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Abstract

In this doctoral thesis we study some nonlinear nonlocal wave type equa-

tions. We consider three related problems which have connections with the

study of some physical models in the theory of nonlocal elasticity. The non-

locality term is introduced via a convolution type integral operator Lα with

kernel α, defined on a bounded domain Ω ⊂ Rn as

Lαv(x) =

∫
Ω

α(x− y)v(y)dy.

The first problem is an initial value problem for the nonlocal nonlinear

integro-partial differential equation given by,

utt = Lαg(u) x ∈ Ω, t > 0.



For this problem firstly local well-posedness is studied. Further analysis of

the solution, like global existence and finite time blow-up, are investigated by

various approaches such as assumptions of various smoothness and growth

conditions on the nonlinearity.

The second problem included in the thesis is the initial boundary value

problem for some nonlocal nonlinear wave type equation given by the equa-

tion,

utt −∆u = Lαg(u) x ∈ Ω, t > 0. (0.0.1)

u = 0 x ∈ ∂Ω, t > 0.

Local well-posedness of this problem is studied in proper Banach space set-

tings.

The third problem is variant form of the second problem and is given

by the equation,

utt −∆u = Lαu+ g(u) x ∈ Ω, t > 0. (0.0.2)

u = 0 x ∈ ∂Ω, t > 0.

Unlike the previous problem, here the nonlocality and nonlinearity are ex-

pressed with separate terms. While we have imposed general assumptions

on g(u) such as that it should be sufficiently smooth and g(0) = 0, in the

last two problems we have used power type nonlinear function of the form

g(u) = |u|p−1u, p > 1.

The symmetry of the integral operator involved in the last problem

enables us to define an explicit energy, which is a conserved quantity. For

further analysis of solutions of the third problem, we have used the method

of Nehari Manifold. Functionals like the total energy, the potential energy

and the Nehari functional associated to the equation are defined and the

potential well depth is obtained in terms these functionals. The two subsets

of the initial value space, namely the stable set and the unstable set that
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are invariant under the flow of the solution are obtained accordingly. Based

on the initial energy and the sets where the initial data are located in, the

blow-up or the global existence conditions for solutions is analysed.
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Yerel ve Doğrusal Olmayan Dalga Tipi Bazı Problemler için

Başlangıç-Değer Problemi

Hailu Bikila Yadeta

Matematik, Doktora Tezi, 2019

Tez Danışmanı: Prof. Dr. Albert Erkip

Anahtar Kelimeler: İyi konulmuşluk, Gronwall lemması, yerel olmayan

problem, doğrusal olmayan problem, kuvvet tipi doğrusal olmayan terim,

patlama koşulu, global varlık, enerji özdeşliği energy, Nehari manifoldu,

potansiyel kuyusu yöntemi, Levine lemması, Banach sabit nokta teoremi,

Sobolev gömülmesi

Bu doktora tezinde bazı yerel ve doğrusal olmayan dalga tipi denklemleri

çalışıldı. Bu kapsamda, elastisite kuramının bazı fiziksel modelleriye bağıntılı

üç problem ele alındı. Yerel olmayan terim, α çekirdeği ile belirlenen ve bir

Ω ⊂ Rn bölgesinde

Lαv(x) =

∫
Ω

α(x− y)v(y)dy.

konvolüsyon tipi Lα operatörü vasıtasıyla tanımlanmıştır.

Birinci problem

utt(x, t) = Lαg(u)(x, t) x ∈ Ω, t > 0,

yerel olmayan integro-diferansiyel denklemine ait bir başlangıç değer prob-

lemidir. Bu problemde ilk olarak yerel iyi konulmuşluk çalışılmıştır. Çözümün



global varlık ve sonlu zamanda patlama gibi özellikleri değişik yaklaşımlarla

ve doğrusal olmayan terimin düzgünlüğü ve büyüme koşulları gibi varsayımlarla

araştırılmıştır.

Bu tezde yer alan ikinci problem

utt −∆u = Lαg(u) x ∈ Ω, t > 0, (0.0.3)

u = 0 x ∈ ∂Ω, t > 0.

denklemiyle verilen yerel ve doğrusal olmayan dalga tipi denklem için başlangıç-

sınır değer problemidir. Bu problemin uygun Banach uzayları üzerinde yerel

iyi konulmuş olması çalışılmıştır.

Üçüncü problem, ikincinin bir benzeri olup,

utt −∆u = Lαu+ g(u) x ∈ Ω, t > 0 (0.0.4)

u = 0 x ∈ ∂Ω, t > 0.

denklemiyle tanımlanmıştır. Önceki problemden farklı olarak yerel olmama

ve doğrusal olmama iki ayrı terimle temsil edilmektedir. İlk problemde

doğrusal olmayan g(u) terimi için yeterince düzgün olma ve g(0) = 0 gibi

genel koşullar varsaymamıza karşın, son iki problemde daha özel olarak g(u) =

|u|p−1u, p > 1, koşulu kullanıldı.

Son problemdeki integral operatörünün simetrik olması korunan bir büyüklük

olan enerjiyi tanımlaya olanak sağlamaktadır. Üçüncü problemin çözümlerinin

incelenmesinde Nehari Manifold yöntemini kulandık. Denklemin belirlediği

toplam enerji, potansiyel enerji ve Nehari fonksiyoneli tanımlandı ve bu

fonksiyoneller cinsinden potansiyel kuyusunun derinliği belirlendi. Başlangıç

değerleri kümesinde, denklemin belirlediği akış altında invaryant olan, kararlı

ve karasız kümeler elde edildi. Çözümlerin, başlangıç enerjisi ve başlangıç

değerlerinin yer aldığı kümelere bağlı olarak patlama ya da global varlık

koşulları incelendi.
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Chapter 1

Introduction and Preliminaries

This chapter is devoted to the preliminary information and results which we

use throughout the thesis.

1.1 Introduction

A semi-linear wave equation is given by

utt −∆u+ g(u) = 0,

where g is a function of u and not of its derivatives, which vanishes at more

than first order. The linear case g(u) = mu, where m ∈ R, corresponds to

the classical Klien-Gordon equation in realistic particle physics; the constant

m may be interpreted as mass and hence assumed as to be nonnegative. In

attempt to model also nonlinear phenomenon like quantization, in the 1950s

equations of the type with nonlinearities like

g(u) = mu+ u3, m ≥ 0

were proposed in relativistic quantum mechanics in local interactions, see[22]

and [24] and the references therein.
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Typically g grows like |u|p for some power p. If g is the gradient of some

potential function G then we have the conserved energy as

1

2
‖ut‖2 +

1

2
‖∇u‖2 +

∫
G(u)dx,

where ‖.‖ denotes the L2- norm. For nonlinear Klein-Gordon there is an

additional term of 1
2
‖u‖2 in the energy, which is useful for controlling the low

frequencies of u. We say that a semi-linear wave equation is defocusing if G

is positive definite and hence G(u) cooperates with the energy of the linear

operator, making the whole energy to be positively defined. On the other

hand if G(u) is negative definite, we call the nonlinear wave equation focus-

ing. The term ”coercive” does not have a standard definition, but generally

denotes a potential G which is positive for large values of u.

To analyze these equations in Hs, we need the non-linearity to be suffi-

ciently smooth. More precisely, we will always assume either that g is smooth

or that g is of pth power-type non-linearity with

p > bsc+ 1

where bsc denotes the greatest integer not greater than s. On the other hand

p must have some critical upper bound pc which is dependent on the dimen-

sion n of the space. One such example is the Sobolev critical exponent which

is the consequence of the Sobolev embedding theorem. A typical nonlinear

wave equation with linear dissipation is given by

utt −∆u+ δut = f(u)

and nonlinear wave equation with nonlinear dissipation is given as

utt −∆u+Q(t, x, ut) = f(x, u)

Both of these equations were studied in several research works. In most cases
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the nonlinear source term is taken as

m1∑
i=1

ai(x)|u|pi−1u

and nonlinear dissipative term is taken as

m2∑
i=1

bi(x)|ut|pi−1ut.

The other form of nonlinear wave problems are those involving nonlocal terms

which are introduced in various ways. One way is with terms involving

integral expressions over a domain or time interval. Another way is with

mixed type of nonlocalities which involve time and space nonlocalities.

Let us now explain how the nonlocal theory is different from the local

or standard continuum theory. In standard elasticity it is assumed that the

density of elastic energy stored per unit volume, w, depends only on the

strain tensor, which is directly related to the deformation gradient, i.e., to

the first gradient of the displacement field. The elastic energy stored by the

entire body, W is then evaluated as the spatial integral of the elastic energy

density. In the one-dimensional setting, one can write

W =

∫
L

w(ux(x))dx

where u = du/dx is the strain, further denoted as ε, and L is the interval

representing geometrically the one-dimensional body. In linear elasticity, the

elastic energy density is given by

w(ε) =
1

2
Eε2,

which is a quadratic function of strain. In the standard continuum the-

ory, propagation of waves in a homogeneous one dimensional linear elastic
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medium is described by the hyperbolic partial differential equation

ρutt − Euxx = 0, (1.1.1)

where ρ is the mass density, E is the elastic modulus, u(x, t) is the dis-

placement. Since ρ and E are constant coefficients, equation (1.1.1) admits

solutions of the form

u(x, t) = ei(kx−ωt)

where i is the imaginary unit, ω is the circular frequency, k is the wave

number, and c = ω/k is the wave velocity. In the next few subsections,

we will discuss how enrichments can be introduced to bring in certain scale

parameters in the continuum equations.

1.2 Local vs nonlocal

Traditional partial differential equations are relations between the values of

an unknown function and its derivatives of different orders. To calculate a

partial derivative of a differentiable function at a point it suffice to have the

function defined in an arbitrarily small neighborhood of the point . To check

whether differential equation holds at a particular point, one needs to known

only the values of the function in an arbitrarily small neighborhood, so that

all derivatives can be computed.

A nonlocal equation is a relation for which the opposite holds. In order

to check whether a nonlocal equation holds at a point, information about the

values of the function far from that point is needed. Most of the times, this

is because the equation involves integral operators acting on set of functions

like

S = {u| u : Ω ⊂ Rn → R} .

An operator T on a set S is nonlocal operator on S if Tu(x), x ∈ Ω,
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is dependent on points in Ω that are far from x. However nonlocality can

be of different type. For example, spatial nonlocality, temporal nonlocality

(materials with memory) and mixed nonlocality can be listed. For further

explanation on this, see [26].

As a specific example the transport equation,

ut + cux = f(x, t),

may be considered as a local differential equation. Local problems may have

solutions which is written as a nonlocal integral.

Some partial differential equations may be reduced to integral equations

which are nonlocal wave equations For example, the generalized initial value

problem for Boussinesq equation in one-dimensional space

utt = F (u)xx + uxxtt (1.2.1)

was studied by Adrian Constantin and Luc Molinet [2] by reducing into

convolution type integral equation. A more general class of convolution type

integro partial differential equation,

utt = (β ∗ (u+ g(u)))xx (1.2.2)

was studied by N Duruk, H. A. Erbay and A. Erkip [1].

An initial value problem multidimensional generalized IMBq

utt −∆utt −∆u = ∆f(u) (1.2.3)

was studied in [3] by reducing into convolution type integral equation with

the kernel as the free space Greens function for the operator (1−∆).

Cauchy problem of the generalized double dispersion equation

utt − uxx − uxxtt + uxxxx − αuxxt = g(u)xx, r > 0 (1.2.4)

17



was studied by Shubin Wang and Guowang Chen, ([27]) by reducing into an

integro partial differential equations of the form

utt − uxx = L[g(u)] + L[g(ut)], (1.2.5)

where L := ∂2
x(1− ∂2

x) and G(x) = 1
2
e−|x|.

My current research work is motivated by these and several other articles

involving nonlocality and nonlinearity, includes three related problems. The

first problem given in (2.1.1) is initial value problem for nonlinear nonlo-

cal integro-partial differential equation of ordinary differential equation type

with convolution type kernel on a bounded domain Ω ⊂ Rn. Here, there is

no set boundary condition and the order of smoothness of the solution can

not exceed that of the kernel even if we set initial data with more degrees

of smoothness. The important aspect of this problem is the mapping prop-

erty of the integral operator (2.1.2) involved in the problem. Following the

local well-posedness of solution in L2 space, we proceed to study solutions of

higher regularity followed by smoother kernels. The second problem included

in this thesis is an initial-boundary value problem which is a nonlocal nonlin-

ear wave type problem. The nonlocality term is involved with same type of

integral operator studied in problem (2.1.1) the nonlinearity is included by

some nonlinear function g satisfying some desired properties. The third and

the last problem (4.1.1) is similar to problem (3.1.1). However in this latter

case the nonlinearity and the nonlocality are involved in separated terms.

The integral operator is linear and symmetric. The symmetry allows us to

calculate the energy identity corresponding to the problem. The rest of the

chapter is the analysis of the solution via the so called potential well method.

For Potential well method refer to [29],[30]. With the integral term involved

and the problem (4.1.1) is different from the usual semi-linear wave equa-

tion we designed and introduced the corresponding definition for the Nehari

functional, potential functional, the energy identity in some subsets of the

Hilbert space H1
0 .

18



1.3 Sobolev Spaces

1.3.1 Distributions and Weak Derivatives

We denote by L1
loc(R) the space of locally integrable functions f : R→

R. These are the Lebesgue measurable functions which are integrable over

every bounded interval. The support of a function φ, denoted by suppφ is

the closure of the set {x : φ(x) 6= 0} where φ does not vanish.

Every locally integrable function f ∈ L1
loc(R) determines a linear func-

tional Lf : C∞c (R)→ R given by

Lf (φ) :=

∫
R
f(x)φ(x)dx.

The integral is well defined for all φ ∈ C∞c (R), because φ vanishes outside of

a compact set. Furthermore, if Supp(φ) ⊂ [a, b] we have the estimate

|Lf (φ)| ≤
(∫ b

a

|f(x)|dx
)
‖φ‖C0 .

Definition 1.3.1. A function u ∈ L1
loc(Ω) is weakly differentiable with re-

spect to xi if there exists a function, v ∈ L1
loc(Ω) such that∫

Ω

u∂xiφ =

∫
Ω

vφ for all φ ∈ C∞c (Ω).

Definition 1.3.2. Suppose u, v ∈ L1
loc(Ω) and α = (α1, · · · , αn) is a multi-

index. We say that v is the αth weak derivative of u and write v = Dαu

if ∫
Ω

uDαφ dx = (−1)|α|
∫

Ω

v φ dx ∀φ ∈ C∞c (Ω).

Note that the order of differentiation is irrelevant. For example, uxixj =

uxjxi if one of them exists.

Example 1.3.3. Let f(x) = |x|, x ∈ R. Then f ′(x) = 2H(x) − 1, where
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H(·) is the Heaviside function defined by

H(x) =

1, if x > 0,

0, if x < 0.

Example 1.3.4. The Heaviside function H(·) does not have a weak deriva-

tive. Indeed, H ′ = δ is the Dirac measure.

1.3.2 The Sobolev Spaces

1.3.3 Sobolev Spaces of Order of Non-negative Inte-

gers

Definition 1.3.5. Assume k is a non–negative integer and p ∈ [1,∞]. The

Sobolev space W k,p(Ω) consists of those Lp(Ω) functions whose weak deriva-

tives up to order k exist and are in Lp(Ω). Its norm is defined by

‖f‖Wk,p(Ω) =
∑
|α|≤k

‖Dαf‖Lp(Ω).

When p ∈ [1,∞), the space W k,p
0 (Ω) is the completion of C∞c (Ω) under the

‖ · ‖Wk,p(Ω) norm.

When p = 2, W k,2 and W k,2
0 are often written as Hk and Hk

0 respectively,

which are Hilbert spaces.

Theorem 1.3.6. The Sobolev space W k,p(Ω) is a Banach space.

1.3.4 Fractional Sobolev Spaces

Let 0 < κ < 1. For any p ∈ [0,∞), the Sobolev space W κ,p(Ω) of fractional

order κ is defined as follows.

W κ,p(Ω) :=

{
u ∈ Lp(Ω) :

∫
Ω

∫
Ω

|u(x)− u(y)|p

|x− y|n+κp
dxdy <∞

}
(1.3.1)
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and

Hκ(Ω) = W κ,2(Ω)

In the space W κ,p(Ω) we define the semi-norm, [.]κ,p,Ω given by,

[u]κ,p,Ω :=

∫
Ω

∫
Ω

|u(x)− u(y)|p

|x− y|n+κp
dxdy,

and a norm ‖.‖κ,p,Ω given by

‖u‖pκ,p,Ω := ‖u‖p0,p,Ω + [u]pκ,p,Ω.

