PLURIPOTENTIAL THEORY AND CONVEX BODIES: LARGE DEVIATION PRINCIPLE

TURGAY BAYRAKTAR, THOMAS BLOOM, NORMAN LEVENBERG, AND CHINH H. LU

Abstract

We continue the study in [2] in the setting of weighted pluripotential theory arising from polynomials associated to a convex body P in $\left(\mathbb{R}^{+}\right)^{d}$. Our goal is to establish a large deviation principle in this setting specifying the rate function in terms of P-pluripotential-theoretic notions. As an important preliminary step, we first give an existence proof for the solution of a MongeAmpère equation in an appropriate finite energy class. This is achieved using a variational approach.

Contents

1. Introduction 1
2. Monge-Ampère and P-pluripotential theory 3
3. P-pluripotential theory notions 13
4. Relation between E^{*} and J, J^{Q} functionals. 24
5. Large deviation. 30

References 37

1. Introduction

As in [2], we fix a convex body $P \subset\left(\mathbb{R}^{+}\right)^{d}$ and we define the logarithmic indicator function

$$
\begin{equation*}
H_{P}(z):=\sup _{J \in P} \log \left|z^{J}\right|:=\sup _{\left(j_{1}, \ldots, j_{d}\right) \in P} \log \left[\left|z_{1}\right|^{j_{1}} \cdots\left|z_{d}\right|^{j_{d}}\right] . \tag{1.1}
\end{equation*}
$$

Date: February 10, 2019.
2010 Mathematics Subject Classification. 32U15, 32U20, 31C15.
Key words and phrases. convex body, P-extremal function, large deviation principle.
N. Levenberg is supported by Simons Foundation grant No. 354549.

We assume throughout that

$$
\begin{equation*}
\Sigma \subset k P \text { for some } k \in \mathbb{Z}^{+} \tag{1.2}
\end{equation*}
$$

where

$$
\Sigma:=\left\{\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}: 0 \leq x_{i} \leq 1, \sum_{j=1}^{d} x_{i} \leq 1\right\}
$$

Then

$$
H_{P}(z) \geq \frac{1}{k} \max _{j=1, \ldots, d} \log ^{+}\left|z_{j}\right|
$$

where $\log ^{+}\left|z_{j}\right|=\max \left[0, \log \left|z_{j}\right|\right]$. We define

$$
L_{P}=L_{P}\left(\mathbb{C}^{d}\right):=\left\{u \in \operatorname{PSH}\left(\mathbb{C}^{d}\right): u(z)-H_{P}(z)=O(1),|z| \rightarrow \infty\right\}
$$

and

$$
L_{P,+}=L_{P,+}\left(\mathbb{C}^{d}\right)=\left\{u \in L_{P}\left(\mathbb{C}^{d}\right): u(z) \geq H_{P}(z)+C_{u}\right\}
$$

These are generalizations of the classical Lelong classes when $P=\Sigma$. We define the finite-dimensional polynomial spaces

$$
\operatorname{Poly}(n P):=\left\{p(z)=\sum_{J \in n P \cap\left(\mathbb{Z}^{+}\right)^{d}} c_{J} z^{J}: c_{J} \in \mathbb{C}\right\}
$$

for $n=1,2, \ldots$ where $z^{J}=z_{1}^{j_{1}} \cdots z_{d}^{j_{d}}$ for $J=\left(j_{1}, \ldots, j_{d}\right)$. For $p \in$ $\operatorname{Poly}(n P), n \geq 1$ we have $\frac{1}{n} \log |p| \in L_{P}$; also each $u \in L_{P,+}\left(\mathbb{C}^{d}\right)$ is locally bounded in \mathbb{C}^{d}. For $P=\Sigma$, we write $\operatorname{Poly}(n P)=\mathcal{P}_{n}$.

Given a compact set $K \subset \mathbb{C}^{d}$, one can define various pluripotentialtheoretic notions associated to K related to L_{P} and the polynomial spaces Poly $(n P)$. Our goal in this paper is to prove some probabilistic properties of random point processes on K utilizing these notions and their weighted counterparts. We require an existence proof for the solution of a Monge-Ampère equation in an appropriate finite energy class; this is done in Theorem 2.8 using a variational approach and is of interest on its own. The third section recalls appropriate definitions and properties in P-pluripotential theory, mostly following [2]. As in [2], our spaces Poly $(n P)$ do not necessarily arise as holomorphic sections of tensor powers of a line bundle. Subsection 3.3 includes a standard elementary probabilistic result on almost sure convergence of probability measures associated to random arrays on K to a P-pluripotentialtheoretic equilibrium measure. Section 4 sets up the machinery for the more subtle large deviation principle (LDP), Theorem 5.1, for which we provide two proofs (analogous to those in [9]). As in [9], the first
proof was inspired by [6] and the second proof was utilized by Berman in [5]. The reader will find far-reaching applications and interpretations of LDP's in the appropriate settings of holomorphic line bundles over a compact, complex manifold in [5]. In particular, the case where P is a convex integral polytope (vertices in \mathbb{Z}^{d}) which is the moment polytope for a toric manifold (P is Delzant) is covered in [5].

2. Monge-Ampère and P-Pluripotential theory

2.1. Monge-Ampère equations with prescribed singularity. In this section, (X, ω) is a compact Kähler manifold of dimension d.
2.1.1. Quasi-plurisubharmonic functions. A function $u: X \rightarrow \mathbb{R} \cup$ $\{-\infty\}$ is called quasi-plurisubharmonic (quasi-psh) if locally $u=\rho+\varphi$, where φ is plurisubharmonic and ρ is smooth.

We let $\operatorname{PSH}(X, \omega)$ denote the set of ω-psh functions, i.e. quasi-psh functions u such that $\omega_{u}:=\omega+d d^{c} u \geq 0$ in the sense of currents on X.

Given $u, v \in \operatorname{PSH}(X, \omega)$ we say that u is more singular than v (and we write $u \prec v$) if $u \leq v+C$ on X, for some constant C. We say that u has the same singularity as v (and we write $u \simeq v$) if $u \prec v$ and $v \prec u$.

Given $\phi \in \operatorname{PSH}(X, \omega)$, we let $\operatorname{PSH}(X, \omega, \phi)$ denote the set of ω-psh functions u which are more singular than ϕ.
2.1.2. Nonpluripolar Monge-Ampère measure. For bounded ω-psh functions u_{1}, \ldots, u_{d}, the Monge-Ampère product $\left(\omega+d d^{c} u_{1}\right) \wedge \ldots \wedge\left(\omega+d d^{c} u_{d}\right)$ is well-defined as a positive Radon measure on X (see [14], [3]). For general ω-psh functions u_{1}, \ldots, u_{d}, the sequence of positive measures

$$
\mathbf{1}_{\cap\left\{u_{j}>-k\right\}}\left(\omega+d d^{c} \max \left(u_{1},-k\right)\right) \wedge \ldots \wedge\left(\omega+d d^{c} \max \left(u_{d},-k\right)\right)
$$

is non-decreasing in k and the limiting measure, which is called the nonpluripolar product of $\omega_{u_{1}}, \ldots, \omega_{u_{d}}$, is denoted by

$$
\omega_{u_{1}} \wedge \ldots \wedge \omega_{u_{d}} .
$$

When $u_{1}=\ldots=u_{d}=u$ we write $\omega_{u}^{d}:=\omega_{u} \wedge \ldots \wedge \omega_{u}$. Note that by definition $\int_{X} \omega_{u_{1}} \wedge \ldots \wedge \omega_{u_{d}} \leq \int_{X} \omega^{d}$.

It was proved in [20, Theorem 1.2] and [11, Theorem 1.1] that the total mass of nonpluripolar Monge-Ampère products is decreasing with respect to singularity type. More precisely,

Theorem 2.1. Let $\omega_{1}, \ldots, \omega_{d}$ be Kähler forms on X. If $u_{j} \leq v_{j}, j=$ $1, \ldots, d$, are ω_{j}-psh functions then

$$
\int_{X}\left(\omega_{1}+d d^{c} u_{1}\right) \wedge \ldots \wedge\left(\omega_{d}+d d^{c} u_{d}\right) \leq \int_{X}\left(\omega_{1}+d d^{c} v_{1}\right) \wedge \ldots \wedge\left(\omega_{d}+d d^{c} v_{d}\right)
$$

As noted above, for a general ω-psh function u we have the estimate $\int_{X} \omega_{u}^{d} \leq \int_{X} \omega^{d}$. Following [15] we let $\mathcal{E}(X, \omega)$ denote the set of all ω-psh functions with maximal total mass, i.e.

$$
\mathcal{E}(X, \omega):=\left\{u \in \operatorname{PSH}(X, \omega): \int_{X} \omega_{u}^{d}=\int_{X} \omega^{d}\right\} .
$$

Given $\phi \in \operatorname{PSH}(X, \omega)$, we define

$$
\mathcal{E}(X, \omega, \phi):=\left\{u \in \operatorname{PSH}(X, \omega, \phi): \int_{X} \omega_{u}^{d}=\int_{X} \omega_{\phi}^{d}\right\} .
$$

Proposition 2.2. Let $\phi \in \operatorname{PSH}(X, \omega)$. The following are equivalent :
(1) $\mathcal{E}(X, \omega, \phi) \cap \mathcal{E}(X, \omega) \neq \emptyset$;
(2) $\phi \in \mathcal{E}(X, \omega)$;
(3) $\mathcal{E}(X, \omega, \phi) \subset \mathcal{E}(X, \omega)$.

Proof. We first prove (1) \Longrightarrow (2). If $u \in \mathcal{E}(X, \omega, \phi) \cap \mathcal{E}(X, \omega)$ then $\int_{X} \omega_{u}^{d}=\int_{X} \omega^{d}$. On the other hand, since u is more singular than ϕ, Theorem 2.1 ensures that

$$
\int_{X} \omega^{d}=\int_{X} \omega_{u}^{d} \leq \int_{X} \omega_{\phi}^{d} \leq \int_{X} \omega^{d},
$$

hence equality holds, proving that $\phi \in \mathcal{E}(X, \omega)$.
Now we prove $(2) \Longrightarrow(3)$. If $\phi \in \mathcal{E}(X, \omega)$ and $u \in \mathcal{E}(X, \omega, \phi)$ then

$$
\int_{X} \omega_{u}^{d}=\int_{X} \omega_{\phi}^{d}=\int_{X} \omega^{d},
$$

hence $u \in \mathcal{E}(X, \omega)$.
Finally $(3) \Longrightarrow(1)$ is obvious.
Proposition 2.3. Assume that $\phi_{j} \in \operatorname{PSH}\left(X, \omega_{j}\right), j=1, \ldots, d$ with $\int_{X}\left(\omega_{j}+d d^{c} \phi_{j}\right)^{d}>0$. If $u_{j} \in \mathcal{E}\left(X, \omega_{j}, \phi_{j}\right), j=1, \ldots, d$, then

$$
\int_{X}\left(\omega_{1}+d d^{c} u_{1}\right) \wedge \ldots \wedge\left(\omega_{d}+d d^{c} u_{d}\right)=\int_{X}\left(\omega_{1}+d d^{c} \phi_{1}\right) \wedge \ldots \wedge\left(\omega_{d}+d d^{c} \phi_{d}\right) .
$$

Proof. Theorem 2.1 gives one inequality. The other one follows from [11, Proposition 3.1 and Theorem 3.14].
2.1.3. Model potentials. For a function $f: X \rightarrow \mathbb{R} \cup\{-\infty\}$, we let f^{*} denote its uppersemicontinuous (usc) regularization, i.e.

$$
f^{*}(x):=\limsup _{X \ni y \rightarrow x} f(y) .
$$

Given $\phi \in \operatorname{PSH}(X, \omega)$, following J. Ross and D. Witt Nyström [18], we define

$$
P_{\omega}[\phi]:=\left(\lim _{t \rightarrow+\infty} P_{\omega}(\min (\phi+t, 0))\right)^{*}
$$

Here, for a function $f, P_{\omega}(f)$ is defined as

$$
P_{\omega}(f):=(x \mapsto \sup \{u(x): u \in P S H(X, \omega), u \leq f\})^{*} .
$$

It was shown in [11, Theorem 3.8] that the nonpluripolar Monge-Ampère measure of $P_{\omega}[\phi]$ is dominated by Lebesgue measure:

$$
\begin{equation*}
\left(\omega+d d^{c} P_{\omega}[\phi]\right)^{d} \leq \mathbf{1}_{\left\{P_{\omega}[\phi]=0\right\}} \omega^{d} \leq \omega^{d} . \tag{2.1}
\end{equation*}
$$

This fact plays a crucial role in solving the complex Monge-Ampère equation. For the reader's convenience, we note that in the notation of [11] (on the left)

$$
P_{[\omega, \phi]}(0)=P_{\omega}[\phi] .
$$

Definition 2.4. A function $\phi \in P S H(X, \omega)$ is called a model potential if $\int_{X} \omega_{\phi}^{d}>0$ and $P_{\omega}[\phi]=\phi$. A function $u \in \operatorname{PSH}(X, \omega)$ has model type singularity if u has the same singularity as $P_{\omega}[u]$; i.e., $u-P_{\omega}[u]$ is bounded on X.

There are plenty of model potentials. If $\varphi \in \operatorname{PSH}(X, \omega)$ with $\int_{X} \omega_{\varphi}^{d}>0$ then, by [11, Theorem 3.12], $P_{\omega}[\varphi]$ is a model potential. In particular, if $\int_{X} \omega_{\varphi}^{d}=\int_{X} \omega^{d}$ (i.e. $\left.\varphi \in \mathcal{E}(X, \omega)\right)$ then $P_{\omega}[\varphi]=0$.

We will use the following property of model potentials proved in [11, Theorem 3.12]: if ϕ is a model potential then

$$
\begin{equation*}
u \in P S H(X, \omega, \phi) \Longrightarrow u-\sup _{X} u \leq \phi \tag{2.2}
\end{equation*}
$$

In the sequel we always assume that ϕ has model type singularity and small unbounded locus; i.e., ϕ is locally bounded outside a closed complete pluripolar set, allowing us to use the variational approach of [7] as explained in [11].
2.1.4. The variational approach. We call a measure which puts no mass on pluripolar sets a nonpluripolar measure. For a positive nonpluripolar measure μ on X we let L_{μ} denote the following linear functional on $\operatorname{PSH}(X, \omega, \phi)$:

$$
L_{\mu}(u):=\int_{X}(u-\phi) d \mu .
$$

For $u \in \operatorname{PSH}(X, \omega)$ with $u \simeq \phi$, we define the Monge-Ampère energy

$$
\begin{equation*}
\mathbf{E}_{\phi}(u):=\frac{1}{(d+1)} \sum_{k=0}^{d} \int_{X}(u-\phi) \omega_{u}^{k} \wedge \omega_{\phi}^{d-k} \tag{2.3}
\end{equation*}
$$

It was shown in [11, Theorem 4.10] (by adapting the arguments of [7]) that \mathbf{E}_{ϕ} is non-decreasing and concave along affine curves, giving rise to its trivial extension to $\operatorname{PSH}(X, \omega, \phi)$.

We define

$$
\begin{equation*}
\mathcal{E}^{1}(X, \omega, \phi):=\left\{u \in \operatorname{PSH}(X, \omega, \phi): \mathbf{E}_{\phi}(u)>-\infty\right\} . \tag{2.4}
\end{equation*}
$$

The following criterion was proved in [11, Theorem 4.13]:
Proposition 2.5. Let $u \in \operatorname{PSH}(X, \omega, \phi)$. Then $u \in \mathcal{E}^{1}(X, \omega, \phi)$ iff $u \in \mathcal{E}(X, \omega, \phi)$ and $\int_{X}(u-\phi) \omega_{u}^{d}>-\infty$.

