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This paper studies resilient coordinated control over networks with
hybrid dynamics and malicious agents. In a hybrid multi-agent system,
continuous-time and discrete-time agents concurrently exist and communicate
through local interaction. We introduce the notion of heterogeneous robustness
to capture the topological structure and facilitate convergence analysis of hybrid
agents over multiple subnetworks, where the exact number and identities of
malicious agents are not known. A hybrid resilient strategy is first designed
to ensure group consensus of the heterogeneously robust network admitting
completely distributed implementation. We then develop a scaled consensus
protocol which allows different clusters within each subnetwork, providing
further flexibility over the resilient control tasks. Finally, some numerical
examples are worked out to illustrate the effectiveness of theoretical results.
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1 INTRODUCTION

Distributed coordination in networked systems since their inception has attracted much research attention across com-
puter science, system theory, control engineering, applied mathematics, complex networks, and the like. Consensus
seeking1 is one of the most popular topics in this area, where a group of agents interact locally to exchange information
and reach a global objective of agreeing on some quantities of interest. The study of consensus problems is motivated by,
for example, data fusion in sensor networks,2 formation control of unmanned aerial vehicles,3 opinion dynamics in social
networks,4 and animal herding and flocking behaviors.5 Ample convergence results have been reported for networked
systems with discrete-time dynamics and continuous-time dynamics; see the work1,6,7 and references therein.

In many networked complex systems, there are both continuous-time and discrete-time agents working collaboratively
giving rise to a hybrid multi-agent system.8 Heating and cooling systems,9 for instance, consist of air conditioners and
furnaces operating in continuous time while thermostats operate in discrete time. A sample-and-hold circuit, where a
digital device controls an analog plant, is another typical example of coordinated hybrid system. A wide range of appli-
cations of hybrid systems have been found in, e.g., multi-cell wireless networks and cyber-physical systems including
power grids.10,11 In Zheng et al,12 three kinds of control protocols are designed to achieve consensus in first-order hybrid
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original work is properly cited.
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systems. Some necessary and sufficient conditions guaranteeing consensus are derived based on matrix analysis. The
results are later extended to second-order multi-agent systems.13 A game-theoretic approach is developed in Ma et al.14

to tackle consensus in hybrid multi-agent systems featuring a cost function for interacting agents. As the capability of
preventing faults and adversarial attacks is essential in many engineered and natural systems, a resilient version of consen-
sus in hybrid systems is introduced in Shang,15 where each agent removes a given number of the highest and lowest values
amongst those received from its neighbors. This extends the class of Weighted-Mean-Subsequence-Reduced algorithms
(W-MSR), which has played an important role in dealing with Byzantine nodes in networked control systems.16-20

An overarching assumption of the W-MSR algorithms in the literature is that each normal agent in the network knows a
priori a given maximum number r of agents which are malicious. Normal agents then are allowed to remove some number
of values that are most far from its own during the interaction with neighbors in order to eliminate the influence of poten-
tially deceptive information. To ensure resilient consensus, the entire underlying communication network is required
to be sufficient robust, which imposes a rather restrictive and rigid connectivity condition15-20 for many real-world net-
works as practical networks are often heterogeneously connected and have unequal connectedness/robustness in parts.
In mobile networks, for example, irregular deployment of gateway nodes gives rise to heterogeneous connectivity.23

In combat networks involving different parts of force nodes, intelligence nodes, and command and control nodes,24

heterogeneous functional robustness is shown to improve overall network performance.
In this paper, we develop distributed protocols for resilient consensus over complex networks with heterogeneous

robustness. We introduce the method of group consensus to W-MSR algorithms in order to allow convergence to dif-
ferent subgroup-level consensus values. In our resilient consensus framework, the agent dynamics are assumed to be
hybrid continuing the line of research in the work.12-15 The main novelty of the work is summarized as follows. First, we
extend the monolithic network robustness concept15-20 to accommodate heterogeneously robust subgroups of agents; cf.
Definition 1 and Definition 2. This provides needed flexibility in practical applications. Second, resilient control protocols
are designed to achieve group consensus on directed networks with hybrid agent dynamics; cf. Section 2.3. This general-
izes Shang15 to allow for subgroup-level individual consensus behavior, which, to the best of our knowledge, has so far
only been investigated for systems containing either all discrete-time agents25,26 or all continuous-time agents.27-29 Finally,
as a further generalization, resilient scaled group consensus protocols are designed to achieve scaled consensus in each
subnetwork containing hybrid agents, where the values of agents reach any prescribed ratio instead of a consistent value.
Scaled group consensus problem has been studied for agents with discrete-time dynamics30 as well as continuous-time
dynamics,31 but no fault-tolerant feature has been considered in these works.

It is worth noting that resilient group consensus problems have been approached very recently in Öksüz and Akar32

for discrete-time agents in a different spirit. The network considered there is structured into multiple functional layers
according to certain connectivity properties, and conditions for distribution of normal and adversarial nodes in these
layers are proposed to guarantee group consensus without a fault-tolerant strategy.

In the context of consensus problems of multi-agent systems, a different type of hybridity alternating between discrete
and continuous behaviors in the same system has also been investigated in the literature.21,22 Such problems have been
studied under the name of “switched multi-agent systems”. In this sense, the hybrid systems studied in the present paper
might be better interpreted as hybrid networks as the hybridity lies more in the type of nodes.

The rest of the paper is organized as follows. In Section 2, we provide some preliminaries, hybrid system model, and
our resilient consensus strategy. In Section 3, we present our main results with convergence analysis. Some numerical
examples are given in Section 4. The paper is concluded in Section 5.

2 PRELIMINARIES

Some graph theory preliminaries, the hybrid system model, and heterogeneous resilient strategy are detailed in this
section.

2.1 Graph theory
We denote by R and N the sets of real numbers and non-negative integers, respectively. A directed graph (or network)
G= (V, E) of order n is composed of the node set V= {v1, v2, … , vn} and the edge set E⊆V×V. The nodes are often referred
to as agents in distributed coordination and are partitioned as V=N∪M, where N is composed of all normal agents and M
encompasses the agents which may be malicious or adversarial; see Definition 3 below. The identities of malicious agents
are generally not known by the normal agents, which could make the consensus-seeking process very challenging. We
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divide the graph G intoΘ subgraphs G𝜃 = (V𝜃 , E𝜃) for 𝜃 = 1, 2, … ,Θ, where V1 = {v1, v2, … , vn1}, V2 = {vn1+1, … , vn1+n2},
… , VΘ = {vn1+…+nΘ−1+1, … , vn1+…+nΘ}, and E𝜃 ⊆E contains directed edges within V𝜃 . Here, |V𝜃| = n𝜃 represents the
number of agents in the 𝜃-th subgroup for 1≤ 𝜃 ≤Θ, and n =

∑Θ
𝜃=1 n𝜃 .

