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Abstract

Objective: Current medicines are ineffective in approximately one-third of people 

with epilepsy. Therefore, new antiseizure drugs are urgently needed to address this 

problem of pharmacoresistance. However, traditional rodent seizure and epilepsy 

models are poorly suited to high-throughput compound screening. Furthermore, test-

ing in a single species increases the chance that therapeutic compounds act on mo-

lecular targets that may not be conserved in humans. To address these issues, we 

developed a pipeline approach using four different organisms.

Methods: We sequentially employed compound library screening in the zebrafish, 

Danio rerio, chemical genetics in the worm, Caenorhabditis elegans, electrophysio-

logical analysis in mouse and human brain slices, and preclinical validation in mouse 

seizure models to identify novel antiseizure drugs and their molecular mechanism of 

action.

Results: Initially, a library of 1690 compounds was screened in an acute pentylene-

tetrazol seizure model using D rerio. From this screen, the compound chlorothymol 

was identified as an effective anticonvulsant not only in fish, but also in worms. A 

subsequent genetic screen in C elegans revealed the molecular target of chlorothymol 

to be LGC-37, a worm γ-aminobutyric acid type A (GABAA) receptor subunit. This 

GABAergic effect was confirmed using in vitro brain slice preparations from both 

mice and humans, as chlorothymol was shown to enhance tonic and phasic inhibition 

and this action was reversed by the GABAA receptor antagonist, bicuculline. Finally, 

chlorothymol exhibited in vivo anticonvulsant efficacy in several mouse seizure as-

says, including the 6-Hz 44-mA model of pharmacoresistant seizures.
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1 |  INTRODUCTION

Currently approved antiseizure drugs (ASDs) can provide 

effective seizure control in around two-thirds of patients. 

However, the remaining one-third of patients have what 

is termed drug-resistant, or pharmacoresistant, epilepsy, 

where seizures cannot be effectively controlled by available 

ASDs.1,2 Therefore, there is a substantial unmet clinical need 

for new therapeutic compounds for epilepsy. Traditionally, 

rodent seizure models have been used to evaluate potential 

ASDs.3 Promising compounds are initially assessed for any 

ability to protect against acute seizure induction through 

either subcutaneous administration of the convulsant pen-

tylenetetrazol (PTZ) or through transcorneal electrical stim-

ulation in an acute maximal electroshock (MES) or 6-Hz 

seizure test.4,5 For the most part, this approach has been suc-

cessful in identifying new therapeutic drugs and has provided 

insights into the molecular mechanism of action of promis-

ing agents.6 However, ethical concerns, financial costs, and 

the labor-intensive nature of drug testing in rodents reduce 

their practicality for early stage, high-throughput compound 

screening. Furthermore, the proportion of medically refrac-

tory cases has remained fairly constant for almost 30 years,1 

suggesting that epilepsy drug discovery might benefit from 

using different animal models for frontline ASD screening.

As a result, attention has turned in recent years to using 

simpler, nonmammalian model organisms for epilepsy re-

search.7,8 The fruit fly, Drosophila melanogaster, and the 

zebrafish, Danio  rerio, are well-established animal models 

that have been successfully used for high-throughput anticon-

vulsant drug screening.9,10 Several studies have established 

D rerio as a powerful vertebrate alternative to rodent-based 

drug discovery.7,11–14 Zebrafish take up minimal space, have 

a short generation time, and are amenable to automated 

motion tracking technology that facilitates high-throughput 

pharmacological screening platforms. Zebrafish embryos 

from as young as 2  days postfertilization (dpf) develop a 

concentration-dependent increase in locomotor activity upon 

PTZ exposure.15 This aberrant locomotion can be coupled to 

other seizure-related phenotypes seen in higher organisms, 

including interictal discharges and transcription of neuropro-

tective immediate-early genes, such as c-fos.16 c-fos activity 

has been used as the basis for high-throughput screening for 

compounds able to reduce seizurelike activity, as it can be 

easily visualized in D rerio embryos through whole-mount in 

situ hybridization.11

Modeling epilepsy in the nematode worm, 

Caenorhabditis elegans, is still in its infancy in comparison 

to zebrafish.7 Nevertheless, mutations in various C elegans 

genes have been shown to cause spontaneous seizurelike 

convulsions, or increased susceptibility to such behaviors, 

when exposed to PTZ, electroshock treatment, or heat,17–22 

consistent with higher organisms. Furthermore, various 

approved ASDs have been shown to ameliorate these sei-

zurelike behaviors,17,21 suggesting that C  elegans has un-

tapped potential for epilepsy drug discovery. In particular, 

the ease of genetic manipulation and maintenance of ge-

netically modified strains in comparison to other animal 

models means that C elegans is especially powerful for dis-

covering ASD mechanisms of action via chemical-genetic 

approaches.21,23

Each model organism used in epilepsy research has its 

own strengths and weaknesses. We reasoned that combining 
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Key Points

