
                       

 
 

 
What feasible macro-scale interventions could stimulate a sustainable growth in 
the UK housing retrofit industry? - An examination of the potential impact from 

supply-chain innovations on low energy retrofit of pre-1919 housing. 
 
 

Submitted for the Degree of 
Doctor of Philosophy 

At the University of Northampton 
 

Year 
2019 

 
Georgia Laganakou 

 
 

 
© Georgia Laganakou 2019 for the Degree of Doctor of Philosophy 

 
 

This thesis is copyright material and no quotation from it may be published without proper 
acknowledgement. 

 

 



2 
 

Declaration 

 
I, Georgia Laganakou, confirm that the work presented in this thesis is my own. When 

information has been derived from other sources, I confirm that this has been indicated in 

the thesis. None of the work has been submitted for another degree in this or any other 

University. 

                                                        

Date: 29/10/2019 



3 
 

Acknowledgements 
 

This research was through funds made originally available from East Midlands Councils 

to the University of Northampton and CCBE for a funded studentship.  

The research in this thesis would not have been possible without the support, patience 

and encouragement of many people. Foremost, I would like to thank my supervisory 

team: Dr Martin Field, Prof Andrew Pilkington, Prof John Horton and Dr Holger Siemons. 

I would also like to thank my family and friends for their encouragement, support and 

understanding.   

  



4 
 

Abstract 
 

Understanding the context for encouraging new retrofit practices to be applied to 

domestic housing in the UK is of crucial importance to any consideration of what could 

impact on energy reduction and domestic housing costs within the wider UK housing 

market. 

The thesis reviews attempts made to stimulate the retrofit market and the struggle of the 

industry to keep up with the stop/start UK legislation and changes of funding 

mechanisms on energy reduction policies. 

It then focuses on the influence of voluntary standards such as Passive House and its 

Whole-House retrofit standard, EnerPHit along with current innovations incorporating 

offsite mechanisms in their retrofit delivery. Considering lessons learned from previous 

attempts, the thesis examines what outcomes these relatively recent approaches could 

have within the UK housing retrofit “evolution” and specifically when applied on the most 

challenging of the UK’s housing stock of the pre-1919 typologies. Wide research has 

been done on either housing retrofit or offsite construction in new-build but due to the 

relatively recent implementation of offsite in retrofit a research gap was identified 

considering their future applicability in the UK’s older stock and by extension on the 

retrofit market and regulation. 

With a socio-technical methodology approach incorporating energy and cost modelling 

along with the uptake of a survey focusing on the construction industry’s representatives, 

the thesis examined the feasible complexities and opportunities of these approaches on 

pre-1919 typologies through the prism of regulation, technical complications, financial 

opportunities and social barriers and incentives. 

The findings from this research showed that there is a variety of advantages and 

disadvantages in adopting deep retrofit with offsite mechanisms that stretch beyond 

straightforward energy and cost reductions and are dependable on typology, location and 

offsite measure applied. Equally important the research contributed on identifying how 
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these mechanisms could respond to the emerging regulations on quality control for 

retrofit delivery and provides an insight on of the policy and practical implications in the 

adoption of such measures.  
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Definitions 

kWh/m2.a Kilowatt-hours per square metre of area per year. It is used to express 

specific energy demand (heating or overall) when the m2 refer to the floor 

area of a building. Also used to express heat loss when the m2 refer to a 

building fabric element. 

W/mK   

(k-value)  

Thermal conductivity of a material expresses the heat transfer (Watts) 

per metre (m) per degree temperature (Kelvin or Celsius). In materials of 

low thermal conductivity the heat transfer occurs at a lower rate than 

materials of high thermal conductivity. Thus, the lower the value the 

better the material’s ability to insulate. 

W/(m2 K)  

(U-value)  

 

Thermal transmittance coefficient is the rate of heat transfer (Watts) 

through 1 m2 of element (single material or a composite) with a 10C/K 

difference across it. Thus, the lower the U-value the better insulating it is. 

m3/(hr.m2)  

and ach-1 

Airtightness or Air Permeability expresses the volume of air leakage that 

passes through the buildings envelope. m3/(hr.m2) (q50 measurement) is 

used in Building Regulations and translates to the volume of air (m3) 

through the building envelope per hour(hr) per m2 of building element at 

50 Pascals differential pressure. The Passive House standard uses the 

number of times the volume of air within the building is changed in an 

hour- Air Changes per Hour (ACH) (n50 measurement) at 50 Pascals 

differential pressure 

CO2 Carbon dioxide relates to the “carbon footprint” or CO2 pollution. In this 

thesis it is associated with the CO2 emissions from fossil fuels required to 

generate energy (kWh) for heating. 
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Net Present 

Value 

Is the value of all future “cash flows” (positive and negative) over the 

entire life of an investment discounted to the present. In this thesis it is 

translated to the capital cost required to retrofit a dwelling to the required 

energy standard (investment) and takes into account energy related bills 

(savings and payments), added comfort, added property value and cost 

related maintenance over the years (cash flows). 

Return On 

Investment 

Is the attempt to measure the amount of return on a particular 

investment, relative to the investment’s cost. It is expressed as a 

percentage or a ratio by dividing the benefit/return of an investment by 

the cost of the investment. In this thesis the term is used as the 

“payback” to demonstrate the return of investment (retrofit) after the 

assigned time period not as a percentage but as monetary value taking 

into account the Net Present Value. 
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1. Introduction 

This chapter sets out the background, context, motivation, aim and scope of the research 

along with an overview of the thesis structure.  

1.1. Context 

According to the 2008 Climate Change Act, the UK has set a target of at least 80% 

reduction of greenhouse gas emissions by 2050, from 1990 levels (DECC, 2009). 

Currently 27 million existing houses in the UK have a combined energy use of 18% of the 

nation’s total energy usage (DECC, 2013), while10% of English households fall within the 

“fuel poverty” category (DECC, 2015a) using too great a proportion of their income on 

energy costs. Since 80% of existing properties are likely to still be standing by 2050 

(Boardman, 2007) on average 600,000 homes per year  will need to be refurbished with 

energy saving and low carbon technologies in the next decades, to meet the 80% 

emissions target (EST, 2010). Nonetheless, it is estimated that only hundreds of energy 

refurbishments are carried out per year in the UK (Fawcett and Killip, 2014). 

However, a range of previous studies show that even retrofitting to a modest standard of 

‘EPC C’1 could reduce carbon emissions  to 23.6mt CO2, and create 180,000 new jobs; 

moreover for every £1 spent on reducing fuel poverty, at least 42 pence is also expected 

in National Health Service benefits (Washan, Stenning, and Goodman, 2014). Still, 75% 

of Great Britain’s houses have an EPC rating below D (DECC and NAO, 2015).  

On the other hand in order to help meet these targets, the UK government tightened 

energy efficiency standards for new buildings (Building Regulations and the now 

scrapped Zero Carbon2) and historically introduced a range of programmes for retrofit 

                                                            
1
 Energy Performance Certificates (EPCs) estimate a building’s energy-efficiency from A (very efficient) to G 

(inefficient). http://www.energysavingtrust.org.uk/  
2  Building Regulations Approved Document Part L 2016 amendments link: 

www.planningportal.co.uk/info/200135/approved_documents/74/part_l_-_conservation_of_fuel_and_power 

and HM treasury and BIS policy paper scrapping Zero Carbon  (HM Treasury and BIS, 2015) page 46.  

http://www.energysavingtrust.org.uk/
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such as: CERT (Carbon Emissions Reduction Target 2008-2012) and CESP (Community 

Energy Saving Programme 2009-2012), ECO1, ECO2, ECO2t and  ECO3 (Energy 

Company Obligations 2013-2022), TSB’s Retrofit for the Future (2009-2011), Green Deal 

(2013-2015), FIT (Feed-In Tariff) and RHI (Renewable Heat Incentive). Their aim was 

both to target the most vulnerable homes and create a sustainable market to foster 

change across the entire existing housing stock.  

Whilst the UK has set a series of legislation and targets that aim for the reduction of 

domestic energy use and has initiated different programs to increase the aspiration of 

retrofit, survey and market data (ONS 2015 ; DECC, 2015b; Pettifor, Wilson and 

Chryssochoidis, 2015; Dowson et al., 2012) reveal that  the UK’s different incentives for 

low energy housing retrofit have not yet generated significant market uptake or interest to 

carry out the retrofitting of domestic housing properties in large numbers.   

 

Nonetheless, the lack of “anticipated success” of these programs and legislation brought 

in the forefront issues regarding the fragmented retrofit industry but also provided a 

number of valuable lessons for the future. Those are interconnected and include: 

- The energy performance gap, i.e. the discrepancy between modelled energy pre-

retrofit and the actual energy consumption, post-retrofit. This attributed to both 

user/resident and technical factors. The user/resident factor falls on what is called  

the “rebound effect”, where energy improvements make energy services cheaper, 

and therefore encourage energy consumption increase (Sorrell, Dimitropoulos, 

and Sommerville, 2009; Galvin, 2014; Johnston et al., 2016). The technical factor 

falls on the underperformance of retrofitted elements (Lomas, 2010) or the lack of 

technical skills  in relation to both energy prediction and delivery within the 

industry (Jones, Lannon, and Patterson, 2013). 

- Unintended consequences, i.e. outcomes that arise unintentionally as a result of 

either faulty installations due to the lack of skills within the industry (De-

Selincourt, 2015; Banks and White, 2012) or even within policy failures to account 
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for complex systems in housing retrofit while focusing on single-minded 

objectives  (Shrubsole et al., 2014; Gupta et al., 2015). 

- The Whole-House versus incremental retrofit approach is the difference between   

targeting energy efficiency of a property as a whole rather than just the efficiency 

of a particular element (Waterson, 2005). This difference has an interconnected 

impact to the previous points made. The incremental approach is considered the 

reason of both energy performance gap and unintended consequence as for 

example if a single upgrade is made without considering the whole property could 

result amongst other things to: overheating, thermal bridging , consequent energy 

loss and even structural damage (NEF and EEPB, 2014b; BRE, 2015). 

Consequently, this is why to some extend where the energy efficiency 

programmes have been unsuccessful (i.e. Green Deal).  On the other hand the 

Whole-House approach prevents separate aspects of retrofit being considered in 

isolation (Bonfield, 2016). Most importantly the Whole-House approach does not 

necessarily mean deep-retrofit but rather a holistic understanding of the building 

from the survey to impact of the installations.   

- Even though the Whole-House approach and deep retrofit has been confirmed to 

have greater advantages versus the elemental approach, the typical greater up-

front cost is still a barrier for an  uptake on a bigger scale (Jones, Lannon and 

Patterson, 2013; NEF and EEPB, 2014b; Simpson et al., 2015).  

- Supply chain fragmentation and shortage in skills and knowledge in the industry 

has been recognised as a major barrier for the growth in the retrofit sector (NEF 

and EEPB, 2014b; Kenington et al., 2014; Topouzi, Killip and Owen, 2017).  This 

has a dirrect effect on the quality of retrofit  and cosequent failures demonstrating 

that there is a need of coherant structure of delivery and even what the NEF and 

EEPB, (2014b) report identified as an “one stop shop” as means of supply 

coordination. 
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1.2. Research motivation 

The Green Deal has been the latest national led programme targeting housing retrofit. It 

ended in 2015 with heavy criticism of its outcomes (Gardiner, 2015) while the same year 

the Zero Carbon for new build was scrapped before it even started. Both of those actions 

left the construction industry in dismay (Farah, 2015; Gardiner, 2015) due to the heavy 

investment  already done and uncertainty about the future of low energy construction.  

Nonetheless, critical reviews of the “death” of Zero Carbon house standards indicate that 

it could mean could mean the “birth” of more substantial interest in voluntary standards 

such as Passive House3 (Rickaby, 2015; Greenwood, Congreve and King, 2017) and its 

retrofit equivalent ‘EnerPHit’  due to its coherent and robust Whole-House approach.  

Additionally, in 2016 through the commission of Energy and Climate Change (DECC), 

now Energy and Industrial Strategy (BEIS), and the Department for Communities and 

Local Government (DCLG), published a report called Each Home Counts or as it 

commonly known the Bonfield Review (Bonfield, 2016). In summary, this in-depth report 

sets a framework of retrofit standards ensuring quality delivery, costumer protection and 

greater consistency across the industry, This has also led to the review of the building 

standards, PAS 2030:20174 (Specification for the installation of energy efficiency 

measures in existing buildings) and the introduction of PAS 20355 (Specification for the 

energy retrofit of domestic buildings - Specification and guidance to support the Each 

Home Counts Quality Mark for domestic retrofit in the UK) that will come into pass in 

2019. The PAS 2035 standard will serve to reinforce ethos of retrofit quality centring 

amongst other things on Whole-House approaches with risk assessment from the 

installers to installations and customer feedback  ( Price, Rickaby, and Palmer, 2017).   

                                                            
3 Passivhaus is the original German name of the standard. In this thesis the English translation equivalent 

is used, Passive House, when referring to the same standard. 
4 PAS 2030:2017 (BSI, 2017) 
5 PAS 2035 link to the BSI standard development site: 

https://standardsdevelopment.bsigroup.com/projects/2017-04146 
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These steps may suggest that even if previous programmes have failed to deliver retrofit 

in scale, the lessons learned may have initiated deeper awareness and soon to be 

legislation focusing on quality, while interest is also turning towards alternative 

approaches such as Passive House/EnerPHit as a better equivalent to previous 

standards (Zero Carbon).  

In addition, relatively recent applications aiming to target retrofit at scale have been 

introduced by industry’s “innovation intermediaries” ( Brown et al., 2018). These are 

industry led initiatives focusing in embedding offsite construction in retrofit applications 

where time and cost of construction can be reduced. Examples as such could be found 

in Energiesprong 6 that ensures net-zero energy and Beattie Passive TCosy7 which 

ensures the EnerPHit standard. Those examples have focus on: a. reducing the cost of 

retrofit in economies of scale, b. targeting local authority/housing association led housing 

as those have the ability to retrofit properties simultaneously in numbers, c. retrofitting in 

volume in the social housing sector, meaning that there is also access to funding which 

is an understandable step on building a financial model before fully commercialising  

(Brown et al., 2018)  and d. consequently focusing on properties mainly built post 1950’s 

in line with the ages of the majority of social housing in the UK (DECC and National 

Statistics, 2015). Those latter properties have evidently less planning restrictions to older 

ones and are typically “easier” to retrofit due to their simplified form. Nonetheless, as the 

English Housing Survey report  (DECC and National Statistics, 2015) and the Fuel 

Poverty Statistics Report  (Departament for Business, 2017)  have shown the majority of  

the least efficient properties and those impacted by fuel poverty are within the pre-1919 

stock. 

Therefore if there is a transition to quality driven retrofit from steady legislation 

(PAS2030/2035) while innovative approaches using offsite are aiming to deliver quality 

and quantity how could this be adopted within the most challenging of the UK stock?  

                                                            
6 Energiesprong official website:www.energiesprong.uk/ 
7 Beattie Passive official website: www.beattiepassive.com/index.php  
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This PhD thesis aims to contribute to this area of research, as set out in more detail in 

the following section. 

1.3. Research aim, objective and significance 

The aim of this PhD research is to gain and add to the understanding of how supply 

chain innovations might support the low energy retrofit of the UK’s challenging pre-1919 

housing stock. It focuses on the most recent industry approaches of Whole-House retrofit 

standards such as EnerPHit along with offsite mechanisms applied.  

Furthermore, it aims to evaluate the perceptions and experiences from the industry’s 

representatives on retrofit approaches to date and analyse what could motivate the UK 

construction industry to adopt these standards and methods. 

As previously identified, in the last two decades there have been policy interventions to 

tackle energy consumption in existing houses in the UK. Evidence suggests that the 

attempts so far have had mixed or limited outcomes and there are still no strong 

regulatory systems or incentives. Nonetheless, the lessons learned have been “stepping 

stones” for the evolution of large-scale interventions in addressing household energy 

consumption. The relatively recent offsite approaches have been latest endeavours in 

attempting to provide solutions where previous attempts have been unsuccessful: retrofit 

in volume, reduced cost and assurance of delivery (energy and quality).  However, it is 

still important to understand how those approaches correspond in the older UK stock 

along with how the current industry perceives them.  

In this context the research addresses the following questions: 

RQ .1 Can the cost of UK Whole-House retrofit to EnerPHit standard be 

reduced via current offsite mechanisms in pre 1919 UK house 

typologies? 

RQ .2 Could the UK industry be confident in adopting this combination as 

common practice? 
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RQ .3 What innovations are needed by the industry for ‘Whole-House’ retrofit 

practice to have a macro-scale effect in the UK?  

As the following chapters explore, there has been significant research on housing retrofit 

and offsite as a mean to answer new-build housing challenges but there are still 

implications and possible benefits to consider when applied to older stock. This study 

builds on existing knowledge and research, and provides a new contribution by 

identifying complexities and future possibilities for these applications.  

In addressing the research questions the objective of this PhD research through a socio-

technical approach is to: 

(RQ1): Through energy and cost modelling identify related implications within 

different typologies of the pre-1919 UK housing stock, with and without 

offsite measures applied and evaluate the impact retrofitted to higher 

standards such as EnerPHit 

(RQ2): By focusing on “middle-actors”, construction industry’s professionals  that 

have the ability to influence change in low energy design  (Parag and 

Janda, 2014; Janda et al., 2014), identify the industry’s perspectives on 

both energy standards, offsite mechanisms and their practical combination.  

(RQ3): Analyse and compare these multi-disciplinary issues, to determine future 

impacts on the market, regulation and practical applications.  

1.4. Thesis overview 

This PhD thesis is presented in 7 chapters.  Chapter 2 presents a literature review on the 

policies and national programmes on low energy housing and retrofit along with relevant 

existing research on the subjects. Likewise Chapter 3 presents a literature review on 

innovations and techniques specifically related to standards, approaches and offsite 

methods. 

In Chapter 4 the research design and methodology are presented divided into six distinct 

parts: The first two review available research methods to answer the research questions 
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identified in the preceding chapter and justify the socio-technical mix- methods chosen. 

In essence, the mixed-method approach chosen undertakes energy and cost modelling 

testing offsite approaches in pre-1919 UK typologies and also assesses industry 

representatives’ perceptions via a survey uptake. The next five sections clarify how the 

mix-method approach is going to use the data collected and each section details a 

district relevant theme. These are:  

- Regulatory approach: this section describes the energy standards used in the 

modelling of the typologies and their relevance to the research.  

- Technical approach: details the data used for the energy modelling such as case 

study typologies, structure and build-ups along with the justification on the 

modelling software used. 

- Financial approach: explains the model inputs of cost variations and determinants 

within the selected energy standards and constructions methods (onsite and 

offsite). 

- Social approach: explains the survey justification, design and method of analysis. 

 

Chapter 5 and 6 outline and discuss the individual and combined results based on the 

research methods along with their implications and significance. 

- Regulatory related outcomes: this section presents the results on the applied 

energy standards modelled and discusses the heating energy demand 

differentials along with their impact. 

- Technical related outcomes: presents and explains in more detail the resulting 

factors that influence the heating energy demand.  It explores the technical 

elements influencing the heat loss/heat demand for each of the typologies 

explored.  This provides an understanding of the technical implications and 

possibilities of different construction methods (onsite/offsite) and links to the 

feasible cost implications reviewed on the next section.  
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- Financial related outcomes: looks at the comparative results on the upfront cost 

of each scenario modelled (standard, typology, location and construction 

methods) along with the feasible payback opportunities. This allows for a clearer 

understanding of the limitations and prospects of the monetary complexities in 

both high energy efficient standards (EnerPHit) and offsite construction in retrofit.  

- Social related outcomes: presents the results from the survey and analyses them 

within research previously done on perceptions in either retrofit or offsite as well 

as with the technical results from this research. This allows a better 

understanding of barriers and incentives of the industry representatives on use of 

offsite in retrofit and by extension on their future macro-scale applicability. 

 

Finally, Chapter 7 summarises the key research findings and draws them together 

through a discussion of the policy and practical implications along with reflections on 

further research. 
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2. Background context to UK housing retrofit 

This section discusses the background context to housing retrofit in UK. Specifically, the 

UK housing condition, regulation and government led programmes aimed to stimulate 

the market and set standards along with existing research on outcomes and 

recommendations for the future of the retrofit sector. 

2.1. Reducing energy use and CO2 emissions  

In UK around 67% of the total energy used per  household is accounted for by space 

heating (DECC, 2016) and it comes directly from burning fossil fuels. The burning of 

fossil fuels releases CO2 emissions in the atmosphere that cannot be absorbed by 

natural means, and create a thick “blanket” over the earth’s atmosphere resulting in 

global warming and climate change  (Pelsmakers, 2015) with drier summers, wetter 

winters and more extreme winds and rainfall resulting to catastrophic flooding in the UK 

(Pelsmakers, 2015; Thompson et al., 2015). The amount of emission savings related to 

the energy reductions from retrofit approaches differ depending on the amount of 

implementations  but studies have shown savings from 23.6 mtCO2  (Washan et al., 

2014) to 49mtCO2 (Tahir, Walker, and Rivers, 2015). To understand the scale of retrofit 

needed and its impact, if UK wants to meet the legally bound targets set on the Climate 

Change Act of 80% CO2 reduction by 2050, we will need to retrofit a house every minute 

for the next 35 years (Stafford, Gorse, and Shao, 2011). 

2.2. Improving socio-economic conditions in the UK’s housing stock  

In relation to their EU counterparts, the UK holds the oldest stock (Pre-1960) 

(Economidou et al.,  2011) a fact which places the UK retrofit industry at very challenging 

position: the old (‘heritage’) dwellings will in most cases be subject to rigid planning 

restrictions, while at the same time be the worst performing within the stock. According to 

the Annual Fuel Poverty Statistics Report (DECC, 2014a) the highest percentage of 

people living under the “fuel poverty” category are within the private rented sector with 

the highest percentage living in the oldest and least energy efficient properties and 
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housing built pre-1919 and emitting double the amount of emissions on average 

compared to post-1990 homes (DECC and NAO, 2014). The older housing stock is the 

worst performing in terms of energy efficiency, as well as the most laborious and costly 

to improve (Deakin et al.,  2014). 

There is also a clear association between cold homes, fuel poverty and energy 

efficiency, not least from individual responses to notions of their own ‘thermal comfort’ 

which will vary from person to person, in relation to ‘personal factors’, e.g. metabolic rate 

(level of activity), amount of clothing; and, environmental factors, e.g. air temperature, 

radiant temperature, air speed, and humidity.8 Other studies have demonstrated the 

connections between cold homes and negative health impacts which lead to increased 

monetary demands on the NHS (AECB, 2014; DECC, 2014a; House, 2015; Royston, 

2013). Yet despite contributing to many thousands of deaths each year, the health risks 

of cold homes receive only sporadic attention from the media and from policy-makers, 

while they are estimated to burden the NHS with costs of £1.36 billion per annum(DECC, 

2015b). Shrubsole et al., (2014) pointed out 119 unintended consequences of improving 

domestic energy efficiency through retrofit that stretches beyond the “clinical” health 

improvement of residents but has a wider impact in their wellbeing “including the built 

environment, life style and activities, community, local economy, the natural environment 

and the wider global ecosystem” (page 343).  

                                                            
8The World Health Organisation (WHO) and Public Health England recommends that indoor temperatures 

are maintained at 21°C in living rooms and 18°C in bedrooms for at least 9 hours a day and in general with 

temperatures below 18°C, negative health effects may occur, such as increases in blood pressure and the 

risk of blood clots which can lead to strokes and heart attacks (World Health Organization, 1987). 

Relative humidity is measured as a percentage, and describes the ratio between the actual amount of 

water vapour in the air and the maximum amount of water vapour that the air can hold at that air 

temperature; the lower the percentage the “drier” the air is and vice versa. Within the threshold of 40%-

70% is the acceptable to achieve thermal comfort. When relative humidity exceeds 70% for long periods it 

could increase impacts on health and trigger allergies and respiratory illnesses, particularly for asthma and 

rhinitis [CIBSE Guide A(CIBSE, 2015)]. Low relative humidity can also have health impact and it has been 

suggested that “low room moisture content increases evaporation from the mucosa and can produce 

micro-fissures in the upper respiratory tract which may act as sites for infection” (CIBSE Guide A).  
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At the same time a focus has to be given to ill-conceived installations of retrofit measures 

that could also lead to major health impacts. When for example new insulation has been 

applied without sufficient thought of the consequences of ‘thermal bridging’9, interstitial 

condensation has been found to occur within the building structure leading to damp and 

degradation of the structural elements, with structural defects and health risks increasing 

as a result of mould growth. In May 2016 Saint-Gobain commissioned a survey of over 

3,000 UK homeowners and renters to explore issues in relation to ‘health and 

wellbeing’(Saint-Gobain, 2016). The top three issues identified were: the homes were too 

cold, too expensive to run and there was a lack of noise control, with the highest levels of 

discomfort observed within the rented sector rather than with owner-occupiers. 

Additionally, the retrofit works, even if there are vulnerable customers who may need it 

the most, can be highly disruptive and be a major barrier to uptake retrofit measures 

(Brown et al.,2014; NEF, 2014; Dowson et al.,2012). 

2.3. Household behaviour 

Studies researching the impact of housing retrofit upon household behaviour have noted 

the potential for what is now commonly referred to as a Rebound Effect, where the 

energy improvements in a home somewhat counter-intuitively support subsequent higher 

levels of energy consumption from the resident household. The recognition that linked 

this effect directly to energy consumption is called the Khazzoom-Brookes postulate and 

was acknowledged first by economist William Jevons in the late 19th century (Madlener 

and Alcott, 2009). Influencing factors are considered ‘direct’ when the occupants utilize 

higher temperatures and ‘indirect’ when the occupants purchase high energy consuming 

products as a result of energy savings through reduced heating. The actual amount of 

any increase in energy use after the retrofit implementations can be difficult to quantify, 

but studies such Barker et al., (2007) on the macro-economic ‘rebound effect’ on the UK 
                                                            
9 Thermal bridging occurs when areas in parts of the building envelope have less reduced insulation, and 

the subsequently lower U-values allowing for result in significant localized heat losses, local surface 

condensation, air leakage and mould growth (CIBSE Guide A, Building regulations AD L andC).  
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economy, found that the post-retrofit levels of energy demand for 2010 were about 11% 

more than expected, due to direct and indirect rebound effects.  

An additional factor recognised on influencing energy consumption post retrofit is the 

interaction of residents with the technologies and measures installed. Studies on Retrofit 

for the Future projects  by Topouzi,( 2013) and Topouzi,( 2016) showed that there are 

various reasons influencing the impact of this interaction and most importantly those 

factors need to be addressed when retrofit measures are proposed. Notably, considering 

an occupant-centre approach i.e. lifestyle, needs and habits as well as better transfer of 

knowledge i.e. clear post-retrofit instructions/demonstration of new systems installed. 

2.4. Addressing the ‘energy efficiency’ gap  

A significant factor that impacts upon the actual energy savings achievable through 

housing retrofit is what is commonly known as the “energy efficiency gap” – the 

difference between what is predicted and modelled prior to the implementation of works 

on-site, against what is in reality saved. Studies have researched factors such as 

unexpected occupant behaviour (as noted above 2.3), and poor installation/construction 

quality (Tweed, 2013; Guerra-Santin et al., 2013; Haas, Auer and Biermayr, 1998; Zero 

Carbon Hub, 2014). The energy efficiency gap due to poor installations is difficult to 

quantify since they are usually left undocumented, but an example of the effects of 

thermal bridging via inadequate or faulty external wall installations (De-Selincourt, 2015) 

resulting in an increase of heating energy demand by 40%. The ‘energy performance 

gap’ is challenging not least because there is more than one aspect of a building that 

determines final energy use. Monitoring results through UK and international dwellings 

(both retrofit and new build) the work on performance monitoring (Johnston et al., 2016; 

Hopfe and Mcleod, 2015; Baeli, 2013) has pointed directly to how rigorous quality 

construction could be the key in ‘bridging the gap’. Additionally, non-technical causes on 

the energy performance gap were identified by  Topouzi, Killip and Owen, (2017) as “lack 

of technical knowledge; poor communication among project teams; unclear boundaries 
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or roles and responsibilities”(Page 552). The proposed solution of the study was the 

integration on the existing RIBA Plan of Work (RIBA, 2013) and Government Soft 

Landings (BSRIA, 2014) a series of “feedback loops” between stages providing learning 

outcomes that come from project experience and provide solutions consequently in 

future ones.  

2.5. Legislation and regulations  

Different types of legislation and regulatory initiatives have been introduced in UK to 

stimulate energy reduction in both new and retrofitted housing, and a critical review of 

their aims and outcomes is listed below. 

2.5.1. The European Union’s Energy Efficiency Directive 

The European Union has set three climate change targets to be achieved by 2020 

(http://ec.europa.eu): 20% reduction of greenhouse gas emissions, 20% of all energy to 

be delivered by renewables and 20% increase overall energy efficiency. Depending on 

country preferences, these targets can be based on primary or final energy consumption, 

or energy intensity. The Energy Efficiency Directive sets a number of binding measures 

for EU Countries to achieve the 20% targets and in regards to building efficiency the 

European Energy Performance of Buildings Directive (Directive 2002/92/EC - EPBD) 

sets the following requirements that have to be implemented by each EU country (under 

the principle of subsidiarity individual nations may decide for themselves the means by 

which they achieve this): 

- Improve building regulations  

- Introduce energy certification schemes for buildings  

- Introduce schemes for inspection of boilers and air-conditioners  

In 2010 the EPBD was ‘recast’ (Directive 2010/31/EU) with the key issues agreed as:  

- The move towards new and retrofitted nearly-zero energy buildings by 2021 

(2019 in the case of public buildings)  

http://ec.europa.eu/
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- The application of a cost-optimal methodology for setting energy-use 

requirements for both the external ‘envelope’ of buildings and the technical 

systems they contain.   

In the UK the Green Deal and Zero Carbon policies were the Government “actions” to 

implement the EPBD yet both are now cancelled, raising the legitimate concern that if EU 

legislative drivers are proving to be an inadequate spur for a coherent strategy for 

building efficiency, what might be the building industry’s future if the UK is not an EU 

member state in the future?  

2.5.2.  The ‘Paris Agreement’ 

At the Paris climate conference (COP21) in December 2015, 195 countries adopted the 

first-ever universal, legally-binding global climate deal, agreeing an aim to limit the rise in 

global temperature to well below 2°C, with efforts to hold it to 1.5°C (http://unfccc.int/). 

2.5.3. The UK’s Climate Change Act 

The Climate Change Act was passed in 2008 with the aim of reducing greenhouse gas 

emissions by 80% of 1990 levels by 2050. The Act requires the Government to set 

legally binding ‘carbon budgets’ - a cap on the amount of greenhouse gases to be 

emitted over a five-year period. The Committee on Climate Change (CCC) was set up to 

advise the Government on emissions targets, and report to Parliament on progress made 

in reducing greenhouse gas emissions. Its latest Progress Report (CCC, 2016) shows 

that emission levels have fallen by 38% below 1990 levels in 2015, but that this is 

primarily the result of reduced coal use in electricity generation. Alarmingly the CCC 

stated that “any single sector, will not be enough to meet the fourth, or recommended 

fifth, carbon budgets or the 2050 target. Furthermore, current policies are not sufficient to 

continue the good progress to date or broaden it to other sectors” (Page 11). As the 

building sector accounts for 18% of total and direct CO2 building emissions are split 

between homes (75%), commercial buildings (15%) and the public sector (10%), the 

http://unfccc.int/
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Committee in its latest report underline the need for new legislation and incentives to 

increase the energy efficiency in the retrofit housing sector. 

2.5.4. UK Building Regulations 

The UK’s Building Regulations set the minimum acceptable standards for the 

construction and refurbishment of all buildings. The document that is directly related to 

energy reduction is Part L and to domestic retrofit is the Approved Document PartL1B, 

“Conservation of Fuel and Power in Existing Dwellings”, making a ‘functional 

requirement’ to ‘make reasonable provision for the conservation of fuel and power’, with 

a simple approved document giving guidance on how to comply. The form that details 

the carbon and energy calculation required is the result of the Energy Efficiency Directive 

in 2002 - Wales, Northern Ireland and Scotland have subsequently developed their own 

similar standards. The evolution of Part L post-2013 was aiming to eventually adopt the 

Zero Carbon standard for new build in 2016 but is currently at a standstill. In the case of 

retrofit, the standard was not updated in 2013 and upgrades to buildings may not be 

mandatory if not “technically, functionally and economically feasible” (AD Part L1B, 

Regulation 23- HM Government, 2013).  