Lemma 2.6. If E is pluripolar then there exists $u \in \mathcal{E}^{1}(X, \omega, \phi)$ such that $E \subset\{u=-\infty\}$.

Proof. Without loss of generality we can assume that ϕ is a model potential. Then (2.1) gives $\int_{X}|\phi| \omega_{\phi}^{d}=0$. It follows from [7, Corollary 2.11] that there exists $v \in \mathcal{E}^{1}(X, \omega, 0), v \leq 0$, such that $E \subset\{v=$ $-\infty\}$. Set $u:=P_{\omega}(\min (v, \phi))$. Then $E \subset\{u=-\infty\}$ and we claim that $u \in \mathcal{E}^{1}(X, \omega, \phi)$. For each $j \in \mathbb{N}$ we set $v_{j}:=\max (v,-j)$ and $u_{j}:=P_{\omega}\left(\min \left(v_{j}, \phi\right)\right)$. Then u_{j} decreases to u and $u_{j} \simeq \phi$. Using [11, Theorem 4.10 and Lemma 4.15] it suffices to check that $\left\{\int_{X}\left|u_{j}-\phi\right| \omega_{u_{j}}^{d}\right\}$ is uniformly bounded. It follows from [11, Lemma 3.7] that

$$
\begin{aligned}
\int_{X}\left|u_{j}-\phi\right| \omega_{u_{j}}^{d} \leq \int_{X}\left|u_{j}\right| \omega_{u_{j}}^{d} & \leq \int_{X}\left|v_{j}\right| \omega_{v_{j}}^{d}+\int_{X}|\phi| \omega_{\phi}^{d} \\
& =\int_{X}\left|v_{j}\right| \omega_{v_{j}}^{d}
\end{aligned}
$$

The fact that $\int_{X}\left|v_{j}\right| \omega_{v_{j}}^{d}$ is uniformly bounded follows from [15, Corollary 2.4] since $v \in \mathcal{E}^{1}(X, \omega, 0)$. This concludes the proof.

Lemma 2.7. Assume that $\mathcal{E}^{1}(X, \omega, \phi) \subset L^{1}(X, \mu)$. Then, for each $C>0, L_{\mu}$ is bounded on

$$
E_{C}:=\left\{u \in P S H(X, \omega, \phi): \sup _{X} u \leq 0 \text { and } \mathbf{E}_{\phi}(u) \geq-C\right\} .
$$

Proof. By concavity of \mathbf{E}_{ϕ} the set E_{C} is convex. We now show that E_{C} is compact in the $L^{1}\left(X, \omega^{d}\right)$ topology. Let $\left\{u_{j}\right\}$ be a sequence in E_{C}. We claim that $\left\{\sup _{X} u_{j}\right\}$ is bounded. Indeed, by [11, Theorem 4.10]

$$
\begin{gathered}
\mathbf{E}_{\phi}\left(u_{j}\right) \leq \int_{X}\left(u_{j}-\phi\right) \omega_{\phi}^{d} \\
\leq\left(\sup _{X} u_{j}\right) \int_{X} \omega_{\phi}^{d}+\int_{X}\left(u_{j}-\sup _{X} u_{j}-\phi\right) \omega_{\phi}^{d} .
\end{gathered}
$$

It follows from (2.2) that $u_{j}-\sup _{X} u_{j} \leq P_{\omega}[\phi] \leq \phi+C_{0}$, where C_{0} is a constant. The boundedness of $\left\{\sup _{X} u_{j}\right\}$ then follows from that of $\left\{\mathbf{E}_{\phi}\left(u_{j}\right)\right\}$ and the above estimate. This proves the claim.

A subsequence of $\left\{u_{j}\right\}$, still denoted by $\left\{u_{j}\right\}$, converges in $L^{1}\left(X, \omega^{d}\right)$ to $u \in \operatorname{PSH}(X, \omega)$ with $\sup _{X} u \leq 0$. Since $u_{j}-\sup _{X} u_{j} \leq \phi+C_{0}$, we have $u-\sup _{X} u \leq \phi+C_{0}$. This proves that $u \in \operatorname{PSH}(X, \omega, \phi)$. The upper semicontinuity of \mathbf{E}_{ϕ} (see [11, Proposition 4.19]) ensures that $\mathbf{E}_{\phi}(u) \geq-C$, hence $u \in E_{C}$. This proves that E_{C} is compact in the $L^{1}\left(X, \omega^{d}\right)$ topology.

The result then follows from [7, Proposition 3.4].
The goal of this section is to prove the following result:
Theorem 2.8. Assume that μ is a nonpluripolar positive measure on X such that $\mu(X)=\int_{X} \omega_{\phi}^{d}$. The following are equivalent
(1) μ has finite energy, i.e., L_{μ} is finite on $\mathcal{E}^{1}(X, \omega, \phi)$;
(2) there exists $u \in \mathcal{E}^{1}(X, \omega, \phi)$ such that $\omega_{u}^{d}=\mu$;
(3) there exists a unique $u \in \mathcal{E}^{1}(X, \omega, \phi)$ such that

$$
F_{\mu}(u)=\max _{v \in \mathcal{E}^{1}(X, \omega, \phi)} F_{\mu}(v)<+\infty
$$

where $F_{\mu}=\mathbf{E}_{\phi}-L_{\mu}$.
Remark 2.9. It was shown in [11, Theorem 4.28] that a unique (normalized) solution u in $\mathcal{E}(X, \omega, \phi)$ always exists (without the finite energy assumption on μ). But that proof does not give a solution in $\mathcal{E}^{1}(X, \omega, \phi)$. Below, we will follow the proof of [11, Theorem 4.28] and use the finite energy condition, $\mathcal{E}^{1}(X, \omega, \phi) \subset L^{1}(X, \mu)$, to prove that u belongs to $\mathcal{E}^{1}(X, \omega, \phi)$.

Lemma 2.10. Assume that $\mathcal{E}^{1}(X, \omega, \phi) \subset L^{1}(X, \mu)$. Then there exists a positive constant C such that, for all $u \in \mathcal{E}^{1}(X, \omega, \phi)$ with $\sup _{X} u=0$,

$$
\begin{equation*}
L_{\mu}(u) \geq-C\left(1+\left|\mathbf{E}_{\phi}(u)\right|^{1 / 2}\right) \tag{2.5}
\end{equation*}
$$

The proof below uses ideas in $[15,7]$.
Proof. Since ϕ has model type singularity, it follows from [11, Theorem 4.10] that $\mathbf{E}_{\phi}-\mathbf{E}_{P_{\omega}[\phi]}$ is bounded. Without loss of generality we can assume in this proof that $\phi=P_{\omega}[\phi]$. Fix $u \in \mathcal{E}^{1}(X, \omega, \phi)$ such that $\sup _{X} u=0$ and $\left|\mathbf{E}_{\phi}(u)\right|>1$. Then, by [11, Theorem 3.12], $u \leq \phi$. Set $a=\left|\mathbf{E}_{\phi}(u)\right|^{-1 / 2} \in(0,1)$, and $v:=a u+(1-a) \phi \in \mathcal{E}^{1}(X, \omega, \phi)$. We estimate $\mathbf{E}_{\phi}(v)$ as follows

$$
\begin{aligned}
(d+1) \mathbf{E}_{\phi}(v) & =a \sum_{k=0}^{d} \int_{X}(u-\phi) \omega_{v}^{k} \wedge \omega_{\phi}^{d-k} \\
& =a \sum_{k=0}^{d} \int_{X}(u-\phi)\left(a \omega_{u}+(1-a) \omega_{\phi}\right)^{k} \wedge \omega_{\phi}^{d-k} \\
& \geq C(d) a \int_{X}(u-\phi) \omega_{\phi}^{d}+C(d) a^{2} \sum_{k=0}^{d} \int_{X}(u-\phi) \omega_{u}^{k} \wedge \omega_{\phi}^{d}
\end{aligned}
$$

where $C(d)$ is a positive constant which only depends on d. It follows from $\phi=P_{\omega}[\phi]$ and [11, Theorem 3.8] that $\omega_{\phi}^{d} \leq \omega^{d}$ (recall (2.1)). This together with [14, Proposition 2.7] give

$$
\int_{X}(u-\phi) \omega_{\phi}^{d} \geq-C_{1}
$$

for a uniform constant C_{1}. Therefore,

$$
(d+1) \mathbf{E}_{\phi}(v) \geq-C_{1} C(d) a+C_{2} a^{2} \mathbf{E}_{\phi}(u) \geq-C_{3} .
$$

It thus follows from Lemma 2.7 that $L_{\mu}(v) \geq-C_{4}$ for a uniform constant $C_{4}>0$. Thus

$$
\int_{X}(u-\phi) d \mu \geq-C_{4} / a
$$

which gives (2.5).
We are now ready to prove Theorem 2.8.

Proof of Theorem 2.8. Without loss of generality we can assume that ϕ is a model potential. We first prove $(1) \Longrightarrow(2)$. We write $\mu=f \nu$, where ν is a nonpluripolar positive measure satisfying, for all Borel subsets $B \subset X$,

$$
\nu(B) \leq A \operatorname{Cap}_{\phi}(B)
$$

for some positive constant A, and $0 \leq f \in L^{1}(X, \nu)$ (cf., [11, Lemma 4.26]). Here Cap_{ϕ} is defined as

$$
\operatorname{Cap}_{\phi}(B):=\sup \left\{\int_{B} \omega_{u}^{d}: u \in P S H(X, \omega), \phi-1 \leq u \leq \phi\right\} .
$$

Set, for $k \in \mathbb{N}, \mu_{k}:=c_{k} \min (f, k) \nu$ where $c_{k}>0$ is chosen so that $\mu_{k}(X)=\int_{X} \omega_{\phi}^{d}$; this is needed in order to solve the Monge-Ampère equation in the class $\mathcal{E}^{1}(X, \omega, \phi)$. For k large enough, $1 \leq c_{k} \leq 2$ and $c_{k} \rightarrow 1$ as $k \rightarrow+\infty$. It follows from [11, Theorem 4.25] that there exists $u_{j} \in \mathcal{E}^{1}(X, \omega, \phi), \sup _{X} u_{j}=0$, such that $\omega_{u_{j}}^{d}=\mu_{j} ;$ by [11, Theorem 3.12], $u_{j} \leq \phi$. A subsequence of $\left\{u_{j}\right\}$ which, by abuse of notation, will be denoted by $\left\{u_{j}\right\}$, converges in $L^{1}(X, \mu)$ to $u \in \operatorname{PSH}(X, \omega)$ with $u \leq \phi$. Define $v_{k}:=\left(\sup _{j \geq k} u_{j}\right)^{*}$. Then $v_{k} \searrow u$ and $\sup _{X} v_{k}=0$. It follows from (2.5) and [11, Theorem 4.10] that

$$
\begin{aligned}
\left|\mathbf{E}_{\phi}\left(u_{j}\right)\right| & \leq \int_{X}\left|u_{j}-\phi\right| \omega_{u_{j}}^{d} \leq 2 \int_{X}\left|u_{j}-\phi\right| d \mu \\
& \leq 2 C\left(1+\left|\mathbf{E}_{\phi}\left(u_{j}\right)\right|^{1 / 2}\right)
\end{aligned}
$$

Therefore $\left\{\left|\mathbf{E}_{\phi}\left(u_{j}\right)\right|\right\}$ is bounded, hence so is $\left\{\left|\mathbf{E}_{\phi}\left(v_{j}\right)\right|\right\}$ since \mathbf{E}_{ϕ} is nondecreasing. It then follows from [11, Lemma 4.15] that $u \in \mathcal{E}^{1}(X, \omega, \phi)$.

Now, repeating the arguments of [11, Theorem 4.28] we can show that $\omega_{u}^{d}=\mu$, finishing the proof of $(1) \Longrightarrow(2)$.

We next prove $(2) \Longrightarrow$ (3). Assume that $\mu=\omega_{u}^{d}$ for some $u \in$ $\mathcal{E}^{1}(X, \omega, \phi)$. For all $v \in \mathcal{E}^{1}(X, \omega, \phi)$, by [11, Theorem 4.10] and Proposition 2.5 we have

$$
\begin{aligned}
L_{\mu}(v) & =\int_{X}(v-\phi) \omega_{u}^{d} \\
& =\int_{X}(v-u) \omega_{u}^{d}+\int_{X}(u-\phi) \omega_{u}^{d} \\
& \geq \mathbf{E}_{\phi}(v)-\mathbf{E}_{\phi}(u)+\int_{X}(u-\phi) \omega_{u}^{d}>-\infty .
\end{aligned}
$$

Hence L_{μ} is finite on $\mathcal{E}^{1}(X, \omega, \phi)$. Now, for all $v \in \mathcal{E}^{1}(X, \omega, \phi)$, by [11, Theorem 4.10] we have

$$
F_{\mu}(v)-F_{\mu}(u)=\mathbf{E}_{\phi}(v)-\mathbf{E}_{\phi}(u)-\int_{X}(v-u) \omega_{u}^{d} \leq 0
$$

This gives (3). Finally, $(3) \Longrightarrow(1)$ is obvious.
2.2. Monge-Ampère equations on \mathbb{C}^{d} with prescribed growth. As in the introduction we let P be a convex body contained in $\left(\mathbb{R}^{+}\right)^{d}$ and fix $r>0$ such that $P \subset r \Sigma$. We assume (1.2); i.e., $\Sigma \subset k P$ for some $k \in \mathbb{Z}^{+}$. This ensures that H_{P} in (1.1) is locally bounded on \mathbb{C}^{d} (and of course $H_{P} \in L_{P}^{+}\left(\mathbb{C}^{d}\right)$). Let $u \in L_{P}\left(\mathbb{C}^{d}\right)$ and define

$$
\begin{equation*}
\tilde{u}(z):=u(z)-\frac{r}{2} \log \left(1+|z|^{2}\right), z \in \mathbb{C}^{d} \tag{2.6}
\end{equation*}
$$

Consider the projective space \mathbb{P}^{d} equipped with the Kähler metric $\omega:=$ $r \omega_{F S}$, where

$$
\omega_{F S}=d d^{c} \frac{1}{2} \log \left(1+|z|^{2}\right)
$$

on \mathbb{C}^{d}. Then \tilde{u} is bounded from above on \mathbb{C}^{d}. It thus can be extended to \mathbb{P}^{d} as a function in $\operatorname{PSH}\left(\mathbb{P}^{d}, \omega\right)$.

