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Abstract 

 

Biomedical imaging techniques are playing an essential role in diagnosing 

different kinds of diseases, which always motivates the search for improving their 

sensitivity and accuracy. Photoacoustic Tomography (PAT) is one of the most 

powerful techniques. PAT has many advantages as it is less expensive and faster than 

Magnetic Resonance Imaging (MRI). It combines the advantages of optical imaging 

and ultrasound imaging as it provides high contrast, high penetration and high 

resolution images for biological tissues. Also, it uses non-ionizing radiation which is 

very safe for human health. The main challenge in PAT is that human tissues can be 

exposed only to a limited amount of radiation, so a full-view of PAT requires many 

transducers and a great number of measurements. This thesis aims to develop an 

efficient reconstruction algorithm of Photoacoustic (PA) images that uses few number 

of transducers, few number of measurements and offers low computational complexity 

while maintaining high quality of recovered images.    

The proposed reconstruction algorithm depends on Compressive Sensing   

(CS) theory which is a signal processing technique that is capable of forming a full-

view PAT images (under certain prerequisites) with few number of measurements. The 

proposed algorithm solves the CS problem using a distributed and parallel 

implementation of the Alternating Direction Method of Multipliers (ADMM). ADMM 

is a well-known method for solving convex optimization problems. A group of local 

processors that work in parallel with one global processor are used to form the images. 

The iterative algorithm of ADMM is distributed over local processors in such a way 

perfect reconstruction of images is possible.   
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Simulation results show that the proposed algorithm is powerful and successful 

in reconstructing different kinds of PA images with very high quality and significantly 

reduced computational complexity. Reducing the computational complexity is 

reflected on a much lower reconstruction time. Also, the algorithm requires lower cost 

and shorter acquisition time since the CS theory is used which allow the recovery of 

images from few number of samples and sensors. Although the idea of distributed 

ADMM has been introduced before in literature but to the best of our knowledge, this 

is the first work to apply distributed ADMM method in recovering photoacoustic  

images by distributing the iterative algorithm among multiple processors working in 

parallel.  

Keywords: ADMM, PAT, compressive sensing, BP, distributed implementation, 

multiple processors. 
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Title and Abstract (in Arabic) 

 

 

تطبيقها على التصوير تطوير خوارزمية تعتمد على نظرية الاستشعار المضغوط و 

  المقطعي الصوتي 

 

 الملخص                                               

من أهم نوع   (Photoacoustic Tomography)يعتبر التصوير الطبقي الصوتي

و هو يعتمد على استعمال الليزر )ضوء( لتحفيز أنسجة الجسم على أجهزة التصوير الطبية أنواع 

و دقة فعال و ذ اطلاق موجات صوتية تعبر عن خصائص هذه الأنسجة. يعتبر التصوير الصوتي

عالية و لديه من الخصائص ما يجعله ينافس الأنواع الأخرى من أجهزة التصوير الطبي.فهو يدمج 

الفوق ير باستعمال الموجات ( و التصوOptical Imagingبين مميزات الامتصاص الضوئي )

للحصول على صور ذات دقة عالية و على عمق كبير  (Ultrasound Imaging) صوتية

.علاوة على ذلك، التصوير الصوتي يعتبر أسرع بكثير من التصوير باستعمال الرنين نسبيا ً

ي . الأشعة المستعملة في التصوير الصوتخفضةتكلفة من بالإضافة الى انه ذو (MRI)المغناطيسي 

قد أظهرت الدراسات الحديثة أن التصوير لغير متأينة و بالتالي هي آمنة جدا ً على صحة الانسان.

 ،تصوير وظائف الدماغمنها : تحليل و مراقبة الأورام، الات طبية عدة ي فعال في مجالصوت

  تصوير أوعية الدم، و التصوير الداخلي للأوعية الدموية.

حتى و إن كانت غير شعة الأ لكميات كبيرة من جسم الانسانأنسجة يجب أن لا تتعرض 

ن م تي. لذلك يستعمل عادة عدد كبير جداً متأينة و هذا يمثل التحدي الأكبر لمجال التصوير الصو

أجهزة الاستشعار للحصول على صورة مقطعية كاملة و دقيقة للمنطقة المراد تشخيصها. و لكن 

ة إن الهدف من هذه الرسالالصورة.  يزيد من المدة اللازمة لتشكيلهذا يزيد من تكلفة التصوير و 

ل باستعمال عدد قلي كاملة و ذات دقة عالية صور صوتيةتشكيل  هو تطوير خوارزمية قادرة على

 .غير معقدة حسابيا ًمن أجهزة الاستشعار، و في نفس الوقت 



ix 
 

 
 
 

نظرية الاستشعار المضغوط الخوارزمية المطروحة في هذه الرسالة تعتمد على 

(Compressive Sensing)  . فعالة جدا في التقليل من عدد  تحت شروط معينةهذه النظرية

معظم التطبيقات على هذه النظرية  عار اللازمة للحصول على صورة صوتية كاملة.أجهزة الاستش

ر الصو تشكيلالصور. في هذه الرسالة يتم  تشكيلمركزي واحد ل(processor) تستعمل جهاز 

. كل جهاز محلي مسؤول عن حل جزء مركزي واحد استعمال عدد من الأجهزة المحلية و جهازب

دد قليل جداً  من أجهزة الاستشعار و من ثم ارسال الحلول المحلية من الخوارزمية المتعلق بع

 للجهاز المركزي. 

التقليل من التعقيدات لقد أظهرت نتائج هذه الرسالة فعالية الخوارزمية المطروحة في 

ى و هذا قد انعكس عل مختلف الصور الصوتية لتشكيل المطلوبة من الجهاز المركزي الحسابية

. بالاضافة إلى أن عدد أجهزة الاستشعار اللازمة قل بشكل كبيرو قصير جداً  تالصور بوق تشكيل

 المسترجعة ذات دقة عالية.الصور

، عمليات حسابية موزعة، التصوير الطبقي استشعار مضغوط :مفاهيم البحث الرئيسية

  .الصوتي
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Chapter 1: Introduction 

1.1 Overview 

Photoacoustic Tomography (PAT) is a powerful biomedical imaging modality 

that combines the advantages of ultrasound imaging and optical imaging. It breaks the 

spatial resolution limits associated with optical imaging such as Diffuse Optical 

Tomography (DOT) and Optical Coherent Tomography (OCT). Also, PAT is less 

expensive and much faster that Magnetic Resonance Imaging (MRI). Using PAT, 

biochemical parameters can be imaged with high resolution such as lipids, water, 

deoxy-hemoglobin (HbR) and oxy-hemoglobin (HbO2) along with blood flow. 

Moreover, using a molecular contrast agent, highly specific molecular PAT can be 

realized. PAT is economical, can be made portable and uses non-ionizing radiation 

which is very safe for human health. Several clinical applications have found potential 

to use PAT such as breast imaging, joint imaging, intraoperative imaging, tumor 

vasculature imaging, brain imaging, and intravascular imaging [1].  

The main challenge of biomedical imaging techniques including PAT is that 

human tissues can be exposed only to a limited amount of radiation, so a huge number 

of transducers and measurements are needed to form full-view Photoacoustic (PA) 

images. For PAT, an efficient solution to this challenge is to apply Compressive 

Sensing (CS) theory. Compressive sensing can be also referred to as compressive 

sampling or sparse signal recovery. It is a signal processing technique that can 

reconstruct a sparse signal or image accurately using few number of linear 

measurements. Sparse signals are those containing few number of nonzero elements. 

Many signals such as PA and audio signals are sparse either by nature or with respect 
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to another basis. CS has found its potential not only in imaging applications but also 

in radar and error correction. Different sparse recovery approaches are available such 

as greedy algorithms and convex optimization methods. One of the powerful 

algorithms for solving convex optimization problems including the CS problem is 

Alternating Direction Method of Multipliers (ADMM). ADMM can efficiently find a 

unique solution to CS optimization problem.  

There are three significant traits that reconstruction approach or algorithm must 

possess.  First, the algorithm should be fast. Second, it must provide uniform guarantee 

of performance which means it does not fail to recover any sparse signal. Third, the 

algorithm should have high stability meaning that if the signal to be recovered is 

perturbed slightly, the algorithm can still recover it with high accuracy. Stability of CS 

algorithm is essential in practice since the signal to be recovered may not be exactly 

sparse but close to being sparse such as the case of compressible signals. Compressible 

signals are those with coordinates decay according to power law. Also, the signals in 

practice are usually perturbed by noise.  

1.2 Statement of the Problem 

 The advantages of PAT encourage improving the system performance by using 

an optimal and efficient reconstruction algorithm. Conventional reconstruction 

algorithms associated with CS and PAT rely on a centralized framework in which the 

whole measurements are processed using a central processor. Processing all 

measurements using a central processor may entail computational complexity 

especially in 3D PA images. Also, there is a gap between CS algorithms mentioned 

before. For example, convex optimization methods possess high stability and uniform 
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guarantee, but they require higher reconstruction time than greedy algorithms. On the 

other hand, greedy algorithms have lacked in stability and uniform guarantee of 

performance. Therefore, there is a need for reducing the computational complexity of 

processing the PA measurements in one processor and bridging the gap between sparse 

recovery algorithms. This can be achieved by developing a PAT recovery algorithm 

that uses an optimal number of measurements, with low computational complexity, 

uniform performance guarantee, fast run time and simultaneously maintains high 

quality of recovered images. The proposed algorithm is implemented using a 

distributed framework of ADMM algorithm. ADMM algorithm solves convex 

optimization problems, thus it provides high stability and uniform guarantee. The 

ADMM iterative algorithm is distributed over multiple local processors work in 

parallel with one global processor. This distributed framework reduces the 

computational complexity of the overall recovery algorithm which is reflected in a 

faster run time.  

1.3 Research Objectives 

This work aims to contribute to a growing research area of reconstructing PA 

images. Therefore, the main research objectives of this thesis are: 

1) Implementing a reconstruction algorithm for PAT that has low computational 

complexity, uniform guarantee, uses few number of sensors, few number of 

measurements and provides high quality of recovered images.  

2) Investigating the efficiency of the proposed algorithm using simulated images of 

different sparsity levels as well as using real numerical phantom. 
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1.4 Thesis Organization 

This thesis is organized as follows. In Chapter 2, a background of PAT 

principals including its mathematical modeling and instrumentations are provided. 

Moreover, CS theory and ADMM algorithm are described along with some related 

works to PAT, CS and ADMM. The implementation of the proposed distributed 

ADMM Basis Pursuit (BP) algorithm is explained in Chapter 3. In Chapter 4, the 

numerical simulations and results are shown and discussed. Finally, the outcomes of 

this work and an insight to future works are concluded in Chapter 5. 
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Chapter 2: Background 

 

In this chapter, PAT is introduced including its advantages, applications, 

mathematical modeling, forward operator matrix and instrumentations. Then 

Compressive Sensing (CS) theory along with some of its formulations and techniques 

are discussed. Later the well-known ADMM algorithm based on Basis Pursuit (BP) 

formulation is explained. After that, related works to PAT, CS and ADMM algorithm 

are presented. Finally, a discussion is made about the proposed distributed ADMM BP 

algorithm and how it enhances the available PA reconstruction algorithms. 

2.1 Photoacoustic Tomography  

Photoacoustic Tomography (PAT) is a biomedical imaging technique that 

depends on photoacoustic effect; which is the formation of sound waves 

following light absorption in a tissue sample. The PA effect principle is described in 

Figure1: a source of light (Laser pulses) is applied to tissues. The laser pulses heat the 

tissues and cause a localized pressure change and tissues thermoelastic expansion 

which at the end causes the acoustic waves to propagate from the tissues.  

Photoacoustic (PA) waves can be used to characterize the tissues and form clear 

images of them. 



6 
 
 

 
 
 

 

 

 Principle of photoacoustic  imaging 

 

2.1.1 Advantages and applications 

PAT has many advantages as it is less expensive, and faster than Magnetic 

Resonance Imaging (MRI). It combines the advantages of optical imaging and 

ultrasound imaging as it provides high contrast, high penetration and high resolution 

images for biological tissues [2]. Also, biochemical parameters such as oxy-

hemoglobin (HbO2), water (H2O), and deoxy-hemoglobin (HbR) along with blood 

flow in tissues can be characterized in high resolution. PAT can be applied to many 

biomedical imaging fields such as: brain function imaging, tumor angiogenesis 

imaging, intravascular imaging and breast cancer imaging.  