2.5.5. Zero Carbon Homes 

The Zero Carbon Homes policy, launched by the Labour government in 2007, would 

have required all new homes built from 2016 to meet the zero-carbon standard and 

would gradually be introduced through subsequent changes in the Building Regulations 

so the industry would be able to adapt. Its configuration derived from the Energy 

Efficiency Directive guidance (www.gov.uk) and the definition provided by the UK Green 

Building Council Zero Carbon Definition task group, based on three hierarchal principles 

(Zero carbon Hub:www.zerocarbonhub.org):  

1. A high level of energy efficiency in the fabric and design of the dwelling 

2. ‘Carbon compliance’ – a minimum level of carbon reduction to be achieved from on-

site technologies (including directly connected heat networks) and 
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3. ‘Allowable solutions’ – a range of measures available for achieving Zero Carbon 

beyond the minimum carbon compliance requirements.   

For these three principles to be reflected in the construction industry two steps would be 

taken: an alignment within the Building Regulations and the adoption of a new-build 

Code of Sustainable Homes standard10. (In addition, CSH was aiming for a wider view of 

sustainability beyond energy and carbon reduction that included ecology, health and 

well-being.) This way the construction industry and consumers would have a clear 

guidance on how Zero Carbon should be achieved. Table 2.1 shows a summary of what 

was scheduled for the Building Regulations in progression to Zero Carbon and what has 

been achieved to date, with a strong start in 2010 then not completely meeting the 

scheduled 2013 target and officially cancelled in 2016. 

 
Year Scheduled % CO2 reduction Actual % CO2 reduction 

2010 25 25 

2013 44 31 

2016 Zero Carbon Cancelled  

Table 2.1 Yearly improvement over AD L1A 2006 (as a % of carbon reduction) 
 (NHBC, BRE, Zero Carbon Hub, www.gov.uk) 
 

In July 2015 (Deregulation Act 2015, www.gov.uk) the Government decided to remove 

the Zero Carbon policy and the mandatory use of the Code for Sustainable Homes, with 

the justification that this should remove delays to the construction of new housing supply 

(HM Treasury and BIS, 2015). Of particular concern here is that even though the Zero 

Carbon standard was designed mainly for new build properties, housebuilders could 

through the ‘Allowable Solutions’ turn the spotlight onto the existing housing stock which 

enabled housebuilders to argue that their developments could potentially contribute to 

                                                            
10 The sustainability criteria of the Code included: energy, water, waste, pollution, management, 
ecology, health and materials. In the Code for Sustainable Homes, there are six levels of 
compliance, with level six meeting the energy definition of Zero Carbon. 

http://www.gov.uk/
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the upgrade of nearby housing to similar energy efficient standards - if Zero Carbon 

homes would become the industry’s norm then a wider momentum to retrofit activity 

could also be progressively influenced. The disheartening truth, however, is that the 

proposed stimulation of new-build housing supposedly at the heart of the cancellation of 

the Zero Carbon policy will have a direct regressive effect in the future, as all housing 

that is aimed to be built to only current construction standards will itself require retrofit in 

a future years (Mark, 2016) if its energy use is to be constrained : the funds initially 

“saved” from the Zero Carbon cancellation could turn to be higher when these homes 

need to be upgraded. 

2.5.6. Code for Sustainable Homes and BREEAM 

The Code for Sustainable Homes underpins the Building Regulations for new residential 

developments and is the successor of EcoHomes (2000-2010). It covers more than 

energy performance alone and its sustainability criteria include: Energy, Transport, 

Pollution, Materials, Water, Land Use and Ecology, Health and Wellbeing, using SAP for 

the energy performance calculation. It was launched in 2006 and was meant to become 

mandatory in 2016 but it was scrapped as in 2014 (Hartman, 2014) prior to the end of 

Zero Carbon.  The Code for Sustainable Homes is still operational, but is now generally 

voluntary. 

BREEAM (Building Research Establishment Environmental Assessment Method) is 

BRE’s method for housing assessment (both new and refurbishments).  Even though 

BREEAM is a “voluntary” sustainable assessment rating system, some UK local 

authorities may require BREEAM certification (or equivalent) either as part of a local 

plan, or as a planning condition for developments11. BREEAM has five categories for 

different types of development that include: BREEAM Communities for master planning, 

BREEAM Infrastructure for Civil Engineering and Public Realm, BREEAM Homes and 
                                                            
11 City of London Local Plan  Sustainable development planning requirements: 

www.cityoflondon.gov.uk/services/environment-and-planning/planning/design/sustainable-

design/Pages/Sustainable-development-planning-requirements.aspx 

https://www.designingbuildings.co.uk/wiki/Local_plan
https://www.designingbuildings.co.uk/wiki/Local_plan
https://www.designingbuildings.co.uk/wiki/Planning_condition
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Commercial Buildings, BREEAM In-Use for commercial Buildings and BREEAM 

Refurbishment and Fit-out for homes and commercial Buildings12. BREEAM 

Refurbishment replaced the EcoHomes (major refurbishment) and EcoHomes XB 2006 

(minor interventions). The rating system is similar to the Code for Sustainable Homes 

that it includes the same categories and it is also uses SAP for its energy performance 

calculation. 

2.5.7. Other UK policy drivers 

Since the Energy Performance of Buildings Directive in 2002, a number of drivers and 

incentives were introduced aiming a. to reduce energy consumption in existing homes; 

and b. to stimulate the establishment of a strong UK retrofit industry. 

2.5.7.1. FIT (Feed-In Tariff) and RHI (Renewable Heat Incentive) 

These are specific incentives aimed at encouraging householders to retrofit renewables 

and other solar-generated energy (such as from Photo-Electric cells) in their properties 

and “sell” the energy created back to the grid. The Renewable Energy Strategy(HM 

Government, 2009) suggests that by 2020 over 30% of electricity should come from 

renewable sources including 2% from small-scale sources. Such ‘microgeneration’ is 

defined in Section 82 of the UK’s Energy Act (2004)13 as the production of electricity or 

heat from a low-carbon source, at capacities of no more than 50 kWe or 45 kWth. 

Unfortunately in December 2015 the government revealed a 65% cut in subsidies 

regarding solar power putting, at risk 18,700 jobs (Macalister, 2015; DECC, 2015d) - in 

April 2016 small-scale solar power installations dropped by 74% compared to the 

previous year (Vaughan, 2016).  

                                                            
12BREEAM technical standards: www.breeam.com/discover/technical-standards/ 
13 Energy Act 2004 Section 82: www.legislation.gov.uk/ukpga/2004/20/section/82 
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2.5.7.2. TSB’s Retrofit for the Future  

Α Technology Strategy Board initiative, the Retrofit for The Future14 programme spanned 

from 2009 to 2011 with £17m of funding through the Small Business Research Initiative 

(SBRI)15. The aim was to demonstrate how to achieve up to 80% energy reduction on 

UK’s social housing stock through major retrofit implementations with grants up to 

£150,000 per property. An average 50% energy reduction was achieved, although the 

percentage target was criticized as the 80% reduction was not feasible especially in 

properties that were already performing better in relation to older constructions(Gupta et 

al., 2015). The high cost of retrofit (£150,000 including design and monitoring) showed 

the difficulty of “upscaling” this approach and cost to many properties - the cost analysis 

(The Technology Strategy Board, 2014)of the applications and reasons of the cost 

variations have been summarized principally as to: bespoke products affect the cost rise 

along with procuring form immature supply chains and poorly applied installations that 

require remedial work. The intent of the programme however was to “kick start” the 

retrofit market (Jones et al., 2013) and make innovative solutions for energy reduction 

the norm, raising the hope that with supply chain innovation this cost could be made 

smaller (Gupta et al., 2015). Other findings showed that when the design team and 

residents were involved together with the delivery satisfaction was much higher (Institute 

for Sustainability, 2012).This could be taken as evidence of the importance of the 

occupier’s involvement and choice throughout the retrofit procedures to achieve greater 

comfort and greater energy savings since the residents’ have a greater understanding of 

how the systems operate in situ. 

                                                            
14 Innovate UK is the new name for the Technology Strategy Board. Information about Retrofit for the 

Future can be found: https://retrofit.innovateuk.org/ 
15 Information about BRSI:www.gov.uk/government/collections/sbri-the-small-business-research-initiative 
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2.5.7.3. Green Deal  

Green Deal was a heavily criticized financing program (Gardiner, 2015) that ran between 

2013 and 201516, its aim was the finance of housing retrofit measures through loans that 

would be repaid through the house utility bill savings designed around a 'Pay as You 

Save' model17. The Department of Energy and Climate Change was the generator of the 

program aiming at the reduction of energy carbon, to tackle fuel poverty and stimulate 

the market. The financing mechanism was led by the “golden rule” i.e. the energy and 

cost saving achieved from the retrofit upgrades in the property would have to be able to 

pay back the amount it was borrowed for the applications. The main reasons of its failure 

were its over-complexity and high loan interest rates that did not reflect the energy and 

cost payback from the retrofit upgrades (DECC and NAO, 2016; Pettifor, Wilson and 

Chryssochoidis, 2015; Washan and Cole, 2012). Even before it was lunched other 

research had already showed likely problems - a study made by Affinity Sutton exploring 

the feasibilities for retrofitting their stock showed a funding gap ranging from £3k-£10k 

depending on the level of the upgrade (Washan and Cole, 2012).The damage of the low 

Green Deal uptake and its subsequent closure was particularly reflected in the impact 

upon many supply chain companies as they had heavily invested in materials and 

employees and were eventually left with high financial damage and loss of jobs 

(Gardiner, 2015). The National Audit Office published a report (DECC and NAO, 2016) 

showing that only 1% of households took the “Green Loans” and that the Green Deal did 

not achieve “value for money” and delivered “negligible” carbon savings.  

                                                            
16The Green Deal (Qualifying Energy Improvements) Order 2012 link: 

http://www.legislation.gov.uk/ukdsi/2012/9780111525234/contents. Energy Saving Trust:  Update (24 

July 2015) The UK Government has decided to stop funding the Green Deal Finance Company (GDFC). The 

GDFC was set up to lend money to Green Deal providers. www.energysavingtrust.org.uk/scotland/grants-

loans/green-deal  
17 UKGBC: www.ukgbc.org/resources/key-topics/new-build-and-retrofit/retrofit-domestic-buildings 

http://www.legislation.gov.uk/ukdsi/2012/9780111525234/contents
http://www.energysavingtrust.org.uk/scotland/grants-loans/green-deal
http://www.energysavingtrust.org.uk/scotland/grants-loans/green-deal
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2.5.7.4. ECO (Energy Company Obligations)  

ECO was introduced in 2013, with equivalent previous schemes CERT (Carbon 

Emissions Reduction Target 2008-2012) and CESP(Community Energy Saving 

Programme 2009-2012)18, aiming to reduce energy consumption and support people 

living in fuel poverty by funding energy efficiency improvements in homes. The 

installation funding of these measures are the obligation of big energy companies. The 

DECC aimed in the combination of Green Deal and ECO in cases where the measures 

where too expensive to meet the conditions for accessing Green Deal loans. Additionally, 

contributions from energy suppliers through ECO were expected and ECO installers 

were encouraged to promote the Green deal scheme. However, suppliers were rarely 

able to achieve this as very few households saw Green Deal finance as a sufficiently 

attractive proposition (DECC and NAO, 2016). 

 ECO has equally been under criticism as it has a regressive impact as the cost of 

installation reflects in the residents’ bills, including those within the fuel poverty category 

and its predecessors (CERT and CESP) had achieved more than double the carbon 

savings in relation to the amount of funds dedicate to the scheme (DECC and NAO, 

2016)but this is mainly due to the fact that ECO’s aim was to tackle ‘harder-to-treat’ 

properties, which cost more and take longer to improve.  

Since its introduction in 2013 there have been three updated amended versions 

(www.ofgem.gov.uk). The initial ECO1 ran from 2013 to 2015 similar to Green Deal, it 

was followed by ECO2 from 2015 to 2017 and extended to 2018 known as ECO2t. The 

current scheme, ECO3, began in 2018 and it is aimed to run up to 202219. 

                                                            
18 OFGEM(The Office of Gas and Electricity Markets): www.ofgem.gov.uk/environmental-

programmes/eco/overview-previous-schemes 
19 Department for Business, Energy and Industrial Strategy: 

https://www.gov.uk/government/consultations/energy-company-obligation-eco3-2018-to-2022 
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2.5.7.5. Bonfield Review PAS 2030 and PAS 2035 

The Government in July 2015 commissioned Dr Peter Bonfield, Chief Executive of the 

Building Research Establishment (BRE) to lead an independent review of consumer 

protection, advice, standards and enforcement for UK home energy efficient and 

renewable energy measures. The review report titled Each Home Counts (Bonfield, 

2016) proposed the introduction of a quality mark that brings together existing standards 

and quality assurance. The wider intention is the establishment of a quality mark for the 

retrofit industry sector. This is aimed to be established by focusing on three basic 

elements: Code of Conduct; a Consumer Charter and defined Codes of Practice and 

standards. The Code of Conduct will be a set of requirements on the companies’ 

behaviour on operation and reporting in alignment with quality mark. The Consumer 

Charter will emphasize on the consumers journey with a focus on their rights under the 

Code of Conduct and responsibilities. Finally, the Codes of Practice and standards 

focuses on the quality of assessments and installations in accordance with existing and 

future updated standards. The Publicly Available Specification (PAS) is a specification for 

the installation of energy efficiency measures in existing buildings which is developed by 

the British Standards Institution (BSI). Due to the Each Home Counts review the PAS 

2030 was revised in 2017 (2030: 2017 Specification for the Installation of Energy 

Efficiency Measures) (BSI, 2017) as the original standard was criticized as “not fit for 

purpose”(Rickaby, 2017a) and measures under the current ECO3 scheme require to be 

installed in accordance with PAS 2030:2017. There are three main updates on the 

specification (Rickaby, 2017a): a. the installers need to be involved in the site-specific 

design of the installation, b. the design has to take into account the “whole-dwelling” 

focus i.e. take into account interactions between measures installed and c. when 

insulation is proposed the existing ventilation system must be assessed and if necessary 

upgraded.  
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The Each Home Counts review also brought to the forefront additional need for further 

work on standards in retrofit and as a result a PAS 203520 specification is on 

development that includes all the stages of work from assessment to monitoring and 

evaluation (Price et al., 2017).  

Even though the ECO3 does not currently include the Each Home Counts quality mark 

(but intends to do so in late date) (DBEIS, 2018), it is evident that there is a shift on 

legislation to focus on holistic quality of delivery rather than just aim to achieve CO2 or 

energy targets.  

2.6. Concluding remarks  

Although the various UK drivers introduced so far have not fully “succeeded” in meeting 

the desire to stimulate substantial retrofit activities very valuable lessons have been 

learned that the industry and market can utilise for its growth: 

- As retrofit might not always increase the monetary value of the property improved 

the industry needs to explore alternative routes on educating both their workforce 

and homeowners with regards to other energy, comfort and health benefits. 

- Retrofit is disruptive to residents and communities, so the industry has to explore 

mechanisms for the smooth delivery of the process via experienced teams. 

- The approach used has to be cohesive: if measures are not comprehensive and 

are not working with each other, the results could be proven harmful and more 

costly in the long run. 

- The complexity of previous schemes was the biggest drawback for their uptake 

and the need for clearer models of delivery is evident. 

- The lack of regulatory coherence that has been proven extremely problematic for 

the industry supply chain. Programmes and incentives such as Green Deal and 

ECO were mainly focusing on stand-alone retrofit implementations, usually 

                                                            
20 PAS 2035 link to the BSI standard development site: 

https://standardsdevelopment.bsigroup.com/projects/2017-04146 
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tackling the worst performing element(s) of the dwelling but without considering it 

as a whole.  This, as discussed in section 2.5.7.5 is gradually changing and 

Whole-House approaches are becoming part of legislation in housing retrofit. 

Previous attempts or regulation focused on either energy/ carbon targets (TSB’s 

Retrofit for the future, Zero Carbon) or elemental approaches to single elements 

without consideration to the whole dwelling (Green Deal/Building Regulations). 

Nonetheless, quality in assessment, design, installation and delivery and actual 

energy deduction go hand to hand (as explained in sections 2.1 to 2.4.).  
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3. Innovations in UK house improvement techniques 

These sections purpose is to discuss and review the latest attitudes and approaches in 

the UK retrofit “evolution” and sets the initial contexts of the research rational. 

3.1. Current attitudes of the UK retrofit industry 

3.1.1. Brexit and the construction industry’s future  

The results of the June 2016 referendum for UK to leave the EU have left the many key 

actors in the construction industry feeling very vulnerable to uncertainty about what the 

future could hold: speculations are already being made of the potential impact (McLeod 

and Milne, 2016; AECB, 2016; Cross, 2016; Simpson, 2016) that the UK could repeal its 

obligations the European Energy Performance of Buildings Directive. The latest CCC 

Progress report (CCC, 2016) notes the uncertainty regarding future regulation: “The vote 

to leave the EU may have an impact on how emission reduction is delivered in the 

buildings sector. A number of EU policies currently contribute to cost-effective emission 

reduction. To meet the UK's domestic emission reduction commitment, it will be 

necessary to agree new arrangements or adapt existing arrangements, as appropriate. It 

is too early for the Committee to assess the precise balance under the new 

arrangements” (Page 83). 

The construction industry also relies heavily on foreign skilled and un-skilled workers and 

the potential curtailment of free movement of persons following Brexit is another key 

concern. The 2015 RICS UK Construction Survey showed that 66% of firms reported 

having turned down work due to a lack of staff as a result of the skills shortage but with 

UK unemployment at a low of about 5.1% (McLeod and Milne, 2016) it may be 

reasonable to assume that the labour and skills shortage in the construction industry 

cannot be resolved domestically. Similarly, while the materials used in the UK 

construction industry are largely domestically produced, there is a large market of 

imports especially from Germany, China, Italy and Sweden (McLeod and Milne, 2016): 

with three of those countries being part of the EU, any future UK restriction on the free 
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movement of goods and workers could lead to costs being increased, making the 

demand for retrofit works even more challenging.  

The retrofit industry’s immediate response to the Brexit referendum was one of 

enormous concern given the years preparing for the implementation of Zero Carbon 

standards, including public and private investments in projects like the AIMC4 project 

(www.aimc4.com) a partnership of companies, created to research, develop and pioneer 

the volume production of the low carbon homes for the future. The housebuilding firm- 

Stewart Milne estimated it had already invested £1million into the research and 

development of Zero Carbon homes (Thorpe, 2016).  

3.1.2. Grenfell Tower fire tragedy  

The fire in Grenfell Tower in west London on 14th of June 2017 is considered the worst 

experienced during peacetime since the 19th century and has resulted to 72 casualties 

along with 70 physically injured (MacLeod, 2018).  The inquiry on the fire examining the 

circumstance leading to the catastrophe is still ongoing (www.grenfelltowerinquiry.org.uk) 

but reports from experts (part of the inquiry) have stated that “evidence "strongly 

supports" the theory that the polyethylene material in the cladding was the primary cause 

of the fire's spread” (Professor Luke Bisby,(BBC, 2018). The decisions leading to the 

cladding fitting and eventual disaster have brought in the forefront issues with social 

injustice, the culture of deregulation and the construction industry’s fragmentation.  

Grenfell Tower is mainly social housing and home to predominantly lower and modest 

income, working class residents while it sits in the north of Kensington and Chelsea 

surrounded by more affluent neighbourhoods. Thus, the questions quickly rose whether 

an equivalent incident would be feasible in one of building of the wealthier residents. This 

was brought in the forefront as Grenfell Tower residents had since 2013 raised serious 

concerns about fire safety with the Kensington and Chelsea Tenant Management 

Organisation (KCTMO) (MacLeod, 2018).  

http://www.grenfelltowerinquiry.org.uk/
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The outer rainscreen cladding at Grenfell Tower was a Reynobond PE composite panel 

made of an unmodified polyethylene core sandwiched between two layers of aluminium 

and set 25 to 50mm away from the PIR insulation fixed on the existing wall (Odell and 

O’Murchu, 2017). Similar cladding insulant tested in BRE had showed their 

“unacceptable” flammability (De-Selincourt, 2017) and the question was raised on how 

was it possible to be applied in this occasion.  

The deregulation as part of a war on “red tape” meant that reforms on Build Regulations 

Part B (Fire safety) were not made to include provision for automatic sprinklers and 

revisiting fire standards for cladding (De-Selincourt, 2017). Adding to this the KCTMO for 

cost cutting reason contracted the installed cladding rather than that previously 

recommended and approved by the residents, architects and engineers ; zinc composite 

with a fire-retardant core while at least eight sub-contractor firms  part of the 

refurbishment questioning the level  the levels of expertise and the degree of oversight of 

the project (MacLeod, 2018). 

The Grenfell Tower fire will undoubtedly have a wider impact on how the external wall 

insulation retrofit is perceived from now on even if the measures or materials are up to 

higher standards. Rickaby, (2017b) appropriately stated on the future outcome in the 

sector by the Grenfell Tower fire: 

 “It may mark the end of any external wall insulation on residential towers, leaving us little 

option but to leave residents in cold, hard-to-heat, mouldy homes, or to demolish and 

rebuild. It may delay retrofit in social housing for a while, because scarce resources will 

be diverted to improving fire safety and installing sprinkler systems. The social, economic 

and environmental repercussions will last for many years” (page 8). 

3.1.3. ‘Elemental’ versus ‘Whole-House’ retrofit 

There are fundamentally two different approaches to housing retrofit that deliver different 

results: elemental measures focusing on single component upgrades and piecemeal 
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energy savings, and Whole-House retrofit referring to a combination of measures aiming 

to reduce overall energy demand to a minimum. 

The ‘elemental’ approach to domestic retrofit focuses on upgrading or replacing the worst 

performing element of the structure (such as single-pane glazing) and is a method used 

in many large scale projects aiming to include large numbers of properties with the 

finance available at the time (Jones et al., 2013; NEF and EEPB, 2014b). This is the 

“method” supported by programmes like the Green Deal (www.gov.uk/green-deal-

energy-saving-measures/overview), previous ECO programmes (www.ofgem.gov.uk) 

and by region specific programmes such Warm Wales (www.warmwales.org.uk).  In 

practice there have been well-documented catastrophic results when the single element 

upgrades do not take in to account “misapplied” cavity and external wall insulation or 

other works that have been inadequately installed. BRE research (BRE, 2015) 

demonstrated that the cost of extracting faulty insulation is five times higher than the 

original installation, along with introducing further structural problems. A consultation 

report made by CoRE (Centre of Retrofit Excellence)21 in 2015 for the Green 

Construction Board (De-Selincourt, 2015), explored the complications faced specifically 

in solid wall insulation applications through a series of responses from across different 

disciples of the industry. The root of the problem lays in the uncoordinated installation of 

individual measures by separate installers who have not been trained appropriately in 

regards to how their work relates to what the next installer may be doing (PAS 2030; 

Green Deal / ECO) but as discussed in sections 2.5.7.4 and 2.5.7.5 these methods are 

beginning to change.    

‘Whole-House’ retrofit refers to a retrofit method that integrates a series of improvement-

measures tailored for the specific property, either at a single point in time or applied 

incrementally in stages. The usual process for implementing the Whole-House method 

                                                            
21 The Centre of Retrofit Excellence (CoRE) has since 2016 been closed. Many of the previous trainers and 

industry representatives are now behind The Retrofit Academy with the same ethos and goals, link: 

www.retrofitacademy.org 
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will be to commence with a ‘fabric first’ approach, meaning upgrades are first applied to 

the built structure of the dwelling prior to implementing upgrades to services and other 

energy uses within a building, and to subsequent ventilation strategies, heating systems 

and lighting. Research into retrofit drivers introduced to date (Green Deal, ECO, RftF), 

academic research (Jones, Lannon and Patterson, 2013; Simpson et al., 2015; Baeli, 

2013) and industry representative organisations (NEF, 2014; De-Selincourt, 2015; BRE, 

2016) have concurred in their conclusions that that the Whole-House approach in retrofit 

is the most beneficial in the long term for the following reasons: 

- Higher energy reduction and lower cost of bills 

- Minimized  risk of faulty installations and increase the building’s durability 

- Increased comfort and wellbeing through indoor environmental quality 

Notwithstanding the basic principle that higher capital outlay can lead to increased 

reductions in energy use and thereby also in CO2 emissions (see the schematic summary 

in Figure 3.1 below), in the short term, there remains concern that ‘Whole-House’ retrofit 

still requires higher outlay of capital costs to bring about a large scale uptake, as 

examples from Retrofit for the Future showed.  

 

 

Figure 3.1 Retrofit cost relative to CO2 emissions reduction  
Figure taken from (Jones et al., 2013), page 536. 
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A study made by Jones, Lannon and Patterson, (2013) also raised the question of 

whether the large scale impact of stand-alone (‘elemental’) measures, upgrading the 

worst performing elements of buildings, has a greater impact in energy and cost 

reduction in total, as it could be applied to a high number of properties: a challenge to 

this can be found in the BRE (BRE, 2015) monitoring of elementally-improved properties  

that argued such approaches would be unlikely to achieve substantial energy reductions, 

and that they could also lead to unintended consequences with high risk (structural and 

on residents’ health). 

Some “responses” from the industry are beginning to form the aim to minimize the cost 

gap of Whole-House deep retrofit these include –the ‘step-by-step’ approach22 (EuroPHit 

and Simpson et al., 2015) and the introduction of offsite manufacturing (Energiesprong 

and Beattie Passive). Supporters of both Passive House and Energiesprong trust that 

the quality of their delivery of Whole-House retrofit is their “strong card” for subsequent 

growth in the industry. 

3.1.4. Use of Passive House / EnerPHit standards 

Adamson (1987) and Feist (1988) the creators of Passive House (PassivHaus, is the 

original German name) defined it on the Passive House Institute website, as ‘a building 

in which the comfortable interior climate can be maintained without the need for active 

heating and cooling systems’ (Passive House Institute - What is a Passive House? 

www.passivehouse.com). The basic idea is that if the building is super-insulated and 

adequately ventilated conventional heating will not be required. The space is heated via 

the occupants’ activities and through passive solar warmth, and the highly insulated 

fabric would retain that heat in the space. The ‘EnerPHit’23 standard applies these 

                                                            
22 Step-by-step retrofit refers to the Whole-House retrofit approach that is done in stages through a span 

of years but prior to the commencement of any work an overall plan has been made to ensure that as a 

whole all steps will work together(http://europhit.eu) 

23 The Passive House standard was initially designed for new-build and in 2010 the Passive House institute 

published the first EnerPHit criteria (https://passipedia.org/) 
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principles to existing properties and even though the targets are more relaxed the same 

approach applies with a design focus based on five straightforward principles 

(http://www.passivhaustrust.org.uk/):  

- very high levels of insulation 

- extremely high performance windows with insulated frames 

- airtight building fabric 

- 'thermal bridge free' construction 

- a mechanical ventilation system with highly efficient heat recovery 

- accurate design using the Passive House Planning Package (PHPP). 

The levels of energy use that need to be met for a Passive House to be certified are 

(www.passivhaus.org.uk) shown in Table 3.1:  

  Criteria   Passive House   EnerPHit 

 Specific Heat  Demand (SHD)      ≤ 15 kWh/m².yr   ≤ 25 kWh/m2.a 

 Primary Energy Demand (PE)   ≤ 120 kWh/m².yr   ≤ 120 kWh/m2.a * 

  Limiting Value   n50  ≤0.6-1   n50  ≤1.0-1 

* PE ≤ 120 kWh/m2.a + ((SHD - 15 kWh/m2.a) x1.2) 

Table 3.1 Passive House and EnerPHit criteria comparison 

At present, a dwelling in the UK can achieve Passive House certification and achieve 

regulatory compliance but SAP (Standard Assessment Procedure) is the most commonly 

used and accepted. SAP is a tool to show compliance with the required regulations and 

not to be used as design tool  (Powell, et. all , 2015). The equivalent SAP for retrofit is 

RdSAP (Reduced Data SAP) that requires even less “detailed” entries for an assessment 

(www.bre.co.uk). 

A comparison of PHPP and SAP suggests: 

- SAP “needs” less data entry so is easier to use but less accurate and detailed 

- SAP may underestimate heating load for low energy buildings. 

- PHPP entails more data entries taking longer to create models and requires more 

experience and knowledge  

http://www.passivhaus.org.uk/
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- PHPP delivers more accurate results with clear distinctions between final to 

primary energy 

- SAP has become more CO2 focussed to “prove” compliance and fabric efficiency 

is of “less importance” 

The Passive House standard, as applied both to domestic and non-domestic buildings, is 

the fastest-growing energy performance standard and there are around 50,000 certified 

buildings around the world (Hopfe and Mcleod, 2015)- in Ireland Dun Laoghaire-

Rathdown County Council has made Passive House mandatory for all new buildings in 

2015 “All new buildings will be required to meet the passive house standard or 

equivalent, where reasonably practicable” (www.phai.ie). Certified Passive House 

buildings have proven through monitoring that they have been able to minimize the 

‘energy performance gap’ i.e. the buildings operate as designed (Johnston et al., 2016; 

Hopfe and Mcleod, 2015; Baeli, 2013). 

3.1.5. Supply chain issues in retrofit 

The retrofit supply chain is diverse made up from different sub-sectors. When whole 

house retrofit activity occurs, each sub-sector is brought together and managed by a 

central project or contract manager. Nonetheless, supply chain fragmentation and 

shortage in skills and knowledge has been an issue faced in retrofit programmes and 

analysed in proceeding research (NEF and EEPB, 2014b; Kenington et al., 2014; 

Topouzi, Killip, and Owen, 2017; Gupta et al., 2015).  In the Retrofit for the Future 

programme (2.5.7.2) for example this was an issue that contributed to cost increase and 

brought the supply chain “inadequacies” in the forefront (The Technology Strategy 

Board, 2013;  Gupta et al., 2015; Baeli, 2013). The Green Deal programme (2.5.7.3) 

emphasised those issues even further with elemental approaches from different supply 

chain trades that resulted to unrealistic cost payback from the retrofit upgrades (DECC 

and NAO, 2016; Pettifor, Wilson and Chryssochoidis, 2015; Washan and Cole, 2012) 

and even unintended consequences to the building’s structure (De-Selincourt, 2015). 

https://passivehouseplus.ie/news/government/dublin-local-authority-makes-passive-house-mandatory-in-historic-vote
http://www.phai.ie/
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Finally, the gravest illustration of the supply chain issues is reflected in the Grenfell 

Tower fire tragedy (3.1.2) where it resulted in the loss of human life and possible future 

mistrust in the retrofit applications (Rickaby, 2017b) .    

Therefore, those examples presents that accountability, supply coordination along with 

developed skills and knowledge are the identified improvements the supply chain has to 

adopt moving forward (Topouzi et al., 2017; Bonfield, 2016; NEF and EEPB, 2014b).  

3.2. Offsite approaches in retrofit  

The following sections are reviewing f offsite measures examples in retrofit that have 

been applied in the UK housing stock.  

3.2.1. Energiesprong 

A Dutch government-supported refurbishment approach - Energiesprong (broadly 

translated as ‘Energy Leap’) - is an innovative Whole-House initiative that is seen as a 

possible solution to retrofit on a large scale and to minimising the ‘energy gap’ (Gupta 

and Gregg, 2016) involving wrapping an existing dwelling in a customized, offsite 

prefabricated system of wall and roof panels to achieve ambitious energy improvements 

(Transition Zero: www.energiesprong.eu/). Its central concept works by replacing 

household energy bills with an energy plan that is paid to the provider of the house 

improvements (www.energiesprong.eu/) that are themselves governed by principles of: 

- Quality (the refurbishment including long-term energy performance warranty - up 

to 30 years - on the house) 

- Affordability (no additional cost to the household, financed by the resulting energy 

cost savings) 

- Desirability (improving the look and feel of the house)  

- Non-intrusiveness of the entire refurbishment (on-site refurbishment is within one 

week, and residents live in the house during installation. 