• Compound library screening in zebrafish identi-

fies chlorothymol as an anticonvulsant

• Genetic screening in nematodes reveals that chlo-

rothymol acts on GABAA receptors

• Electrophysiological recording from mouse 

and human neurons confirms chlorothymol's 

GABAergic mechanism of action

• Chlorothymol is protective in several mouse sei-

zure assays, including the 6-Hz 44-mA model of 

pharmacoresistant seizures
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the strengths of multiple in vivo animal models with in vitro 

brain tissue electrophysiology would create a pipeline ap-

proach for discovering novel ASDs and their mechanisms of 

action. We demonstrate this approach here, using D rerio to 

identify the hit compound, chlorothymol, from a compound 

library screen. We show that chlorothymol has anticonvul-

sant properties in both D rerio and C elegans. Subsequently, 

using a chemical-genetic screen, we identify chlorothymol's 

molecular target in C elegans as the γ-aminobutyric acid type 

A (GABAA) receptor subunit, LGC-37, and confirm this 

GABAergic mechanism of action using electrophysiologi-

cal recording from mouse and human brain slices. Finally, 

we validate this novel drug screening approach through the 

evaluation of chlorothymol in a battery of well-established 

preclinical acute and chronic seizure models in mice, which 

have been instrumental to the identification of all clinically 

available ASDs to date.3 Of note, chlorothymol demon-

strated marked efficacy in the 6-Hz 32-mA and 44-mA 

pharmacoresistant seizure tests, further confirming the util-

ity of a multispecies drug screening approach for novel ASD 

discovery.

2 |  MATERIALS AND METHODS

2.1 | Materials

All materials were from Sigma-Aldrich unless stated oth-

erwise. The Johns Hopkins Clinical Compound Library 

(JHCCL)24 was supplied by Professor David Sullivan 

(Baltimore, MD).

2.2 | Zebrafish methods

Animals were maintained according to zebrafish standards 

of care25 at 28°C on a 14  hours light/10  hours dark cycle. 

Compound screening utilized the JHCCL (v1.0).24 Embryos 

were prepared26 and c-fos in situ hybridization assays were 

performed11 as previously described. Seizurelike activ-

ity was measured using the Zebrabox/Zebralab (Zebrabox 

Viewpoint) automated locomotion tracking system.11 All 

experiments with zebrafish were performed under licence 

from the UK Home Office and approved by the University of 

Sheffield Animal Welfare and Ethical Review Body.

2.3 | C elegans methods

Worms were maintained at 20°C using standard conditions. 

The lgc-37;unc-49 double mutant strain was created by 

crossing the lgc-37(tm6573) and unc-49(e407) strains and 

confirmed by genotyping.21 PTZ and paralysis assays were 

performed as previously described.21 The UBC_f80M224Q 

and CBGtg9050C11145D27 fosmid constructs were obtained 

from Source-Bioscience. Three independently derived lines 

of each transgenic strain were analyzed.

2.4 | Brain slice preparation and 
electrophysiology

Mouse thalamic slices were prepared from C57/Bl6 mice 

(postnatal day 18-24) of either sex according to standard 

protocols.28 Human tissue was obtained in accordance with 

ethical approval by the Newcastle and North Tyneside 2 

Research Ethics Committee (06/Q1003/51) with clinical 

governance approval by the Newcastle Upon Tyne National 

Health Service Foundation Trust (CM/PB/3707). Human 

neocortical slices were prepared from fresh brain tissue ob-

tained from the margin of resection from patients who under-

went neurosurgery for brain tumors. Electrophysiological 

recording procedures are described in detail in Appendix 

S1.

2.5 | Mouse in vivo seizure tests

Male albino CF-1 mice (Envigo, Harlan) were used 

as experimental animals. All rodent studies were per-

formed at the University of Washington and approved 

by the University of Washington Institutional Animal 

Care and Use Committee and conformed to the ARRIVE 

Guidelines.29

For MES, the electrical stimulus was 50 mA, 60 Hz for 

0.2  seconds delivered using equipment similar to that de-

scribed previously.30 Absence of tonic hindlimb extension 

was considered protected. Mice were challenged with 6-Hz 

stimulation used to induce seizures at 32 mA and 44 mA for 

a duration of 3 seconds via corneal electrodes.31 Typically, 

6-Hz seizures are characterized by an initial momentary stun 

followed immediately by forelimb clonus, twitching of the 

vibrissae, and Straub tail. Animals not displaying this be-

havior were considered protected. The subcutaneous PTZ 

(scPTZ) assay was conducted using 85  mg/kg PTZ, the 

convulsant dose of 97% of male CF-1 mice.31 Absence of 

a seizure in the 30-minute observation period was scored as 

protection. For corneal kindling, mice were kindled to a cri-

terion of five consecutive secondarily generalized seizures 

(stage 4 or 5, as described by Racine32) as previously de-

scribed.33,34 Mice displaying a seizure score ≤ 5 were con-

sidered protected. The fixed-speed rotarod test was used to 

establish minimal motor impairment to calculate median 

behavior-impairing dose (TD50) values.35 Compounds were 

considered toxic if treated mice fell off three times during a 

1-minute period.
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2.6 | Statistical analysis

This was generally performed using GraphPad Prism version 

6, using Student t tests or analysis of variance (ANOVA) 

with appropriate corrections for multiple testing. For mouse 

phenotyping, the dose required to produce the desired end-

point in 50% of animals (estimated median effective dose 

[ED50] or TD50) in each test, the 95% confidence interval, 

and the slope of the regression line were calculated by Probit 

analysis.36

Extensive additional detail about all methods is provided 

in Appendix S1.