For any s ≥ 0, s = k + κ where 0 < κ < 1 and k ≥ 0 an integer, we define

W s,p(Ω) :=
{
u ∈ W k,p(Ω) : Dβu ∈ W κ,p(Ω), |β| ≤ k

}
.

The following semi-norm [u]κ,p,Ω and norm ‖u‖κ,p,Ω are defined in the space

W s,p(Ω) as

[u]s,p,Ω =

∑
|β|=k

[Dβu]κ,p,Ω

1/p

, ‖u‖s,p,Ω =

∑
|β|≤k

|Dβu|κ,p,Ω

1/p

[u]2Hs(Ω) =

∫
Ω

∫
Ω

|u(x)− u(y)|2

|x− y|n+2s
dydx <∞ (1.3.2)

and

‖u‖Hs(Ω) =
(
‖u‖L2(Ω) + [u]2Hs(Ω)

) 1
2 . (1.3.3)

1.3.5 Sobolev Embedding

Definition 1.3.7. Let X, Y be Banach spaces. We say that X is continuously

imbedded in Y if X is the subset of Y and there exists a constant C such

that

‖x‖Y ≤ C‖x‖X for every x ∈ X,
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We know that If u ∈ W k,p(Ω), then u ∈ Lp(Ω) for k ≥ 0. In Particular if

u ∈ W 1,p(Ω) then u ∈ Lp(Ω) .

Lemma 1.3.8. [21]

Let m ≥ 1 be an integer. Let 1 ≤ p <∞.

(i) If 1
p
− m

n
> 0, then

Wm,p(Rn) ↪→ Lq(Rn),
1

q
=

1

p
− m

n
(1.3.4)

(ii) If 1
p
− m

n
= 0, then

Wm,p(Rn) ↪→ Lq(Rn), q ∈ [p,∞) (1.3.5)

(iii) If 1
p
− m

n
< 0, then

Wm,p(Rn) ↪→ L∞(Rn) (1.3.6)

In case (iii) set k to be the integral part and κ to be the fractional part of

m− n
p

There exists c > 0 such that for all u ∈ Wm,p(Rn), we have

|Dβu|0,∞,(Rn) ≤ C‖u‖m,p,(Rn) ∀|β| ≤ k (1.3.7)

and for almost all x, y ∈ Rn) and for all |β| = k,we have

|Dβu(x)−Dβu(y)| ≤ C‖u‖m,p,(Rn)|x− y|κ. (1.3.8)

In particular we have the continuous inclusion

Wm,p(Rn) ↪→ C(Rn), for m >
n

p
. (1.3.9)

The same result follows when Rn is replaced by Rn
+ or by Ω of class Cm with

bounded boundary and for the spaces Wm,p
0 (Ω) for any open subset Ω of Rn.
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And thus if Ω is bounded and sufficiently smooth, we have

Wm,p(Ω) ↪→ C(Ω̄), for m >
n

p
. (1.3.10)

1.4 Eigenfunctions and Eigenvalues of Dirich-

let Laplacian

1.4.1 Eigenfunction Expansion Methods

Let Ω be a bounded open set in Rn. By L2(Ω) we mean the usual real

Hilbert space of square integrable functions which are defined on Ω. with

inner product

〈u, v〉 =

∫
Ω

uvdx,

and norm

‖u‖ =

(∫
Ω

u2dx

) 1
2

.

We know that the Laplace operator −∆ with Dirichlet boundary condi-

tion has a discrete spectrum consisting of increasing sequence

0 < λ1 ≤ λ2 ≤ λ3 ≤ ... (1.4.1)

of eigenvalues satisfying the condition limn λn → ∞ as n → ∞ and the

corresponding sequence of eigenfunctions {ϕn}, which form a basis of L2(Ω).

We therefore have,

−∆ϕn(x) = λnϕn(x), ϕn(x) = 0 x ∈ ∂Ω n = 1, 2, 3, ... (1.4.2)

Furthermore, ϕn can be chosen to be an orthonormal set in L2(Ω). That

is,

〈ϕi, ϕj〉 = 0 if i 6= j and ‖ϕi‖ = 1.
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By virtue of (1.4.2), we have for any smooth function g defined on [0,∞),

g(
√
−∆)ϕn(x) = g(

√
λn)ϕn(x) (1.4.3)

By completeness, any u ∈ L2(Ω) has eigenfunction expansion of the form,

u =
∞∑
n=1

unϕn (1.4.4)

where un are the Fourier coefficients with respect to the basis ϕn are given

by,

un =

∫
Ω

u(x)ϕn(x)dx n = 1, 2, 3, ... (1.4.5)

From Parseval’s theorem it follows,

‖u‖2
L2(Ω) = 〈u, u〉 =

∞∑
n=1

u2
n (1.4.6)

and the convergence is in the L2 sense, that is,

‖SN − u‖2
L2(Ω) =

∫
Ω

|u(x)−
N∑
n=1

unϕn(x)|2dx→ 0 as N →∞. (1.4.7)

‖∆u(x, t)‖2
L2(Ω) =

∞∑
n=1

λ2
nu

2
n(t) (1.4.8)

Also from integration by parts and the Dirichlet boundary condition we

have

‖∇u‖2
L2(Ω) =

∫
Ω

u(−∆u)dx =
∞∑
n=1

λnu
2
n (1.4.9)

from (1.4.6) and (1.4.9) we see that, if u ∈ H1
0 (Ω),

‖u‖H1(Ω) = ‖u‖2
L2(Ω) + ‖∇u‖2

L2(Ω) =
∞∑
n=1

(1 + λn)u2
n (1.4.10)
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If u ∈ H2(Ω) ∩H1
0 (Ω),

‖u‖2
H2(Ω) =

∑
α≤2

‖Dαu‖2
L2(Ω) ≈

∞∑
n=1

(1 + λn + λ2
n)u2

n (1.4.11)

For convenience and the use in latter chapters let us define a norm for a

general u ∈ Hs(Ω), s ≥ 0, by

‖u‖2
Hs(Ω) :=

∞∑
n=1

λsnu
2
n, (1.4.12)

Otherwise we may have written (1.4.12) as

‖u‖2
Hs(Ω) = C(s)

∞∑
n=1

λsnu
2
n,

where C(s) is a constant that is dependent on s. This follows from (1.4.1)

and the property that limn λn →∞ as n→∞.

We wind up this section by giving an example of the Dirichlet Laplacian

defined on an interval in the real line and the corresponding eigenvalues

and eigenvectors. The structures of eigenfunctions of the Dirichlet Laplacian

depend on the space dimension and the geometry of the domain. However

they all posses some common features. For example, the eigenfunction of

Dirichlet Lapalacian are infinitely differentiable. For further notes on this

topic we refer to ([33]).

Example 1.4.1. Let Ω = (a, b) be an open interval in R. For zero Dirichlet

boundary value u(a) = u(b) = 0, the eigenfunctions ϕm(x) and the corre-

sponding eigenvalues λm of the Laplacian operator, − d2

dx2
are satisfying the

boundary condition ϕm(a) = ϕm(b) = 0, m = 1, 2, 3, ... and the differential

equation ϕ
′′
m(x)+λmϕm(x) = 0 on (a, b). Any function u ∈ H2(a.b)∩H1

0 (a, b)

can be generated by {ϕm}, i.e. written in the form (1.4.4), which is the usual

Fourier sine series of u. The eigenvalues and the eigenfunctions are given as

25



follows:

λm =

(
mπ

b− a

)2

, ϕm(x) =

√
2

b− a
sin

(
mπ

(
x− a
b− a

))
m = 1, 2, 3...
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Chapter 2

The Initial Value problem for

Nonlinear Nonlocal

Integro-Partial Differential

Equation

2.1 Description of the problem

In this section we describe some problem with a non-local nonlinear integro-

partial differential equation, and prove its local well-posedness. The problem

is given as follows  utt = Lαg(u)(x, t) x ∈ Ω, t ≥ 0

u(x, 0) = φ(x), ut(x, 0) = ψ(x)
(2.1.1)

where the integral operator Lα is given by

Lαu(x, t) :=

∫
Ω

α(x− y)u(y, t)dy (2.1.2)
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where kernel α, is defined on a bounded domain Ω ⊂ Rn, and nonlinear

function g ∈ C∞(R) satisfies g(0) = 0. In this chapter we consider two cases

for the kernel α. The case α ∈ W k,1(R) and the case α ∈ Hs(R) ∩ L1(R).

The motivation for the current problem emerges from the possibility of some

initial-boundary value problems to be written as integral equation with its

kernel as Green’s function of some differential operator. For example, a

generalized Boussinesq equation in one-dimensional space is written as utt = [F (u)]xx + uxxtt x ∈ R, t ≥ 0,

u(x, 0) = u0(x) ut(x, 0) = u1(x).
(2.1.3)

Problem (2.1.3) may also be rewritten as utt = (β ∗ F (u))xx,

u(x, 0) = u0(x), ut(x, 0) = u1(x),
(2.1.4)

where

β(x) =
1

2
exp(−|x|), x ∈ R, (2.1.5)

is the free space Green’s function for the operator (1 − ∂2
x) and ”∗ ” is the

convolution notation.

Problem of the form (2.1.4) has been generalized in the work of N. Duruk,

H. A. Erbay and A. Erkip, in [1] by considering a wider class of kernel

functions β that are not necessarily Green’s function of some differential

operator.

It is known that if f ∈ Wm,1(R) and g ∈ W n,1(R), where m and n are

positive integers, we have the property

Dm+n(f ∗ g) = (Dmf) ∗ (Dng). (2.1.6)

By aid of the property given in (2.1.6) problems of the form (2.1.4) may be
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written in the form utt = (α ∗ F (u))

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ R
(2.1.7)

by carrying the derivatives only onto β. In doing so, it is assumed that

βxx := α, and that βxx is defined at least in some weak sense. For example,

for β given as in (2.1.5), we have βxx = β − δ, where δ is the usual Dirac

distribution which is not a regular function.

Equation (2.1.6) shows that convolution has some smoothing effect. That

is, differentiation of a convolution of two integrable functions can be per-

formed repeatedly as far as any one of them is differentiable. This property

says that the order of smoothness of a convolution is the sum of orders of

smoothness of the two functions. There are also some other important prop-

erties of convolution like the properties of Fourier transforms of convolutions.

The current problem (2.1.1) is essentially of the form (2.1.7) with convo-

lution type integral operator. However rather than the whole space Rn, our

integral operator Lα given in (2.1.2) is defined on functions which are defined

on a bounded domain Ω ⊂ Rn. The kernel α of the integral operator Lα is

not necessarily a Green function of some differential operator. Also there is

no boundary condition on the domain Ω imposed on unknown function u .

2.2 Local Well-posedness of the Problem

In this section we investigate the well-posedness of the initial value problem

for the integro partial differential equation given in (2.1.1) with the kernel

α ∈ L1(R), initial data φ, ψ ∈ L2(Ω) ∩  L∞(Ω), and the nonlinear function g

satisfying g ∈ C∞(R) satisfying g(0) = 0. Integrating with respect to t,
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we obtain first order integro-partial differential equation

ut(x, t) = ψ(x) +

∫ t

0

Lαg(u)(x, τ)dτ, u(x, 0) = φ(x). (2.2.1)

Integrating equation (2.2.1) with respect to t and applying the second initial

condition, we obtain

u(x, t) =

∫ t

0

(t− τ)Lαg(u)(x, τ)dτ + tψ(x) + φ(x). (2.2.2)

We analyse the solvability of the integral equation (2.2.2) which is equiv-

alent to the original nonlocal problem (2.1.1).

Let the initial functions φ, ψ ∈ L2(Ω) ∩ L∞(Ω) satisfy

‖φ‖2 + ‖φ‖∞ + ‖ψ‖2 + ‖ψ‖∞ =: M0 (2.2.3)

Define a function space,

YT = C
(
[0, T ];L2(Ω) ∩ L∞(Ω)

)
equipped with the norm,

‖u‖YT = max
0≤t≤T

‖u‖2 + max
0≤t≤T

‖u‖∞. (2.2.4)

It is clear that YT is a Banach space with this norm. For the next task we

need the following lemma.

Lemma 2.2.1. Lα : L2(Ω)→ L2(Ω) is a continuous linear operator and,

‖Lαu‖L2(Ω) ≤ ‖α‖L1(R)‖u‖L2(Ω). (2.2.5)

Proof. By Cauchy-Schwarz inequality for integrals and Fubini’s theorem we
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have,

‖Lαu‖2
L2(Ω) =

∫
Ω

∣∣∣∣(∫
Ω

α(x− y)u(y)dy

)∣∣∣∣2 dx
≤
∫

Ω

(∫
Ω

|α(x− y)u(y)|dy
)2

dx

=

∫
Ω

(∫
Ω

√
|α(x− y)|

√
|α(x− y)||u(y)|dy

)2

dx

≤
∫

Ω

(∫
Ω

|α(x− y)|dy
)(∫

Ω

|α(x− y)||u(y)|2dy
)
dx

≤ ‖α‖L1(R)

∫
Ω

∫
Ω

|α(x− y)||u(y)|2dydx

= ‖α‖L1(R)

∫
Ω

|u(y)|2
∫

Ω

|α(x− y)|dxdy

≤ ‖α‖2
L1(R)

∫
Ω

|u(y)|2dy = ‖α‖2
L1(R)‖u(y)‖2

L2(Ω)

This completes the proof.

Lemma 2.2.2. Lα : L∞(Ω)→ L∞(Ω) is a continuous linear operator and

‖Lαu‖L∞(Ω) ≤ ‖α‖L1(R)‖u‖L∞(Ω) (2.2.6)

Proof. We have

|Lαu| = |
∫

Ω

α(x− y)u(y)dy| ≤
∫

Ω

|α(x− y)||u(y)|dy

≤ ‖u‖L∞(Ω)

∫
Ω

|α(x− y)|dy

≤ ‖α‖L1(R)‖u‖L∞(Ω) (2.2.7)

which gives the result.
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Lemma 2.2.3. Let g ∈ C1(R) be a function vanishing at zero. For all

u ∈ L∞(Ω) ∩ L2(Ω), the function g(u) is also in L∞(Ω) ∩ L2(Ω).

Proof. We have

g(u) =

∫ 1

0

ug′(su)ds, x ∈ Ω,

so that if u ∈ L∞(Ω) ∩ L2(Ω) then

|g(u)| ≤ sup
|r|≤‖u‖L∞

{g′(r)} |u|.

Thus we have g(u) ∈ L∞(Ω) ∩ L2(Ω).

If we have u(x, t) ∈ C ([0, T ], L∞(Ω) ∩ L2(Ω)), we have

|u(x, t)| ≤ sup
0≤τ≤T

‖u(., τ)‖L∞ ≤ ‖u‖YT .

By Lemmas 2.2.1, 2.2.2 and 2.2.3, we know that g(u) ∈ YT whenever

u ∈ YT . In addition to that

‖g(u)‖YT ≤M‖u‖YT (2.2.8)

where

M := M(T ) = sup
|r|≤‖u‖YT

{|g′(r)|} . (2.2.9)

Note that if u(x, t) ∈ C ([0, T ], L∞(Ω) ∩ L2(Ω)), then M(t) defined as in

(2.2.9) is positive, continuous and nondecreasing on [0, T ].

Now we have,

‖Lαg(u)‖YT ≤ ‖α‖1‖g(u)‖YT ≤ ‖α‖1M‖u‖YT (2.2.10)
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∥∥∥∥∫ t

0

(t− τ)Lαu(x, τ)dτ

∥∥∥∥
YT

≤
∫ t

0

(t− τ) ‖Lαg(u(x, τ))‖YT dτ

≤ 1

2
t2‖Lαg(u)‖YT ≤

1

2
t2‖α‖1M‖u‖YT

Define an operator K : YT → YT as

K(u)(x, t) =

∫ t

0

(t− τ)Lαg(u)(x, τ)dτ + tψ(x) + φ(x). (2.2.11)

Clearly, K(u) ∈ YT and

‖K(u)‖YT ≤
1

2
T 2‖α‖1M‖u‖YT + CM0 (2.2.12)

where C := max{1, T}. Let us fix some bounded subset of YT which is the

neighborhood of the initial functions φ, ψ. Then

YT (M0) = {u ∈ YT | ‖u‖YT ≤M0 + 1} . (2.2.13)

We can adjust T , so that K maps YT (M0) into itself on [0, T ]. If T ≤ 1, then

C := max{1, T} = 1 and choosing T in such a way that

1

2
T 2‖α‖1M(M0 + 1) < 1.

Consequently, by (2.2.12), we have

T ≤ min

{
1,

2√
2‖α‖1M(M0 + 1)

}
. (2.2.14)

So the operator K maps YT (M0) into itself on [0, T ].