The edge (vi, vj)∈E indicates that agent vi can send information to agent vj by means of the network topology G. Let
Ni = {vj ∈V:(vj, vi)∈E} be the set of all neighbors of agent vi ∈V, and Ni = ∪Θ

𝜃=1Ni𝜃 , where Ni𝜃 =Ni ∩V𝜃 = {vj ∈V𝜃:(vj,
vi)∈E} consists of neighbors of vi within subgraph G𝜃 . A directed path from an agent vi to a different agent vj is a sequence
of edges (vi, vi1 ), (vi1 , vi2), … , (vil , v𝑗) in G. If there exists a directed path from vr to all other nodes in V, then G is said to
have a directed spanning tree with root node vr. Given r ∈ N, a subset S⊆V is called r-reachable16 if there is some node
vi ∈ S satisfying |Ni ∖ S|≥r. Furthermore, the graph G is called r-robust if for any two nonempty and mutually exclusive
subsets S1, S2 ⊆V at least one of them is r-reachable. Some basic properties of robust graphs are summarized as follows.

Lemma 1 (16). Fix s, r ∈ N (s< r), and assume that H is obtained by removing up to s incoming edges of every node in
an r-robust directed graph G. Then H is (r− s)-robust. Moreover, G is a 1-robust directed graph if and only if G contains
a directed spanning tree.

Given r𝜃 ∈ N for 1≤ 𝜃 ≤Θ, we extend the graph robustness concept to the heterogeneous robustness.

Definition 1 ((r1, … , rΘ)-robustness). The graph G is called (r1, … , rΘ)-robust if G𝜃 is r𝜃-robust for 𝜃 = 1, … ,Θ.

Intuitively, a graph G is (r1, … , rΘ)-robust if each of its constituent subgraph possesses the specified extent of
connectivity. Note that if r𝜃 ≡ r for all 1≤ 𝜃 ≤Θ, then an r-robust graph G must be (r1, … , rΘ)-robust. However,
(r1, … , rΘ)-robustness of G does not imply r-robustness for any number r. For example, if G does not have a spanning
tree, then by Lemma 1, G is not r-robust for any r ∈ N.

2.2 Hybrid system model
We consider a hybrid multi-agent system over the network G with both discrete-time and continuous-time agents. In
each subgroup V𝜃 , we partition the nodes into two sets: V

𝜃
represents the set of discrete-time agents and V

𝜃
= V𝜃∖V

𝜃

denotes the set of agents with continuous-time dynamics. Define V = ∪Θ
𝜃=1V

𝜃
and V = ∪Θ

𝜃=1V
𝜃

the sets composing
all continuous-time and discrete-time agents, respectively. Hence, V = V ∪ V. The state of the agent vi at time t≥ 0 is
denoted by xi(t) ∈ R if it is has continuous-time dynamics and denoted by xi(k) ∈ R at time k ∈ N if it has discrete-time
dynamics.

Definition 2 (Resilient group consensus for hybrid systems). The normal agents in G are said to achieve resilient
group consensus if the following two conditions hold for all 1≤ 𝜃 ≤Θ. (i) Validity: For any vi ∈N∩V𝜃 and t≥ 0, xi(t) ∈
[minvi∈N∩V𝜃

xi(0),maxvi∈N∩V𝜃
xi(0)]; and (ii) Convergence: For any initial conditions {xi(0)}vi∈V , there exists 𝓁𝜃 ∈ R such

that limk→∞xi(k) = 𝓁𝜃 for vi ∈N∩V𝜃 and limt→∞xi(t) = 𝓁𝜃 for vi ∈ N ∩ V
𝜃

.

For k ∈ N, the dynamics of a continuous-time normal agent vi ∈ N ∩ V follows

.xi(t) = 𝑓 
i
(
{xi

𝑗
(t) ∶ v𝑗 ∈ (Ni ∪ {vi}) ∩ V} ∪ {xi

𝑗
(k) ∶ v𝑗 ∈ Ni ∩ V}

)
, t ∈ [k, k + 1), (1)

and the dynamics of a discrete-time normal agent vi ∈ N ∩ V can be written as

xi(k + 1) = 𝑓
i
(
{xi

𝑗
(k) ∶ v𝑗 ∈ Ni ∪ {vi}}

)
, (2)

where xi
𝑗
(t) means the state value sent from agent vj to agent vi at time t, and we assume xi

𝑗
(t) = x𝑗(t) for any normal vj ∈N.

Here, the functions 𝑓 (·) and 𝑓(·) govern the state update of the normal node vi. For agent vi ∈ V with discrete-time
dynamics, we will write x 𝑗

i (t) ∶= x 𝑗

i (k) when t∈ [k, k + 1) for simplicity.
Malicious agents in M, on the other hand, may use different update rules that are unavailable to normal ones. A formal

definition of malicious agents is as follows.

Definition 3 (Malicious agents). vi ∈ M ∩V (or vi ∈ M ∩V, respectively) is called malicious if it does not follow
the update rule 𝑓 

i (or 𝑓
i , respectively), or at some time t> 0 it transmits different values to different neighbors.

Malicious agents are sometimes referred to as Byzantine in the study of, for example, wireless sensor networks, where
sensors may communicate to their neighbors by peer-to-peer communication or broadcasting data.18,19,33 (A caveat that
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there are different definitions in the literature, e.g., LeBlanc et al.16 defines malicious nodes to be those simply not apply-
ing the normal rules and Byzantine nodes the same as Definition 3.) A malicious agent is able to apply potentially any
destructive strategy as well as collude with other malicious agents and hence viewed as notoriously dangerous. We set
an upper bound on the number of malicious agents that a normal agent has in its neighborhood. In particular, given
r𝜃 ∈ N (1≤ 𝜃 ≤Θ), we consider the (r1, … , rΘ)-bounded model, where |Ni ∩M|≤r𝜃 for any vi ∈N∩V𝜃 (1≤ 𝜃 ≤Θ). When
r𝜃 ≡ r for all 𝜃, our (r1, … , rΘ)-bounded model reduces to the r-locally bounded model, which has been studied in various
fault-tolerant settings in the literature.16,18,34

The Dini derivative35 of a function 𝑓 (t) ∶ R → R is defined as D+𝑓 (t) = lim suph→0+(𝑓 (t+h)−𝑓 (t))∕h. Dini derivative is
a suitable language in the study of stability properties of functional differential equations, and it will be used in Theorem
2 to analyze the Lyapunov-like functional. To allow the normal agent in each subgraph to achieve consensus, we develop
the following purely distributed heterogeneous resilient strategy extending the W-MSR protocols.