For a plurisubharmonic function u on \mathbb{C}^{d}, we let $\left(d d^{c} u\right)^{d}$ denotes its nonpluripolar Monge-Ampère measure; i.e., $\left(d d^{c} u\right)^{d}$ is the increasing limit of the sequence of measures $\mathbf{1}_{\{u>-k\}}\left(d d^{c} \max (u,-k)\right)^{d}$. Then

$$
\omega_{\tilde{u}}^{d}=\left(\omega+d d^{c} \tilde{u}\right)^{d}=\left(d d^{c} u\right)^{d} \text { on } \mathbb{C}^{d} .
$$

If $u \in L_{P}\left(\mathbb{C}^{d}\right)$ then

$$
\int_{\mathbb{C}^{d}}\left(d d^{c} u\right)^{d} \leq \int_{\mathbb{C}^{d}}\left(d d^{c} H_{P}\right)^{d}=d!\operatorname{Vol}(P)=: \gamma_{d}=\gamma_{d}(P)
$$

(cf., equation (2.4) in [2]). We define

$$
\mathcal{E}_{P}\left(\mathbb{C}^{d}\right):=\left\{u \in L_{P}\left(\mathbb{C}^{d}\right): \int_{\mathbb{C}^{d}}\left(d d^{c} u\right)^{d}=\gamma_{d}\right\}
$$

By the construction in (2.6) we have that $\tilde{H}_{P} \in P S H\left(\mathbb{P}^{d}, \omega\right)$. We define

$$
\tilde{\Phi}_{P}:=P_{\omega}\left[\tilde{H}_{P}\right] .
$$

The key point here, which follows from [12, Theorem 7.2], is that \tilde{H}_{P} has model type singularity (recall Definition 2.4) and hence the same
singularity as $\tilde{\Phi}_{P}$. Defining Φ_{P} on \mathbb{C}^{d} using (2.6); i.e., for $z \in \mathbb{C}^{d}$,

$$
\Phi_{P}(z)=\tilde{\Phi}_{P}(z)+\frac{r}{2} \log \left(1+|z|^{2}\right)
$$

we thus have $\Phi_{P} \in L_{P,+}\left(\mathbb{C}^{d}\right)$. The advantage of using Φ_{P} is that, by (2.1), $\left(d d^{c} \Phi_{P}\right)^{d} \leq \omega^{d}$ on \mathbb{C}^{d}. Note that $L_{P,+}\left(\mathbb{C}^{d}\right) \subset \mathcal{E}_{P}\left(\mathbb{C}^{d}\right)$. For $u, v \in L_{P}^{+}\left(\mathbb{C}^{d}\right)$ we define

$$
\begin{equation*}
E_{v}(u):=\frac{1}{(d+1)} \sum_{j=0}^{d} \int_{\mathbb{C}^{d}}(u-v)\left(d d^{c} u\right)^{j} \wedge\left(d d^{c} v\right)^{d-j} . \tag{2.7}
\end{equation*}
$$

The corresponding global energy (see (2.3)) is defined as

$$
\mathbf{E}_{\tilde{v}}(\tilde{u}):=\frac{1}{(d+1)} \sum_{j=0}^{d} \int_{\mathbb{P}^{d}}(\tilde{u}-\tilde{v})\left(\omega+d d^{c} \tilde{u}\right)^{j} \wedge\left(\omega+d d^{c} \tilde{v}\right)^{d-j} .
$$

Then E_{v} is non-decreasing and concave along affine curves in $L_{P,+}\left(\mathbb{C}^{d}\right)$. We extend E_{v} to $L_{P}\left(\mathbb{C}^{d}\right)$ in an obvious way. Note that E_{v} may take the value $-\infty$. We define

$$
\mathcal{E}_{P}^{1}\left(\mathbb{C}^{d}\right):=\left\{u \in L_{P}\left(\mathbb{C}^{d}\right): E_{H_{P}}(u)>-\infty\right\} .
$$

We observe that in the above definition we can replace $E_{H_{P}}$ by $E_{\Phi_{P}}$, since for $u \in L_{P,+}\left(\mathbb{C}^{d}\right)$, by the cocycle property (cf. Proposition 3.3 [2]),

$$
E_{H_{P}}(u)-E_{H_{P}}\left(\Phi_{P}\right)=E_{\Phi_{P}}(u) .
$$

We thus have the following important identification (see (2.4)):

$$
\begin{equation*}
u \in \mathcal{E}_{P}^{1}\left(\mathbb{C}^{d}\right) \Longleftrightarrow \tilde{u} \in \mathcal{E}^{1}\left(\mathbb{P}^{d}, \omega, \tilde{\Phi}_{P}\right) \tag{2.8}
\end{equation*}
$$

We then have the following local version of Proposition 2.5:
Proposition 2.11. Let $u \in L_{P}\left(\mathbb{C}^{d}\right)$. Then $u \in \mathcal{E}_{P}^{1}\left(\mathbb{C}^{d}\right)$ iff $u \in \mathcal{E}_{P}\left(\mathbb{C}^{d}\right)$ and $\int_{\mathbb{C}^{d}}\left(u-H_{P}\right)\left(d d^{c} u\right)^{d}>-\infty$. In particular, if $\operatorname{supp}\left(d d^{c} u\right)^{d}$ is compact, $u \in \mathcal{E}_{P}^{1}\left(\mathbb{C}^{d}\right)$ iff $\int_{\mathbb{C}^{d}}\left(d d^{c} u\right)^{d}=\gamma_{d}$ and $\int_{\mathbb{C}^{d}} u\left(d d^{c} u\right)^{d}>-\infty$.
Proof. Since $\tilde{H}_{P} \simeq \tilde{\Phi}_{P}$,

$$
\int_{\mathbb{P}^{d}}\left(\tilde{u}-\tilde{H}_{P}\right) \omega_{\tilde{u}}^{d}>-\infty \text { iff } \int_{\mathbb{P}^{d}}\left(\tilde{u}-\tilde{\Phi}_{P}\right) \omega_{\tilde{u}}^{d}>-\infty
$$

where $\tilde{u} \in \operatorname{PSH}\left(\mathbb{P}^{d}, \omega\right)$ and u are related by (2.6). Moreover, $\Phi_{P} \in$ $L_{P,+}\left(\mathbb{C}^{d}\right)$ implies $u \leq \Phi_{P}+c$ so that $\tilde{u} \in \operatorname{PSH}\left(\mathbb{P}^{d}, \omega, \tilde{\Phi}_{P}\right)$. But

$$
\int_{\mathbb{P}^{d}}\left(\tilde{u}-\tilde{H}_{P}\right) \omega_{\tilde{u}}^{d}=\int_{\mathbb{C}^{d}}\left(u-H_{P}\right)\left(d d^{c} u\right)^{d}
$$

and the result follows from (2.8) by applying Proposition 2.5 to \tilde{u}. For the last statement, note that for general $u \in L_{P}\left(\mathbb{C}^{d}\right)$ we may have $\int_{\mathbb{C}^{d}} H_{P}\left(d d^{c} u\right)^{d}=+\infty$, but if $\left(d d^{c} u\right)^{d}$ has compact support then $\int_{\mathbb{C}^{d}} H_{P}\left(d d^{c} u\right)^{d}$ is finite.

Note that Theorem 2.1 and Proposition 2.3 give the following result:
Theorem 2.12. Let u_{1}, \ldots, u_{d} be functions in $\mathcal{E}_{P}\left(\mathbb{C}^{d}\right)$. Then

$$
\int_{\mathbb{C}^{d}} d d^{c} u_{1} \wedge \ldots \wedge d d^{c} u_{d}=\gamma_{d}
$$

For $u_{1}, \ldots, u_{n} \in L_{P,+}\left(\mathbb{C}^{d}\right)$ Theorem 2.12 was proved in [1, Proposition 2.7].

Having the correspondence (2.8) we can state a local version of Theorem 2.8; this will be used in the sequel. Let $\mathcal{M}_{P}\left(\mathbb{C}^{d}\right)$ denote the set of all positive Borel measures μ on \mathbb{C}^{d} with $\mu\left(\mathbb{C}^{d}\right)=d!\operatorname{Vol}(P)=\gamma_{d}$.

Theorem 2.13. Assume that $\mu \in \mathcal{M}_{P}\left(\mathbb{C}^{d}\right)$ is a positive nonpluripolar Borel measure. The following are equivalent
(1) $\mathcal{E}_{P}^{1}\left(\mathbb{C}^{d}\right) \subset L^{1}\left(\mathbb{C}^{d}, \mu\right)$;
(2) there exists $u \in \mathcal{E}_{P}^{1}\left(\mathbb{C}^{d}\right)$ such that $\left(d d^{c} u\right)^{d}=\mu$;
(3) there exists $u \in \mathcal{E}_{P}^{1}\left(\mathbb{C}^{d}\right)$ such that

$$
\mathcal{F}_{\mu}(u)=\max _{v \in \mathcal{E}_{P}^{1}\left(\mathbb{C}^{d}\right)} \mathcal{F}_{\mu}(v)<+\infty
$$

A priori the functional \mathcal{F}_{μ} is defined for $u \in \mathcal{E}_{P}^{1}\left(\mathbb{C}^{d}\right)$ by

$$
\mathcal{F}_{\mu, \Phi_{P}}(u):=E_{\Phi_{P}}(u)-\int_{\mathbb{C}^{d}}\left(u-\Phi_{P}\right) d \mu
$$

However, using this notation, since

$$
\mathcal{F}_{\mu, \Phi_{P}}(u)-\mathcal{F}_{\mu, H_{P}}(u)=\mathcal{F}_{\mu, \Phi_{P}}\left(H_{P}\right),
$$

in statement (3) of Theorem 2.13 we can take either of the two definitions $\mathcal{F}_{\mu, \Phi_{P}}$ or $\mathcal{F}_{\mu, H_{P}}$ for \mathcal{F}_{μ}.

Remark 2.14. If μ has compact support in \mathbb{C}^{d} then $\int_{\mathbb{C}^{d}} \Phi_{P} d \mu$ and $\int_{\mathbb{C}^{d}} H_{P} d \mu$ are finite. Therefore, the functional \mathcal{F}_{μ} can be replaced by

$$
u \mapsto E_{H_{P}}(u)-\int_{\mathbb{C}^{d}} u d \mu
$$

Using the remark, for $\mu \in \mathcal{M}_{P}\left(\mathbb{C}^{d}\right)$ with compact support, it is natural to define the Legendre-type transform of $E_{H_{P}}$:

$$
\begin{equation*}
E^{*}(\mu):=\sup _{u \in \mathcal{E}_{P}^{1}\left(\mathbb{C}^{d}\right)}\left[E_{H_{P}}(u)-\int_{\mathbb{C}^{d}} u d \mu\right] . \tag{2.9}
\end{equation*}
$$

This functional, which will appear in the rate function for our LDP, will be given a more concrete interpretation using P-pluripotential theory in section 4; cf., equation (4.18).

Finally, for future use, we record the following consequence of Lemma 2.6 and the correspondence (2.8).

Lemma 2.15. If $E \subset \mathbb{C}^{d}$ is pluripolar then there exists $u \in \mathcal{E}_{P}^{1}\left(\mathbb{C}^{d}\right)$ such that $E \subset\{u=-\infty\}$.

3. P-PLURIPOTENTIAL THEORY NOTIONS

Given $E \subset \mathbb{C}^{d}$, the P-extremal function of E is

$$
V_{P, E}^{*}(z):=\limsup _{\zeta \rightarrow z} V_{P, E}(\zeta)
$$

where

$$
V_{P, E}(z):=\sup \left\{u(z): u \in L_{P}\left(\mathbb{C}^{d}\right), u \leq 0 \text { on } E\right\}
$$

For $K \subset \mathbb{C}^{d}$ compact, $w: K \rightarrow \mathbb{R}^{+}$is an admissible weight function on K if $w \geq 0$ is an uppersemicontinuous function with $\{z \in K: w(z)>0\}$ nonpluripolar. Setting $Q:=-\log w$, we write $Q \in \mathcal{A}(K)$ and define the weighted P-extremal function

$$
V_{P, K, Q}^{*}(z):=\limsup _{\zeta \rightarrow z} V_{P, K, Q}(\zeta)
$$

where

$$
V_{P, K, Q}(z):=\sup \left\{u(z): u \in L_{P}\left(\mathbb{C}^{d}\right), u \leq Q \text { on } K\right\} .
$$

If $Q=0$ we write $V_{P, K, Q}=V_{P, K}$, consistent with the previous notation. For $P=\Sigma$,

$$
V_{\Sigma, K, Q}(z)=V_{K, Q}(z):=\sup \left\{u(z): u \in L\left(\mathbb{C}^{d}\right), u \leq Q \text { on } K\right\}
$$

is the usual weighed extremal function as in Appendix B of [19].
We write (omitting the dependence on P)

$$
\mu_{K, Q}:=\left(d d^{c} V_{P, K, Q}^{*}\right)^{d} \text { and } \mu_{K}:=\left(d d^{c} V_{P, K}^{*}\right)^{d}
$$

for the Monge-Ampère measures of $V_{P, K, Q}^{*}$ and $V_{P, K}^{*}$ (the latter if K is not pluripolar). Proposition 2.5 of [2] states that

$$
\operatorname{supp}\left(\mu_{K, Q}\right) \subset\left\{z \in K: V_{P, K, Q}^{*}(z) \geq Q(z)\right\}
$$

and $V_{P, K, Q}^{*}=Q$ q.e. on $\operatorname{supp}\left(\mu_{K, Q}\right)$, i.e., off of a pluripolar set.
3.1. Energy. We recall some results and definitions from [2]. For $u, v \in L_{P,+}\left(\mathbb{C}^{d}\right)$, we define the mutual energy

$$
\mathcal{E}(u, v):=\int_{\mathbb{C}^{d}}(u-v) \sum_{j=0}^{d}\left(d d^{c} u\right)^{j} \wedge\left(d d^{c} v\right)^{d-j}
$$

For simplicity, when $v=H_{P}$, we denote the associated (normalized) energy functional by E :

$$
E(u):=E_{H_{P}}(u)=\frac{1}{d+1} \sum_{j=0}^{d} \int_{\mathbb{C}^{d}}\left(u-H_{P}\right) d d^{c} u^{j} \wedge\left(d d^{c} H_{P}\right)^{d-j}
$$

(recall (2.7)).
For $u, u^{\prime}, v \in L_{P,+}\left(\mathbb{C}^{d}\right)$, and for $0 \leq t \leq 1$, we define

$$
f(t):=\mathcal{E}\left(u+t\left(u^{\prime}-u\right), v\right),
$$

From Proposition 3.1 in [2], $f^{\prime}(t)$ exists for $0 \leq t \leq 1$ and

$$
f^{\prime}(t)=(d+1) \int_{\mathbb{C}^{d}}\left(u^{\prime}-u\right)\left(d d^{c}\left(u+t\left(u^{\prime}-u\right)\right)\right)^{d}
$$

Hence, taking $v=H_{P}$, we have, for $F(t):=E\left(u+t\left(u^{\prime}-u\right)\right)$, that

$$
F^{\prime}(t)=\int_{\mathbb{C}^{d}}\left(u^{\prime}-u\right)\left(d d^{c}\left(u+t\left(u^{\prime}-u\right)\right)\right)^{d}
$$

Thus $F^{\prime}(0)=\int_{\mathbb{C}^{d}}\left(u^{\prime}-u\right)\left(d d^{c} u\right)^{d}$ and we write

$$
\begin{equation*}
<E^{\prime}(u), u^{\prime}-u>:=\int\left(u^{\prime}-u\right)\left(d d^{c} u\right)^{d} \tag{3.1}
\end{equation*}
$$

We need some applications of a global domination principle. The following version, sufficient for our purposes, follows from [11], Corollary 3.10 (see also Corollary A. 2 of [8]).

Proposition 3.1. Let $u \in L_{P}\left(\mathbb{C}^{d}\right)$ and $v \in \mathcal{E}_{P}\left(\mathbb{C}^{d}\right)$ with $u \leq v$ a.e. $\left(d d^{c} v\right)^{d}$. Then $u \leq v$ in \mathbb{C}^{d}.

This will be used to prove an approximation result, Proposition 3.3, which itself will be essential in the sequel. First we need a lemma.