3 |  RESULTS

3.1 | Identification of chlorothymol from 
compound library screening in zebrafish

Treatment of D rerio with PTZ induces expression of the tran-

scription factor c-fos, an indirect marker of increased neuronal 

activity and stress.16 Compounds that can prevent this upregula-

tion of c-fos represent potential antiseizure agents.11 We screened 

the JHCCL of 1690 compounds,24 using an in situ hybridization 

assay to detect c-fos transcripts in 2-dpf zebrafish embryos.11 

Among the hits obtained in this screen was chlorothymol (JHCCL 

F I G U R E  1  Effects of chlorothymol on pentylenetetrazol (PTZ)-treated zebrafish. A, Chlorothymol structure (carbon = gray, 

hydrogen = white, oxygen = red, chlorine = green). B, In situ hybridization to detect c-fos mRNA in 2 days postfertilization (dpf) Danio rerio 

larvae pretreated with dimethylsulfoxide (DMSO) vehicle only (left panel) or 25 µmol·L–1 chlorothymol in DMSO (right panel) before exposure 

to 20 mmol·L–1 PTZ. Arrows indicate the head of each embryo, where strong PTZ-induced c-fos expression is suppressed by exposure to 

chlorothymol. C, Chlorothymol reduces PTZ-induced locomotor behavior in a concentration-dependent manner. The average distance moved by 

3-dpf D rerio larvae following introduction of 20 mmol·L–1 PTZ was recorded over a 1-hour observation period in fish pretreated with a range 

of chlorothymol concentrations. Data displayed show mean values ± SEM (n = 18 fish per concentration, N = 3 independent experiments). D, 

Chlorothymol is more potent than the prototype antiseizure drug, valproate (VPA), as it reduced the seizurelike behavior at a 100-fold lower 

concentration. The average distance moved by 3-dpf D rerio larvae following introduction of 20 mmol·L–1 PTZ was recorded over a 1-hour 

observation period in fish pretreated with vehicle only (control), 25 µmol·L–1 chlorothymol, or 2.5 mmol·L–1 VPA. Data displayed show mean 

values ± SEM (n = 24 fish per treatment, N = 3 independent experiments). Data were analyzed using one-way analysis of variance with Tukey 

multiple comparisons test (****P ≤ .0001 compared to PTZ-treated animals)
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identification number JHU-2077; Figure 1A). Preincubation of 

2-dpf embryos with 25 µmol·L–1 chlorothymol for 60 minutes be-

fore exposure to 20 mmol·L–1 PTZ caused a marked reduction in 

c-fos expression (Figure 1B). Subsequent quantitative real-time 

polymerase chain reaction substantiated these results in 3-dpf 

larvae, with chlorothymol causing an approximately threefold 

reduction in PTZ-induced c-fos expression (Figure S1). We then 

set out to determine whether chlorothymol could also ameliorate 

seizurelike behavior. PTZ can induce several distinct phenotypes 

in D rerio, including an increase in sporadic locomotion often 

coupled with a “whirlpool” behavior.11,16 Using automated track-

ing software, we measured movement of 3-dpf larvae following 

application of 20 mmol·L–1 PTZ. Preincubation with chlorothy-

mol produced a concentration-dependent reduction of seizurelike 

locomotion behavior (Figure 1C). At 25 µmol·L–1, chlorothymol 

reduced PTZ-induced movement by approximately threefold, but 

had little effect on basal locomotion when fish were treated with 

25 µmol·L–1 chlorothymol alone (Figures 1D and S2). At a higher 

concentration of 100 µmol·L–1, chlorothymol reduced basal loco-

motion, suggesting that, like many approved ASDs, it may have 

sedative properties at concentrations above the therapeutic range. 

The efficacy of 25 µmol·L–1 chlorothymol was then compared to 

that of the clinically approved ASD, sodium valproate (VPA), at 

a concentration (2.5 mmol·L–1) that produces strong anticonvul-

sant effects in zebrafish but is below the maximum tolerable con-

centration.15 Chlorothymol was significantly more potent against 

PTZ-induced seizurelike locomotion than VPA, attenuating ac-

tivity at a 100-fold lower concentration (Figures 1D and S2).

3.2 | Chlorothymol reduces PTZ-induced 
seizurelike activity in C elegans

To determine whether chlorothymol acts via an evolution-

arily conserved target, the drug was tested in a C elegans 

liquid-based assay of seizurelike activity. This involved 

treating the seizure-prone unc-49(e407) strain with PTZ 

for 15  minutes and then quantifying the number of head-

bobbing convulsions over a 30-second period.21 The con-

centration of PTZ used (50  mmol·L–1) was previously 

established as optimal based on concentration-response 

studies.21 Although this PTZ concentration appears high, 

it is important to note that this is the level in the bathing 

medium only. The internal concentration experienced by 

C  elegans neurons is likely to be substantially lower, as 

the worm cuticle forms a barrier that greatly reduces the 

bioaccumulation of most compounds.37 Using this method, 

we again found that pretreatment with chlorothymol could 

reduce seizurelike activity in a concentration-dependent 

FIGURE 2 Chlorothymol has anticonvulsant activity in Caenorhabditis 

elegans. A, Chlorothymol reduces pentylenetetrazol (PTZ)-induced 

convulsions in a concentration-dependent manner. Seizure-prone unc-

49(e407) mutant worms were preincubated for 15 minutes with a range 

of chlorothymol concentrations before incubation in the presence (green 

line) or absence (black dotted line) of 50 mmol·L–1 PTZ. The total 

number of head-bobbing convulsions was measured over a 30-second 

period and displayed as a percentage of PTZ-treated controls ± SEM 

(n = 10 worms per concentration, N = 3 independent experiments). 