The UK’s Energy Saving Trust is involved in exploring integration of the programme into 

the UK housing market along with partners from all spectrums of the industry, house 

http://www.energiesprong.eu/
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providers, construction sector and policy experts. In early June 2016 they secured €5.4m 

(£4.23m) of European funding through the Interreg NWE programme 

(www.nweurope.eu/ andwww.nef.org.uk/) to be used co-funding early market 

Energiesprong retrofits and allow the independent Energiesprong market development 

teams in the UK, France and the Netherlands.  

.  

Figure 3.2 Energiesprong Nottingham retrofit 
(Image credit: Energiesprong, http://transition-zero.eu/index.php/2018/09/27/ccc-2018-progress-report-
energiesprong/) 

This will aim to put in place the right market conditions for these net-zero energy 

refurbishments to take place at scale but once again it is unsure how the UK’s position in 

EU will influence, if at all the programme. The Nottingham City Homes are the first  to 

adopt the Energiesprong  approach with the first properties already retrofitted (Figure 

3.2) (UK Green Building Council, 2018) and won the Housing Award for Innovation in 

2018 (Energiesprong UK, 2018) 

3.2.2. Beattie Passive 

Beattie Passive is the first UK Certified Passive House building system24 . The system 

uses timber frame structure and introduces continuous insulation around its core with the 

airtightness layer is applied internally. The levels of thermal insulation and airtightness 

are up to Passive House standards or better with equal levels of quality in fire resistance 

and acoustics with regards to Building Regulation standards. Offsite construction is used 

                                                            
24 Beattie Passive web page: http://www.beattiepassive.com/index.php 
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where feasible and a “flying factory” where the offsite construction is made local to the 

project utilising local labour and reducing cost of transport. Even though the high volume 

of construction is currently in new-build, Beattie Passive has introduced their Whole-

House retrofit version called TCosy™25 with the same principles in their delivery of 

standards and in principle the timber structure becomes an external cell to the existing 

property (Figure 3.3). 

    

Figure 3.3 Beattie Passive Birmingham retrofit 
Left before and Right after retrofit  
(Image credit: Beattie Passive, https://beattiepassiveblog.wordpress.com/category/birmingham-tcosy-blog/) 

The retrofit approach is similar to Energiesprong in regards to the offsite element, the 

External Wall Insulation/structure measures and the fact that the delivery comes from the 

“particular co-ordinator/contractor”. The main difference is on the type of “delivery 

assurance/guarantee” they provide. For example, Energiesprong guarantees zero bills 

for 30 years with the combination of upgrading the existing building fabric and the 

addition of renewables with no specific “claim” on energy target per say. On the other 

hand, Beattie Passive TCosy guarantees the delivery of the equivalent Passive House 

standard for retrofit, EnerPHit by ensuring through detailed checks (i.e. thermal 

imaging/airtightness tests) the required criteria are met as shown in Table 3.1. For 

obvious transparency reasons any Passive House or EnerPHit certification is given by a 

third body, a Passive House Institute accredited Building Certifier 

(http://passivhaustrust.org.uk/certification.php). 

  

                                                            
25 Beattie Passive web page in retrofit: http://www.beattiepassiveretrofit.com/ 
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As discussed in section 3.1.4 Passive House has been proven though exiting monitoring 

data from previous projects to deliver the energy designed thus this is Beattie Passive’s 

“guarantee”. Similarly, providing access and transparency in the delivery data provides 

an assurance for clients, legislation and even research.  

3.2.3. Retrofit for the Future offsite examples 

There are three projects in TSB’s Retrofit for the Future that used different offsite 

mechanisms in their retrofit delivery: The Walker Garden Suburb in Newcastle upon 

Tyne, Cottesmore in Leicester and Bertram Street London. The Walker Garden Suburb26 

project is a 1940’s semi-detached with brick cavity construction. The strategy comprised 

of External Wall Insulation to Passive House standards and the replacement of the 

existing 2-storey bay-windows with a modular off-site equivalent. The main strategy for 

the bay-window replacement was the eliminate the existing thermal bridging as it was 

identified though thermal imaging as one of the worst areas within the building  (Crilly et 

al., 2012).  

    

Figure 3.4 Walker Garden Suburb retrofit 

Left before and Right after retrofit  
(Image credit: Low Energy Building Database, www.lowenergybuildings.org.uk/viewproject.php?id=157) 
 

The new modular bay-window in combination with External Wall Insulation alter 

significantly the existing façade (Figure 3.4) of the building but it is safe to assume that 

                                                            
26 Low Energy Building Database Walker Garden Suburb project page: 

www.lowenergybuildings.org.uk/viewproject.php?id=157 

http://www.lowenergybuildings.org.uk/projectbrowser.php
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there would be any planning restriction to that extend as the building does not seem to 

have any heritage or streetscape “significance”.  

In contrast, Cottesmore27 a much older property (pre-1919) located in a conservation 

area the retrofit approach was quite different. The wall insulation was implemented 

internally and the entire roof was replaced with a prefabricated modular “loft pod” (Figure 

3.5) that introduced 10 to 15% additional living area (Crilly et al., 2012, Baeli, 2013). 

    

Figure 3.5 Cottesmore retrofit 
Left street view, middle “Loft pod” being fitted and right new roof view showing no height 
deference with adjacent properties (Image credit: Crilly and Lemon, (2012). 

This is great example of how potentially offsite mechanisms could be implemented in 

older properties without having an external visual impact on the existing building or area. 

Additionally, the prefabricated “Loft pod” is fitted within a day (Baeli, 2013) and the 

additional living area compensates for any internal area lost from the Internal Wall 

Insulation applied. 

The third project, Bertram Street28 to some extent is similar, a pre-1919 terrace with the 

equally feasible planning restrictions to the alteration of its façade as it also locate in a 

conservation area (Baeli, 2013). 

                                                            
27 Low Energy Building Database Cottesmore project page: 

www.lowenergybuildings.org.uk/viewproject.php?id=152 

28 Low Energy Building Database Bertram Street project page: 

www.lowenergybuildings.org.uk/viewproject.php?id=24#images 
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Figure 3.6 Bertram Street retrofit 

Left street view, middle offsite laser cut of the insulation and right pre-cut insulation fitted. 

(Image credit: NEF, www.nef.org.uk/service/search/result/whiscers & Baeli, (2013)) 

 

The retrofit approach was to insulate the existing wall internally using the WHISCERSTM29 

(Whole-House In-Situ Carbon and Energy Reduction Solution) process which comprises 

in three basic steps. First a laser scanner is used to take accurate measures of the 

rooms, then the data are downloaded to a factory-based offsite cutting machine where 

the insulation boards are cut to the exact required measurements and finally the boards 

are fitted  onsite  (NEF, 2015) with the whole process reducing the waste by 10-15% in 

comparison to onsite cutting (Wrap, 2016). Equally important is that usually the Internal 

Wall Insulation application can be very disruptive as occupants require moving out of the 

property while work is being done but with this approach the residents can be on site 

when the survey and installation is taking place (NEF, 2015). 

3.2.4. The potential of ‘offsite’ manufacture 

Gibb, (1999)  defined the concept of offsite as “a process which incorporates 

prefabrication and pre-assembly. The process involves the design and manufacture of 

units or modules, usually remote from the work site, and their installation to form the 

permanent works at the work site. In its fullest sense, off-site fabrication requires a 

project strategy that will change the orientation of the project process from construction 

to manufacture and installation” (Page 2). Nonetheless, the concept of offsite 

                                                            
29 National Energy Foundation WHISCERSTM page: www.nef.org.uk/service/search/result/whiscers 
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manufacturing in construction is mainly known in the UK as a post-war solution that 

answered the need for mass construction of buildings. The criticism that the architecture 

of that period eventually received made ‘offsite’ a synonym to that era and unfortunately 

offsite-manufacture of building components is still viewed with general suspicion in UK 

(Pan et al., 2004). Several studies have nevertheless revealed the benefits of 

prefabrication and offsite manufacturing (Gaze et al., 2007; Monahan and Powell, 2011; 

NHBC, 2016;  Zimmermann, 2012;  Krug and Miles, 2013; Hairstans, 2014):  

- Minimising construction time  

- Efficient use of materials along with almost zero waste, having a significant 

reduction to their embodied energy 

- Cost reduction due to the above along with reduced snagging and defects 

- Light-weight structures when timber is used  

- High safety controls as construction happens largely in a controlled environment 

The actual process of offsite manufacturing can be classified under different principal 

methods (Pan et al., 2004a; Venables et al., 2004; Ross, Cartwright and Novakovic, 

2006; Hairstans, 2014): 

- Components: Non-structural elements assembled offsite; 

- Subassemblies: Key building elements manufactured offsite, or basic services 

provided in ‘cassette panels’;  

- Hybrid systems: A mixture of volumetric and panelised structures; 

- Open panel systems: Usually delivered to the site as a structural element with 

services, insulation, cladding while the internal finishes are installed onsite; 

- Closed panel systems: Are have more factory-based construction such as lining 

and insulation and may include cladding, internal finishes, services and plumbing,  

or even doors and windows; 

- Volumetric systems: Three-dimensional modules that can be used in isolation 

or in multiples to form the structure of the building and have the most factory base 

production 
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In UK, examples of offsite manufacturing in retrofit have been explored as discussed in 

the previous sections (3.2.1. to 3.2.3) with different approaches on the concept.  The 

Energiesprong and Beattie Passive are using closed and open panel systems as their 

approach is the “wrapping” of the existing building fabric. The retrofit for the Future 

projects, Walker Garden Suburb and Cottesmore used volumetric systems to replace 

specific elements of the building with better equivalents and Bertram Street with its 

WHISCERS process using to some extend the component method. 

The Energiesprong and Beattie Passive projects may offer as good examples of the 

industry’s potential, achieving maximum energy reduction while providing an accessible 

and desirable product, but it is not an idea without limitations; their applications so far in 

the Netherlands (Energiesprong) and the initial aims for UK applications are for its use in 

the social housing sector, where the stock is mainly post-1950’s structures and are, by its 

“structural form” (less exposed external envelop, flat facades, usually no planning 

application restrictions) reasonably straightforward to retrofit. The transition to the private 

market with more varied and complex structures and a different set of issues for potential 

funding mechanisms could be challenging. Beattie Passive to date of this thesis has at 

least one homeowner’s retrofit project that applied their TCosy system30 and 

Energiesprong’s intention is that after establishing the industry with the social sector 

stock, the transition to the private sector will become easier with potentially similar 

financing mechanisms - a financier providing homeowners with finance for the 

refurbishment package and instead of paying their previous level of energy bill the 

homeowners pay instalments on the refurbishment loan (Energiesprong, 2015). 

3.2.5. Supply chain issues in retrofit with offsite 

Offsite construction offers a controlled supply chain management equally when used in 

new build or retrofit. For this reason Energiesprong and Beattie Passive (3.2.1. to 3.2.3) 

are able to guarantee their respective energy standards and similarly WHISCERS (3.2.3) 

                                                            
30 Beattie Passive homeowner retrofit project: http://beattiepassiveprojects.com/woodstock/ 
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has their own team to even include the removal and re-instalment of services in their 

application. In the Retrofit for the Future projects  (Walker Garden Suburb in Newcastle 

upon Tyne and Cottesmore in Leicester 3.2.3) it was recognised that for the offsite 

construction in retrofit to have a macro scale effect in the market, close collaboration with 

the extended supply and fabrication chain is needed (Crilly and Lemon, 2012a). Those 

are concepts that both Energiesprong and Beattie Passive use with either local/national 

contractors (Energiesprong) or the utilisation of local labour (Beattie Passive). 

Additionally, the flexibility that the technology offers with BIM and laser scanning the 

offsite supply chains can make “economies of scope” (Venables et al., 2004)   possible 

for retrofit that requires more “bespoke” approaches in their application. 

Offsite construction in new build is experiencing a momentum to deliver both quality and 

quantity of homes in UK and even favoured in publicly funded project (HM Treasury, 

2017). This could be a drive to see more examples of supply driven offsite innovations 

applied on housing retrofit.  Nonetheless, perceptions on offsite construction could have 

a major effect on their adoption and the next section reviews examples of those from 

existing research and projects. 

3.2.6. Perceptions on retrofit and offsite construction 

Understanding the perceptions of the stakeholders of the construction industry is of vital 

importance to recognise beyond just technical drivers and barriers for retrofit or offsite 

and previous research has provided insight in understanding various influencing factors. 

As the combination of housing retrofit with offsite mechanisms is relatively recent in UK 

there is limited research into how the combination of these two is perceived and derive 

mainly from the projects reviewed in previous sections (3.2.1 to 3.2.3).  

  



70 
 

In terms of the occupants’ perceptions, apart from Cottesmore where the property was 

empty, the feedback was positive31 due to the minimisation of disruption (speed delivery 

and no relocation). In regards to the actors involved in delivering these projects some 

very interesting findings were made. In the cases such as Beattie Passive and 

WHISCERS the delivery team is trained and works under the same contractor. Still 

Beattie Passive for example in its projects establishes “flying factories” that utilise and 

train local labour. This could presumably have an effect on how local labour and 

residents perceive the notion of offsite and possibly by example replicate those 

mechanisms. Similarly Energiesprong’s contractor for their Nottingham project has 

“adopted an Energiesprong-style energy performance guarantee as part of their holistic 

retrofit offer”(Energiesprong, 2018).  This a reflection on what Killip, (2013b) compares to 

innovation in construction from (Foxon, 2003) as three categories of learning: “Learning 

by doing (experimentation); learning by using (familiarisation); learning by interacting 

(collaboration)” (page 882). The question though rises on what the wider industry’s 

perceptions are. 

In retrofit, the sector on one hand has experienced resistance from tenants that consider  

the works not only disruptive but also “suspicious” of both “getting something for nothing” 

(when works are offered by Social Landlords or utility companies) along with bad 

experiences with maintenance builders (Brown et al., 2014; Boardman, 2007; EST, 

2011). On the other hand resistance in market has come from both SME’s perceiving 

accreditation requirements (i.e. PAS 2030) onerous and bureaucratic or expecting 

demand (from client or regulation) to rise before taking action (Janda et al., 2014; Killip, 

                                                            
31 Occupant feedback from interviews or reference to : 

Beattie Passive: https://beattiepassiveblog.wordpress.com/category/birmingham-tcosy-blog/ 

Energiesprong: www.energiesprong.uk/newspage/new-pilot-helps-optimise-the-energiesprong-solution-

for-nottingham-rollout-to-155-homes 

Bertram Street: www.superhomes.org.uk/superhomes/london-camden-bertram-street/ 

 

https://beattiepassiveblog.wordpress.com/category/birmingham-tcosy-blog/
https://www.energiesprong.uk/newspage/new-pilot-helps-optimise-the-energiesprong-solution-for-nottingham-rollout-to-155-homes
https://www.energiesprong.uk/newspage/new-pilot-helps-optimise-the-energiesprong-solution-for-nottingham-rollout-to-155-homes
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2013a; Kenington et al., 2014) and private landlords perceiving no real monetary benefit 

from undertaking energy efficiency measures (Hope and Booth, 2014).  

In the case of offsite construction, previous research suggests that the perceptions of the 

housebuilding industry focus on issues related to: perceived increased up-front cost, lack 

of suppliers, lack of suitability and reduced flexibility for the specific project or site along 

with perceptions grounded in the historical failings (Goodier and Gibb, 2005;Pan et al., 

2004a; NHBC, 2016). Even though the technical aspects have been “disproven” though 

research and actual projects, they are considered majors increased use of offsite in the 

UK.  

Goodier and Gibb's, (2005) research on offsite barriers and opportunities suggested that: 

“The preferred method used by suppliers to overcome the resistance of their client to the 

use of offsite was the provision of examples and case studies of previous successful 

uses of offsite”(page 157). While research done by  Berry et al.,(2014) on the influence of 

‘Eco open home’ events showcasing environmentally sustainable home renovations and 

retrofits showed that it had a positive impact on the attendees and a great majority 

followed up with their own low energy renovations. These examples thus raise the 

question whether the inspiration of precedent projects could also have an influence of the 

uptake in the combination of the two measures (retrofit and offsite) in the wider sector. 

3.3. Perceptions of comfort within retrofit 

Comfort in relation to retrofit could be defined within different aspects.  In this section 

three factors are reviewed, a. Indoor comfort as a result of retrofit, b. comfort on reduced 

disruption during retrofit works and c. guarantee on delivery and performance. 

The predominant one is indoor comfort which can also have a direct impact in the 

residents’ health as described in section 2.2. Indoor comfort is influenced by temperature 

(°C), relative humidity (%) and CO2 levels (ppm).  According to CIBSE A (CIBSE, 2015) 

and the World Health Organisation (World Health Organization, 1987) the recommended 

indoor temperatures are 21°C in living rooms and 18°C in bedrooms with summer 
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comfort benchmarks 25°C  and 21°C in respectively. Even so, temperature comfort may 

also vary from person to person depending on age, gender and state of health along with 

the direction of heating/cooling in the space such as cold drafts, cold spots etc. (CIBSE, 

2015) . The levels of relative humidity also have an impact on thermal comfort and the 

recommended levels are between 40% to 70% where levels below or above those 

benchmarks can cause discomfort and health issues if sustain for long periods of time 

(BS 5250, 2011). Finally CO2 levels of 800 to 1000ppm is often used as a good indicator 

of an adequate ventilation rate in a building that can be achieved with 8 l/s per person 

(0.5–1 air changes per hour rate (ACH) (CIBSE, 2005). Those factors are guidelines in 

whole house retrofit design. The Passive House/EnerPHit for example requires internal 

design temperature of 20ºC, frequency of overheating of hours in a given year ≤10% at 

25°C and air humidity levels above 12 g/kg (~60% RH) for ≤ 20% (Passive House 

Institute, 2016). Additionally, MVHR system provides a steady stream of fresh air and 

heating designed for 20-30 m³/h per person and the filters remove airborne pollutants 

reducing respiratory issues. 

The disruption of construction works to residents has been a barrier for retrofit uptake 

identified in previous research (NEF & EEPB, 2014b; Pettifor, Wilson and 

Chryssochoidis, 2015; UKGBC, 2013; Loveday & Vadodaria, 2013; Britnell & Dixon, 

2011). This is translated in the anticipated ‘hassle factor’ of having home life disrupted 

while retrofit works are taking place. This is closely connected with the aspect of 

“comfort” in relation to guarantee on delivery and performance, as the renovation sector 

has been associated in one hand with “cowboy builders” that could problems with the 

installations along with the uncertainty between predicted and actual performance (NEF 

& EEPB, 2014b; De-Selincourt, 2015). The offsite measures reviewed in sections 3.2.1 

to 3.2.3 are approaching these issues aiming minimising the time of retrofit delivery and 

by extension disruption along with assuring performance.    



73 
 

3.4. UK housing retrofit overview to date 

As outlined in the literature review (Chapter 2) there is a clear economic, health and 

environmental necessity of a major uptake in housing retrofit in UK. Since the Climate 

Change Act in 2008, research has been done on the role housing retrofit can have in the 

reduction of carbon use and CO2 emissions accompanied with clear studies on economic 

and health benefits (Washan et al., 2014; NICE, 2016; DECC, 2015a; Association for the 

Conservation of Energy, 2015; Royston, 2013). The steps the  UK government has taken 

so far have evidently yet to result in a vibrant retrofit industry and the market has not 

delivered the desired outcome, while in the name of “housing supply” demand has down-

sized legislation 10 years in the making (Zero Carbon). The evidence suggests that even 

though the current regulatory demands, Building Regulations and minimum EPC bands, 

are still setting inadequate standards for real energy improvements there is a gradual 

change in the implementation quality installations in retrofit with the current PAS 

2030:2017 and the future PAS: 2035 (2019) signifying the acknowledgment in the quality 

of application and its correlation to energy reduction.   

In the face of this, the previous attempts to spark a macro-scale effect of a sustainable 

retrofit market (RftF/Green Deal) have “taught” lessons that are invaluable for any viable 

future. The ‘Whole-House’ retrofit approach such as the EnerPHit standard  has been 

confirmed to offer clear advantages over the “piecemeal incremental” approach, but still 

the greater up-front cost limits its uptake on a bigger scale (Jones, Lannon and 

Patterson, 2013; NEF and EEPB, 2014b; Simpson et al., 2015). However, in the 

exploration of innovative mechanisms to reduce the cost of works while achieving the 

EnerPHit standard, the Passive House Institute with project partners from 11 EU 

countries32  undertook a project called EuroPHit spanning from 2013 to 2016 

demonstrating the possibilities for step-by-step retrofit and strengthen the industry on 

achieving the eventual target on NZEBS (Nearly Zero Energy) by 2020. With the loss of 

                                                            
32 Co-funded by the Intelligent Energy Europe Programme of the European Union. (http://ec.europa.eu/).  

http://ec.europa.eu/
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the UK’s Zero Carbon policy and its EU referendum result the future of a concept such 

as EuroPHit is uncertain. Additionally, its long time-spanning installation of measures 

could probably not sustain an incentive desirable enough in a UK housing market where 

“property ladder” is the norm. The quality assurance that a certified Passive House 

provides could however offer the means of a formal evaluation of the creditworthiness of 

investments into energy efficiency in buildings. So in this context, the research focused 

on investigating the next step of innovative opportunities for housing retrofit and 

evaluates their applicability in the UK context 

3.5. Innovation opportunities and research gaps 

In theory, offsite manufacturing of prebuild elements could reduce the cost and improve 

the quality of installation as research has already shown for new-build construction 

(Gaze et al., 2007; Monahan and Powell, 2011; Krug and Miles, 2013; Hairstans, 2014) 

yet there is still research to be done on the wider application and feasibility of such an 

approach being central to UK retrofit works. The current retrofit companies that utilize 

offsite manufacture in the delivery of “Whole-House” retrofit in UK such as Energiesprong 

and Beattie Passive aim to “challenge” what the previous retrofit attempts have failed; 

they guarantee energy reduction assurance whether with the Zero Bills guarantee for 30 

years in the case of Energiesprong and certified EnerPHit standard in the case of Beattie 

Passive. However they are both currently focusing on post 1950’s properties that are 

usually easier to retrofit and less energy demanding to begin with. As recorded by the 

English Housing Survey (DECC and National Statistics, 2015) the least efficient age 

typologies in UK are the pre-1919 and except for selective pilot projects the research 

behind wider feasible approaches on the offsite combination of measures is yet to be 

done. If the offsite approach is the next step to “retrofit evolution” its barriers and 

opportunities need to be explored in the dwellings that are most in need of energy 

reduction. The current housing retrofit barriers as outlined in the literature review 

(Chapter 2 and 3) could be summarized as lack of regulatory coherence, unintended 
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consequences from incremental approaches, high upfront cost and works being 

disruptive to residents. Thus the thesis contribution stands on identifying whether the 

offsite mechanisms could be the instrumental in providing answers to those barriers 

specifically to the most challenging UK typologies. 

3.6. Research aims and fundamental questions  

The research aim to explore how this “evolution” in the retrofit industry of both high 

energy efficient standards (EnerPHit) and construction innovations (offsite) can be 

applied to the UK’s diverse housing, including some of the UK’s most common, but 

challenging, housing types. The objective is to identify the limitations and opportunities 

within regulatory, technical, economic and social aspects and review whether these 

applications can have a macroscale effect in the UK housing retrofit market leading to 

research outcomes that are relevant to industry practice, policy and academia. In 

particular it aims to answer the following research questions: 

RQ .1 Can the cost of UK Whole-House retrofit to EnerPHit standard be reduced 

via current offsite mechanisms in pre 1919 UK house typologies? 

RQ .2 Could the UK industry be confident in adopting this combination as 

common practice? 

RQ .3 What innovations are needed by the industry for ‘Whole-House’ retrofit 

practice to have a macro-scale effect in the UK?  

3.7. Concluding remarks  

While the wider construction industry in UK has been criticised for its lack of innovation 

and decision making unless driven by required legislation (Rickaby, 2015), there has 

been a more precise identification of the kinds of constraints here when compared with 

other industries and Piroozfar and Piller, (2013) noted the areas in which innovation is 

particularly required : the ‘size’ of the product (house improvements), customers’ 

dimensional interaction with the product, product flexibility, concept of variation, lifecycle, 
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cost, economies of scale, costumers’ needs and expectations, ownership (current vs 

future owners) and supply chain dynamics. So how can the housing retrofit industry 

adopt to overcome such constraints and could ‘offsite’ mechanisms along with stronger 

standards offer an alternative?   
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4 Research design and methodology  

4.1. Introduction 

The purpose of this chapter is to give an overview of the research design and 

methodology, supporting research questions and objectives that have been identified in 

the literature review.   

4.2. Methodology  

The research is conducted using a concurrent mixed-method methodology i.e. 

explanatory and parallel quantitative and qualitative. The explanatory and quantitative 

method is used to answer the first question - Can the cost of UK Whole-House retrofit to 

EnerPHit standard be reduced via current offsite mechanisms in pre 1919 UK house 

typologies? - via energy and cost modelling. As Fellows and Liu, (2015) have explained, 

“explanatory research aims to “answer a particular question or explain a specific 

issue/phenomenon. As in exploratory studies, hypotheses are used but here, as the 

situation is known better (or is defined more clearly), the theory etc. can be used to 

develop the hypothesis which the research will test…”: given that we already “know” that 

the initial upfront cost of EnerPHit is higher than ‘elemental’ retrofit (due to a higher up-

front amount of materials and labour), the basic hypothesis to test is whether the use of 

offsite construction techniques to provide EnerPHit-standard outcomes; will be less 

costly than attempting to achieve EnerPHit solely through onsite construction processes. 

The model method ranges beyond just confirming whether there is an economic benefit 

or not and dives into the exploration of technical variables. In this respect the method 

contribution falls into a. extending from selective pilot projects and reviews a range of 

typologies and b. providing valuable information on future retrofit approaches.  

Following the modelling the next stage focuses on the use of survey techniques of both 

quantitative and qualitative nature to provide an insight on the industry’s knowledge, 

perception and reaction in combining EnerPHit standard and offsite construction, aiming 

to answer the next question of the research - Could the UK industry be confident in 
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adopting this combination as common practice? In this respect the method expands 

beyond technical variables and focuses on the social aspect. The survey’s contribution 

stands on the novel uptake of the construction industry’s perspectives on the 

combination of deep housing retrofit and offsite.  While previous research has dived in to 

exploring one of these aspects, opinions on the combination of these two are still to be 

explored. 

Finally, this mix of explanatory, quantitative and qualitative methods are cross tabulated 

into a thorough analysis that address the final question of the research  

- What innovations are needed by the industry for ‘Whole-House’ retrofit practice to have 

a macro-scale effect in the UK? – and will look to focus on feasible policy, financial and 

technological innovations that could stimulate the dynamics of the retrofit industry.  The 

overall contribution of the mix-method approach and conceptual framework exists in 

linking both technical and non-technical aspects  

 

4.3. Research Structure  

This section explains the research structure discussing the different analytical methods 

and techniques applied for each phase. The first phase describes the methodology 

rational behind the modelling, while the second phase outlines the methodology behind 

the survey uptake and finally the rationale behind the mixed method approach is 

explained. 

4.3.1 Phase 1: Explanatory and Indicative Modelling  

An example of examining a scientific approach could consist of inductive discovery 

(induction) and deductive proof (deduction) (Gray, 2014).The inductive discovery uses a 

“bottom-up” approach (Trochim, 2016) i.e. collection of data and/or observations that 

lead to a theory while the deductive proof tests a theory by collecting data. In this phase 

of the research the method of deduction will be applied as shown on Figure 4.1 as the 
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aim is to establish a hypothesis by using theory, variety of data and collection of 

information. 

 

Figure 4.1 Deductive reasoning method used in the research approach  

(Adapted from, (Trochim, 2016)) 

Theory:  

The Theory consists on what is already known: a. need to retrofit the UK housing stock 

has been demonstrated by previous research and reviewed in the literature review 

(Chapters 2 and 3). b. the UK housing stock that is the most energy inefficient is the pre-

1919. c. Whole-House retrofit is the most beneficial approach in the long term. d. the 

EnerPHit standard is based on the principle of Whole-House retrofit and is established 

for quality deliverance. e. offsite construction has demonstrated, in new build, quality of 

construction and cost reduction.  

Hypothesis: 

The hypothesis that is tested on this phase is whether by applying EnerPHit as the 

preeminent retrofit energy standard in these UK housing typologies the cost of 

construction will be reduced if offsite mechanisms are applied.  

Observation: 

The hypothesis is tested by conducting a series of energy and cost modelling using the 

required software on selected case studies of pre 1919 typical house typologies.  
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Confirmation: 

The results of the modelling clarify the accuracy hypothesis and provide information to 

assess whether and in which cases a cost reduction is applicable. 

 

4.3.2 Phase 2: Quantitative and Qualitative (Questionnaire/survey)  

The aim for this research phase is the construction of a survey to understand the level of 

knowledge of the construction practices and standards discussed (EnerPHit, offsite etc.).  

The objective is not only to see the response on the applicability of the offsite 

manufacturing implementation in the housing retrofit but also receive feedback on 

existing perceptions on Passive House standard or similar and receive suggestions for 

future variations and research. A combination Likert scale was used as it is  the 

procedure still most frequently used in attitude assessment (Corbetta, 2003) while 

ensuring  that the questionnaire would not take up too much of the respondents’ time.  

The questionnaire investigates stated intent and desire of the industry stakeholders to 

adapt to emerging standards and innovations in construction. Additionally, by allowing 

the submission of free text answers where appropriate, the responders elaborated on 

their answer decisions in further detail. This allowed a qualitative thematic analysis on 

issues that a. might not have been anticipated and b. providing an input of in depth 

qualitative investigation on the subject matters. 

The questionnaire design although not formally applied  is influenced by the Theory of 

Reasoned Action (TRA) and Theory of planned behaviour (TPB), which both suggest 

that the level of ‘intentions’ shown by an individual is the best predictor of their behaviour 

(Jackson, 2005; Kaiser, et.al, 1999; Kalafatis et al., 1999).TRA was developed by 

Fishbein and Ajzen (Ajzen, 1991) in the late 1970s as a model which assumes that 

people behave according to their beliefs about the outcomes of their behaviour, and the 

values they attach to those outcomes. In the context of this research Figure 4.2 

demonstrates how the TPB has influenced the survey construction. 
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Figure 4.2 Theory of Planned Behaviour in relation to the research  

 (Adapted from (Ajzen, 1991) 

 

Attitudes are formed from an individual′s belief about the behaviour which in this 

research was explored by investigating the participants’ background and knowledge on 

current energy standards. The subjective norm is the perceived social pressure to 

engage or not to engage in behaviour but in this research it is examined in relation to the 

participants’ background. For example, an energy consultant with experience in dealing 

with low energy design might have more confidence in low energy techniques. Perceived 

behaviour falls within the perceived control of the individual which consists of the 

resources and opportunities available to them. In this research it is translated in 

recognising the incentives and barriers on choosing EnerPHit and offsite techniques.  

Ultimately the above method used in the survey aims to interpret the intension 

parameters that influence current perceptions and behaviours to understand what the 

potentials are for the connection of retrofit with offsite measures. 

4.3.3 Rationale mixed-method approach 

The emphasis of using mixed methods is to expend further understanding from one to 

another, thereby combining findings from a variety of data sources. Consequently, it is 

important to consider what data are required and alternative sources for data collection 



82 
 

during the design and planning stage (Fellows and Liu, 2015).The UK housing retrofit 

industry is a complex system involving multidisciplinary sectors with knowledge and 

techniques from several disciplines (i.e. Regulatory: legislation / standards, Technical: 

engineering/ physics, Financial: economics, Social: social science) and it would not 

have been an in-depth approach to examine with simplified methods. The study’s 

approach was structured in such a way that the methods and techniques were able to 

answer specific research questions. The central premise of mixed-method research is 

that combined qualitative and quantitative approaches can provide more comprehensive 

evidence and a better understanding of the research problem than either approach alone 

(Creswell and Clark, 2007). As Figure 4.3 demonstrates, the backbone of the research 

rationale stands on its interdisciplinary subject approach. 

 

Figure 4.3 Interdisciplinary approach of the thesis 
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There has been significant research with socio-technical approach in retrofit (Chiu et al., 

2014; Tweed, 2013; Topouzi, 2015; Pelenur, 2013a) but with the main focus on occupant 

energy consumption interaction. The novel contribution falls on the use of a socio-

technical approach that considers both social and cultural retrofit factors from the 

industry’s perspective alongside innovative technical and econometric measures that 

take into account retrofit specific parameters (offsite).  