2.1.2 Photoacoustic wave generation 

The generation of acoustic waves is usually done using short laser pulses of 

few nanoseconds in duration. The time scale in which the laser pulses must be 

delivered to enable tissues generate acoustic waves depends on two factors: the tissues 

physical characteristics and the time scale of energy dissipation. The time scale of 
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energy dissipation is represented as the stress (𝜏𝑠)  and the thermal (𝜏𝑡ℎ)  relaxation 

times. The stress time is given by [3]:  

𝜏𝑠 =
𝑑𝑐

𝑐
,                                                           (1) 

where 𝑑𝑐 is the dimension of the heated region or its spatial resolution, and  𝑐 is the 

medium speed of sound (𝑚/𝑠). The thermal relaxation time is given by [3]: 

𝜏𝑡ℎ =
𝑑𝑐

2

𝛼𝑡ℎ
,                                                          (2) 

where αth is the thermal diffusivity (m2/s). For soft tissues, αth is in the range of 

10−7m2/s. Assuming that the dimension of an object is 1 𝑚𝑚, the thermal relaxation 

time will be in the order of tens of seconds. However, the stress relaxation time is 

usually much smaller than thermal relaxation time. 𝜏𝑠 is on the order of few hundred 

nanoseconds for objects in the sub-mm or mm ranges. Therefore, to generate PA wave, 

the laser pulse width should be much shorter than thermal and stress relaxation times 

to ensure that heat conduction is negligible during laser pulses excitation and these are 

called the stress and thermal confinements. The temperature increase due to the 

absorbed laser pulses can be written as [3]: 

𝑇 =
𝜂𝑡ℎ𝜇𝑎𝐹

𝜌 𝐶𝑣
,                                                         (3) 

where ηth is the percentage of light converted to heat, 𝐹 is the optical fluence 

 (J/cm2 ), μa is the optical absorption coefficient (cm−1), Cv is the specific heat 

capacity (J/g. K), and ρ is the density (g/cm3). If the thermal and stress confinements 

are met, one can find the initial pressure rise 𝑝0as [3] : 

    𝑝0 =
𝛽𝑇

𝜅
= Γ𝜂𝑡ℎ𝜇𝑎𝐹,                                                 (4) 
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where β is the thermal coefficient of volume expansion (K−1), κ is the isothermal 

compressibility (Pa−1), and  Γ  is called the Gruneisen parameter which is 

dimensionless and defined as [3]:  

Γ =
β

 𝜅𝜌𝐶𝑣
,                                                             (5) 

Γ and 𝜂𝑡ℎ are usually approximated as constants. To reconstruct an image we need to 

recover the initial pressure or in particular we need to recover 𝜇𝑎 since the other 

parameters in (4) are assumed to be constants [3].  

2.1.3 Photoacoustic wave equations 

After the initial pressure is generated, the acoustic waves start to propagate in 

the medium at the speed of sound. In a homogenous medium, the PA wave propagation 

can be expressed as [3]: 

𝜕2𝑝(𝑟,𝑡)

𝜕𝑡2 − 𝑐2∇2𝑝(𝑟, 𝑡) = Γ
𝜕

𝜕𝑡
𝐻(𝑟, 𝑡),                                       (6) 

where 𝑝(𝑟, 𝑡) is the pressure signal, 𝑟 is the spatial location, 𝑡 is time, and 𝐻(𝑟, 𝑡) is 

the heat capacity defined as the thermal energy deposited per unit volume and per unit 

time which can be expressed as [3]: 

𝐻(𝑟, 𝑡) = 𝜌𝐶𝑣
𝜕𝑇(𝑟,𝑡)

𝜕𝑡
.                                                   (7) 

Using Green’s functions, 𝑝(𝑟, 𝑡) can be obtained, providing the pressure signal 

at a transducer location 𝑟𝑠 propagated from a source located at  𝑟 over time  𝑡 [3]: 

𝑝(𝑟𝑠, 𝑡) =
1

4𝜋𝑐

𝜕

𝜕𝑡
∫

𝑝0(𝑟)

|𝑟𝑠−𝑟|
𝛿 (

𝑡−|𝑟𝑠−𝑟|

𝑐
) 𝑑𝑟,                                    (8) 

where 𝑝0(𝑟) is the initial pressure distribution based on spatial location 𝑟. After some 

mathematical  simplifications, PAT equations can be modeled as a forward and inverse 
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problems. The forward problem is presented as the wave equation given in (8), while 

the inverse problem is presented as the initial pressure distribution 𝑝0(𝑟) where the 

image is formed from. Forward and inverse problems can be written in a more compact 

form by assuming 𝒙 = 𝑝0(𝑟), and 𝒚 = 𝑝(𝑟𝑠, 𝑡). The forward problem can be 

represented in a linear form as [4]: 

𝒚 = 𝑯𝒙,                                                            (9) 

where  𝑯 is a matrix representing the forward operator of PA wave equations, 𝒙 is the 

initial pressure vector, and 𝒚 is the measurement vector of pressure. In this thesis, and 

from here on the compact form will be used to represent the initial pressure and the pressure 

waves. 

2.1.4 Pseudo-spectral matrix 

The construction of 𝑯 matrix depends on the adopted model, many forms of 

this matrix are found in literature [4], [5], [6]. In this thesis, we aim to simulate the PA 

measurements using 𝑘-wave MATLAB toolbox [7]. In order to reconstruct an image 

from simulated PA measurements, the forward operator matrix of PAT should give 

similar measurements as in the 𝑘-wave.  So, a pseudo-spectral matrix has been chosen 

that gives accurate measurements as in 𝑘-wave. This matrix is implemented in the time 

domain as derived in [6]. To summarize the implementation of 𝑯, one can start from  

the solution to the initial value problem in (6) [6]: 

(
𝜕2

𝜕𝑡2 − 𝑐2∇2)𝑝(𝑟, 𝑡) = 0.                                                        (10) 
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If the initial conditions were set to p(𝒓, 0) = Γℎ(𝒓), and  
𝜕𝑝

𝜕𝑡
|𝑡=0 = 0, then the pseudo-

spectral solution in Fourier space 𝐤 to the initial value problem at the time 𝑡 and  

location 𝒓′ is given by: 

      𝑝(𝒓′, 𝑡) =
1

(2𝜋)3
∬𝑝0(𝒓)𝑒𝑖𝐤.(𝒓′−𝒓) cos(𝑐𝑘𝑡) 𝑑𝒓𝑑𝐤,                         (11) 

where 𝑘 = |𝐤|. Equation (11) is the basis of computing wave propagation for a 

particular time instant at all points in a plane, and it is used to construct the sensing 

matrix 𝑯 which is actually a pseudo-spectral matrix [6]. 

Consider to have two grids which are the imaging grid (inner grid) and the k-

space grid (outer grid) as shown in Figure 2. The inner grid contains 𝑁𝑖𝑛 grid points 

along each axis with coordinates 𝑥 and 𝑦 of the 2D grid, let’s assume 𝒓 = (𝑥, 𝑦) =

(𝑚 ∗ 𝑑, 𝑛 ∗ 𝑑), where 𝑑 is the grid spacing and (𝑚, 𝑛) ∈[−𝑁𝑖𝑛/2, 𝑁𝑖𝑛/2 − 1] are 

integers representing the inner index. The outer grid has 𝑁𝑜𝑢𝑡  grid points along each 

axis. The Fourier transform frequency bins of the outer grid are given by:  

𝐤 = (𝑘𝑥, 𝑘𝑦) =
2𝜋

𝑁𝑜𝑢𝑡∗𝑑
∗ (𝑢, 𝑣),                                          (12) 

where (𝑢, 𝑣) ∈ [−𝑁𝑜𝑢𝑡/2, 𝑁𝑜𝑢𝑡/2 − 1] are integers representing the outer index. Then 

the Fourier transform matrix can be computed as [6]:  

𝑾𝑓𝑤𝑑(𝑖, 𝑗) =
1

𝑁𝑜𝑢𝑡
𝑒−√−1𝒌̅(𝑖).𝒓̅(𝑗),                                        (13) 

where 𝑾𝑓𝑤𝑑 ∈ ℂ𝑁𝑜𝑢𝑡
2 ×𝑁𝑖𝑛

2
 , 𝒌̅ and 𝒓̅ are vectors resulting from vectorizing 𝐤 and 𝐫 

respectively. The inverse Fourier transform matrix 𝑊𝑖𝑛𝑣 is found only at sensor 

locations  𝒓𝒔̅ = (𝑥𝑠, 𝑦𝑠). Assuming 𝑁𝑠 sensor locations, 𝑾𝑖𝑛𝑣  is given by [6]:  

𝑾𝑖𝑛𝑣(𝑠, 𝑖) =
1

𝑁𝑜𝑢𝑡
𝑒−√−1𝒌̅(𝑖).𝒓𝒔̅̅ ̅(𝑠),                                        (14) 
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where 𝑾𝑖𝑛𝑣 ∈ ℂ𝑁𝑠×𝑁𝑜𝑢𝑡
2

,  and 𝑠 = 1,2… , 𝑁𝑠 are the sensor indices. The Fourier 

inversion and wave propagation for a specific time instant is represented as 𝑲𝒕 , and it 

can be computed as: 

          𝑲𝑡 = 𝑾𝑖𝑛𝑣 ∘ (𝟏𝜿𝑡
𝑇),                                                (15) 

where 𝛋t = [cos{c𝐤̅(1)t} , cos{c𝐤̅(2)t} , … cos{c𝐤̅(Nout
2 )t}]

T
, 𝟏 is a column vector of 

all ones with length 𝑁𝑠, and ∘ represents element wise multiplication. One can 

construct matrix 𝑲 by stacking 𝑲𝑡 for different time instants. Assuming that K matrix 

captures the response of sensors over the entire time steps, then the sensing matrix can 

be obtained by simple matrix multiplication [6]: 

𝐇 = 𝐊𝑾𝑓𝑤𝑑,                                                   (16) 

where 𝐇 ∈ ℂ𝑁𝑠𝑁𝑡×𝑁𝑖𝑛
2

.  

 
 Inner and outer grids 
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2.1.5 Instrumentations 

The instrumentations for PAT system consist of a source of short laser pulses, 

sensor scanning system and an acoustic signal detection system. Figure 3 shows a 

typical PAT system [1]. In this system, several types of pulsed laser could be used such 

as diode laser, Ti:Sapphire laser and Nd:YAG laser. An optical subsystem is used to 

couple the laser source with the object and generates acoustic waves. A single 

transducer is used to sense and receive the acoustic waves where the transducer and 

the object are immersed in a tank of water. A membrane is used to isolate the object 

which is here a rat from the water tank. A rotary system is used to rotate the transducer 

around the object. The transducer receives one set of data at multiple positions (e.g. 

120 positions). This mechanical scanning system significantly increases the time 

needed for data acquisition. Many other transducer arrangements are possible such as 

linear array of transducers and circular arrangement of multiple transducers. There are 

many transducer types that can be used in PAT system. For example, the piezoelectric 

transducer which gives good results in detecting PA waves [8]. Also, ultrasound 

transducers can be used in PAT since the signal reception mechanism in Ultrasound 

Imaging (USI) and PAT are identical [9].  

The acoustic signal received by the transducer is firstly amplified using a 

preamplifier and then amplified again using a receiver. The signal is then converted to 

digital signal using a data acquisition board and fed to the computer. The computer is 

responsible for reconstructing the image from these digital measurements. In Figure 3, 

a slice of the rat brain is shown which is recovered using the PAT system [1].  
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 Typical PAT system 

 

2.2 Compressive Sensing  

Compressive Sensing (CS) theory is a signal processing technique for 

efficiently acquiring and reconstructing a sparse or a compressible signal. Sparse 

signal contains only few number of non-zero coefficients. However, compressible 

signal amplitude coefficients decrease rapidly if arranged in descending order as they 

decay with a power low. Many signals are compressible or sparse by nature, one of 

them is the photoacoustic signals. Thus, PA signals can be either recovered directly 

using compressive sensing, or they can be firstly transformed into another domain 

where they are sparser such as the Fourier domain, Wavelet domain, Curvelet domain 

…etc. 
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CS is based on finding a solution of an optimization problem, where the 

number of unknowns is larger than the number of measurements. Based on CS theory, 

a small number of linear projections of a compressible signal contains enough 

information for reconstruction by directly sampling the signal to be recovered using a 

sparse representation. As, the number of measurements can be reduced for a given 

quality of reconstruction, CS theory can be used to form a full-view PAT image with 

less number of sensors and shorter acquisition times. Usually to reconstruct a signal 

we should satisfy the Nyquist criteria in which the sampling rate should be at least 

twice the modulating signal maximum frequency. However, using CS theory, the 

signal can be recovered in much lower rate than the sampling rate suggested by 

Nyquist. According to CS theory, the prerequisite for accurate reconstruction is the 

sparsity of the original signal 𝒙, and the incoherency of the sensing modality [10].  

The system matrix 𝑯 should satisfy certain properties. A strong property for 

exact reconstruction is the restricted isometric property (RIP). RIP typically holds for 

random matrices such as Gaussian, Bernoulli …etc, but not for all deterministic 

matrices.  RIP shows how well the distances between two columns in matrix 𝑯 are 

preserved by certain linear transformation. The matrix 𝑯 satisfies the RIP property for 

every K-sparse vector x with constant 𝛿𝐾 ∈ (0,1) if [11]: 

(1 − 𝛿𝐾)‖𝒙‖2
2 ≤ ‖𝑯𝒙‖2

2  ≤  (1 − 𝛿𝐾)‖𝒙‖2
2,                     

where K is the number of nonzero elements in x. If the RIP property is satisfied, then 

the measurement vector y corresponds only to one K-sparse vector x (there are no two 

vectors x that can give the same vector y). In this way, the uniqueness of the solution 

is guaranteed. However, RIP property is NP-hard to compute [12]. A sufficient 
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condition for RIP is the mutual coherence of the sensing modality. The mutual 

coherence of a matrix can be computed easily, as it requires only 𝑂(𝑁𝑀) operations, 

where 𝑁,𝑀 are the matrix number of columns and rows, respectively. Therefore, the 

incoherency of the sensing modality is considered as a prerequisite for CS theory 

instead of RIP. Mutual coherence measures the level of dependence between the 

columns of a matrix. Therefore, to provide incoherency, the mutual coherence should 

be as low as possible. It can be defined as follows:  

𝜇(𝑯) = 𝑚𝑎𝑥
𝒊≠𝒋,𝟏≤𝒊,𝒋≥𝑵

|
|ℎ𝑗

∗ℎ𝑖|

‖ℎ𝑖‖2‖ℎ𝑗‖2

|, 

where ℎ𝑗  denotes the 𝑗𝑡ℎ column of the matrix H  and ℎ𝑗
∗ denotes its conjugate 

transpose. 𝜇(𝑯) = 0, if all the columns in the matrix H are orthogonal. In case of CS, 

the number of rows 𝑁 is lower than the number of columns 𝑀, thus the mutual 

coherence is strictly positive 𝜇(𝑯) > 0. 