B, C elegans treated with the optimal anticonvulsant concentration of 

150 µmol·L–1 chlorothymol determined in A showed a similar level 

of seizure reduction to the optimal concentration of valproate (VPA; 

15 mmol·L–1). Data are displayed as mean ± SEM (n = 10 worms per 

treatment, N = 3 independent experiments) and were analyzed using 

one-way analysis of variance with Tukey multiple comparison test 

(***P ≤ .001 compared to respective PTZ-only treatment groups)
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manner (Figure 2A). At 150 µmol·L–1 chlorothymol, PTZ-

induced head-bob convulsions were reduced by 93% com-

pared to control, with negligible paralysis observed in the 

presence or absence of PTZ treatment (Figure 2A; Videos 

S1 and S2). This demonstrated a therapeutic window where 

anticonvulsant activity was high whereas motor impairment 

was minimal. The effect of 150 µmol·L–1 chlorothymol was 

then compared to VPA, having first established the opti-

mal concentration of VPA to be 15 mmol·L–1 in this assay 

(Figure S3). Chlorothymol exhibited a similar level of an-

ticonvulsant activity to VPA in C elegans (Figure 2B), but 

at a 100-fold lower optimal concentration, thus mirroring 

the activity observed in zebrafish. The combined data from 

these two simple model organisms therefore suggested an 

evolutionarily conserved anticonvulsant mechanism of ac-

tion of chlorothymol.

3.3 | Chlorothymol's molecular target in C 
elegans is the GABAA receptor subunit, LGC-37

There are very few published studies of chlorothymol, but it 

has been suggested that the compound exhibits membrane-

modifying and antioxidant properties, as well as effects on 

GABAergic signaling,38–40 which could account for its an-

ticonvulsant properties. As chlorothymol is structurally re-

lated to some compounds with GABAergic activity, such 

as propofol, we performed a chemical-genetic screen in 

C elegans to test the hypothesis that chlorothymol's in vivo 

molecular target was a component of the GABA machin-

ery. To this end, we obtained strains containing mutations 

in known elements of the C  elegans GABA system. This 

included seven GABAA receptors, two GABAB receptors, 

two GABA transporters, two chloride transporters, and the 

GABA-synthesizing enzyme glutamic acid decarboxylase 

(Figure  3A). We then screened these strains using the pa-

ralysis phenotype caused by exposure to a high concentra-

tion (300 µmol·L–1) of chlorothymol in the absence of PTZ 

(Video S3), reasoning that mutations in genes encoding 

chlorothymol's molecular targets would confer resistance to 

chlorothymol-induced paralysis.

This initial screen identified lgc-37(tm6573) as the 

only strain that was significantly resistant to chlorothy-

mol-induced paralysis in comparison to control wild-type 

N2 C  elegans (63% vs 17% paralysis resistance, respec-

tively). The lgc-37 gene encodes a ligand-gated ion chan-

nel subunit homologous to human GABAA receptors.27 

According to BLASTP analysis, C elegans LGC-37 exhib-

its similar homology to human GABAA receptor gamma 2, 

alpha 6, and beta 2 subunits (Figure S4). Although one of 

these isoforms may represent the true orthologue of LGC-

37, it seems more likely that LGC-37 is an evolutionarily 

ancient GABAA receptor that fulfils the role of more than 

one of the human isoform subunits. There are no pub-

lished functional data on LGC-37, but green fluorescent 

protein (GFP)-tagging studies in C elegans have shown it 

to be expressed in a wide variety of neuronal cell types, 

and also in muscle.27 To confirm that chlorothymol resis-

tance in the lgc-37(tm6573) strain was due to the lgc-37 

mutation and not some other defect, we attempted to res-

cue this phenotype by reintroduction of wild-type lgc-37 

(Figure 3B). Fosmids containing the native lgc-37 gene or 

a GFP-tagged lgc-37 construct27 were microinjected into 

the gonads of the lgc-37(tm6573) mutant strain alongside 

a pharynx-specific red fluorescent protein (RFP) marker 

to identify transgenic progeny. We found that paralysis 

resistance could be rescued back to wild type-levels in 

transgenic worms by both untagged and GFP-tagged lgc-

37 constructs, whereas the RFP marker alone had no effect 

(Figure 3B).

Having confirmed that resistance to chlorothymol-in-

duced paralysis is mediated by LGC-37, we set out to deter-

mine whether LGC-37 was also the target of chlorothymol's 

anticonvulsant activity. To this end, we crossed the lgc-

37(tm6573) strain with the unc-49(e407) strain used for the 

seizure assays to create a double mutant strain harboring 

both lgc-37 and unc-49 alleles. The double mutant was in-

distinguishable from the single unc-49 mutant in terms of 

the number and frequency of convulsions caused by PTZ 

treatment. However, the ability of 150 µmol·L–1 chlorothy-

mol to prevent such PTZ-induced convulsions was greatly 

reduced in the double mutant, confirming LGC-37 as 

the main target of chlorothymol's anticonvulsant activity 

(Figure 3C). Nevertheless, the effect of chlorothymol was 

not entirely abolished in the lgc-37;unc-49 double mutant, 

suggesting that the compound may also have minor activity 

on other molecular targets.