2.3 Hybrid (r1, … , rΘ)-resilient strategy
Fix r1, r2, … , rΘ ∈ N. For any k ∈ N, a normal agent vi ∈ N ∩ V

𝜃
(1≤ 𝜃 ≤Θ) at t∈ [k,k + 1) takes the value xi

𝑗
(t) from

its neighbor vj, and sorts {xi
𝑗
(t)}v𝑗∈Ni in a non-increasing order (recall that xi

𝑗
(t) = xi

𝑗
(k) if v𝑗 ∈ V). We then perform a

two-round removal procedure; see the algorithm below. In the first round, we remove values in the above ordered list
sequentially starting from the highest value until r𝜃 values in Ni𝜃 that are higher than xi(t) are removed. If there are less
than r𝜃 values that are higher than xi(t) in Ni𝜃 , the above removal process continues until all these values are removed.
Analogously, we perform the same removal process for the lowest values. In the second round, let Γi(t) be the set of values
in Ni𝜃 that are higher than xi(t) in the remaining list. We remove all remaining values that are higher than max{Γi(t)∪xi(t)}.
Similarly, we perform the analogous removal process for the values that are lower than xi(t). Finally, we denote by Ri(t) the
set of values (or equivalently, the nodes holding these values) that are removed in the above two-round removal procedure
of vi at time t. The agent vi ∈ N ∩ V

𝜃
updates its value through the following 𝑓 

i (·) in (1):

.xi(t) =
∑

v𝑗∈[(Ni∪{vi})∖Ri(t)]∩V
𝑓i𝑗(xi

𝑗
(t), xi(t))

+
∑

v𝑗∈[Ni∖Ri(t)]∩V
𝑓i𝑗(xi

𝑗
(k), xi(t)), t ∈ [k, k + 1),

(3)

where the function 𝑓i𝑗 ∶ R2 → R satisfies (1) fij is locally Lipschitz continuous, (2) fij(x, y)= 0⇐⇒ x= y, and (3) fij(x,
y)(x− y)> 0 if x≠ y. These assumptions will be needed in the proof of main results in Section 3, and see also Remark 2.

In a similar manner, normal agent vi ∈ N ∩ V
𝜃

(1≤ 𝜃 ≤Θ) at time k takes the value xi
𝑗
(k) from its neighbor vj and

sorts {xi
𝑗
(k)}v𝑗∈Ni in a non-increasing order. In the first round of removal, we remove values in the above ordered list

sequentially starting from the highest value until r𝜃 values in Ni𝜃 that are higher than xi(k) are removed. If there are less
than r𝜃 values that are higher than xi(k) in Ni𝜃 , the above removal process continues until all these values are removed.
The similar process is adopted for the lowest values. In the second round of removal, let Γi(k) be the set of values in Ni𝜃
that are higher than xi(k) in the remaining list. We remove all remaining values that are higher than max{Γi(k) ∪ xi(k)}.
Analogously, the same removal process applies for the values that are lower than xi(k). Finally, we denote by Ri(k) the
set of values that are removed in the above two-round procedure of vi at time k. The agent vi ∈ N ∩ V

𝜃
updates its value

through the following form of 𝑓
i (·) in (2):

xi(k + 1) =
∑

v𝑗∈(Ni∪{vi})∖Ri(k)
wi𝑗(k)xi

𝑗
(k), (4)

where wij(k) characterizes non-negative weight associated with the edge (vj,vi)∈E such that (1) wij(k)= 0 if vj ∉Ni ∪ {vi},
and (2)

∑
v𝑗∈(Ni∪{vi})∖Ri(k)

wi𝑗(k) = 1.

Remark 1. The two-round removal process is shown in the pseudocode below. Generally, in the first round, all nodes in
Ni possessing values greater than the r𝜃-th largest value of Ni𝜃 are culled (for the higher half) and those in Ni possessing
values less than the r𝜃-th smallest value of Ni𝜃 are culled (for the lower half). In the second round, all nodes in Ni
possessing values larger than the largest value of Ni𝜃 in the list left are scrapped (for the higher half) and those in Ni
possessing values smaller than the smallest value of Ni𝜃 in the list left are scrapped (for the lower half). This strategy is
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a natural generalization of W-MSR to accommodate a partitioned network with component-wise robustness. If there
is only one subnetwork, i.e., Θ= 1, the first round literally reduces to the ordinary W-MSR15,16 and the second round
becomes void. It is also worth mentioning that we delete nodes only based on their values and whether they are within
the current subnetwork rather than their identities or specific locations in the subnetworks, which are not known to
a normal node (see also Remark 4). Hence, as in the ordinary W-MSR algorithms, both normal and malicious nodes
might be culled in the two rounds of removal, and we do not require dropping all malicious nodes.

Removal algorithm for a normal nodevi ∈ V

𝜽

Input: xi(t), {xi
𝑗
(t)}v𝑗∈Ni

, Ni𝜃

Output: Ri(t)
01 order {xi

𝑗
(t)}v𝑗∈Ni

decreasingly as L ∶=
(

xi
𝑗1
(t), xi

𝑗2
(t), … , xi

𝑗|Ni | (t)
)

02 let Ri(t)=∅ and l̄ = max{1 ≤ l ≤ |Ni| ∶ xi
𝑗l
(t) > xi(t)}

03 let a= 0
04 for l= 1 till l = l̄ % first round for the higher half
05 add v𝑗l

into Ri(t) and remove xi
𝑗l
(t) from L

06 if xi
𝑗l
(t) ∈ Ni𝜃

07 a= a + 1
08 end if
09 if a= r𝜃 or L ∩ {xi

𝑗1
(t), … , xi

𝑗l̄
(t)} ∩ Ni𝜃 = ∅

10 let Γi(t) = L ∩ {xi
𝑗1
(t), … , xi

𝑗l̄
(t)} ∩ Ni𝜃

11 break
12 end if
13 end for
14 for each xi

𝑗l
(t) in L % second round for the higher half

15 if xi
𝑗l
(t) > max{Γi(t) ∪ xi(t)}

16 add v𝑗l
into Ri(t) and remove xi

𝑗l
(t) from L

17 end if
18 end for
19 let l = min{1 ≤ l ≤ |Ni| ∶ xi

𝑗l
(t) < xi(t)}

20 let b= 0
21 for l= |Ni| till l = l % first round for the lower half
22 add v𝑗l