Lemma 3.2. Assume that $\varphi \leq u, v \leq H_{P}$ are functions in $\mathcal{E}_{P}^{1}\left(\mathbb{C}^{d}\right)$. Then for all $t>0$,

$$
\int_{\left\{u \leq H_{P}-2 t\right\}}\left(H_{P}-u\right)\left(d d^{c} v\right)^{d} \leq 2^{d+1} \int_{\left\{\varphi \leq H_{P}-t\right\}}\left(H_{P}-\varphi\right)\left(d d^{c} \varphi\right)^{d} .
$$

In particular, the left hand side converges to 0 as $t \rightarrow+\infty$ uniformly in u, v.

Proof. For $s>0$, we have the following inclusions of sets:

$$
\left(u \leq H_{P}-2 s\right) \subset\left(\varphi \leq \frac{v+H_{P}}{2}-s\right) \subset\left(\varphi \leq H_{P}-s\right)
$$

We first note that the left hand side in the lemma is equal to

$$
\begin{gather*}
\int_{\left\{u \leq H_{P}-2 t\right\}}\left(H_{P}-u\right)\left(d d^{c} v\right)^{d} \tag{3.2}\\
=2 t \int_{\left\{u \leq H_{P}-2 t\right\}}\left(d d^{c} v\right)^{d}+\int_{2 t}^{\infty}\left(\int_{\left\{u \leq H_{P}-s\right\}}\left(d d^{c} v\right)^{d}\right) d s .
\end{gather*}
$$

We claim that, for all $s>0$,

$$
\begin{equation*}
\int_{\left\{u \leq H_{P}-2 s\right\}}\left(d d^{c} v\right)^{d} \leq 2^{d} \int_{\left\{\varphi \leq H_{P}-s\right\}}\left(d d^{c} \varphi\right)^{d} . \tag{3.3}
\end{equation*}
$$

Indeed, the comparison principle ([11, Corollary 3.6]) and the inclusions of sets above give

$$
\begin{gathered}
\int_{\left\{u \leq H_{P}-2 s\right\}}\left(d d^{c} v\right)^{d} \leq \int_{\left\{\varphi \leq \frac{v+H_{P}}{2}-s\right\}}\left(d d^{c} v\right)^{d} \leq 2^{d} \int_{\left\{\varphi \leq \frac{\left.v+H_{P}-s\right\}}{2}-s\right.}\left(d d^{c} \frac{v+H_{P}}{2}\right)^{d} \\
\leq 2^{d} \int_{\left\{\varphi \leq \frac{v+H_{P}}{2}-s\right\}}\left(d d^{c} \varphi\right)^{d} \leq 2^{d} \int_{\left\{\varphi \leq H_{P}-s\right\}}\left(d d^{c} \varphi\right)^{d}
\end{gathered}
$$

The claim is proved. Using (3.3) and (3.2) we obtain

$$
\begin{gathered}
\int_{\left\{u \leq H_{P}-2 t\right\}}\left(H_{P}-u\right)\left(d d^{c} v\right)^{d} \\
\leq 2^{d+1} t \int_{\left\{\varphi \leq H_{P}-t\right\}}\left(d d^{c} \varphi\right)^{d}+2^{d+1} \int_{t}^{+\infty}\left(\int_{\left\{\varphi \leq H_{P}-s\right\}}\left(d d^{c} \varphi\right)^{d}\right) d s \\
=2^{d+1} \int_{\left\{\varphi \leq H_{P}-t\right\}}\left(H_{P}-\varphi\right)\left(d d^{c} \varphi\right)^{d} .
\end{gathered}
$$

Proposition 3.3. Let $u \in \mathcal{E}_{P}^{1}\left(\mathbb{C}^{d}\right)$ with $\left(d d^{c} u\right)^{d}=\mu$ having support in a nonpluripolar compact set K so that $\int_{K} u d \mu>-\infty$ from Proposition 2.11. Let $\left\{Q_{j}\right\}$ be a sequence of continuous functions on K decreasing to u on K. Then $u_{j}:=V_{P, K, Q_{j}}^{*} \downarrow u$ on \mathbb{C}^{d} and $\mu_{j}:=\left(d d^{c} u_{j}\right)^{d}$ is supported in K. In particular, $\mu_{j} \rightarrow \mu=\left(d d^{c} u\right)^{d}$ weak-*. Moreover,

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \int_{K} Q_{j} d \mu_{j}=\lim _{j \rightarrow \infty} \int_{K} Q_{j} d \mu=\int_{K} u d \mu>-\infty \tag{3.4}
\end{equation*}
$$

Proof. We can assume $\left\{Q_{j}\right\}$ are defined and decreasing to u on the closure of a bounded open neighborhood Ω of K. By adding a negative constant we can assume that $Q_{1} \leq 0$ on Ω. Since $\left\{Q_{j}\right\}$ is decreasing, so is the sequence $\left\{u_{j}\right\}$. Moreover, by [4, Proposition 5.1] $u_{j} \leq Q_{j}$ on $K \backslash E_{j}$ where E_{j} is pluripolar. But u is a competitor in the definition of $V_{P, K, Q_{j}}$ so that $u \leq u_{j}$ on \mathbb{C}^{d}. Thus $\tilde{u}:=\lim _{j \rightarrow \infty} u_{j} \geq u$ everywhere and $\tilde{u} \leq u$ on $K \backslash E$, where $E:=\cup_{j} E_{j}$ is a pluripolar set. Since $\left(d d^{c} u\right)^{d}$ put no mass on pluripolar sets,

$$
\int_{\{u<\tilde{u}\}}\left(d d^{c} u\right)^{d} \leq \int_{E \cup\left(\mathbb{C}^{d} \backslash K\right)}\left(d d^{c} u\right)^{d}=0 .
$$

It thus follows from Proposition 3.1 that $\tilde{u} \leq u$, hence $\tilde{u}=u$ on \mathbb{C}^{d}.
The second equality in (3.4) follows from the monotone convergence theorem. It remains to prove that

$$
\lim _{j \rightarrow \infty} \int_{K}\left(-Q_{j}\right) d \mu_{j}=\int_{K}(-u) d \mu
$$

For each k fixed and $j \geq k$ we have

$$
\int_{K}\left(-Q_{j}\right) d \mu_{j} \geq \int_{K}\left(-Q_{k}\right) d \mu_{j}=\int_{\Omega}\left(-Q_{k}\right) d \mu_{j}
$$

hence $\liminf \inf _{j \rightarrow \infty} \int_{K}\left(-Q_{j}\right) d \mu_{j} \geq \int_{K}\left(-Q_{k}\right) d \mu$ since Ω is open and μ_{j}, μ are supported on K. Letting $k \rightarrow+\infty$ we arrive at

$$
\liminf _{j \rightarrow \infty} \int_{K}\left(-Q_{j}\right) d \mu_{j} \geq \int_{K}(-u) d \mu
$$

It remains to prove that

$$
\limsup _{j \rightarrow \infty} \int_{K}\left(-Q_{j}\right) d \mu_{j} \leq \int_{K}(-u) d \mu
$$

The sequence $\left\{u_{j}\right\}$ is not necessarily uniformly bounded below on K. However, using the facts that $Q_{j} \geq u$ and H_{P} is continuous in \mathbb{C}^{d}, it
suffices to prove that

$$
\begin{equation*}
\limsup _{j \rightarrow \infty} \int_{K}\left(H_{P}-u\right)\left(d d^{c} u_{j}\right)^{d} \leq \int_{K}\left(H_{P}-u\right)\left(d d^{c} u\right)^{d} . \tag{3.5}
\end{equation*}
$$

To verify (3.5), we use Lemma 3.2.
By adding a negative constant we can assume that $u_{j} \leq H_{P}$. For a function v and for $t>0$ we define $v^{t}:=\max \left(v, H_{P}-t\right)$. Note that for each t the sequence $\left\{u_{j}^{t}\right\}$ is locally uniformly bounded below. Define

$$
a(t):=2^{d+1} \int_{\left\{u \leq H_{P}-t / 2\right\}}\left(H_{P}-u\right)\left(d d^{c} u\right)^{d} .
$$

Since $u \in \mathcal{E}_{P}^{1}\left(\mathbb{C}^{d}\right)$, from Proposition 2.11 we have $a(t) \rightarrow 0$ as $t \rightarrow+\infty$. By Lemma 3.2 we have

$$
\begin{equation*}
\sup _{j \geq 1} \int_{\left\{u \leq H_{P}-t\right\}}\left(H_{P}-u\right)\left(d d^{c} u_{j}\right)^{d} \leq a(t) . \tag{3.6}
\end{equation*}
$$

By the plurifine property of non-pluripolar Monge-Ampère measures [10, Proposition 1.4] and (3.6) we have

$$
\begin{aligned}
\int_{K}\left(H_{P}-u\right)\left(d d^{c} u_{j}\right)^{d} & \leq \int_{K \cap\left\{u>H_{P}-t\right\}}\left(H_{P}-u\right)\left(d d^{c} u_{j}\right)^{d}+a(t) \\
& =\int_{K \cap\left\{u>H_{P}-t\right\}}\left(H_{P}-u^{t}\right)\left(d d^{c} u_{j}^{t}\right)^{d}+a(t) \\
& \leq \int_{K}\left(H_{P}-u^{t}\right)\left(d d^{c} u_{j}^{t}\right)^{d}+a(t) .
\end{aligned}
$$

Since H_{P} is bounded in Ω, it follows from [16, Theorem 4.26] that the sequence of positive Radon measures $\left(H_{P}-u^{t}\right)\left(d d^{c} u_{j}^{t}\right)^{d}$ converges weakly on Ω to $\left(H_{P}-u^{t}\right)\left(d d^{c} u^{t}\right)^{d}$. Since K is compact it then follows that

$$
\limsup \int_{K}\left(H_{P}-u\right)\left(d d^{c} u_{j}\right)^{d} \leq \int_{K}\left(H_{P}-u^{t}\right)\left(d d^{c} u^{t}\right)^{d}+a(t) .
$$

We finally let $t \rightarrow+\infty$ to conclude the proof in the following manner:

$$
\begin{aligned}
\int_{K}\left(H_{P}-u^{t}\right)\left(d d^{c} u^{t}\right)^{d} & \leq \int_{K \cap\left\{u>H_{P}-t\right\}}\left(H_{P}-u^{t}\right)\left(d d^{c} u^{t}\right)^{d}+a(t) \\
& \leq \int_{K}\left(H_{P}-u\right)\left(d d^{c} u\right)^{d}+a(t),
\end{aligned}
$$

where in the first estimate we have used $\left\{u \leq H_{P}-t\right\}=\left\{u^{t} \leq H_{P}-t\right\}$ and Lemma 3.2 and in the last estimate we use again the plurifine property.

We now give an alternate description of the Legendre-type transform E^{*} from (2.9) which will be related to the the rate function in a large deviation principle. Given $K \subset \mathbb{C}^{d}$ compact, we let $\mathcal{M}_{P}(K)$ denote the space of positive measures on K of total mass γ_{d} and we let $C(K)$ denote the set of continuous, real-valued functions on K.

Proposition 3.4. Let K be a nonpluripolar compact set and $\mu \in$ $\mathcal{M}_{P}(K)$. Then

$$
E^{*}(\mu)=\sup _{v \in C(K)}\left[E\left(V_{P, K, v}^{*}\right)-\int_{K} v d \mu\right] .
$$

Proof. We first treat the case when $E^{*}(\mu)=+\infty$. By Theorem 2.13 there exists $u \in \mathcal{E}_{P}^{1}\left(\mathbb{C}^{d}\right)$ such that $\int_{K} u d \mu=-\infty$. We take a decreasing sequence $Q_{j} \in C(K)$ such that $Q_{j} \downarrow u$ on K and set $u_{j}:=V_{P, K, Q_{j}}^{*}$. Then $\left\{u_{j}\right\}$ are decreasing; since $u \in \mathcal{E}_{P}^{1}\left(\mathbb{C}^{d}\right)$ and E is non-decreasing, $\left\{E\left(u_{j}\right)\right\}$ is uniformly bounded and we obtain

$$
E\left(V_{P, K, Q_{j}}^{*}\right)-\int_{K} Q_{j} d \mu \rightarrow+\infty
$$

proving the proposition in this case.
Assume now that $E^{*}(\mu)<+\infty$. Theorem 2.13 ensures that $\int_{\mathbb{C}^{d}} u d \mu>$ $-\infty$ for all $u \in \mathcal{E}_{P}^{1}\left(\mathbb{C}^{d}\right)$. By Lemma $2.15, \mu$ puts no mass on pluripolar sets. From monotonicity of E and the definition of E^{*} in (2.9) we have

$$
E^{*}(\mu) \geq \sup _{v \in C(K)}\left[E\left(V_{P, K, v}^{*}\right)-\int_{K} v d \mu\right] .
$$

Here we have used that

$$
V_{P, K, v}^{*} \leq v \text { q.e. on } K \text { for } v \in C(K)
$$

For the reverse inequality, fix $u \in \mathcal{E}_{P}^{1}\left(\mathbb{C}^{d}\right)$. Let $\left\{Q_{j}\right\}$ be a sequence of continuous functions on K decreasing to u on K and set $u_{j}:=V_{P, K, Q_{j}}^{*}$. Given $\epsilon>0$, we can choose j sufficiently large so that, by monotone convergence,

$$
\int_{K} Q_{j} d \mu \leq \int_{K} u d \mu+\epsilon
$$

and, by monotonicity of E,

$$
E\left(V_{P, K, Q_{j}}^{*}\right) \geq E(u) .
$$

Hence

$$
E\left(V_{P, K, Q_{j}}^{*}\right)-\int_{K} Q_{j} d \mu \geq E(u)-\int_{K} u d \mu-\epsilon
$$

so that

$$
\sup _{v \in C(K)}\left[E\left(V_{P, K, v}^{*}\right)-\int_{K} v d \mu\right] \geq E^{*}(\mu)
$$

and equality holds.
3.2. Transfinite diameter. Let $d_{n}=d_{n}(P)$ denote the dimension of the vector space Poly $(n P)$. We write

$$
\operatorname{Poly}(n P)=\operatorname{span}\left\{e_{1}, \ldots, e_{d_{n}}\right\}
$$

where $\left\{e_{j}(z):=z^{\alpha(j)}\right\}_{j=1, \ldots, d_{n}}$ are the standard basis monomials. Given $\zeta_{1}, \ldots, \zeta_{d_{n}} \in \mathbb{C}^{d}$, let

$$
\begin{align*}
& V D M\left(\zeta_{1}, \ldots, \zeta_{d_{n}}\right):=\operatorname{det}\left[e_{i}\left(\zeta_{j}\right)\right]_{i, j=1, \ldots, d_{n}} \tag{3.7}\\
= & \operatorname{det}\left[\begin{array}{cccc}
e_{1}\left(\zeta_{1}\right) & e_{1}\left(\zeta_{2}\right) & \ldots & e_{1}\left(\zeta_{d_{n}}\right) \\
\vdots & \vdots & \ddots & \vdots \\
e_{d_{n}}\left(\zeta_{1}\right) & e_{d_{n}}\left(\zeta_{2}\right) & \ldots & e_{d_{n}}\left(\zeta_{d_{n}}\right)
\end{array}\right]
\end{align*}
$$

and for $K \subset \mathbb{C}^{d}$ compact let

$$
V_{n}=V_{n}(K):=\max _{\zeta_{1}, \ldots, \zeta_{d_{n}} \in K}\left|V D M\left(\zeta_{1}, \ldots, \zeta_{d_{n}}\right)\right| .
$$