Mathematically, the sparsity of an image 𝒙 with 𝑁𝑖𝑛
2  pixels is defined as 

‖𝒙‖0 ≪ 𝑁𝑖𝑛
2 , where  ‖𝒙‖0 is the  ℓ0 norm defined as the number of non-zero elements 

in the vector 𝒙. Compressive sensing theory tells us that if an image to be recovered is 

already sparse or can be transformed to a sparse image, then 𝒙 is the solution to the 

following optimization problem [4]: 

      min
𝒙

 ‖𝒙‖0 s.t. H x = y.                                         (17) 

ℓ0 minimization is an NP-hard combinatorial problem which is computationally 

expensive to solve. However, if the image to be recovered is sufficiently sparse and 

under some conditions on the matrix H, the solution of the ℓ0 problem (17) can be 
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obtained by replacing the ℓ0 norm with the ℓ1 norm which is a convex optimization 

problem. 

2.2.1 Sparse Recovery Techniques 

In literature, several techniques are used to recover sparse signals, mainly 

convex optimization methods and greedy algorithms. Convex optimization methods 

have uniform guarantees of performance, which means they never fail to reconstruct 

any sparse signal. This is an important advantage over greedy algorithms. They are 

also stable which is significant in practice and thus they are applicable to real world 

problems. However, they have higher computational complexity compared to greedy 

algorithms. Greedy algorithms such as Orthogonal Matching Pursuit (OMP) [13] and 

Stagewise Orthogonal Matching Pursuit (SToMP) [14] compute the support of the 

signal iteratively but they do not provide the same guarantee of performance and 

stability as ℓ1- minimization methods. In this thesis, the focus will be on convex 

optimization methods since they provide higher guarantees and stability. Their 

computational complexity will be much improved using the proposed distributed 

implementation of the problem as will be discussed later. In the followings different 

formulations of CS problems are discussed. 

2.2.2 Basis Pursuit (BP) 

Basis Pursuit is formulated as a linear programming problem. It finds the sparse 

vector 𝒙 that has the smallest ℓ1 norm and at the same time satisfies the equality 

constraint  𝑯𝒙 = 𝒚. A vector 𝒙 can be recovered using BP formulation by solving the 

following equality-constrained optimization problem [10]:   
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𝑚𝑖𝑛
𝒙

 ‖𝒙‖1  s.t. 𝑯𝒙 = 𝒚,                                                   (18) 

where‖𝒙‖1 = ∑ |𝑥𝑛|
𝑁𝑖𝑛

2

𝑛=1  is the  ℓ1norm.  

2.2.3 Least Absolute Shrinkage Operator (LASSO)  

LASSO is a method of solving ℓ1minimization problems similar to BP but with 

a quadratic constraint which can be formulated as: 

                                      𝑚𝑖𝑛  
𝒙

‖𝒙‖1  s.t. ||𝑯𝒙 − 𝒚||
2

2
< 𝜖2,                                      (19) 

where ‖ . ‖2 is the ℓ2 norm, and ϵ is the tolerance. BP and LASSO can be solved easily 

using convex optimization techniques such as interior point method which is 

implemented in CVX and ℓ1-MAGIC [15]. A fast implementation algorithm that 

allows to solve the problem is the ADMM which will be the focus of this thesis. 

ADMM allows for decoupling the problem into many sub-problems that can be solved 

in parallel. 

2.3 Alternating Direction Method of Multipliers (ADMM) 

ADMM is a very powerful algorithm and simple at the same time. It is well-

suited to convex optimization problems and in particular to problems arising in 

machine learning. It combines the advantages of dual ascent method and the method 

of multipliers. In particular, it blends the dual ascent decomposability property with 

the method of multipliers convergence properties [16]. It can solve many problems 

efficiently, gives better results than other algorithms and is better suited for ℓ1norm 

problems. The main idea of ADMM is splitting the objective function into two 

objective functions; each depends on a distinct variable. 
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To apply ADMM to basis pursuit problem, an additional block of variables 𝒛 

is added to the optimization variable. Following the ADMM formulation of the BP, 

problem  (18) can be rewritten as [16]: 

      𝑚𝑖𝑛
𝒙,𝒛

 𝑓(𝒙) + ‖𝒛‖1 s. t.  𝒙 − 𝒛 = 0,                                        (20) 

where 𝑓(𝒙) is an indicator function defined as:  

                           𝑓(𝒙) = {
  0            𝑯𝒙 = 𝒚
  ∞      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}.                                            (21)     

To solve the optimization problem (20), the augmented Lagrangian function is written 

as: 

𝐿𝜌(𝒙, 𝒛, 𝒚) = 𝑓(𝒙) + ‖𝒛‖1 + 𝝁𝑇(𝒙 − 𝒛) +
𝜌

2
‖𝒙 − 𝒛‖2

2,                     (22) 

where 𝝁 is a dual variable, and 𝜌 is the augmented Lagrangian parameter. Based on 

the ADMM, the solution to (22) is obtained by alternating between 𝒙 , 𝒛 and 𝝁 updates 

as follows [16]: 

                   𝒙𝑘+1 ≔ 𝑎𝑟𝑔𝑚𝑖𝑛
𝒙

 𝐿𝜌(𝒙, 𝒛𝑘, 𝝁𝑘),                                      (23) 

      𝒛𝑘+1 ≔ 𝑎𝑟𝑔𝑚𝑖𝑛 
𝒛

𝐿𝜌(𝒙𝑘+1, 𝒛, 𝝁𝑘),                                     (24) 

                  𝝁𝑘+1 = 𝝁𝑘 + 𝜌(𝒙𝑘+1 − 𝒛𝑘+1),                                       (25) 

where 𝑘 is the iteration number. 𝒙𝑘+1 update depends on previous states of 𝒛𝑘 and  𝝁𝑘, 

while 𝒛𝑘+1 update depends on the updated state 𝒙𝑘+1and on previous state of the dual 

variable 𝝁𝑘. The dual variable update 𝝁𝑘+1 depends on updated states of 𝒙𝑘+1 and  

𝒛𝑘+1. A scaled dual variable form is obtained by assuming 𝒖 = (1/𝜌)𝝁  in all the 

updates. 𝒙𝑘+1 update in (23) can be expressed as the projection onto {𝒙 ∈ ℝ𝑛 | 𝑯𝒙 =

𝒚}, and can be written explicitly as [16]: 
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𝒙𝑘+1 = (𝑰 − 𝑯𝑇(𝑯𝑯𝑇)−1𝑯)(𝒛𝑘 − 𝒖𝑘) + 𝑯𝑇(𝑯𝑯𝑇)−1𝒚.                (26) 

𝒛𝑘+1 update in (24) can be expressed using the soft thresholding operator 𝑆 as [16]: 

𝒛𝑘+1 ≔ 𝑆1/𝜌(𝒙𝑘+1 + 𝒖𝑘),                                          (27) 

         𝒛𝑘+1 ≔ (𝒙𝑘+1 + 𝒖𝑘 −
1

𝜌
)
+

−(−𝒙𝑘+1 − 𝒖𝑘 −
1

𝜌
)
+
,                        (28) 

where (𝑎)+ = max(𝑎, 0). This iterative algorithm converges to the optimal solution 

after satisfying the stopping criteria which depends on the primal and dual residuals. 

The primal and dual residues are computed respectively at iteration 𝑘 as [16]: 

        𝒓𝑘 = 𝒙𝑘 − 𝒛𝑘,                                                          (29) 

𝒔𝑘 = 𝜌(𝒛𝑘 − 𝒛𝑘−1).                                                    (30) 

ADMM iterative algorithm terminates if a stopping criteria is satisfied. Different 

stopping criteria can be defined, for example: 

‖𝒓k‖
2

≤ ϵpri      and         ‖𝒔k‖
2

≤ ϵdual,   

where ϵpri is the primal tolerance, and ϵdual is the dual tolerance. In literature a 

relaxation parameter has been added to improve the ADMM convergence.  As 

suggested in [16], the term 𝒙𝑘+1  in  𝒛𝑘+1  and 𝝁𝑘+1 updates can be replaced by: 

𝒙𝑘+1=𝛼𝒙𝑘+1 + (1 − 𝛼)𝒛𝑘,                                             (31) 

where 𝛼 ∈  [0,2] is the relaxation parameter. If 𝛼 > 1 it is called an over-relaxation 

parameter, while if 𝛼 < 1 it is called an under relaxation parameter. The 

implementation of the ADMM Basis Pursuit is summarized in Table 1. 
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Table 1: ADMM Basis Pursuit Algorithm  

 

Inputs: 𝒚, 𝑯 , 𝜶, 𝝆 

Initialize 𝒙𝟎, 𝒛𝟎, 𝒖𝟎, 𝒌 = 𝟎 

While stopping criteria is not satisfied, do: 

Step1. Update the variable 𝒙𝐤+𝟏 using  (23) 

Step2. relax 𝒙𝒌+𝟏 using 𝜶 as in (31) 

Step3. Update the variable 𝒛𝒌+𝟏 using (24) 

Step4. Update the dual variable 𝒖𝒌+𝟏 using  (25) 

𝒌 = 𝒌 + 𝟏 

end 

Outputs: 𝒛𝒌+𝟏  

 

2.4 Related Works  

The followings summarize some related works to PAT, CS and ADMM 

respectively.  

2.4.1 Photoacoustic Tomography 

 Several works have been done contributing to PAT field. In [3], the 

fundamentals and principles of PAT are presented along with its system 

characteristics, recent applications and major implementations. In [17], the authors 

have presented some current state of-the-art photoacoustic  imaging techniques and 

their outcomes related to clinical cancer applications. They explained many techniques 

such as photoacoustic computed tomography systems, stand-alone photoacoustic 

imaging systems and photoacoustic imaging systems resembling clinical ultrasound 

scanners. In [18], a realistic 3D numerical breast phantoms are developed for 

photoacoustic  computed tomography and ultrasound computed tomography.  The 3D 

phantoms describe the acoustic and optical breast properties and they are established 

by employing a clinical contrast-enhanced magnetic resonance data (MR).  
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Some researchers have used an exogenous agent to improve the contrast and 

penetration of PAT such as the case in [19]. The authors have reported a novel PA 

imaging scanner with a tyrosinase-based reporter system that makes tumor cells 

produce their own contrast. Experiments were done on mice and 3D images of 

xenografts formed of tyrosinase-expressing cells are obtained in vivo. A retroviral 

vector is used which permanently alter the genome so the image contrast is passed on 

to progeny cells which allow the study of the growth of these cells in the long term.  

The authors of [20] have used a guided filtering approach to improve the total 

variation regularization method. The guiding image was obtained from linear back 

projection method. While in [7], the authors discussed in details the k-wave MATLAB 

toolbox for simulating and reconstructing PA signals. They presented several 

modeling examples for example they used data interpolation to improve time reversal 

reconstruction.  

2.4.2 Compressive sensing framework 

 An intensive research has been conducted in understanding and explaining CS 

theory. Many of them have proposed CS framework for PAT. The works related to CS 

are summarized as follows. In [11], a survey was made to explain the compressive 

sensing idea along with its prerequisites and its reconstruction algorithms. The survey 

considers the CS formulations in signal processing applications using a commonly 

used transformation domains such as Fourier Transform (FT) domain, polynomial FT 

domain, combined time-frequency domain and Hermite transform domain. In [21], a 

survey has been conducted to discuss the construction of deterministic matrices used 

for CS and to present some of the disadvantages of using random matrices in CS. In 
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[22], an introduction to compressive sampling was provided with its two fundamental 

premises which are the sparsity and incoherency. Also, CS has been shown to be robust 

by corrupting the measured data with noise. Multiple random sensing matrices were 

presented and many CS applications were discussed. 

One of the first works done that applies CS to PAT is in [4], where compressive 

sensing formalism was explained in details with its prerequisites. PAT was modeled 

in frequency domain and simulation results showed a dramatic reduction in the number 

of measurements needed for a given quality of recovered images. In [23], the theory 

of CS was used to improve image quality of full-view PAT with less ultrasound sensors 

where a circularly distributed asymmetric data acquisition frame was used. Firstly, a 

pre-imaging process was done using few number of sensors to form a low quality 

image. This pre-imaging process allows determining the Region of Interest (ROI) and 

then redistribute the sensors non-uniformly around a circle while most of the sensors 

are focused on the ROI. In [24], the acoustics topics of CS and holography are 

addressed. Using a sparsity constraint, CS reconstructs the direction of arrival of 

multiple sources. Many topics were also addressed such as sparse sensing in acoustic 

medium and sparse array configuration. In [25], the acquisition speed of PAT was 

increased dramatically by using spatial sparsity constraints with the development of 

PAT systems that are able to  sub-sample the acoustic waves. The spatial sub-sampling 

was done using two models that were implemented using Fabry-Perot interferometer. 

The potential of the models were demonstrated through simulated data, experimental 

measured data, realistic numerical phantoms as well as in vivo experiments. In [26], 

4D PAT was enhanced in terms of image quality by exploiting the additional temporal 

redundancy of measured data and coupling the image reconstruction methods with 
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sparsity constrained motion estimation models. In [27], the CS theory was used to 

increase the PAT imaging speed. The concept of sparsifying temporal transforms for 

3D PAT was developed. The algorithm depends on two stages, the first one is 

recovering the complete pressure waves, while the second one is applying back-

projection method which is a standard reconstruction algorithm. In [28], a distributed 

compressive sensing framework has been used to formulate photoacoustic  signal 

recovery to exploit the intra- and inter- signal correlation. In [29], a number of sparse 

recovery algorithms were classified and their performance is tested and compared with 

each other. The performance of the recovery algorithms (CS algorithms) is tested 

based on recovery error, recovery time and covariance.  