into Ri(t) and remove xi
𝑗l
(t) from L

23 if xi
𝑗l
(t) ∈ Ni𝜃

24 b= b + 1
25 end if
26 if b= r𝜃 or L ∩ {xi

𝑗l
(t), … , xi

𝑗|Ni | (t)} ∩ Ni𝜃 = ∅
27 let Γi(t) = L ∩ {xi

𝑗l
(t), … , xi

𝑗|Ni | (t)} ∩ Ni𝜃

28 break
29 end if
30 end for
31 for each xi

𝑗l
(t) in L % second round for the lower half

32 if xi
𝑗l
(t) < min{Γi(t) ∪ xi(t)}

33 add v𝑗l
into Ri(t) and remove xi

𝑗l
(t) from L

34 end if
35 end for

Remark 2. In the discrete-time subsystem (4), we do not require a positive bound like wij(k)>w> 0 for all k ∈ N, which
has been imposed by typical W-MSR algorithms.16,18,20,34 The is facilitated by the concurrency of both continuous-time
and discrete-time subsystems. In the hybrid system, we naturally view the discrete-time dynamics as a process with
jump discontinuities at each k ∈ N as indicated in Section 2.2. This allows us to use a different approach and lift the
restriction on the lower bound. A possible choice for wij(k) in (4) may be wij(k)= (|Ni|+ 1− |Ri(k) |)−1 uniformly for
every active neighbor vj. For continuous-time subsystem (3), an archetypal choice in the distributed decision making
literature is fij(x, y)= aij(x− y) with aij ≥ 0 being the adjacency weights of the underlying communication graph.1,6,7

We referred to the above algorithm as hybrid (r1, … , rΘ)-resilient strategy in the sequel. Also note that V
𝜃

= ∅ or
V
𝜃
= ∅ is allowed for any 𝜃.
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Remark 3. Note that the normal agents in G𝜃 has no knowledge about the identities, i.e., normal/malicious/discrete
time/continuous time, or number/size of the subgroups. Therefore, both normal agents and malicious agents can be
deleted in the above two-round removal procedure and malicious agents may survive and be involved in the decision
making. Our proposed strategy is fully distributed and only minimal information is required. While offering remark-
able flexibility on network topology as well as agent dynamics, the complexity of the algorithm is fairly low. As in the
case of the ordinary W-MSR algorithms,16-18 the most time-consuming part is the sorting process, which can be dealt
with by standard procedures such as Quicksort. Compared to W-MSR, our strategy just requires an additional round
of checking in the neighborhood of each normal agent; cf. the pseudocode above. It is also worth noting that, as in the
line of research of W-MSR algorithms, our strategy does not yield a closed estimate of convergence rate (Theorem 2
below) mainly due to the unpredictable behavior of malicious agents.

Remark 4. As mentioned in Remark 3, the normal agents do not need complete information on the size and number
of the subgroups in G. However, a normal agent vi ∈V𝜃 needs to know whether or not a neighbor is inside V𝜃 . As in real
networks nodes are often partitioned according to different locations/functions/types, etc., this bit of prior information
may be obtain through assigning node certain labels. In most existing group or cluster consensus protocols, complete
information on all subgroups (group size and identities of nodes) is available to all nodes and is intrinsically embedded
into the consensus protocols therein, and complicated matrix algebra conditions are required.25-31

3 MAIN RESULTS

In this section, we study the resilient group consensus for hybrid system (3) and (4) in the presence of malicious agents
characterized by the (r1, … , rΘ)-bounded model. For 1≤ 𝜃 ≤Θ and t≥ 0, define 𝛼𝜃(t) = maxvi∈N∩V𝜃

xi(t) and 𝛼
𝜃
(t) =

minvi∈N∩V𝜃
xi(t) be the highest and lowest values of normal agents in G𝜃 , respectively. The following result indicates the

validity of Definition 2.

Theorem 1. Consider a directed network G= (V,E) with partition G = ∪Θ
𝜃=1G𝜃 and G𝜃 = (V𝜃 ,E𝜃) for 1≤ 𝜃 ≤Θ. If normal

agents apply the hybrid (r1, … , rΘ)-resilient strategy, then in the (r1, … , rΘ)-bounded model, we have

• xi(t) ∈ [𝛼
𝜃
(0), 𝛼𝜃(0)] for all t≥ 0 and vi ∈ N ∩ V

𝜃
;

• xi(k + 1) ∈ [𝛼
𝜃
(k), 𝛼𝜃(k)] for all k ∈ N and vi ∈ N ∩ V

𝜃
.

Proof. Fix 1≤ 𝜃 ≤Θ. Given vi ∈ N ∩ V
𝜃

, we first show xi(k + 1) ≤ 𝛼𝜃(k) for all k ∈ N. It follows from (4) that xi(k + 1)
is a convex combination of the values {xi

𝑗
(k)}v𝑗∈(Ni∪{vi})∖Ri(k). For any vj ∈ (Ni𝜃 ∪ {vi}) ∖Ri(k), we have xi

𝑗
(k) ≤ 𝛼𝜃(k)

since r𝜃 nodes in Ni𝜃 have been removed in the first round of deletion in the hybrid (r1, … , rΘ)-resilient strategy and
there are no more than r𝜃 malicious neighbors of vi in G𝜃 . For any vj ∈ (Ni𝜃′ ∪ {vi}) ∖Ri(k) with 𝜃′ ≠ 𝜃, we again have
xi
𝑗
(k) ≤ 𝛼𝜃(k). This is because the second round of removal in our strategy ensures either xi

𝑗
(k) ≤ xi(k) or xi

𝑗
(k) ≤ xl(k)

for some vl ∈N∩Ni𝜃 . Therefore, we arrived at xi(k+ 1) ≤ 𝛼𝜃(k). The other inequality xi(k+ 1) ≥ 𝛼
𝜃
(k) can be obtained

analogously. Therefore, the second statement of Theorem 1 is proved.
Next, we consider the continuous-time part. Given vi ∈ N ∩ V

𝜃
, we will first show xi(t) ≤ 𝛼𝜃(0) for t≥ 0 by contra-

diction. In fact, if this is not true, then there exists some time t∗ ∈ [k∗, k∗ + 1) and t∗ < t for some k∗ ∈ N such that (a)
x𝑗(t′) ≤ 𝛼𝜃(0) for any t′ ≤ t∗ and vj ∈N∩V𝜃; and (b) xi(t∗) = 𝛼𝜃(0) and .xi(t∗) > 0. Noticing (3), we have

0 <
.xi(t∗) =

∑
v𝑗∈[(Ni∪{vi})∖Ri(t∗)]∩V

𝑓i𝑗(xi
𝑗
(t∗), xi(t∗))

+
∑

v𝑗∈[Ni∖Ri(t∗)]∩V
𝑓i𝑗(xi

𝑗
(k∗), xi(t∗)).