It was shown in [2] that

$$
\begin{equation*}
\delta(K):=\delta(K, P):=\lim _{n \rightarrow \infty} V_{n}^{1 / l_{n}} \tag{3.8}
\end{equation*}
$$

exists where

$$
l_{n}:=\sum_{j=1}^{d_{n}} \operatorname{deg}\left(e_{j}\right)=\sum_{j=1}^{d_{n}}|\alpha(j)|
$$

is the sum of the degrees of the basis monomials for $\operatorname{Poly}(n P)$. We call $\delta(K)$ the P-transfinite diameter of K. More generally, for w an admissible weight function on K and $\zeta_{1}, \ldots, \zeta_{d_{n}} \in K$, let

$$
\begin{equation*}
V D M_{n}^{Q}\left(\zeta_{1}, \ldots, \zeta_{d_{n}}\right):=V D M\left(\zeta_{1}, \ldots, \zeta_{d_{n}}\right) w\left(\zeta_{1}\right)^{n} \cdots w\left(\zeta_{d_{n}}\right)^{n} \tag{3.9}
\end{equation*}
$$

$$
=\operatorname{det}\left[\begin{array}{cccc}
e_{1}\left(\zeta_{1}\right) & e_{1}\left(\zeta_{2}\right) & \ldots & e_{1}\left(\zeta_{d_{n}}\right) \\
\vdots & \vdots & \ddots & \vdots \\
e_{d_{n}}\left(\zeta_{1}\right) & e_{d_{n}}\left(\zeta_{2}\right) & \ldots & e_{d_{n}}\left(\zeta_{d_{n}}\right)
\end{array}\right] \cdot w\left(\zeta_{1}\right)^{n} \cdots w\left(\zeta_{d_{n}}\right)^{n}
$$

be a weighted Vandermonde determinant. Let

$$
W_{n}(K):=\max _{\zeta_{1}, \ldots, \zeta_{d_{n}} \in K}\left|V D M_{n}^{Q}\left(\zeta_{1}, \ldots, \zeta_{d_{n}}\right)\right| .
$$

An n-th weighted P-Fekete set for K and w is a set of d_{n} points $\zeta_{1}, \ldots, \zeta_{d_{n}} \in K$ with the property that

$$
\left|V D M_{n}^{Q}\left(\zeta_{1}, \ldots, \zeta_{d_{n}}\right)\right|=W_{n}(K)
$$

The limit

$$
\delta^{Q}(K):=\delta^{Q}(K, P):=\lim _{n \rightarrow \infty} W_{n}(K)^{1 / l_{n}}
$$

exists and is called the weighted P-transfinite diameter. The following was proved in [2].
Theorem 3.5. [Asymptotic Weighted P-Fekete Measures] Let $K \subset \mathbb{C}^{d}$ be compact with admissible weight w. For each n, take points $z_{1}^{(n)}, z_{2}^{(n)}, \cdots, z_{d_{n}}^{(n)} \in K$ for which

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left[\left|V D M_{n}^{Q}\left(z_{1}^{(n)}, \cdots, z_{d_{n}}^{(n)}\right)\right|\right]^{\frac{1}{l_{n}}}=\delta^{Q}(K) \tag{3.10}
\end{equation*}
$$

(asymptotically weighted P-Fekete arrays) and let $\mu_{n}:=\frac{1}{d_{n}} \sum_{j=1}^{d_{n}} \delta_{z_{j}^{(n)}}$. Then

$$
\mu_{n} \rightarrow \frac{1}{\gamma_{d}} \mu_{K, Q} \text { weak }-* .
$$

Another ingredient we will use is a Rumely-type relation between transfinite diameter and energy of $V_{P, K, Q}^{*}$ from [2].

Theorem 3.6. Let $K \subset \mathbb{C}^{d}$ be compact and $w=e^{-Q}$ with $Q \in C(K)$. Then

$$
\begin{equation*}
\log \delta^{Q}(K)=\frac{-1}{\gamma_{d} d A} \mathcal{E}\left(V_{P, K, Q}^{*}, H_{P}\right)=\frac{-(d+1)}{\gamma_{d} d A} E\left(V_{P, K, Q}^{*}\right) . \tag{3.11}
\end{equation*}
$$

Here $A=A(P, d)$ was defined in [2]; we recall the definition. For $P=\Sigma$ so that $\operatorname{Poly}(n \Sigma)=\mathcal{P}_{n}$, we have

$$
d_{n}(\Sigma)=\binom{d+n}{d}=0\left(n^{d} / d!\right) \text { and } l_{n}(\Sigma)=\frac{d}{d+1} n d_{n}(\Sigma) .
$$

For a convex body $P \subset\left(\mathbb{R}^{+}\right)^{d}$, define $f_{n}(d)$ by writing

$$
l_{n}=f_{n}(d) \frac{n d}{d+1} d_{n}=f_{n}(d) \frac{l_{n}(\Sigma)}{d_{n}(\Sigma)} d_{n}
$$

Then the ratio l_{n} / d_{n} divided by $l_{n}(\Sigma) / d_{n}(\Sigma)$ has a limit; i.e.,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} f_{n}(d)=: A=A(P, d) \tag{3.12}
\end{equation*}
$$

3.3. Bernstein-Markov. For $K \subset \mathbb{C}^{d}$ compact, $w=e^{-Q}$ an admissible weight function on K, and ν a finite measure on K, we say that the triple (K, ν, Q) satisfies a weighted Bernstein-Markov property if for all $p_{n} \in \mathcal{P}_{n}$,

$$
\begin{equation*}
\left\|w^{n} p_{n}\right\|_{K} \leq M_{n}\left\|w^{n} p_{n}\right\|_{L^{2}(\nu)} \text { with } \limsup _{n \rightarrow \infty} M_{n}^{1 / n}=1 \tag{3.13}
\end{equation*}
$$

Here, $\left\|w^{n} p_{n}\right\|_{K}:=\sup _{z \in K}\left|w(z)^{n} p_{n}(z)\right|$ and

$$
\left\|w^{n} p_{n}\right\|_{L^{2}(\nu)}^{2}:=\int_{K}\left|p_{n}(z)\right|^{2} w(z)^{2 n} d \nu(z)
$$

Following [1], given $P \subset\left(\mathbb{R}^{+}\right)^{d}$ a convex body, we say that a finite measure ν with support in a compact set K is a Bernstein-Markov measure for the triple (P, K, Q) if (3.13) holds for all $p_{n} \in \operatorname{Poly}(n P)$.

For any P there exists $A=A(P)>0$ with $\operatorname{Poly}(n P) \subset \mathcal{P}_{A n}$ for all n. Thus if (K, ν, Q) satisfies a weighted Bernstein-Markov property, then ν is a Bernstein-Markov measure for (P, K, \tilde{Q}) where $\tilde{Q}=A Q$. In particular, if ν is a strong Bernstein-Markov measure for K; i.e., if ν is a weighted Bernstein-Markov measure for any $Q \in C(K)$, then for any such Q, ν is a Bernstein-Markov measure for the triple (P, K, Q). Strong Bernstein-Markov measures exist for any nonpluripolar compact set; cf., Corollary 3.8 of [9]. The paragraph following this corollary gives a sufficient mass-density type condition for a measure to be a strong Bernstein-Markov measure.

Given P, for ν a finite measure on K and $Q \in \mathcal{A}(K)$, define
$Z_{n}:=Z_{n}(P, K, Q, \nu):=\int_{K} \cdots \int_{K}\left|V D M_{n}^{Q}\left(z_{1}, \ldots, z_{d_{n}}\right)\right|^{2} d \nu\left(z_{1}\right) \cdots d \nu\left(z_{d_{n}}\right)$.
The main consequence of using a Bernstein-Markov measure for (P, K, Q) is the following:

Proposition 3.7. Let $K \subset \mathbb{C}^{d}$ be a compact set and let $Q \in \mathcal{A}(K)$. If ν is a Bernstein-Markov measure for (P, K, Q) then

$$
\begin{equation*}
\lim _{k \rightarrow \infty} Z_{n}^{\frac{1}{2 l n}}=\delta^{Q}(K) \tag{3.15}
\end{equation*}
$$

Proof. That $\lim \sup _{k \rightarrow \infty} Z_{n}^{\frac{1}{2 l_{n}}} \leq \delta^{Q}(K)$ is clear. Observing from (3.7) and (3.9) that, fixing all variables but z_{j},

$$
z_{j} \rightarrow V D M_{n}^{Q}\left(z_{1}, \ldots, z_{j}, \ldots, z_{d_{n}}\right)=w\left(z_{j}\right)^{n} p_{n}\left(z_{j}\right)
$$

for some $p_{n} \in \operatorname{Poly}(n P)$, to show $\liminf _{k \rightarrow \infty} Z_{n}^{\frac{1}{2 l_{n}}} \geq \delta^{Q}(K)$ one starts with an n-th weighted P-Fekete set for K and w and repeatedly applies the weighted Bernstein-Markov property.

Recall $\mathcal{M}_{P}(K)$ is the space of positive measures on K with total mass γ_{d}. With the weak-* topology, this is a separable, complete metrizable space. A neighborhood basis of $\mu \in \mathcal{M}_{P}(K)$ can be given by sets

$$
\begin{gather*}
G(\mu, k, \epsilon):=\left\{\sigma \in \mathcal{M}_{P}(K):\left|\int_{K}(\operatorname{Re} z)^{\alpha}(\operatorname{Im} z)^{\beta}(d \mu-d \sigma)\right|<\epsilon\right. \tag{3.16}\\
\text { for } 0 \leq|\alpha|+|\beta| \leq k\}
\end{gather*}
$$

where $\operatorname{Re} z=\left(\operatorname{Re} z_{1}, \ldots, \operatorname{Re} z_{n}\right)$ and $\operatorname{Im} z=\left(\operatorname{Im} z_{1}, \ldots, \operatorname{Im} z_{n}\right)$.
Given ν as in Proposition 3.7, we define a probability measure Prob $_{n}$ on $K^{d_{n}}$ via, for a Borel set $A \subset K^{d_{n}}$,

$$
\begin{equation*}
\operatorname{Prob}_{n}(A):=\frac{1}{Z_{n}} \cdot \int_{A}\left|V D M_{n}^{Q}\left(z_{1}, \ldots, z_{d_{n}}\right)\right|^{2} \cdot d \nu\left(z_{1}\right) \cdots d \nu\left(z_{d_{n}}\right) . \tag{3.17}
\end{equation*}
$$

We immediately obtain the following:
Corollary 3.8. Let ν be a Bernstein-Markov measure for (P, K, Q). Given $\eta>0$, define

$$
\begin{equation*}
A_{n, \eta}:=\left\{\left(z_{1}, \ldots, z_{d_{n}}\right) \in K^{d_{n}}:\left|V D M_{n}^{Q}\left(z_{1}, \ldots, z_{d_{n}}\right)\right|^{2} \geq\left(\delta^{Q}(K)-\eta\right)^{2 l_{n}}\right\} \tag{3.18}
\end{equation*}
$$

Then there exists $n^{*}=n^{*}(\eta)$ such that for all $n>n^{*}$,

$$
\operatorname{Prob}_{n}\left(K^{d_{n}} \backslash A_{n, \eta}\right) \leq\left(1-\frac{\eta}{2 \delta^{Q}(K)}\right)^{2 l_{n}}
$$

Remark 3.9. Corollary 3.8 was proved in [9], Corollary 3.2, for ν a probability measure but an obvious modification works for $\nu(K)<\infty$.

Using (3.17), we get an induced probability measure \mathbf{P} on the infinite product space of arrays $\chi:=\left\{X=\left\{x_{j}^{(n)}\right\}_{n=1,2, \ldots ; j=1, \ldots, d_{n}}: x_{j}^{(n)} \in K\right\}$:

$$
(\chi, \mathbf{P}):=\prod_{n=1}^{\infty}\left(K^{d_{n}}, \operatorname{Prob}_{n}\right)
$$

Corollary 3.10. Let ν be a Bernstein-Markov measure for (P, K, Q). For \mathbf{P}-a.e. array $X=\left\{x_{j}^{(n)}\right\} \in \chi$,

$$
\nu_{n}:=\frac{1}{d_{n}} \sum_{j=1}^{d_{n}} \delta_{x_{j}^{(n)}} \rightarrow \frac{1}{\gamma_{d}} \mu_{K, Q} \text { weak-*. }
$$

Proof. From Theorem 3.5 it suffices to verify for \mathbf{P}-a.e. array $X=$ $\left\{x_{j}^{(n)}\right\}$

$$
\begin{equation*}
\liminf _{n \rightarrow \infty}\left(\left|V D M_{n}^{Q}\left(x_{1}^{(n)}, \ldots, x_{d_{n}}^{(n)}\right)\right|\right)^{\frac{1}{l_{n}}}=\delta^{Q}(K) \tag{3.19}
\end{equation*}
$$

Given $\eta>0$, the condition that for a given array $X=\left\{x_{j}^{(n)}\right\}$ we have

$$
\liminf _{n \rightarrow \infty}\left(\left|V D M_{n}^{Q}\left(x_{1}^{(n)}, \ldots, x_{d_{n}}^{(n)}\right)\right|\right)^{\frac{1}{l_{n}}} \leq \delta^{Q}(K)-\eta
$$

means that $\left(x_{1}^{(n)}, \ldots, x_{d_{n}}^{(n)}\right) \in K^{d_{n}} \backslash A_{n, \eta}$ for infinitely many n. Setting

$$
E_{n}:=\left\{X \in \chi:\left(x_{1}^{(n)}, \ldots, x_{d_{n}}^{(n)}\right) \in K^{d_{n}} \backslash A_{n, \eta}\right\},
$$

we have

$$
\mathbf{P}\left(E_{n}\right) \leq \operatorname{Prob}_{n}\left(K^{d_{n}} \backslash A_{n, \eta}\right) \leq\left(1-\frac{\eta}{2 \delta^{Q}(K)}\right)^{2 l_{n}}
$$

and $\sum_{n=1}^{\infty} \mathbf{P}\left(E_{n}\right)<+\infty$. By the Borel-Cantelli lemma,

$$
\mathbf{P}\left(\limsup _{n \rightarrow \infty} E_{n}\right)=\mathbf{P}\left(\bigcap_{n=1}^{\infty} \bigcup_{k \geq n}^{\infty} E_{k}\right)=0
$$

Thus, with probability one, only finitely many E_{n} occur, and (3.19) follows.

The main goal in the rest of the paper is to verify a stronger probabilistic result - a large deviation principle - and to explain this result in P-pluripotential-theoretic terms.

4. Relation between E^{*} and J, J^{Q} functionals.

We define some functionals on $\mathcal{M}_{P}(K)$ using L^{2}-type notions which act as a replacement for an energy functional on measures. Then we show these functionals $\bar{J}(\mu)$ and $\underline{J}(\mu)$ defined using a "limsup" and a "liminf" coincide (see Definitions 4.1 and 4.2); this is the essence of our first proof of the large deviation principle, Theorem 5.1. Using Proposition 3.4, we relate this functional with E^{*} from (2.9).