The Regulatory approach focuses on the relevant standards applied in the model which 

by extend have an impact and are interconnected with the Technical and Financial 

approaches/results/feedback. For example when a same typology is retrofitted to 

EnerPHit standard it will have a different energy demand to a Building Regulations 

equivalent. The Technical determinants of (shape of dwelling, amount of materials, 

labour onsite or offsite) along with the energy demand will have an impact on Financial 

outcomes of either upfront cost or energy reduction translated to bills. The Social 

approach applied within the survey feedback becomes the human factor input in the 

equation and questions what the dependencies of those technical aspects future uptake 

are. The descriptions of relevant inputs assigned to each approach are detailed in the 

following sections. 

4.3.4 Outline research design 

The research design is outlined in the following sections with the equivalent actions, 

methodology and inputs reflecting the thesis’ interdisciplinary approach. The methods 

applied are discussed, providing an understanding of the aspects considered in the 

study’s research inquiry. Figure 4.4 sets the outline of the research methods and how 

they triangulate with each other. The thematic approaches/ disciplines (Regulatory, 

Technical, Financial & Social) were interdependent starting from the data collection to 

the results analysis as demonstrated in Figure 4.4. 
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Figure 4.4 Outline of the research design & methods 

4.4. Regulatory approach  

The regulatory approach of the research looks at the current standards (mandatory or 

not) in relation to energy saving criteria. It should be acknowledged though that in reality 

there are unpredictable regulatory implications, especially in relation to planning. Ever 

since the introduction of the Civic Amenities Act (1967) the notion of conservation has 

developed amongst the local authorities and consequently the construction industry. The 

energy retrofit and specifically “Whole-House” on the other hand being relatively recent in 
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UK does not present enough precedents to inform on how best to address the 

complexities on the combination of heritage conservation and energy efficiency through 

retrofit measures. Additionally, due to the typologies age unexpected obstacles on site 

are high likely to arise even with extensive survey prior to works. The research therefore 

recognises that even though actual parameters are considered on the energy and cost 

modelling a project delivery usually presents unforeseen complexities that cannot be 

quantified in the model. 

With this in mind, three types of energy modelling and four cost modelling scenarios 

were tested; Base Case where no retrofit is taken place, Building Regulations where 

minimum standards are applied and finally the EnerPHit standard. The EnerPHit 

scenario cost related retrofit measures are then compared with onsite to offsite 

construction.  

4.4.1 Base Case  

The Base Case refers to the un-retrofitted/existing typology and it is an obvious start 

point to the model. This enables the research to quantify the feasible energy reductions 

and associated cost (upfront capital and bill reduction) when the retrofit measures are 

applied. The analysis on the existing dwelling also offers a central review on each 

typology’s existing advantages or disadvantages (i.e. shape, percent of external walls, 

windows etc.). Subsequently, those elements become informative on the feasible offsite 

applicability in each typology and test its technical limitations. The pre/post-retrofit 

comparison is the apparent method that any retrofit research or case study uses to argue 

the energy demand reduction or set target such as witnessed in the TSB’s Retrofit for the 

Future. In this thesis however, even though the target is set to limiting energy heat 

demand in the case of EnerPHit, the existing case studies are also at the forefront of the 

research objective. Instead of evaluating a singular or selective number of case studies a 

wider analysis is made within each group of most commonly found pre-1919 typologies. 
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This way each typology’s most common determinants were identified and potential 

tailored offsite macro-scale possibilities could be examined.   

Since in UK energy improvements when retrofit is taking place are mostly voluntary, it is 

assumed that the case study dwellings have not been upgraded and are on their original 

construction; apart from reasonable upgrades regarding, the heating systems (boiler) 

and partial roof insulation. This offers a clear assessment on the energy and cost impact 

the equivalent retrofit standards have. 

4.4.2 Building Regulations  

When a building undergoes any type of retrofit the Building Regulations have to be 

followed for the design, construction and alterations to meet the required standards. In 

terms of energy conservation in existing buildings (retrofit) the Approved Document 

PartL1B, Conservation of Fuel and Power in Existing Dwellings sets the minimum 

standards. In theory, with the exception of extensions where new thermal elements and 

services have to follow limiting compliance, the mandatory energy upgrade is “triggered” 

when >25% of the building’s envelope undergoes renovation or >50% of an individual 

thermal element (AD Part L1B, Paragraph 5.8, HM Government, 2013). 

Even so, upgrades to buildings in principle may not be obligatory if not “technically, 

functionally and economically feasible” (AD Part L1B, Regulation 23, HM Government, 

2013). Thus, the energy and cost model in this case takes the minimum acceptable 

standards into account as set out in Table 4.1. The Base Case it is used as an 

“intermediate” comparison to what is the “worst case” of the un-retrofitted existing stock 

to the “best case” EnerPHit standard. The inclusion of Building Regulation scenario has 

been of particular importance and has a bi-fold objective. It allows a comparative 

assessment of current legislation in regards to housing retrofit and the demonstration of 

cost and payback differences between minimum and high energy efficient standards. 
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4.4.3 EnerPHit 

EnerPHit is the Passive House equivalent for existing buildings. The justification behind 

choosing EnerPHit as the main standard to explore in the research stems from the fact 

that (Passive House) is the fastest-growing energy performance standard (Hopfe and 

Mcleod, 2015) and is the most recognized alternative to the “scrapped” LZC (Greenwood 

et al., 2017) and thus in essence making it the most “reliable” standard to use for the 

Whole-House retrofit argument of this thesis. This argument can also be supported by 

the fact that a property retrofitted to EnerPHit standard can be eligible for a mortgage 

discount from the Ecology Building Society of 2 to 5 greater than one with an EPC 

improvement certificate  (Ecology Building Society, 2017).  

The EnerPHit standard similarly to the Building Regulations for existing buildings  is more 

“relaxed” in relation to new build (Passive House), recognising the feasible complexity 

and restrictions of older buildings. The EnerPHit standard can be achieved through 

compliance with the criteria of the component method or alternatively through 

compliance with the criteria of the energy demand method (Passive House Institute, 

2016). The component method (Table 4.2) focuses on the overall heat transfer 

coefficient of the element (U-value) as an average for the entire building allowing for 

certain elements/areas to have higher values as long as this is compensated for by 

means of better thermal protection in other areas. This way flexibility is provided in 

buildings where restrictions, technical or regulatory would make compliance with the 

energy demand method unattainable or “damaging” to the existing building.  

The heating energy demand compliance method is more “straightforward” and is met by 

achieving the limiting values of ≤ 20-25 kWh/m2.a (Table 4.3 ). In both cases the 

airtightness and Primary Energy Demand must be met as shown in Table 4.1. In this 

thesis the energy and cost modelling is using the energy demand method for two main 

reasons. First, the component method would apply generally to challenging “site specific” 

case studies that would not otherwise be able to achieve certification. Even though this 

could be a realistic option to many retrofit projects aiming for EnerPHit, the thesis 
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objective is to draw similarities within each group of the pre-1919 typologies as a method 

to unravel novel macro-scale opportunities in retrofit innovations (EnerPHit and Offsite). 

Secondly, adding to the first reason is the investigation into the relationship of the 

physical shape impact (form factor of the typologies) to the amount of measures (onsite 

or offsite) that are needed to achieve the EnerPHit standard. The level of importance into 

this uptake also stands on the fact that the physical shape of the existing buildings is 

predetermined, thus the form factor cannot be changed in favour of energy efficiency as 

done in new-build construction.   

Limiting criteria per standard/scenario modelled  

Criteria Base case Building Regulations   EnerPHit 

Specific Heat  
Demand    kWh/m2.a - 

 

- 

 ≤ 25 (Cool Climate) 

 ≤ 20 (Warm Climate) 

Primary Energy 
Demand  kWh/m2.a - 

 

- 
 ≤ 120  

 Air tightness 10 m3/(m2.hr)@50Pa 
10 m3/(m2.hr)@50Pa 

* 5 m3/(m2.hr)@50Pa 
(used in the modelling) 

 n50 ≤ 1.0 h-1 @ 50Pa 

U-values 

Wall 1.7 0.30 ≤ 0.15-0.30 

Floor  2 0.25 ≤ 0.15-0.30 

Pitched roof 

Insulation at rafter 
level 

0.35 0.18 ≤ 0.15-0.30 

Pitched roof 

Insulation at ceiling 
level 

0.35 0.16 ≤ 0.15-0.30 

Flat roof 0.35 0.18 ≤ 0.15-0.30 

Windows 4.8 1.6 ≤ 0.85-1.2 

Doors 5 1.8 ≤ 0.85-1.2 

*The limiting value in the Building regulations for airtightness is 10 m3/(m2.hr)@50Pa but is 
assumed that the retrofit applications will improve the existing condition to 5m3/(m2.hr)@50Pa. 

Table 4.1 Limiting Criteria of modelled standards used in the energy modelling for each 
scenario 
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*Note: The data on the table are for reference only and are not used in the energy modelling of 

this thesis. 

Table 4.2 EnerPHit criteria for the building component method (Passive House Institute, 
2016) 
 

 
Climate 
zone 
according 
to PHPP 

Heating Cooling 

Max. heating 

demand 

Max. cooling and 

dehumidification 

demand 

kWh/m2.a kWh/m2.a 

Arctic 35  

 

Equal to Passive 

House 

requirement 

Cold 30 

Cool temperate 25 

Warm temperate 20 

Warm 15 

Hot - 

Very hot - 

Table 4.3 EnerPHit criteria for the energy demand method Institute  
(Passive House Institute, 2016) 
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4.5. Technical approach 

In this section the technical determinates and inputs are explained.  These include: a. the 

rationale behind the typology range along with relevant descriptions of their morphology, 

b. justification of the dataset and software used in the modelling and finally, c. 

recognising and understanding the technical limitations of the modelling process.  

4.5.1 Typologies 

The UK housing stock is one of the oldest in Europe (Economidou et al., 2011). It 

includes almost 13 million dwellings built before 1960, including 4.7 million built before 

1919; this is the least energy-efficient housing type in comparison. These pre-1919 

homes have a staggering average mean energy use (heating and lighting) of 480 

kWh/m2.a (emitting 9 t CO2/year), while the more recent post-1990 dwellings’ mean 

energy use is little more than half of this Figure  at 270 kWh/m2.a (emitting 4.5 t 

CO2/year).33 Initially, the research was aiming to review all the categorized age 

typologies from DECC (Department of Energy and Climate Change) but it recognised the 

significance of focusing on the pre-1919 that are the majority of the hard to treat homes 

(in relation to the other age groups)(Thorpe, 2010). This understanding brought into 

focus the importance of researching this age group’s retrofit with offsite mechanisms 

possibilities that contrasts with current offsite applications centring mostly to post 1950’s 

(Energiesprong / Beattie Passive). 

4.5.2 Typical structure and building fabric 

There are common structural and building fabric elements found in all typologies; that 

have been used in the modelling and upgraded accordingly to the required standard 

tested. The roof is traditional timber with some insulation presumed applied much later 

(mineral wool). The walls are solid brick (lime mortar) and the floor on shallow stepped 

                                                            
33 English Housing Survey (www.gov.uk) , the Office of National Statistics (www.ons.gov.uk) and BRE 

(Building Research Establishment, www.bre.co.uk) 

http://www.gov.uk/
http://www.ons.gov.uk/
http://www.bre.co.uk/
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brick footings ventilated suspended timber with no insulation. Finally, the windows are 

timber sash, single glazed (NHBC, 2015; Episcope, 2014). 

4.5.3 Typology characteristics 

The typologies used in the energy and cost modelling with relevant morphologies are 

categorized below and are the most common found in UK34  namely: Detached, Semi-

Detached, End Terrace, Terrace-Bay (windows) and Terrace-Flat (elevations).    

Relevant case studies where used for the research and their characteristics described 

have a direct impact on the feasible energy and cost implications. 

 

4.5.4 Detached 

The Detached dwelling is considered a single unit that does not share a wall with another 

structure and usually has a good form factor35 but the extensive external walls result to 

high heat loss.   

    
Figure 4.5 Examples of Detached houses  
Left to right, a and b photos taken by the researcher, c, The Nook, Lover’s Lane, 
Brighton, RftF programme 
(Image credit: Low Energy Building Database, www.lowenergybuildings.org.uk) 

The amount and shape of bay windows usually differ and the dwelling consists of two to 

three floors. This typology usually has the most different variations where original bay 
                                                            
34 Ibid. 
35 Passive House Designers Guide, PHT 2011, p2 Form factor: “A useful variant of the A/V ratio known as 

the ‘Form Factor’ describes the relationship between the external surface area (A) and the internal Treated 

Floor Area (TFA). This allows useful comparisons of the efficiency of the building form relative to the useful 

floor area. Achieving a heat loss Form Factors of ≤ 3 is a useful bench mark guide when designing small 

Passive House buildings”. 

http://www.lowenergybuildings.org.uk/projectbrowser.php
http://www.lowenergybuildings.org.uk/
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windows or extensions have been added along with ornamental features. The variations 

on the morphology have an impact on the energy as more or less external wall is present 

and the ornamental features have an impact on whether internal or external insulation is 

used upon retrofitting. A good example of “balance” is shown on Figure 4.5 (c). The 

Nook, Lover’s Lane, Brighton a Retrofit For the Future project that used a combination of 

external wall insulation front elevation and internal wall insulation on the front due to 

planning restrictions and the plaster exterior made that feasible as the external wall 

insulation is not visible. This demonstrates an example of achieving the building fabric 

upgrade in line with the planning requirements. In many cases extremal wall insulation 

would not be applicable on this typology due to the visibility of all or most its elevations to 

a streetscape and  the covering or replication of brick/ ornamental features would not be 

acceptable by most planning authorities. 

4.5.5 Semi-Detached 

The Semi-Detached dwelling is a single unit that shares a single party wall with a 

“mirrored” neighbour property. Its form factor is usually slightly worse than a Detached 

but in comparison has less exposed external wall area. 

  
Figure 4.6 Examples of Semi-Detached elevations 
Left photo by the researcher, right Clapham Retrofit, Arboreal Architecture (Image credit: 
Low Energy Building Database, www.lowenergybuildings.org.uk) 

The original construction does not usually have a back extension and the front elevation 

is most commonly “flat-faced” or with a ground floor bay window (Figure 4.6). It consists 

normally of two to three floors. The Semi-Detached usually has fewer implications in 

http://www.lowenergybuildings.org.uk/projectbrowser.php
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comparison to the Detached due to its better “compact” design along with a smaller 

amount of external wall area. In regards to feasible planning restrictions on this case the 

external wall insulation might not be feasible not only due to the façade alteration but 

also due to the visual impact in relation to the neighbour property.   

4.5.6 End-Terrace  

The End-Terrace dwelling is the last or first unit in a row of houses and similarly to the 

Semi-Detached the End-terrace shares one party wall including a rear extension and is 

two floors high. The front elevation bay windows are usually 45/35 or 90 degree angle as 

in most Terraced houses. 

  
Figure 4.7 Examples of front (left) and back (right) End-Terrace elevations. 
Photos by the researcher 

The form factor is significantly worse than the other typologies and the combination of 

the extensive external envelope and wall connections (Figure 4.7) results in high thermal 

bridging36 connections and a higher heat loss. Consequently, the application of external 

wall insulation could result in technical implications on the wall/ roof /ridge connections. 

These are usually difficult to successfully insulate without having a thermal bridge 

impact. Similarly, the front elevation of the bay windows could also prove challenging and 

                                                            
36 BRE The importance of thermal bridging: www.bre.co.uk/certifiedthermalproducts/page.jsp?id=3073:   

”A thermal bridge, also called a cold bridge, is an area of a building construction which has a 
significantly higher heat transfer than the surrounding materials. This is typically where there is 
either a break in the insulation, less insulation or the insulation is penetrated by an element with a 
higher thermal conductivity.”  

http://www.bre.co.uk/certifiedthermalproducts/page.jsp?id=3073
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usually expensive to effectively insulate (extensive detailing to avoid thermal bridge 

implications). This typology has the disadvantage of both being the “least efficient”, thus 

in more need for retrofit but at the same time the most challenging relating to technical 

implications.  

4.5.7 Terrace – Bay window 

The Terraced dwelling sits in the middle of a row of houses and has the same 

characteristics (form factor, thermal bridges and shape) to the End-terrace and is one the 

most common typologies found in UK. The main difference to the End-terrace is that it 

shares two party walls which in comparison have a great impact on the dwelling’s heat 

loss. 

   

  
Figure 4.8  Examples of Terrace houses with bay windows 
Clock wise, a, b and c photos taken by the researcher, d, Brent, London, RftF 
programme project (Image credit: Low Energy Building Database, 
www.lowenergybuildings.org.uk) 

The application of external wall insulation largely depends on the existing streetscape. 

As seen from Figure 4.8 (c) when the rows of houses are homogeneous and have the 

same external finish (i.e. exposed brick) the application of external wall insulation would 

probably not be acceptable. On the other hand, there are examples where this would be 

accepted where the streetscape is more “diverse”. A very good example is was 

http://www.lowenergybuildings.org.uk/projectbrowser.php
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demonstrated in one of the Retrofit for the Future projects Figure 4.8 (d) where external 

wall insulation was installed along with timber cladding and did not have a negative 

visual impact on the consistency on the neighbour row of houses.  

4.5.8 Terrace – Flat face 

This type of Terraced dwelling has significant differences that influence the heat loss. 

The “flat faced” front and back elevations consist of less thermal bridges and has a very 

good form factor. It usually consists of two to three floors. 

  

   
Figure  4.9 Examples of Terrace Flat-face houses 
Clock wise, a,b,  c photos taken by the researcher, d, Cottesmore, Leicester, RftF 
programme project (Image credit: Low Energy Building Database, 
www.lowenergybuildings.org.uk) 

Similarly to the Terrace-Bay the application of any retrofit measures that would alter the 

front elevation of the property depends on the existing streetscape as seen from Figure  

4.9. A good example of using offsite measures to completely replace an existing element 

with better equivelent without compromising the external aesthetics is seen on one of the 

Retrofit for the Future projects in Highfields, Leicester Figure  4.9(d). The entire roof was 

replaced with no evident visual impact (height/materials) to the existing and the 

neighbouring properties.   

http://www.lowenergybuildings.org.uk/projectbrowser.php
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4.5.9 Case studies  

The case studies collected for the energy and cost modelling were retrieved from a 

combination of different council Planning Portals in UK and the researcher’s own existing 

involvement to some of the properties refurbishment.  

The public access to planning applications allowed collecting drawings of existing houses 

but with no personal data used. Drawing examples for each typology used can be viewed 

in Appendix A – Typology Examples. The scaled drawings were downloaded in pdf 

format and imported to AutoCAD were the accurate area measurements took place. In 

total 25 dwelling were analysed corresponding to 5 case studies per typology.  

The case studies are representative to the typologies reviewed providing an overview of 

the implications and possibilities a Whole-House retrofit has with or without current offsite 

mechanisms. In Table 4.4 the list of the average areas that were measured are 

presented per element of each typology.  

Average areas in m2 of the case studies measured and recorded. 

 Detached Semi-
Detached 

End-
Terrace 

Terrace-Bay Terrace-
Flat 

Treated 
Floor Area 

(pre-
retrofit) 

 
325 

 
180 

 
105 

 
110 

 
130 

 
External 

wall 

 
335 

 
206 

 
150 

 
100 

 
90 

 
Roof 

 
190 

 
115 

 
75 

 
80 

 
60 

 
Floor 

 
150 

 
103 

 
68 

 
70 

 
55 

 
Windows 

 
58 

 
30 

 
18 

 
21 

 
20 

Table 4.4 Average areas in m2 of the case studies measured and recorded. 
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4.5.10 Dataset and software used introduction 

The modelling structure that correlates both energy and cost is fairly recent in UK retrofit 

but crucial to making valid decisions on retrofit approaches.  In previous attempts such 

as the Green Deal programme, it was proven that significant gaps between the projected 

and actual energy performance occurred due to the disconnected inadequate strategies 

approach. This had an apparent impact on its failure to provide a sustainable retrofit 

market with unrealistic energy savings and high mortgage rates. 

On the other hand, the Passive House methodology due to the utilisation of a 

comprehensive building physics approach addresses the challenges of retrofitting 

existing buildings in the whole and offers transparency on energy demand results. 

Therefore in this research to model the energy demand and the required retrofit 

applications the Passive House Planning Package (PHPP) was used; this is the official 

software from the Passive House Institute. The cost related determinants were not part 

of the software but were calculated separately. A newly introduced plug-in called 

RealCosting offered the opportunity to encompass cost related factors; it focuses 

specifically to retrofit works and is compatible only to PHPP. 

In this research the related costs not only have a great impact in testing the hypothesis 

(onsite/offsite applications) but also bring to the forefront the necessity to have the same 

“transparency” not merely in terms of energy but also in terms of cost determinants.  

The next two sections describe the “logistics” and strategy behind the energy modelling 

(dataset and software) and by extention the cost determinants of both upfront and 

payback.  The first section describes the pilot dataset collection and modelling before the 

RealCosting was introduced and the second how the research incorporated the software 

and provided a novel contribution to the data approach and analysis.  
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4.5.11 Pilot dataset construction 

The schematic diagram in Figure  4.10, describes how the PHPP operates and what type 

of data need to be entered to model the building’s energy demand and achieve 

certification (Lewis, 2014). On this research the main features that were analysed are 

related directly to the heat demand namely: Climate data, U-values, Areas, Windows and 

Ventilation. 

 

Figure  4.10 Schematic of the required steps and data needed to be entered to model 
and evaluate a Passive House building.  
(Lewis, 2014),PHPP Illustrated, A Designer’s Companion to the Passive HouseStandard,  
RIBA, page 60. 

To construct the energy and cost modelling three main dataset factors were needed. 

Firstly, the case studies areas (dwellings) secondly the construction build-ups of pre and 

post retrofit applications (i.e. original wall construction-amount and type of insulation 

required) and thirdly the related cost of material and application/labour (onsite-offsite).  

In the pilot, the data relating to the building areas were taken from the case studies’ 

drawings and initially three separate PHPP documents where constructed to model each 

case study (Base, Building Regulations and EnerPHit). The results were then entered 
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into a separate document (Excel spread-sheet) for further cost analysis. This was broken 

down to material cost (per area or component) and labour with the EnerPHit cost 

scenario being analysed with both onsite and offsite elements where feasible. A 

representative schematic of the notion can be seen in (Figure  4.11). 

 

Figure  4.11 Schematic of pilot energy and cost modelling method 

The cost dataset input were initially constructed by: using information from previous and 

current residential projects, referring to price books (such as SPONS) and direct 

engagement with personal contacts from quantity surveyors.  

During the construction of this database the plug-in software was launched via the AECB 

(Association for Environment Conscious Building) called RealCosting. After a trial period 

to understand whether the software would be compatible with the research aim and 

methodology, it was adopted to assess the typologies’ energy and cost variations.  
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4.5.12 RealCosting37 

The software works like an extension of, and in relation to PHPP. Its core function is to 

analyse the cost related impact of retrofit. Its cost database includes related materials 

and installation but also savings from energy and co-benefits such as increase of the 

property value and value of comfort. Most importantly to this research it generates up to 

6 scenarios (i.e. Base case, Building Regulations, EnePHit etc.).  The schematic below 

(Figure  4.12) demonstrates how the research modelling incorporates the software and 

how its compact method when compared to the pilot (Figure  4.11) became a key tool for 

the research. 

 

Figure  4.12 Schematic of the RealCosting use in relation to the research 

The rationality is very similar to the pilot as the same data of the building structure are 

placed and the software has its own library of common material and applications. The 

energy cost analysis though of more than one scenario is done simultaneously. 

                                                            
37 The software can be reviewed and purchased from : http://optimalretrofit.co.uk/software/ and the 

AECB website: www.aecb.net 

http://optimalretrofit.co.uk/software/
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Using RealCosting has proven particularly beneficial for the following reasons: 

a. The software might be relatively new but it has been created by people with years 

of experience in retrofit recognising elements in the retrofit process relating either 

in energy assessment or cost related implications that validate the analysis. 

b. It is an Excel based spreadsheet similar to PHPP thus allowing the same 

transparency and flexibility for the user to “track” the calculations and add data 

such as alternative materials or costs. 

c.  Taking into account co-benefits associated with the retrofit have already been 

added in the software.  These include House Value increase (due to retrofit 

works), Residual Value of the materials and added comfort. The added comfort 

data derived from research done by the author of RealCosting, Tim Martel and 

conducted on the AECB (Martel, 2017). It is defined by the monetary value 

residents would place on the comfort internal temperatures rising due to retrofit.  

d.  The results of all scenarios are presented with the equivalent Net Present Value 

in clear graphs that allow the user to assess the results and amend if required 

accordingly.  

4.5.13 Strengths and challenges of the modelling approach 

There is an underlying coincidence that the software was launched during this project’s 

research into equivalent objectives, the energy/cost analysis of Whole-House retrofit. 

One can assume that the requirement or even aspiration of such investigations is 

another step in the evolution of the housing retrofit in UK.  

The strengths of the modelling approach in both the research pilot structure and 

RealCosting stands on the objective of unravelling the cost and energy determinants in 

retrofit. The same transparency and to some extend guaranty the Passive House’s 

PHPP offers is also needed in terms of costing. The RealCosting software, even though 

it will certainly continue to be updated it has offered a novel gateway in both having all 
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the data required in the one place while correlating to existing established software 

(PHPP).  

The pilot’s novel contribution and challenge was identifying and testing offsite inputs, 

something that RealCosting has not yet included in its cost database along with some 

particular costings related to services relocations. Nonetheless the software offers the 

flexibility for the user to add and adjust the costings. By using the initial pilot data these 

adjustments were amended accordingly presenting a novel application of the software. 

This reflected the potentials and possibly further explorations from different retrofit 

actors.  On one hand the user (designer, energy consultant etc.) can identify and amend 

inputs to explore possibilities on their projects that promote more efficient applications 

and costs. While, on the other hand offsite suppliers could recognise additional 

mechanisms to incorporate in their supply. 

4.6. Financial approach 

This section discusses the research method used to analyse the financial outcomes of 

the modelling and gives an overview of the determining factors of upfront construction 

costs and payback. 

4.6.1 Cost comparison  

The cost comparison was implemented within the scenarios as described in section 4.4  

(Base case, Building Regulations and EnerPHit). Particular focus was given to the 

evaluation of achieving the EnerPHit standard with two construction approaches, onsite 

and offsite.  



103 
 

 

Figure  4.13. Principal difference comparison between onsite and offsite construction  
 

The principal structure differences between onsite and offsite construction are 

summarised in Figure  4.13. The cost related differences usually stem from efficiencies 

within the supply chain found in the labour, transportation, materials and waste expenses 

(Hairstans, 2014; WRAP, 2009).There are different levels of offsite construction and 

definitions as discussed in section 3.2.4. Pan et al., (2004a) categorised them in 4 levels; 

Level 1 Component sub-assembly, small sub-assemblies that are usually assembled 

prior to installation. Level 2 Non-volumetric pre-assembly units made up from several 

individual components and that are sometimes still assembled on-site in ‘traditional’ 

construction. Level 3 Volumetric pre-assembly, pre-assembled units that enclose usable 

space or fitted onto other structures and finally, Level 4 Modular building, pre-

manufactured buildings. The thesis focuses on Levels 1 to 3 given that it examines 

existing dwellings without “new extension” added per say but it will look at the feasible 

offsite element replacement with a better equivalent, specifically the roof. This is 

something that has previously be done to a pre-1919 dwelling in one of the Retrofit for 

the Future projects Figure  4.9 (d) with respect to planning guidelines as the end result 

has no negative visual impact. 
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The aim of the offsite cost comparison is to provide data on the limitations and 

opportunities of different types of applications tested within the different types of element 

and eventually within the different typologies. The cost savings levels do not only focus 

of the material/element used i.e. the required capital cost of retrofit but also explores the 

payback time from energy savings (NPV) and related co-benefits (increased House 

Value, Residual Value  and value for comfort).  Ultimately, this is an assessment of the 

limitations but equally important the opportunities for integrating the use of offsite 

technology in the retrofit housing industry’s most challenging properties.  

4.6.2 Cost determinants used in model. 

The factors influencing the heat demand and therefore, a. the cost of a building retrofit 

and b. the savings from the energy reduction are; location of the dwelling (local climate), 

shape (form factor), the build-up materials of the external envelop (U-values), and 

airtightness (infiltration). As the thesis is examining existing buildings the form factor 

cannot be altered but its influence to the energy demand will assessed within each 

typology.  The next section details these parameters and their influence in the modelling 

and thesis. 

4.6.2.1  Location 

The local climate has a big impact on the performance of a building and a project for 

example in southern England is unlikely to meet the same criteria if located in Scotland 

where solar radiation and mean temperatures are much lower. EnerPHit as previously 

described takes into account this impact on the heating demand limiting values (Section 

4.4.3, Table 4.3). Additionally the House Value due to retrofit upgrades varies 

significantly within different UK regions. For example in London where the house 

demand is considerably high, retrofit upgrades reducing  the energy demand do not have 

a substantial impact on the increase of the House Value. To understand further this 

effect of location as “real estate” and location as “climatic impact “ 4 regions where taken 

into account (Table 4.5 and Figure  4.14) where climate data differ significantly along 
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with the property value increase post retrofit38 . Therefore all the scenarios and 

typologies were modelled for each of those regions. This analysis variation shows the 

cost impact of both energy reduction and asset according to location.    

Location Heat demand kWh/m2.a 
London 20 
South West 20 
West Pennines 25 
Borders 25 

Table 4.5 Limiting values of specific heat demand to achieve the EnerPHit standard in 
different UK locations. 

 

Figure  4.1439 Climate region selection taken from RealCosting software along with 

house price increase due to retrofit (right).  
The regions highlighed in yellow are those taken into account in the cost and energy 
modelling (Table 4.5). The map on the left shows the correspoding climatic zones.   

                                                            
38 House Price Report, 2013        

www.gov.uk/government/news/energy-saving-measures-boost-house-prices     
39 Image retrieved  from www.howtopassivhaus.org.uk/ and RealCosting software 

http://www.howtopassivhaus.org.uk/


106 
 

4.6.2.2  Materials 

The cost of materials and rates database in regards to the onsite construction is already 

entered in the RealCosting software. For the offsite database as the equivalent retrofit 

market is still fairly undeveloped acquiring cost data from existing industries was 

challenging pointing out yet another barrier in the industry relating to accessing data. The 

cost data that were used in regards to the offsite application available were collected 

from previous build projects, adjusted to current construction price indexes and 

companies.  

- Roof: the cost of offsite was a combination of cost collected from offsite 

manufacturers and from previously demonstrated offsite construction roof in a 

Retrofit for the Future project (Baeli, 2013).   

- Walls: The internal wall insulation analysis adapted costs from WHISCERS which 

includes in its cost the entire installation and survey and for the external wall 

insulation the Beattie Passive “TCosy” system was reviewed where the entire 

building is retrofitted using their offsite construction (where applicable) and deliver 

a certified EnerPHit building.  

- The elements that are upgraded with traditional onsite construction methods are 

the floors, windows/doors (excluding TCosy method), airtightness and heating 

and ventilation systems.  

4.6.2.3  Airtightness 

The airtightness of a building is not possible to be known in advanced or calculated like a 

U-Value but requires testing and measuring on site. Depending on the property the 

airtightness could have a wide range as demonstrated in the Retrofit for the Future 

projects varying from below <10 to >15 m3/m2h@50Pa   (The Technology Strategy 

Board, 2013) but this data includes properties that were build post-1919. The 

10m3/m2h@50Pa figure was taken into account as a rational average. This was 

determined by an average of pre-1919 retrofit properties airtightness data collected from 
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the Low Energy Database (www.lowenergybuildings.org.uk) of post and pre retrofitted 

dwellings. The pre-retrofit numbers ranged around 7 to >15 m3/m2h@50Pa and the post-

retrofit of around 3 m3/m2h@50Pa. but again with wide figure  range between properties, 

the pre-retrofit (Base Case) value of 10 m3/m2h@50Pa was considered the most realistic 

for the modelling process and is also what the RealCosting has presumed. Accordingly, 

the Building Regulations assumed an improvement to 5 m3/m2h@50Pa and EnerPHit at 

1h-1 @ 50Pa as shown in Table 4.1. The airtightness related costs are taking into 

account labour and materials in terms of sealing add and repairing the existing 

conditions. These have been calculated according to the areas and element of each 

typology. Even though the additional insulation will upgrade at some level the existing 

airtightness, to achieve better levels understandably a series of works are done 

predominantly onsite. 