(5)

Since there are no more than r𝜃 malicious neighbors of vi in G𝜃 , it follows from the first round of removal of our
strategy, we have xi

𝑗
(t∗) ≤ 𝛼𝜃(0) = xi(t∗) for any v𝑗 ∈

[
(Ni𝜃 ∪ {vi})∖Ri(t∗)

]
∩V , and from the second round of removal,

we similarly have xi
𝑗
(t∗) ≤ 𝛼𝜃(0) = xi(t∗) for any v𝑗 ∈

[
(Ni𝜃′ ∪ {vi})∖Ri(t∗)

]
∩ V with 𝜃′ ≠ 𝜃. Due to properties (2)

and (3), the first term on the right-hand side of (5) is non-positive. Similarly, xi
𝑗
(k∗) = xi

𝑗
(t∗) ≤ 𝛼𝜃(0) = xi(t∗) for all

v𝑗 ∈
[
(Ni𝜃 ∪ {vi})∖Ri(t∗)

]
∩ V thanks to the first round of removal. Likewise in view of the second round of removal
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of the strategy, we have for any v𝑗 ∈
[
(Ni𝜃′ ∪ {vi})∖Ri(t∗)

]
∩V with 𝜃′ ≠ 𝜃, xi

𝑗
(k∗) = xi

𝑗
(t∗) ≤ 𝛼𝜃(0) = xi(t∗). By (2) and

(3), the second term on the right-hand side of (5) is also non-positive. Nevertheless, this contradicts the expression
(5). Hence, we showed xi(t) ≤ 𝛼𝜃(0) for t≥ 0. The other half of the inequality can be shown similarly.

It follows from Theorem 1 that the interval [𝛼
𝜃
(0), 𝛼𝜃(0)] is an invariant set for all normal agents in G𝜃 . Moreover, the

sequence {𝛼
𝜃
(k)}k∈N is monotonically increasing while the sequence {𝛼𝜃(k)}k∈N is monotonically decreasing and both of

them are bounded. This property will be useful in the analysis of convergence in Theorem 2 below.

Assumption 1. Let {𝜏q}q∈N be the time steps at which the removal set Ri(t) in the hybrid (r1, … , rΘ)-resilient strategy
changes for some vi ∈N. We assume that |𝜏q + 1 − 𝜏q|≥𝜏 > 0 for some 𝜏.

Remark 5. Our hybrid (r1, … , rΘ)-resilient strategy involves temporary removal of nodes and hence the communica-
tion network G is time-varying in nature. It is common in distributed coordination to restrict the dwell time so that
the change rate is kept in check.1,7,36 Assumption 1 is used in Claim 2 of the proof of Theorem 2 below to guaran-
tee the existence of an infinite sequence of time intervals with constant length that knit through these discontinuity
points {𝜏q}q∈N.

Theorem 2. Consider a directed network G= (V,E) with partition G = ∪Θ
𝜃=1G𝜃 and G𝜃 = (V𝜃 ,E𝜃) for 1≤ 𝜃 ≤Θ.

Suppose that normal agents apply the hybrid (r1, … , rΘ)-resilient strategy and Assumption 1 holds. If G is
(2r1 + 1, … ,2rΘ + 1)-robust, then in the (r1, … , rΘ)-bounded model, group consensus is reached.

Proof. For any fixed time t> 0, there exists some k ∈ N such that t∈ [k,k + 1). We define 𝛽𝜃(t) = 𝛼𝜃(t) − 𝛼
𝜃
(t) ≥ 0 for

any 1≤ 𝜃 ≤Θ. The normal agents in G𝜃 that attained the maximum and minimum at time t are respectively denoted
as V𝜃(t) = {vi ∈ N ∩ V𝜃 ∶ xi(t) = 𝛼𝜃(t)} and V

𝜃
(t) = {vi ∈ N ∩ V𝜃 ∶ xi(t) = 𝛼

𝜃
(t)}. Since there are only finite agents,

these two sets are not empty. We prove the theorem through a series of claims.
Claim 1. D+𝛽𝜃(t) = D+𝛼𝜃(t) − D+𝛼

𝜃
(t) ≤ 0 for all 1≤ 𝜃 ≤Θ and t∈ (k, k + 1).

In fact, this can be shown by considering four cases concerning the continuous-time and discrete-time agents. Fix
1≤ 𝜃 ≤Θ. Case 1: V𝜃(t) ∩ V

𝜃
≠ ∅. Let i be the index such that .xi(t) = maxvi∈V𝜃(t)∩V

𝜃

.xi(t). Taking the Dini derivation35

of 𝛼𝜃(t) along the dynamics of (3) yields

D+𝛼𝜃(t) =
.xi(t) =

∑
v𝑗∈[(Ni∪{vi})∖Ri(t)]∩V

𝑓i𝑗(x
i
𝑗
(t), xi(t))

+
∑

v𝑗∈[Ni∖Ri(t)]∩V
𝑓i𝑗(x

i
𝑗
(k), xi(t)).

(6)

When v𝑗 ∈
[
(Ni𝜃 ∪ {vi})∖Ri(t)

]
∩ V , we have xi(t) ≥ xi

𝑗
(t) since r𝜃 nodes are deleted from Ni𝜃 in the first round of

removal of our strategy and there are at most r𝜃 malicious agents in Ni. When v𝑗 ∈
[
(Ni𝜃′ ∪ {vi})∖Ri(t)

]
∩V for 𝜃′ ≠ 𝜃,

xi(t) ≥ xi
𝑗
(t) still holds because of the second round of removal. When v𝑗 ∈

[
Ni𝜃∖Ri(t)

]
∩V, we have xi(t) ≥ xi

𝑗
(t) = xi

𝑗
(k)

similarly due to the first round of removal. When v𝑗 ∈
[
Ni𝜃′∖Ri(t)

]
∩ V for 𝜃′ ≠ 𝜃, we have xi(t) ≥ xi

𝑗
(t) = xi

𝑗
(k) due to

the second round of removal. In view of (6) and (3), we have D+𝛼𝜃(t) ≤ 0. Case 2: V
𝜃
(t) ∩ V

𝜃
≠ ∅. Let i be the index

such that .xi(t) = maxvi∈V
𝜃
(t)∩V

𝜃

.xi(t). Taking the Dini derivation of 𝛼𝜃(t) along the dynamics of (3) yields

D+𝛼
𝜃
(t) = .xi(t) =

∑
v𝑗∈

[
(Ni∪{vi})∖Ri(t)

]
∩V

𝑓i𝑗(x
i
𝑗
(t), xi(t))

+
∑

v𝑗∈
[

Ni∖Ri(t)
]
∩V

𝑓i𝑗(x
i
𝑗
(k), xi(t)).