Fix a nonpluripolar compact set K and a strong Bernstein-Markov measure ν on K. For simplicity, we normalize so that ν is a probability measure. Recall then for any $Q \in C(K), \nu$ is a Bernstein-Markov measure for the triple (P, K, Q). Given $G \subset \mathcal{M}_{P}(K)$ open, for each $s=1,2, \ldots$ we set

$$
\begin{equation*}
\tilde{G}_{s}:=\left\{\mathbf{a}=\left(a_{1}, \ldots, a_{s}\right) \in K^{s}: \frac{\gamma_{d}}{s} \sum_{j=1}^{s} \delta_{a_{j}} \in G\right\} . \tag{4.1}
\end{equation*}
$$

Define, for $n=1,2, \ldots$,

$$
J_{n}(G):=\left[\int_{\tilde{G}_{d_{n}}}\left|V D M_{n}(\mathbf{a})\right|^{2} d \nu(\mathbf{a})\right]^{1 / 2 l_{n}} .
$$

Definition 4.1. For $\mu \in \mathcal{M}_{P}(K)$ we define

$$
\begin{aligned}
\bar{J}(\mu) & :=\inf _{G \ni \mu} \bar{J}(G) \text { where } \bar{J}(G):=\limsup _{n \rightarrow \infty} J_{n}(G) \\
\underline{J}(\mu) & :=\inf _{G \ni \mu} \underline{J}(G) \text { where } \underline{J}(G):=\liminf _{n \rightarrow \infty} J_{n}(G) .
\end{aligned}
$$

The infima are taken over all neighborhoods G of the measure μ in $\mathcal{M}_{P}(K)$. A priori, \bar{J}, \underline{J} depend on ν. These functionals are nonnegative but can take the value zero. Intuitively, we are taking a "limit" of $L^{2}(\nu)$ averages of discrete, equally weighted approximants $\frac{\gamma_{d}}{s} \sum_{j=1}^{s} \delta_{a_{j}}$ of μ. An " L^{∞} " version of \bar{J}, \underline{J} was introduced in [8] where $J_{n}(G)$ is replaced by

$$
\begin{equation*}
W_{n}(G):=\sup _{\mathbf{a} \in \tilde{G}_{d_{n}}}\left|V D M_{n}(\mathbf{a})\right|^{1 / l_{n}} \geq J_{n}(G) \tag{4.2}
\end{equation*}
$$

The weighted versions of these functionals are defined for $Q \in \mathcal{A}(K)$ using

$$
\begin{equation*}
J_{n}^{Q}(G):=\left[\int_{\tilde{G}_{d_{n}}}\left|V D M_{n}^{Q}(\mathbf{a})\right|^{2} d \nu(\mathbf{a})\right]^{1 / 2 l_{n}} \tag{4.3}
\end{equation*}
$$

Definition 4.2. For $\mu \in \mathcal{M}_{P}(K)$ we define

$$
\begin{aligned}
\bar{J}^{Q}(\mu) & :=\inf _{G \ni \mu} \bar{J}^{Q}(G) \text { where } \bar{J}^{Q}(G):=\limsup _{n \rightarrow \infty} J_{n}^{Q}(G) ; \\
\underline{J}^{Q}(\mu) & :=\inf _{G \ni \mu} \underline{J}^{Q}(G) \text { where } \underline{J}^{Q}(G):=\liminf _{n \rightarrow \infty} J_{n}^{Q}(G) .
\end{aligned}
$$

The uppersemicontinuity of $\bar{J}, \bar{J}^{Q}, \underline{J}$ and \underline{J}^{Q} on $\mathcal{M}_{P}(K)$ (with the weak-* topology) follows as in Lemma 3.1 of [8]. Set

$$
b_{d}=b_{d}(P):=\frac{d+1}{A d \gamma_{d}} .
$$

Proposition 4.3. Fix $Q \in C(K)$. Then
(1) $\bar{J}^{Q}(\mu) \leq \delta^{Q}(K)$;
(2) $\bar{J}(\mu)=\bar{J}^{Q}(\mu) \cdot\left(e^{\int_{K} Q d \mu}\right)^{b_{d}}$;
(3) $\log \bar{J}(\mu) \leq \inf _{v \in C(K)}\left[\log \delta^{v}(K)+b_{d} \int_{K} v d \mu\right]$;
(4) $\log \bar{J}^{Q}(\mu) \leq \inf _{v \in C(K)}\left[\log \delta^{v}(K)+b_{d} \int_{K} v d \mu\right]-b_{d} \int_{K} Q d \mu$.

Properties (1)-(4) also hold for the functionals $\underline{J}, \underline{J}^{Q}$.
Proof. Property (1) follows from

$$
J_{n}^{Q}(G) \leq \sup _{\mathbf{a} \in \tilde{G}_{d_{n}}}\left|V D M_{n}^{Q}(\mathbf{a})\right|^{1 / l_{n}} \leq \sup _{\mathbf{a} \in K^{d_{n}}}\left|V D M_{n}^{Q}(\mathbf{a})\right|^{1 / l_{n}}
$$

The proofs of Corollary 3.4, Proposition 3.5 and Proposition 3.6 of [8] work mutatis mutandis to verify (2), (3) and (4). The relevant estimation, replacing the corresponding one which is two lines above equation (3.2) in [8], is, given $\epsilon>0$, for $\mathbf{a} \in \tilde{G}_{d_{n}}$,

$$
\begin{align*}
\left|V D M_{n}^{Q}(\mathbf{a})\right| e^{\frac{n d_{n}}{\gamma_{d}}\left(-\epsilon-\int_{K} Q d \mu\right)} & \leq\left|V D M_{n}(\mathbf{a})\right| \tag{4.4}\\
& \leq\left|V D M_{n}^{Q}(\mathbf{a})\right| e^{\frac{n d_{n}}{\gamma_{d}}\left(\epsilon+\int_{K} Q d \mu\right)} .
\end{align*}
$$

To see this, we first recall that

$$
\left|V D M_{n}(\mathbf{a})\right|=\left|V D M_{n}^{Q}(\mathbf{a})\right| e^{n \sum_{j=1}^{d_{n}} Q\left(a_{j}\right)}
$$

For $\mu \in \mathcal{M}_{P}(K), Q \in C(K), \epsilon>0$, there exists a neighborhood G of μ in $\mathcal{M}_{P}(K)$ with

$$
-\epsilon<\int_{K} Q d \mu-\frac{\gamma_{d}}{d_{n}} \sum_{j=1}^{d_{n}} Q\left(a_{j}\right)<\epsilon
$$

for $\mathbf{a} \in \tilde{G}_{d_{n}}$. Plugging this double inequality into the previous equality we get (4.4). Moreover, from (3.12),

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{n d_{n}}{l_{n}}=\frac{d+1}{A d}=b_{d} \gamma_{d} \tag{4.5}
\end{equation*}
$$

so that $\frac{n d_{n}}{\gamma_{d}} \asymp l_{n} b_{d}$ as $n \rightarrow \infty$. Taking $l_{n}-$ the roots in (4.4) accounts for the factor of b_{d} in (2), (3) and (4).
Remark 4.4. The corresponding $\underline{W}, \underline{W^{Q}}, \bar{W}, \bar{W}^{Q}$ functionals, defined using (4.2), clearly dominate their " J " counterparts; e.g., $\bar{W}^{Q} \geq \bar{J}^{Q}$.

Note that formula (3.11) can be rewritten:

$$
\begin{equation*}
\log \delta^{Q}(K)=-b_{d} E\left(V_{P, K, Q}^{*}\right) \tag{4.6}
\end{equation*}
$$

Thus the upper bound in Proposition 4.3 (3) becomes

$$
\begin{equation*}
\log \bar{J}(\mu) \leq-b_{d} \sup _{v \in C(K)}\left[E\left(V_{P, K, v}^{*}\right)-\int_{K} v d \mu\right]=-b_{d} E^{*}(\mu) \tag{4.7}
\end{equation*}
$$

For the rest of section 4 and section 5 , we will always assume $Q \in$ $C(K)$. Theorem 4.5 shows that the inequalities in (3) and (4) are equalities, and that the \bar{J}, \bar{J}^{Q} functionals coincide with their $\underline{J}, \underline{J}^{Q}$ counterparts. The key step in the proof of Theorem 4.5 is to verify this for $\bar{J}^{v}\left(\mu_{K, v}\right)$ and $\underline{J}^{v}\left(\mu_{K, v}\right)$.

Theorem 4.5. Let $K \subset \mathbb{C}^{d}$ be a nonpluripolar compact set and let ν satisfy a strong Bernstein-Markov property. Fix $Q \in C(K)$. Then for any $\mu \in \mathcal{M}_{P}(K)$,

$$
\begin{equation*}
\log \bar{J}(\mu)=\log \underline{J}(\mu)=\inf _{v \in C(K)}\left[\log \delta^{v}(K)+b_{d} \int_{K} v d \mu\right] \tag{4.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\log \bar{J}^{Q}(\mu)=\log \underline{J}^{Q}(\mu)=\inf _{v \in C(K)}\left[\log \delta^{v}(K)+b_{d} \int_{K} v d \mu\right]-b_{d} \int_{K} Q d \mu \tag{4.9}
\end{equation*}
$$

Proof. It suffices to prove (4.8) since (4.9) follows from (2) of Proposition 4.3. We have the upper bound

$$
\log \bar{J}(\mu) \leq \inf _{v \in C(K)}\left[\log \delta^{v}(K)+b_{d} \int_{K} v d \mu\right]
$$

from (3); for the lower bound, we consider different cases.

Case I: $\mu=\mu_{K, v}$ for some $v \in C(K)$.
We verify that

$$
\begin{equation*}
\log \bar{J}\left(\mu_{K, v}\right)=\log \underline{J}\left(\mu_{K, v}\right)=\log \delta^{v}(K)+b_{d} \int_{K} v d \mu_{K, v} \tag{4.10}
\end{equation*}
$$

which proves (4.8) in this case.
To prove (4.10), we use the definition of $\underline{J}\left(\mu_{K, v}\right)$ and Corollary 3.8. Fix a neighborhood G of $\mu_{K, v}$. For $\eta>0$, define $A_{n, \eta}$ as in (3.18) with $Q=v$. Set

$$
\begin{equation*}
\eta_{n}:=\max \left(\delta^{v}(K)-\frac{n Z_{n}^{1 / 2 l_{n}}}{n+1}, \frac{Z_{n}^{1 / 2 l_{n}}}{n+1}\right) . \tag{4.11}
\end{equation*}
$$

By Proposition 3.7, $\eta_{n} \rightarrow 0$. We claim that we have the inclusion

$$
\begin{equation*}
A_{n, \eta_{n}} \subset \tilde{G}_{d_{n}} \text { for all } n \text { large enough. } \tag{4.12}
\end{equation*}
$$

We prove (4.12) by contradiction: if false, there is a sequence $\left\{n_{j}\right\}$ with $n_{j} \uparrow \infty$ and $x^{j}=\left(x_{1}^{j}, \ldots, x_{d_{n_{j}}}^{j}\right) \in A_{n_{j}, \eta_{n_{j}}} \backslash \tilde{G}_{d_{n_{j}}}$. However $\mu_{j}:=$ $\frac{\gamma_{d}}{d_{n_{j}}} \sum_{i=1}^{d_{n_{j}}} \delta_{x_{i}^{j}} \notin G$ for j sufficiently large contradicts Theorem 3.5 since $x^{j} \in A_{n_{j}, \eta_{j}}$ and $\eta_{j} \downarrow 0$ imply $\mu_{j} \rightarrow \mu_{K, v}$ weak-*.

Next, a direct computation using (4.11) shows that, for all n large enough,

$$
\begin{equation*}
\operatorname{Prob}_{n}\left(K^{d_{n}} \backslash A_{n, \eta_{n}}\right) \leq \frac{\left(\delta^{v}(K)-\eta_{n}\right)^{2 l_{n}}}{Z_{n}} \leq\left(\frac{n}{n+1}\right)^{2 l_{n}} \leq \frac{n}{n+1} \tag{4.13}
\end{equation*}
$$

(recall ν is a probability measure). Hence

$$
\begin{aligned}
& \frac{1}{Z_{n}} \int_{\tilde{G}_{d_{n}}}\left|V D M_{n}^{v}\left(z_{1}, \ldots, z_{d_{n}}\right)\right|^{2} \cdot d \nu\left(z_{1}\right) \cdots d \nu\left(z_{d_{n}}\right) \\
& \geq \frac{1}{Z_{n}} \int_{A_{n, \eta_{n}}}\left|V D M_{n}^{v}\left(z_{1}, \ldots, z_{d_{n}}\right)\right|^{2} \cdot d \nu\left(z_{1}\right) \cdots d \nu\left(z_{d_{n}}\right) \\
& \geq \frac{1}{n+1}
\end{aligned}
$$

Since $P \subset r \Sigma$ and $\Sigma \subset k P$ for some $k \in \mathbb{Z}^{+}, l_{n}=0\left(n^{d+1}\right)$ and we have $\frac{1}{2 l_{n}} \log (n+1) \rightarrow 0$. Since ν satisfies a strong Bernstein-Markov property and $v \in C(K)$, using Proposition 3.7 and the above estimate
we conclude that

$$
\begin{gathered}
\liminf _{n \rightarrow \infty} \frac{1}{2 l_{n}} \log \int_{\tilde{G}_{d_{n}}}\left|V D M_{n}^{v}\left(z_{1}, \ldots, z_{d_{n}}\right)\right|^{2} d \nu\left(z_{1}\right) \cdots d \nu\left(z_{d_{n}}\right) \\
\geq \log \delta^{v}(K)
\end{gathered}
$$

Taking the infimum over all neighborhoods G of $\mu_{K, v}$ we obtain

$$
\log \underline{J}^{v}\left(\mu_{K, v}\right) \geq \log \delta^{v}(K)
$$

From (1) Proposition 4.3, $\log \bar{J}^{v}\left(\mu_{K, v}\right) \leq \log \delta^{v}(K)$; thus we have

$$
\begin{equation*}
\log \underline{J}^{v}\left(\mu_{K, v}\right)=\log \bar{J}^{v}\left(\mu_{K, v}\right)=\log \delta^{v}(K) \tag{4.14}
\end{equation*}
$$

Using (2) of Proposition 4.3 with $\mu=\mu_{K, v}$ we obtain (4.10).
Case II: $\mu \in \mathcal{M}_{P}(K)$ with the property that $E^{*}(\mu)<\infty$.
From Theorem 2.13 and Proposition 2.11 there exists $u \in L_{P}\left(\mathbb{C}^{d}\right)$ indeed, $u \in \mathcal{E}_{P}^{1}\left(\mathbb{C}^{d}\right)$ - with $\mu=\left(d d^{c} u\right)^{d}$ and $\int_{K} u d \mu>-\infty$. However, since u is only usc on K, μ is not necessarily of the form $\mu_{K, v}$ for some $v \in C(K)$. Taking a sequence of continuous functions $\left\{Q_{j}\right\} \subset C(K)$ with $Q_{j} \downarrow u$ on K, by Proposition 3.3 the weighted extremal functions $V_{P, K, Q_{j}}^{*}$ decrease to u on \mathbb{C}^{d};

$$
\mu_{j}:=\left(d d^{c} V_{P, K, Q_{j}}^{*}\right)^{d} \rightarrow \mu=\left(d d^{c} u\right)^{d} \text { weak-*; }
$$

and

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \int_{K} Q_{j} d \mu_{j}=\lim _{j \rightarrow \infty} \int_{K} Q_{j} d \mu=\int_{K} u d \mu \tag{4.15}
\end{equation*}
$$