Now we proceed to set T > 0 so that K is strictly contractive. Let u1 and

u2 be in YT (M0). We have,
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‖Ku1 −Ku2‖YT =

∥∥∥∥∫ t

0

(t− τ)(Lα(g(u1)− g(u2)))dτ

∥∥∥∥
YT

≤
∫ t

0

(t− τ) ‖Lα(g(u1)− g(u2))‖YT dτ

≤ 1

2
T 2 ‖Lα(g(u1)− g(u2))‖YT

≤ 1

2
T 2‖α‖1 ‖((g(u1)− g(u2))‖YT

≤ 1

2
T 2‖α‖1M ‖u1 − u2‖YT . (2.2.15)

From (2.2.14) and (2.2.15) if

T ≤ min

{
1,

2√
2‖α‖1M(M0 + 1)

,
1√

M‖α‖1

}

then,

‖Ku1 −Ku2‖YT ≤
1

2
‖u1 − u2‖YT . (2.2.16)

Now by Banach fixed point theorem there exists a unique u ∈ YT (M0) which

is the solution of the integral equation (2.2.2), and equivalently the nonlocal

problem (2.1.1). In conclusion, we have the following important theorem.

Theorem 2.2.4. Let α ∈ L1(R).For every initial data φ, ψ ∈ L2(Ω)∩L∞(Ω)

and for every function g ∈ C∞(R) with g(0) = 0, problem (2.1.1) has a

unique local solution u such that

u(x, t) ∈ C2
(
[0, T ), L∞(Ω) ∩ L2(Ω)

)
.

2.3 Global Existence of Solution.

2.3.1 The case of moderately growing nonlinearity

It can be shown that the linear version of problem (2.1.1) has global solution.

In this section we focus on cases of nonlinearity that has mild growth so that
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it can be linearly bounded.

The first such case is when the function g ∈ C∞(R) is uniformly bounded.

This includes cases like g(x) = A sin(mx), m ∈ R g(x) = arctan(x), g(x) =

tanh(x) with infinitely many others. From the integral equation (3.2.1) we

have

‖u(., t)‖∞ ≤ ‖φ‖∞ + t ‖ψ‖+ t

∫ t

0

‖Lαg(u)(., τ)‖∞ dτ

≤ ‖φ‖∞ + t ‖ψ‖+ t2 ‖α‖1 ‖g(u)‖∞
≤ ‖φ‖∞ + t ‖ψ‖+ t2 ‖α‖1M (2.3.1)

where M = supx∈R |g(x)|. Also from,

ut(x, t) = ψ(x) +

∫ t

0

Lαg(u)(x, τ)dτ, u(x, 0) = φ(x), (2.3.2)

we can obtain

‖ut(., t)‖∞ ≤ ‖ψ‖∞ +

∫ t

0

‖Lαg(u)(., τ)‖∞ dτ

≤ ‖ψ‖∞ + ‖α‖1Mt. (2.3.3)

Hence sup
t↑T
‖u(., t)‖∞ and sup

t↑T
‖ut(., t)‖∞ are finite for every finite time T > 0.

The second special case where we can obtain a global solution is the case

where the function g ∈ C∞(R) is bounded linearly. That is,

|g(x)| ≤ A|x|+B, x ∈ R. (2.3.4)

These includes all linear functions and sub-linear functions, i.e.,

|g(x)| ≤ A|x|ρ +B, 0 < ρ < 1, x ∈ R, (2.3.5)
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as well as functions with sub-logarithmic growth , i.e.,

|g(x)| ≤ A ln(|x|+ 1) +B, 0 < ρ ≤ 1, x ∈ R. (2.3.6)

where A and B are positive constants.

Lemma 2.3.1 ([5]). Let x and k be continuous, and a and b Riemann in-

tegrable functions on the interval J = [t0, t1] with b and k non-negative on

J .Then, we have the following;

I. If

x(t) ≤ a(t) + b(t)

∫ t

t0

k(s)x(s)ds, t ∈ J, (2.3.7)

then

x(t) ≤ a(t) + b(t)

∫ t

t0

a(s)k(s) exp

(∫ t

s

b(r)k(r)dr

)
ds, t ∈ J. (2.3.8)

Moreover, equality holds in (2.3.8) for a subinterval J1 = [t2, t3] of J if

equality holds in 2.3.7 for t ∈ J1.

II. The result remains valid if ≤ is replaced by ≥ both in (2.3.7) and (

2.3.8).

III. Both (I) and (II) remain valid if
∫ t
t0

is replaced by
∫ t1
t

and
∫ t
s

by
∫ s
t

throughout.

From our integral equation (2.2.2) and condition (2.3.4) on the function

g, we have the norm inequalities

‖u(., t)‖∞ ≤ ‖φ‖∞ + t ‖ψ‖∞ + t

∫ t

0

‖Lαg(u)(., τ)‖∞ dτ

≤ ‖φ‖∞ + t ‖ψ‖∞ + ‖α‖1 t

∫ t

0

‖g(u)(., τ)‖∞ dτ

≤ ‖φ‖∞ + t ‖ψ‖∞ + ‖α‖1 t

∫ t

0

(A ‖u(., τ)‖∞ +B)dτ
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Therefore,

‖u(., t)‖∞ ≤ ‖φ‖∞+ t ‖ψ‖∞+B ‖α‖1 t
2 +A ‖α‖1 t

∫ t

0

‖u(., τ)‖∞ dτ. (2.3.9)

The last inequality (2.3.8) satisfies the condition of the Lemma 2.3.8 with

a(t) = ‖φ‖∞ + t ‖ψ‖∞ +B ‖α‖1 t
2,

b(t) = A ‖α‖1 ,

k(τ) = 1,

J = [0, T ], t0 = 0, t1 = T,

Hence

‖u(., t)‖∞ ≤ ‖φ‖∞ + t ‖ψ‖∞ +B ‖α‖1 t
2

+ A ‖α‖1 t

∫ t

0

(‖φ‖∞ + τ ‖ψ‖∞ +B ‖α‖1 τ
2) exp(

A

2
‖α‖1 (t2 − τ 2))dτ.

(2.3.10)

This means sup
t↑T
‖u(., t)‖∞ < ∞,for every finite time T > 0. From integro-

differential equation (2.2.1) we get,

‖ut(., t)‖∞ ≤ ‖ψ‖∞ +

∫ t

0

‖Lαg(u)(., τ)‖∞ dτ

≤ ‖ψ‖∞ + ‖α‖1

∫ t

0

‖g(u)(., τ)‖∞ dτ

≤ ‖ψ‖∞ + ‖α‖1

∫ t

0

(A ‖u(., τ)‖∞ +B)dτ

= ‖ψ‖∞ +B ‖α‖1 t+ ‖α‖1A

∫ t

0

‖u(., τ)‖∞ dτ

≤ ‖ψ‖∞ +B ‖α‖1 t+ ‖α‖1AU(t), (2.3.11)
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where

U(t) = t ‖φ‖∞ +
1

2
t2 ‖ψ‖∞ +

1

3
Bt3 ‖α‖1

+

∫ t

0

∫ s

0

A ‖α‖1 s(‖φ‖∞ + τ ‖ψ‖∞ +B ‖α‖1 τ
2) exp(

A

2
‖α‖1 (s2 − τ 2))dτds.

(2.3.12)

Therefore, lim sup
t↑T

‖ut(., t)‖∞ <∞. For every finite time T > 0. This proves

the global existence of solutions under the conditions imposed on the function

g. Note that, for bounded domain Ω like our case here, we have

‖u‖L2(Ω) =

(∫
Ω

|u|2
)1/2

≤
√
µ(Ω)‖u‖L∞(Ω),

where µ(Ω) is the measure of Ω. For this reason the L2 norm in our work is

inherently considered by the dominant L∞ norm.
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2.4 Solutions of Higher Regularity

We next show that the order smoothness of the solution can not exceed

the order of smoothness of the kernel α of the integral operator Lα. As

shown in the previous example, for α ∈ L1(R) and initial data φ, ψ ∈
L2(Ω) ∩ L∞(Ω), we have seen that the problem is well-posed with a solu-

tion u(x, t) ∈ C2 ([0, T ), L2(Ω) ∩ L∞(Ω)). However, we can not get a so-

lution of better smoothness even if we take smoother initial data φ, ψ ∈
Hs(Ω) ∩ L∞(Ω), s > 0, rather than φ, ψ ∈ L2(Ω) ∩ L∞(Ω). In the next

lemma we see differentiation properties with respect to the spacial variable

x under integral sign. Such differentiation is directly applied to the kernel α

as the other variable under the integral is a dummy variable. We consider

the following illustrative argument for case Ω an interval in R.

Let Ω = [a, b] ⊂ R. If u ∈ H1(Ω), by a simple change of variable,

y = x− z, we may write the integral operator given by (2.1.2) as

Lαu(x) =

∫ x−a

x−b
α(z)u(x− z)dz, x ∈ Ω. (2.4.1)

From (2.4.1) we get

∂

∂x
Lαu(x) = Φ0(x) +

∫
Ω

α(x− y)
∂

∂y
u(y)dy, (2.4.2)

where

Φ0(x) = α(x− a)u(a)− α(x− b)u(b).

This implies that Lαu ∈ H1(Ω) if and only if Φ0(x) ∈ L2(Ω). One possible

case is when u ∈ H1
0 (Ω), where we have, u(a) = u(b) = 0, so that Φ0 = 0 ∈

L2(Ω). From these arguments, we state the following theorem.

Theorem 2.4.1. Let α ∈ L1(R) and u ∈ H1(Ω), then Lαu(x) ∈ H1(Ω) if

and only if α(x− a)u(a)− α(x− b)u(b) ∈ L2(Ω).

Corollary 2.4.1. The operator Lα : H1
0 (Ω)→ H1(Ω) is a bounded operator.
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Proof. By Theorem 2.4.1 and differentiation under integral sign it follows

that

‖Lαu‖2
H1(Ω) = ‖∂xLαu‖2

L2(Ω) + ‖Lαu‖2
L2(Ω)

≤ ‖α‖2
L1(R)(‖ux‖2

L2(Ω) + ‖u‖2
L2(Ω))

= ‖α‖2
L1(R)‖u‖2

H1
0 (Ω).

Therefore we have,

‖Lαu‖H1(Ω) ≤ ‖α‖L1(R)‖u‖H1
0 (Ω),

as required.

If α ∈ Wm
1 (R) and u ∈ Hk(Ω),m ≥ k ≥ 1, by an argument that follows

from (2.4.1) and (2.4.2) we may get

∂kxLαu(x) =

∫
Ω

α(x− y)∂kyu(y)dy +
k∑
i=1

∂i−1
x Φk−i(x), (2.4.3)

where,

Φr(x) = α(x− y)∂ryu(y)|y=a
y=b , for 1 ≤ r ≤ k − 1.

and
k∑
i=1

∂i−1
x Φk−i(x) ∈ L2(Ω) (2.4.4)

In particular we have

Φk−i(x) ∈ H i−1(Ω), 1 ≤ i ≤ k. (2.4.5)

The condition in (2.4.5) follows from definition of Sobolev space Hs. On the

other hand we have

∂kxLαu(x) =

∫
Ω

∂kxα(x− y)u(y)dy = LDkxαu(x). (2.4.6)
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If α ∈ Wm
1 (R),m ≥ k and u ∈ Hk(Ω), k ≥ 1 then Lαu(x, t) ∈ Hk(Ω). In

this case we have equivalent forms of writing ∂kxLαu(x, t) given by (2.4.3) and

(2.4.6).

Lemma 2.4.2. Let α ∈ W k,1(R), where is k is a positive integer. Then the

operator

Lα : L2(Ω)→ Hk(Ω)

is continuous.

Proof. By definition, α ∈ W k,1(R) implies that

Dr
xα ∈ L1(R), 0 ≤ r ≤ k. (2.4.7)

For u ∈ L2(Ω)∩L∞(Ω), by differentiation under integral sign and (2.2.1) we

have .

LDrxαu ∈ L
2(Ω) 0 ≤ r ≤ k (2.4.8)

Applying partial differentiation under integral sign yields,

Dr
xLαu = LDrxαu ∈ L

2(Ω), 0 ≤ r ≤ k. (2.4.9)

From (2.4.9) we get that Lαu ∈ Hk(Ω). Next we set the norm estimate of

Lαu.

‖Lαu‖2
Hk(Ω) =

k∑
r=0

‖∂rxLαu‖2
L2(Ω) =

k∑
r=0

‖L(Drxα)u‖2
L2(Ω) ≤

k∑
r=0

‖Dr
xα‖2

L1(R)‖u‖2
L2(Ω)

=

( k∑
r=0

‖Dr
xα‖2

L1(R)

)
‖u‖2

L2(Ω) ≤
(
‖α‖Wk,1(R)

)2

‖u‖2
L2(Ω)
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Therefore we have

‖Lαu‖Hk(Ω) ≤
(
‖α‖Wk,1(R)

)
‖u‖L2(Ω). (2.4.10)

Theorem 2.4.3. Let k ≥ 1 be a positive integer. For the kernel α ∈ W k,1(R)

and initial data φ, ψ ∈ L∞ ∩ Hk(Ω), we have a unique local solution of the

initial problem (2.1.1) u ∈ C2
(
[0, T ], L∞ ∩Hk(Ω)

)
.

In the preceding lemmas and theorem we have seen that with smoother

kernel of the integral operator we get a solution with order of smoothness

provided that the initial data too are sufficiently smooth. However we have

discussed only the case where solutions with order of smoothness a positive

integer and not a fractional order. The next lemma and the theorem that

follows are about how we can find a solution of any positive order s with a

kernel α ∈ Hs(R) ∩ L1(R).

Theorem 2.4.4. Let u ∈ L2(Ω) and α ∈ Hs(R) ∩ L1(R), s ≥ 0. Then

Lα ∈ Hs(Ω) and the operator, Lα : L2(Ω)→ Hk(Ω) is continuous.

Proof. • Case 1. For s = 0,That is, α ∈ L2(R) ∩ L1(R), then Lαu ∈
L2(Ω). Indeed,

‖Lαu‖2
L2(Ω) =

∫
Ω

∣∣∣∣(∫
Ω

α(x− y)u(y)dy

)∣∣∣∣2 dx
≤
∫

Ω

(∫
Ω

|α(x− y)||u(y)|dy
)2

dx

≤
∫

Ω

(∫
Ω

|α(x− y)|2dy
)(∫

Ω

|u(y)|2dy
)
dx

≤ ‖u‖2
L2(Ω)

∫
Ω

∫
Ω

|α(x− y)|2dydx

= µ(Ω)‖α‖2
L2(R)‖u‖2

L2(Ω).
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• Case 2. s ∈ N.
In this case Drα ∈ L2(R), ∀ 0 ≤ r ≤ s. This implies that

DrLαu = LDrαu ∈ L2(Ω) ∀ 0 ≤ r ≤ s.

Hence Lαu ∈ Hs(Ω) by Case 1 and definition of Hs(Ω).

• Case 3. For 0 < s < 1.

We have α ∈ L2(R) and by Case 1 Lαu ∈ L2(Ω). Next we show that

the Gagliardo semi-norm [Lαu]Hs(Ω) <∞. In fact;

[Lαu]2Hs(Ω) =

∫
Ω

∫
Ω

|Lαu(x)− Lαu(y)|2

|x− y|1+2s
dxdy

≤
∫

Ω

∫
Ω

|
∫

Ω
(α(x− z)− α(y − z))u(z)dz|2

|x− y|1+2s
dxdy

≤
∫

Ω

∫
Ω

(
∫

Ω
|u(z)|2dz)(

∫
Ω
|α(x− z)− α(y − z)|2dz)

|x− y|1+2s
dxdy

≤ ‖u‖2
L2(Ω)

∫
Ω

(∫
R

∫
R

|α(x− z)− α(y − z)|2

|x− y|1+2s
dxdy

)
dz

= ‖u‖2
L2(Ω)µ(Ω)[α]2Hs(R).

• Case 4. For arbitrary s > 0.

In this case s can be written as s = k + κ, where k is a nonnegative

integer and 0 < κ < 1.Then,

α ∈ Hs(R) = Hk+κ(R) ⊂ Hk(R).

Hence, Lαu ∈ Hk(R) by Case 2 and DkLαu ∈ Hκ(R) by Case 3.

Consequently, we have Lαu ∈ Hs(R).
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From Cases 1,2,3 and 4 we have the following norm estimate

‖Lαu‖Hs(Ω) =
(
‖Lαu‖2

Hk(Ω) + [Lαu]2Hs(Ω)

)1/2

=

(
k∑
r=0

‖DrLαu‖2
L2(Ω) + [DkLαu]2Hκ(Ω)

)1/2

=

(
k∑
r=0

‖LDrαu‖2
L2(Ω) + [LDkαu]2Hκ(Ω)

)1/2

≤

(
k∑
r=0

|Ω|‖Drα‖2
L2(Ω)‖u‖2

L2(Ω) + |Ω|[Dkα]2Hκ(R)‖u‖2
L2(Ω)

)1/2

=
√
|Ω|‖α‖Hs(R)‖u‖L2(Ω).

