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Abstract— This paper presents a general framework for
optimization of robotic manipulators via sums-of-squares (SoS)
programming (semidefinite convex optimization) with multiple
design objectives. Both kinematic and dynamic performance
measures are discussed and an optimization problem for a
proof-of-concept robotic manipulator has been formulated. SoS
programming is shown to promise advantages as it can provide
globally optimal results up to machine precision and scales
much better with respect to the number of design variables than
other methods which can obtain globally optimal solutions.

I. INTRODUCTION

Design of robotic manipulators is often subjected to multi-

criteria performance requirements, which are typically dom-

inated by their geometrical parameters. Formulating and

solving an optimization problem for these parameters are

typically challenging due to the highly nonlinear, nonconvex

nature of the kinematics and dynamics of most robotic ma-

nipulators and the considered performance metrics. Common

undesirable characteristics that plague nonlinear and noncon-

vex optimization methods are the tendency to get stuck at a

local optimum and the high computational demands.

The main contribution of this paper is the reformulation

of the problem of design optimization of robotic manipu-

lators as a convex optimization problem by invoking sum-

of-squares (SoS) techniques [1]. This allows for global

optimization of many performance indices efficiently up to

machine precision. Moreover, SoS optimization scales excep-

tionally well as the number of design parameters increase,

contrary to branch and bound methods whose computational

complexity increases exponentially. The interested reader can

refer to [2], [3] for more information about SoS optimization.

We consider the multi-criteria optimization of the global

kinematic and dynamic isotropy indices, GII and GDI,

respectively [4]. The Pareto-front curve is obtained by using

the scalarization (weighted-sum) method to turn the multi-

objective optimization problem into series of single-objective

ones. We use SoS programming to solve each individual

single-objective problem. A proof-of-concept case-study that

formulates and solves the design optimization problem for

the planar two-link manipulator is presented.

II. KINEMATIC AND DYNAMIC PERFORMANCE INDICES

We use a performance index called the global isotropy

index (GII), introduced in [4], to quantify the kinematic

isotropy of robotic manipulators over the whole workspace.

A manipulator with maximal GII corresponds to a design
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with best worst-case kinematic performance, increasing the

efficiency of actuator utilization.

We choose to optimize the global dynamic index (GDI),
also introduced in [4], to quantify dynamical performance.

It measures the largest effect of mass on the dynamic

performance. A manipulator with optimal GDI corresponds

to a design with minimal inertial interference by the system.

GII and GDI are expressed mathematically as

GII = inf
θ∈W

σ
¯
(J(α,θ))

σ̄(J(α,θ))
, GDI = inf

θ∈W

1

1 + σ̄(H(α,θ))
,

where W denotes the workspace, J the kinematic Jacobian

matrix, H the mass matrix, σ̄ ,σ
¯

are the largest and smallest

singular values of the corresponding matrices, α is a known

function of link lengths, and θ are configuration variables.

III. POLYNOMIAL MANIPULATOR EQUATIONS

The two-link manipulator can be characterized by the lengths

l1, l2 of its links. Here l1 corresponds to the link fixed to the

ground by a revolute joint, and l2 corresponds to the link

connecting the end effector to l1 through a second revolute

joint. Defining xi = cos(θi) and yi = sin(θi), where θi is

the absolute angle of rotation of joint i measured from the

horizontal axis, the kinematic Jacobian is computed to be

(1)J =

[−l1 sinθ1 −l2 sinθ2

l1 cosθ1 l2 cosθ2

]
=

[−l1y1 −l2y2

l1x1 l2x2

]
,

from which the manipulability matrix is computed as M =
JJ�, and is omitted from the paper due to space constraint.

Without loss of generality, we assume the center of mass

of each link is situated at the geometric center of the link,

and the mass matrix is given by

(2)H =

[
I1 +

1
4 ml2

1
1
2 m2l1l2 (x1x2 + y1y2)

1
2 m2l1l2 (x1x2 + y1y2) I2 +

1
4 m2l2

2

]
,

where I1, I2 are the moments of inertia of the link about the

axis perpendicular to the plane of operation, m1,m2 are the

masses of each link and m = (m1 +4m2).