2.4.3 Alternating direction method of multipliers 

 In [16], a brief survey has been conducted to show the theory and history 

behind ADMM. Some of the ADMM applications were also discussed including Basis 

Pursuit (BP), Least Absolute Shrinkage Operator (LASSO), sparse logistic regression, 

support vector machines, covariance selection, and many others.  In [30], optimization 

problems with multi-block linear constraints are solved using parallel randomized 

block coordinate method. The algorithm behaves like parallel randomized block 

coordinate descent. The proposed method outperform the state-of-the-arts methods in 

two applications which are the robust principal component and over-lapping group 

LASSO. In [31], a Total Variation (TV) problem was reformulated as a linear equality 

constrained problem using Alternating Direction Method (ADM). The ADM approach 

can be applied to multi- and single- channel images with impulsive or Gaussian noise. 

The computational complexity of the algorithm per-iteration is dominated by using 
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several Fast Fourier Transform (FFT). The approach has been simulated and compared 

to some of the state-of-the-art algorithms and results show that it outperforms them 

since it is more stable and efficient.  In [32], a fast implementation of ADMM and 

another algorithm called the Alternating  Minimization Algorithm (AMA). Global 

convergence bounds are provided for both classical and accelerated methods, in case 

the objective function is strictly convex. In [33], the basis pursuit deconvolution was 

performed to improve the PA reconstructed images accuracy of blurring models. An 

approximate blur matrix was built via the Lanczos bidagonalization and used in the 

simulations. 

In this thesis, a distributed photoacoustic reconstruction algorithm is proposed 

that is capable of dramatically reducing the computational complexity while at the 

same time maintains high quality of recovered images. Conventional reconstruction of 

photoacoustic images relies on a centralized framework in which the whole 

measurements are processed using a central processor. Processing all measurements 

using a central processor may entail computational complexity especially in 3D 

images. Our proposed algorithm is based on splitting the optimization problem 

(recovery problem) into several sub-problems that can be solved iteratively in parallel. 

Each sub-problem is processed by a local processor with information exchange with a 

central (global) processor that works as a coordinator. Each local processor/unit is 

responsible to process the measured data of a small group of sensors. The proposed 

algorithm is based on a distributed implementation of the ADMM. The optimization 

problem is formulated using the Basis Pursuit (BP) formulation, but can be extended 

for other formulations. To the best of our knowledge, this is the first work that proposes 

a distributed PA recovery algorithm based on ADMM. 
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Chapter 3: Distributed Recovery Algorithm 

 

In this chapter, the proposed implementation of distributed ADMM Basis 

Pursuit (BP) algorithm to recover PA images is discussed. Also, an explanation of the 

use of relaxation parameters for enhancing the optimization convergence is presented.  

3.1 Distributed ADMM BP  

ADMM BP is very powerful in finding the optimal solution; however for 

photoacoustic images with large dimensions (large 𝑁𝑖𝑛
2 ) the system matrix 𝑯 is usually 

huge and its size is even larger for 3D images. Also, in ADMM BP, the measurement 

vector is composed of measurements from all sensors. So, the computational 

complexity to process such problems is quite high. In this sense, a distributed and 

parallel implementation of the ADMM BP is proposed. In distributed ADMM BP, the 

whole system matrix and the measurements of all sensors are distributed over multiple 

local processors that work in parallel to find the optimal solution.  

To split the ADMM optimization problem in equation (20) into smaller sub-

problems that can be processed in parallel using multi processors, the sensing matrix 

𝑯  is divided into 𝑀 sub-matrices. Similarly, the measurement vector y is divided 

into 𝑀 measurement vectors: 

𝑯 =

[
 
 
 
 
𝑯1

𝑯2

.

.
𝑯𝑀]

 
 
 
 

 ,               𝒚 =

[
 
 
 
 
𝒚1

𝒚𝟐

.

.
𝒚𝑴]

 
 
 
 

. 

Since 𝑯 ∈ ℝ𝑁𝑠𝑁𝑡×𝑁𝑖𝑛
2

 then  𝑯𝑖 ∈ ℝ𝑚𝑖×𝑁𝑖𝑛
2

 and 𝐲𝑖 ∈ ℝ𝑚𝑖, where ∑ 𝑚𝑖 = 𝑁𝑠𝑁𝑡
𝑀
𝑖=1 . 

𝑯𝑖  and 𝒚𝑖   denotes the 𝑖𝑡ℎ block or sub-problem that will be handled by the 𝑖𝑡ℎ 
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processor. According to these divisions, the optimization problem (20) can be 

formulated as: 

                 𝑚𝑖𝑛
𝒙𝟏,..,𝒙𝑴,𝒛

 ∑ 𝑓𝑖(𝒙𝑖)
𝑀
𝑖=1 + ‖𝒛‖1 𝑠. 𝑡.  𝒙𝑖 − 𝒛 = 0, for 𝑖 = 1, . . . , 𝑀.                (32) 

The indicator function in equation (20) is split into 𝑀 sub-functions that each can be 

represented as a local function at the local processor. The 𝒛 variable is considered as 

the global variable that need to be received by all local processors. The optimization 

of the global variable 𝒛 need to be handled by the global processor. According to 

equation (32), the ADMM Basis Pursuit updates for the scaled form are as follows: 

                    𝒙𝑖
𝑘+1 ≔ 𝑎𝑟𝑔𝑚𝑖𝑛 

𝒙𝒊

𝑓𝑖(𝒙𝑖) +
𝜌

2
‖𝒙𝑖 − 𝒛𝑘 + 𝒖𝑖

𝑘‖2
2, 𝑖 = 1, . . . , 𝑀,                  (33) 

          𝒛𝑘+1 ≔ 𝑎𝑟𝑔𝑚𝑖𝑛 
𝒛

‖𝒛‖1 +
𝜌

2
‖𝒙̅𝑘+1 − 𝒛 + 𝒖̅𝑘‖2

2,                             (34)  

                                𝒖𝑖
𝑘+1 ≔ 𝒖𝑖 + (𝒙𝑖

𝑘+1 − 𝒛𝑘+1), 𝑖 = 1, . . , 𝑀,                                 (35) 

where 𝒙𝑘+1 =
1

𝑀
∑ 𝒙𝑖

𝑘+1𝑀
𝑖=1   𝑎𝑛𝑑  𝒖̅𝑘 =

1

𝑀
∑ 𝒖𝑖

𝑘𝑀
𝑖=1  are the average values of 𝒙𝑖

𝑘+1 and 

𝒖𝑖
𝑘 respectively. Similar to equation (26), 𝒙𝑖

𝑘+1 update can be written explicitly as: 

𝒙𝑖
𝑘+1 = (𝑰 − 𝑯𝑖

𝑇(𝑯𝑖𝑯𝑖
𝑇)−1𝑯𝑖)(𝒛

𝑘 − 𝒖𝑖
𝑘) + 𝑯𝑖

𝑇(𝑯𝑖𝑯𝑖
𝑇)−1𝒚𝑖.          (36) 

𝒛 is updated based on the global variable consensus form using soft thresholding 

operator and the average values  𝒙̅k+1 and  𝒖̅k as: 

              𝒛𝑘+1 = (𝒙k+1 + 𝒖̅k −
1

𝜌
)+−(−𝒙̅k+1 − 𝒖̅k −

1

𝜌
)+ .                               (37) 

The distributed ADMM BP algorithm iterates until the primal and dual residues 

stopping criteria are met. In case of the proposed algorithm, the dual residue is the 

same as in equation (30), while the primal residue is computed as: 
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   𝒓𝑘+1 = 𝒙̅𝑘+1 − 𝒛𝑘+1.                                                   (38) 

3.2 Relaxation Parameter  

Before updating 𝒛𝒌+𝟏 in the global processor, a relaxation parameter 𝛼 can be 

firstly applied to the average value   𝒙̅𝑘+1 as:  

                            𝒙̅𝑘+1  = 𝛼𝒙̅𝑘+1 + (1 − 𝛼)𝒛𝑘,                                          (39) 

and then applied to the average value of the dual updates 𝒖̅𝑘as: 

𝒖̅𝑘  = 𝛼𝒖̅𝑘 + (1 − 𝛼)𝒙̅𝑘+1,                                           (40) 

where 𝒙̅𝑘+1 in (40) is the relaxed average value found from (39). Adding an over-

relaxation parameter in this manner will significantly improve the convergence of the 

distributed ADMM BP as shown in the simulations.  

        The proposed algorithm is summarized in Table 2. Each local processor finds 

and sends its local updates 𝒙𝑖
𝑘+1 and 𝒖𝑖

𝑘 to the global processor. The global processor 

updates the global variable 𝒛𝑘+1 using the average values of local updates based on 

(37). If the stopping criterion is met, the optimal solution is found and it is equal to the 

last updated value of  𝒛𝑘+1, otherwise, the global processor will broadcast the updated 

𝒛𝑘+1 to local processors again to do the next iteration. 
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                    Table 2: The Proposed distributed ADMM BP Algorithm 

 

Inputs to local unit i : 𝒚𝒊, 𝑯𝒊 , for 𝒊 = 𝟏, 𝟐, 𝟑, … ,𝑴 

Inputs to global unit: 𝜶 and 𝝆 

Initialize 𝒖𝒊
𝟎,  𝒛𝟎, 𝒌 = 𝟎 

While stopping criteria is not satisfied, do: 

Step1. Update the local variable 𝒙𝒊
𝒌+𝟏 using (29) 

Step2. Find 𝐱̅𝐤+𝟏 =
𝟏

𝑴
∑ 𝒙𝒊

𝒌+𝟏𝑴
𝒊=𝟏 , and 𝒖̅𝒌 =

𝟏

𝑴
∑ 𝒖𝒊

𝒌𝑴
𝒊=𝟏  

Step2. Relax  𝒙̅𝒌+𝟏 using 𝜶 as in (32) 

Step3. Relax 𝒖̅𝒌 using 𝜶 as in (33) 

Step4. Update the global variable 𝒛𝒌+𝟏 using (30) 

Step5. Update the local variable 𝒖𝒊
𝒌 using (28) 

𝒌 = 𝒌 + 𝟏 

end 

Output: 𝒛𝒌+𝟏 

 

The proposed algorithm is explained using a block diagram as shown in Figure 

4. Each local processor collects and processes the measurements from its small group 

of sensors. The global processor has no access to sensors’ data.   
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  Block diagram of the proposed algorithm 

. 

. 

. 

. 

. 

𝒙1
𝑘+1, 𝒖1

𝑘 

𝒛𝑘+1 

𝒙𝑀
𝑘+1, 𝒖𝑀

𝑘  

Global Processor; 

Updates:  

𝒛𝑘+1  

using avg. local 

values   

 

Local Processor 1  

Updates: 

𝒙1
𝑘+1, 𝒖1

𝑘 
 

Local Processor 𝑀 

Updates: 

𝒙𝑀
𝑘+1, 𝒖𝑀

𝑘  
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Chapter 4: Numerical Simulations and Results 

 

In this section, simulation results of ADMM BP and the proposed distributed 

ADMM BP are conducted using similar setups. The efficiency of the proposed 

algorithm compared to ADMM BP is tested in terms of the computational complexity 

and image quality. 

4.1 Simulations Setup  

The processor used in simulations is Intel® Core™ i5-2400 CPU @3.10 GHz 

with MATLAB R2016a. The system matrix was built as discussed in [6], with an inner 

grid of size 𝑁𝑖𝑛 = 64, outer grid of size 𝑁𝑜𝑢𝑡 = 256 and  square sensors distribution 

of 67 sensors (𝑁𝑠 = 67) as shown in Figure 5.  

 

 Inner and outer grids with square sensors configuration 

 

 

𝑁𝑜𝑢𝑡 𝑁𝑖𝑛 

Sensors 



31 
 
 

 
 
 

The sensors were placed outside the imaging grid (inner) and in the outer grid. 

A grid spacing is taken as 𝑑 = 0.1 𝑚𝑚 and the medium acoustic speed is assumed to 

be 𝑐 = 1500 𝑚/𝑠. A maximum frequency is computed as  𝑐/(2 × 𝑑) and it is equal 

to 7.5 𝑀𝐻𝑧. The acoustic signals are acquired during a time slot of 5𝜇𝑠. Thus, based 

on Nyquist criteria, the number of samples needed to reconstruct an image at Nyquist 

rate is 75 (𝑁𝑡 = 75). Initially, the 𝑯 matrix is of dimension 5025×4096, therefore it is 

an overdetermined system. Note that we started with this matrix dimension only for 

comparison reasons, later on the number of sensors and samples will be reduced by 

applying the CS theory. The measurements of our simulations were created by the 

pseudo-spectral matrix 𝑯. These measurements have been compared first to 

measurements generated by 𝑘-wave under similar settings to ensure the validity of 

these measurements. 𝑘-wave is an open source MATLAB toolbox that is designed for 

time domain acoustic simulations in realistic media [7].   Figure 6 shows the 

measurement of one sensor only generated by 𝑘-wave and 𝑯 matrix. It is clear that 

both measurements match perfectly. 