(7)

We arrive at D+𝛼
𝜃
(t) ≥ 0 on the basis of an analogous argument as in Case 1. Case 3: V𝜃(t) ∩ V

𝜃
= ∅. Let vi be

any agent in V𝜃(t). In view of the definition of Dini derivative,35 we have D+𝛼𝜃(t) =
.xi(t) = 0 for t∈ (k,k + 1). Case

4: V
𝜃
(t) ∩ V

𝜃
= ∅. Let vi be any agent in V

𝜃
(t). By the definition of Dini derivative, we have D+𝛼

𝜃
(t) = .xi(t) = 0 for

t∈ (k,k + 1). Therefore, we proved Claim 1.
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It follows from Theorem 1 that the two sequences 𝛼𝜃(k) and 𝛼
𝜃
(k) are both monotonic and bounded. Hence, for any

1≤ 𝜃 ≤Θ, we have
𝓁
𝜃
∶= lim

k→∞
𝛼
𝜃
(k) ≤ 𝓁𝜃 ∶= lim

k→∞
𝛼𝜃(k). (8)

Using Claim 1, we arrive at limk→∞D+𝛽𝜃(k) = 0. This result can be enhanced as follows.

Claim 2. limt→∞D+𝛽𝜃(t) = 0 for all 1≤ 𝜃 ≤Θ.
If Claim 2 is not true, then there exist 𝜀0 > 0, 𝛿0 > 0, and {𝜎p}p∈N satisfying limp→∞𝜎p = +∞, D+𝛽𝜃(𝜎p)≤−𝜀0 and

|𝜎p + 1 − 𝜎p|>𝛿0 for p ∈ N. Fix any interval I such that I ∩ N = ∅ and I ∩ {𝜏q}q∈N = ∅ (cf. Assumption 1). For any
t∈ I, D+𝛽𝜃(t) is continuous. Moreover, for any vi ∈ N ∩V

𝜃
, .xi(t) is bounded via assumption (1). For any vi ∈ N ∩V

𝜃
,

.xi(t) = 0 for t∈ I. Consequently, .xi(t) is bounded for all vi ∈N∩V𝜃 . Furthermore, D+𝛽𝜃(t) is uniformly continuous in
the interval I.

Thanks to uniform continuity, there exists some 𝛿1 > 0 such that for all t1,t2 ∈ I and |t1 − t2|<𝛿1, we have
|D+𝛽𝜃(t1)−D+𝛽𝜃(t2) |<𝜀0/2. According to Assumption 1, we can find 0<𝛿2 <𝛿1 such that for any p ∈ N, the interval
[𝜎p − 𝛿2,𝜎p + 𝛿2] is a subset of some I (can be different for different p). For t∈ [𝜎p − 𝛿2,𝜎p + 𝛿2],

D+𝛽𝜃(t) = − |D+𝛽𝜃(𝜎p) − (D+𝛽𝜃(𝜎p) − D+𝛽𝜃(t))|
≤ − (|D+𝛽𝜃(𝜎p)| − |D+𝛽𝜃(𝜎p) − D+𝛽𝜃(t)|) ≤ −𝜀0

2
.

(9)

Take 0<𝛿 < 𝛿2 such that {[𝜎p − 𝛿, 𝜎p + 𝛿]}p∈N are mutually non-disjoint. By Claim 1 and (9),

∫
∞

0
D+𝛽𝜃(t)dt ≤ − lim

m→∞

m∑
p=1 ∫

𝜎p+𝛿

𝜎p−𝛿

𝜀0

2
dt = −∞. (10)

This conflicts the fact that 𝛽𝜃(t)≥ 0 for all t. Therefore, Claim 2 must be true.
We have already shown that D+𝛼𝜃(t) ≤ 0 and D+𝛼

𝜃
(t) ≥ 0 for all t. By (8), we have limt→∞𝛼𝜃(t) = limt→∞xi(t) = 𝓁𝜃

and limt→∞𝛼𝜃
(t) = limt→∞xi(t) = 𝓁

𝜃
. If the following claim is true, then Theorem 2 is shown.

Claim 3. 𝓁𝜃 = 𝓁
𝜃

for all 1≤ 𝜃 ≤Θ.
Suppose that Claim 3 does not hold. Thus, 𝓁𝜃 > 𝓁

𝜃
for some 𝜃. We fix such a 𝜃. Since G𝜃 is (2r𝜃 + 1)-robust, and by

Lemma 1 it contains a directed spanning tree under our hybrid (r1, … , rΘ)-resilient strategy. There is time T> 0 and
𝜀> 0 such that xi(t) > 𝓁𝜃 − 𝜀 > 𝓁

𝜃
+ 𝜀 > xi(t) for all t≥T. Moreover, regarding the choice of agents vi and vi, we have

the following possibilities. Case 1: vi ∈ V
𝜃

. Therefore, limt→∞
.xi(t) = 0, which indicates limt→∞xi

𝑗
(t) − xi(t) = 0 for any

v𝑗 ∈
[
(Ni ∪ {vi})∖Ri(t)

]
∩V and limt→∞,t∈[k,k+1)xi

𝑗
(k)−xi(t) = 0 for any v𝑗 ∈

[
Ni∖Ri(t)

]
∩V. Case 2: vi ∈ V

𝜃
. Therefore,

limk→∞xi(k) = 𝓁𝜃 and limk→∞xi
𝑗
(k) = 𝓁𝜃 for any v𝑗 ∈ (Ni ∪ {vi})∖Ri(k). Case 3: vi ∈ V

𝜃
. Therefore, limt→∞

.xi(t) = 0,
which indicates limt→∞xi

𝑗
(t) − xi(t) = 0 for any v𝑗 ∈

[
(Ni ∪ {vi})∖Ri(t)

]
∩V and limt→∞,t∈[k,k+1)x

i
𝑗
(k) − xi(t) = 0 for any

v𝑗 ∈
[
Ni∖Ri(t)

]
∩V. Case 4: vi ∈ V

𝜃
. Therefore, limk→∞xi(k) = 𝓁

𝜃
and limk→∞xi

𝑗
(k) = 𝓁

𝜃
for any v𝑗 ∈ (Ni∪{vi})∖Ri(k).