4.7. Energy and cost modelling steps 

This section demonstrates the steps of the energy and cost modelling used in the 

research along with the required data input as presented on Table 4.6 along with 

example references in Appendix B – RealCosting modelling process. These are similar 

to the PHPP modelling with the exception of costs.  

Steps  Actions and data input  References 
in Appendix 

Step 1. 
Location 

& Climate 

data 

The location and altitude of the building is selected along 

with respective climate data and house value after retrofit 

(EPC). The building’s orientation is also placed and the 

level/number of exposed sides.  

 

Figure B.1 

Step 2. U-

values 

The U-values for each element of the building are 

constructed (Wall, Roof, and Floor). For each scenario 

different amounts of insulation are placed to calculate the 

required U-value. 

 

Figure B.2 

 Table continues on next page 
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 Table continues from previous page 

Step 3. 
Areas 

The building’s areas are measured (Wall, Roof, Floor, TFA 

& volume) and placed along with their corresponding U-

values. On this step selection on whether mechanical is 

used is made for each scenario (MVHR). 

 

Figure B.3 

Step 4. 
Windows 

Similarly to step 2 (U-values) the thermal properties of the 

windows are place according to each scenario. Then the 

window dimensions are measured from the drawings and 

are listed to their corresponding wall. 

 

Figure B.4 

Step 5. 
TBs 

The thermal bridges are placed and their dimensions for 

each element and scenario.   

Figure B.5 

Step 6. 
Costs 

This is the breakdown for each retrofit measure cost. For 

each building element the material quantity, units and 

labour rates per measure and per scenario are placed. 

The cost per unit allows having different inputs (i.e. 

onsite/offsite prices). At this stage also the services 

selection is made (ventilation/heating) along with the 

airtightness value per scenario. 

 

Figure B.6 & 

Figure B.7 

Step 7. 
Time 

The costs per scenario are summarized here and 

selections can be made on: 1. Replacement/maintenance 

time per measure, 2. Retrofit evaluation period, 3. Co-

benefits addition and 4. Whether the Residual or the 

House value will be calculated. Detailed NVP per year can 

also be viewed.  

 

Figure B.8 

Step 8. 
Results 

When steps 1 to 7 are completed, ReaCosting generates 

the results for each scenario: Heat loss per element, 

specific heat demand, annual heat demand, tCO2 for 

heating / year, capital cost, NPV for the selected 

evaluation period. 

 

Figure B.9 

Table 4.6 Energy and cost modelling steps using RealCosting and data collected 
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4.7.1 Model analysis methods 

Straightforward statistical techniques were used to analyse and present the results of the 

modelling. For each element influence the energy demand in relation to the cost applied 

and consequential savings represented with tables, diagrams, pie charts and percentage 

component bar charts. This allowed a clear comparative analysis within the different 

typologies, energy standards, location, construction methods, capital cost and finally 

payback differentials. With this method allowed a clear evaluation of the complexities and 

potentials of higher energy standards and offsite mechanisms applied in retrofit.  

4.8. Social approach 

In this section the survey methodology on exploring the non-technical variables and 

dependencies is outlined.  Specifically, the objective behind the survey design, the 

approach data collection and ultimately analysis methodology. 

4.8.1. Survey justification 

The questionnaire’s aim is twofold; firstly to understand the industry’s perception on 

energy standards in general; from current building regulations to Passive House along 

with different approaches to retrofit, Whole-House, and finally traditional construction vs 

offsite. Secondly, linking back to the first phase of the research the results from the 

energy and cost modelling are reviewed in relation to the questionnaire. 

This method provides empirical data on the  practicality of such practices 

(offsite/EnerPHit)  that are put in some extend to the “test”; demonstrating how ready or 

willing the UK industry is, in reality, to adapt to higher standards and innovative solutions 

in construction that could feasibly lead to large scale applications and stronger market 

dynamics.  

4.8.2. Survey design 

Due to the broad nature of the subject matter an online questionnaire was created using 

the Bristol Online Survey tool (BOS). This is web based tool allowing for high flexibility on 
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the variety of question types along with distribution and most importantly wide export 

possibilities into subsequent analysis software. The survey was structured in a manner of 

ensuring that essential data were collected to form the required analysis (Appendix C – 

Survey). These are detailed below:  

 

Responders’ background: 

The survey begins with some exploratory questions seeking the professions and the 

level of experience from the respondents. The objective was to reach a wide spectrum of 

industry stakeholders raging from academia to the supply chain. Nineteen related 

professions were listed along with the optional selection. The survey was distributed 

using LinkedIn, the professional networking site, along with other construction 

professionals and colleagues known to the researcher. 

The research focuses on what previous studies have named as “Middle-out” actors  

(Janda and Parag, 2013; Parag and Janda, 2014; Janda et al.,2014). Those refer to the 

construction industry’s professionals and businesses that have the ability to influence 

change and the promotion of low-energy buildings, while the “Top-down” refers to 

governmental bodies and “Bottom-up” to the tenants, owners and users. Parag and 

Janda, (2014)  demonstrate that the influence of the Middle-out actors as shown on 

Figure 4.15 has an impact to policy makers (upstream), to clients/users (downstream) 

and even across the building industry (sideways).  
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Figure 4.15 Middle-out change: directions of influence.  

(Parag and Janda, 2014), Page 106 

 

This influence has been recognized in: supply chains (Guy & Shove, 2000), builders 

(Killip, 2011a), surveyors (Hill & Lorenz, 2011), property agents (Schiellerup & Gwilliam, 

2009), architects (Fischer & Guy, 2009) and engineers (K. Janda, 1999).   

Janda et al.,(2014) argued that these actors are considered as intermediaries to deliver 

the innovation in construction that is mandated by regulation (top down) and when 

requested by the client/user (bottom up) but as stated (Janda et al., 2014,page 913): 

“these groups have their own habits, practices, ways of thinking about problems, and 

ways of working that affect their ability to provide (and interest in promoting) low carbon 

refurbishment.” With same principle this thesis aim is to investigate how those “Middle-

out” actors perceive innovations such as offsite applications on retrofit along with high 

standards (EnerPHit).  The main aim of this part of the study is the exploration of 

perceptions from stakeholders that have insights in the construction delivery and the 

influence as previous research suggests on both regulation and end users. Exploring 

those perspectives provides a validation in this research as they are the actors that can 

evaluate the offsite-retrofit applicability in terms of practicality as they have “hands-on” 

experience on: existing or live projects, clients/users, current legislation/regulation and 

consequently valid views on influencing barriers and incentives.  
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Knowledge and perceptions on energy standards:  

Using a combination of Likert scale the aim was initially to apprehend their level of 

understanding of current energy standards beginning from the mandatory Building 

Regulations and then proceeding to Passive House and EnerPHit. The objective was to 

draw links and explore the relationship between background-experience-knowledge-

perception. It continued with exploring the possible experience of being involved with a 

Passive House or EnerPHit project where the responders also expanded on their 

experience in what they found most challenging. This proved a great source of 

information data in relation to the model findings serving to assess whether the offsite 

mechanisms could address those issues and these responses are used to qualitatively 

inform the final analysis. The combination of experience and knowledge with higher 

energy standards provided a distinct categorisation within the responders in terms of 

“energy related background” or not which delivered another element on the analysis 

drawing similarities on Fishbein’s and Ajzen’s Theory of Planned Behaviour (TPB). 

Notably, looking on the assumption whether the responders that have experience or any 

involvement with sustainable orientated projects have predeterminations on the quality of 

delivery EnerPHit delivers or not according to their opinion and vice versa. 

 

Knowledge and perceptions on offsite mechanisms: 

A similar investigatory strategy was used with the focus on assessing knowledge and 

perceptions of offsite mechanisms followed by exploratory insights on a. feasible cost of 

Whole-House deep retrofit on the selected pre-1919 typologies and b. feasible cost 

reductions if the offsite mechanisms are used. This was utilised to understand the 

industry representatives’ awareness on costing variations of onsite to offsite construction 

methods. This section was cross-tabulated with the modelling analysis made on the first 

phase of the research. Finally the barriers and incentives of using offsite mechanisms 

were examined in the survey to draw robust assumptions on feasible future approaches 
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the industry needs to uptake. The data collection of this section is vital to the research in 

conjunction to the future of the retrofit industry and its offsite uptake. Similar research 

has been carried out with the focus not only on quantifying the benefits of offsite 

construction but on the industry’s insights (incentives and barriers) (Goodier and Gibb, 

2005; Pan et al., 2004a). The focus though has mainly been to the new build sector with 

the retrofit only touched upon; this is understandable due to the current high demand of 

new housing but also provides a great opportunity for a. investigating this research gap 

and b. correlating the findings of previous research on new build to the findings of this 

research and understand the differentials in viewpoints on offsite construction when 

applied on new build to retrofit. 

4.8.3. Survey analysis methods 

Similarly to the model analysis descriptive statistics were used for the survey response 

analysis. Using the SPSS Statistics software the quantitative data from the survey were 

categorized and evaluated along with relevant cross-tabulations. The software analysis 

results were then inserted to an Excel base spreadsheet where graphs are generated to 

present the results in a comprehensive format. 

Qualitative data from the open text survey questions were analysed using thematic 

analysis which is the method amongst the most common of qualitative data analysis 

(Bryman, 2012).  The open text option in specific questions within the survey intended to 

identify key themes and ideas in the areas of the empirical data, related to the industry’s 

challenges both perceived (attitudes) and actual (experience).  As Braun and Clarke, 

(2006)  stated: A theme captures something important about the data in relation to the 

research question, and represents some level of patterned response or meaning within 

the data set. Within this study, the term ‘theme’ is used to represent a category or theme 

related to the interrelated and sometimes rather intangible barriers or incentives found in 

the applicability of both high energy efficient standards and offsite mechanisms in UK 

retrofit.   
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4.9. Ethical considerations 

The research was judged to be exempted from the requirement to secure approval via 

University of Northampton’s institutional research ethics on the basis that it consisted of: 

a. technical modelling where no classified or security-sensitive materials or data where 

used and b. an online survey procedure which did not touch on sensitive topics or 

comprise of vulnerable individuals.  Even so, any research which involves human 

participants inevitably requires consideration of the ethical implications of that work. In 

this respect the participants took part in a voluntary way and strict confidentiality and 

anonymity was upheld. 

4.10. Summary  

This chapter presented and discussed the analysis, design and data collection of an 

interdisciplinary mixed-method approach exploring the adoption of offsite mechanisms to 

Whole-House retrofit in UK. The overarching aim was to answer the research questions, 

and address the knowledge gap on the application of those mechanisms in pre-1919 

dwellings along with the construction industry’s perception on their pragmatic macro-

scale implementation in the UK market.  To this effect, a socio-technical approach was 

adopted that considered both technical and social factors affecting the adoption of retrofit 

technologies. Depending on the type of data different techniques were integrated into the 

analysis design to explore quantitative and qualitative data simultaneously. Specifically, 

the technical aspects focused on unravelling the physical boundaries of the UK 

typologies through energy and related cost modelling while the social aspect was 

explored through the survey uptake. These factors are further presented in the following 

chapter through the description and discussion of the findings of the PhD research. 
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5 Results of PhD research- Regulatory, Technical and Financial 

related outcomes 

5.1. Introduction 

The UK’s housing retrofit “evolution” as described in detail in Chapter 2 along with its 

subsequent drives and barriers has been the reason for the analysis model, both in 

terms of the energy, costing scenarios and survey. The rationale as summarised below 

demonstrates the progression of thought along with its contribution to the existing 

research. 

The Retrofit for the Future programme, explored various innovations that could be 

adopted on the UK’s housing stock including the “Whole-House” retrofit approach but this 

intervention did not achieve the intended response, to be widely adopted and “kick-start” 

the retrofit market (Jones et al., 2013). The anticipated expectations were not met but 

subsequent studies and research showed that there are invaluable lessons to be learnt. 

Initially, the “unattainable” target setting of 80% carbon reduction, which was only 

achieved by 50% of the cases,  led to questioning whether CO2 reduction should be 

considered as the main driver (Gupta et al., 2015). This argument is also supported from 

research done on residents’ motives for retrofit with energy bill reduction and comfort as 

the main drivers. Finally, a range of post-occupancy studies have showed that residents 

have typically not been provided with sufficient feedback and advice on how to use the 

systems installed showing the importance of uncomplicated control systems along with 

knowledge sharing (Swan, Ruddock and Smith, 2013; Tweed, 2013). Thus, three main 

themes are emerging from these previous findings on what are to be considered as the 

main incentives on retrofit uptake and those are; comfort, bill reduction and system 

simplicity. The same issues are examined in this thesis against the review and results of 

the offsite mechanisms and at what level they can be a response to these existing 

needs. 
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The following programme, Green Deal, was intended to finance  housing retrofit 

measures through loans that would be repaid through the house utility bill savings 

designed around a 'Pay as You Save' model with an ‘elemental’ approach to domestic 

retrofit focusing on upgrading or replacing the worst performing element of the structure. 

Its failure apparently reflected on the fact that the cost payback from the retrofit upgrades 

did not reflect the equivalent loan and high rates attached  along with the elemental 

retrofit applications being inadequately installed and failing to foresee their consequential 

damage(DECC and NAO, 2016; Pettifor, Wilson and Chryssochoidis, 2015; Washan and 

Cole, 2012). Cost and payback of offsite along with the application of the EnerPHit 

standard is reviewed extensively in this thesis to enhance the understanding of the 

complexity of each typology. This provides the opportunity to understand how far deep 

retrofit with offsite mechanisms could be considered “cost efficient” but equally 

importantly what other benefits could be achieved stretching beyond monetary gain. 

The most recent step to answering the retrofit market challenge in UK is the adoption of 

offsite mechanisms aiming to deliver where the previous programmes were unsuccessful 

at; “hassle-free” and fast installation of Whole-House retrofit with the guarantee of 

successfully installed measures and assured energy reductions. Examples of these 

approaches are Energiesprong and Beattie Passive, two current organisations 

/companies that offer whole-retrofit as a “package” while utilising offsite construction on 

their project delivery. Energiesprong delivers “zero bills” retrofits through the combination 

of improving the building’s thermal envelope and additional renewable energy fixtures i.e. 

PVs40. The entire envelope is constructed offsite and assembled onsite and their “zero 

bills” guarantee extends up to 30 years. Their aim is to achieve a cost of £40,000 per 

dwelling but the initial UK trials have showed that they span around £70,00041. Beattie 
                                                            
40 Official website: www.energiesprong.uk 

41 Jocelyn Timperley. 2016. A green leap forward? Is UK's embattled energy efficiency sector ready to 

Energiesprong?. [ONLINE] Available at: https://www.businessgreen.com/bg/feature/2459003/a-green-

leap-forward-is-uks-embattled-energy-efficiency-sector-ready-to-energiesprong. [Accessed 1 December 

2017]. 
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Passive offers a package of retrofitting to EnerPHit standard with the guarantee of testing 

and subsequent certification. Their initial R&D projects utilising offsite construction have 

been costed on around £750/m2 (information obtain via email correspondence by the 

researcher with Beattie Passive) but their aim through opportunities for economies of 

scale from volume are that it will also be able to achieve £40,000 per retrofit on >100 

units and £36,000 on >1,00042. 

In both of the examples the aim and market prospective is to deliver retrofit taking into 

account barriers and lessons learned; quick delivery, performance, quality, moving away 

from just minimum standards and finally cost. This is achieved by obtaining control of 

their supply chain with the use of offsite construction and supply chain mechanism. The 

benefits of offsite construction have been widely researched in terms of new build (Gaze, 

Ross and Nolan, 2007; Monahan and Powell, 2011; Zimmermann, 2012; Krug and Miles, 

2013) and even government will favour offsite manufacturing on all publicly funded 

construction projects from 2019 (HM Treasury, 2017). Applying offsite measures to the 

existing housing is more complicated as for instance the most inefficient housing stock in 

UK falls within the pre-1919 built (DECC and National Statistics, 2015) and this age 

typology is usually the most difficult to retrofit. Both of the retrofit company examples 

mentioned have been applied (until the time this research was made) on post 1950’s 

properties which are reasonably easier to retrofit in practical terms (shape/construction 

type/planning implications) and more efficient in comparison to begin with, similarly 

observed in the Retrofit for the Future programme where the 80% reduction was not 

feasible in earlier build properties. 

Extensive research on the combination of offsite measures in post-1919 housing has not 

yet been done apart from selective pilot projects. If the offsite approach is the next step 

to retrofit evolution its barriers and opportunities need to be explore in the dwellings that 

are most in need of energy reduction with evidence based modelling along with valid 
                                                            
42 Ron Beattie presents at CoRE's Retrofit Live 2015 event video: 

https://youtu.be/OxT5OYQJ4TY?list=PL9FpedaxImwuY3oqeY9mgN-tJV6jlKCbc 
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perceptions and expectations from the building industry’s professionals. This research 

addressed this gap in existing literature by looking into this age stock’s most common 

typologies and explored the energy/cost reduction feasibilities and subsequent market 

barriers and opportunities. This is done through the construction of energy and cost 

modelling along with survey uptake from construction industry representatives. In this 

respect the original contribution of the present thesis lays in providing a novel insight of 

the multifactorial complex interactions involved in combining housing retrofit and offsite 

construction in these “challenging” typologies. While the model contributes in 

understanding the technical aspects, the survey becomes instrumental on bridging 

technical and social approaches in a holistic comprehension of the issues. This synergy 

looks beyond applying simply one theory or method to investigate the complex 

interrelated socio-technical issues.  

The methodology and subsequent results are divided in to four thematic analyses and 

utilises three methods. The methods are energy and cost analysis in the assigned case 

studies of pre-1919 build dwellings and survey conduct on industry shareholders. The 

results are presented within the thematic analysis as follows; Section 5.2 presents 

modelling outputs relating to the regulatory environment, giving an overview of the 

energy differentials of the typologies in comparison to the energy standards and location 

demonstrating their physical and climatic variances. Section 5.3 deals with technical 

factors, showing in detail each typology’s elemental advantages/disadvantages along 

with software use limitations and opportunities. Section 5.4 presents modelling findings 

relating to financial factors, demonstrating the capital cost and payback comparison 

between the typologies and onsite/offsite construction.  
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5.2. Regulatory related outcomes 

This section investigates the findings from the energy model through the lens of their 

significance to the regulatory spectrum.  The presentation of the data explores the 

differences in heating demand within each standard, typology and location. Even though 

the technical aspects that determine each scenario’s results are explored later in the 

thesis it is vital to overview their comparative impact. This allows an understanding of the 

differences between a non-retrofitted dwelling to the Building Regulations standard and 

Whole-House EnerPHit. By extension this provides a critical review on the present and 

possible future of regulations relating to housing retrofit. In case studies pre/post retrofit 

is a usual comparison to understand the retrofit impact but in this thesis the comparison 

is made in collective typologies providing a holistic review. Additionally, when the offsite 

element is later applied there is a clearer correlation on the benefits these elements 

feasibly provide according to each typology and climate.  

5.2.1 Energy standards review 

Three types of energy modelling and four cost modelling scenarios were tested. The 

energy modelling scenarios are, the Base Case where no retrofit is taken place, Building 

Regulations minimum standards and EnerPHit. The cost modelling applied all the above 

standards along with comparing the EnerPHit standard applied with onsite and offsite 

construction mechanisms.  

As explained in the methodology chapter (Section 4.4.3) the EnerPHit standard can be 

achieved through with the criteria of the component method or alternatively through 

compliance with the criteria of the energy demand method. The modelling in this thesis 

has taken into account the energy demand method which is met by achieving the limiting 

values 20-25 kWh/m2.a. The limiting value of 20kWh/m2.a corresponds to buildings 

location on a “warm temperature climate” and the 25 kWh/m2.a to “cool temperature 

climate”. The modelling tested the scenarios in four different regions in UK two located in 

the warmer and two in the cooler temperatures. 
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Table (for reference only; identical to Table 4.5). 
Limiting values of specific heat demand to achieve the EnerPHit standard in different UK 
locations. 
Location Heat demand kWh/m2.a 
London 20 
South West 20 
West Pennines 25 
Borders 25 

 

 

 

 

Figure  for reference only; identical to Figure  4.14. 

Climate region selection: taken from RealCosting software along with house price 

increase due to retrofit (right). The regions highlighed in yellow are those taken into 

accont in the cost and energy modelling (Table 4.5). The map on the left shows the 

correspoding climatic zones.   
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5.2.2 Regional differentials 

The main variance between the regions is due to the greater heat loss that occurs in 

lower temperature locations thus allowing the limiting value to match the local climate in 

which the building exists as seen in Table 4.5. 

In this thesis the analysis of these variances reviews how a similar building with similar 

standards performs in different locations. This has an “impact” on the results of the 

modelling analysis in regards to the amount of materials used to retrofit the property to a 

better performance but equally important the amount of energy saved as it effects the 

monetary value in terms of, energy bills, Net Present value and Return On Investment. 

This is demonstrated in Figure 5.1 and Figure 5.2  as the difference in the heat demand 

according to the standards varies. The Base Case scenario modelling showed the 

highest heat demand in comparison reaching up to 270kWh/m2.a, End-Terraced house 

in Borders. The lowest figure was in South West, Terrace Flat with 130kWh/m2.a and an 

average throughout the typologies of 200kWh/m2.a.  

To demonstrate the significance, these amounts of kWh would result in an average 

annual bill of £1,400- £2,00043 for a 100m2 end-terrace property, just for heating (gas), 

and it is only possible to achieve average thermal comfort of temperatures typical of 

17°C44. This temperature includes the average over the whole heating season including 

when the dwelling is not occupied and when unheated i.e. night time, while the EnerPHit 

modelling takes into account the limiting temperature of 20⁰C. 

                                                            
43 Calculated for “low” and “high” gas prices from BEIS link: www.gov.uk/government/collections/fossil-

fuel-price-assumptions 
44 DECC: DUKES 2013, Table 1.1.8 [1970-2011] 

Link:www.decc.gov.uk/en/content/cms/statistics/source/temperatures/temperatures.aspx 
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Figure 5.1 Specific heat demand modelled results per scenario, typology and location 
demonstrating the corresponding differences. 

The Building Regulations modelling demonstrated a range between 170 to 100kWh/m2.a 

which is an average of 40% reduction from the Base Case with only using the limiting U-

values in the analysis. The EnerPHit scenario demonstrated an average of around 90% 

reduction from the Base Case and around 40% from the Building Regulations in both 

cool and warm climates.  

 
Figure 5.2 Specific heat demand modelled results averages demonstrating wide 
variances when no retrofit or Building Standards is applied versus the “invariable” 
EnerPHit. 

The results show a reduction in heat demand up to 90% when achieving EnerPHit but 

the impact this has should be regarded beyond just energy saving. The heating cost for 
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example of the worst case Base scenario (End-Terrace in a Cold Climate) of £1,800 

would be reduced to an average £150 annually if EnerPHit standard is achieved; if the 

dwelling exists in a Warm Climate this changes to £1,500 annual heating cost for the 

Base case reduced to £140 for the EnerPHit equivalent. This means that there is a 

regional difference of around 30% in bill cost reduction and by extension to the regional 

impact on fuel poverty.  

5.2.3 Energy standards impact 

In the literature review and methodology chapter the justification for choosing the 

EnerPHit standard as the comparative to energy, and consequent cost effects (capital 

and savings) has been underlined in terms of: a. Its equivalent for new build (Passive 

House) is becoming more popular and is considered  the fastest-growing energy 

performance standard (Hopfe and Mcleod, 2015), b. The current Building Regulations in 

retrofit and any “Top-Down” attempts so far have proven insufficient (RftF/Green Deal) 

and finally, c. EnerPHit’s “tested” effectiveness from monitored UK dwellings  have 

showed that they perform as “designed” in terms of heating demand reduction, signifying 

a strong response to the energy gap problem. 

In this respect, the modelling results as shown in Figure 5.2 have demonstrated the 

effect that the EnerPHit’s “invariable” specific heat demand, in comparison to the other 

standards, throughout the typology spectrum that was analysed. The gradual reduction 

of wide variances can even be observed when the Building Regulations standard is 

applied and significantly reduced with EnerPHit. The significance of this observation 

underlines the practical contribution of EnerPHit within different typologies and locations.  

It should be noted though that in reality when dealing with existing buildings to reach the 

EnerPHit’s limiting values of specific heat demand (≤20-25kWh/m2/a) could be more 

challenging. Using the “EnerPHit—Quality-Approved Modernisation with Passive House 

Components” i.e. achieving certification through the use of upgrading components to 

limiting values  (Passive House Institute, 2016) is also an option. Even so, the same 
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ethos has to be addressed, with focus on the same design principles based on the use of 

Passive House elements and the designer has to address the same principles including, 

limiting existing thermal bridges, securing air tightness and implementing balanced 

ventilation (Passive House Institute, 2016; Torgal et al., 2013). Even though the 

component method could have showed a higher specific heat demand than the limiting 

values it has to be acknowledged that the EnerPHit standard extends beyond the sole 

upgrade of elemental approach components. In this respect even if the EnerPHit energy 

demand results in higher than the limiting values (20-25kWh/m2)  the same “invariable” 

specific heat demand would be similar though typology/location. 

The Passive House and EnerPHit is still a voluntary standard in the UK and the Zero 

Carbon policy that was to push the low energy agenda in new build and by extension 

future legislation in retrofit has been scrapped leaving only the current Building 

Regulations to stand. The national calculation method for the UK in assessing energy 

consumption in existing buildings is RdSAP (Reduced Data Standard Assessment 

Procedure) and now contains regional climate data (in essence the same climate regions 

as in PHPP) which are used for some calculations only (EPC) (DECC and BRE, 2011) 

and for an equivalent specific space heating demand comparable to PHPP, a separate 

calculation would need to be carried out on the presented space heating energy demand 

kWh data. Similarly, within the typologies is observed a significant heat demand 

differential which is partially contributed to their geometry (Form Factor) and is explored 

in detail in the Section 5.3. The calculated models used to predict the energy 

consumption of dwellings in SAP properly reflect the Form Factor and show lower energy 

consumption for homes with better Form Factors. Still, a study analysing the energy 

consumption in existing dwellings using SAP (Stone et al , 2014) showed that geometry 

(Form Factor) has much bigger influence on the calculated carbon emissions (accounting 

for 80% of the variance) than it does on the SAP energy rating (accounting for 30%), 

meaning that significant improvements in energy rating might not be accompanied by 

significant reductions in carbon emissions and energy cost. In contrast, in Passive House 
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achieving a form factor of ≤ 3 is important to achieve certification while with a greater 

form factor better U-values are needed in order to reach the energy efficiency targets. 

This means that using Passive House’s PHPP will result in more accurate energy 

predictions, thus ensuring more accurate retrofit applications analysis in the thesis. 

As detailed in the literature review chapters the regulation and legislation relating to 

energy use in buildings in the UK has changed, partly as a result of changes in 

government policy, and partly as a result of uncertainties with respect to European led 

directives given the vote of the UK to withdraw from the EU. Recent research suggests 

there has been a move towards the adoption of voluntary high level standards (Pitts, 

2017) due to the limited mandatory regulation potential along with the  apparent benefits 

of better design quality. This is also evident from this research (Section 6.2.2: Figure 

6.17 and Figure 6.18) as the high majority (80%) of the participants claimed that they 

believe that Passive House/EnerPHit guarantees quality of construction.   

This section was dedicated to reviewing the overall differences of energy standards and 

their consequent impact on energy demand. This analysis provides the initial critical 

observation on the effect these differentials have while next chapter looks in detail the 

technical elements influencing these results and remarks on the feasible approaches but 

also limitations of offsite mechanisms. 

 

5.3. Technical related outcomes 

This section describes the technical aspects of the energy and cost modelling that was 

taken into account and presents the consequential results of the study. The modelling 

method offers a novel contribution in the retrofit research as it reviews collectively the 

factors influencing the heat loss/heat demand on specific typologies moving beyond just 

single case study review. Additionally, with the use of novel software as a tool, 

RealCosting, the research was able to explore in detail these factors and apply the offsite 

element in the design.  
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5.3.1 Data structure overview 

The typologies/case studies reviewed in the thesis and their construction build-ups with 

resulting U-values  are the most common found in UK and similarly categorised in 

RdSAP (DECC and BRE, 2011) for existing dwelling assessment procedures.  

- Roof: traditional timber structure with some insulation between the joist and U-

value of 0.35W/m2K, 

-  Walls: solid brick, uninsulated with a U-value   of 1.7W/m2K. 

-  Floor: ventilated suspended timber ground floor, no insulation with a U-value of 

around 2 W/m2K adjusted to the PA (perimeter area ratio = exposed perimeter 

(m) / floor area (m²)  

-  Windows: timber single glazed.  

- The airtightness of 10 m3/(hr.m2) @50Pa  and gas boiler central heating.  

These values are used in the Base Case scenario and are upgraded accordingly to 

Building Regulations and EnerPHit scenarios.   

The software used to analyse the typologies is called RealCosting and it works like an 

extension of PHPP (Passive House Planning Package).  Apart from analysing the energy 

demand and heat loss for each scenario it also evaluates the cost required for each to be 

upgraded. The data that need to be entered, similarly to PHPP, relates to: 

- Climate data 

- TFA (treated floor area) 

- Area and orientation of external fabric (Walls, Floor, Roof and Windows) 

- U-value of each element of the fabric 

- Airtightness 

- Ventilation system  

- Heating system 

The RealCosting software is relatively new (as is EnerPHit) but was tested for 3 years by 

the AECB (Association for Environment Conscious Building) prior to its release in 2017. 
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The developer behind the software is Tim Martel (http://optimalretrofit.co.uk), 

Architectural Technologist, Passive House Designer and Retrofit Coordinator. Its 

copyrights are owned both to AECB that is a seller of PHPP as well and Tim Martel.   

The software proved valuable for the research as it enables cross reference of the PHPP 

to cost breakdown of the retrofit along with simultaneously being able to compare up to 6 

possible retrofit scenarios. Additionally, there is a library for common thermal bridging 

variations and most significantly to the retrofit benefits the software includes capital cost 

breakdown of costs by time and building element, Net Present Value, including the cost 

of the build, heating, maintenance, cost of running the MVHR or MEV. The feasible 

benefits according to the type of retrofit scenario also include co-benefits and increase in 

house price post retrofit that are looked at in detail in the next chapter. Its limitations 

include the fact that the cost library does not yet include offsite elements that are 

explored in this thesis and additional costs related to design fees and service relocation 

but being an Excel based spreadsheet the user is allowed to enter their own values and 

most importantly its transparency regarding how results are determined (similarly to 

PHPP).  

The Base Case scenario that is used as the main comparison reflects the realistic 

construction of a pre-1919 house which is the most energy ineffective in the UK but 

taking into account the basic contemporary upgrades such as some insulation in the roof 

and boiler. The better equivalent retrofit upgrades have been added accordingly to 

achieve the required standard. The results not only showed a significant difference 

between the typologies but also the within the region they would exist. Below the results 

are presented for each typology in regards to the space heat demand and look in detail 

at the related heat loss through each element. It should be noted that ‘losses’ from 

thermal bridges (TB’s on the graphs) can be negative, in other words they are gains. This 

is because some thermal bridges reduce the losses that would be expected from simple 

geometry, which effectively makes them ‘gains’. Even though the breakdown of heat loss 

is not a complete breakdown of the Space Heat Demand; because there are other parts 

http://optimalretrofit.co.uk/
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to the calculation, internal heat gains, from windows etc. they reflect which element of the 

fabric performs the worst and needs the most “attention” in upgrading.   

5.3.2 Modelling elements and “limitations”  

As the study is aiming to compare onsite/offsite measures, the costs of current offsite 

market measures were fundamental. Unfortunately cost breakdowns from a range of 

suppliers were challenging to obtain, largely because the offsite market focusing on 

housing retrofit is relatively small, raising the question of the information accessibility 

barrier. This is also reflected in the survey results as the majority of responders stated 

that ”Insufficient access to information on feasible cost or energy benefits” would have 

the strongest impact on choosing offsite construction (Section 6.2.7: Figure 6.53 and 

Figure 6.55). The offsite products and elements data that were obtained that could offer 

both thermal efficiency (thermal conductivities) and cost information that could be 

compared to onsite construction are in regards to Internal Wall Insulation from 

WHISCERS, roof from an average cost per m2 from offsite manufacturers including 

adjusted data from the Envirohomes’ “loft pod” for a Retrofit For the Future project (Baeli, 

2013) and overall cost per m2 for Beattie Passive’s TCosy. Thus, the onsite/offsite U-

values remain the same and the cost breakdown is analysed in the next section (5.4).   