 

http://www.k-wave.org/license.php
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 The measured pressure by one sensor using 𝑘-wave and the psuedo-

spectral matrix (𝑯 Matrix) 

 

4.2 ADMM BP Simulations  

The implementation of ADMM BP was done as described in Table 1, where 𝒚 

is a column vector composed of measurements from all sensors. Based on the specified 

numerical values in the setup sub-section, the vector 𝒚 has initially a length of 5025. 

𝒙0, 𝒖0 and 𝒛0 are vectors of length 4096, and they are randomly initialized. An over-

relaxation parameter 𝛼 =1.3 is used. The augumented Lagrangian 𝜌 was set to 1. The 

stopping criteria specified in (29) and (30) were applied with primal ϵpri and dual ϵdual 

stopping thresholds set to √𝑁𝑖𝑛
2 × 10−3.  
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The algorithm described in Table 1 is tested on two common images:  the 

Shepp-Logan phantom and the blood vessels phantom. It is also tested on a realistic 

breast phantom that is generated based on real tissue characteristic values. The real 

phantom is available in [18]. The realistic breast phantom is a binary file written under 

UNIT8 data format, where each voxel contains a value that represents a specific tissue 

type. Blood vessel is given a value of 5, skin is given a value of 1, background is valued 

0, fat and fibroglandular tissues are given values of 3 and 2 respectively. Replacing 

these values with their corresponding realistic initial pressure values based on acoustic 

properties of each tissue type, we can generate a realistic initial pressure image. For 

simulations, the optical absorbtion coefficients of breast tissues using a wavelength of 

760 nm are shown in Table 3 [18]. 

 

Table 3: The optical absorption coefficients of different breast tissue types 

 

Tissue Type Background 
Blood 

vessels 
Skin Fibroglandular Fat 

𝜇𝑎 (𝑐𝑚−1) 0 5 0.08 0.04 0.05 

 

The initial pressure distribution can be generated based on values shown in 

Table 3 by using the initial pressure equation (4) with Γ = 0.1, 𝜂𝑡ℎ = 1 , and the 

optical fluence 𝐹 = 100 𝐽/𝑚2 [18]. The initial pressure values has been inserted in its 

corresponding voxel type. The phantom available in [18] is a 3D phantom, for 

simplicity we took a 2D slice from it and resize it to 64 × 64. The reconstructed images 

along with the original ones are shown in Figure 7.  
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 Original images and reconstructed images using ADMM. (a,b,c) Original 

images of blood vessels, Shepp-Logan and real phantom, respectively. (d,e,f) 

Reconstructed images at Nyquist rate and 67 sensors. 

 

In case of reconstruction at Nyquiat rate (𝑁𝑡 = 75) with 𝑁𝑠 = 67, the inverse 

problem is overdetermined and reconstruction was done perfectly. However, one of 

the aims of this thesis is to optimize and reduce the number of sensors and samples 

using the CS theory. Firstly, the number of sensors are reduced and the algorithm 

performance is tested again.  The results of these tests are shown in Table 4.  
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In all our tests, the Structural Similarity index (SSIM) is used to measure the 

quality of images [18]. SSIM ranges between -1 if there is no similarity between 

original image and reconstructed image, and 1 if both images are identical. The 

formula used to compute the SSIM value assuming to have two images 𝑥1 and 𝑥2 is 

written as [35]:  

𝑆𝑆𝐼𝑀 =
(2𝜇𝑥1𝜇𝑥2+𝑐1)(2𝜎𝑥1𝑥2+𝑐2)

(𝜇𝑥1
2 +𝜇𝑥2

2 +𝑐1)(𝜎𝑥1
2 +𝜎𝑥2

2 +𝑐2)
                                     (41) 

where 𝜇𝑥1
, 𝜇𝑥2

 are the averages of 𝑥1 and 𝑥2 respectively. 𝜎𝑥1
, 𝜎𝑥2

 are the variances 

of 𝑥1 and 𝑥2 respectively. 𝜎𝑥1𝑥2
 is the covariance of 𝑥1 and 𝑥2. 𝑐1 = (0.01𝐿)2 and 

𝑐2 = (0.03𝐿)2 are used to stabilize the division with weak denominator, where 𝐿 is 

the pixel-values dynamic range.  

 

Table 4: Comparisons between three phantoms reconstruction while reducing the 

number of sensors (𝑁𝑠). 

 

Phantom Ns Reconstruction Time (s) Iterations SSIM 

Blood vessels 

67 13.3431 6 1.00 

50 5.7900 6 1.00 

40 3.2082 6 1.00 

31 1.6058 6 1.00 

Shepp- Logan 

67 12.9243 10 1.00 

50 5.7243 10 1.00 

40 3.1940 10 1.00 

31 1.6571 10 1.00 

Real phantom 

67 13.3919 8 0.9999 

50 5.6814 8 0.9999 

40 3.1833 8 0.9999 

31 1.6282 8 0.9999 
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In Table 4, for the reduced number of sensors setup, the sensors locations were 

taken randomly for 𝑁𝑠= 40  and 𝑁𝑠= 50 from the distribution shown in Figure 5. For 

the case of 𝑁𝑠=31, the sensors were distributed evenly around the same square 

configuration. As shown in Table 4, reducing the number of sensors to 31 (out of 67) 

still allows for perfect reconstruction of the images. The computational complexity 

and run time are greatly reduced for this case. The run time complexity is less than 

10% of the run time complexity when 67 sensors are used. Similar conclusions can be 

drawn for the cases 𝑁𝑠= 40  and 𝑁𝑠= 50 . Acquisition with less than 31 sensors causes 

the ADMM algorithm to diverge as there are no sufficient measurments.  Note in Table 

4, the number of samples were fixed to 75.  

4.3 Distributed ADMM BP Simulations  

The main purpose is to reduce the computational complexity of PAT image 

reconstruction. From Table 4, it was found that the least number of sensors that allows 

for perfect reconstruction is 31 sensors, hence the distributed ADMM BP is tested only 

with this number of sensors. The 31 sensors were distributed evenly over a square outside 

the imaging grid similar to section 6.1. The same numerical values discussed in the 

setup sub-section are used. With 31 sensors, the psuedo-spectral matrix is of dimension 

2325×4096. Following the lines of [6], the arrangement of 𝑯 matrix is as follows: 

measurements of the 31 sensors for the first time sample comes consecutively after 

each other in the first 31 rows, and so on for the rest time samples.  

In distributed ADMM BP, the whole number of sensors are divided into a 

number of small groups. Each local processor/unit is responsible to process data  

received from its own small group of sensors. Therefore, the 𝑯 matrix is rearranged 
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such that the measurements at all the time samples for each sensor comes 

consecutively after each other. Then the matrix is divided by rows while ensuring all 

the time samples for each sensor are taken. In the first experiment, the 31 sensors was 

divided into 4 groups (𝑀 = 4), the first three groups has 8 sensors while the last one 

has 7 sensors only. Each group is processed by a different local unit, so there is a  total 

of 4 local units and one global unit. In this case, the system matrix 𝑯 is divided into 

four sub-matrices, the first 3 sub-matrices 𝑯𝑖 (for 𝑖 = 1,2,3) are of size 600 × 4096, 

the last sub-matix 𝑯4 is of size 525 × 4096. Each local unit 𝑖 receives its own 

measurments vector 𝒚𝒊 (𝑖 = 1,2,3,4) from its own sensors group.  

The implementation of distributed ADMM BP is done as described in Table 2. 

The local units are working simultanously in parallel each with its corresponding 𝒚𝑖, 

𝑯𝑖 , 𝒙𝑖  and  𝒖𝑖. An over-relaxation parameter 𝛼 = 1.3  is used and 𝜌 = 1. The stopping 

criteria are the norms of primal and dual residues where the primal residue is computed 

based on (31) with ϵpri = ϵdual = 0.064. In the first experiment, the algorithm was 

applied to the three phantoms mentioned before, and it works successfully and 

perfectly in reconstructing all of the images as shown in Figure 8.  
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 Reconstructed images using the proposed algorithm: a)Blood vessel, 

b)Shepp-Logan phantom and c)Real phantom at Nyquist rate (𝑁𝑡 = 75) using 

distributed BP ADMM with 4 local units (𝑀 = 4) and total of 31 sensors. 

 

The algorithm has been tested also on different number of local units. Table 5 

summarizes the results of reconstruction at Nyquist rate (75 time samples) obtained 

after dividing the sensors into 4, 8, 15 and 31 groups. In case of 31 groups, each local 

unit processes the measurements of one sensor only. 

Table 5: Distributed ADMM reconstructions using different no. of local units (𝑀) 

 

Phantom M Reconstruction Time (s) Iterations SSIM 

Blood Vessels 

4 0.1992 16 1.00 

8 0.1934 21 0.9999 

15 0.2330 26 0.9994 

31 0.3244 37 0.9916 

Shepp-Logan 

4 0.2237 21 0.9956 

8 0.2240 24 0.9756 

15 0.2422 27 0.9429 

31 0.2836 32 0.9054 

Real Phantom 

4 0.1867 16 0.9998 

8 0.1816 19 0.9992 

15 0.2147 24 0.9989 

31 0.2905 31 0.9974 
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Comparing the proposed algorithm with ADMM BP results using 31 sensors, 

the proposed algorithm shows a dramatic reduction in computational complexity 

which is reflected on a faster running time. As shown in Table 5, for different 𝑀 sub-

problems, the run time has been reduced to around 1/8𝑡ℎ of the run time computed in 

Table 2 for 31 sensors. The SSIM value has been slightly affected but it is still very 

high for the three phantoms. There is a noticeable increase in the number of iterations 

compared to the ADMM BP, but this is not of much concern since the original images 

are reconstructed perfectly with a much faster running time. The number of iterations 

increases with higher number of groups (𝑀), therefore dividing the problem into more 

sub-problems reduces the run time of local processors at each iteration, but not the 

total reconstruction time. Also, the SSIM value is slightly decreasing going from 𝑀 =

4 to 𝑀 = 31. For optimal results, there should be a balance between the number of 

sub-problems, quality of recovered image and the running time. Based on the results 

shown in Table 5, the optimal choice is when 𝑀 = 4, since the images are perfectly 

reconstructed with the least time and least number of iterations.  

As suggested by compressive sensing theory, a sparse image can be 

reconstructed at much lower rate than the Nyquist rate. The effect of reducing the time 

samples on the quality of reconstructed images is tested using the proposed algorithm 

with 𝑀 = 4. Table 6 shows the results of reconstructing images using a much lower 

number of samples than 75.  The number of samples has been taken randomly using a 

Gaussian random matrix which is known to satisfy the restricted isometric property 

(RIP) which is a significant property in CS theory for the system matrix. 

 



40 
 
 

 
 
 

Table 6: Distributed ADMM reconstructions using reduced number of samples 

 

Phantom 
Time 

samples 
Reconstruction Time (s) Iterations SSIM 

Blood Vessels 

50 0.3424 32 0.9999 

30 0.6822 71 0.9995 

20 0.8462 94 0.9760 

15 1.3904 153 0.7137 

Shepp-Logan 
50 1.9836 214 0.7171 

30 2.0538 226 0.2458 

Real Phantom 

50 0.3905 41 0.9991 

30 0.8498 92 0.9973 

20 1.7779 200 0.9435 

15 2.1590 236 0.6946 

 

As shown in Table 6, reaching 20 time samples still allows the reconstruction 

of blood vessel and real phantoms with very high SSIM value. While the quality of 

reconstructing the Shepp-Lgan phantom is badly affected using less than 50 time 

samples, this is because it has less sparsity than the other two phantoms. Therefore, 

the results of reducing the number of time samples less than the Nyquist rate depends 

mainly on the image sparsity.    

4.4 Efficient Communication Links 

A key factor for a successful implementation of a distributed iterative 

algorithm is the convergence using delayed data or asynchronous updates at each 

subsystem. The delayed/ or asynchronous updates can be simulated by updating only 

a group of the local processors at each iteration and send their updates to the global 

unit. In the global unit, the updates of the remaining local processors are replaced by 
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values from previous iteration assuming that the global unit has a memory. The 

updating local processors are selected randomly at each iteration. Consequently, the 

non-sensitivity of the proposed distributed ADMM BP algorithm to delayed data/ 

asynchronous updates can be utilized to reduce communication overheads   between 

the local processors and the global one and mitigate link failures. Using a probabilistic 

model, the effect of outdated data on the convergence of the proposed distributed BP 

ADMM algorithm is investigated using the blood vessel phantom for 𝑀 = 4 and 𝑀 =

8. At first, 25% of the local units are assumed to face communication delays, so their 

updated data are not received by the global unit at that iteration.  In this case, for 𝑀 =

4, one local unit is chosen randomly, so one communication link is saved. Similarly, 

in case of 𝑀 = 8, two local units are not transmitting their updates. The percentage of 

links saved is increased to 50% and 75% for both cases 𝑀 = 4,8. Table 7 shows the 

results of this simulation. 

 

Table 7: Efficient communication links for blood vessel phantom(𝑀 = 4, 8) 

 

Phantom M 
Percentage of links 

saved 
Iterations Time(s) SSIM 

Blood Vessels 

4 

25% 53 0.5146 0.9998 

50% 162 1.5259 0.9971 

75% 187 1.7419 0.9979 

8 

25% 53 0.4882 0.9983 

50% 101 0.8981 0.9944 

75% 212 1.9148 0.9983 
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As shown in Table 7, the proposed algorithm is also successful in 

reconstructing images with asynchronous/delayed data. If the system faces some 

delays, still it can reconstruct the images with high SSIM value. Although it needs 

more number of iterations, the reconstruction time is still much lower than the 

reconstruction time of ADMM BP shown in Table 4.  Considering the worst case 

scenario, where 75% of the links at each iteration are facing delays or communication 

problems, the algorithm still recovers the image successfully with high SSIM value.  
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Chapter 5: Conclusion and Future Work 

 

5.1 Conclusion 

The aim of this thesis work was to implement a low computational complexity 

photoacoustic image recovery algorithm that is able to reconstruct images perfectly 

using a few number of sensors and measurements, while at the same time possesses 

high stability and uniform performance guarantee.  

