cui rifugiarsi quando le 
insicurezze del mondo esterno attanagliano spietatamente. 
Andrea Papola non è solo il mio tutor. E’ un collega, un amico, una specie di fratello maggiore. 
Anche volendo tralasciare il lavoro, è la persona da cui ho imparato di più in questi ultimi anni. 
Le nostre chiacchierate sono spesso state anche la valvola di sfogo per affrontare tanti problemi 
che col lavoro c’entrano poco. Soprattutto, gli devo il merito di aver sempre compreso i miei 
momenti di difficoltà e di aver avuto la pazienza di aspettarne di migliori. 
Mia madre e mio padre meritano tanto. A loro sono totalmente grato per una serie non 
elencabile di cose. Volendone citare una sola, devo a loro il fatto di essere potuto rimanere a 
Napoli per tutto questi anni dopo la laurea. A loro devo anche tutta la mia riconoscenza per 
aver rispettato sempre le mie scelte. Il loro supporto è stato imprescindibile per me perché 
potessi portare a termine questo dottorato, soprattutto nell’ultimo anno. Devo inoltre dire 
grazie a mia madre per la vicinanza che mi ha offerto, avendo sempre avuto la maturità di 
perdonare tanti miei sfoghi e l’intelligenza di offrirmi il suo supporto in maniera mai invadente. 
Spero che questo piccolo traguardo, e il fatto di essere diventata nonna, bastino, almeno in 
parte, a ricambiare tutti i suoi sforzi di genitore.  
Casa è dove qualcuno ti aspetta. E’ per questo che a Carmy devo un grazie incommensurabile. 
Il fatto di aver sopportato sempre i miei orari e le mie assenze dovute al lavoro, senza avermi 
fatto minimamente pesare nulla, rappresenta una rarità, che ormai per me è normalità, ma che 
non darò mai per scontato. La ringrazio per tutti sacrifici che ogni giorno fa con amore, e per il 
fatto che, a qualsiasi ora torni, lei ha sempre da parte per me un abbraccio ed un sorriso. 
Infine, dal 21 Marzo 2018, c’è qualcuno che illumina le mie giornate e che ha introdotto nella 
mia vita una sorta di effetto scala. Da quando c’è lei tutto intorno ha subito un effetto 
ridimensionante. Le cose intorno a me sono le stesse, ma la loro importanza si è drasticamente 
ridimensionata. Parlo di mia figlia Isabel. Con la speranza che magari un giorno possa prendere 
questo lavoro, leggerlo, comprenderlo e, soprattutto, dirmi che ormai non serve più nulla. 
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