Since G𝜃 has finitely many agents, there exists T′ ≥T admitting two directed paths one of them connecting the root
vr to vi and the other path connecting vr to vi at time T′. The two inequalities xr(T′) > 𝓁𝜃−𝜀 and xr(T′) < 𝓁

𝜃
+𝜀 hold as

well. This however conflicts with the condition 𝓁𝜃 − 𝜀 > 𝓁
𝜃
+ 𝜀. Therefore, Claim 3 and the theorem are proved.

As a generalization of ordinary consensus problem, Roy37 introduced scaled consensus which is desirable for applica-
tions in for example water distribution systems, closed queuing networks and tests for simulating robots, where multiscale
coordination control is essential. Fix (s1, s2, … , sn) ∈ Rn and si ≠ 0 for all i= 1, … , n. We present the definition of resilient
scaled group consensus as follows.

Definition 4 (Resilient scaled group consensus for hybrid systems). For (s1, … , sn), the normal agents in G is
said to achieve resilient scaled group consensus if the following two conditions hold for all 1≤ 𝜃 ≤Θ. (i) Validity: For
any vi ∈N∩V𝜃 and t≥ 0, xi(t) ∈ [minvi∈N∩V𝜃

xi(0),maxvi∈N∩V𝜃
xi(0)]; and (ii) Convergence: For any initial conditions

{xi(0)}vi∈V , there exists 𝓁𝜃 ∈ R such that limk→∞xi(k) = 𝓁𝜃s−1
i for vi ∈N∩V𝜃 and limt→∞xi(t) = 𝓁𝜃s−1

i for vi ∈ N ∩ V
𝜃

.

If s1 = s2 = … = sn = 1, the resilient scaled group consensus is reduced to resilient group consensus in Definition 2.
Scaled group consensus has been studied for discrete-time and continuous-time dynamics in the perfect condition, where
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no malicious agents are present.30,31 To accommodate malicious agents as well as hybrid dynamics, we extend hybrid
(r1, … , rΘ)-resilient strategy in Section 2.3 to the following “scaled” strategy.

Fix r1, r2, … , rΘ ∈ N. For any k ∈ N, a normal agent vi ∈ N ∩ V
𝜃

(1≤ 𝜃 ≤Θ) at t∈ [k, k + 1) takes the value xi
𝑗
(t) from

its neighbor vj, and sorts {s𝑗xi
𝑗
(t)}v𝑗∈Ni in a non-increasing order. We then perform a two-round removal procedure. In

the first round, we remove values in the above ordered list sequentially starting from the highest value until r𝜃 values in
Ni𝜃 that are higher than sixi(t) are removed. If there are less than r𝜃 values that are higher than sixi(t) in Ni𝜃 , the above
removal process continues until all these values are removed. Analogously, we perform the same removal process for the
lowest values. In the second round, redefine Γi(t) be the set of values in Ni𝜃 that are higher than sixi(t) in the remaining
list. We remove all remaining values that are higher than max{Γi(t), sixi(t)}. Similarly, we perform the analogous removal
process for the values that are lower than sixi(t). Finally, we denote by Ri(t) the set of values that are removed in the above
two-round removal procedure of vi at time t. The agent vi ∈ N ∩ V

𝜃
updates its value through the following 𝑓 

i (·) in (1):

.xi(t) =sgn(si)
∑

v𝑗∈[(Ni∪{vi})∖Ri(t)]∩V
𝑓i𝑗(s𝑗xi

𝑗
(t), sixi(t))

+ sgn(si)
∑

v𝑗∈[Ni∖Ri(t)]∩V
𝑓i𝑗(s𝑗xi

𝑗
(k), sixi(t)), t ∈ [k, k + 1),

(11)

where the function fij satisfies (1), (2), and (3) as in Section 2.
In a similar manner, normal agent vi ∈ N ∩ V

𝜃
(1≤ 𝜃 ≤Θ) at time k takes the value xi

𝑗
(k) from its neighbor vj and

sorts {s𝑗xi
𝑗
(k)}v𝑗∈Ni in a non-increasing order. In the first round of removal, we remove values in the above ordered list

sequentially starting from the highest value until r𝜃 values in Ni𝜃 that are higher than sixi(k) are removed. If there are less
than r𝜃 values that are higher than sixi(k) in Ni𝜃 , the above removal process continues until all these values are removed.
The similar process is adopted for the lowest values. In the second round of removal, let Γi(k) be the set of values in Ni𝜃
that are higher than sixi(k) in the remaining list. We remove all remaining values that are higher than max{Γi(k), sixi(k)}.
Analogously, the same removal process applies for the values that are lower than sixi(k). Finally, we denote by Ri(k) the
set of values that are removed in the above two-round procedure of vi at time k. The agent vi ∈ N ∩ V

𝜃
updates its value

through the following 𝑓
i (·) in (2):

xi(k + 1) = sgn(si)
∑

v𝑗∈(Ni∪{vi})∖Ri(k)
wi𝑗(k)s𝑗xi

𝑗
(k), (12)

where wij(k) delineates non-negative weight on edge (vj,vi)∈E such that the same (1) and (′
2)

∑
v𝑗∈(Ni∪{vi})∖Ri(k)|si|wi𝑗(k) = 1 hold.

For 1≤ 𝜃 ≤Θ and t≥ 0, redefine 𝛼𝜃(t) = maxvi∈N∩V𝜃
sixi(t) and 𝛼

𝜃
(t) = minvi∈N∩V𝜃

sixi(t). The following theorem can be
shown along the same line of Theorem 2.

Theorem 3. Consider a directed network G= (V, E) with partition G = ∪Θ
𝜃=1G𝜃 and G𝜃 = (V𝜃 ,E𝜃) for 1≤ 𝜃 ≤Θ. Sup-

pose that normal agents apply the above scaled hybrid (r1, … , rΘ)-resilient strategy and Assumption 1 holds. If G is
(2r1 + 1, … ,2rΘ + 1)-robust, then in the (r1, … , rΘ)-bounded model scaled group consensus is reached.

4 NUMERICAL SIMULATIONS

In this section, we first consider a multi-agent system over directed network G= (V, E) with G=G1 ∪G2, V1 = {v1, … , v5},
V2 = {v6,v7,v8}; see Figure 1. The agents' dynamics are hybrid with V

1 = {v1, v4}, V
1 = {v2, v3, v5}, V

2 = ∅, V
2 =

{v6, v7, v8}, and there is a malicious agent M= {v5} present in the network. Note that G1 is 3-robust and G2 is 1-robust. The
malicious agent v5 is highly connected and can influence both subgroups G1 and G2, posing a significant threat to the
decision making of the normal agents.