The proposed algorithm is a distributed implementation of the Alternating 

Direction Method of Multipliers (ADMM) based on Compressive Sensing (CS) 

theory. The distributed iterative algorithm was formulated using the Basis Pursuit (BP) 

which provides high guarantee of performance and stability. The iterative algorithm 

was implemented using multiple local units/processors and one global processor. 

Local units work in parallel as each local unit processes data collected from a small 

group of sensors, solves a local optimization problem and exchanges information with 

the global unit. The global processor works as a coordinator on local units and has no 

access to sensors’ measurements. 

The proposed distributed algorithm can dramatically reduce the computational 

complexity and in turn the run time while maintaining high quality of reconstructed 

images. It showed a high guarantee of performance and stability in reconstructing 

different kinds of PA images with different sparsity levels. Furthermore, it has been 

shown that the algorithm is non-sensitive to communication delays or links failure. 

The optimal number of sensors that allows for perfect reconstruction of an image of 

resolution 64 × 64 was found to be 31 sensors. The algorithm was successful in 
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recovering images using different number of local units. The optimal number was 

found to be 4 local units, as it provided the highest SSIM value and the lowest running 

time. In case of 4 local units, the running time of the algorithm was only around 0.2 

seconds.  

5.2 Future Work 

Simulations of the proposed algorithm can be investigated using 3D and 4D 

images. Also, testing the proposed algorithm on experimental data will be a significant 

future work. 
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Appendix 

 

%------------------------------------------------------------------- 
% MATLAB CODES 

%------------------------------------------------------------------- 
 

%------------------------------------------------------------------- 
%Code 1: 

Constructing the forward matrix H and generate measurements from it  

%------------------------------------------------------------------- 

clc; 
clear all; 
close all; 

  
Nin=32;           %Imaging grid size Nin^2 
Nout=128;         %K space grid size Nout^2 
d=0.1e-3;         %Grid spacing  
c=1500;           %sound speed [m/s] 
max_freq=c/(2*d); %Maximum frequency 
Fs=max_freq*2;    %Sampling frequency 
t=5e-6;           %Time period of measuring acoustic waves  
% t=3e-6; 
Nt=t*Fs;          %number of samples 

  
%Sensor distribution 
%_________________________________________________________ 
skip=4; 
sensor_grid=38; 
sensor.mask = zeros(sensor_grid, sensor_grid); 
sensor.mask(1, 1:skip:sensor_grid) = 1; 
sensor.mask(end, 1:skip:sensor_grid) = 1; 
sensor.mask(1:skip:sensor_grid, 1) = 1; 
sensor.mask(1:skip:sensor_grid, end) = 1; 
Ns=nnz(sensor.mask); %total number of sensors 
kgrid_sensor= kWaveGrid(sensor_grid, d, sensor_grid, d); 
[cart_data, order_index]=grid2cart(kgrid_sensor,sensor.mask); 
xs=cart_data(1,:); 
ys=cart_data(2,:); 
rs_vec=[xs(:),ys(:)]; 
% rs_vec=rs_vec(1:2:Ns,:);   %uncomment to make one sensor on and 

one off from the whole number of sensors Ns 
% [p, Ns]=size(1:2:Ns);      %uncomment to change number of sensors 

to the new number of sensors      
  

 

 
%------------------------------------------------------------------- 
%Initial Pressure Distribution Based on Realistic data  
%------------------------------------------------------------------- 
p0_magnitude = 2; 
p0 = p0_magnitude * loadImage('EXAMPLE_source_two.bmp'); 
x0 = resize(p0, [Nin, Nin]); 

  
% lamda=760;                  %The wavelength (nm) 
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% gama=0.1;                   %The gruneisen parameter 

(dimensionless) 
% eita=1;                     %The percentage of absorbed light 

converted to heat 
% F=100;                      %The optical fluence [J/m^2](depends 

on lamda: 0.02*10^(2*((0.8)-0.7)) 
% mua=[0 0 0.04 0.05 1 5]*100; %Absorbtion Coefficient[1/m], idx 

0:BackGround  1:Nothing 2:Fibro 3:fat 4:skin 5:blood  
% disc1=load('phan2d');        %Loading the 3D breast image  
% disc=disc1.phan;             %Assigning values to disc 
% disc2d=disc(110:173,120:183,400); %Take a 2d slice from the 3D 

image 
%  
% %Note the initial pressure is in the range of 10kpa 
% disc2d=cast(disc2d,'double');   %Changes the class of disc2d from 

uint8 to double 
%  
% % A loop for assigning each voxel value the real initial pressure 

value at lamda=760 
% for i=0:5 
%         disc2d(disc2d==i)=F*mua(i+1)*eita*gama;   %Initial 

pressure equation (p0=eita*F*ua*gama)  
% end 
% x0=disc2d;             %Assigning initial pressure values to x0 

[Pa] 

  
%------------------------------------------------------------------- 
%Constructing The Forward Matrix H 
%------------------------------------------------------------------- 

  
%Define the imaging grid of size Nin^2 
kgrid= kWaveGrid(Nin, d, Nin, d); 
x=kgrid.x; 
y=kgrid.y; 
r_vec=[x(:), y(:)];  

  
%Define the kspace grid of size Nout^2 
kkgrid=kWaveGrid(Nout, 1, Nout, 1); 
u=kkgrid.x; v=kkgrid.y; 
kx=2*pi/Nout/d*u; 
ky=(2*pi/(Nout*d))*v; 
k_vec=[kx(:), ky(:)]; 
k_vec_k=sqrt(kx(:).^2+ky(:).^2); 

  
% Uncomment if you want to define a centered Cartesian circular 

sensor 
% sensor_radius = 3e-3;     % raduis is 5mm out side the imaging 

grid [m] 
% num_sensor_points = Ns; 
% cart_sensor_mask = makeCartCircle(sensor_radius, 

num_sensor_points); 
% xs=cart_sensor_mask(1,:); 
% ys=cart_sensor_mask(2,:); 
% rs_vec=[xs(:),ys(:)]; 

  
%plot sensor distribution 
figure(1) 
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plot(xs,ys,'o'); 
title('Sensors Distribution');xlabel('[m]');ylabel('[m]'); 
grid on 
tic 

  
%Find the forward discrete fourier transform  
Wfwd=zeros(Nout^2,Nin^2); 
for i=1:Nout^2 
    for j=1:Nin^2 
    Wfwd(i,j)=(1/Nout)*exp(-sqrt(-1)*dot(k_vec(i,:),r_vec(j,:))); 
    end 
end 

  
%Initialization 
Winv=zeros(Ns,Nout^2); 
K=zeros(Ns*Nt,Nout^2); 
Q=1:Ns; 

  
%Find the inverse discrete fourier transform  
 for s=1:Ns  
      for i=1:Nout^2 
      Winv(s,i)=(1/Nout)*exp(sqrt(-1)*dot(k_vec(i,:),rs_vec(s,:))); 
      end 
 end 

  
%Construct K by stacking Kt_Matrix of all time samples. 
Col_one=ones(Ns,1); 
delta_t=t/Nt; 
for sample=0:Nt-1 
 kt=(cos(c*k_vec_k(:)*(sample*delta_t))); 
 kt_matrix=Col_one*kt'; 
 Kt_Matrix=Winv.*kt_matrix; 
 K(Q,:)=Kt_Matrix; 
 Q=Q(end)+1:Q(end)+Ns; 
end 

  
%Find the H Matrix 
H_Matrix=K*Wfwd; 
save H_Matrix32_Nt75_Ns20 H_Matrix Nout Nin cart_data Ns   %saves 

the H_Matrix to be used in any simulations of same configuration 

(same system).    
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%------------------------------------------------------------------- 
Code 2: 

ADMM code for reconstructing an image using basis pursuit  

%------------------------------------------------------------------- 
clc; 
close all; 
clear all; 

  
% load H_Matrix32_Nt10_Ns39; 
load H_Matrix64_Nt30_Ns35; 
% load H_Matrix;  %loads the full H matrix which consists of 67 

sensors and 75 time samples for image size 64 by 64 
[a,w]=size(cart_data); 
[L,O]=size(H_Matrix); 
Ns=w;           %total number of sensors used to form H matrix 
Nt=L/Ns;        %total number of time samples based on nyquist rate, 

since dimension of H is Ns*Nt X Nin*Nin then Nt=L/Ns 
N=Nin;          %Number of grid points 

  
% Sensor-Option1:--------------------------------------------------- 
% Reducing the number of active sensors to 34 instead of 67 by 

taking 
% the measurmenst of one sensor at all time samples and skip the 

following 
% sensor measurments (One sensor is ON and one is OFF). 
% Comment the 7 following lines if you do not want to use this 

option. 
% ------------------------------------------------------------------ 
% H_Matrix1=[]; 
% for Q=1:Nt 
% H_sub1=H_Matrix(1:2:Ns,:);  %Makes one sensor on and one off from 

the whole 67 sensors 
% H_Matrix1=[H_Matrix1;H_sub1]; 
% H_Matrix(1:Ns,:)=[]; 
% end 
% [d,N_Active_sensors]=size(1:2:Ns);  %Number of On sensors is 

N_Active_sensors 

  

  
% Sensor-Option2:--------------------------------------------------- 
% Activate less number of sensors randomly from the 67 sensors.  
% Comment the 8 following lines if you do not want to use this 

option. 
% ------------------------------------------------------------------ 
% H_Matrix2=[]; 
% nind=randperm(Ns); %Distribute sensors randomly 
% for Q=1:Nt 
% H_sub1=H_Matrix(sort(nind(1:32)),:);  %Activate less num of 

sensors in random manner 
% H_Matrix2=[H_Matrix2;H_sub1]; 
% H_Matrix(1:Ns,:)=[]; 
% end 
% [d, N_Active_sensors]=size(nind(1:32));   %N_Active_sensors is the 

number of activated sensors 

  
% Time samples-Option3:--------------------------------------------- 
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% Taking fewer number of time samples randomly from the full H 

Matrix 
% Comment the 4 following lines if you do not want to use this 

option. 
% ------------------------------------------------------------------ 
% Nt_new=50;       %Number of samples required to be taken randomly 
% H_Random=randblock(H_Matrix2,[N_Active_sensors Nin^2]);              

%A function for randomly redistibute the samples in H (here H_Random 

contains all samples but arranged randomly) 
% % H_Random=randblock(H_Matrix,[N_Active_sensors Nin^2]);%Uncomment 

if you have used option 1 or 2, and comment the above line 
% H_Matrix3=H_Random(1:N_Active_sensors*Nt_new,:);                    

%Takes the required number of samples from the random matrix 

H_Random 

  
% Time samples-Option4:--------------------------------------------- 
% Taking only the odd number of samples from the full H Matrix 
% Comment the 9 following lines if you do not want to use this 

option. 
% ------------------------------------------------------------------ 
% R=1; 
% N_1=Ns; 
% H_Matrix4=[]; 
% [S,Nt_odd]=size(1:2:Nt);  %Nt_new is the number of odd samples 
% for Q=1:Nt_odd 
% H_Matrix4=[H_Matrix4; H_Matrix(R:N_1,:)]; 
% R=R+2*Ns;   %takes only the odd number of samples (sample number 

1, 3, 5, 7 ...etc)which reduces the taken samples to almost half Nt 
% N_1=R+Ns-1; 
% end 

  
% Option5:---------------------------------------------------------- 
% Taking only the first number of samples from the full H Matrix and 

neglect the rest. 
% Comment the following line if you do not want to use this option. 
% ------------------------------------------------------------------ 
% H_Matrix5=H_Matrix(1:Ns*64, :); %Takes the first 64 samples out of 

the 75.  