We also have,

‖Lαu‖L∞(Ω) ≤
√
µ(Ω)‖α‖L2(R)‖u‖L∞(Ω)

Theorem 2.4.5. For initial data φ, ψ ∈ Hs(Ω) ∩ L∞(Ω), s ≥ 0 and α ∈
Hs(R)∩L1(R), there exists a unique solution u ∈ C2

(
[0, T );Hs(Ω)∩L∞(Ω)

)
of problem (2.1.1) defined on some maximal interval of existence [0, T ). The

solution depends on the initial data u(x, 0) = φ(x), ut(x, 0) = ψ(x). If T <

∞, then

lim sup
t↑T

(
‖u(., t)‖Hs(Ω) + ‖ut(., t)‖Hs(Ω) ‖u(., t)‖L∞(Ω) + ‖ut(., t)‖L∞(Ω)

)
=∞.

Proof. We may write problem in (2.1.1) as a system of first order ODEs

in the Banach space, Ys = Hs(Ω) ∩ L∞(Ω). Let ut(x, t) := v(xt) .We can

transform the problem (2.1.1) into a system of ODE

Ut(x, t) = F(U(x, t)),U(x, 0) = U0,

where,
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U(x, t) =

[
u(x, t)

v(x, t)

]

and

F(U) =

[
f1(U(x, t))

f2(U(x, t))

]
=

[
u(x, t)

Lαg(u(x, t))

]

with the corresponding initial condition,

U0(x, t) =

[
u(x, 0)

v(x, 0)

]
=

[
φ(x)

ψ(x)

]
.

By Theorem 2.4.4 we have

‖Lαg(u2)− Lαg(u2)‖YT (Ω) = ‖Lα(g(u2)− g(u1))‖YT (Ω)

≤ ‖α‖Hs(R)‖g(u2)− g(u1)‖YT (Ω)

≤ ‖α‖Hs(R)M‖u2 − u1‖YT (Ω),

(2.4.11)

For all u1, u2 ∈ YT (Ω).We deduce that above ODE system is locally Lipschitz.

Hence from the results from classical Picard theorem [38], we conclude the

well-posedness of the problem.

Theorem 2.4.6. Let the initial data φ, ψ ∈ Hs(Ω), s > 1/2 and u(x, t) be the

solution of (2.1.1) in the maximal interval of existence [0, T ). Then T <∞
if and only if sup

t↑T
‖ut(., t)‖L∞(Ω) =∞.

Proof. For s > 1
2
,Ω ⊂ R we have the embedding,

Hs(Ω) ↪→ L∞(Ω). (2.4.12)
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By composition theorem for Sobolev spaces we have,

‖g(u)‖Hs(Ω) ≤ C‖u‖Hs(Ω),

where C depends only on ‖u‖L∞(Ω). Now,

d

dt
(‖u‖2

Hs + ‖v‖2
Hs) = 2〈u, v〉Hs + 2〈v, vt〉Hs

= 2〈u, v〉Hs + 2〈v, Lαg(u)〉Hs

= 2‖u‖Hs‖v‖Hs + 2‖v‖‖Lαg(u)‖Hs

= 2‖u‖Hs‖v‖Hs + 2‖α‖L1(R)‖v‖Hs‖g(u)‖Hs

= 2‖u‖Hs‖v‖Hs + 2C‖α‖L1(R)‖v‖Hs‖g(u)‖Hs

≤ (1 + C‖α‖L1(R))(‖u‖2
Hs + ‖v‖2

Hs).

Therefore,

d

dt
(‖u‖2

Hs + ‖v‖2
Hs) ≤ (1 + 2C‖α‖L1(R))(‖u‖2

Hs + ‖v‖2
Hs).

Application of Gronwall’s lemma verifies that the Hs- norms of u and v and

consequently the L∞-norms of u and v, do not blow up in finite time. By

theorem — ,this implies that T =∞ assuring global existence of solution.

We may summarize to a class of functions which includes the ones dis-

cussed above for which under certain conditions the global existence works.

For initial data φ, ψ ∈ Hs(Ω), s ≥ 1, let us introduce the class

W =

{
w : R+ → (0,∞), w is nondecreasing and

∫ ∞
1

ds

w(s)
= +∞

}
Theorem 2.4.7. Let α ∈ W 1

1 (R) and function g ∈ C∞(R) satisfy g(0) = 0

with

|g(x)|2 ≤ w(x2),
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for some w ∈ W. Then for all φ, ψ ∈ H1(Ω) any local solution u ∈
C2([0, T );Hs(Ω)) of (2.1.1) is a global solution of (2.1.1), that is T =∞.

Proof. We have

‖u‖2
H1(Ω) =

∫
Ω

(u2 + u2
x)dx, ‖v‖2

H1(Ω) =

∫
Ω

(v2 + v2
x)dx.

So,

d

dt
‖u‖2

H1(Ω) =

∫
Ω

(2uut + 2uxuxt)dx =

∫
Ω

(2uv + 2uxvx)dx

≤
∫

Ω

(u2 + v2 + u2
x + v2

x)dx

=

∫
Ω

(u2 + u2
x)dx+

∫
Ω

(v2 + v2
x)dx

= ‖u‖2
H1(Ω) + ‖v‖2

H1(Ω),

(2.4.13)

and

d

dt
‖v‖2

H1(Ω) =

∫
Ω

(2vvt + 2vxvxt)dx

≤
∫

Ω

(v2 + v2
t + v2

x + v2
xt)dx

=

∫
Ω

(v2 + v2
x)dx+

∫
Ω

(v2
t + v2

xt)dx

= ‖v‖2
H1(Ω) + ‖vt‖2

H1(Ω).

(2.4.14)
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However from (2.1.1) and Theorem 2.4.1 it follows that

‖vt‖2
H1(Ω) = ‖Lαg(u)‖2

H1(Ω) ≤ C2
α‖g(u)‖2

L2(Ω)

= C2
α

∫
Ω

|g(u)|2dx ≤ C2
α

∫
Ω

w(u2)dx

≤ µ(Ω)C2
αw(‖u‖2

∞) ≤ µ(Ω)C2
αw(‖u‖2

H1(Ω))

≤ µ(Ω)C2
αw(‖u‖2

H1(Ω) + ‖v‖2
H1(Ω))

(2.4.15)

Now from (2.4.14 ) and (2.4.15)we have,

d

dt
‖v‖2

H1(Ω) ≤ ‖v‖2
H1(Ω) + µ(Ω)C2

αw(‖u‖2
H1(Ω) + ‖v‖2

H1(Ω)). (2.4.16)

From (2.4.13) and (2.4.16) we get the differential inequality,

d

dt
W (t) ≤ C̃α(W (t) + w(W (t))) (2.4.17)

where W (t) := ‖u(., t)‖2
H1(Ω) + ‖v(., t)‖2

H1(Ω) and C̃α := max{2, µ(Ω)C2
α}.

Integrating from 0 to t both sides of the differential inequality (2.4.17), we

get the integral inequality

W (t) ≤ W (0) +

∫ t

0

C̃((W (s) + w(W (s)))ds, (2.4.18)

where W (0) := ‖φ‖2
H1(Ω) + ‖ψ‖2

H1(Ω).

Applying Bihari-LaSalle inequality[5] we get,

W (t) ≤ G−1(G(W (0) + C̃αt),

or equivalently

‖u‖2
H1(Ω) + ‖v‖2

H1(Ω) ≤ G−1
(
C̃αt+G

(
‖φ‖2

H1(Ω) + ‖ψ‖2
H1(Ω)

))
, (2.4.19)
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where

G(r) =

∫ r

0

ds

s+ w(s)
, r ≥ 0,

The last inequality guarantees the H1(Ω)-norms of u and ut remain finite on

every finite time interval [0, T ]. Consequently,

lim sup
t↑T

‖u(., t)‖∞ <∞

and

lim sup
t↑T

‖ut(., t)‖∞ <∞

for every finite time T > 0.

2.5 Energy Identity and Global Existence

We write equation (2.1.1) as

Putt = −g(u) (2.5.1)

where we assumed at this point that the integral operator Lα is negative

symmetric and that

P := −L−1
α , (2.5.2)

is a symmetric positive operator. By symmetry of P we mean that 〈Pu, v〉 =

〈u, Pv〉 for all u, v in the range R(Lα) of the integral operator Lα. Basically,

we assume that the kernel α is symmetric. That is,

α(x− y) = α(y − x). (2.5.3)

Consequently the integral operator Lα is symmetric. By positivity of P we

mean that

〈Pu, u〉 ≥ 0, ∀u ∈ R(Lα). (2.5.4)
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By the conditions in (2.5.2) and (2.5.4), we have Lα is negative operator.

That is,

〈Lαu, u〉 ≤ 0, ∀u ∈ L2(Ω). (2.5.5)

For α ∈ W 1,1(R), we have the operator P defined on the range R(Lα) of the

integral operator Lα, that is ,

P : R(Lα) ⊂ H1(Ω)→ L2(Ω). (2.5.6)

We also have a norm ‖.‖P defined on the range R(Lα) given by

u(t) 7→ 〈Pu(t), u(t)〉
1
2

L2(Ω) := ‖u(t)‖P , t ∈ [0, T ). (2.5.7)

Lemma 2.5.1. Assume that, G(x) =
∫ x

0
g(s)ds, Pu ∈ L2(Ω), G ∈ L1(Ω)

and let u ∈ C2([0, T );L2(Ω) ∩ L∞(Ω)) be the solution of problem (2.1.1).

Then the quantity E(t) given by

E(t) =
1

2
〈Put, ut〉L2(Ω) +

∫
Ω

G(u)dx (2.5.8)

is a constant. Specifically we have

E(t) =
1

2
〈Pψ, ψ〉L2(Ω) +

∫
Ω

G(φ)dx = E(0), t ∈ [0, T ).

Proof. The proof follows by multiplying both sides of (2.5.1) by ut and inte-

grating over the domain Ω.

Sometimes it may be important to consider a nonlinear function g in

problem (2.1.1) that begins with linear term u. For this case we may write

g(u) = u+ f(u). To keep the characterization of g as smooth function with

g(0) = 0, we set f to be smooth and that f(0) = 0 as well. This introduces

a positive term 1
2
‖u‖2

L2(Ω) in the corresponding energy identity. So that new
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energy identity, which is a conserved quantity, may be written as

E(t) =
1

2
〈Put, ut〉L2(Ω) +

1

2
‖u‖2

L2(Ω) +

∫
Ω

F (u)dx. (2.5.9)

In particular,

E(t) = E(0) =
1

2
〈Pψ, ψ〉L2(Ω) +

1

2
‖φ‖2

L2(Ω) +

∫
Ω

F (φ)dx, t ∈ [0, T ),

where, F (x) =
∫ x

0
f(s)ds, Put ∈ L2(Ω), F ∈ L1(Ω).

Theorem 2.5.2. Let α ∈ Hs(R) ∩ L1(R) and initial data

φ, ψ ∈ Hs(Ω) ∩ L∞(Ω), s ≥ 1. Let u be a solution to problem (2.1.1) on

the maximum interval of existence [0, T ). If
∫

Ω
G(u)dx ≥ 0, the quantity

〈Pu(t), u(t)〉L2(Ω) does not blow up in every finite time interval. In addition,

if we have either the condition

k

∫
Ω

G(u(x, t))dx ≥ ‖u(., t)‖L2(Ω), t ∈ [0, T ) (2.5.10)

for some k > 0, or the condition

‖u(., t)‖L2(Ω) ≤ 〈Pu(., t), u(., t)〉1/2L2(Ω), t ∈ [0, T ) (2.5.11)

then the solution is global in time, i.e. T =∞.

Proof. From the energy identity (2.5.8) and the given additional condition

that
∫

Ω
G(u)dx ≥ 0 on [0, T ), we have

1

2
〈Put, ut〉L2(Ω) ≤ E(0). (2.5.12)

By the assumption that P is positive symmetric, using Cauchy-Schwartz

inequality and equation (2.5.12), we have the inequality

〈Pu, ut〉 ≤ 〈Pu, u〉1/2L2(Ω)〈Put, ut〉
1/2

L2(Ω) ≤
√

2E(0)〈Pu, u〉1/2L2(Ω)
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Rewriting the inequality as

d〈Pu, u〉L2(Ω)

2
√
〈Pu, u〉L2(Ω)

≤
√

2E(0)dt

and integrating over the interval [0, t], 0 < t < T , we get

〈Pu(t), u(t)〉L2(Ω) ≤
(√
〈Pφ, φ〉L2(Ω) +

√
2E(0)t

)2

. (2.5.13)

This shows that the quantity 〈Pu(., t), u(., t)〉L2(Ω) does not blow-up in a

finite time interval. Let u(x, t) a solution of (2.1.1). If we have additional

condition given by inequality (2.5.10) then by Theorem 2.4.4, given condition

(2.5.10) and energy identity (2.5.8) we have

‖Lαg(u)‖H1(Ω) ≤ ‖α‖Hs(R)‖g(u)‖L2(Ω)

≤ ‖α‖Hs(R)M(t)‖u‖L2(Ω)

≤ ‖α‖Hs(R)M(t)k

∫
Ω

G(u)dx

≤ ‖α‖Hs(R)M(t)kE(0)

(2.5.14)

Now by virtue of the equations (2.2.2) and (2.2.1), we have the ‖u‖H1(Ω) and

‖ut‖H1(Ω) are bounded over any finite interval of the form [0, T ). This assures

the global existence of solution.

Now if we have the condition,

‖u(., )‖L2(Ω) ≤ 〈Pu(., t), u(., t)〉1/2L2(Ω), (2.5.15)

By theorem (2.4.4) and given condition (2.5.15) we have,
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‖Lαg(u)‖Hs(Ω) ≤ ‖α‖Hs(R)‖g(u)‖L2(Ω)

≤ ‖α‖Hs(R)M(t)‖u‖L2(Ω)

≤ ‖α‖Hs(R)M(t)〈Pu(., t), u(., t)〉1/2L2(Ω)

≤ ‖α‖Hs(R)M(t)
(√
〈Pφ, φ〉L2(Ω) +

√
2E(0)t

)
. (2.5.16)

Again by virtue of the equations (2.2.2) and (2.2.1) we have ‖u‖H1(Ω) and

‖ut‖H1(Ω) are bounded over any finite interval of the form [0, T ). This assures

the global existence of solution.

Particular examples of function g satisfying the condition in Theorem

2.5.2 are g(x) = sinh(x) and g(x) = ax+ f(x) where,

a > 0, f(0) = 0, F (x) =

∫ x

0

f(r)dr,

∫
Ω

F (u)dx ≥ 0.

2.6 Blow-up in Finite Time

In this section we discuss the case of non continuation of a solution beyond

some finite time. We use an indirect argument by showing the non con-

tinuation of some positive quantity 〈Pu, u〉 defined on the range R(Lα) of

the integral operator (2.1.2). The following classical result is of ultimate

importance.

Lemma 2.6.1 (Levine Lemma). Suppose that for t ≥ 0, a positive, twice

differentiable function I(t) satisfies the inequality

I(t)I ′′(t)− µI ′(t)2 ≥ 0,

where µ > 0 is a constant. If I(0) > 0 and I ′(0) > 0, then I(t) → ∞ as

t→ t1 ≤ I(0)
µI′(0)

, for some 0 ≤ t1 ≤ I(0)
µI′(0)

.
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Now we state a theorem on the non-continuation condition of solution u

of (2.1.1) when the initial energy E(0) is negative.

Theorem 2.6.2. Let condition ug(u) ≤ qG(u) be satisfied for some q > 2.

Then no solution u of problem (2.1.1) exist on some interval J = [0,∞)

when the initial energy E(0) < 0.

Proof. Let u be a solution on of (2.1.1) on the interval J = [0,∞). Define

I(t) =
1

2
〈Pu, u〉+ β(t), (2.6.1)

where β(t) is a positive twice differentiable function that we determine latter

in the proof. So,

I ′(t) = 〈Pu, ut〉+ β′(t). (2.6.2)

From the given condition ug(u) ≤ qG(u) we have, −〈u, g(u)〉 ≥ −q
∫

Ω
G(u)dx.

Therefore,

I ′′(t) = 〈Put, ut〉+ 〈Pu, utt〉+ β′′(t)

= 〈Put, ut〉+ 〈Pu, Lαg(u)〉+ β′′(t)

= 〈Put, ut〉 − 〈u, g(u)〉+ β′′(t)

= 〈Put, ut〉 − q
∫

Ω

G(u)dx+ β′′(t). (2.6.3)

But from the energy identity (2.5.8) we have,

−q
∫

Ω

G(u)dx =
q

2
〈Put, ut〉 − qE(0).