To validate our chemical-genetic identification of chlo-

rothymol's in vivo mechanism of action, we took an al-

ternative pharmacological approach using the GABAA 

competitive antagonist, bicuculline. Treatment of wild-type 

N2 worms with 10  mmol·L–1 bicuculline methiodide re-

duced chlorothymol-induced paralysis from 77% to 27%, 

thus confirming chlorothymol's pro-GABAergic action 

(Figure  3D, Video S4). Finally, to ensure that chlorothy-

mol's anticonvulsant activity was not due to sedative effects 

associated with some GABAergic drugs, we performed 

a concentration-response experiment using the general 

anesthetic etomidate, a positive modulator of GABAA 

receptors. No significant anticonvulsant effects of etomi-

date were detected even at the highest concentration tested 

(400 µmol·L–1), where around 50% of worms became par-

alyzed by the drug (Figure S5). Taken together, these data 

indicate that chlorothymol's anticonvulsant mechanism of 

action in C elegans requires the GABAA receptor subunit, 

LGC-37.



   | 7JONES ET AL.

F I G U R E  3  Chlorothymol acts via the Caenorhabditis elegans γ-aminobutyric acid type A (GABAA) receptor subunit, LGC-37. A, Genetic 

screen for chlorothymol-resistant mutants. C elegans strains with mutations in genes related to GABA function were incubated for 15 minutes 

in 300 µmol·L–1 chlorothymol. The proportion of animals that remained paralyzed over a subsequent 30-second interval was then scored (n = 10 

worms per strain, N = 3 independent experiments). The lgc-37(tm6573) mutant strain was found to be significantly resistant to this paralysis 

(*P < .05 compared to wild-type [WT] N2 strain). B, Transgenic expression of wild-type lgc-37 DNA constructs reverses chlorothymol resistance 

in lgc-37 mutants. Sensitivity to chlorothymol-induced paralysis in lgc-37 mutants expressing either green fluorescent protein (GFP)-tagged (Ex 

[lgc-37::lgc-37::GFP]) or untagged (Ex [lgc-37::lgc-37]) lgc-37 genomic clones was not significantly different from wild-type N2 controls, 

whereas expression of the fluorescent marker alone (Ex [myo-2::RFP]) had no effect (n = 15 worms per strain, N = 3 independent experiments; 

**P < .01, ****P ≤ .0001 compared to the lgc-37 strain). ns, not significant; RFP, red fluorescent protein. C, Mutation of lgc-37 reduces the 

anticonvulsant effect of chlorothymol. Single mutant unc-49 and double mutant lgc-37;unc-49 strains were compared in the pentylenetetrazol 

(PTZ) assay of seizure-related activity. Both strains produced similar levels of PTZ-induced convulsions, but the anticonvulsant effect of 

chlorothymol was greatly reduced in lgc-37;unc-49 double mutants (n = 10 worms per treatment, N = 3 independent experiments, ***P < .001, 

****P ≤ .0001 compared to the unc-49 strain). D, The competitive GABAA antagonist, bicuculline (10 mmol·L–1) prevents paralysis induced 

by 300 µmol·L–1 chlorothymol (n = 10 worms per treatment, N = 3 independent experiments, ***P < .001 compared to worms treated with 

chlorothymol only). Data are shown as mean ± SEM and were analyzed using one-way analysis of variance with Tukey multiple comparison test 

(A-C) or by unpaired t test (D)
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F I G U R E  4  Chlorothymol increases tonic and phasic γ-aminobutyric acidergic currents in mouse and human brain slices. A, Example 

whole-cell recording from a mouse thalamic ventrobasal (VB) neuron. Inhibitory currents were isolated by holding the cell at −60 mV in voltage 

clamp mode in the presence of 2 mmol·L–1 kynurenic acid and 0.5 μmol·L–1 tetrodotoxin. Bath application of 54 µmol·L–1 chlorothymol induced 

an inward shift in the holding current, consistent with an enhancement of the resident tonic inhibitory conductance (revealed by subsequent 

application of 30 μmol·L–1 bicuculline). B, Superimposed miniature inhibitory postsynaptic current (mIPSC) averages obtained before and after 

chlorothymol application (from the same cell shown in A). The boxed inset illustrates the averaged chlorothymol current normalized to the control 

peak amplitude. C, Example whole-cell recording from a human cortical neuron. Inhibitory currents were isolated by holding the cell at +10 mV 

in voltage clamp mode. Chlorothymol (54 µmol·L–1) and bicuculline (10 µmol·L–1) were sequentially applied to test their effects on inhibitory 

currents. D, Superimposed mIPSC averages obtained before and after chlorothymol application (from the cell shown in C). The boxed inset 

shows averaged chlorothymol current normalized to the control peak amplitude. E, Expanded timepoints from the recording in C under control, 

chlorothymol, and bicuculline conditions. Colored dotted lines represent the holding current under these three conditions. Bicuculline blocks both 

phasic (Iphasic) and tonic (Itonic) currents and hence can be used to calculate Itonic in control conditions as the difference between the holding current 

under control and bicuculline conditions. The increase in Itonic induced by chlorothymol was calculated as the difference in holding current between 

chlorothymol and control. Iphasic was calculated by averaging the traces after subtraction of the holding current (see Materials and Methods for full 

details). F, Population data showing that chlorothymol increased both Itonic and Iphasic in human cortical neurons. Data are shown as mean ± SEM 