Example 1. We take the initial condition of the agents in G as x1(0)= 1, x2(0)=−3, x3(0)= 0, x4(0)= 2, x5(0)= 1.5,
x6(0)=−1, x7(0)=−2, and x8(0)= 3. The malicious agent v5 is assumed to follow its own dynamics as x5(k + 1) =
x5(k)∕2+ ln(k∕10). We assume that normal agents follow fij(x,y)= (x− y)/2 in (3) if they have continuous-time dynam-
ics, and we take wi𝑗(k) = 1∕ (|Ni| + 1 − |Ri(k)|) for vj ∈ (Ni ∪ {vi}) ∖Ri(k) in (4) if they have discrete-time dynamics.
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Since G1 is 3-robust with one malicious agent and G2 is 1-robust with all normal ones, we show in Figure 2 the state
trajectories of the agents following our hybrid (1,0)-resilient strategy. We observe that agents in G1 and G2 are able to
reach group consensus despite the presence of malicious agent v5. The gap between of the final state of agents in G1
(green curves) and that in G2 (blue curves) indicates that group consensus has been achieved say when t≥ 10. This
agrees well with the prediction of Theorem 2.

Example 2. In the second example, we consider the scaled group consensus with the scales setting as
(s1, … , s8)= (1,1,− 1,− 1,− 1,1,1,1), meaning that agents in G1 will be split into two opposite values while agents in
G2 will reach a single local consensus. We choose the initial condition of the agents in as x1(0)=−2, x2(0)= 1, x3(0)= 2,
x4(0)= 4, x5(0)=−1.5, x6(0)=−2.5, x7(0)= 0.5, and x8(0)=−3. The dynamics of agents in G are the same as in Example
1. The state trajectories of the agents are shown in Figure 3 following the scaled hybrid (1,0)-resilient strategy pre-
sented above Theorem 3. It can be observed that v1 and v2 reach a consensus value (around −0.16), which is opposite
to the consensus achieved by v3 and v4 (around 0.16). Moreover, the agents in G2 reach a separate consensus (around
−0.85). The qualitative results agree with Theorem 3.

Next, we consider the consensus time for large robust networks albeit an analytical estimation is not available; cf.
Remark 3. It is shown in Zhang et al.38 that determining the robustness of an arbitrary graph is an NP-hard problem.
Here, we consider an Erdős-Rényi random graph G(n,pr) with edge probability pr = 10(ln n + r ln ln n)n−1 for r ∈ N. As
is known, such a graph is almost surely (2r + 1)-robust.38

FIGURE 1 A schematic illustration of network G=G1 ∪G2 with
G1 = (V 1,E1) being 3-robust and G2 = (V 2,E2) being 1-robust for
Examples 1 and 2. Here, V 1 = {v1, … , v5}, V 2 = {v6,v7,v8}, and
M = {v5} [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 2 State trajectories of the agents in Example 1 following
the hybrid (1,0)-resilient strategy, where v5 is malicious [Colour
figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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FIGURE 3 State trajectories of the agents in Example 2 following
the scaled hybrid (1,0)-resilient strategy, where v5 is malicious
[Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 4 State trajectories of 40 agents from G(500,p1) and one malicious agent in Example 3 following (A) the hybrid (1,1)-resilient
strategy and (B) the hybrid resilient strategy in Shang15 [Colour figure can be viewed at wileyonlinelibrary.com]

Example 3. We take the initial condition of the agents in G(n, pr) following the uniform distribution over the unit
interval (0,1). Moreover, we consider Θ= 2 and |V

𝜃
| = |V

𝜃
| = n∕4 for 𝜃 = 1,2. Hence, the two subnetworks G1 and

G2 and G(n, pr) itself are all (2r + 1)-robust for large n. In each subnetwork, we randomly choose r malicious agents
following their own dynamics as .xi(t) = −𝜌1xi(t) + 𝜌2 cos(t∕2) for all vi ∈M, where 𝜌1 and 𝜌2 are taken randomly in
the interval (0,0.1) for each malicious agent. We assume that normal agents follow fij(x,y)= x− y in (3) if they have
continuous-time dynamics, and we take wi𝑗(k) = 1∕ (|Ni| + 1 − |Ri(k)|) for vj ∈ (Ni ∪ {vi}) ∖Ri(k) in (4) if they have
discrete-time dynamics.

In Figure 4A, we illustrate the state evolution for a subset of 20 agents in G1 and 20 agents in G2 in the network G(500,
pr) (together with the r malicious agents) following our hybrid (r, r)-resilient strategy with r= 1. As a comparison, we plot
in Figure 4B the corresponding state evolution with the same initial conditions following the hybrid resilient strategy in
Shang,15 where G(n, pr) as a whole is viewed as a monolithic network. As one would expect, in both cases, consensus has
been finally reached despite the interference of the malicious agent. Through extensive simulations for different n and r,
we observe that there is no obvious difference in terms of convergence time. This is worth noting as our current group
consensus strategy with the two-round removal procedure in general deletes more nodes as compared to the non-group
strategy in the previous work.15

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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FIGURE 5 Consensus time t∗(0.001) over G(n,pr) for different n
and r in Example 3. Results are averaged over 20 independent
simulations

To quantify the consensus time for the current hybrid (r, r)-resilient strategy, we formally define

t∗(𝜀) ∶= min

{
t ≥ 0 ∶ max

vi1 ,vi2 ∈N∩V𝜃
1≤𝜃≤Θ

|xi1(t) − xi2(t)| ≤ 𝜀

}
(13)

for a small 𝜀. From Figure 5, we observe that the consensus time t∗(𝜀) for G(n, pr) is increasing nearly linearly with
respect to both the network size. Furthermore, the consensus time also increases when the network robustness grows.
This reveals that although G(n, pr) with a larger r is denser, the effect of two-round removal seems to have more influence
on the consensus seeking dynamics (as more edges will be deleted for a larger r).

5 CONCLUSION

In this paper, we considered distributed coordination of hybrid dynamical systems composed of agents with both
discrete-time and continuous-time dynamics. The concept of heterogeneous robustness is introduced to facilitate con-
sensus analysis of the network where agents interact between and within multiple subgraphs. We proposed a purely
distributed hybrid resilient strategy enabling resilient group consensus of normal agents in the network, where malicious
agents are bounded in the neighborhoods. The theoretical framework is then extended to the scaled group consensus to
allow different convergence clusters in each subgroup. Interesting future research directions could be the extension to
higher-order multi-agent systems and communication constraints including the delays.
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