We therefore have

I ′′(t) ≥ (1 +
q

2
)〈Put, ut〉 − qE(0) + β′′(t). (2.6.4)
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Suppose that E(0) < 0, if we set,

β(t) = β0(t+ t0)2

where β0 = |E(0)| and t0 > 0,then

−qE(0) + β′′(t) = (q + 2)|E(0)| = 4β0(1 + µ).

We can observe that I(t) > 0, t ≥ 0, and consequently

I(0) =
1

2
〈Pφ, φ〉+ β0t

2
0 > 0.

If the constant to is chosen sufficiently large, say for example,

t0 >
|〈Pφ, ψ〉|
2|E(0)|

,

we have

I ′(0) = 〈Pφ, ψ〉+ 2β0t0 > 0.

Up to this point we have shown that I(t) satisfies two of the conditions in

Levine lemma. Namely, I(0) > 0 and I ′(0) > 0. It suffices to show that the

quantity I(t)I ′′(t)− (1+µ)[I ′(t)]2 ≥ 0 to conclude that the quantity I(t) and

consequently, the quantity 〈Pu, u〉, blows up in finite time. We have

H(t) ≥
(

1

2
〈Pu, u〉+ β(t)

)(
(1 +

q

2
)〈Put, ut〉 − qE(0) + β′′(t)

)
− (1 + µ) [〈Pu, ut〉+ β′(t)]

2

=
1

2
(1 +

q

2
)〈Pu, u〉〈Put, ut〉 − (1 + µ)〈Pu, ut〉2(

−1

2
qE(0) +

1

2
β′′(t)

)
〈Pu, u〉+ (1 +

q

2
)β(t)〈Put, ut〉

− 2(1 + µ)β′(t)〈Pu, ut〉 − qE(0)β(t) + β(t)β′′(t)− (1 + µ)[β′(t)]2
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If we let 1
2
(1 + q

2
= (1 + µ), we get

H(t) ≥ (1 + µ)[〈Pu, u〉〈Put, ut〉 − 〈Pu, ut〉2]

+ 2(1 + µ)β0[〈P (u− (t+ t0)ut), u− (t+ t0)ut〉] ≥ 0

By Cauchy-Schwartz inequality the first term in bracket is nonnegative. And

by the positive definiteness of the operator P , the expression in the second

bracket is also non negative. Consequentiality the result follows by Levine

lemma 2.6.1.
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Chapter 3

Nonlinear Nonlocal Wave Type

Problem

3.1 Description of the problem

In this chapter we consider a nonlinear nonlocal wave equation with non-

linearity and nonlocality terms are combined with an integral operator with

kernel α. The problem is given as
utt −∆u = Lαg(u), x ∈ Ω, t > 0,

u(x, 0) = φ(x), ut(x, 0) = ψ(x), x ∈ Ω,

u(x, t) = 0, x ∈ ∂Ω t > 0,

(3.1.1)

where α ∈ L1(R) is a known function, g is a given nonlinear function, the in-

tegral operator Lα defined as given by (2.1.2), and u is the unknown function.

For problem (3.1.1) and the current chapter, and the related problem

(4.1.1) given in the next chapter, we set the nonlinearity term g(u) to be
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power type nonlinearity given by

g(u) = |u|p−1u, p > 1. (3.1.2)

This is due to the simplicity that we may discover later in the chapters. Some

other functions with power type nonlinearities may take anyone of the forms

g(u) = ±|u|p, g(u) = ±up, g(u) = ±|u|p−1u, p > 1.

As desired by our solution, g(u) = |u|p−1u, p > 1, satisfies the following

conditions.

i. g ∈ C1(R) and g(0) = g′(0) = 0.

ii. G(u) :=
∫ u

0
g(s)ds = 1

p+1
|u|p+1.

iii. g(u) is monotone and convex for u > 0, and concave for u < 0.

iv. (p+ 1)G(u) = ug(u).

3.2 Local well-posedness

Equation (3.1.1) may be written in an equivalent operator form which is an

integral equation as

u(x, t) = A(t)φ(x) + B(t)ψ(x) +

∫ t

0

B(t− τ)Lαg(u(x, τ))dτ. (3.2.1)

For notational simplicity, in (3.2.1) we have used the operator notations A
and B meaning:

A(t) := cos(t
√
−∆D), B(t) :=

sin(t
√
−∆D)√
−∆

. (3.2.2)
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According to (1.4.3), the operational definitions the operators given in (3.2.2),

are given as follows. For any u ∈ L2(Ω) with eigenfunction expansion given

by (1.4.4),

A(t)u =
∞∑
n=1

cos(t
√
λn)unϕn, (3.2.3)

B(t)u =
∞∑
n=1

sin(t
√
λn)√

λn
unϕn. (3.2.4)

We later see that definitions given in (3.2.3) and (3.2.4) are well defined. The

integral representation for the first order time derivative ut is given by

ut(x, t) = (−∆D)B(t)φ(x) +A(t)ψ(x) +

∫ t

0

A(t− τ)Lαg(u(x, τ))dτ. (3.2.5)

In (3.2.5) we introduced the operational definition,

(−∆D)B(t) = −
√
−∆D sin(t

√
−∆). (3.2.6)

Next, we make the analysis of the norm estimates of each of the terms in-

volved in the integral equations (3.2.1) and (3.2.5).

The zero Dirichlet boundary conditions are satisfied by each of the eigen-

functions ϕn(x) of the positive Dirichlet Laplace operator −∆D. We have

the following important mapping properties of the operators A(t) and B(t).

Theorem 3.2.1. Each of the following mappings of the operator A(t) and

B(t) between the indicated pair of spaces are continuous :

A(t) : L2(Ω)→ L2(Ω),

A(t) : H1(Ω)→ H1
0 (Ω),

A(t) : Hk(Ω)→ H1
0 (Ω) ∩Hk(Ω), k > 1,

B(t) : L2(Ω)→ H1
0 (Ω),

B(t) : H1(Ω)→ H1
0 (Ω) ∩H2(Ω),

B(t) : Hk(Ω)→ H1
0 (Ω) ∩Hk+1(Ω), k > 0.

(3.2.7)
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Proof. Let u ∈ L2(Ω). By (1.4.4), (3.2.3) and (1.4.6) we have

‖A(t)u‖2
L2(Ω) =

∞∑
i=1

cos2(t
√
λi)v

2
i ≤

∞∑
i=1

u2
i = ‖u‖2

L2(Ω)

So that

‖A(t)u‖L2(Ω) ≤ ‖u‖L2(Ω). (3.2.8)

If u ∈ H1(Ω), then ‖u‖2
H1(Ω) =

∑∞
i=1 λiu

2
i <∞. Hence,

‖A(t)u‖2
H1(Ω) =

∞∑
i=1

cos2(t
√
λi)λiu

2
i ≤

∞∑
i=1

λiu
2
i = ‖u‖2

H1(Ω).

Consequently,

‖A(t)u‖Hs(Ω) ≤ ‖u‖Hs(Ω). (3.2.9)

If u ∈ Hk(Ω), k > 0, then, ‖u‖2
Hk(Ω)

=
∑∞

i=1 λ
k
i u

2
i <∞ and

‖A(t)u‖2
Hk(Ω) =

∞∑
i=1

cos2(t
√
λi)λ

k
i u

2
i ≤

∞∑
i=1

λki u
2
i = ‖u‖2

Hk(Ω),

‖A(t)u‖Hk(Ω) ≤ ‖u‖Hk(Ω). (3.2.10)

As a consequence of the operational definition given in (3.2.4) and the defi-

nition of H1 norm given in (1.4.9), we have

‖B(t)u‖2
H1

0 (Ω) =
∞∑
i=1

(
sin(
√
λit)√
λi

)2

λiu
2
i ≤

∞∑
i=1

u2
i = ‖u‖2

L2(Ω)

Consequently we have

‖B(t)u‖H1
0 (Ω) ≤ ‖u‖L2(Ω). (3.2.11)

By the operational definition given in (3.2.4) and the definition of the general
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Hs norm given in (1.4.12), we have

‖B(t)u‖2
H2(Ω) =

∞∑
i=1

(
sin(
√
λit)√
λi

)2

λ2
iu

2
i ≤

∞∑
i=1

λiu
2
i = ‖u‖2

H1(Ω)

and consequently

‖B(t)u‖H2(Ω) ≤ ‖u‖H1(Ω). (3.2.12)

According to (1.4.12),

‖B(t)u‖2
Hk+1(Ω) =

∞∑
i=1

(
sin(t
√
λi)√

λi

)2

λk+1
i v2

i =
∞∑
i=1

λki u
2
i = ‖u‖2

Hk(Ω).

Consequently

‖B(t)u‖Hk+1(Ω) ≤ ‖u‖Hk(Ω). (3.2.13)

We observe that the operator A(t) and B(t) incorporate the Dirichlet bound-

ary conditions while B(t), additionally, increases the order of smoothness by

one.

Theorem 3.2.2. The mappings of the operator,

∆DB(t) : Hs+1(Ω)→ Hs(Ω)

given as

u 7→ ∆DB(t)u =
∞∑
n=1

−
√
λn sin(t

√
λn)unϕn(x)

is continuous.

Proof. If u ∈ Hs+1(Ω), then, ‖u‖Hs+1(Ω) =
∑∞

i=1 λ
s+1
i u2

i <∞.

∆DB(t)u =
∞∑
i=1

(−
√
λi sin(t

√
λi)ϕ(x)

For ∆DB(t)u, we have

61



‖∆DB(t)u‖2
Hs(Ω) =

∞∑
i=1

λsi

(
−
√
λi sin(t

√
λi)ui

)2

=
∞∑
i=1

λs+1
i sin2(t

√
λn)u2

i

≤
∞∑
i=1

λs+1
i u2

i = ‖u‖2
Hs+1(Ω)

Therefore,

‖∆DB(t)u‖Hs(Ω) ≤ ‖u‖Hs+1(Ω), (3.2.14)

as required.

Theorem 3.2.3. The following mappings of the composition of operator

A(t),B(t) and Lα are continuous:

B(t)Lα : H1
0 (Ω)→ H1

0 (Ω),

A(t)Lα : H1
0 (Ω)→ H1

0 (Ω),

A(t)Lα : L2(Ω)→ L2(Ω)).

(3.2.15)

Proof. From (2.4.1) we know that Lα mapsH1
0 (Ω) intoH1(Ω) while from(3.2.7)

we know that B(t) maps H1(Ω) into H1
0 (Ω)∩H2(Ω). Consequently, the com-

position of the continuous operators B(t)Lα mapsH1
0 (Ω) into itself. Similarly,

the composition operator A(t)Lα maps the space H1
0 (Ω) into itself. We also

have the following norm estimates that follow from similar arguments.

‖B(t)Lαu‖H1
0 (Ω) ≤ ‖α‖L1(R)‖u‖H1

0 (Ω,

‖A(t)Lαu‖H1
0 (Ω) ≤ ‖α‖L1(R)‖u‖H1

0 (Ω),

‖A(t)Lαu‖L2(Ω) ≤ ‖α‖L1(R)‖u‖L2(Ω).

(3.2.16)

This proves the claim.
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3.2.1 Weak Solutions

Definition 3.2.4. Let ΩT := Ω × T , where Ω ⊂ Rn, is an open connected

set with smooth boundary ∂Ω. A weak solution of the nonlocal nonlinear

initial-boundary value problem (3.1.1) is any function u satisfying

u ∈ C([0, T ), H1
0 (Ω)) ∩ C1([0, T ), L2(Ω) ∩ L∞(Ω)).

Moreover, it satisfies∫
ΩT

(u(x, s)vtt −∇u(x, s)∇(x, s)− v(x, s)Lαu(x, s)− g(x, s)v(x, s))dxds

=

∫
Ω

(φ(x)v(x, 0)− ψ(x)vt(x, s)) dxds

for every v ∈ C∞c (ΩT × (0, T )).

We consider a power type nonlinearity for cases of space dimension n ≥ 2

and a more general class of nonlinearity for space dimension n = 1. This

is due to some embedding results that help to indicate where our desired

solution should be. From Sobolev embedding theorem we have H1
0 (Ω) ⊂

L
2n
n−2 (Ω) if n ≥ 3.However for n = 2, H1

0 (Ω) ⊂ Lq(Ω), 1 ≤ q < ∞, and

for n = 1, H1
0 (Ω) ⊂ Lq(Ω), 1 ≤ q ≤ ∞.

The case n ≥ 3 : Let φ ∈ H1
0 (Ω), ψ ∈ L2(Ω) ∩ L∞(Ω). We study

the existence of a unique solution u(x, t) of the nonlocal nonlinear initial-

boundary value problem in the space

u ∈ C([0, T ), H1
0 (Ω)) ∩ C1([0, T ), L2(Ω)).

We set the nonlinearity term g(u) of power type as it is given by equation

(3.1.2).

Lemma 3.2.5. Let Ω ⊂ Rn be abounded domain with measure µ(Ω) < ∞.
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We have the following embeddings,

H1
0 (Ω) ↪→ L2p(Ω) ↪→ L2(Ω)

with

‖u‖2 ≤ µ(Ω)
p−1
2p ‖u‖2p, ‖u‖2p ≤ C2p‖u‖H1

0 (Ω),

provided that 1 < p < n
n−1

if n ≥ 3,

1 < p <∞ if n = 1, 2.

Proof. The first embedding follows from Sobolev embedding theorem. We

have,

‖u‖L2p(Ω) ≤ C2p‖u‖H1
0 (Ω).

For the second embedding, since Ω is bounded domain, using Hölder’s in-

equality, for any u ∈ L2p(Ω) we get

‖u‖2
2 =

∫
Ω

|u(x)|2dx ≤
(∫

Ω

|u(x)|2pdx
) 1

p
(∫

Ω

1dx

)1− 1
p

= µ(Ω)
p−1
p ‖u‖2

2p

(3.2.17)

which proves the second embedding.

Definition 3.2.6. Let X and Y be Banach spaces. A mapping f : X → Y

is said to be locally Lipschitz if for each bounded subset U of X there exists

a constant CU with

‖f(u)− f(v)‖Y ≤ CU‖u− v‖X

for all u, v ∈ U .

Lemma 3.2.7. Let n ≥ 3. For 1 < p ≤ n
n−2

, the mapping

g : H1
0 (Ω) ∩ L2p(Ω)→ L2(Ω)
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given by u 7→ g(u) = |u|p−1u is locally Lipschitz.

Proof. Let R > 0. Define the set

BR :=

{
u ∈ H1

0 (Ω) ∩ L2p(Ω) : ‖u‖H1
0 (Ω) ≤ R

}
Then, we have

g(u) = |u|p−1u = p

∫ u

0

|s|p−1ds (3.2.18)

For u1, u2 ∈ BR we have,

|g(u2)− g(u1)| = p|
∫ u2

u1

|s|p−1ds| = p|u∗|p−1|u2 − u1| (3.2.19)

where, u∗ = θu1 + (1− θ)u2 for some θ ∈ (0, 1), according to the mean value

theorem. We also have u∗ ∈ H1
0 (Ω) ∩ L2p(Ω) and that

‖u∗‖H1
0 (Ω) = ‖θu1 + (1− θ)u2‖H1

0 (Ω)

≤ θ‖u1‖H1
0 (Ω) + (1− θ)‖u2‖H1

0 (Ω)

≤ θR + (1− θ)R = R.

Consequently, u∗ ∈ BR, and from (3.2.19)

|g(u2)− g(u1)|2 = p2|u∗|2(p−1)|u2 − u1|2
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Finally by applying Hölder inequality with 1
p

+ 1
p′

= 1, we get

‖g(u2)− g(u1)‖2
L2(Ω) =

∫
Ω

|g(u2(x))− g(u1(x))|2dx

= p2

∫
Ω

|u∗|2(p−1)|u1 − u2|2dx

≤ p2

(∫
Ω

|u∗|2(p−1)p′dx

) 1
p′
(∫

Ω

|u2 − u1|2pdx
) 1

p

= p2‖u∗‖2(p−1)
2p ‖u2 − u1‖2

2p

≤ p2C2p
2p‖u∗‖

2(p−1)

H1
0 (Ω)
‖u2 − u2‖2

H1
0 (Ω)

≤ p2C2p
2pR

2(p−1)‖u2 − u2‖2
H1

0 (Ω)

We therefore have

‖g(u2)− g(u1)‖L2(Ω) ≤ pCp
2pR

p−1‖u2 − u2‖H1
0 (Ω). (3.2.20)

For the tasks that follow we define the following function space:

YT := C1
(
[0, T ), H1

0 (Ω)
)
∩ C

(
[0, T ), L2(Ω)

)
(3.2.21)

with norm defined as

‖u‖YT =: max
0≤τ≤t

‖u(., τ)‖H1
0 (Ω) + max

0≤τ≤t
‖ut(., τ)‖L2(Ω) (3.2.22)

With the norm defined in (3.2.22), we notice that YT is a Banach Space. In

connection to the integral equation (3.2.1), we define an integral operator

K : YT → YT given by

Ku(x, t) = A(t)φ(x) + B(t)ψ(x) +

∫ t

0

B(t− τ)Lαg(u(x, τ))dτ (3.2.23)
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For any initial data φ ∈ H1
0 (Ω), ψ ∈ L2(Ω), let

M0 := ‖φ‖H1
0 (Ω) + ‖∇φ‖L2(Ω) + 2‖ψ‖L2(Ω).