(n = 6 brain slices) and were analyzed by paired t tests (*P < .05)
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3.4 | Chlorothymol enhances 
phasic and tonic GABAA receptor signaling in 
mammalian brain

To investigate the mechanism by which chlorothymol in-

teracts with the GABAA receptor, and to test whether this 

interaction is preserved in the mammalian brain, we per-

formed a series of electrophysiological experiments using 

both mouse and human neurons. We first tested the effect 

of chlorothymol on GABAA receptor signaling using mouse 

thalamocortical brain slices. Ventrobasal (VB) neurons in 

these preparations exhibit GABAergic phasic and tonic 

inhibition mediated by synaptic α1β2γ2 and extrasynap-

tic α4β2δ GABAA receptors, respectively.28,41–43 We iso-

lated phasic and tonic GABAergic currents by performing 

whole cell voltage-clamp recordings in the presence of 

kynurenic acid to block glutamate receptors and tetrodo-

toxin to block action potentials. We used a high intracellular 

chloride solution and held the neurons at −60 mV; in this 

configuration, phasic GABAergic currents are recorded as 

negative deflections in the traces and changes in the hold-

ing current represent changes in tonic GABAergic currents 

(Figure 4A). Application of 54 µmol·L–1 chlorothymol in-

creased the holding current to 180% of that seen under con-

trol conditions (Figure  S6), consistent with an increase in 

the tonic GABAergic inhibitory conductance displayed by 

VB neurons. This was reversed by subsequent application 

of 30  µmol·L–1 bicuculline, confirming that the measured 

changes in holding current were mediated by GABAA re-

ceptors (Figure 4A). In addition, chlorothymol application 

increased phasic GABAergic signaling by significantly pro-

longing the decay phase and increasing the peak amplitude 

of VB miniature inhibitory postsynaptic currents (mIPSCs; 

Figure 4B). This resulted in an increase in the average charge 

transferred per mIPSC to 180% of control (where control 

is 100%, ie, an 80% increase over the control; Figure S6). 

Collectively, these experiments demonstrate that chlorothy-

mol exerts positive effects on GABAA receptor isoforms that 

are commonly expressed at synaptic (α1/γ2-containing) and 

extrasynaptic (δ-containing) locations in the mouse brain, 

thus enhancing phasic and tonic GABAergic currents.

To investigate the translational potential of chlorothy-

mol, we tested whether chlorothymol could also enhance 

GABAergic currents in human neurons. We used human 

cortical brain slices prepared from the resection margin from 

patients who required neurosurgical interventions for brain 

tumors. To isolate GABAergic inhibitory currents, without 

perturbing the network activity by using glutamate blockers, 

we performed patch-clamp recordings in voltage clamp mode 

and held the membrane potential at +10 mV, close to the re-

versal potential for glutamate (Figure 4C; see Jirsa et al44). 

Using this configuration, phasic GABAergic currents are re-

corded as positive deflections in the traces, and changes in 

holding current represent changes in tonic GABAergic cur-

rents (Figure 4C). Phasic and tonic inhibitory currents (IPha 

and ITon) were separated based on a modification of a pub-

lished method.45 Chlorothymol (54 µmol·L–1) and bicuculline 

(10  µmol·L–1) were sequentially applied, which allowed us 

to record the percentage change in ITon and IPha induced by 

chlorothymol. As illustrated in Figure 4C-F, chlorothymol in-

creased ITon and IPha to 163% and 172% of control, respectively 

(where control is 100%; ie, 63% and 72% increases over the 

control). Conversely, bicuculline significantly reduced IPha to 

15.7% of control and blocked ITon, as illustrated by the re-

duction in holding current. Analysis of mIPSCs revealed that 

chlorothymol significantly increased mIPSC amplitude and 

charge transfer (Figure  S7). The data from human cortical 

neurons were remarkably consistent with the effects of chlo-

rothymol on GABAergic currents recorded in mouse thalam-

ocortical neurons. Taken together, these results demonstrate 

that chlorothymol acts by increasing GABAergic signaling, 

and this mechanism of action is preserved in both mouse and 

human neurons.