From the previous case we have

$$
\log \bar{J}\left(\mu_{j}\right)=\log \underline{J}\left(\mu_{j}\right)=\log \delta^{Q_{j}}(K)+b_{d} \int_{K} Q_{j} d \mu_{j}
$$

Using uppersemicontinuity of the functional $\mu \rightarrow \underline{J}(\mu)$,

$$
\limsup _{j \rightarrow \infty} \bar{J}\left(\mu_{j}\right)=\limsup _{j \rightarrow \infty} \underline{J}\left(\mu_{j}\right) \leq \underline{J}(\mu) .
$$

Since $Q_{j} \downarrow u$ on K,

$$
\begin{equation*}
\limsup _{j \rightarrow \infty} \log \delta^{Q_{j}}(K)=\lim _{j \rightarrow \infty} \log \delta^{Q_{j}}(K) \tag{4.16}
\end{equation*}
$$

Therefore

$$
M:=\lim _{j \rightarrow \infty} \log \underline{J}\left(\mu_{j}\right)=\lim _{j \rightarrow \infty}\left(\log \delta^{Q_{j}}(K)+b_{d} \int_{K} Q_{j} d \mu_{j}\right)
$$

exists and is less than or equal to $\log \underline{J}(\mu)$. We want to show that

$$
\begin{equation*}
\inf _{v}\left[\log \delta^{v}(K)+b_{d} \int_{K} v d \mu\right] \leq M \tag{4.17}
\end{equation*}
$$

Given $\epsilon>0$, by (4.15) for $j \geq j_{0}(\epsilon)$,

$$
\int_{K} Q_{j} d \mu_{j} \geq \int_{K} Q_{j} d \mu-\epsilon \text { and } \log \underline{J}\left(\mu_{j}\right)<M+\epsilon
$$

Hence for such j,

$$
\begin{aligned}
\inf _{v}\left[\log \delta^{v}(K)+b_{d} \int_{K} v d \mu\right] & \leq \log \delta^{Q_{j}}(K)+b_{d} \int_{K} Q_{j} d \mu \\
\leq \log \delta^{Q_{j}}(K)+b_{d} \int_{K} Q_{j} d \mu_{j}+b_{d} \epsilon & =\log \underline{J}\left(\mu_{j}\right)+b_{d} \epsilon<M+\left(b_{d}+1\right) \epsilon
\end{aligned}
$$

yielding (4.17). This finishes the proof in Case II.
Case III: $\mu \in \mathcal{M}(K)$ with the property that $E^{*}(\mu)=+\infty$.
It follows from Proposition 3.4 and Theorem 3.6 that the right-hand side of (4.8) is $-\infty$, finishing the proof.

Remark 4.6. From now on, we simply use the notation J, J^{Q} without the overline or underline. Using Proposition 3.4 and Theorem 3.6, we

$$
\begin{aligned}
& \text { have } \\
& \qquad \begin{array}{c}
\log J(\mu)=\inf _{Q \in C(K)}\left[\log \delta^{Q}(K)+b_{d} \int_{K} Q d \mu\right] \\
=-\sup _{Q \in C(K)}\left[-\log \delta^{Q}(K)-b_{d} \int_{K} Q d \mu\right] \\
=-\sup _{Q \in C(K)}\left[b_{d} E\left(V_{P, K, Q}^{*}\right)-b_{d} \int_{K} Q d \mu\right]=-b_{d} \sup _{Q \in C(K)}\left[E\left(V_{P, K, Q}^{*}\right)-\int_{K} Q d \mu\right]
\end{array}
\end{aligned}
$$

(recall (4.6)) which one can compare with

$$
E^{*}(\mu)=\sup _{Q \in C(K)}\left[E\left(V_{P, K, Q}^{*}\right)-\int_{K} Q d \mu\right]
$$

from Proposition 3.4 to conclude

$$
\begin{equation*}
\log J(\mu)=-b_{d} E^{*}(\mu) \tag{4.18}
\end{equation*}
$$

In particular, J, J^{Q} are independent of the choice of strong BernsteinMarkov measure for K.

Following the idea in Proposition 4.3 of [9], we observe the following:

Proposition 4.7. Let $K \subset \mathbb{C}^{d}$ be a nonpluripolar compact set and let ν satisfy a strong Bernstein-Markov property. Fix $Q \in C(K)$. The measure $\mu_{K, Q}$ is the unique maximizer of the functional $\mu \rightarrow J^{Q}(\mu)$ over $\mu \in \mathcal{M}_{P}(K)$; i.e.,

$$
\begin{equation*}
J^{Q}\left(\mu_{K, Q}\right)=\delta^{Q}(K)\left(\text { and } J\left(\mu_{K}\right)=\delta(K)\right) \tag{4.19}
\end{equation*}
$$

Proof. The fact that $\mu_{K, Q}$ maximizes J^{Q} (and μ_{K} maximizes J) follows from (4.10), (4.14) and Proposition 4.3.

Assume now that $\mu \in \mathcal{M}_{P}(K)$ maximizes J^{Q}. From Remark 4.4 and the definitions of the functionals, for any neighborhood $G \subset \mathcal{M}_{P}(K)$ of μ,

$$
\bar{J}^{Q}(\mu) \leq \bar{W}^{Q}(\mu) \leq \sup \left\{\limsup _{n \rightarrow \infty}\left|V D M_{n}^{Q}\left(\mathbf{a}^{(n)}\right)\right|^{1 / l_{n}}\right\} \leq \delta^{Q}(K)
$$

where the supremum is taken over all arrays $\left\{\mathbf{a}^{(n)}\right\}_{n=1,2, \ldots}$ of d_{n}-tuples $\mathbf{a}^{(n)}$ in K whose normalized counting measures $\mu_{n}:=\frac{1}{d_{n}} \sum_{j=1}^{d_{n}} \delta_{a_{j}^{(n)}}$ lies in G. Since $\bar{J}^{Q}(\mu)=\delta^{Q}(K)$ there is an asymptotic weighted Fekete array $\left\{\mathbf{a}^{(n)}\right\}$ as in (3.10). Theorem 3.5 yields that $\mu_{n}:=\frac{1}{d_{n}} \sum_{j=1}^{d_{n}} \delta_{a_{j}^{(n)}}$ converges weak-* to $\mu_{K, Q}$, hence $\mu_{K, Q} \in \bar{G}$. Since this is true for each neighborhood $G \subset \mathcal{M}_{P}(K)$ of μ, we must have $\mu=\mu_{K, Q}$.

5. LaRGE DEVIATION.

As in the previous section, we fix $K \subset \mathbb{C}^{d}$ a nonpluripolar compact set; $Q \in C(K)$; and a measure ν on K satisfying a strong BernsteinMarkov property. For $x_{1}, \ldots, x_{d_{n}} \in K$, we get a discrete measure $\frac{\gamma_{d}}{d_{n}} \sum_{j=1}^{d_{n}} \delta_{x_{j}} \in \mathcal{M}_{P}(K)$. Define $j_{n}: K^{d_{n}} \rightarrow \mathcal{M}_{P}(K)$ via

$$
j_{n}\left(x_{1}, \ldots, x_{d_{n}}\right):=\frac{\gamma_{d}}{d_{n}} \sum_{j=1}^{d_{n}} \delta_{x_{j}} .
$$

From (3.17), $\sigma_{n}:=\left(j_{n}\right)_{*}\left(\right.$ Prob $\left._{n}\right)$ is a probability measure on $\mathcal{M}_{P}(K)$: for a Borel set $B \subset \mathcal{M}_{P}(K)$,

$$
\begin{equation*}
\sigma_{n}(B)=\frac{1}{Z_{n}} \int_{\tilde{B}_{d_{n}}}\left|V D M_{n}^{Q}\left(x_{1}, \ldots, x_{d_{n}}\right)\right|^{2} d \nu\left(x_{1}\right) \cdots d \nu\left(x_{d_{n}}\right) \tag{5.1}
\end{equation*}
$$

where $\tilde{B}_{d_{n}}:=\left\{\mathbf{a}=\left(a_{1}, \ldots, a_{d_{n}}\right) \in K^{d_{n}}: \frac{\gamma_{d}}{d_{n}} \sum_{j=1}^{d_{n}} \delta_{a_{j}} \in B\right\}$ (recall (4.1)). Here, $Z_{n}:=Z_{n}(P, K, Q, \nu)$. Note that

$$
\begin{equation*}
\sigma_{n}(B)^{1 / 2 l_{n}}=\frac{1}{Z_{n}^{1 / 2 l_{n}}} \cdot J_{n}^{Q}(B) \tag{5.2}
\end{equation*}
$$

For future use, suppose we have a function $F: \mathbb{R} \rightarrow \mathbb{R}$ and a function $v \in C(K)$. We write, for $\mu \in \mathcal{M}_{P}(K)$,

$$
<v, \mu>:=\int_{K} v d \mu
$$

and then

$$
\begin{equation*}
\int_{\mathcal{M}_{P}(K)} F(<v, \mu>) d \sigma_{n}(\mu):= \tag{5.3}
\end{equation*}
$$

$\frac{1}{Z_{n}} \int_{K} \cdots \int_{K}\left|V D M_{n}^{Q}\left(x_{1}, \ldots, x_{d_{n}}\right)\right|^{2} F\left(\frac{\gamma_{d}}{d_{n}} \sum_{j=1}^{d_{n}} v\left(x_{j}\right)\right) d \nu\left(x_{1}\right) \cdots d \nu\left(x_{d_{n}}\right)$.
With this notation, we offer two proofs of our LDP, Theorem 5.1. We state the result; define LDP in Definition 5.2; and then proceed with the proofs. This closely follows the exposition in section 5 of [9].

Theorem 5.1. The sequence $\left\{\sigma_{n}=\left(j_{n}\right)_{*}\left(\right.\right.$ Prob $\left.\left._{n}\right)\right\}$ of probability measures on $\mathcal{M}_{P}(K)$ satisfies a large deviation principle with speed $2 l_{n}$ and good rate function $\mathcal{I}:=\mathcal{I}_{K, Q}$ where, for $\mu \in \mathcal{M}_{P}(K)$,

$$
\mathcal{I}(\mu):=\log J^{Q}\left(\mu_{K, Q}\right)-\log J^{Q}(\mu) .
$$

This means that $\mathcal{I}: \mathcal{M}_{P}(K) \rightarrow[0, \infty]$ is a lowersemicontinuous mapping such that the sublevel sets $\left\{\mu \in \mathcal{M}_{P}(K): \mathcal{I}(\mu) \leq \alpha\right\}$ are compact in the weak-* topology on $\mathcal{M}_{P}(K)$ for all $\alpha \geq 0$ (\mathcal{I} is "good") satisfying (5.4) and (5.5):

Definition 5.2. The sequence $\left\{\mu_{k}\right\}$ of probability measures on $\mathcal{M}_{P}(K)$ satisfies a large deviation principle (LDP) with good rate function \mathcal{I} and speed $2 l_{n}$ if for all measurable sets $\Gamma \subset \mathcal{M}_{P}(K)$,

$$
\begin{gather*}
-\inf _{\mu \in \Gamma^{0}} \mathcal{I}(\mu) \leq \liminf _{n \rightarrow \infty} \frac{1}{2 l_{n}} \log \mu_{n}(\Gamma) \text { and } \tag{5.4}\\
\limsup _{n \rightarrow \infty} \frac{1}{2 l_{n}} \log \mu_{n}(\Gamma) \leq-\inf _{\mu \in \bar{\Gamma}} \mathcal{I}(\mu) . \tag{5.5}
\end{gather*}
$$

In the setting of $\mathcal{M}_{P}(K)$, to prove a LDP it suffices to work with a base for the weak-* topology. The following is a special case of a basic general existence result for a LDP given in Theorem 4.1.11 in [13].

Proposition 5.3. Let $\left\{\sigma_{\epsilon}\right\}$ be a family of probability measures on $\mathcal{M}_{P}(K)$. Let \mathcal{B} be a base for the topology of $\mathcal{M}_{P}(K)$. For $\mu \in \mathcal{M}_{P}(K)$ let

$$
\mathcal{I}(\mu):=-\inf _{\{G \in \mathcal{B}: \mu \in G\}}\left(\liminf _{\epsilon \rightarrow 0} \epsilon \log \sigma_{\epsilon}(G)\right) .
$$

Suppose for all $\mu \in \mathcal{M}_{P}(K)$,

$$
\mathcal{I}(\mu)=-\inf _{\{G \in \mathcal{B}: \mu \in G\}}\left(\limsup _{\epsilon \rightarrow 0} \epsilon \log \sigma_{\epsilon}(G)\right) .
$$

Then $\left\{\sigma_{\epsilon}\right\}$ satisfies a LDP with rate function $\mathcal{I}(\mu)$ and speed $1 / \epsilon$.
There is a converse to Proposition 5.3, Theorem 4.1.18 in [13]. For $\mathcal{M}_{P}(K)$, it reads as follows:

Proposition 5.4. Let $\left\{\sigma_{\epsilon}\right\}$ be a family of probability measures on $\mathcal{M}_{P}(K)$. Suppose that $\left\{\sigma_{\epsilon}\right\}$ satisfies a LDP with rate function $\mathcal{I}(\mu)$ and speed $1 / \epsilon$. Then for any base \mathcal{B} for the topology of $\mathcal{M}_{P}(K)$ and any $\mu \in \mathcal{M}_{P}(K)$

$$
\begin{aligned}
\mathcal{I}(\mu) & :=-\inf _{\{G \in \mathcal{B}: \mu \in G\}}\left(\liminf _{\epsilon \rightarrow 0} \epsilon \log \sigma_{\epsilon}(G)\right) \\
& =-\inf _{\{G \in \mathcal{B}: \mu \in G\}}\left(\limsup \sin _{\epsilon \rightarrow 0} \epsilon \log \sigma_{\epsilon}(G)\right) .
\end{aligned}
$$

Remark 5.5. Assuming Theorem 5.1, this shows that, starting with a strong Bernstein-Markov measure ν and the corresponding sequence of probability measures $\left\{\sigma_{n}\right\}$ on $\mathcal{M}_{P}(K)$ in (5.1), the existence of an LDP with rate function $\mathcal{I}(\mu)$ and speed $2 l_{n}$ implies that necessarily

$$
\begin{equation*}
\mathcal{I}(\mu)=\log J^{Q}\left(\mu_{K, Q}\right)-\log J^{Q}(\mu) \tag{5.6}
\end{equation*}
$$

Uniqueness of the rate function is basic (cf., Lemma 4.1.4 of [13]).
We turn to the first proof of Theorem 5.1, using Theorem 4.5, which gives a pluripotential theoretic description of the rate functional.
Proof. As a base \mathcal{B} for the topology of $\mathcal{M}_{P}(K)$, we can take the sets from (3.16) or simply all open sets. For $\left\{\sigma_{\epsilon}\right\}$, we take the sequence of probability measures $\left\{\sigma_{n}\right\}$ on $\mathcal{M}_{P}(K)$ and we take $\epsilon=\frac{1}{2 l_{n}}$. For $G \in \mathcal{B}$, from (5.2),

$$
\frac{1}{2 l_{n}} \log \sigma_{n}(G)=\log J_{n}^{Q}(G)-\frac{1}{2 l_{n}} \log Z_{n} .
$$

From Proposition 3.7, and (4.14) with $v=Q$,

$$
\lim _{n \rightarrow \infty} \frac{1}{2 l_{n}} \log Z_{n}=\log \delta^{Q}(K)=\log J^{Q}\left(\mu_{K, Q}\right) ;
$$

and by Theorem 4.5,

$$
\inf _{G \ni \mu} \limsup _{n \rightarrow \infty} \log J_{n}^{Q}(G)=\inf _{G \ni \mu} \liminf _{n \rightarrow \infty} \log J_{n}^{Q}(G)=\log J^{Q}(\mu)
$$