Let us fix some bounded subset of YT which is a neighborhood of the initial

data φ(x), ψ(x). Then we have

YT (M0) = {u| u ∈ YT , ‖u‖YT ≤M0 + 1.}

YT (M0) is a nonempty, bounded, closed and convex subset of YT . Our next

task is to prove step by step that the integral operator K has a unique fixed

point, which is also the unique solution of our problem.

Lemma 3.2.8. Assume that φ ∈ H1
0 (Ω), ψ ∈ L2(Ω). Then, K maps YT (M0)

into itself and K : YT (M0)→ YT (M0) is strictly contractive if T is appropri-

ately small relative to M0.

Proof. We calculate the H1
0 (Ω) norm estimates of all the terms involved in

Ku(x, t) as follows. From Theorem 3.2.1 we have the following norm esti-

mates.

‖A(t)φ‖H1
0 (Ω) ≤ ‖φ‖H1

0
, (3.2.24)

‖B(t)ψ(x)‖H1
0 (Ω) ≤ ‖ψ‖L2(Ω). (3.2.25)

Also we have; We also have;∥∥∥∥∫ t

0

B(t− τ)g(u(., τ))dτ

∥∥∥∥
H1

0 (Ω)

≤
∫ t

0

‖B(t− τ)g(u(., τ))‖H1
0 (Ω)dτ

≤
∫ t

0

‖g(u(., τ))‖2dτ =

∫ t

0

‖u(., τ)‖p2pdτ ≤ Cp
2p

∫ t

0

‖u(., τ))‖p
H1

0 (Ω)
dτ

≤ Cp
2pt max

0≤τ≤t
‖u(., τ)‖p

H1
0 (Ω)
≤ Cp

2pt (‖u‖YT )p ≤ Cp
2pt
(
‖u‖p−1

YT

)
‖u(., t)‖YT

(3.2.26)

67



We find the H1
0 (Ω) norm estimate for Ku using the norm estimates of the

terms of Ku given in (3.2.24), 3.2.25 and (3.2.26) as

max
0≤τ≤t

‖Ku(., τ)‖H1
0 (Ω) ≤ ‖φ‖H1

0 (Ω) + ‖ψ‖2 + ‖α‖1t‖u‖YT

+ Cp
2pt
(
‖u‖p−1

YT

)
‖u‖YT (3.2.27)

We calculate the L2-norm estimates of each of the terms appearing in ∂tKu
as

‖∆DB(t)φ‖2 ≤ ‖∇φ‖2, (3.2.28)

‖A(t)ψ‖2 ≤ ‖ψ‖2. (3.2.29)∥∥∥∥∫ t

0

A(t− τ)g(u(., τ))dτ

∥∥∥∥
2

≤
∫ t

0

‖A(t− τ)g(u(., τ))‖2dτ

≤
∫ t

0

‖g(u(., τ))‖2dτ ≤
∫ t

0

‖u(., τ)‖p2pdτ ≤ Cp
2p

∫ t

0

‖u(., τ))‖p
H1

0 (Ω)
dτ

≤ Cp
2pt max

0≤τ≤t
‖u(., τ)‖p

H1
0 (Ω)
≤ Cp

2pt
(
‖u‖p−1

YT

)
‖u‖YT

(3.2.30)

Therefore the L2-norm estimate of ∂tKu is calculated by summing up the

estimates of terms of ∂tKu given (3.2.28) to (??) so as to get,

max
0≤τ≤t

‖∂tKu‖2 ≤ ‖∇φ‖2 + ‖ψ‖2 + ‖α‖1t‖u‖YT+

+ Cp
2pt
(
‖u‖p−1

YT

)
‖u‖YT (3.2.31)

From (3.2.27) and (3.2.31) it follows that,

‖Ku‖YT ≤ ‖∇φ‖2 + 2‖ψ‖2 + ‖φ‖H1
0

+ ‖α‖1t‖u‖YT+

+ Cp
2pt
(
‖u‖p−1

YT

)
‖u‖YT

‖Ku‖YT ≤M0 + T‖α‖1(M0 + 1) + Cp
2pT (M0 + 1)P

≤M0 + T (‖α‖1 + Cp
2p) (M0 + 1)p (3.2.32)
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From (3.2.32), if T satisfies

T ≤ 1

(‖α‖1 + Cp
2p) (M0 + 1)p

(3.2.33)

then ‖Ku‖YT ≤ M0 + 1 whenever u ∈ YT (M0). Therefore K maps YT (M0)

into itself.

Now we want to show that K is strictly contractive. Let T > 0 and

u1, u2 ∈ YT (M0) be given.

‖Ku1 −Ku1‖YT =

∥∥∥∥∫ t

0

B(t− t)Lα(g(u1)− g(u2))dτ

∥∥∥∥
YT

≤
∫ t

0

‖B(t− τ)Lα(g(u1)− g(u2))‖YT dτ

≤
∫ t

0

‖Lα(g(u1)− g(u2))‖YT dτ

≤ ‖α‖1

∫ t

0

‖g(u1)− g(u2)‖YT dτ

≤ α‖1C

∫ t

0

‖u1 − u2‖YT dτ

≤ ‖α‖1CT ‖u1 − u2‖YT .

(3.2.34)

Now for

T < min

{
1

(‖α‖1 + Cp
2p) (M0 + 1)p

,
1

2C‖α‖1

}
From (3.2.33) and (3.2.34), we have

‖Ku1 −Ku2‖YT ≤
1

2
‖u1 − u2‖YT .

Theorem 3.2.9. Let n ≥ 3. For any g given as in (3.1.2) with 1 < p ≤ n
n−2

and for any initial data φ ∈ H1
0 (Ω), ψ ∈ L2(Ω) problem (3.1.1) has a unique
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local weak solution u(x, t),

u(x, t) ∈ C1([0, T ), H1
0 (Ω)) ∩ C([0, T ), L2(Ω))

Proof. From Lemma 3.2.8 and contraction mapping principle, it follows that

for appropriately chosen T > 0, the integral operator K has a unique fixed

point u(x, t) ∈ YT (M0) ⊂ C1([0, T ), H1
0 (Ω)) ∩ C([0, T ), L2(Ω)), which is the

solution of integral equation (3.2.1 ) and equivalently weak solution of prob-

lem (3.1.1).

The case of n=2:

The reason of considering the case n = 2 separately is that, while p > 1,

in our power-type nonlinearity declared in (3.1.2), for case of n = 2 we can

take p in the unbounded interval 1 < p < ∞. Due to Sobolev embedding

conditions given in lemma (3.2.5), we can not do the same for the case n ≥ 3.

For this reason we set the well-posedness of the problem (3.1.1) for n = 2 in

the following theorem.

Theorem 3.2.10. Suppose that n = 2, g(u) = |u|p−1u with p > 1. Then for

any φ ∈ H1
0 (Ω), ψ ∈ L2(Ω), problem (3.1.1) admits a unique weak solution

u ∈ C([0, T ), H1
0 (Ω) ∩ C1([0, T ), L2(Ω)

in some maximal interval of existence [0, T ). Moreover, one of the following

holds :

(i) T = +∞, That is the solution is global in time.

(ii) T <∞, and

lim
t↑T

(
‖u(., t)‖H1

0 (Ω) + ‖ut(., t)‖L2(Ω)

)
= +∞
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Proof. It suffices to notice that for n = 2, by Sobolev embedding theorem,

H1
0 (Ω) is continuously embedded in LP (Ω) for any 1 < p < ∞. Hence, the

function g is locally Lipschitz continuous.

The case of n=1:

While the case of n = 1 entertain the same condition of p given in (3.1.2) as

the case of n = 2, we can set a wider class of nonlinear functions g other than

the power type nonlinear functions. For this reason we set other theorem for

the case of n = 1. We need the following lemma before stating the theorem.

Lemma 3.2.11. For g ∈ C1(R) and g(0) = 0, the mapping H1
0 (Ω)→ H1

0 (Ω)

given by u 7→ g(u) is locally Lipschitz continuous.

Proof. Let

BR :=

{
u ∈ H1

0 (Ω) : ‖u‖H1
0 (Ω) ≤ R

}
and u, v ∈ BR. Then by mean value theorem, we have

|g(u)− g(v)| = |g′(θu+ (1− θ)v||u− v|

and hence

‖g(u)− g(v)‖H1
0 (Ω) ≤ max

|r|≤R
|g′(r)|‖u− v‖H1

0 (Ω)

as required.

Theorem 3.2.12. Suppose that g ∈ C1(R). Then for any φ ∈ H1(Ω), ψ ∈
L2(Ω) problem (3.1.1) admits a unique solution

u ∈ C
(
[0, T ), H1

0 (Ω)
)
∩ C1

(
[0, T ), L2(Ω)

)
in some maximal interval of existence [0, T ). Moreover, one of the following

holds :

(i) T = +∞, That is the solution is global in time
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(ii) T <∞, and

lim
t↑T

(
‖u(., t)‖H1

0 (Ω) + ‖ut(., t)‖L2(Ω)

)
= +∞

Proof. For n = 1, the Sobolev embedding theorem guarantees that H1
0 (Ω) is

continuously embedded into C(Ω). The further assumption given that g ∈ C1

guarantees that g satisfies local Lipschitz condition. Thus local solvability

follows.

3.2.2 Strong Solutions

Definition 3.2.13. Assume that φ ∈ H2(Ω) ∩ H1
0 (Ω) and ψ ∈ H1

0 (Ω) ∩
L2p(Ω). A strong solution is of problem (3.1.1) is a weak solution with

additional regularity,

u ∈ C2
(
[0, T ), L2(Ω)

)
∩ C1

(
[0, T ), H1

0 (Ω)
)
∩ C

(
[0, T ), H2(Ω) ∩H1

0

)
.

In this case we consider the local well-posedness of problem (3.1.1) in the

space where the domain of the Dirichlet Laplacian is normally defined.

Theorem 3.2.14. Let n ≥ 3 and g(u) = |u|pu with p > 1 satisfying the

Sobolev embedding condition given in (3.2.5). Also assume that for the inte-

gral operator Lα, the kernel α ∈ W 2,1(R). For any initial conditions

φ ∈ H2(Ω) ∩H1
0 (Ω), ψ ∈ H1

0 (Ω),

problem (3.1.1) admits a unique strong solution u such that

u ∈ C
(
[0, T ), H1

0 (Ω) ∩H2(Ω)
)
∩ C1

(
[0, T ), H1

0 (Ω)
)
∩ C2

(
[0, T ), L2(Ω)

)
in some maximal interval of existence [0, T ). Moreover, one of the following

conditions hold:
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(i) T = +∞, That is the solution is global in time.

(ii) T <∞, and

lim
t↑T

(
‖u(., t)‖H1

0 (Ω) + ‖ut(., t)‖L2(Ω)

)
= +∞

Proof. Define a function space

XT := C
(
[0, T ), H1

0 (Ω) ∩H2(Ω)
)
C1
(
[0, T ), H1

0 (Ω)
)
∩ C2

(
[0, T ), L2(Ω)

)
.

(3.2.35)

with norm defined as,

‖u‖XT =: max
0≤τ≤t

‖u(., τ)‖H1
0 (Ω) + max

0≤τ≤t
‖u(., τ)‖H1

0 (Ω) + max
0≤τ≤t

‖ut(., τ)‖L2(Ω)

(3.2.36)

With the norm defined in (3.2.36), we notice that XT is a Banach Space.

By the result from Lemma 2.4.2 about the mapping property of the integral

operator Lα and Lemma 3.2.1 about the mapping properties of the operators

A and B, for sufficiently small interval [0, T0], we have a continuous mapping

of the operator,

Ku(x, t) := A(t)φ(x) + B(t)ψ(x) +

∫ t

0

B(t− τ)Lαg(u(x, τ))dτ (3.2.37)

in

C([0, T0], H2(Ω) ∩H1
0 (Ω)) ∩ C1([0, T0], H1

0 (Ω)) ∩ C2([0, T0]), L2(Ω)) ⊂ XT

which is also strictly contractive. By Banach fixed point argument we have

the fixed point of the integral operator (3.2.37) which is also the unique

solution of the problem (3.1.1).
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Chapter 4

Nonlinear Nonlocal Wave Type

Problem with Separated

Nonlinearity and Nonlocality

In this chapter we study a nonlinear nonlocal problem similar to problem

(3.1.1) given in Chapter 3. However, here we have the nonlinear and non-

local terms are given by two separate terms, with linear integral operator.

Symmetry of the convolution type integral operator (2.1.2) involved in this

problem has enabled us to further analyze the problem, beyond local well-

posedness. We have defined the energy identity associated with (4.1.1) in

(4.3.5). The condition of global well-posedness and finite time blow-up con-

ditions were studied.
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4.1 Description of the Problem

Let us analyse the well-posedness of a nonlocal wave-type equation given by
utt −∆u = Lαu+ g(u), x ∈ Ω, t > 0,

u(x, 0) = φ(x), ut(x, 0) = ψ(x), x ∈ Ω,

u(x, t) = 0, x ∈ ∂Ω, t > 0,

(4.1.1)

where, α ∈ L1(R) is a known function, g(u) = |u|p−1u, and the integral

operator Lα is defined in (2.1.2), u is a function which we are going to solve

problem (4.1.1) on some maximum interval of existence [0,T).

4.2 Local Well-Posedness

4.2.1 Weak Solutions

Definition 4.2.1. Let ΩT := Ω × T , where Ω ⊂ Rn, is an open connected

set with smooth boundary ∂Ω. A weak solution of the nonlocal nonlinear

initial-boundary value problem (4.1.1) is any function u Satisfying

u ∈ C([0, T ), H1
0 (Ω)) ∩ C1([0, T ), L2(Ω) ∩ L∞(Ω)).

and∫
ΩT

(u(x, s)vtt −∇u(x, s)∇v(x, s)− v(x, s)Lαu(x, s)− g(x, s)v(x, s))dxds

=

∫
Ω

(φ(x)v(x, 0)− ψ(x)vt(x, s)) dxds

for every v ∈ C∞c (ΩT × (0, T )).

We consider a power type nonlinearity for cases of space dimension n ≥ 2

and a more general class of nonlinearity for space dimension n = 1. This
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is due to some embedding results that help to indicate where our desired

solution should be. From Sobolev embedding theorem we have H1
0 (Ω) ⊂

L
2n
n−2 (Ω) if n ≥ 3. However for n = 2, H1

0 (Ω) ⊂ Lq(Ω), 1 ≤ q < ∞, and

for n = 1, H1
0 (Ω) ⊂ Lq(Ω), 1 ≤ q ≤ ∞.

Problem (4.1.1) may be written in an equivalent integral equation as

u(x, t) = A(t)φ(x) + Bψ(x) +

∫ t

0

B(t− τ)Lαu(x, τ)dτ+

+

∫ t

0

B(t− τ)g(u(x, τ))dτ. (4.2.1)

Define an integral operator S on the space H1
0 (Ω) as

S(u) := A(t)φ(x) + Bψ(x) +

∫ t

0

B(t− τ)Lαu(x, τ)dτ

+

∫ t

0

B(t− τ)g(u(x, τ))dτ. (4.2.2)

The analysis of the solvability of nonlinear nonlocal problem (4.1.1) is es-

sentially the same as that of problem (3.1.1). With the operational defini-

tions and mapping properties of A, B and Lα being the integral operator S
given in (4.2.2) is well defined on the space H1

0 (Ω). The solution of prob-

lem (4.1.1) is the same as the solution of the equivalent integral equation

(4.2.1). However, the solution of the integral equation (4.2.1) is the fixed

point of the integral operator (4.2.2), with the function space YT defined as

in (3.2.21) and the corresponding norm in (3.2.22). For sufficiently small

time T > 0 we have a contractive mapping of the operator S from the space

C ([0, T ), H1
0 (Ω)) ∩ C1 ([0, T )L2(Ω)). By Banach fixed point theorem, the

integral equation (4.2.1) has a unique solution, which is also the solution of

problem (4.1.1.