5.3.3 Typologies heat loss and heat demand 

This section looks at the heat demand of each individual typology in the separate 

climates tested along with the individual building’s fabric element heat loss. This 

demonstrates the advantages and disadvantages of each typology that has a 

consequential impact on the amount of material required for the dwelling to be retrofitted 

and the subsequent cost.  

5.3.4 Detached typology energy heat demand 

The Detached house has an extensive heat loss through its fabric since it consists 

entirely of external walls. The form factor though, in terms of its geometry i.e. the relation 

of the useful area to external fabric makes the space heat demand reasonable in relation 
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to its size. Thus, in terms of achieving a “demanding” standard such as EnerPHit could 

be relatively easier in regards to the amount of interventions required. As seen from 

Figure 5.3  the difference of space heat demand within the regions is significant with a 

difference of approximate 12-35% between warm and cool climates.  

 
Figure 5.3 Presenting the average space heat demand (kWh/a) in the Detached 

typology per scenario modelled and location.  

Figure 5.3 demonstrates a clear comparison on the amount of the annual heating energy 

demand that is influenced by the applied standard and location. The Detached typology 

being the largest dwelling in comparison has the highest numerical differences. This 

provides a significant grasp on understanding the annual amount of energy that is saved 

when a property is retrofitted and what it signifies in terms of comfort, cost and CO2 

impact.  

A difference of approximate 40,000kWh annual heat demand is observed within London, 

South West and West Pennines regions from an un-retrofitted detached dwelling 

upgraded to EnerPHit standard and up to 60,000kWh in Borders. In terms of savings 

cost this is translated for the Borders region to £3,000 (gas) or £9,000 (electric) annual 

bills and £2,000 (gas) or £6,000 (electric) for the rest of the regions respectively. The 

tonnes of CO2/ year45 equivalent would be 8 to12 if gas is used for heating and 23 to 35 

in the case of electricity.  These figures are halved when the Build Regulations scenario 

is applied. The modelling also looked at the average heat loss through each element as 

                                                            
45 LEBD ( Low energy Building Database) Fuel usage  coefficients: 

www.retrofitforthefuture.org/leb/technical-information/fuel-usage-coefficients/ 
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presented on (Figure 5.4 and Figure 5.5). This provides an opportunity to understand in 

depth each typology’s “advantages” and “disadvantages” in terms of their morphology 

and significantly to the research understanding the complications related on applying 

feasible offsite mechanisms on the required elements of the proposed retrofit. 

 

Warm Climate 
London South West 

      
Figure 5.4. Detached typology modelled average heat loss per building element in UK 
warm climate   
Cool Climate 
West Pennines Borders 

     
Figure 5.5. Detached typology modelled average heat loss per building element in UK 
cool climate   

The most heat loss is observed through the external wall followed by windows and 

ventilation losses which is the result of the high air volume (high ceilings) that is usually 

met within this typology. The main remarks to be made from Figure 5.4 and Figure 5.5 

are that a. the regional per element heat loss differences are logically proportional but 
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numerically different demonstrating that a “common” retrofit price will possibly be not 

feasible in every UK location as more or less material / labour will be required to achieve 

the required standard and b. the challenges of incorporating offsite measures to the two 

other most inefficient elements, windows and airtightness, might be challenging (in the 

case of windows) and not feasible in the case of airtightness as the upgraded works 

need to be made on site.  Finally, c. similarly to the previous remark the heat loss 

through the wall when both Building Regulation and EnerPHit are applied is dramatically 

reduced, with the EnerPHit 12-20% lower but the highest difference that contributes to 

the EnerPHit’s standard are the thermally improved windows and the high reduction in 

ventilation losses.  

The overall observations demonstrate that when compared to the Base Case, achieving 

the EnerPHit standard the heat loss through the walls is reduced to 80-85% (Warm/cool 

regions) from the Base Case and even 75% when upgraded to Building Regulations 

standard. The second element with the highest heat loss is through the windows with an 

average 77 % reduction (EnerPHit) and 10% on Building Regulations. The highest 

reduction in percentage not overall numerical value is observed in the ventilation losses 

with an average of 80-85% on EnerPHit and 30% on Building Regulations. 

5.3.5 Semi-Detached typology energy heat demand 

The Semi-detached house has a smaller amount of external fabric in relation to the 

Detached as it shares a party wall with a neighbour. In principle, this should demonstrate 

a less specific heat demand (kWh/m2.a) than the Detached but the average form factor 

from the case studies showed it to be less advantageous while, the difference between 

regions is proportionally similar ranging between 15-35% (Figure 5.6).  
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Figure 5.6 Presenting the average space heat demand (kWh/a) in the Semi-Detached 

typology per scenario modelled and location. 

In the Semi-Detached typology as observed in Figure 5.6 the difference is approximate 

25,000kWh annual heat demand within London, South West and West Pennines regions 

from the Base case scenario to the EnerPHit standard and up to 36,000kWh in Borders. 

The annual bill savings in the Borders region would be £1,800(gas) or £5,400 (electric) 

and £1,250 (gas) or £3,750 (electric) for the rest of the regions respectively. The tonnes 

of CO2/ year equivalent would be 5 to 7 if gas is used for heating and 15 to 21 in the 

case of electricity.  In comparison to the Detached typology when the Build Regulations 

scenario is applied the reductions are approximately 55% lower as the Semi-detached is 

less efficient thus interventions have a greater impact. When the annual heat demand 

(kWh/year) is compared to the specific heat demand (kWh/m2.a) the “efficiency” of a 

property can be reviewed and the comparison of the relatively similar typologies 

Detached and Semi-detached provides a good example. The Detached due to its size 

has a significantly higher average annual heat demand of approximately 30% (Figure 5.3 

and Figure 5.6) but the Semi-detached has higher specific heat demand (Figure 5.1) of 

about 5%. This shows that there is a clear difference on high upfront capital cost for 

retrofit works (i.e. bigger property) but greater payback (i.e. inefficient property), meaning 

that the morphology of the dwelling is relevant to its efficiency thus the cost of retrofit and 

its payback through bill reduction is as well.  

Even though this relationship will be explored in detail later in the thesis, it is this initial 

comparison of moderately similar typologies that presents these differences. This has an 
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obvious implication when it is translated into industry and policy “logistics”. As explained 

in section 5.2.3  the current assessment procedure for energy efficiency in existing 

buildings (EPC) is RdSAP which underestimates the form factor in its calculation in 

comparison to PHPP (Stone et al , 2014). This underestimation has an impact on the 

amount of both the materials used to achieve the required energy upgrade (capital cost) 

and consequent energy savings (payback). 

Warm Climate 
London South West 

    
Figure 5.7 Semi-Detached typology modelled average heat loss per building element 
in UK warm climate   
Cool Climate 
West Pennines Borders 

    
Figure 5.8 Semi- Detached typology modelled average heat loss per building element 
in UK cool climate   
   
When each element is reviewed separately (Figure 5.7 and Figure 5.8), it is observed 

that the most heat loss is through the external wall. Secondarily, through the windows 

closely to ventilation losses where the ceilings are lower and resulting to less air volume.  
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By achieving a recommended EnerPHit the heat loss in the extremal wall is reduced by 

80-85% and from the Base Case and even 75% when is upgraded to Building 

Regulations standards showing that “easier” offsite mechanisms related to wall insulation 

could have a significant benefit. The window losses are reduced by 75% and the 

ventilation losses are reduced 85% on EnerPHit and 30% on Building Regulations.  

5.3.6 End-Terrace typology energy heat demand 

This typology is similar to the Semi-detached as it also shares one of its walls with a 

neighbour. The great difference within this typology is the great amount of external wall 

area in relation to the treated floor area resulting to the worst form factor within all the 

typologies. Due to its geometry, this type is usually the most challenging to retrofit and to 

achieve a higher standard such as EnerPHit and has the worst specific heat demand in 

relation to all other properties (Figure 5.1). 

 
Figure 5.9 Presenting the average space heat demand (kWh/a) in the End Terrace 
typology per scenario modelled and location. 

As seen from Figure 5.9 the difference in space heat demand within the regions is 

significant, approximately 14-36% between warm and cool climate. Additionally, the 

reduction in annual heat demand between the Base Case scenario and EnerPHit was 

approximately 16,000kWh within London, South West and West Pennines regions and 

up to 25,000kWh in the Borders. The annual cost saving from heating bill for the Borders 

region would range from £1,250 (gas) or £3,750 (electric) and £800 (gas) or £2,400 

(electric) for the rest of the regions respectively. The tonnes of CO2/ year equivalent 

would be 3.2 to 5 if gas is used for heating and 5 to 15 in the case of electricity. Similarly 

to the Semi-detached when the Build Regulations scenario is applied there is a 
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significant reduction of approximately 60% on the energy and related heating bills along 

with equivalent CO2 emissions. This typology is the least efficient in comparison to the 

others reviewed as it has a combination of both a high external envelope area and worst 

form factor.  

Warm Climate 
London South West 

    
Figure 5.10 End Terrace typology modelled average heat loss per building element in 
UK warm climate   
Cool Climate 
West Pennines Borders 

    
Figure 5.11 End Terrace typology modelled average heat loss per building element in 
UK cool climate   
   

In Figure 5.10 and Figure 5.11 it is demonstrated that most heat loss is through the 

external walls which accounts for almost 50% of the entire elements heat loss in the 

Base Case scenario. By upgrading the wall with insulation considerably to achieve the 

EnePHit standard, the heat loss is reduced by 90% from the Base Case scenario and 

even up to 70% when is upgraded to Building Regulations standard. The external wall is 
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the main element with the highest heat loss in most of the typologies due to the amount 

of external area but in the End-Terrace there is predominance if compared with the other 

building elements and the other typologies. This is also reflected when the element heat 

loss graphs (Figure 5.10 and Figure 5.11) are reviewed in relation to the annual space 

heat demand (Figure 5.9); the Building regulations in the element breakdown presents a 

reduction of 5% within the windows and around 25% in the ventilation losses but by 

reducing the wall heat loss to 70% it offers an overall reduction of 60% in the total annual 

demand. This fact could present a good opportunity to apply offsite mechanisms to wall 

insulation that could be beneficial in theory. The EnerPHit scenario reduces the 

ventilation losses by 80% and the window losses by 70% that are predominantly onsite 

construction works.    

5.3.7 Terrace Bay typology energy heat demand 

The Terrace Bay typology has the same geometry as the End Terrace but shares two 

walls with neighbours resulting in less heat loss by comparison. This is reflected in the 

overall heat demand comparison between these two typologies (Figure 5.9 and Figure 

5.12) with an approximate 10% difference. The regional heat demand differences are 

ranging from 15 to 35%. 

 
Figure 5.12 Presenting the average space heat demand (kWh/a) in the Terrace Bay 
typology per scenario modelled and location. 

As observed in Figure 5.12  the annual space heat demand is reduced when retrofitted 

from the Base Case to EnerPHit, approximately 13,000 kWh in London and South West, 

15,000kWh in West Pennines and 21,000 kWh in Borders. For the Borders region the 



137 
 

cost reduction from heating bills would be £1,000(gas) or £3,150 (electric) annual bills 

and £650-750(gas) or £1,950-2,250 (electric) for the rest of the regions respectively. The 

tonnes of CO2/ year equivalent would be 3 to 4.2 if gas is used for heating and 8 to 12 in 

the case of electricity.  These figures are reduced by 50% when the Build Regulations 

scenario is applied similarly to the Detached typology.  

Warm Climate 
London South West 

   
Figure 5.13 Terrace Bay typology modelled average heat loss per building element in 
UK warm climate   
Cool Climate 
West Pennines Borders 

    
Figure 5.14 Terrace Bay typology modelled average heat loss per building element in 
UK cool climate   

Figure 5.13 and Figure 5.14 show that heat loss through the external walls is almost 

equal to the window heat losses, this is due to the higher ratio of window in the external 

envelope (Bay windows) in comparison to the other typologies. The wall and ventilation 

heat loss differences between the Base case and EnerPHit are within the region of 80-

85% and in comparison to the Building Regulations 75% and 35% respectively. This 
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points to the issue of the feasible benefit limitations of offsite mechanisms in a typology 

as such since the windows (unless part of an external prefabricated wall element) and 

airtightness work are mainly through onsite construction.  

5.3.8 Terrace Flat typology energy heat demand 

The Terrace Flat is the most efficient typology overall balancing both a very good form 

factor and a compact external wall area. This makes the ability to reach a higher 

standard easier and the absence of bay windows and extensions makes the applications 

of insulation easier as well.   The overall heat demand is greater than the Terrace Bay 

(Figure 5.12 and Figure 5.15) but this is due to the greater size of the dwelling and its 

efficiency in the specific heat demand analysis comparison is reflected in Figure 5.1 and 

Figure 5.2.  

 
Figure 5.15 Presenting the average space heat demand (kWh/a) in the Terrace Flat 
typology per scenario modelled and location. 

As shown on Figure 5.15 the annual heat demand reduction in the Terrace-Flat typology 

from Base Case to EnerPHit accounts for approximately 14,000kWh in London South 

West regions, 16,000kWh in West Pennines and 22,000kWh in Borders. The equivalent 

annual bill reduction for these would amount to £1,100 (gas) or £3,300 (electric) annual 

bills for Borders and £700-800 (gas) or £2,100-2,400 (electric) for the rest of the regions 

respectively. The corresponding reductions in tonnes of CO2/year would be around 3 to 

4.5 if gas is used for heating and 9 to 13 in the case of electricity. These figures are 

reduced by 40% when the Build Regulations scenario is applied, lower than any of the 

other typologies.  
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Warm Climate 
London South West 

   
Figure 5.16 Terrace Flat typology modelled average heat loss per building element in 
UK warm climate   
 
Cool Climate 
West Pennines Borders 

    
Figure 5.17 Terrace Flat typology modelled average heat loss per building element in 
UK cool climate   

Figure 5.16 and Figure 5.17 show that the Terrace Flat has the lowest heat loss, in 

comparison to the other typologies, through the walls due to the lower amount of its 

external surface area, this is almost equal to the ventilation and window losses. By 

achieving a recommended EnerPHit airtightness of 1 /hr (ach) the ventilation heat loss is 

reduced to 80% from the Base Case and to 25% when is upgraded to Building 

Regulations standard while the windows upgraded to the EnerPHit present a 75% 

reduction. The external wall heat loss is reduced by 75% and 85% respectively. This 

typology is usually the easiest to retrofit in terms of complexity due to its flat wall 

elevations but similarly to the Terrace-bay the implications of offsite applicability stand on 
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the fact that the greatest impact would be made with onsite techniques that include 

airtightness and window upgrade. 

5.3.9 Technical significances and findings 

The differential between typologies specific heat demand (kWh/m2.a) as seen in Figure 

5.1 in the previous section is an average 40-60% within the Base case and Building 

Regulation scenarios and up to 90% when EnerPHit is applied. The worst to best heat 

demand typology ranged from End-terrace, Semi-detached, Detached, Terrace-Bay and 

Terrace-Flat. The overall annual heat demand (kWh/year) climate differences throughout 

the typologies ranged between 12-35% demonstrating a significant impact in regards to 

the subsequent cost of retrofit and payback that are analysed in detail in the next 

chapter. Similarly in all typologies apart for the Flat Terrace it is observed that between 

the two cool climate regions (West Pennines and Borders) there is a slight 

“inconsistency” when it comes to the average space heat demand on the modelled 

EnerPHit. When the typology is located in West Pennines even with a warmer climatic 

condition than Borders it has slightly higher space heat demand.  This is due to the pre-

determined insulation thicknesses that exist on the offsite methodology tested and can 

be equally compared with the onsite equivalent. The insulation thickness required to 

achieve the limiting specific heat demand <25kWh/m2.a (cool climate) in West Pennines 

was thinner in comparison than in Borders due to the milder climate. As seen from the 

Figure 5.4 to Figure 5.17 understandably the external walls are the predominant element 

with the highest heat loss followed by the window and ventilation losses. There is 

variance between the amounts of heat loss within these three elements depending on 

typology and climate that influences the amount of work and materials required to 

achieve the required standard. Those practical consequences have an impact on 

regulation related to housing retrofit and subsequent offsite mechanisms. 

 In terms of upgrading the external wall regardless whether onsite or offsite mechanisms 

are applied is to a certain extend straightforward; while achieving the required 
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airtightness (EnerPHit) is much more challenging as it requires more attention to detail 

(Gillott et al., 2016; Loveday and Vadodaria, 2013) and usually extensive site work 

supervision ( Price and Marincioni, 2014). This brings into consideration that the offsite 

measures, in terms of technical application advantages, might only go so far when it 

comes to retrofit but conceivably suppliers that offer “offsite retrofit packages” (Beattie 

Passive/Energiesprong) guarantee its suitable application. Similar observations are 

made related to the impact of window upgrade from single to triple glaze in regards to 

heat loss reduction. Triple glazed windows are usually double the cost of double glazing 

(The Technology Strategy Board, 2014) but  their cost could possibly significantly be 

reduced in economies of scale such as “offsite retrofit packages”. Additionally, the 

windows according to current offsite mechanisms can only be combined to external wall 

insulation techniques fitted in combination with the additional external envelope. 

In summary, the technical related findings showed that there is a clear variation in both 

energy reduction possibilities and subsequent feasible offsite applications within the 

typologies and locations modelled. Thus, there is a consequent related impact in cost 

from both energy reduction (bills) and construction method approaches (onsite/offsite). 

These are presented and discussed in the next section. 

5.4. Financial related outcomes 

This section of the thesis reviews the cost analysis results from the modelling that 

examined the implications of onsite to offsite retrofit techniques on the selected 

typologies. As argued in section 5.1 there is currently a lack of research and available 

information on the implications, benefits and cost of housing retrofit with offsite 

mechanisms within the UK’s pre-1919 stock. Collective data in scale regarding deep 

retrofit costing can almost only be found from the costing analysis made from the Retrofit 

for the Future programme (The Technology Strategy Board, 2014) with only a handful of 

cases using offsite in pre-1919 dwellings.  With the current market that is involved in 

deep/Whole-House retrofit and offsite focusing on later build typologies the research 
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offers a novel contribution by analysing in detail the factors influencing the cost of offsite 

mechanisms in typologies that are of greater “need” to be benefited from.  

5.4.1 Model analysis components 

The cost analysis used information already in the RealCosting analysis and 

added/subtracted the costs related to offsite mechanisms. The main offsite mechanisms 

that were applied are: 

- Offsite Internal Wall Insulation with the method of WHISCERS which includes in 

its cost the entire installation and survey.  

- WHISCERS Internal Wall Insulation and Offsite Modular Roof. 

- Then the result are compared to External Wall Insulation the Beattie Passive 

TCosy system that includes all cost related to reach the required EnerPHit 

standard and  the cost data are in £/m2. 

The elements that are upgraded with traditional onsite construction methods are the 

floors, windows/doors (excluding TCosy method), airtightness, heating and ventilation 

systems. The depth of the insulation used and cost are based on realistic values. For 

example the Internal Wall Insulation that was used is the same that WHISCERS uses in 

their applications (K18 Kingspan) and the available thicknesses are from 32.5 to 

92.5mm. Thus, the cost increases or decreases not only in relation to the amount 

needed for the external wall but in some cases where the limit 92.5mm was not sufficient 

consequently the floor or roof insulation increased accordingly. It should also be noted 

that the size of the Treated Floor Area is automatically adjusted by the RealCosting 

software accordingly to the internal insulation applied. Finally, for the Base Case a 

reasonable amount for upgrades was assigned in regards to general decoration/painting 

and boiler upgrade within the assigned timeline.  
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5.4.2 Modelling cost elements and adjustments  

The RealCosting software has an extensive cost library that includes cost of materials 

per application and labour. The library though can be amended or updated accordingly to 

suit the user’s model. In this thesis the cost inputs placed in the model in the onsite and 

offsite scenarios are detailed in Table 5.1. 

Element Onsite IWI Offsite IWI EWI (Beattie 
Passive) 

Wall 

K18 Kingspan insulation. 
Cost data from various 
suppliers taken the 
average for each 
thickness such as: 
www.insulation-
online.com 

 
WHISCERS Cost data 
adjusted from: 
 
- Research Council UK: 

http://gtr.rcuk.ac.uk/pr
ojects?ref=620051 

- Invest in Innovative 
Refurbishment – Garth 
House Bicester 
Project: DECC, 2016, 
Link: 
www.brookes.ac.uk/ab
out-
brookes/news/bicester
-s-garth-house-
makeover-cuts-
energy-bills-for-a-
historic-building/ 

 
 
All-inclusive 
≈750/m2 

 
(Information 
obtain via email 
correspondence 
by the 
researcher with 
Beattie Passive 
on R&D 
projects) 

Roof RealCosting Library 

RealCosting Library  and 
offsite manufacturers 
including (Baeli, 2013) for 
offsite. 

Floor Ibid. RealCosting Library 
Windows Ibid. Ibid. 

Airtightness and 
Miscellaneous 

Ibid. and data included for 
service relocation 

Ibid. and service 
relocation included in 
WHISCERS 

Services RealCosting Library 

Design, Survey 
and Certification 
(EnerPHit) 

Average cost taken from: 
- Design fees AJ: 

http://aj100.architectsjo
urnal.co.uk/FeesCalcula
tor.aspx 

- Certification fees: 
AECB, Link: 
www.aecb.net/publicatio
ns/aecb-faq-
passivhaus-certification/ 
 

- Survey included in 
WHISCERS 

 
 

Table 5.1 Data collection references that were used in the cost modelling of the 
scenarios   

http://gtr.rcuk.ac.uk/projects?ref=620051
http://gtr.rcuk.ac.uk/projects?ref=620051
http://www.brookes.ac.uk/about-brookes/news/bicester-s-garth-house-makeover-cuts-energy-bills-for-a-historic-building/
http://www.brookes.ac.uk/about-brookes/news/bicester-s-garth-house-makeover-cuts-energy-bills-for-a-historic-building/
http://www.brookes.ac.uk/about-brookes/news/bicester-s-garth-house-makeover-cuts-energy-bills-for-a-historic-building/
http://www.brookes.ac.uk/about-brookes/news/bicester-s-garth-house-makeover-cuts-energy-bills-for-a-historic-building/
http://www.brookes.ac.uk/about-brookes/news/bicester-s-garth-house-makeover-cuts-energy-bills-for-a-historic-building/
http://www.brookes.ac.uk/about-brookes/news/bicester-s-garth-house-makeover-cuts-energy-bills-for-a-historic-building/
http://www.brookes.ac.uk/about-brookes/news/bicester-s-garth-house-makeover-cuts-energy-bills-for-a-historic-building/
http://aj100.architectsjournal.co.uk/FeesCalculator.aspx
http://aj100.architectsjournal.co.uk/FeesCalculator.aspx
http://aj100.architectsjournal.co.uk/FeesCalculator.aspx
http://www.aecb.net/publications/aecb-faq-passivhaus-certification/
http://www.aecb.net/publications/aecb-faq-passivhaus-certification/
http://www.aecb.net/publications/aecb-faq-passivhaus-certification/
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5.4.3 Cost model results 

The cost of upgrading from the Base Case to Building Regulations and EnerPHit 

depends on the typology’s efficiency and location as the results showed on the energy 

analysis. The cost analysis of each offsite method compared to onsite was reviewed in 

two ways: a. the average total capital cost in pounds and b. the average capital cost per 

m2 of floor area. When the average total capital cost is reviewed (Figure 5.18, Figure 

5.20 and Figure 5.22) it initially appears that the cost is relative to the size of the building 

apart from the comparison between Terrace Bay and End Terrace as those are the 

typologies with the worst and best energy efficiencies . 

This relates back to the heat demand variations observed in the energy modelling. 

As Figure 5.19 and Figure 5.21 demonstrate the required capital per m2 for retrofit in 

each scenario and location and it is an almost exact reflection to the Figure 5.1 of the 

specific space heat demand. The cost therefore has a direct connection to the heat loss 

which by extension has a direct connection to the typology and location of the dwelling 

(climate).    

 
Figure 5.18 Capital cost comparison of onsite construction with offsite element of 
Internal Wall Insulation.  
 
As seen from Figure 5.18 the EnerPHit scenario has the highest upfront capital cost in 

relation to the Building Regulations due to the amount of additional materials used and 

labour needed to achieve the standard. The additional cost ranges between 30-50% 

which translates to additional £20,000 to £50,000 to achieve EnerPHit. The cost is 

reflects the size of the property in the first four (Detached, Semi-detached, End-Terrace 

325m2 

 

180m2 

 

105m2 

 

110m2 

 

130m2 
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and Terrace-Bay) while the Terrace Flat has the lowest in comparison due to the “lower” 

amount of  retrofit interventions needed to achieve the required standard. The regional 

differences range from £1,000 to £6,000. In terms of applying the Internal wall insulation 

using offsite techniques the cost reduction ranges approximately from £5,000 to £20,000 

presenting a clear cost benefit and evidently greater in properties with a larger area of 

external wall. 

 
Figure 5.19 Capital cost (per m2) comparison of onsite construction with offsite element 
of Internal Wall Insulation 

 
When the same cost is reviewed in terms of the property size, i.e. £/floor area as shown 

in Figure 5.19 then the relation of cost of works to  the efficiency of the dwelling is clear. 

The least efficient typology, the End-Terrace requires more capital in relation to its size to 

achieve the required energy efficiency standard while the largest typology, the Detached 

and Terrace-Flat require the lowest.  

Figure 5.20 Capital cost comparison of onsite construction with offsite element of 
Internal Wall Insulation and Roof 

Replacing the roof with an offsite structure improved equivalent along with the 

combination of offsite Internal Wall Insulation to achieve the EnerPHit standard increases 
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the cost against onsite.  The additional cost ranges from £10,000 to £30,000 and is 

proportional to the property’s roof size. Even though the offsite Internal Wall Insulation 

reduces the cost in comparison to onsite, the higher offsite roof cost is not 

“compensated” by that reduction. 

 
Figure 5.21 Capital cost (per m2) comparison of onsite construction with offsite element 
of Internal Wall Insulation and Roof 
 
Similarly to Figure 5.19, Figure 5.21 shows that the cost of the retrofit works when 

reviewed in terms of £/floor area then the efficiency of the typology is reflected.  

 
Figure 5.22 Capital cost comparison of onsite construction with offsite element of 
External Wall Insulation (offsite “retrofit package”) 
 
As observed from Figure 5.22, the “retrofit package” has the highest upfront capital cost 

in comparison to the other offsite measures. As the cost of this “service” comes from 

£/m2 of the internal area property the additional cost is relative to floor size and the cost 

difference of offsite versus onsite construction to achieve the EnerPHit standard ranges 

from £15,000 to £115,000. Nonetheless, the different energy efficiency of the typologies 

still has an impact. As seen from the least efficient typology; End Terrace has the lowest 
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cost difference between the two offsite applications as it already relatively the most 

challenging/costly to retrofit.  

The initial cost analysis has shown the following clarifications: a. adding the offsite 

construction element becomes beneficial in terms of upfront capital cost overall when the 

Internal Wall Insulation (WHISCERS) is applied and the cost reduction is greater relative 

to the amount of external wall of the typology. b. When the roof element is added along 

with the offsite Internal Wall Insulation the capital cost is greater than the onsite 

construction equivalent. In this case the area of the typology’s roof dictates the rise in the 

cost. Finally, c. the offsite retrofit “package” has the highest upfront capital cost and is 

relative to the typology’s internal floor area. 

 

5.4.4 Onsite and Offsite differences 

In this section the onsite and offsite differences are reviewed in more detail. Figure 5.23 

presents a clear comparison of all the scenarios of onsite and offsite construction capital 

cost per m2 to achieve the EnerPHit standard. The most “cost effective” is when 

WHISCERS offsite Internal Wall insulation is applied with an average reduction ranging 

from 10-19% (Figure 5.24). When offsite roof was added to the calculation then the 

construction cost actually increased on an average between 18-23% (Figure 5.25) and 

finally if compared to the “retrofit package” the cost is increased on average between17 

to 49% (Figure 5.26). 
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Figure 5.23 Average cost per m2 comparison between typologies and onsite to offsite 
applications to achieve EnerPHit.  
(The offsite “Package” is assumed £750/m2 in all typologies) 

The first thing that is observed is the variance in cost within the typologies, 

demonstrating the technical and subsequent cost complexity of Whole-House retrofitting. 

So in terms of market uptake and upscaling by using offsite mechanisms even in 

technical terms (cost/energy) and not taking into account further external factors 

(regulation/consumer) could be more than challenging especially for these typologies.  

5.4.4.1. Offsite Internal wall Insulation (WHISCERS) 

The cost of using this system is reduced by including in its price manual labour that is the 

most costly element in the application. Apart from the pre-cut offsite of the insulation and 

fitting that fundamentally saves labour time and material, it also includes survey and 

service relocation when it is compared with traditional breakdown of works, WHISCERS 

can offer up to 19% cost reduction.  
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Figure 5.24 Cost difference reduction percentage using Offsite Internal wall Insulation 
versus onsite 

As calculated in the energy analysis the primary heat loss in most cases is through the 

external wall and consequently the reduction of heat loss through this element has an 

impact in the heat demand. The cost reduction through offsite mechanisms therefore has 

a higher capital cost reduction in typologies with more m2 of external wall (Figure 5.24). 

In terms of regional differences it observed that that South West and West Pennines 

regions have greater cost reductions than counterparts and this is due to the lower 

thickness of insulation needed to reach the required standard. For example in Borders 

the limiting value of heat demand to achieve EnerPHit is 25kWh/m2 but due to climatic 

conditions (“cool climate”) to achieve this thicker insulation is needed in comparison to its 

counterpart West Pennines which has a milder climate. The same effect is observed 

when London and South West are compared.  

5.4.4.2. Offsite Internal wall Insulation (WHISCERS and Offsite Roof) 

When in the scenario additional offsite fabric element is introduced, that of the roof, the 

cost increases significantly (Figure 5.25). The cost rise is mainly due to the amount of 

materials and feasible labour to construct an additional structure to be fitted either on top 

of the existing one or replacing it (the cost in the model has taken an average for both 

cases). 
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In clear comparison with the onsite element upgrade the insulation needs to be applied 

on and under the rafters and ensuring a continuous airtightness layer but the offsite 

equivalent will need additional timber structure (to match existing), slate, insulation and in 

the case of replacement the demolition cost of the existing. If the roof is replaced though, 

extra room space could be added to the property that will increase the House Value and 

reviewed further in the next section. 

 
Figure 5.25 Cost difference increase percentage using Offsite Internal wall Insulation 
and Roof versus onsite  

As seen on Figure 5.25 the increase in cost is relative to the amount on roof area per 

typology. In terms of regional differences there is a correlation between the initial 

amounts of insulation needed similarly to the Internal Wall Insulation analysis i.e. Borders 

region has the lowest increase in cost in comparison as it has the highest capital cost to 

begin with (onsite works to reach EnerPHit). 

5.4.4.3. Offsite External Wall Insulation (“Retrofit Package”) 

The External Wall Insulation retrofit package proved to be the most expensive in capital 

cost when compared with the other offsite scenarios and only “matched” the cost in one 

typology (End-Terrace) with offsite Internal Wall Insulation and roof (Figure 5.23). It 

should be noted that the cost given is from R&D projects that have not be replicated at 

scale and up taking the retrofit as a “Design and Build” contract they also guarantee the 

dwelling is tested and certified to ensure it is built as designed. Additionally the cost that 
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is aimed to be reached (£40,000 per property) is similarly seen in the cost modelling in 

the cases of Terrace-Flat that is relatively similar to post 1950’s terrace houses i.e. flat 

elevations.    

 
Figure 5.26 Cost difference increase using Offsite External Wall Insulation (“retrofit 
package”) 
 
Figure 5.26 shows that the percentages of cost increase in this method of delivering 

EnerPHit with offsite mechanisms correlates on the amount of the typology’s internal 

floor space but also on its efficiency. This is reflected on the fact that the least efficient 

typology (End-Terrace) has the lowest increase.  