Thus by Proposition $5.3\left\{\sigma_{n}\right\}$ satisfies an LDP with rate function

$$
\mathcal{I}(\mu):=\log J^{Q}\left(\mu_{K, Q}\right)-\log J^{Q}(\mu)
$$

and speed $2 l_{n}$. This rate function is good since $\mathcal{M}_{P}(K)$ is compact.
Remark 5.6. From Proposition 4.7, $\mu_{K, Q}$ is the unique maximizer of the functional

$$
\mu \rightarrow \log J^{Q}(\mu)
$$

over all $\mu \in \mathcal{M}_{P}(K)$. Thus

$$
\mathcal{I}_{K, Q}(\mu) \geq 0 \text { with } \mathcal{I}_{K, Q}(\mu)=0 \Longleftrightarrow \mu=\mu_{K, Q} .
$$

To summarize, $\mathcal{I}_{K, Q}$ is a good rate function with unique minimizer $\mu_{K, Q}$. Using the relations

$$
\begin{gathered}
\log J(\mu)=-b_{d} \sup _{Q \in C(K)}\left[E\left(V_{P, K, Q}^{*}\right)-\int_{K} Q d \mu\right] \\
J(\mu)=J^{Q}(\mu) \cdot\left(e^{\int_{K} Q d \mu}\right)^{b_{d}}, \text { and } J^{Q}\left(\mu_{K, Q}\right)=\delta^{Q}(K)
\end{gathered}
$$

(the latter from (4.19)), we have

$$
\begin{gathered}
\mathcal{I}(\mu):=\log \delta^{Q}(K)-\log J^{Q}(\mu) \\
=\log \delta^{Q}(K)-\log J(\mu)+b_{d} \int_{K} Q d \mu \\
=b_{d} \sup _{Q \in C(K)}\left[E\left(V_{P, K, Q}^{*}\right)-\int_{K} Q d \mu\right]+\log \delta^{Q}(K)+b_{d} \int_{K} Q d \mu \\
=b_{d} \sup _{v \in C(K)}\left[E\left(V_{P, K, v}^{*}\right)-\int_{K} v d \mu\right]-b_{d}\left[E\left(V_{P, K, Q}^{*}\right)-\int_{K} Q d \mu\right]
\end{gathered}
$$

from (4.6).
The second proof of our LDP follows from Corollary 4.6.14 in [13], which is a general version of the Gärtner-Ellis theorem. This approach was originally brought to our attention by S. Boucksom and was also utilized by R. Berman in [5]. We state the version of the [13] result for an appropriate family of probability measures.

Proposition 5.7. Let $C(K)^{*}$ be the topological dual of $C(K)$, and let $\left\{\sigma_{\epsilon}\right\}$ be a family of probability measures on $\mathcal{M}_{P}(K) \subset C(K)^{*}$ (equipped with the weak-* topology). Suppose for each $\lambda \in C(K)$, the limit

$$
\Lambda(\lambda):=\lim _{\epsilon \rightarrow 0} \epsilon \log \int_{C(K)^{*}} e^{\lambda(x) / \epsilon} d \sigma_{\epsilon}(x)
$$

exists as a finite real number and assume Λ is Gâteaux differentiable; i.e., for each $\lambda, \theta \in C(K)$, the function $f(t):=\Lambda(\lambda+t \theta)$ is differentiable at $t=0$. Then $\left\{\sigma_{\epsilon}\right\}$ satisfies an LDP in $C(K)^{*}$ with the convex, good rate function Λ^{*}.

Here

$$
\Lambda^{*}(x):=\sup _{\lambda \in C(K)}(<\lambda, x>-\Lambda(\lambda)),
$$

is the Legendre transform of Λ. The upper bound (5.5) in the LDP holds with rate function Λ^{*} under the assumption that the limit $\Lambda(\lambda)$ exists and is finite; the Gâteaux differentiability of Λ is needed for the lower bound (5.4). To verify this property in our setting, we must recall a result from [2].

Proposition 5.8. For $Q \in \mathcal{A}(K)$ and $u \in C(K)$, let

$$
F(t):=E\left(V_{P, K, Q+t u}^{*}\right)
$$

for $t \in \mathbb{R}$. Then F is differentiable and

$$
F^{\prime}(t)=\int_{\mathbb{C}^{d}} u\left(d d^{c} V_{P, K, Q+t u}^{*}\right)^{d}
$$

In [2] it was assumed that $u \in C^{2}(K)$ but the result is true with the weaker assumption $u \in C(K)$ (cf., Theorem 11.11 in [16] due to Lu and Nguyen [17], see also [11, Proposition 4.20]).

We proceed with the second proof of Theorem 5.1. For simplicity, we normalize so that $\gamma_{d}=1$ to fit the setting of Proposition 5.7 (so members of $\mathcal{M}_{P}(K)$ are probability measures).

Proof. We show that for each $v \in C(K)$,

$$
\Lambda(v):=\lim _{n \rightarrow \infty} \frac{1}{2 l_{n}} \log \int_{C(K)^{*}} e^{2 l_{n}<v, \mu>} d \sigma_{n}(\mu)
$$

exists as a finite real number. First, since σ_{n} is a measure on $\mathcal{M}_{P}(K)$, the integral can be taken over $\mathcal{M}_{P}(K)$. Consider

$$
\frac{1}{2 l_{n}} \log \int_{\mathcal{M}_{P}(K)} e^{2 l_{n}<v, \mu>} d \sigma_{n}(\mu) .
$$

By (5.3), this is equal to

$$
\frac{1}{2 l_{n}} \log \frac{1}{Z_{n}} \cdot \int_{K^{d_{n}}}\left|V D M_{n}^{Q-\frac{l_{n}}{n d_{n}} v}\left(x_{1}, \ldots, x_{d_{n}}\right)\right|^{2} d \nu\left(x_{1}\right) \cdots d \nu\left(x_{d_{n}}\right)
$$

From (4.5), with $\gamma_{d}=1, \frac{l_{n}}{n d_{n}} \rightarrow \frac{1}{b_{d}}$; hence for any $\epsilon>0$,

$$
\frac{1}{b_{d}+\epsilon} v \leq \frac{l_{n}}{n d_{n}} v \leq \frac{1}{b_{d}-\epsilon} v \text { on } K
$$

for n sufficiently large. Recall that

$$
\left.Z_{n}=\int_{K^{d_{n}}} \mid V D M_{n}^{Q}\left(x_{1}, \ldots, x_{d_{n}}\right)\right)\left.\right|^{2} d \nu\left(x_{1}\right) \cdots d \nu\left(x_{d_{n}}\right) .
$$

Define

$$
\tilde{Z}_{n}:=\int_{K^{d_{n}}}\left|V D M_{n}^{Q-v / b_{d}}\left(x_{1}, \ldots, x_{d_{n}}\right)\right|^{2} d \nu\left(x_{1}\right) \cdots d \nu\left(x_{d_{n}}\right) .
$$

Then we have

$$
\lim _{n \rightarrow \infty} \tilde{Z}_{n}^{\frac{1}{2 l n}}=\delta^{Q-v / b_{d}}(K) \text { and } \lim _{n \rightarrow \infty} Z_{n}^{\frac{1}{2 l_{n}}}=\delta^{Q}(K)
$$

from (3.15) in Proposition 3.7 and the assumption that (K, ν, \tilde{Q}) satisfies the weighted Bernstein-Markov property for all $\tilde{Q} \in C(K)$. Thus

$$
\begin{equation*}
\Lambda(v)=\lim _{n \rightarrow \infty} \frac{1}{2 l_{n}} \log \frac{\tilde{Z}_{n}}{Z_{n}}=\log \frac{\delta^{Q-v / b_{d}}(K)}{\delta^{Q}(K)} . \tag{5.7}
\end{equation*}
$$

Define now, for $v, v^{\prime} \in C(K)$,

$$
f(t):=E\left(V_{P, K, Q-\left(v+t v^{\prime}\right)}^{*}\right) .
$$

Proposition 5.8 shows that Λ is Gâteaux differentiable and Proposition 5.7 gives that Λ^{*} is a rate function on $C(K)^{*}$.

Since each σ_{n} has support in $\mathcal{M}_{P}(K)$, it follows from (5.4) and (5.5) in Definition 5.2 of an LDP with $\Gamma \subset C(K)^{*}$ that for $\mu \in C(K)^{*} \backslash$ $\mathcal{M}_{P}(K), \Lambda^{*}(\mu)=+\infty$. By Lemma 4.1.5 (b) of [13], the restriction of Λ^{*} to $\mathcal{M}_{P}(K)$ is a rate function. Since $\mathcal{M}_{P}(K)$ is compact, it is a good rate function. Being a Legendre transform, Λ^{*} is convex.

To compute Λ^{*}, we have, using (5.7) and (3.11),

$$
\begin{gathered}
\Lambda^{*}(\mu)=\sup _{v \in C(K)}\left(\int_{K} v d \mu-\log \frac{\delta^{Q-v / b_{d}}(K)}{\delta^{Q}(K)}\right) \\
=\sup _{v \in C(K)}\left(\int_{K} v d \mu-b_{d}\left[E\left(V_{P, K, Q}^{*}\right)-E\left(V_{P, K, Q-v / b_{d}}^{*}\right]\right)\right) .
\end{gathered}
$$

Thus

$$
\begin{aligned}
& \Lambda^{*}(\mu)+b_{d} E\left(V_{P, K, Q}^{*}\right)=\sup _{v \in C(K)}\left(\int_{K} v d \mu+b_{d} E\left(V_{P, K, Q-v / b_{d}}^{*}\right)\right) \\
& \left.=\sup _{u \in C(K)}\left(b_{d} E\left(V_{P, K, Q+u}^{*}\right)-b_{d} \int_{K} u d \mu\right) \text { (taking } u=-v / b_{d}\right) .
\end{aligned}
$$

Rearranging and replacing u in the supremum by $v=u+Q$,

$$
\begin{aligned}
& \Lambda^{*}(\mu)=\sup _{u \in C(K)}\left(b_{d} E\left(V_{P, K, Q+u}^{*}\right)-b_{d} \int_{K} u d \mu\right)-b_{d} E\left(V_{P, K, Q}^{*}\right) \\
& =b_{d}\left[\sup _{v \in C(K)} E\left(V_{P, K, v}^{*}\right)-\int_{K} v d \mu\right]-b_{d}\left[E\left(V_{P, K, Q}^{*}\right)-\int_{K} Q d \mu\right]
\end{aligned}
$$

which agrees with the formula in Remark 5.6 (since μ is a probability measure).

Remark 5.9. Thus the rate function can be expressed in several equivalent ways:

$$
\begin{gathered}
\mathcal{I}(\mu)=\Lambda^{*}(\mu)=\log J^{Q}\left(\mu_{K, Q}\right)-\log J^{Q}(\mu) \\
=b_{d}\left[\sup _{v \in C(K)} E\left(V_{P, K, v}^{*}\right)-\int_{K} v d \mu\right]-b_{d}\left[E\left(V_{P, K, Q}^{*}\right)-\int_{K} Q d \mu\right] \\
=b_{d} E^{*}(\mu)-b_{d}\left[E\left(V_{P, K, Q}^{*}\right)-\int_{K} Q d \mu\right]
\end{gathered}
$$

which generalizes the result equating (5.3), (5.10) and (5.11) in [9] for the case $P=\Sigma$ and $b_{d}=1$. Note in the last equality we are using the slightly different notion of E^{*} in (2.9) and Proposition 3.4 than that used in [9].

References

[1] T. Bayraktar, Zero distribution of random sparse polynomials, Mich. Math. J., 66, (2017), no. 2, 389-419.
[2] T. Bayraktar, T. Bloom, N. Levenberg, Pluripotential theory and convex bodies, Mat. Sbornik, 209 (2018), no. 3, 67-101.
[3] E. Bedford and B. A. Taylor, B. A., The Dirichlet problem for a complex Monge-Ampère equation, Invent. Math., 37, (1976), no. 1, 1-44.
[4] E. Bedford and B. A. Taylor, A new capacity for plurisubharmonic functions. Acta Math., 149, (1982), no. 1-2, 1-40.
[5] R. Berman, Determinantal Point Processes and Fermions on Complex Manifolds: Large Deviations and Bosonization, Comm. Math. Phys., 327 (2014), no. 1, 1-47.
[6] R. Berman and S. Boucksom, Growth of balls of holomorphic sections and energy at equilibrium, Invent. Math., 181, (2010), 337-394.
[7] R. Berman, S. Boucksom, V. Guedj and A. Zeriahi, A variational approach to complex Monge-Ampère equations, Publ. Math. de l'IHÉS, 117, (2013), 179245.
[8] T. Bloom and N. Levenberg, Pluripotential energy, Potential Analysis, 36, no. 1, 155-176, 2012.
[9] T. Bloom and N. Levenberg, Pluripotential energy and large deviation, Indiana Univ. Math. J., 62, no. 2, 523-550, 2013.
[10] S. Boucksom, P. Eyssidieux, V. Guedj and A. Zeriahi, Monge-Ampère equations in big cohomology classes, Acta Math., 205 (2010), 199-262.
[11] T. Darvas, E. Di Nezza, and C. H. Lu, Monotonicity of nonpluripolar products and complex Monge-Ampère equations with prescribed singularity, Analysis $\&$ PDE, 11, (2018), no. 8, 2049-2087.
[12] T. Darvas, E. Di Nezza, and C. H. Lu, Log-concavity of volume and complex Monge-Ampère equations with prescribed singularity, arXiv:1807.00276.
[13] A. Dembo and O. Zeitouni, Large deviations techniques and applications, Jones and Bartlett Publishers, Boston, MA, 1993.
[14] V. Guedj and A. Zeriahi, Intrinsic capacities on compact Kähler manifolds, J. Geom. Anal., 15 (2005), no. 4, 607-639.
[15] V. Guedj and A. Zeriahi, The weighted Monge-Ampère energy of quasiplurisubharmonic functions, J. Funct. Anal., 250 (2007), no. 2, 442-482.
[16] V. Guedj and A. Zeriahi, Degenerate Complex Monge-Ampère Equations, European Math. Soc. Tracts in Mathematics Vol. 26, 2017.
[17] C.H. Lu, V.D. Nguyen, Degenerate complex Hessian equations on compact Kähler manifolds, Indiana Univ. Math. J., 64 (2015), no. 6, 1721-1745.
[18] J. Ross and D. Witt Nyström, Analytic test configurations and geodesic rays, J. Symplectic Geom., 12 (2014), no. 1, 125-169.
[19] E. Saff and V. Totik, Logarithmic potentials with external fields, SpringerVerlag, Berlin, 1997.
[20] David Witt Nyström, Monotonicity of nonpluripolar Monge-Ampère masses, arXiv:1703.01950. To appear in Indiana University Mathematics Journal.

Sabanci University, Istanbul, Turkey
Email address: tbayraktar@sabanciuniv.edu
University of Toronto, Toronto, Ontario M5S 2E4 Canada
Email address: bloom@math.toronto.edu
Indiana University, Bloomington, IN 47405 USA
Email address: nlevenbe@indiana.edu
Université Paris-Sud, Orsay, France, 91405
Email address: hoang-chinh.lu@u-psud.fr