Given in Chapters 2 and 3, by applying the fixed point argument to

integral equation (4.2.1) via the integral operator given by (4.2.2), we get

problem (4.1.1) has a unique local solution
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u(x, t) ∈ C
(
[0, T )H1

0 (Ω)
)
∩ C1

(
[0, T )L2(Ω)

)
.

4.3 Energy Identity

Multiplying the equation in (4.1.1) by ut and integrating over Ω we obtain∫
Ω

ut(x, t)utt(x, t)dx =
1

2

d

dt

∫
Ω

u2
t (x, t)dx =

1

2

d

dt
‖ut‖2

L2(Ω) (4.3.1)

−
∫

Ω

ut(x, t)∆u(x, t)dx =

∫
Ω

∇ut(x, t)∇u(x, t)dx

=
1

2

d

dt

∫
Ω

|∇u|2dx =
1

2

d

dt
‖∇u(., t)‖2

L2(Ω)

(4.3.2)

From the assumption that the kernel α is symmetric, i.e, α(x − y) =

α(y − x) we have,∫
Ω

utLαudx =

∫
Ω

ut

(∫
Ω

α(x− y)u(y, t)dy

)
dx

=

∫
Ω

∫
Ω

α(x− y)ut(x, t)u(y, t)dydx

=

∫
Ω

∫
Ω

α(y − x)ut(y, t)u(x, t)dxdy

Consequently by taking the average,∫
Ω

ut(x, t)Lαu(x, t)dx =
1

2

∫
Ω

∫
Ω

α(x− y) [ut(x, t)u(y, t) + ut(y, t)u(x, t)] dxdy

=
1

2

d

dt

∫
Ω

∫
Ω

α(x− y)u(x, t)u(y, t)dxdy

(4.3.3)

77



For the nonlinear term g(u), we have∫
Ω

g(u(x, t))ut(x, t)dx =
d

dt

∫
Ω

G(u(x, t))dx (4.3.4)

where G(x) =
∫ x

0
g(s)ds so that G′(x) = g(x).

Combining the results from (4.3.1)-(4.3.4), we get quantity

E(t) :=
1

2
‖ut(., t)‖2

L2(Ω) +
1

2
‖∇u(., t)‖2

L2(Ω) +
1

2
Λ(u)(t)− G(u)(t), (4.3.5)

where

Λ(u)(t) := −
∫

Ω

∫
Ω

α(x− y)u(x, t)u(y, t)dxdy = 〈Lαu, u〉L2(Ω) (4.3.6)

G(u)(t) :=

∫
Ω

G(u(x, t))dx =
1

p+ 1
‖u‖p+1

p+1 (4.3.7)

which is actually independent of t. Specifically,

E(t) =
1

2
‖ψ‖2

L2(Ω) +
1

2
‖∇φ‖2

L2(Ω) +
1

2
Λ(u)(0)− G(u)(0)

= E(0), t ∈ [0, T ),

where,

Λ(0) =

∫
Ω

∫
Ω

α(x− y)φ(x)ψ(y)dxdy, G(0) =

∫
Ω

G(φ(x))dx.

4.4 Finite Time Blow-up of solutions

In this the section we show that under some conditions the L2- norm of the

solution u of the problem (4.1.1) blows-up in finite time.

Theorem 4.4.1. Suppose that there exists a constant q > 2 such that the
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conditions

ug(u) ≥ qG(u) (4.4.1)

and

E(0) < 0 (4.4.2)

hold true. Then the local solution of the problem (4.1.1) ceases to exist in

finite time. Notice that for our problem involving power type nonlinearity,

we have ug(u) = (p + 1)G(u), which satisfies the condition (4.4.1) with q =

p+ 1 > 2.

Proof. Let

I(t) :=
1

2
〈u(., t), u(., t)〉+ β(t) (4.4.3)

where β(t) is a positive, twice differentiable function which we will fix latter.

Now,

I ′(t) = 〈u(., t), ut(., t)〉+ β′(t) (4.4.4)

and

I ′′(t) = 〈ut(., t), ut(., t)〉+ 〈u(., t), utt(., t)〉+ β′′(t) (4.4.5)

= 〈ut(., t), ut(., t)〉+ 〈u(., t),∆u(., t)〉+ 〈u(., t), Lαu(., t)〉

+ 〈u(., t), g(u(., t))〉+ β′′(t)

= ‖ut‖2 − ‖∇u‖2 + Λu+

∫
Ω

ug(u)dx+ β′′(t).

From (4.4.1) and (4.3.7) we have the inequality

I ′′(t) ≥ ‖ut‖2 − ‖∇u‖2 + Λu(t) + qG(u)(t) + β′′(t). (4.4.6)

Now, from the energy identity given in (4.3.5) we have

qG(u)(t) =
q

2
‖ut‖2 +

q

2
‖∇u‖2 +

q

2
Λu(t)− qE(0). (4.4.7)
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Substituting (4.4.7) into (4.4.6) we get

I ′′(t) ≥ (1+
q

2
)‖ut‖2 +(

q

2
−1)‖∇u‖2 +(1− q

2
)Λu(t)− qE(0)+β′′(t). (4.4.8)

By the assumption that q > 2, we have q
2
− 1 > 0 and that the operator,

−Lα is positive operator. Then both the terms ( q
2
− 1)‖∇u‖2 and Λu(t) are

positive. Consequently, we have the inequality

I ′′(t) ≥ (1 +
q

2
)‖ut‖2 − qE(0) + β′′(t). (4.4.9)

Setting
1

2
(1 +

q

2
) = (1 + µ), µ > 0,

and

β(t) = β0(t+ t0)2, β0 = |E(0), |

from (4.4.3), (4.4.4) and (4.4.9) we have

I(t)I ′′(t)− (1 + µ)[I ′(t)]2

≥
[

1

2
‖u‖2 + β(t)

] [
(1 +

q

2
)‖ut‖2 − qE(0) + β′′(t)

]
− (1 + µ) [〈u, ut〉+ β′(t)]

2

= (1 + µ)
[
‖u‖2‖ut‖2 − |〈u, ut〉|2

]
+ 2β0(1 + µ)〈u− (t+ t0)ut, u− (t+ t0)ut〉

≥ 0.

Hence, by Lemma 2.6.1, the quantity I(t) = ‖u(., t)‖2
L2(Ω) + β0(t + t0)2 and

equivalently ‖u(., t)‖2
L2(Ω) ceases to exit in finite time.

4.5 Potential Well, Unstable Set and Blow-

up of Solutions

In this section, we prove the finite time blow-up of solutions of the nonlinear

nonlocal IBVP. We need the following definitions and lemmas for proof of
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the theorems that follows. The total energy identity of nonlinear nonlocal

problem (4.1.1) is given by

E(t) :=
1

2
‖ut‖2 +

1

2
‖∇u‖2 +

1

2
Λu− 1

p+ 1
‖u‖p+1

p+1

We define potential energy functional for the nonlinear nonlocal initial-

boundary value problem (4.1.1) as J : H1
0 (Ω) ∩ Lp+1(Ω)→ R given by

J(u) :=
1

2
‖∇u‖2 +

1

2
Λu− 1

p+ 1
‖u‖p+1

p+1.

The Nehari functional, J̃ : H1
0 (Ω) ∩ Lp+1(Ω)→ R, associated with nonlinear

nonlocal initial-boundary value problem (4.1.1) is given by

J̃(u) := ‖∇u‖2 + Λu− ‖u‖p+1
p+1.

The Nehari functional is introduced as follows. If u ∈ H1
0 (Ω) and u 6= 0,

then there exists a unique λc(u) > 0 and that d
dλ
J(λu)|λ=λc(u)J(λu) = 0.

This critical number λ = λc(u) gives the maximum value of J(λu). The

Nehari Manifold is the set defined by

N :=
{
u ∈ H1

0 (Ω) | J̃(u) = 0, u 6= 0
}
.

The potential well depth d is a positive number defined by

d := inf
u∈N

J(u). (4.5.1)

We define the stable set as

W :=
{
u ∈ H1

0 (Ω), | J̃(u) > 0, J(u) < d
}
∩ {0} (4.5.2)
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and the unstable set by,

W̃ :=
{
u ∈ H1

0 (Ω), | J̃(u) < 0, J(u) < d
}

(4.5.3)

We observe that

W ∪ W̃ :=
{
u ∈ H1

0 (Ω) | J(u) < d
}
, and W ∩ W̃ = ∅.

Lemma 4.5.1. The potential well depth is given by

d := inf

{
sup
λ≥0

J(λu) u ∈ H1
0 (Ω), ‖∇u‖ 6= 0

}
is a positive quantity.

Proof. We have,

J(λu) :=
1

2
λ2‖∇u‖2 +

1

2
λ2Λu− λp+1

p+ 1
‖u‖p+1

p+1 (4.5.4)

From which we get,

d

dλ
J(λu) = λ‖∇u‖2 + λΛu− λp‖u‖p+1

p+1 (4.5.5)

From equation (4.5.5) setting d
dλ
J(λu) = 0, we get critical value of λ given

by,

λc(u) =

[
‖∇u‖2 + Λu

‖u‖p+1
p+1

] 1
p−1

(4.5.6)

The second derivative at this critical point is,

d2

dλ2
J(λu)|λ=λc(u) = (1− p)(‖∇u‖2 + Λu) < 0

This shows that the critical number λc(u) indeed gives the maximum value.
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sup
λ∈R

J(λu) = J(λc(u)u) =
p− 1

2(p+ 1)

(
‖∇u‖2 + Λu

‖u‖2
p+1

) p+1
p−1

d := inf

{
sup
λ∈R

J(λu), u ∈ H1
0 (Ω), ‖∇u‖ 6= 0

}
= inf

{
p− 1

2(p+ 1)

(
‖∇u‖2 + Λu

‖u‖2
p+1

) p+1
p−1

u ∈ H1
0 (Ω), ‖∇u‖ 6= 0

}

≥ p− 1

2(p+ 1)
C

2(p+1)
1−p

p+1 > 0

(4.5.7)

where the constant Cp+1 is a constant of the Sobolev embedding.

Cp+1 = inf

{
‖∇u‖
‖u‖p+1

u ∈ H1
0 (Ω), ‖∇u‖ 6= 0

}
This shows that the Nehari manifold is bounded away from zero by some

positive number.

Lemma 4.5.2. For each u ∈ W̃ , we have the inequality

p− 1

2(p+ 1)
‖u‖p+1

p+1 > d,

where d is the potential well depth.

Proof. We can write

J(u) =
1

2
‖∇u‖2 +

1

2
Λu− 1

p+ 1
‖u‖p+1

p+1

=
1

2

(
‖∇u‖2 + Λu− ‖u‖p+1

p+1

)
+

p− 1

2(p+ 1)
‖u‖p+1

p+1

=
1

2
J̃(u) +

p− 1

2(p+ 1)
‖u‖p+1

p+1

For u ∈ W̃ , the unstable set, we have J̃(u) < 0. However there exists a
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critical number λ := λc(u) ∈ (0, 1) such that J̃(λc(u)u) = 0. So

J(λc(u)u) =
1

2
J̃(λc(u)u) + λc(u)p+1 p− 1

2(p+ 1)
‖u‖p+1

p+1

= λc(u)p+1 p− 1

2(p+ 1)
‖u‖p+1

p+1.

Therefore, for such choice of λ we obtain

p− 1

2(p+ 1)
‖u‖p+1

p+1 > λc(u)p+1 p− 1

2(p+ 1)
‖u‖p+1

p+1 = J(λc(u)u) ≥ d.

Lemma 4.5.3 (Invariance of Unstable Set). Let φ ∈ H1
0 (Ω), ψ ∈ L2(Ω),

and let 1 < p < n+2
n−2

if n ≥ 3, and 1 < p < ∞, n = 1, 2. Let u(x, t)

be a local solution of the nonlocal nonlinear IBVP (4.1.1) on the maximum

interval of existence [0, T ). If there exists t0 ∈ [0, T ) such that u(, t0) ∈
W̃ (the unstable set) and E(t0) < d, then u(., t) remains in the set W̃ for any

t ∈ [t0, T ).

Proof. Suppose that there is t1 ∈ [t0, T ) such that u(., t) ∈ W̃ for [t0, t1) and

u(, t1) /∈ W̃ . From the definition of the stable set, W̃ and continuity in t

of the functionals J(u(., t)) and J̃(u(., t)), we have either, J(u(., t1)) = d, or

J̃(u(., t1)) = 0. If we assume that J(u(., t1)) = d then from the energy iden-

tity, E(0) = E(t1) = 1
2
‖ut(t1)‖2 + J(u(t1)) ≥ J(u(t1)) ≥ d. This contradicts

the energy condition E(0) < d given in the Lemma. So the first condition is

impossible. Now assume that J̃(u(., t1)) = 0 . This implies that u(t1) ∈ N .

Therefore, from the definition of d given in (4.5.1), J(u(t1)) ≥ inf
u∈N

J(u) = d.

This implies that E(0) = E(t1) ≥ J(u(t1)) ≥ d. Again this contradicts the

energy condition given in the Lemma. Therefore, u(t1) ∈ W and that the

stable set is invariant under the flow of the solution problem (4.1.1).
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Lemma 4.5.4. Under the assumptions given in Lemma 4.5.2, the inequality

(‖∇u‖2 + Λu) >
2d(p+ 1)

p− 1

is fulfilled for t ∈ [t0, T ), where u(x, t) is the local solution for nonlocal non-

linear IBVP (4.1.1).

Proof. We may write J(u) = p−1
2(p+1)

(‖∇u‖2 + Λu) + 1
p+1

J̃(u). For the critical

coefficient λc(u) given in (4.5.6) we have J̃(λc(u)u) = 0. In addition, for

u ∈ W̃ we have 0 < λc(u) < 1. Now we have

d ≤ J(λc(u)u) = (λc(u))2 p− 1

2(p+ 1)

(
‖∇u‖2 + Λu

)
+

1

p+ 1
J̃(λc(u)u)

<
p− 1

2(p+ 1)

(
‖∇u‖2 + Λu

)
which completes the proof.

Theorem 4.5.5. Let u(x, t) be the local solution of nonlocal nonlinear IBVP

(4.1.1) on [0, T ) with initial data φ ∈ H1
0 (Ω), ψ ∈ L2(Ω). If there exists

a number t0 ∈ [0, T ) such that u(, t0) ∈ W̃ the unstable set and E(t0) < d,

then T =∞.That is the solution of the nonlinear nonlocal IBVP doesn’t exist

globally in time. That is T <∞.

Proof. From Lemma () and energy identity we have,

d > E(t0) = E(t) =
1

2
‖ut(., t)‖2 + J(u(., t))

≥ C(‖∇u(., t)‖2 + Λu(., t) + ‖ut(., t)‖2

where, c = p−1
2(p+1)

. This inequality and the principle of continuity lead to the

global existence of solutions, i.e T =∞.

Theorem 4.5.6. Let g satisfy the conditions (i)-(iv), and let W denote the

corresponding potential well energy of (4.1.1). If φ(x) ∈ W̃ and E(0) < d,

then ‖u‖L2(Ω) →∞ in finite time.
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Proof. Let I(t) be defined as

I(t) :=
1

2
‖u‖2

L2(Ω) (4.5.8)

Then

I ′(t) = 〈u, ut〉L2(Ω) (4.5.9)

Since we know that J̃(u) < 0 for u ∈ W̃ , we have

I ′′(t) = ‖ut‖2 + 〈u, utt〉L2(Ω)

= ‖ut‖2 + 〈u,∆u+ Lαu+ g(u)〉L2(Ω)

= ‖ut‖2 + 〈u,∆u〉+ 〈u, Lαu〉+ 〈u, g(u)〉

= ‖ut‖2 − ‖∇u‖2 − Λu+ ‖u‖p+1
p+1

= ‖ut‖2 − J̃(u) ≥ 0 (4.5.10)

Where J̃(u) = ‖∇u‖2 + Λu − 〈u, g(u)〉L2(Ω) is the Nehari functional. By

the assumptions of the function g(u) = |u|p−1 we have,

I ′′(t) ≥ ‖ut‖2 + (p+ 1)

∫
Ω

G(u)dx− ‖∇u‖2 − Λu. (4.5.11)

Calculating the value of
∫

Ω
G(u)dx from the energy identity (4.3.5) and sub-

stituting into (4.5.11), we have

I ′′(t) ≥ (p+ 3)

2
‖ut‖2 +

(p− 1)

2
‖∇u‖2 +

(p− 1)

2
Λu− (p+ 1)E(0). (4.5.12)

From the variational inequality given as

‖∇u‖2 ≥ λ1‖u‖2 = 2λ1I(t), (4.5.13)

where

λ1 = min
u∈H1

0 (Ω), ‖∇u‖6=0

(
‖∇u‖2

‖u‖2

)
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is the principal eigenvalue of the Dirichlet Laplacian, we get by substituting

(4.5.13) into (4.5.12)

I ′′(t) ≥ (p+ 3)

2
‖ut‖2 + (p− 1)λ1‖u‖2 +

(p− 1)

2
Λu− (p+ 1)E(0). (4.5.14)

Since I is convex function of t (I ′′(t) > 0), it follows that, if there exists t1

such that I ′(t1) > 0 then I(t) is increasing t > t1. Consequently the quantity

(p− 1)‖u‖2 +
(p− 1)

2
Λu− (p+ 1)E(0)

eventually became positive and will remain positive afterwards. Thus for

sufficiently large t we would have

I ′′ ≥ (p+ 3)

2
‖ut‖2.