3.5 | Chlorothymol exhibits anticonvulsant 
activity in mouse acute and chronic 
seizure models

As a final validation step in our drug discovery pipeline, the 

effect of chlorothymol was investigated in a battery of well-

established, preclinical mouse seizure paradigms that have 

been instrumental to the identification of all ASDs currently 

available in the clinic.3 The tests included the MES test, the 

6-Hz test at 32 and 44 mA, the scPTZ test, and the corneal 

kindled mouse model. In addition to defining the potential 

for antiseizure efficacy, we also sought to define the po-

tential for motor-impairing effects by quantifying the TD50 

using the rotarod test.35 Chlorothymol was found to have 

a TD50 of 151  mg/kg when administered intraperitoneally 

(IP) 1 hour prior to testing. The IP administration interval of 

1 hour prior to testing was found to be the time of peak effect 

for the compound, for all of the tests shown; however, chlo-

rothymol demonstrated rapid anticonvulsant activity that 

was maintained for at least 4 hours. Chlorothymol was found 

to exert potent and sustained activity against 6-Hz focal 

psychomotor seizures, at both 32 mA (ED50 = 18.0 mg/kg) 

and 44 mA current intensities (ED50 = 66.2 mg/kg), at doses 

that were devoid of behavioral toxicity, yielding protective 

index (PI; TD50/ED50) values of 8.4 and 2.3, respectively 

(Table 1). Chlorothymol was less potent in the scPTZ test, 

but nevertheless reduced clonic seizures up to the end point 

of 0.5 hour following PTZ administration (ED50 = 118 mg/

kg; PI = 1.3). It also blocked the tonic-extension component 

of MES seizures (ED50 = 136 mg/kg), albeit with a low PI 

of 1.1.



10 |   JONES ET AL.

Having established efficacy in acute seizure mod-

els, corneal kindled mice were then used to test whether 

chlorothymol was also effective in a chronic network hy-

perexcitability assay.32 Chlorothymol was found to dose-de-

pendently reduce kindled seizure severity in corneal kindled 

mice, at a calculated ED50 of 115 mg/kg (PI value of 1.3; 

Table 1 and Figure S8). Importantly, this finding demon-

strates that chlorothymol exerts anticonvulsant activity in 

a chronically hyperexcitable rodent model. Finally, VPA 

was used as a positive control in the 6-Hz 32-mA and MES 

tests, as these produced chlorothymol's highest and lowest 

PI values, respectively. Although VPA provided better pro-

tection in the MES test, chlorothymol displayed greater PIs 

than VPA in the 6-Hz 32-mA and 44-mA tests (PI values of 

8.4 and 2.8, respectively). Therefore, chlorothymol has pro-

tective activity in several well-validated mouse acute and 

chronic seizure models, including the mouse 6-Hz 44-mA 

model of pharmacoresistant seizures. Furthermore, the an-

ticonvulsant efficacy of chlorothymol is consistent with the 

broad spectrum ASD, VPA.

4 |  DISCUSSION

New therapeutic options are urgently needed for the 

large number of people with pharmacoresistant epilepsy.1 

However, developing new drugs typically takes >20 years, 

and much of this time is spent on early drug discovery 

and translational science rather than on later clinical stud-

ies.46 The multiorganism pipeline approach described here 

(Figure 5), which exploits the power of simple model or-

ganisms for pharmacological and genetic screening prior to 

validation in more complex mammalian systems, can po-

tentially accelerate such early preclinical studies. We chose 

zebrafish for the first stage of the pipeline (the initial com-

pound library screen), as this organism has demonstrated 

utility in pharmacological screens for novel ASDs.7,11–14 A 

cornerstone of our strategy is that hit compounds must then 

be validated in an evolutionarily distant organism, to avoid 

potential species-specific effects. We chose C elegans for 

this second stage, because of its facile molecular genet-

ics and large library of viable mutant strains. This confers 

Test

Chlorothymol VPA

ED50, mg/kg 

(95% CI)

PI, ED50/ 

TD50

ED50, mg/kg 

(95% CI)

PI, ED50/

TD50

6 Hz, 32 mA 18.0 (6.8-28.2) 8.4 139 (92.4-197) 2.8

6 Hz, 44 mA 66.2 (45.8-102) 2.3 289 (242-384)a 1.3a 

Subcutaneous PTZ 118 (83.4-144) 1.3 305 (212-403)a 1.3a 

Maximal electroshock 136 (106-166) 1.1 213 (138-274) 1.8

Corneal kindled 115 (78.1-205) 1.3 174 (135-208)a 2.2a 

Rotarod, TD50 151 (126-191) 390 (382-396)

Note: At least eight mice were used for each test dose necessary to define an ED50/TD50 at the previously 

determined time to peak effect of each compound (1 hour for chlorothymol, 15 minutes for VPA).

Abbreviations: CI, confidence interval; ED50, estimated median effective dose; PI, protective index; PTZ, 

pentylenetetrazol; TD50, median behaviorally impairing dose; VPA, valproic acid.
aData are from the PANAChE database (National Institute of Neurological Disorders and Stroke: https://panac 

he.ninds.nih.gov/ChemD etail.aspx?CHEM_ID=8). 

T A B L E  1  Effect of chlorothymol and 

VPA in mouse seizure models

F I G U R E  5  A multiorganism pipeline for antiseizure drug discovery. The schematic diagram illustrates the different stages used in our 

approach. VB, ventrobasal

https://panache.ninds.nih.gov/ChemDetail.aspx?CHEM_ID=8
https://panache.ninds.nih.gov/ChemDetail.aspx?CHEM_ID=8
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the additional advantage of enabling much faster chemical-

genetic identification of a drug's mechanism of action than 

could be achieved in other animal models. These features 

allowed us to confirm chlorothymol's anticonvulsant activ-

ity and to reveal its molecular target as a GABAA receptor 

subunit. Nevertheless, various other invertebrate model or-

ganisms could be used for these early stages, for example 

Drosophila.9 The next stage in our pipeline was to estab-

lish that hit compound activity and molecular mechanism 

are conserved in mammalian systems, including humans, 

and therefore have translational potential. For this, we used 

mouse and human brain slice electrophysiology to con-

firm the GABAergic action of chlorothymol in neurons. 