In comparison the Offsite Internal wall Insulation (WHISCERS) was the most economical 

in regards to capital cost of retrofit and the guarantee of application for the specific 

element (wall) could be assumed but there is still “risk” as the other works need to be 

done with independent sub-contractor/builder coordination and “risk” has been identified 

by other research as one of the barriers for “Whole-House” / low energy retrofit (Janda et 

al., 2014; NEF and EEPB, 2014b).  The addition of offsite roof element increases the 

cost but there are feasible benefits if additional living space is added. Also the retrofit 

“package” with offsite elements is the most expensive in comparison but has the 

advantage of the guaranteed performance and can be considered as a “one-stop-shop” 

that could have a great market potential. This also has a reflection to survey results, as 

“Better quality of build”  was the highest incentive in percentage for choosing offsite 
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mechanisms in retrofit over monetary value “if cost was lower” (Figure 6.47 and Figure 

6.49) and even in the thematic analysis (Table 6.1 and Table 6.2) “finding a competent 

contractor” to deliver Passive House/EnerPHit was a reoccurring concern.  

 

5.4.5 Payback analysis per offsite scenario and typology 

To calculate the monetary payback of the retrofit the calculation includes the capital cost 

against the savings in energy use through the reduction of bills, value of retrofit comfort,  

the increase on House Value and/or the Residual Value of the materials used. The 

savings through bill reduction (gas heating is assumed in the calculation) has taken into 

account the indicative fuel price rise from DECC, (2014b). A discount rate of 1.5% has 

been applied taking into account 3.5% (30 years) from the Green Book (HM Treasury, 

2013) rate suggested by the Government and subtracting 2% inflation. The value of 

retrofit comfort (co-benefits to the occupier) figures were taken from a survey conducted 

by the RealCosting author (Tim Martel, AECB) on how much occupants evaluate the 

comfort the retrofit offers i.e. the increase in temperature from 17 ⁰C to 20 ⁰C and the 

survey showed a value of £50 per month. The increase in House Value figures are based 

on real data from 300,000 homes using the sale price and EPC rating46 i.e. the amount of 

House Value increase due to energy saving measures; additionally the increase in 

House Value is reviewed when the living area is increased (offsite roof) with regional 

prices taken from the ONS47 (Table 5.2 and Table 5.3). The values differ significantly 

within different regions (Table 5.2) where for example in London due to the high house 

demand/price there is low value increase due to retrofit upgrades but has the highest 

value in comparison on additional floor area (Table 5.3) 

 

                                                            
46House Price Report: www.gov.uk/government/news/energy-saving-measures-boost-house-prices 
47 ONS House price per square metre and house price per room, England and Wales:: 

www.ons.gov.uk/economy/inflationandpriceindices/datasets/housepricepersquaremetreandhousepricep

erroomenglandandwales 

http://www.gov.uk/government/news/energy-saving-measures-boost-house-prices
https://www.ons.gov.uk/economy/inflationandpriceindices/datasets/housepricepersquaremetreandhousepriceperroomenglandandwales
https://www.ons.gov.uk/economy/inflationandpriceindices/datasets/housepricepersquaremetreandhousepriceperroomenglandandwales
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Climate Region EPC rating D-B 

Zone 01 - London   £       1,100  

Zone 05 - South West  £     16,342  

Zone 08 - West Pennines  £     12,979  

Zone 10 - Borders  £     19,265  

Table 5.2 House price increase relative to EPC rating increase (energy efficiency) and 

according to the house’s location 

These figures were used in the cost modelling to calculate the Return On Investment 

after the retrofit in relation to the House Value.  

 

Climate Region Cost per m2 
Zone 01 - London   £     6,639  

Zone 05 - South West  £     2,478  

Zone 08 - West Pennines  £     1,543 

Zone 10 - Borders  £     1,271 

Table 5.3 House price cost per m2 

These Figures were used in the cost modelling to calculate the Return On Investment 

after the retrofit in relation to the House Value only when compared to the feasibility of 

additional space granted with the offsite roof.  

The Residual Value after retrofit takes a different approach from the House Value and is 

not included in the same calculation. It calculates the remaining value of the retrofit 

based on what was paid for it and the life remaining. For example the insulation has a 60 

year lifespan and through energy saving its cost has been paid back in 25 years but if 

half the life remains less than half the value remains because, as with most items, the 

value decreases most rapidly in the first few years. A separate analysis was necessary 

using either the increased House Value or the residual to have a clear comparison. 

5.4.5.1 Offsite Internal wall Insulation (WHISCERS) 

The payback from retrofit to EnerPHit standard with traditional onsite construction is 

beneficial in the long run in most cases as the graphs below demonstrate. The offsite 

Internal Wall Insulation has proven the most cost effective offsite mechanism in 
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comparison (Figure 5.23 and Figure 5.24), thus including the payback from heating 

energy savings it is clearly expected to be the most beneficial with the amount highly 

dependable on the typology and location. 

 
Figure 5.27 Return On Investment that includes House Value. Using Internal Wall 

Insulation as the comparison element of Onsite versus Offsite measure 

The initial remark to be made from Figure 5.27 is that the increase in House Value is 

profitable for all the regions apart from London with the exception of the Terrace Flat as it 

is the most efficient typology. The Detached typology due to its high capital cost makes 

the onsite construction payback profitable only in the case were the property is located in 

the Borders.  

When the offsite application (WHISCERS) is used it provides a greater impact on the 

monetary payback due to the Detached typology’s extensive external wall. Figure 5.27 

also offers an important representation on the complexity of feasible monetary benefits of 

Whole-House retrofit in general; with London and Borders locations viewed as the two 

opposites in the spectrum.  Due to the high property value as seen from Table 5.3  

unrelated to any energy efficient improvements and the warmer climate, the London 



155 
 

located typologies seem not to have a direct profit from retrofitting to EnerPHit standard 

but the offsite application reduces the “gap” significantly.  

On the other hand, in Borders the “harsher” climatic conditions have a direct effect in the 

payback of retrofitting to a higher standard along with the property value increase due to 

this effect (Table 5.2).  The South West and West Pennies regions have interestingly a 

more “comparable relation” as the balance of energy savings and property value has 

somewhat similar results. This is due to correlation of the higher payback through energy 

reduction in the case of West Pennies but lower House Value, while in South West 

region the opposite is applicable.  

The percentage of cost benefit of offsite Internal wall Insulation and onsite when the 

increase House Value is taken into consideration and even in the case of London the 

“loss” is reduced. The offsite measures in this case can offer up to 20%  more return in 

comparison to onsite demonstrating a better value in profit (Appendix D: Figure D.1). 

 
Figure 5.28 Return On Investment that includes Residual Value. Using Internal Wall 

Insulation as the comparison element of Onsite versus offsite measure 

 

The London retrofit value increases if the Residual Value is taken into account as shown 

in Figure 5.28 while in other regions decreases in comparison. This demonstrates once 
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more the impact of location not only in terms of climate but also of property value. The 

Residual Value has a reduced return when compared to the House Value with the 

exception of London. The return on investment is better with offsite measures of up to 

10% (Appendix D: Figure D.2). Even though the profit value of offsite between these two 

evaluations (House and Residual) is fluctuating when compared they both show the 

impact of the return on investment the offsite mechanisms offer.  

In sections 5.4.7 to 5.4.11 it will be reviewed how the NPV changes over time (House 

Value increase) and how the “deep retrofit” is cost effective in the long run and in what 

way offsite mechanisms’ capital cost reduction could increase the NPV by reducing the 

“payback” time. 

 

5.4.5.2 Offsite Internal wall Insulation (WHISCERS and Offsite Roof) 

The payback when the offsite roof is applied dramatically changes as seen from Figure 

5.29 and Figure 5.31 as in both cases of House and Residual Value the offsite 

construction has a lesser investment payback than the onsite due to the much higher 

capital cost. 

 In the case that the offsite roof offers additional living space the House Value increases 

considerably as the property value especially in London (Figure 5.30) has a great 

monetary impact. This is a demonstration of layers of possibilities and this “logic” of 

additional benefit apart from direct connection to the energy reduction has been 

previously explored  i.e. a kitchen upgrade can be used as a “trigger point “(EST, 2011; 

Killip, 2011) to include energy efficient measures interconnected with the refurbishment 

works. The same rationale can be applied when the roof upgrade is considered to some 

extend as loft conversion.  

 Even though a detailed breakdown of loft conversion has not been included in this 

analysis to argue the onsite offsite cost, it should be noted that onsite loft conversions 

range from £20,000 to over £60,000 (Ransome-Croker, 2018) (assuming minimum 

Building Regulations equivalent). The analysis in this thesis of offsite roof in combination 
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with the cost reduction from the offsite Internal Wall Insulation showed an additional cost 

of £10,000 to £30,000 against an onsite construction element upgrade to achieve 

EnerPHit. This means that in comparison offsite roof could still be cost beneficial along 

with the added “comfort” element of quick installation.  

 
Figure 5.29 Return On Investment that includes House Value. Using Internal Wall 
Insulation and Roof as the comparison element of Onsite versus Offsite measure 

 

Additionally, as demonstrated in Figure 5.29 this offsite scenario can still have a clear 

profit payback in some cases. For example, in all typologies there is still a return made in 

the Borders region. This is due to the combination of the amount of energy saved due to 

the harshest climatic conditions resulting in higher heat loss and consequently higher 

energy saved in comparison and the high increase in House Value from energy 

upgrades as seen in Table 5.2.  

Similarly, the Terrace Flat proves profitable in all regions with the exemption of London. 

This is due to the typologies’ efficiency to begin with and subsequent lower upfront 

capital cost with the addition of smaller roof area in comparison to the other typologies. 

When the offsite/onsite differences are reviewed in terms of percentage there is a great 

difference in favour of onsite works up to 30% (Appendix D: Figure D.3). 
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Figure 5.30 Feasible increase in House Value if the offsite roof adds further living space 

in the property   

Even so, Figure 5.30 shows the average amount of House Value increase if the offsite 

roof provides additional living space. The highest increase is seen in London as the cost 

of property per m2 is the highest in UK. In all cases with the exception of the Borders 

region the additional space could “pay” for the cost of works demonstrating that there 

could be additional benefits in taking up offsite techniques in retrofit.   

 
Figure 5.31 Return On Investment that includes Residual Value. Using Internal Wall 

Insulation and Roof as the comparison element of Onsite versus Offsite measure 

The Residual Value in this case is even lower when it comes to offsite and is only 

beneficial in the Borders region (Figure 5.31) with the exception of Terrace Bay that has 
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a small loss. Similarly to Figure 5.28 it is observed that when House Value is taken into 

account the payback seems to be considered of higher payback benefit giving the 

property location a greater impact. 

The onsite scenario when reviewed in terms of percentage proves to be up to 20% more 

cost efficient than offsite with the Residual Value taken into account and the percentage 

is lower than the House Value comparison due to the lower payback (Appendix D: Figure 

D.3 & Figure D.4). 

5.4.5.3 Offsite External Wall Insulation (“Retrofit Package”) 

When compared to the rest of the offside applications modelled, the retrofit package 

appears to have the highest capital cost and “worst” return on investment on either 

calculation made; House or Residual Value.  Nonetheless, as described in section 3.2.2 

and 5.4.4.3 this application guarantees the EnerPHit delivery and it should be taken into 

account that it includes unforeseen costs on site, something that it can be realistically 

modelled in this calculation.   

 
Figure 5.32 Return On Investment that includes House Value. Using “Retrofit Package” 

as the comparison element of Onsite versus Offsite measure 

 
From the cost modelling it is observed that the only typology (offsite measures) and 

location combination that proves “profitable” within the 30 year mark is the End-Terrace 

in Borders climate as this is the least efficient typology in the “harshest” climate condition 
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modelled (Figure 5.32) where it was also reflected on the initial upfront cost analysis in 

Figure 5.23.The loss is mainly dependable to the floor area of the typology but also to the 

location and efficiency. The Detached for example has the highest loss due to its size 

and is greater when the typology is located in warmer climate with lower House Value 

(EPC) such as London. The percentage difference in favour of the onsite scenario spans 

up to 50% (Appendix D: Figure D.5) which the highest difference in comparison. 

 
Figure 5.33 Return On Investment that includes Residual Value. Using “Retrofit 

Package” as the comparison element of Onsite versus Offsite measure 

The Residual Value is equally better on the onsite scenario but the offsite “package” is 

presented with lower loss in comparison to House Value. Similarly only the End-Terrace 

in Borders has a cost benefit (Figure 5.33). This reduction in loss in comparison to the 

House Value is due to the fact that the cost of the applications are taken in m2 of floor 

area rather than per material used. Therefore even though this measure is still more 

expensive to make a profit, the Residual Value is perceived “higher” than the House 

Value. This will also be more evident in the next section (5.4.10) where the NVP timeline 

is reviewed.   

The percentage differences are reduced in comparison to the House Value stretching up 

to an average of 30% in favour of onsite (Appendix D: Figure D.6). This offsite retrofit 

measure has shown to be the most costly on the upfront cost and on the long run but is 

also the only one that guarantees the delivery of the EnerPHit standard that includes all 
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applications thus questioning whether the additional cost reflects the quality value of the 

retrofit delivery.  

 

5.4.6 Payback findings summary  

The Return On Investment modelling was made to understand the profitability of the 

deep retrofit measures (EnerPHit) in the long run against an equivalent un-retrofitted 

dwelling and compare onsite to offsite measures. By applying this to the calculation 

methods an in-depth overview of the offsite mechanisms to the responded typologies 

was able to emerge.  

By calculating two different methods of increased House and Residual Value the results 

showed the diversity of offsite applications, typologies and locations. When the Internal 

Wall Insulation is applied with offsite methods it proves initially the most beneficial 

upfront cost as it focuses on the element (external wall) with both the highest amount of 

area and highest heat loss. This reflected also in the long run with the House Value 

having a greater monetary benefit against the Residual and also providing an initial 

reflection on the impact of the dwelling’s location that stretches beyond its climatic 

relation to the energy demand. When the offsite roof is also added as an element the 

upfront cost increases significantly but the feasible additional space could provide an 

increase in the House Value to offset the entire cost of works thus showing that there is 

another layer of possibilities in the exploration of offsite mechanisms in retrofit. Finally, 

the “Retrofit Package” being the most cost intensive in comparison to the other offsite 

scenarios showed no Return On Investment within the 30 year threshold. Then again the 

consideration that the retrofit applications are overseen by the same company that 

specialises in Passive House/EnerPHit construction raises the question of benefits in that 

span beyond monetary gain but focus more in the quality of  retrofit delivery.   
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5.4.7 NPV per typology introduction 

The Net Present Value refers to the value of “cash flows” over the timespan of an 

investment, both positive and negative. In this modelling the investment refers to the cost 

required for each retrofit scenario, the “cash flows” are translated into bills, savings and 

increased property value, while the timespan is the assigned 30 years. When the capital 

cost is paid back before the 30 years it is considered a “profitable investment” and cash 

flows of the remaining years are considered the payback/ Return On Investment. To 

understand the chronological Net Present Value differences amongst the scenarios 

modelled a series of graphs were generated. This visual representation extends over the 

typical 30 year financial period mark allowing for an understanding that (and when) the 

Whole-House retrofit with offsite mechanisms could still be beneficial over the longer 

term. It also provides a depiction of the payback time in the most efficient scenarios 

offering an understanding on the impact of heating energy reduction. Additionally, the 

Building Regulations scenario is also included allowing a clear comparison on the retrofit 

payback within minimum standards retrofit to EnerPHit (Onsite and Offsite). An example 

of the NPV is presented in Figure 5.34 and explanatory illustrations on how they are read 

in Figure 5.35. The complete graph series are listed in Appendix B and the year each 

scenario is paid back are summarised in Table 5.4, Table 5.5 and Table 5.6. 

 

Figure 5.34 Examples of NVP graphs 
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1. This area represents the 30 year period that evaluates the financial “payback” for 

each scenario.    

   

2. This part of the figure shows the capital cost for each scenario. As seen from 

above there are two main differences presented: location and value (House or 

Residual). Taking into account the House Value (EPC) in London for example has 

significantly less impact than a dwelling in Borders as demonstrated in Table 5.2. 

Also the House Value “reduction” in the capital cost is applied at year 0 versus the 30 

year mark of the Residual. 

 

3. This points to the “intersection” between the scenarios. As seen from point 2 the 

Base Case (red line) has the lowest capital cost but as time passes the cost of 

energy bills makes it more cost-intensive (line ascending in the graph).  On the other 

hand the EnerPHit scenario has the exact opposite effect. Therefore as the Base 

Case is the un-retrofitted dwelling when a scenario of a retrofitted equivalent passes 

the point of intersection it begins to be more cost-beneficial. When this occurs before 

the 30 year threshold then the savings from bill reduction for each year becomes a 

positive return on investment. If it occurs after then it becomes a “loss” as presented 

in section 5.4.5. 

Figure 5.35 Explanatory illustrations for NPV 
The illustrations used the two locations with the most differences (London-Borders) as 
examples for a clearer demonstration. 
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5.4.8 NPV per typology with Internal Wall Insulation  

As analysed in the previous sections the Internal Wall Insulation as an offsite element is 

the most profitable in monetary value in comparison. When the House Value is included 

the payback period with the exception of the London scenario is always prior to the 30 

year mark (Table 5.4). Nonetheless, even in London the payback time does not extend 

significantly and this offsite approach provides an earlier payback of up to 13 years 

against onsite and over 20 years against Building Regulations. The Borders location has 

the fastest payback in both house and residual <30years with the best scenario of 

Terrace Flat that the payback period is only just 8 years (Table 5.4 & Appendix E: Figure 

E.5).  

 
Table 5.4 Payback time of offsite Internal Wall Insulation comparison 
 

5.4.9 NPV per typology with Internal Wall Insulation and Roof  
When the roof is also added as an offsite element the capital cost is increased and 

consequently the payback period as presented on Table 5.5 and in Appendix E: Figure 

E.6 to Figure E.10.The ≤30 year mark is mainly achieved in Borders with the exception of 

the Detached typology, while the Terrace Flat achieves a payback <30 years in all 

locations with the exception of London. The highest and the lowest payback time 

difference in favour of the onsite construction approach is seen on the Detached 

typology; with 23 years in London (highest) and 5 years in Borders (lowest) in the House 

Value calculation. When the Residual Value is taken the differences are smaller but with 

London having the highest of 16 years in Terrace bay typology and the Borders 

Detached actually coming even.  

. 

HOUSE VALUE

Onsite Offsite 

IWI

Building 

Regs.

Onsite Offsite 

IWI

Building 

Regs.

Onsite Offsite 

IWI

Building 

Regs.

Onsite Offsite 

IWI

Building 

Regs.

Onsite Offsite 

IWI

Building 

Regs.

London 47 37 58 42 32 40 42 32 33 42 32 38 33 28 32

South West 39 26 50 28 22 28 22 18 20 22 16 23 18 12 18

West Pennines 35 22 45 27 20 27 22 17 19 23 19 24 17 13 16

Borders 29 18 28 18 15 16 16 12 13 15 11 11 11 8 10

RESIDUAL VALUE

Onsite Offsite 

IWI

Building 

Regs.

Onsite Offsite 

IWI

Building 

Regs.

Onsite Offsite 

IWI

Building 

Regs.

Onsite Offsite 

IWI

Building 

Regs.

Onsite Offsite 

IWI

Building 

Regs.

London 40 30 38 32 30 30 30 30 30 32 30 30 30 29 30

South West 39 30 40 32 30 30 30 30 30 32 30 30 30 29 30

West Pennines 33 29 34 30 28 30 30 28 30 31 30 30 30 25 30

Borders 30 25 30 28 22 23 27 22 12 29 24 25 22 20 22

Detached Semi-Detached End-Terrace Terrace Bay

Detached Semi-Detached End-Terrace Terrace Bay

Terrace Flat 

Terrace Flat 
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Table 5.5 Payback time of offsite Internal Wall Insulation & Roof comparison 
 

5.4.10 NPV per typology Offsite External Wall Insulation (“Retrofit Package”) 
Having the highest capital cost amongst the other offsite measures compared, the offsite 

package, has understandably the longest payback periods in comparison as presented 

on Table 5.6 and in Appendix E: Figure E.11 to Figure E.15. On the London location for 

example, only the End Terrace has payback of <70 years in the House Value .Similarly, 

the End Terrace has the only <30 year mark on both House and Residual calculation. 

The Residual Value in comparison has shorter payback time spans with differences in 

favour to onsite construction of 60 years, the highest in Detached London and 3 years 

the lowest in the End Terrace in Borders. While in the House Value, 65 years the highest 

and 13 years the lowest respectively.    

 

 
Table 5.6 Payback time of offsite “Retrofit Package” comparison 

 

HOUSE VALUE

Onsite Offsite 

IWI&

Roof

Building 

Regs.

Onsite Offsite 

IWI&

Roof

Building 

Regs.

Onsite Offsite 

IWI&

Roof

Building 

Regs.

Onsite Offsite 

IWI&

Roof

Building 

Regs.

Onsite Offsite 

IWI&

Roof

Building 

Regs.

London 47 75 58 42 65 40 42 58 33 42 65 38 33 47 32

South West 39 58 50 28 48 28 22 38 20 22 41 23 18 28 18

West Pennines 35 51 45 27 43 27 22 35 19 23 40 24 17 27 16

Borders 29 34 28 18 29 16 16 23 13 15 25 11 11 18 10

RESIDUAL VALUE

Onsite Offsite 

IWI&

Roof

Building 

Regs

Onsite Offsite 

IWI&

Roof

Building 

Regs

Onsite Offsite 

IWI&

Roof

Building 

Regs

Onsite Offsite 

IWI&

Roof

Building 

Regs

Onsite Offsite 

IWI&

Roof

Building 

Regs

London 40 51 38 32 47 30 30 41 30 32 48 30 30 36 30

South West 39 51 40 32 47 30 30 41 30 32 48 30 30 35 30

West Pennines 33 42 34 30 40 30 30 30 30 31 42 30 30 32 30

Borders 30 30 30 28 30 23 27 30 12 29 33 25 22 29 22

Detached Semi-Detached End-Terrace Terrace Bay Terrace Flat back

Detached Semi-Detached End-Terrace Terrace Bay Terrace Flat

HOUSE VALUE

Onsite Offsite 

"Retrofit

Package"

Building 

Regs

Onsite Offsite 

"Retrofit

Package"

Building 

Regs

Onsite Offsite 

"Retrofit

Package"

Building 

Regs

Onsite Offsite 

"Retrofit

Package"

Building 

Regs

Onsite Offsite 

"Retrofit

Package"

Building 

Regs

London 47 >100 58 42 >100 40 42 60 33 42 95 38 33 >90 32

South West 39 >100 50 28 79 28 22 43 20 22 60 23 18 78 18

West Pennines 35 >100 45 27 73 27 22 42 19 23 60 24 17 72 16

Borders 29 79 28 18 45 16 16 29 13 15 39 11 11 45 10

RESIDUAL VALUE

Onsite Offsite 

"Retrofit

Package"

Building 

Regs

Onsite Offsite 

"Retrofit

Package"

Building 

Regs

Onsite Offsite 

"Retrofit

Package"

Building 

Regs

Onsite Offsite 

"Retrofit

Package"

Building 

Regs

Onsite Offsite 

"Retrofit

Package"

Building 

Regs

London 40 >100 38 32 60 30 30 40 30 32 53 30 30 62 30

South West 39 >100 40 32 60 30 30 40 30 32 55 30 30 62 30

West Pennines 33 85 34 30 55 30 30 39 30 31 50 30 30 58 30

Borders 30 58 30 28 38 23 27 30 12 29 38 25 22 41 22

Detached Semi-Detached End-Terrace Terrace Bay Terrace Flat back

Detached Semi-Detached End-Terrace Terrace Bay Terrace Flat
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5.4.11 NPV Building Regulations  

When the Building Regulations scenario is reviewed in relation to the EnerPHit standard 

and the equivalent onsite/offsite mechanisms it is observed that: if compared to the 

EnerPHit standard with onsite construction it has quite similar payback time in most 

cases even though the capital cost differs significantly. Due to the difference in energy 

reduction after the time the capital cost has been “paid pack” the EnerPHit scenario 

starts to generate greater long-term returns versus the Building Regulations. Similar 

Passive House and EnerPHit economic calculations have previously been made by the 

Passive House institute (https://passipedia.org), (Thu and Kaufmann, 2016) and there 

have been a few UK based case study  publications (Neroutsou, 2016; Guermanova and 

Arora, 2015) demonstrating the long term economic benefits. 

Nonetheless, there is a need for more UK specific evidence based research 

demonstrating these long term economic benefits in the retrofit market. Even though the 

thesis has contributed in the holistic review of specific typologies and locations there is 

still need of a “wider spread” access to feasible benefits similar to offsite mechanisms. 

When the EnerPHit standard with the selected offsite mechanisms is compare to the 

Building Regulations scenario the offsite Internal Wall Insulation reduces the payback 

time up to years 24 years(Table 5.4 & Appendix E: Figure E.5) making a substantial 

positive difference while the additional offsite roof has almost the opposite effect (Table 

5.5 & Appendix E:Figure E.6 to Figure E.10). Finally, the Retrofit Package scenario has 

the highest difference against Building Regulations. Only in the typologies of End 

Terrace and Terrace Bay (Table 5.6 & Appendix E: Figure E.11 to Figure E.15)in the 

Residual Value calculation the Retrofit Package payback becomes profitable over the 

Building Regulation and this after 60 years.  
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5.4.12 Financial significances and findings 

The rationale behind “payback” is that it is highly interconnected with heating energy 

reduction in retrofit as the main outcomes are translated in bill savings. The scenarios 

modelled though showed that the payback differs considerably within; a. each offsite 

measure, b. each typology and c. climate and location.  Below is the summary of how 

these determinants influence these outcomes and how they contribute to the existing 

literature.  

 

5.4.13 Offsite measures outcomes 

The offsite measures modelled presented different outcomes on their feasible benefits. 

The offsite Internal Wall Insulation (WHISCERS) proved the most economical application 

with subsequent beneficial outcomes in the long run (Return On Investment). The 

application benefits also comprise of faster installation of the product and its price 

includes the relocation and refit of the existing services. The additional offsite element of 

the roof increases the cost of the retrofit making it profitable in terms of the energy 

reduction payback only in a few typologies and locations. The major benefit this 

application holds stands on the fact of feasible additional space it could provide in 

significantly lower delivering time as it is constructed offsite and delivered completed on 

site. The offsite package (Beattie TCozy) proved the most costly and only has a cost 

return benefit in one typology. The key benefit of this application stands on the holistic 

services it provides under the same company thus assuring the works are delivered by 

the same source that guarantees delivery and consequently reduced snagging and 

defects.  Additionally, as previous research from Tim Martel (RealCosting creator)  has 

shown and has been included in this thesis’ calculations (explained in Section 5.4.5) 

where people would pay for the comfort of increased internal temperatures the same 

could correspond for fast delivery and guarantee of performance as also observed in the 

survey results (Figure 6.47) where “shorter building times” and the “commissioning and 
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guarantee” are recognised by the participants as incentives to choose offsite in a retrofit 

projects. Previous research has shown that dwelling renovation could be linked with 

influencing residents on adapting low-energy installation to be done simultaneously 

(EST, 2011; Killip, 2011; Karvonen, 2013; Pettifor, Wilson and Chryssochoidis, 2015), 

similarly offsite retrofit measures can offer additional benefits to energy reduction such as 

the increase of living space (Offsite Roof). Finally, “green mortgage” discounts depend 

on the delivery of energy standard certificates with the highest discounts being in regards 

to EnerPHit and the AECB’s “similar” standard (GOLD) process of 1.25%48 showing that 

there are further benefits and possibilities when guarantee of delivery is part of the 

“equation”.  

 

5.4.14 Typology significances 

The technical differences between the typologies and relative heat loss/heat demand 

were detailed in the previous section and it was understood that there is a direct 

correlation to the amount of energy along with bills saved with each retrofit application. 

The cost of offsite retrofit measures depending on the morphology of each typology 

verifies that a common retrofit price “tag” cannot be feasible with the current market 

offsite mechanisms and techniques. For example the Internal Wall Insulation 

(WHISCERS) had higher cost reductions in typologies with greater amount of external 

wall, the Offsite Roof presented higher amount of capital cost in typologies with greater 

roof area and the Retrofit Package in typologies with greater floor area.    

 

5.4.15 Location significances 

The location of the property plays a major role as in the case of a dwelling retrofitted in 

Borders for example has a greater value in terms of being more energy efficient in terms 

of bills reduction and increase of property value due to the “sustainable” upgrade while in 

                                                            
48 Ecology Building Society: www.ecology.co.uk/mortgages/c-change-discounts/ 
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London as property is in so much high demand the retrofit “investment” becomes 

profitable when additional living space is added and in most cases it surpasses the 

capital cost of the entire retrofit. This has an “instant” monetary payback as payback 

through bills is sometimes not as attractive due to the amount of time period required 

(Britnell and Dixon, 2011; Karvonen, 2013; Hope and Booth, 2014). This shows that 

there can be a great market incentive for offsite retrofit as it also corresponds with faster 

delivery time. In conclusion, there is a wider spectrum of “profitable” possibilities when 

the location of the retrofit is considered, including offsite techniques and there is a 

correlation in selection based upon the site’s climatic conditions and property value. 

Considering all these factors the thesis financial model approach has contributed novel 

understanding about the complexities surrounding the application of offsite measures 

when combined in UK housing retrofit.  Comprehending these complexities offers an 

opportunity to consider wider approaches, processes and techniques that could be 

valuable in the evolution of the Whole-House retrofit in the exiting UK housing spectrum.  
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6 Results of PhD research- Social related outcomes 
 

6.1 Introduction 

In this section the results of the survey are analysed with the aim to explore perception 

from construction industry representatives on offsite mechanisms in delivering house 

retrofit in higher energy standards. Previous research has been done on the incentives 

and the influence of the construction industry in low energy construction as described in 

section 4.8.2. Relevant to this research is what  Parag and Janda, (2014) explain by way 

of  “Middle-out actors“, i.e. industry representatives that : “effect change upstream to top 

actors (e.g., policy makers), downstream to bottom actors (e.g., homeowners and 

clients), and sideways to other middle actors (e.g., other builders and participants in the 

building supply chain)” (page 913). With the same principle in focusing on ““Middle-out 

actors“, the survey investigated what is until now unexplored perceptions, awareness, 

knowledge, and attitudes towards the offsite construction on low energy retrofit and how 

these could consequently influence its future market.  

The technical and financial opportunities or limitations have been examined in this thesis 

through evidence base modelling but without consideration of attitudes and perceptions 

of the building industry, the analysis would not have been complete. Previous research in 

UK housing retrofit as detailed in the literature review (2.5.7) explored incentives and 

barriers of both industry and users in the need to upgrade the existing stock. On the 

other hand, the UK offsite construction has demonstrated similar research dynamics 

(3.2.4) but focused on the need to deliver new housing while retrofit with offsite 

measures perceptions is limited to few pilot cases (3.2.6).  

Thus, the original contribution of the survey uptake and analysis stands on the research 

theme itself, the focused investigation of offsite techniques, stretching further than overall 

low energy retrofit. This is achieved through the model analysis but with the vital 

incorporation of the “human perception element” thus connecting technical and non-

technical variables to achieve a holistic understanding of feasible wider applicability.  
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6.2 Survey results analysis 

The survey as described in the methods chapter section 4.8.2 was constructed within 

three principal themes: Responders’ background, Knowledge and perceptions on energy 

standards and Knowledge and perceptions on offsite mechanisms. The Responders’ 

background focuses mainly on experience with low energy design and is correlated with 

each survey answer to understand whether the answers are influenced by existing skills 

and knowledge. The method of how these where categorized is presented in section 

6.2.1. The level of Knowledge and perceptions on energy standards focuses on the 

responders’ knowledge, experience and confidence on existing and voluntary energy 

standards. These answer results are presented and explored in sections 6.2.2 and 6.2.3. 

The Knowledge and perceptions on offsite mechanisms is represented in the rest of the 

survey questions aiming to provide an insight on the participants’ understanding and 

opinions on offsite approaches in retrofit along with feasible the incentives and barriers 

for its applicability. This is presented and explored in sections 6.2.4 to 6.2.7. 

Finally, in section 6.3 the analysis on open text responses provides a more in depth 

understanding on the participants’ site experiences and opinions in regards to retrofit and 

offsite.  