  
% Option6:---------------------------------------------------------- 
% Rearrange H Matrix such that each block contains all the samples 

for the 
% first sensor. Then take fewer number of samples from this new H 

matrrix 
% using a random matrix that satisfies the restricted isometric 

property 
% such as bernoulli matrix.  
% Comment the following line if you do not want to use this option. 
% ------------------------------------------------------------------ 
% H_New=[]; 
% rowdist=repelem([Ns Ns Ns],25);  %creates an array of Ns values 

repeated Nt times. here 3*25=75=Nt  
% H_Cell = mat2cell(H_Matrix,rowdist); %devides H into cells or 

blocks of size Ns*Nin^2, thus we will have Nt blocks 
% for indx=1:Nt 
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%     H_New=[H_New, H_Cell{indx}];   %This will put all the cells 

besides each other, thus each sensor will have all the measurments 

for all the samples on the same row.  
% end 
%  
% H_Matrix6=[]; 
% for indx1=1:Ns 
%     H_New1=vec2mat(H_New(indx1,:),Nin^2);   % arranges the each 

row in H_New (where each row corresponds to a sensor),to a block of 

size Nt*Nin^2  
%    H_Matrix6=[H_Matrix6;H_New1];            %This matrix has Ns 

blocks of size Nt*Nin^2 
% end 
% % load H_Matrix_EachSensorinBlock 
% % Nt_new=22; 
% % bernoulli=binornd(1,0.5,[Nt_new*Ns,Nt*Ns]);  %1 is the number of 

sample repeation which restrict the possible values to 0 and 1, 0.5 

is the propability of occurance , last two parameters are the 

dimensions of my sensing matrix  
% % bernoulli=(bernoulli*2)-1; 
% % Gaussian=randn(Nt_new*Ns,Nt*Ns); 
% % Gaussian=orth(Gaussian); 
% % H_lessSamples=Gaussian*H_Matrix6;  %This will take less number 

of samples randomly from H 

  

  
% %----------------------------------------------------------------- 
% %Finding the initial pressure  
% %----------------------------------------------------------------- 
% lamda=760;                   %The wavelength (nm) 
% gama=0.1;                    %The gruneisen parameter 

(dimensionless) 
% eita=1;                      %The percentage of absorbed light 

converted to heat 
% F=100;                       %The optical fluence [J/m^2](depends 

on lamda: 0.02*10^(2*((0.8)-0.7)) 
% mua=[0 0 0.04 0.05 1 5]*100; %Absorbtion Coefficient[1/m], idx 

0:BackGround  1:Nothing 2:Fibro 3:fat 4:skin 5:blood  
% disc1=load('phan2d');        %Loading the 3D breast image  
% disc=disc1.phan;             %Assigning values to disc 
% disc2d=disc(110:173,120:183,400); %Take a 2d slice from the 3D 

image 
%  
% %Note the initial pressure is in the range of 10kpa 
% disc2d=cast(disc2d,'double');   %Changes the class of disc2d from 

uint8 to double 
%  
% % A loop for assigning each voxel value the real initial pressure 

value at lamda=760 
% for i=0:5 
%         disc2d(disc2d==i)=F*mua(i+1)*eita*gama;   %Initial 

pressure equation (p0=eita*F*ua*gama)  
% end 
% x0=disc2d;             %Assigning initial pressure values to x0 

[Pa] 
%  
% xi=x0(:); 
 p0_magnitude = 2; 
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p0 = p0_magnitude * loadImage('EXAMPLE_source_two.bmp'); 
x0=resize(p0,[N,N]); 
xi=x0(:); 
A=[real(H_Matrix);imag(H_Matrix)]; 
% A=real(H_Matrix6)+(1e-3*ir(:,1:4096)); 
% A=H_Matrix6; 
y=A*xi; 
figure(1) 
histogram(xi); 
title('Histogram of Real Phantom'); 
xlabel('Initial Pressure Intensity'); 
ylabel('Redundancy of each intensity value'); 
figure(2), 
plot(xi, 'r*') 
hold on 

  
% ADMM 
%------------------------------------------------------------------- 
rho=1; 
alpha=1.3; 
QUIET    = 0;  
MAX_ITER = 5000; 
[m ,n] = size(A); 
% x = zeros(n,1); %Initialize the vector x 
% z = zeros(n,1); %Initialize the vector z 
% u = zeros(n,1); %Initialize the dual variable 
x = 100*rand(n,1); %Initialize the vector x* 
% x=(A'*A)'*A'*y; 
z = 0*rand(n,1); %Initialize the vector z 
u = 0*rand(n,1); %Initialize the dual variable 
if ~QUIET 
    fprintf('%3s\t%10s\t%10s\n', 'iter','r norm', 'objective'); 
end 
% Iterations update  
AAt = A*A'; 

  
PO=eye(n) - (A' * (AAt \ A)); 

  
t_start = tic;   % start counting the time needed to run the whole 

program 
POP=(A' * (AAt \ y)); 
for k = 1:MAX_ITER 
    % x-update 
    x = PO*(z - u) + POP;  %projection onto Ax=b 
    % z-update with over relaxation parameter 
    z_previous = z; 
%     x_relaxed = alpha*x + (1 - alpha)*z_previous; %The over 

relaxation will speed up the convergence of iteration process 
%     z = max(0, (x_relaxed+u)-(1/rho)) - max(0, -(x_relaxed+u)-

(1/rho));  %Using formula of soft thresholding 
     z = max(0, (x+u)-(1/rho)) - max(0, -(x+u)-(1/rho)); 
%Dual Update 
%     u = u + (x_relaxed - z); 
      u = u + (x - z); 
    if ~QUIET 
        fprintf('%3d\t\t%10.4f\t%10.4f\t%10.4f\n', k,norm(x - 

z),rho*norm(z-z_previous),norm(x,1)); 
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    end 
    if (norm(x - z)<=0.01) && (rho*norm(z-z_previous))<0.01 %if norm 

2 of (x-z)<=0.001 then terminate the iterations 
         break; 
    end 
end 
if ~QUIET 
    toc(t_start);  %End counting the time needed for finding the 

iterations 
end 
x_hat=z; 

  
%Comparing the image with the reconstructed one 
%------------------------------------------------------------------- 
plot(x_hat, 'go'); 
hold on 
plot(x0(:), 'r*'); 
legend('Original image', 'Reconstructed image'); 
title('Original x vs Reconstructed x'); 
figure(3), 
subplot(2,1,1); 
imshow(x0, []); 
title('Original Image'); 
subplot(2,1,2); 
X_hat=reshape(x_hat, N,N); 
imshow(X_hat,[]); 
title('Reconstructed Image (ADMM)'); 

  
% (1)Using Mean Square Error 
%------------------------------------------------------------------- 

  
MSE=mean((x0(:)-x_hat(:)).^2); 
fprintf('The MSE value is %0.15f.\n',MSE); 

  
%(2)Relative error 
%------------------------------------------------------------------- 
RE = mean((x0(:)-x_hat(:)).^2)/mean(x(:).^2); 
fprintf('The relative error is %.15f \n',RE); 

  
%(2)Similarity index 
%------------------------------------------------------------------- 
[ssimval, ssimmap] = ssim(X_hat,x0); 

   
fprintf('The SSIM value is %0.4f.\n',ssimval); 
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%------------------------------------------------------------------- 
Code 3: 

ADMM code for reconstructing an image using Distributed 

implementation of ADMM basis pursuit  
%------------------------------------------------------------------- 

  
clc; 
close all; 
clear all; 

  
load H_Matrix64_Nt75_Ns31;  %loads the full H matrix which consists 

of 67 sensors and 75 time samples for image size 64 by 64 
[a,w]=size(cart_data); 
[S,O]=size(H_Matrix); 
Ns=w;           %total number of sensors used to form H matrix 
Nt=S/Ns;        %total number of time samples based on nyquist rate, 

since dimension of H is Ns*Nt X Nin*Nin then Nt=L/Ns 
N=Nin;          %Number of grid points 

  
% Option:---------------------------------------------------------- 
% Rearrange H Matrix such that each block contains all the samples 

for the first sensor and so on.   
% Comment the following lines if you do not want to use this option. 
% ------------------------------------------------------------------ 
H_New=[]; 
rowdist=repelem([Ns Ns Ns],25);  %creates an array of Ns values 

repeated Nt times. here 3*25=75=Nt  
H_Cell = mat2cell(H_Matrix,rowdist); %devides H into cells or blocks 

of size Ns*Nin^2, thus we will have Nt blocks 
for indx=1:Nt 
    H_New=[H_New, H_Cell{indx}];   %This will put all the cells 

besides each other, thus each sensor will have all the measurments 

for all the samples on the same row.  
end 

  
H_Matrix6=[]; 
for indx1=1:Ns 
    H_New1=vec2mat(H_New(indx1,:),Nin^2);   % arranges the each row 

in H_New (where each row corresponds to a sensor),to a block of size 

Nt*Nin^2  
   H_Matrix6=[H_Matrix6;H_New1];            %This matrix has Ns 

blocks of size Nt*Nin^2 
end 

 
%plot sensor distribution 
figure(1) 
xs=cart_data(1,:); 
ys=cart_data(2,:); 
plot(xs,ys,'*'); 
title('Sensors Distribution');xlabel('[m]');ylabel('[m]'); 

  
%------------------------------------------------------------------- 
%Finding the initial pressure  
% %-----------------------------------------------------------------

--------- 
p0_magnitude = 2; 
p0 = p0_magnitude * loadImage('EXAMPLE_source_two.bmp'); 
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x0=resize(p0,[N,N]); 
xi=x0(:); 

   
sensor_b1=[1,9,22,31]; 
sensor_b2=[2,11,20,30]; 
sensor_b3=[3,13,18,29]; 
sensor_b4=[4,15,16,28]; 
sensor_b5=[5,17,14,27]; 
sensor_b6=[6,19,12,26]; 
sensor_b7=[7,21,10,25]; 
sensor_b8=[8,23,24]; 

  
H1=[H_Matrix6((sensor_b1(1)-1)*Nt+1:(sensor_b1(1)-

1)*Nt+Nt,:);H_Matrix6((sensor_b1(2)-1)*Nt+1:(sensor_b1(2)-

1)*Nt+Nt,:);H_Matrix6((sensor_b1(3)-1)*Nt+1:(sensor_b1(3)-

1)*Nt+Nt,:);H_Matrix6((sensor_b1(4)-1)*Nt+1:(sensor_b1(4)-

1)*Nt+Nt,:)]; 
H2=[H_Matrix6((sensor_b2(1)-1)*Nt+1:(sensor_b2(1)-

1)*Nt+Nt,:);H_Matrix6((sensor_b2(2)-1)*Nt+1:(sensor_b2(2)-

1)*Nt+Nt,:);H_Matrix6((sensor_b2(3)-1)*Nt+1:(sensor_b2(3)-

1)*Nt+Nt,:);H_Matrix6((sensor_b2(4)-1)*Nt+1:(sensor_b2(4)-

1)*Nt+Nt,:)]; 
H3=[H_Matrix6((sensor_b3(1)-1)*Nt+1:(sensor_b3(1)-

1)*Nt+Nt,:);H_Matrix6((sensor_b3(2)-1)*Nt+1:(sensor_b3(2)-

1)*Nt+Nt,:);H_Matrix6((sensor_b3(3)-1)*Nt+1:(sensor_b3(3)-

1)*Nt+Nt,:);H_Matrix6((sensor_b3(4)-1)*Nt+1:(sensor_b3(4)-

1)*Nt+Nt,:)]; 
H4=[H_Matrix6((sensor_b4(1)-1)*Nt+1:(sensor_b4(1)-

1)*Nt+Nt,:);H_Matrix6((sensor_b4(2)-1)*Nt+1:(sensor_b4(2)-

1)*Nt+Nt,:);H_Matrix6((sensor_b4(3)-1)*Nt+1:(sensor_b4(3)-

1)*Nt+Nt,:);H_Matrix6((sensor_b4(4)-1)*Nt+1:(sensor_b4(4)-

1)*Nt+Nt,:)]; 
H5=[H_Matrix6((sensor_b5(1)-1)*Nt+1:(sensor_b5(1)-

1)*Nt+Nt,:);H_Matrix6((sensor_b5(2)-1)*Nt+1:(sensor_b5(2)-

1)*Nt+Nt,:);H_Matrix6((sensor_b5(3)-1)*Nt+1:(sensor_b5(3)-

1)*Nt+Nt,:);H_Matrix6((sensor_b5(4)-1)*Nt+1:(sensor_b5(4)-

1)*Nt+Nt,:)]; 
H6=[H_Matrix6((sensor_b6(1)-1)*Nt+1:(sensor_b6(1)-

1)*Nt+Nt,:);H_Matrix6((sensor_b6(2)-1)*Nt+1:(sensor_b6(2)-

1)*Nt+Nt,:);H_Matrix6((sensor_b6(3)-1)*Nt+1:(sensor_b6(3)-

1)*Nt+Nt,:);H_Matrix6((sensor_b6(4)-1)*Nt+1:(sensor_b6(4)-

1)*Nt+Nt,:)]; 
H7=[H_Matrix6((sensor_b7(1)-1)*Nt+1:(sensor_b7(1)-

1)*Nt+Nt,:);H_Matrix6((sensor_b7(2)-1)*Nt+1:(sensor_b7(2)-

1)*Nt+Nt,:);H_Matrix6((sensor_b7(3)-1)*Nt+1:(sensor_b7(3)-

1)*Nt+Nt,:);H_Matrix6((sensor_b7(4)-1)*Nt+1:(sensor_b7(4)-

1)*Nt+Nt,:)]; 
H8=[H_Matrix6((sensor_b8(1)-1)*Nt+1:(sensor_b8(1)-

1)*Nt+Nt,:);H_Matrix6((sensor_b8(2)-1)*Nt+1:(sensor_b8(2)-

1)*Nt+Nt,:);H_Matrix6((sensor_b8(3)-1)*Nt+1:(sensor_b8(3)-

1)*Nt+Nt,:)]; 

  
H1=[H1;H2]; 
H2=[H3;H4]; 
H3=[H5;H6]; 
H4=[H7;H8]; 
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[L,I]=size(H_Matrix6); 

  
K=1;      
N_B=4;   %Number of blocks that H is divided into 
B_rows=L/N_B;  %Number of rows in each block  
BL=0; 
if isinteger(B_rows)==0  
    B_rows=(L-rem(L,N_B))/N_B; 
    B_last=B_rows+rem(L,N_B); 
    BL=1; 
    increment=B_rows; 
end 