Now let us set µ = (p+3)
4

> 1. By applying Levine’s Lemma 2.6.1 for I(t) we

have

I(t)I ′′(t)− (p+ 3)

4
[I ′(t)]2

≥
(

1

2
‖u‖2

)(
(p+ 3)

2
‖ut‖2

)
− (p+ 3)

4
〈u, ut〉2

=
(p+ 3)

4

(
‖u‖2‖ut‖2 − 〈u, ut〉2

)
≥ 0.

Hence the L2 norm of the solution u of problem (4.1.1) blows-up at some

finite time T0, that is,

lim
t→T0−

I(t) =∞.

One more remaining condition required to complete the proof is to show that

there exists some t1 such that I ′(t1) > 0, which was assumed to be so.

Lemma 4.5.7. Suppose that I ′(t) = 〈u(t), ut(t)〉 < 0 for all t ≥ 0. Then we

have the following conditions.
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(i) ‖u(t)‖ ≤ ‖φ‖ for all t and that ‖u(t)‖ ↓ A for some constant A > 0.

(ii) I ′(t) = 〈u(t), ut(t)〉 ↑ 0 as t→∞.

(iii) I ′′(t) ↓ 0 as t→∞.

Proof. (i) I ′(t) = 〈u(t), ut(t)〉 < 0 for all t implies that I(t) is a decreasing

function of t. This implies that

I(t) ≤ I(0)⇒ 1

2
‖u(t)‖2 ≤ 1

2
‖φ‖2 ⇒ ‖u(t)‖ ≤ ‖φ‖

for all t ≥ 0. Also as ‖u(t)‖ is decreasing function of t, if we assume that

‖u(t)‖ ↓ 0, then we have u(t) ∈ W beyond some value of t. This contradicts

with the stationary property of the unstable set W̃ .

(ii) By the assumption that I ′(t) < 0 and I ′′(t) > 0, we have I ′(t) is

increasing. If we assume that I ′(t) is bounded above negatively, that is, if

we assume that there exists some ε > 0 such that, I ′(0) ≤ I ′(t) ≤ −ε for all

t ≥ 0, then

I(t) = I(0) +

∫ t

0

I ′(s)ds ≤ I(0)−
∫ t

0

εds = I(0)− εt

This implies that I(t) < 0 for t > I(0)
ε

, and contradicts the fact that I(t) ≥ 0

for all t ≥ 0, as defined in (4.5.8).

(iii) Finally, if we assume that there exists δ > 0 such that,I ′′(t) ≥ δ > 0, for

all t ≥ 0, then

I ′(t) = I ′(0) +

∫ t

0

I ′′(s)ds ≥ I ′(0) +

∫ t

0

δds = I ′(0) + δt

This implies that I ′(t) ≥ 0 for t ≥ |I′(0)|
δ

and contradicts with our assumption

that I ′(t) < 0 for all t ≥ 0. Therefore we have, I ′′(t) ↓ 0 as t→∞.

It turns out that I is bounded and decreasing ( non increasing ) and I ′
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is bounded and increasing with ,

I(0) ≥ I(t) ≥ A > 0, I ′(0) ≤ I ′(t) ≤ 0.

We have I(t) tend to a finite positive limit A where 0 < A ≤ I(0). However

I(t) cannot tend to zero for this would place u(t) inside the potential well.

This cannot happen as was seen in Lemma 4.5.3. Therefore we have,

I → A > 0, I ′(t)→ 0, I ′′(t)→ 0 (4.5.15)

We also have

I ′′(t) = ‖ut‖2 − J̃(u) ≥ ‖ut‖2 ≥ 0,

I ′′(t) = ‖ut‖2 − J̃(u) ≥ −J̃(u) ≥ 0
(4.5.16)

From (4.5.16)we conclude that

lim
t→∞
‖ut‖2 = 0, lim

t→∞
J̃(u) = 0. (4.5.17)

We have to prove out that only one of the following two conditions holds

true.

• The first condition is that I ′(t) < 0, for all t ≥ 0, and the maximum

time of existence T = ∞. Let u(t0) ∈ W̃ . By lemma (4.5.3), we have

u(t) ∈ W̃ for all t ≥ t0. Furthermore by lemma (4.5.2),

J(u(t)) > d+
1

2
J̃(u(t)), t ≥ t0.

and,

E(0) =
1

2
‖ut‖2 + J(u(t)) >

1

2
‖ut‖2 + d+

1

2
J̃(u(t))

Applying limit as t → ∞ and taking into account (4.5.17 ), we get
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E(0) ≥ d > 0. This contradicts the energy condition given in the

Lemma and hence this condition can not happen. Therefore, we con-

sider the second condition.

• The second condition, which is the negation of the first condition, states

that either the maximum time of existence is T < ∞, or I ′(t0) ≥ 0,

for some t0 ∈ [0, T ). However, the condition T < ∞, by the very

definition, signifies the finite time blow-up condition of the L2-norm ‖u‖
of the solution u of problem (4.1.1). Alternatively, since I ′′(t) ≥ 0, the

condition I ′(t0) ≥ 0, for some t0 ∈ [0, T ) implies that I ′(t) ≥ 0, t ≥ t0

so that the conditions of Levine Lemma 2.6.1 are satisfied and we resort

back into our proof of finite time blow-up condition, assuming that

I ′(t0) ≥ 0, for some t0 ∈ [0, T ).

4.6 Potential Well, Stable Set and Global Ex-

istence of Solution

Lemma 4.6.1 (Invariance of Stable Set). Let φ ∈ H1
0 (Ω), ψ ∈ L2(Ω) and

let 1 < p < n
n−2

if n ≥ 3, and 1 < p < ∞, n = 1, 2. Let u(x, t) be the

solution of the nonlocal nonlinear IBVP (4.1.1) on the maximum interval of

existence [0, T ). If there exists t0 ∈ [0, T ) such that u(, t0) ∈ W , the stable

set, and E(t0) < d, then u(., t) remains in the set W for any t ∈ [t0, T ).

Proof. Suppose that there is t1 ∈ [t0, T ) such that u(t) ∈ W for [t0, t1) and

u(t1) /∈ W . From the definition of the stable set W and the continuity in t

of the functionals J(u(., t)) and J̃(u(., t)), we have either,

(I) J(u(t1)) = d, or

(II) J̃(u(t1)) = 0
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However J(u(t1)) = d implies

E(0) = E(t1) =
1

2
‖ut(t1)‖2 + J(u(t1)) ≥ J(u(t1)) = d

However this contradicts the energy condition E(0) < d given in this lemma.

Therefore condition (I) can not be true.

Assume that case (II) holds true. J̃(u(t1)) = 0 implies that u(t1) ∈ N .

Therefore by the definition of the potential well depth we have J(u(t1)) ≥ d.

Consequently E(0) = E(t1) ≥ J(u(t1)) ≥ d. This contradicts the energy

assumption given in the lemma. Therefore condition (II) as well cant not be

true.

We now suppose that the solution starts inside a potential well, i,e,J̃(φ) >

0 and with additional condition that E(0) < d . By Lemma 4.6.1 we have

that the stable set W is invariant under the flow of the solution of (4.1.1).

That is J̃(u(t)) > 0, t ∈ [0, T )0. We show that the solution is global in time.

Lemma 4.6.2. For every u(t0) ∈ W , i.e., J̃(u(, t0)) > 0, We have the

inequality,

J(u(., t)) ≥ p− 1

2(p+ 1)
(‖∇u(, t)‖2 + Λu(, t))

is fulfilled for t ∈ [t0, T ), where u(x, t) is the local solution for Nonlocal

nonlinear IBVP and T is the maximum interval of existence.

Proof. For t ∈ [t0, T ), by invariance property of the stable set W as was

shown in Lemma 4.6.1, we have,

J̃(u(t)) = ‖∇u(., t)‖2 + Λu(., t)− ‖u(., t)‖p+1
p+1 > 0.
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By the rearrangement, we obtain

J(u(t)) =
1

2
‖∇u(., t)‖2 +

1

2
Λu(., t)− 1

p+ 1
‖u(., t)‖p+1

p+1

=
1

(p+ 1)

(
‖∇u(., t)‖2 + Λu(., t)− ‖u(., t)‖p+1

p+1

)
+

p− 1

2(p+ 1)

(
‖∇u(., t)‖2 + Λu(., t)

)
=

1

(p+ 1)
J̃(u(., t)) +

p− 1

2(p+ 1)

(
‖∇u(., t)‖2 + Λu(., t)

)
≥ p− 1

2(p+ 1)

(
‖∇u(, t)‖2 + Λu(., t)

)
.

Theorem 4.6.3. Let u(x, t) be the local solution of nonlocal nonlinear IBVP

(4.1.1) on [0, T ) with initial data φ ∈ H1
0 (Ω), ψ ∈ L2(Ω). If there exists a

number t0 ∈ [0, T ) such that u(, t0) ∈ W and E(t0) < d, then T =∞.That is

the solution is global in time.

Proof. From Lemma 4.6.2 and energy identity (4.3.5) we have

d > E(t0) = E(t) =
1

2
‖ut(., t)‖2 + J(u(., t)) ≥ J(u(x, t))

≥
(
‖∇u(., t)‖2 + Λu(., t)

)
≥ ‖∇u(., t)‖2.

We therefore have the semi-norm ‖∇(., t)‖ is bounded and that

‖∇u(., t)‖2 ≤ 2(p+ 1)

p− 1
d, (4.6.1)

for all t ∈ [t0, T ). From the energy identity we have 1
2
‖ut(., t)‖2 ≤ d, for all

t ∈ [t0, T ) so that

‖ut(., t)‖ ≤
√

2d. (4.6.2)
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Applying the differential inequality to equation (4.6.2) we get,

d

dt
‖u(., t)‖ ≤ ‖ut(., t)‖ ≤

√
2d.

Integrating over [t0, t], we get,

‖u(., t)‖ ≤ ‖u(., t0)‖+
√

2d(t− t0), (4.6.3)

for all t ∈ [t0, T ) . Hence the L2- norm of u is bounded linearly. Alternatively

we may proceed as follows. From the equation

J(u) =
1

2
J̃(u) +

p− 1

2(p+ 1)
‖u‖p+1

p+1,

the given energy condition E(0) < d, and the property that J̃(u) > 0, ∀u ∈
W leads to the inequality

‖u‖p+1
p+1 ≤

2(p+ 1)

p− 1
d. (4.6.4)

By the embedding Lp+1(Ω) ↪→ L2(Ω) and inequality (4.6.4) we have,

‖u‖ ≤ |Ω|
p−1

2(p+1)‖u‖p+1 ≤ |Ω|
p−1

2(p+1)

(
2(p+ 1)

p− 1
d

) 1
p+1

(4.6.5)

From equations (74) and (75) we have,

‖u‖ ≤ |Ω|
p−1

2(p+1)

(
2(p+ 1)

p− 1
d

) 1
p+1

(4.6.6)

From inequalities given in (4.6.1), 4.6.2 and 4.6.5, we have a unique weak

local solution

u(x, t) ∈ C([0, T ), H1
0 (Ω)) ∩ C1([0, T ), L2(Ω)),
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which is finite for every T > 0. By the principle of continuity this leads to

the global existence of solutions that is T =∞.
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Chapter 5

Conclusions and Possible

Future Work

With many other possible tasks the following problems may be considered.

• Let d be the potential well depth of a nonlinear nonlocal wave equation

given in (4.5.7) and d′ be the potential well depth of the usual nonlinear

wave equation with nonlinear term g(u) = |u|p−1, p > 1. We have

d′ := inf

{
p− 1

2(p+ 1)

(
‖∇u‖2

‖u‖2
p+1

) p+1
p−1

u ∈ H1
0 (Ω), ‖∇u‖ 6= 0

}
.

Due to the positive term Λu involved in d, we have, d ≥ d′. also from

the inequality

Λu := −〈Lαu, u〉 ≤ ‖Lαu‖‖u‖ ≤ ‖α‖‖u‖2 ≤ C2‖α‖‖∇u‖2

we have,

d ≤ (1 + C2‖α‖)
p+1
p−1d′.

• Several variants of the above problems may be studied. For example, in

my research I have considered the nonlinear function g to be of power
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type. That is, g(u) = |u|p−1u, p > 1. This is to apply some helpful

Sobolev embedding theorems efficiently and easily. The corresponding

term appearing in the energy identity is given by

G(u)(t) :=

∫
Ω

G(u)dx =
1

p+ 1

∫
Ω

|u(., t)|p+1dx =
1

p+ 1
‖u‖p+1

p+1

which is a positive definite quantity. This term appears as well in and

the potential energy functional the Nehari functional up to a constant

factor. On the other hand if we use the nonlinear term as g(u) = |u|p

, the corresponding term appearing in the energy identity would be

G(u)(t) :=

∫
Ω

G(u)dx =
1

p+ 1

∫
Ω

|u(., t)|pu(x, t)dx

This term is sign changing depending on u and requires some more

analysis in the study of existence of solutions and analysis of blow

up conditions of solutions A finite linear combination of such power

functions may also be considered or a more general nonlinear functions

in the form

g(u) =
m∑
i=1

|u|piu pi > 1, i = 1, ...,m

which does not include the nonlocality terms involved, such form non-

linearities were discussed some articles on nonlinear wave equations.

For example, refer [39].

• A nonlocal problem involving dissipative term ut or more generally non-

linear dissipative term f(ut) may be considered. Nonlinear dissipative

problems with nonlocal term has been discussed in some articles.

• Nonlocality with respect to time variable t may be considered instead of

the nonlocality in space variable x as the case of the current work.

• A problem with more general kernel of the form k(x, t) may be considered
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in the integral operator involved in the problem. For example, integral

operator of the form

Lku(x, t) :=

∫
Ω

k(x, t)u(y, t)dy

can be considered.

97



Bibliography

[1] N Duruk, H A Erbay and A Erkip Global existence and blow-up for a

class of nonlocal nonlinear Cauchy problems arising in elasticity, Non-

linearity, 23(2010) 107-118.

[2] Adrian Constantin and Luc Molinet, The Initial Value problem for a

generalized Bossiness Equation, Differential and Integral Equations, 15

(2002) 1061-1072.

[3] Shubin Wang, Guowang Chen The cauchy Problem for the General-

ized IMBq Equation in W s,p(Rn), Journal of Mathematical Analysis

and Applications 266,(2002) 38-54. http://math.uchicago.edu/~may/

REU2014/REUPapers/Smith,Z.pdf

[4] Patriza Pucci, James Serrin, Existence, Stability and Blowup for Dis-

sipative Evolution Equations, Lecture Notes in Pure and Appl. Math.,

M. Dekker, Inc. New York, 194 (1997), 299317.

[5] Sever Silvestru Dragomir, Some Gronwall Type Inequalities and Appli-

cations,(2002),

https://rgmia.org/papers/monographs/standard.pdf

[6] Haim Brezis, Petru Mironescu, Composition in Fractional Sobolv

Spaces, American Institute of Mathematical Sciences 7-2(2001)241-246.

[7] Erik Wahlén, An introduction to Nonlinear Waves, Lecture Notes, Lund

University, 2011.

98

http://math.uchicago.edu/~may/REU2014/REUPapers/Smith,Z.pdf
http://math.uchicago.edu/~may/REU2014/REUPapers/Smith,Z.pdf
https://rgmia.org/papers/monographs/standard.pdf


[8] De Godefroy A, Blow-up solutions of a generalized Boussinesq equation

IMA Journal of Applied Mathematics, 60(1998) 123-138.

[9] T. Jordão, V. A. Menegatto and Xingping Sun, Eigenvalue sequences

of positive integral operators and moduli of smoothness, Springer Pro-

ceedings in Mathematics & Statistics, 83 (2014) 239-254.

[10] Gerald B. Folland, Real Analysis Second Edition. Pure and Applied

Mathematics (New York). Modern Techniques and Their Applications,

A Wiley-Interscience Publication, John Weiley & Sons,Inc,New York

1999.

[11] Alexi Flinkov, Irina V. Melnikova, Abstract Cauchy Problems : Three

Approaches, Chapmann and HALL/ CRC Monographs and Surveys in

Pure an Applied Mathematics (2001).
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