IV. METHODS

To optimize kinematic and dynamic performance of a two-

link planar manipulator, we formulate an optimization prob-

lem whose objective is to maximize GII and GDI simulta-

neously. Since SoS programming can be viewed as a special

case of semidefinite programming, we need to formulate the

optimization problem so that the objective function is a linear

function of the decision variables and the constraints are

linear matrix inequalities.
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A. Unconstrained semidefinite optimization of GII and GDI

We use matrix norm minimization technique [5] to address

the nonconvexity of GII. Let ‖·‖
2

denote the spectral norm,

i.e. the maximum singular value. Defining the decision vari-

ables αi = l2
i , i = 1,2 and using the fact that ‖J(α;x,y)‖

2
≤ s

if and only if JJ� � s2I (and s ≥ 0), we can express the

optimization that finds the global maximizer of GII as

(3)

minimize
(α,s,t) ∈Rn+2

s− t

subject to sI −M(α;x,y) is SoS

M(α;x,y)− tI is SoS.

From Section III we know that the manipulability matrix

M = JJ� is a linear function of the decision variables α and

a polynomial function of the configuration variables x,y.

To incorporate the maximization of GDI, we notice that

a natural linear function of the decision variables, whose

minimization will also minimize σ̄(H), thus maximizing

GDI, is given by the trace of H. Since tr(H) = ∑i λi(H),
minimizing tr(H) is equivalent to minimizing the maximum

value of the sum of the eigenvalues of H over the workspace.

B. Formulating the constraints

The semidefinite program (3) is not yet a faithful optimiza-

tion problem because it lacks the circle constraints x2
i +y2

i =
1, ∀i = 1,2, and the workspace constraints, G, defined as

G(α,β ,x,y) =

⎡
⎢⎢⎢⎢⎣

−y2

x1y2 − x2y1

x1x2 + y1y2 − ε
ε − x1x2 − y1y2

c�i α + di

⎤
⎥⎥⎥⎥⎦ ≤ 0, i = 1, . . . ,m,

where ε = 0.5 is the bound on |cos(θ1−θ2)| and parameters

for affine constraints on the decision variables α are given as

c1 =
[
1 1

]�
, c2 =−

[
1 1

]�
and d1 =− 9

70 m2, d2 =
1

10 m2.

The circle constraints, the elbow-out posture constraints,

G1, G2 and nonsingularity constraints G3 and G4 of G
are polynomial constraints, which can be embedded in SoS

programming by invoking the S-procedure described in [1].

The last two elements of G define affine constraints on the

decision variables and can be directly inserted into the final

semidefinite program (4).

C. Multicriteria Optimization

Once the single criteria optimization problems have been

cast as semidefinite programs, we combine the two using

the weighted-sum approach to generate the Pareto-front. This

involves solving the following semidefinite program for each

value of the parameter 0≤ γ ≤ 1.

(4)

minimize
(α,s,t) ∈Rn+2

γc�α + (1− γ)(s− t)

subject to sI −M(α;x,y) is SoS

M(α;x,y)− tI is SoS

G(α;x,y) ≤ 0

αl ≤ α ≤ αu

x2
i + y2

i = 1, ∀i = 1,2.

where αl = 0.1 and αu = 1.0 stand for the lower and upper

bounds on the design variables, respectively.

V. RESULTS AND DISCUSSION

Table I presents the results of the SoS optimization algorithm

for the single objective problems, for best kinematic (γ = 0)

and best dynamic isotropy (γ = 1), respectively.

TABLE I: Results of independent optimizations

Best Design for Best Design for
Unit

Kinematic Isotropy Dynamic Isotropy
GII 0.57735 0.28021 −
GDI 0.89354 0.95012 −

l1 0.22361 0.10000 m
l2 0.22361 0.30000 m

To characterize the trade-off between the single objective

solutions, Pareto-front curve for the bi-objective optimization

problem is constructed. This can be viewed through the link

https://bit.ly/2M7nTUc. Schematics of the mecha-

nism at the two extremes, i.e., best kinematic and dynamic

isotropy, and at an approximately equal-trade-off-point are

shown in the subplots within this figure.

With regards to computational demands, the multi-

objective problem with 101 distinct values of γ only took

approximately 2 minutes to complete using a single mobile
Intel i7− 7700HQ processor operating at 3.80GHz. These

results serve as a strong indication that the application of

framework presented in this case study to more complex

mechanisms promises substantial improvements in accuracy

and computational performance.

VI. CONCLUSIONS AND FUTURE WORK

We cast design optimization of robotic manipulators, which

was previously solved via nonlinear optimization techniques,

as a convex optimization problem by employing sums-of-

squares optimization. As a result, we are able to find the

globally optimal solution for the single objective problems

with arbitrarily high precision (up to machine precision).

Interior-point methods are used to obtain the numerical

solution to a SoS optimization problem very efficiently. They

scale exceptionally well with increasing number of decision

variables in contrast to other methods, such as branch-and-

bound algorithms, which are able to find the globally optimal

solution. In future work, we will use the same technique

to optimally design parallel mechanisms, which additionally

require the satisfaction of loop equations.
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