  
A=cell(N_B,1);   %Define A initially as an empty cell array of 4 

cells 
A(:)={zeros(B_rows,N^2)}; %Each cell in A has a size of B_rows by 

N^2, initially all elements in the blocks are zeros 
y=cell(N_B,1);   %Define y initially as an empty cell array of 4 

cells 
y(:)={zeros(B_rows,1)};  %Each cell is of size B_rows by 1 

  
A{1}=[real(H1);imag(H1)]; 
A{2}=[real(H2);imag(H2)]; 
A{3}=[real(H3);imag(H3)]; 
A{4}=[real(H4);imag(H4)]; 
% A{5}=[real(H5);imag(H5)]; 
% A{6}=[real(H6);imag(H6)]; 
% A{7}=[real(H7);imag(H7)]; 
% A{8}=[real(H8);imag(H8)]; 

  
y{1}=A{1}*xi; 
y{2}=A{2}*xi; 
y{3}=A{3}*xi; 
y{4}=A{4}*xi; 
% y{5}=A{5}*xi; 
% y{6}=A{6}*xi; 
% y{7}=A{7}*xi; 
% y{8}=A{8}*xi; 

  

  
figure(1) 
histogram(xi); 
title('Histogram of Real Phantom'); 
xlabel('Initial Pressure Intensity'); 
ylabel('Redundancy of each intensity value'); 
figure(2), 
plot(xi, 'r*') 
hold on 

  
% ADMM 
%------------------------------------------------------------------- 
rho=1; 
alpha=1.3; 
QUIET    = 0;  
MAX_ITER = 700; 
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[m ,n] = size(A{1}); 
u= cell(N_B,1); 
load x_rand 
xx=x; 
x= cell(N_B,1); 
x_relaxed=cell(N_B,1); 
x(:) = {xx}; %Initialize the vector x 
load z_rand 
z_previous=z; 
u(:) = {zeros(n,1)}; %Initialize the dual variable 
sum_u=zeros(n,1); 
sum_x=zeros(n,1); 
for r=1:N_B 
sum_u=u{r}+sum_u; 
end 

  
% Iterations update  
At=cellfun(@transpose,A,'UniformOutput',false); 
AAt=cellfun(@(x,y)x*y,A,At,'UniformOutput',false); %this will result 

in AAt = A*A' but arranged in cells  

  
t_start1 = tic; % start counting the time needed to run the whole 

program 
for e=1:N_B 
POP{e}=At{e} * (AAt{e} \ y{e}); 
PO{e}=eye(n) - (At{e} * (AAt{e} \ A{e})); 
end 
time1=toc(t_start1);  

  
if ~QUIET 
    fprintf('%3s\t%10s\t%10s\n', 'iter','r norm', 'objective'); 
end 

  
time2=[]; 
time3=[]; 
time4=[]; 
u_avg=sum_u/N_B; 
Links_Reduced=0; 
for k = 1:MAX_ITER 
      selection= randperm(N_B); 
    % x-update 
    for j=1:N_B 
    x_prev=x{j}; 
    t_start2=tic; 
    x{j} =PO{j}*(z - u{j}) + POP{j}; %projection onto Ax=b 
    time2=[time2;toc(t_start2)]; 
%     XI=j==selection(1)||j==selection(2)||j==selection(3); 
%         XI=j==selection(1); 
%     

XI=j==selection(1)||j==selection(2)||j==selection(3)||j==selection(4

)||j==selection(5)||j==selection(6); 
% 

XI=j==selection(1)||j==selection(2)||j==selection(3)||j==selection(4

); 
%    XI=rand>0.3 ; 
    XI=norm(x{j}-x_prev,2)>=0.9; 
%     x{j}=(1-XI)*x{j}+XI*x_prev; 
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    x{j}=XI*x{j}+(1-XI)*x_prev; 

  
    sum_x=x{j}+sum_x; 
    if XI==1 
        Links_Reduced=Links_Reduced+1; 
    end 
    end 

     

  
    sum_x=x{j}+sum_x; 
    % z-update with over relaxation parameter 
    z_previous = z; 
    t_start3=tic; 
    x_avg=sum_x/N_B; 
    x_avg= alpha*x_avg + (1 - alpha)*z_previous; %The over 

relaxation will speed up the convergence of iteration process 
    u_avg=sum_u/N_B; 
    u_avg= alpha*u_avg + (1 - alpha)*x_avg; %The over relaxation 

will speed up the convergence of iteration process 
    z = max(0, (x_avg+u_avg)-(1/rho)) - max(0, -(x_avg+u_avg)-

(1/rho)); 
    time3=[time3;toc(t_start3)]; 

  
    sum_x=zeros(n,1); 
    sum_u=zeros(n,1); 
    %Dual Update 
    for j1=1:N_B 
        u_prev=u{j1}; 
    t_start4=tic; 
    u{j1} = u{j1} + (x{j1} - z); 
    time4=[time4;toc(t_start4)]; 
%     XU=norm(u{j}-u_prev,1)/(norm(u{j},1)+0.00001)>=0.0001; 
%      XU=j1==selection(1)||j1==selection(2)||j1==selection(3); 
%           XU=j1==selection(1); 
%      

XU=j1==selection(1)||j1==selection(2)||j1==selection(3)||j1==selecti

on(4)||j1==selection(5)||j1==selection(6); 
%   

XU=j1==selection(1)||j1==selection(2)||j1==selection(3)||j1==selecti

on(4); 
%     XU=norm(u{1j}-x_prev,2)>=5; 

  
%     u{j1}=(1-XU)*u{j1}+XU*u_prev; 
    sum_u=sum_u+u{j1}; 
    end 

  
    if ~QUIET 
        fprintf('%3d\t%10.5f\t%10.5f\t\n', k,rho*norm(z-

z_previous),norm(x_avg,1)); 
    end 
    if rho*norm(z-z_previous)<=0.01    %if norm 2 of (x-z)<=0.001 

then terminate the iterations 
         break; 
    end 
end 

  
x_hat=z; 



62 
 
 

 
 
 

  
%Comparing the image with the reconstructed one 
%------------------------------------------------------------------- 
plot(x_hat, 'go'); 
hold on 
plot(xi, 'r*'); 
legend('Original image', 'Reconstructed image'); 
title('Original x vs Reconstructed x'); 
figure(3), 
subplot(2,1,1); 
imshow(x0, []); 
title('Original Image'); 
subplot(2,1,2); 
X_hat=reshape(x_hat, N,N); 
imshow(X_hat,[]); 
title('Reconstructed Image (ADMM)'); 

  
% (1)Using Mean Square Error 
%------------------------------------------------------------------- 

  
MSE=mean((xi-x_hat(:)).^2); 
fprintf('The MSE value is %0.15f.\n',MSE); 

  

  
%(2)Similarity index 
%------------------------------------------------------------------- 
[ssimval, ssimmap] = ssim(X_hat,reshape(xi,N,N)); 

   
fprintf('The SSIM value is %0.4f.\n',ssimval); 

  
%Total Time of reconstruction  
%------------------------------------------------------------------- 
total_time1=((sum(time2)+sum(time4))/N_B)+sum(time3); 
total_time2=((time1+sum(time2)+sum(time4))/N_B)+sum(time3); 
fprintf('The Total time of parallel reconstruction is 

%0.4f.\n',total_time2); 
fprintf('The Total time without pop and po is 

%0.4f.\n',total_time1); 
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%------------------------------------------------------------------- 
%Code 4: 

Comparing measurements of kwave and H matrix 
%------------------------------------------------------------------- 
 clc; 
clear all; 
close all; 

  

 
Nin=32;           %Imaging grid size Nin^2 
Nout=128;         %K space grid size Nout^2 
d=0.1e-3;         %Grid spacing  
c=1500;           %sound speed [m/s] 
max_freq=c/(2*d); %Maximum frequency 
Fs=max_freq*2;    %Sampling frequency 
t=5e-6;           %Time period of measuring acoustic waves  
Nt=t*Fs;          %number of samples 

  

  
%Sensor distribution 
%_________________________________________________________ 
skip=4; 
sensor_grid=38; 
sensor.mask = zeros(sensor_grid, sensor_grid); 
sensor.mask(1, 1:skip:sensor_grid) = 1; 
sensor.mask(end, 1:skip:sensor_grid) = 1; 
sensor.mask(1:skip:sensor_grid, 1) = 1; 
sensor.mask(1:skip:sensor_grid, end) = 1; 
Ns=nnz(sensor.mask); %total number of sensors 
kgrid_sensor= kWaveGrid(sensor_grid, d, sensor_grid, d); 
[cart_data, order_index]=grid2cart(kgrid_sensor,sensor.mask); 
xs=cart_data(1,:); 
ys=cart_data(2,:); 
rs_vec=[xs(:),ys(:)]; 

  
%------------------------------------------------------------------- 
%Initial Pressure Distribution Based on Realistic data  
%------------------------------------------------------------------- 
p0_magnitude = 2; 
p0 = p0_magnitude * loadImage('EXAMPLE_source_two.bmp'); 
x0 = resize(p0, [Nin, Nin]); 

  
%------------------------------------------------------------------- 
%Constructing The Forward Matrix H 
%------------------------------------------------------------------- 

  
%Define the imaging grid of size Nin^2 
kgrid= kWaveGrid(Nin, d, Nin, d); 
x=kgrid.x; 
y=kgrid.y; 
r_vec=[x(:), y(:)];  

  
%Define the kspace grid of size Nout^2 
kkgrid=kWaveGrid(Nout, 1, Nout, 1); 
u=kkgrid.x; v=kkgrid.y; 
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kx=((2*pi)/(Nout*d))*u; 
ky=((2*pi)/(Nout*d))*v; 
k_vec=[kx(:), ky(:)]; 
k_vec_k=sqrt(kx(:).^2+ky(:).^2); 

   
%plot sensor distribution 
figure(1) 
plot(xs,ys,'o'); 
title('Sensors Distribution');xlabel('[m]');ylabel('[m]'); 
grid on 
tic 

  
%Find the forward discrete fourier transform  
Wfwd=zeros(Nout^2,Nin^2); 
for i=1:Nout^2 
    for j=1:Nin^2 
    Wfwd(i,j)=(1/Nout)*exp(-sqrt(-1)*dot(k_vec(i,:),r_vec(j,:))); 
    end 
end 

  
%Initialization 
Winv=zeros(Ns,Nout^2); 
K=zeros(Ns*Nt,Nout^2); 
Q=1:Ns; 

  
%Find the inverse discrete fourier transform  
 for s=1:Ns  
      for i=1:Nout^2 
      Winv(s,i)=(1/Nout)*exp(sqrt(-1)*dot(k_vec(i,:),rs_vec(s,:))); 
      end 
 end 

  
%Construct K by stacking Kt_Matrix of all time samples. 
Col_one=ones(Ns,1); 
delta_t=t/Nt; 
for sample=0:Nt-1 
 kt=(cos(c*k_vec_k(:)*(sample*delta_t))); 
 kt_matrix=Col_one*kt'; 
 Kt_Matrix=Winv.*kt_matrix; 
 K(Q,:)=Kt_Matrix; 
 Q=Q(end)+1:Q(end)+Ns; 
end 

  
%Find the H Matrix 
H_Matrix=K*Wfwd; 
%Find measurments vector y 
y=H_Matrix*x0(:); 

  
%------------------------------------------------------------------- 
%Simulate the PA sensor measurements using kwave  
%------------------------------------------------------------------ 

  
% assign the grid size and create the computational grid 
PML_size =45;              % size of the PML in grid points at each 

side of image 
PMLAlpha=2; 
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Nin=32; 
Nout=128; 
Nx = Nout;    % number of grid points in the x direction 
Ny = Nout;    % number of grid points in the y direction 
dx = 0.1e-3;  % grid point spacing in the x direction [m] 
dy = 0.1e-3;  % grid point spacing in the y direction [m] 
% Ns=34;      %Total num of sensors 
kgrid= kWaveGrid(Nx, dx, Ny, dx); 

  
% resize the input image to the desired number of grid points 
p0_inner = resize(p0, [Nin, Nin]); 
p0_outer = zeros(Nout,Nout); 
p0_outer(((Nout-Nin)/2)+1:Nout-((Nout-Nin)/2),((Nout-Nin)/2)+1:Nout-

((Nout-Nin)/2))=p0_inner; 
p0=p0_outer; 

  
% assign to the source structure 
source.p0 = p0; 

  
% define the properties of the propagation medium 
medium.sound_speed = 1500;  % [m/s] 

  
%assign to sensor structure 
sensor.mask = cart_data; 

  
% create the time array 
dt=1/Fs; 
kgrid.setTime(Nt, dt);   

  
% set the input options 
input_args = {'Smooth', false, 'PMLInside',true,'PMLSize',PML_size, 

'PMLAlpha',PMLAlpha, 'PlotPML', false}; 

  
% run the simulation 
sensor_data = kspaceFirstOrder2D(kgrid, medium, source, sensor, 

input_args{:}); 

  

  
% Plotting the y measurments vs the kwave measurments of each sensor 

and 
% find the MSE, RE and RMSE for comparison 
y=y.'; 
y_Matrix=vec2mat(y,Ns); 
save y_Matrix y_Matrix 

  
for w=1:Ns 
figure(w) 
plot(real(y_Matrix(:,w)),'->g'); 
hold on,  
plot(real(sensor_data(w,:)),'-*k'); 
grid on 
title('Measurments of One Sensor'); 
xlabel('Time Sample'); 
ylabel('Pressure Magnitude [Pa]'); 
RMSE=sqrt(mean((sensor_data(w,:)-real(y_Matrix(:,w))').^2)); 
fprintf('Sensor # %d:\n',w); 
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fprintf('The RMSE value is %0.4f.\n',RMSE); 
MSE=mean((sensor_data(w,:)-real(y_Matrix(:,w))').^2); 
fprintf('The MSE value is %0.15f.\n',MSE); 
RE = mean((sensor_data(w,:)-

real(y_Matrix(:,w))').^2)/mean(real(y_Matrix(:,w)).^2); 
fprintf('The relative error is %.15f \n',RE); 
end 
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