Finally, therapeutic activity should be demonstrated in a 

widely accepted and preferably clinically validated in vivo 

mammalian model. Our finding that chlorothymol confers 

antiseizure efficacy in several clinically validated and/

or well-established mouse seizure models—including the 

MES, corneal kindled mouse, and 6-Hz 44-mA models of 

pharmacoresistant seizures—therefore provides the proof 

of principle that this multiorganism pipeline approach can 

reveal novel anticonvulsants with clear therapeutic poten-

tial. One drawback of our use of human brain to validate 

translational potential is the difficulty of obtaining tissue for 

experiments. This represents a bottleneck in the approach 

described here, but could alternatively be performed as the 

last stage in the pipeline after preclinical testing in rodents. 

Although our chemical screen identified a molecule with a 

target (the GABAA receptor) that is already established in 

the treatment of epilepsy, the inclusion in our pipeline of 

C elegans, which lacks voltage-gated sodium channels (the 

most common target of current ASDs), should increase the 

chance of finding ASDs with novel targets compared to 

existing approaches that do not include this animal model. 

In the future, the ability to rapidly create models of specific 

genetic epilepsy syndromes in both fish and worms using 

CRISPR could be used to develop drug screens targeted at 

specific causative variants in candidate genes.7 Moreover, 

the pipeline approach is applicable to many different dis-

orders and so may be of more general interest beyond the 

clinical indication of epilepsy.

Although little has been published on chlorothymol, it 

has been suggested to possess GABAergic, membrane-mod-

ifying, and antioxidant properties.38–40 Our results using 

genetic and pharmacological approaches in worm, mouse, 

and human systems strongly indicate that chlorothymol's 

anticonvulsant action occurs via positive modulation of 

GABAA receptors. This is consistent with the importance 

of the GABAergic system in epilepsy; variants in GABAA 

receptor subunits are a common cause of genetic epilep-

sies,47 and various approved ASDs act by GABA potentia-

tion.48 Although a variety of GABAA receptor modulating 

compounds are already available, there are some unique 

properties of chlorothymol that suggest it may have trans-

lational potential for epilepsy indications. First, it is struc-

turally unrelated to any clinically approved ASD. Second, 

chlorothymol's therapeutic profile in several mouse seizure 

assays differentiates it from most GABAergic ASDs, in 

particular the benzodiazepines that typically show highest 

potency in the scPTZ test.3 This is clearly seen for diaze-

pam using either the same  CF-1  mice from Envigo used 

in this study49 or mice from Charles River (available on 

the National Institute of Neurological Disorders and Stroke 

Panache Database https://panac he.ninds.nih.gov). In con-

trast, chlorothymol did not demonstrate significant activity 

at nonimpairing doses in the scPTZ test, but did confer sig-

nificant anticonvulsant activity in the 6-Hz 44-mA model 

of drug-resistant focal seizures. Hence, although further 

work is required, chlorothymol (or derivates thereof) has 

potential applications, not only in epilepsy, but also in 

other indications where GABAA receptor modulators are 

used clinically, such as anxiety.

Chlorothymol is inexpensive (less than $2 per gram) and 

very stable (we have observed no loss in anticonvulsant ac-

tivity upon storage for >18 months). However, the only re-

port of its clinical use that we have found dates from 1933, 

where its potential application as a topical antiseptic in ob-

stetrics is described.50 The data shown here that high doses 

of chlorothymol cause motor impairment in mice, fish, and 

worms suggest that this could be an issue for clinical appli-

cations. Comprehensive behavioral assays in addition to the 

simple rotarod test would therefore be desirable to gain more 

information on the tolerability and safety of chlorothymol, 

for example, the habituated open field test.49 Nevertheless, a 

therapeutic window was found in all three model organisms 

where anticonvulsant effects were observed with minimal 

sedation, suggesting that the same may be achievable in 

humans with carefully controlled dosing regimens. Several 

currently prescribed ASDs (notably VPA) also have very 

narrow protective indices in animal models3 and liability to 

adverse effects at high doses in humans. In the short term, 

chlorothymol may have direct clinical applications for status 

epilepticus, which currently uses benzodiazepines as a first-

line treatment to potentiate GABAA receptors and where 

sedation is less of an issue.51 Chlorothymol may therefore 

have promise as an alternative to benzodiazepines or as a 

therapy for benzodiazepine-resistant status epilepticus. 

In the longer term, medicinal chemistry approaches using 

chlorothymol as a starting scaffold could be used to de-

velop structurally related next generation compounds with 

increased anticonvulsant activity, reduced sedative effects, 

and enhanced selectivity at GABAA receptor subtypes. Our 

pipeline approach would be invaluable for such hit-to-lead 

optimization, as the bulk of the screening process could 

be performed quickly and cheaply using frontline fish and 

worms, with subsequent validation of lead compounds in 

https://panache.ninds.nih.gov
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the more complex and physiologically relevant rodent and 

human systems.
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