6.2.1 Participants analysis 

Figure 6.1 below illustrates the range of professions of the 64 participants who 

completed the online survey.  Even though the initial aim was to reach the wider 

construction industry it has consciously focused mainly on the “middle-actors”.  The 

construction industry representatives of this term have been identified to have a great 

influence in low energy design  (Parag and Janda, 2014; Janda et al., 2014). This is due 

to their hands-on problem solving as they are the intermediate actors between regulation 

and clients/consumers. Due to the subject of the research, the survey extended to 

participants with specific background in energy design or consultancy (i.e. Passive 

House) along with backgrounds in research and academia. The survey structure 
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question for the professional background of the participants allowed selecting more than 

one profession if applied. The separation to primary, secondary and tertiary aims to show 

the range of skills within the participants and does not exclusively depict what they 

consider as their principal occupation. With a similar aim the follow up question was in 

regards to the level of professional experience in the industry (Figure 6.4).  

 
Figure 6.1 Participants’ professional background and percentage within the survey 

The highest participation was within the architectural group and even though there is a 

range of energy specialists, the highest number of participants did not have an “energy 

background” (Figure 6.2 and Figure 6.3). The higher number of architects is in one hand 

realistically driven from the researcher’s professional contacts but on the other hand 

could have an interesting input to this section of the research. The influence of the 

architects as part of the “middle-actor” group could be reviewed as a “sub-category” by 

itself as an intermediate within the other groups. This is also explored by research 

(Fischer and Guy, 2009) into the architects’ influence and challenging role in low energy 

design as intermediaries  between the other groups (engineers, energy consultants etc.). 

With this in mind the larger representation of architects provides a wider reflection on the 

industry’s attitudes and pragmatic use offsite in low energy retrofit.  



173 
 

 

Figure 6.2 Participants’ background 

relative to involvement with energy 

focused projects or education  

 

Figure 6.3 Participants’ energy 

background and years of experience in 

their field  
 

The second step was to group the participants within two groups, those with “energy 

background” and those with “non-energy” background (Figure 6.2) with the purpose to 

analyse the collected data in greater detail in terms of recognising whether their 

knowledge of energy reduction mechanisms has an impact on their responses.  

 

Figure 6.4 Participants’ years of experience within their field 

The experience ranges with the majority between 10-19 years and 20-29 (Figure 6.4). 

The energy background participants are within the majority of the lower years of 

experience as energy certification and consultancy is relatively new (Figure 6.3).  
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6.2.2 Level of understanding of standards 

Examining the participants’ understanding of existing standards a series of questions 

using a Likert scale were posed. The scale ranged from 1= “Minimal or no 

understanding” to 5=”Significant understanding”. The first two looked at the regulated 

standards related to energy conservation by the Building Regulations on new and 

existing buildings followed by voluntary deep retrofit and Passive House/EnerPHit.  

 
Figure 6.5 Participants’ level of energy 
standards understanding-Building 
Regulations Part L1A 

 
Figure 6.6 Participants’ level of energy 
standards understanding-Building 
Regulations Part L1B 

 
Figure 6.7 Participants’ level of energy 
standards understanding- “Whole-House” 
retrofit / “Deep retrofit” 

 
Figure 6.8 Participants’ level of energy 
standards understanding- Passive House 
and EnerPHit 

  

The understanding level distribution of the Building Regulations was an exact match on 

both new and existing Buildings with the majority selecting a ranking of 3 to 4 leaning 
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towards significant understanding (Figure 6.5 and Figure 6.6).  This is understandable as 

all industry representatives will have to take into account the Building Regulations in a 

project. In non-regulated standards the leaning towards significant understanding held a 

greater percentage (Figure 6.7 and Figure 6.8) which led to examining in more detail the 

selections within the categorised groups of “Energy and Non-Energy Background”. The 

distribution once again between Building Regulations (new/existing) was identical (Figure 

6.9 and Figure 6.10) within the two groups and the ones with the Energy Background on 

all occasions have the most confidence in significantly understanding regulated and 

unregulated standards in energy reduction both in new and existing buildings(Figure 6.11 

and Figure 6.12).  

 

Figure 6.9 Participants’ level of energy standards understanding-Building Regulations 

Part L1A within the predetermined groups 

 

Figure 6.10 Participants’ level of energy standards understanding-Building Regulations 

Part L1B within the predetermined groups 
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Figure 6.11 Participants’ level of energy standards understanding- “Whole-House” 

retrofit / “Deep retrofit” within the predetermined groups 

 

Figure 6.12 Participants’ level of energy standards understanding- Passive House and 

EnerPHit within the predetermined groups 

 
 
Overall the participants showed that they are aware of both mandatory and voluntary 

energy standards suggesting that the industry is possibly becoming more aware to more 

than government policies. Plus there has been progress in terms of creating training 

programmes to produce Retrofit Coordinators for example from the Retrofit Academy 

(www.retrofitacademy.org/) aimed at a wide variety of industry actors. “Understanding” 

the standard though does not mean that that there also is a practical knowledge which is 

something that was investigated in the follow up questions. Comparing the level of 

knowledge proclaimed by the participants in this thesis and what has been investigated 

in previous studies results in some interesting findings. One of the biggest barriers 

http://www.retrofitacademy.org/
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identified in low energy retrofit that has been remarked from previous studies is” lack of 

knowledge and skills” (Heffernan et al., 2015; NEF and EEPB, 2014b; Stieß and 

Dunkelberg, 2013; Topouzi, Killip and Owen, 2017) along with demand (or lack of) 

originated either from the consumer or legislation (J. Fawcett, 2014). When those are 

reviewed in relation to this thesis’ results there a few assumptions to be made in 

conjunction to their novel contribution. Seeing that the majority of the participants 

proclaimed to have a high level of understanding of legislation and non-mandatory 

energy standards it could be “translated” in two ways: a. that there could be 

disconnection on “personal liability” i.e. the participant could have the knowledge 

required but the surrounding actors on the projects do not and b.it could be interpreted 

that the “knowledge gap” is actually closing as more construction professionals become 

more energy conscious.  

 
 

6.2.3 Past experience with Passive House 

In inquiring whether the participants had any past involvement with  Passive House or 

EnerPHit the aim was to explore further the participants’ opinions on the standard and 

whether they had actually been involved in an actual project or not. As seen from Figure 

6.13 and Figure 6.14 the overall results showed that almost half of the participants have 

been involved in Passive House or EnerPHit projects with the majority engaged on new 

build Passive House; this is understandable, as the standard is older than EnerPHit. 

When the results are reviewed within the assigned groups the highest percentage of 

participants with an energy background have had involvement with Passive House  or 

EnerPHit projects but there is also a significant amount of 45-30% of participants with 

non-energy background of that have been associated with them (Figure 6.15 and Figure 

6.16). This raises the question whether Passive House /EnerPHit is becoming more of a 

common practice and industry-defined standard. 
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Figure 6.13 Participants’ previous 
involvement with a Passive House project 

 
Figure 6.14 Participants’ previous 
involvement with an EnerPHit project 
 

 
Figure 6.15 Participants’ previous 
involvement with a Passive House project 
within the predetermined groups 

 
Figure 6.16 Participants’ previous 
involvement with an EnerPHit project 
within the predetermined groups 

 

This could coincide with the subsequent question on whether participants believed that a 

Passive House/EnerPHit project could guarantee the quality of construction (Figure 6.17 

and Figure 6.18). The majority within both groups believe that it does, showing 

confidence in the standard. Contrary to confidence on the standard  actual application in 

UK might be questionable as when the participants were asked whether there is 

sufficient knowledge and experience across the UK’s construction industry to deliver the 

EnerPHit standard the opinions were diverse (Figure 6.19 and Figure 6.20) .Within the 

responders with an energy background a significant percentage >40% disagreed 

suggesting that, even though the standard might have assurance, the industry in UK falls 

short in delivery. 
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Figure 6.17 Participants’ opinion on the 
feasible quality guarantee of a Passive 
House or EnerPHit project 

 
Figure 6.18 Participants’ opinion on the 
feasible quality guarantee of a Passive House 
or EnerPHit project within the predetermined 
groups 

 

 

Figure 6.19 Participants’ 
opinion on the current UK’s 
construction industry ability to 
deliver the EnerPHit standard 
 

 

 
Figure 6.20 Participants’ opinion on the current UK’s construction industry ability to 
deliver the EnerPHit standard within the predetermined groups 
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There are more than 150 Passive House certified projects, >800Units in UK and more 

than 20 EnerPHit (www.passivhaustrust.org.uk) with growing examples of UK social 

housing adopting the standard (Exeter, Norwich, Manchester). Due to the end of Zero 

Carbon Homes, Passive House has been viewed as an alternative standard to adopt 

(Pitts, 2017), it is becoming more “popular” so it is understandable that more industry 

actors have been involved in a project and consider that  certification guarantees the 

quality of construction (Figure 6.17). Lack of skills is a reoccurring barrier though in 

retrofit that has been acknowledged (NEF, 2014; Bonfield, 2016) and it is evident in the 

survey participants as a high percentage declared that they do not believe there is 

enough expertise in the UK construction industry to deliver EnerPHit (Figure 6.19). It has 

to be acknowledged though that the offsite retrofit suppliers have been aiming to respond 

to this industry shortfall by having control of their quality of retrofit delivery (Beattie 

Passive and Enegiesprong). 

 

6.2.4 Level of offsite knowledge and confidence 

Similarly to the energy standards questions the participants were asked to rate their 

knowledge of and confidence in offsite construction; initially as a general approach and 

then following with a question specifically to housing retrofit. The scale ranged from 1= 

“Minimal or no understanding/confidence” to 5=” Significant understanding/confidence”. 

The results showed that there was significant knowledge and confidence in offsite 

construction in general along with its use to deliver housing but when it came to offsite 

combined with housing retrofit the confidence in its application has dropped (Figure 6.21 

to Figure 6.26). When looked within the groups the non-energy background has a greater 

knowledge and confidence in offsite construction than the energy one but dramatically 

decreases when applied to retrofit. While the energy background group appear to have 

the same outlook on the offsite/retrofit approach in terms of confidence there are no 

observed “extremes” (Figure 6.22, Figure 6.24 & Figure 6.26). The overall attitudes 

http://www.passivhaustrust.org.uk/
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reflect that the industry is more accepting of the offsite construction concept but 

uncertain when it applies to retrofit. 

 
Figure 6.21 Participants’ understanding of 
offsite construction 

 

 
 

Figure 6.22 
Participants’ 
understanding of 
offsite 
construction 
within the 
predetermined 
groups 

 

 
Figure 6.23 Participants’ confidence of 
offsite construction in housing 
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Figure 6.24 
Participants’ 
confidence of 
offsite 
construction in 
housing within 
the 
predetermined 
groups 

 

 
 

Figure 6.25 Participants’ confidence of 
offsite construction in housing retrofit 

 

Figure 6.26 
Participants’ 
confidence of 
offsite 
construction in 
housing retrofit 
within the 
predetermined 
groups 

 

Offsite construction in new build has a current momentum as with the need of new 

homes in the UK has been viewed as the eventual solution for delivery49  (Farmer, 2016). 

The application to retrofit though it seems is not approached with the same confidence 

(Figure 6.25 and Figure 6.26). This could be due to the fact that the offsite applications in 

                                                            
49 London mayor urged to adopt offsite housing to meet city's housing needs. (2017, September). TTJ - The 

Timber Industry Magazine, 453(6809), 8. Retrieved from: 

http://link.galegroup.com/apps/doc/A513760623/ITOF?u=nene_ukandsid=ITOFandxid=0ccd9d40 
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retrofit measures are relatively new and it relates to a follow up question in assumption 

that there is not enough “accessible” data on the advantages of these applications 

(Figure 6.53).  The Bonfield review (Bonfield, 2016) has recognised this obstacle to 

retrofit in general and there has been progress as a BSI Retrofit Standards Task Group 

has been formed to address this with amongst others a focus on accessibility to 

materials, standards, feedback and competence (www.bsigroup.com). This could prove a 

practical opportunity for retrofit suppliers with offsite measures to have greater market 

exposure and be evaluated.  

 

6.2.5 Cost estimations  

In a series of questions the participants were asked to estimate the cost of “Whole-

House/Deep” retrofit within the pre assigned typologies and then to estimate the feasible 

reduction through offsite mechanisms. The initial cost estimation was presented with cost 

per m2 (£/m2) and the feasible reduction was presented in percentages (%). The options 

for the initial costs ranged from “I have no opinion/view on this matter “, <£200, £200 - 

£400, £400 -£600, £600- £800, > £800 and the feasible cost reductions as “I have no 

opinion/view on this matter”, “No reduction”, <5%, 5-10%, 10-20%, >20%. By transposing 

the data from the cost modelling the answers were categorized on whether the 

participant overestimated, were within the modelled values or underestimated along with 

allowing the review of the answers in more detail within the assigned groups.  The onsite 

retrofit construction modelling provided a “definite” cost mark within the assigned 

variables (typology/location) but when different offsite techniques and measures are 

applied the models showed that it is highly diverse. The overall estimated cost for onsite 

deep retrofit was predominantly overestimated within the “more” energy efficient 

typologies; Detached, Semi-Detached and Flat-Terrace (Figure 6.27, Figure 6.31, Figure 

6.43). Surprisingly, the group with the energy background had the highest percentage of 

overestimating these typologies but also the ones with the highest percentage that where 

within the modelled values in the “less” energy efficient typologies; End-Terrace and 
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Terrace-Bay (Figure 6.37 and Figure 6.41). This could be a reflection on the 

unpredictable cost that is met on live projects that the model cannot account for but the 

“energy group” responders have met in their experience.  

The results on overall cost reduction estimations, through offsite mechanisms, offer a 

more intricate observation when paralleled with the modeled results. The percentage 

options were transposed to the graphs as <5%= low, 5-10%=moderate, 10-20% high and 

>20%=very high.  The initial observation is that the predominant attitude leans towards a 

“moderate” reduction of around 40 to 45% apart from Terrace Bay (Figure 6.40) where 

the majority of responders considered a “low” cost reduction. 

A high percentage was also observed in participants with “no opinion” in regards to the 

feasible cost reduction offsite mechanisms of around 25% raising the question on a. 

whether there is a lack of wide available information on offsite practices throughout the 

industry in relation to retrofit and b. lack of offsite practices’ “acceptance”. 

When the survey results are cross-tabulated with the cost modellings, the findings have 

to evidently be analyzed within the two aspects of onsite and offsite construction. The 

onsite EnerPHit cost as seen from the thesis section 5.4.3, varied within different 

typologies and regions but the averages ranged around  £400 to £600 per m2 (Figure 

5.23). The majority of the responders overestimated three out of five typologies with 

almost equal percentages between “energy” and “non-energy group”. This observation 

could be interpreted in two “conflicting” ways, firstly as previously mentioned the cost 

model could have not accounted for possible unforeseen cost within these typologies 

and secondly the possible lack of understanding of the typology differentials within the 

industry.  
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Figure 6.27 Participants’ cost 
estimation of Whole-House 
Retrofit/EnerPHit-Detached 

 
Figure 6.28 Participants’ feasible cost 
reduction estimation with offsite mechanisms-
Detached 

 
Figure 6.29 Participants’ cost 
estimation of Whole-House 
Retrofit/EnerPHit within the 
predetermined groups -Detached  

 
Figure 6.30 Participants’ feasible cost 
reduction estimation within the predetermined 
groups -Detached 

 

 
Figure 6.31 Participants’ cost 
estimation of Whole-House 
Retrofit/EnerPHit-Semi Detached 

 
Figure 6.32 Participants’ feasible cost 
reduction estimation with offsite 
mechanisms-Semi Detached 

 
Figure 6.33 Participants’ cost 
estimation of Whole-House 
Retrofit/EnerPHit within the 
predetermined groups –Semi Detached  

 
Figure 6.34 Participants’ feasible cost 
reduction estimation within the 
predetermined  groups– Semi Detached 
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Figure 6.35 Participants’ cost estimation 
of Whole-House Retrofit/EnerPHit-End 
Terrace 

 
Figure 6.36 Participants’ feasible cost 
reduction estimation with offsite mechanisms-
End Terrace 

 
Figure 6.37 Participants’ cost estimation 
of Whole-House Retrofit/EnerPHit within 
the predetermined groups –End Terrace 

 
Figure 6.38 Participants’ feasible cost 
reduction estimation within the predetermined  
groups– End Terrace 

 

 
Figure 6.39 Participants’ cost estimation 
of Whole-House Retrofit/EnerPHit-
Terrace Bay 

 
Figure 6.40 Participants’ feasible cost 
reduction estimation with offsite 
mechanisms-Terrace Bay 

 
Figure 6.41 Participants’ cost estimation 
of Whole-House Retrofit/EnerPHit within 
the predetermined groups –Terrace Bay 

 
Figure 6.42 Participants’ feasible cost 
reduction estimation within the 
predetermined  groups– Terrace Bay 
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Figure 6.43 Participants’ cost 
estimation of Whole-House 
Retrofit/EnerPHit-Terrace Flat 

 
Figure 6.44 Participants’ feasible cost 
reduction estimation with offsite 
mechanisms-Terrace Flat 

 
Figure 6.45 Participants’ cost 
estimation of Whole-House 
Retrofit/EnerPHit within the 
predetermined groups –Terrace Flat 

 
Figure 6.46 Participants’ feasible cost 
reduction estimation within the 
predetermined  groups– Terrace Flat 

 

When the offsite feasible cost reduction perceptions are reviewed the analysis becomes 

more elaborate. As viewed from the offsite cost analysis comparison section the offsite 

mechanisms do differ significantly on a. the cost and b. on the “service” they provide. 

The majority of the responders considered that the offsite cost reduction would be in the 

“moderate” scale which is translated to 5-10%. The cost analysis showed that the “best 

case scenario” of offsite Internal Wall Insulation offered a reduction of >10% in all 

typologies (Figure 5.24) but also the other two, offsite roof and offsite package may not 

offer reduction on the capital need but they might be beneficial in the long run; i.e. 

additional space (Roof) or unforeseen construction cost/hassle “absorption” (Retrofit 

Package). This demonstrates a fundamental need of the offsite industry to able to 

demonstrate clearly the advantages of their mechanisms. 
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6.2.6 Offsite Incentives  

To address the aim to investigate what feasible initiatives could stimulate the industry 

and by extension the market to take up offsite mechanisms in retrofit a multiple choice 

question was included in the survey asking what would influence the participant to 

choose offsite techniques in a housing retrofit project. The answers included a selection 

of general themes that are common in the construction industry (Figure 6.47) when the 

project mechanisms are selected i.e. from materials to services. In addition, the 

participants were asked to select one of the choices that has the strongest and least 

impact on their decision. As seen from Figure 6.47 the “Better quality of build” holds the 

highest impact in comparison followed by “Shorter build times” and “If cost was lower”. 

The strongest impact percentage is seen on “Better quality of build” followed by “If cost 

was lower” (Figure 6.49) and the least impact was the “Easier” tendering process (Made 

to order). When the results are reviewed within the assigned groups (Figure 6.48 , Figure 

6.51, Figure 6.52) it is observed that the energy background has the strongest opinion in 

percentage (“strongly agree”) in the “Commissioning and guarantee” very close to  

“Better quality of build” but when asked to select the most influential factor, “Better quality 

of build” has the highest significance. Within the non-energy group the “Shorter build 

times” hold the highest percentage towards “strongly agree followed closely to “lower 

cost”. Even though similarly to the energy group the majority did select the “Better 

quality” as the most significant factor, the feasible “lower cost” had a substantial 

percentage (Figure 6.51) leading to a tentative conclusion that the energy background 

participants see higher value on the quality and guarantee while the non-energy give 

almost the same significance to monetary value. Both groups showed that an easier 

tendering process would have the least significant value to choosing offsite (Figure 6.52). 
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Figure 6.47 Participants’ incentives on choosing offsite mechanisms in housing retrofit 

 
Figure 6.48 Participants’ incentives on choosing offsite mechanisms in housing retrofit 
within the predetermined  groups 
 

 
Figure 6.49 Participants’ stronger 
incentive on choosing offsite mechanisms 
in housing retrofit 

 
Figure 6.50 Participants’ incentive with 
the least impact on choosing offsite 
mechanisms in housing retrofit 
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Figure 6.51 Participants’ stronger incentive on choosing offsite mechanisms in housing 
retrofit within the predetermined  groups 
 

 
Figure 6.52 Participants’ incentive with the least impact on choosing offsite mechanisms 
in housing retrofit within the predetermined  groups 

The cost reduction though seems to have a great impact in choosing offsite mechanisms 

(Figure 6.49). The cost model analysis showed that the reduction was relative to the 

offsite application along with the payback timescale. The onsite retrofit though has also 

unforeseen costs with delays or reworking and providing an open and integrated 

approach to communication across the design team, contractor, site team, and 

occupants showing that cost reduction is relevant and more complicated especially due 

to the variety of housing typologies in UK. The highest incentive being the quality of build 

correlates with the opinion that EnerPHit certification can deliver this guarantee (Figure 

6.17) indicating that the offsite retrofit suppliers that associate their delivery with higher 

standards have  better market opportunities. The quality assured investment and 

guarantee has been a major theme in retrofit as it is a high contributor to the 

“performance gap” as Johnston et. al, (2016) remarked in testing predicted and 
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measured Passive House certified buildings: “implementation of appropriate quality 

control systems, such as those required to attain Passive House Certification, may be 

conducive to delivering dwellings that begin to ‘bridge the gap’ between measured and 

predicted fabric performance” (page 147). 

 

6.2.7 Offsite Barriers 

Similarly to inquiring what would be the incentives to selecting offsite mechanisms for a 

housing retrofit the participants were asked to provide their opinions on the feasible 

restrictions. The multiple choice answers included, lack of current regulatory 

requirements, insufficient market demands, insufficient access to relevant information on 

both product and feasible advantages and the perception that Whole-House retrofit could 

not be combined with offsite techniques.   

In comparison to the incentives the answers were more dispersed (Figure 6.53) but the 

three predominant percentages showed that the strongest barriers are the lack of 

regulation motivating these types of market, market demand itself and not enough 

information which also was felt to have the strongest impact (Figure 6.55). The least 

impact correspondingly between the assigned groups seems to be the concept that 

Whole-House retrofit cannot be combined with offsite (Figure 6.57 and Figure 6.58) 

showing that the participants accepted this combination (Offsite and Whole-House 

retrofit). 

 
Figure 6.53 Participants’ barriers on choosing offsite mechanisms in housing retrofit 
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Figure 6.54 Participants’ barriers on choosing offsite mechanisms in housing retrofit 
within the predetermined  groups 

 
Figure 6.55 Participants’ stronger barrier 
on choosing offsite mechanisms in 
housing retrofit 

 
Figure 6.56 Participants’ barrier with the 
least impact on choosing offsite 
mechanisms in housing retrofit 

 
Figure 6.57 Participants’ stronger barrier on choosing offsite mechanisms in housing 
retrofit within the predetermined  groups 
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Figure 6.58 Participants’ barrier with the least impact on choosing offsite mechanisms in 
housing retrofit within the predetermined  groups 
 
This raises the question whether the retrofit industry does not have preconceptions about 

offsite mechanisms but the need to have an external factor to dictate its market 

expansion (regulation, easier information access, market demand). The access to 

information was evident also in the research with cost data not always easy to get hold 

of. The lack of regulatory requirement or market demand has also been explored in other 

research in regards to retrofit supply chains. The “Ready for Retrofit” programme 

(Kenington et al., 2014) reviewed specifically the retrofit market barriers and 

opportunities and revealed that within the barriers identified , demand vs. supply reactive 

behaviour: ‘waiting for the opportunity to be realised’ before taking action, demand 

barriers: lack of costumer’s awareness and interest were key. The same pattern seems 

to be realised on perception in regards to adopting offsite retrofit mechanisms in scale. 

The fact that offsite in new build is receiving a momentum currently could possibly 

influence the retrofit market as well but the same expectation had been anticipated when 

the Zero Carbon Homes was to be realized as a legislation drive but did not.  

Nonetheless, with the introduction of PAS2035 as described in section 2.5.7.5 focusing 

on quality and installer liability in retrofit it is safe to speculate that there could be a 

change in delivery and demand dynamics in the sector of retrofit through offsite 

mechanisms. 
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6.3 Thematic analysis 

Throughout the survey the participants were encouraged to submit free text answers to 

elaborate on their answer. Due to the size of the received responses a basic thematic 

approach was considered the most appropriate route of analysis. Three main themes 

were derived from the questions/answers: 

A. What are the practical challenges to achieving Passive House and EnerPHit 

standard in UK 

B. Do Passive House and EnerPHit guarantee quality of build? 

C. Offsite construction and retrofit combination challenges. 

The free text answers provided a great opportunity for the research to investigate with a 

qualitative approach the responder’s perceptions, in most cases grounded in project 

experience and thus providing a great insight for the research objective.  

A. What are the practical challenges on achieving Passive House and EnerPHit 

standard in UK 

The theme that was repeated the most within the answers was the “competency” of the 

sub/contractors to deliver the project efficiently (Table 6.1 and Table 6.2) with the main 

sub theme in finding and ensuring that could be translated into finding available 

contractors that would ensure the project would be to Passive House/EnerPHit standard 

quality. This is also reflected within the answers given to the question “Please state your 

opinion on the following statement: “There is sufficient knowledge and experience across 

the UK’s construction industry to deliver the EnerPHit standard on UK’s existing housing 

stock”(Figure 6.29). Within the energy group it was observed that a high proportion 

(40%), disagreed and 5%, highly disagreed. The skill shortage to deliver Whole-House 

retrofit and by implication EnerPHit is an issue that has been raised in previous research 

(Heffernan et al., 2015; NEF and EEPB, 2014b; Stieß and Dunkelberg, 2013; Topouzi, 

Killip and Owen, 2017) and reviewed in the first chapter of the thesis as a major barrier to 
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the retrofit industry revealing the challenge of delivering to higher energy standard 

housing.  

The two other issues that were brought up as challenging issues in project delivery were 

the cost related detailing (find a solution that would meet our budget… In particular zero 

cold bridges.) (Table 6.2) and elaborate design and changes late in the design process 

(Table 6.1). Both remarks also have a direct connection to the standard’s approach to 

careful detailing and an obvious increase in cost due to additional labour and material. 

 

Table 6.1 Free text answers from survey regarding involvement in Passive House 

projects 

I. Have you ever been involved in a residential Passive House project? 
If yes please provide a few words on your involvement and what you found most 
challenging 

- Finding a competent contractor to deliver.  

- only a competition (BRE) Project architect. Not all the way through project. 

Fitting PH building in between existing houses. 

- While I have not worked on a Passive House or EnerPHit scheme, I am a 

certified Passive House Designer. 

- Passive House Designer for several projects. Most challenging area is 

dealing with elaborate design and changes late in the design process. 

- Ensuring suppliers / sub contractors and site management understood 

what they were providing 

- finding competent contractor  

- post occupancy evaluation during my phd. Most challenging, the severity of 

the unexpected consequences. 
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Table 6.2. Free text answers form survey regarding involvement in EnerPHit projects 

II. Have you ever been involved in a residential EnerPHit project? 
If yes please provide a few words on your involvement and what you found most 
challenging 

- Finding a competent contractor to deliver. Achieving air tightness was the 

biggest challenge.  

- Princedale Road retrofit. Most challenging was to find a solution that would 
meet our budget and the stringent requirements of PH. In particular zero cold 
bridges 

- I have learnt from colleagues and their projects.  

- Only at design stage; challenges; lack of skills/understanding by everyone; 

money  

- finding competent contractor  

- Involved in early design discussions, but it didn't happen in the end  

- the one above. Passive House (EnerPHit) was the standard aimed. 

Very important to this research is whether offsite mechanisms could act as response and 

market opportunity that could control and guarantee the process of delivery. This 

probability can be debated with two examples; first that the general offsite building 

construction as a process has been reviewed as an opportunity to assist in dealing with 

skills constraints (Nanyam, Sawhney and Gupta, 2017; Taylor, 2009) mainly due to the 

control environment. Secondly, in the answers it is visible that the weight of 

“responsibility” on the “shortcomings” of the delivery falls on the contractor i.e. the 

coordinator of the onsite works. Current offsite construction companies such as the 

reviewed Beattie Passive has its own training academy50 and ModCell® 51 which is an 

offsite straw panel construction company (Passive House Certified Building system) for 

                                                            
50 Company’s official website: www.beattiepassivetrainingacademy.com/ 

51 Company’s official website: www.modcell.com/  
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new build state that the construction can be made by “quick training of local labour”52 . 

Both of these examples, even though ModCell® is not involved in retrofit (yet), show that 

their innovation of delivery does not fall on the innovation of technology per say as both 

methods of construction use straightforward timber frame. What they provide is the 

guarantee of overseeing a project through strategic management and this links to the 

cost analysis in the previous section (5.4.4) where the cost of retrofit package (Beattie 

Passive) showed to be more expensive in comparison but they seem to understand the 

market demand barrier in delivering guaranteed high energy efficient standard housing 

retrofit (EnerPHit). 

The majority of the answers focused on a lack of “competence” in the site delivery with 

the responder’s actual experience informing the challenges of delivering Passive House 

or EnerPHit in the UK. These concerns may be focused on a voluntary “demanding” 

standard but the reality is that the retrofit regulations in regards to its quality are changing 

(PAS 203553) thus contractors would be required to acquire the knowledge necessary. 

On the other hand it has to be considered that the participants may point out that the 

liability falls on the contractors’ part but it might be due to the overall industry 

fragmentation in knowledge sharing; something that Bonfield Review and PAS 2035 aim 

to tackle (Price et al., 2017). Furthermore, research done by Killip,(2013)  on the 

innovation potential for low-carbon housing refurbishment among SMEs in the UK 

construction industry showed that there might be a misconception on the fact that 

contractors only favour traditional approaches. Without claiming that this could have a 

assured prevalent effect the research showed that:  “Where the conditions are favourable 

(as determined by an informal process of multi-factor risk assessment), the response of 

contractors may be to take pride in learning new methods and solving new problem” 

(Killip, 2013, page 528). So could it be argued that the issue of “competence” is really a 

                                                            
52 idid 

53 https://standardsdevelopment.bsigroup.com/projects/2017-04146 
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lack of communication?  The Retrofit Academy54 for example has embedded in their 

training of a Retrofit Coordinator the importance of “toolbox talks” onsite that would focus 

on elements of detailing with the same standards of Passive House (continuity of 

insulation, airtightness, thermal bridging etc.). 

B. Do Passive House and EnerPHit guarantee quality of build? 

The overall census from the answers showed that that the participants had to some 

extent “tentative” opinions on the certainty of guarantee Table 6.3. Even though, it is 

recognised by almost all respondents that the necessity of rigorous testing for 

compliance leads to better construction quality they also pointed that “'Guarantee'  is not 

necessarily a given. The delivery from a competent builder/team was remarked relating 

to the previous question but there is an overall confidence in the standard as shows that 

80% of the respondents supported the standard’s assurance (Figure 6.27 and Figure 

6.28).  This demonstrates that the responders recognise the qualities of required detailed 

design but also the challenges in actual project delivery.  

Table 6.3 Free text answers form survey regarding Passive House and EnerPHit 

construction quality 

III. Do you believe a Passive House or EnerPHit certified building guarantees 
the quality of construction? Please provide a few words for your opinion 

- The high levels of air tightness tend to ensure the rest of the construction has 

been thought about and built well too but there is no guarantee. The 

designer and certifier are likely to have avoided problems but the high levels of 

insulation in themselves create additional risk which has to be managed 

throughout the process. 

- doesn't guarantee but provide a strong 'likelihood' in comparison with not 
aiming for PH  

- Quality Assurance, Comfort, reduced performance gap  

                                                            
54 Retrofit Academy: www.retrofitacademy.org/wp-content/uploads/2016/02/Retrofit-Coordinator-

Prospectus.pdf 
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- Requires more oversight on site, which can only be good. However not 

applicable to finishes etc so not a complete guarantee. But covers most 

important aspects. 

- Airtightness testing provides quality assurance regarding the construction 

approach. For other aspects, inspection is required to ensure compliance. 

- Because it is certified after construction is complete.  

- Yes to a certain extent, the standard is very rigorous and a great deal of 
photographic evidence is required. 

- to a certain level but not totally as it does not guarantee quality of all fit out  

- The certificate only covers the final result which was witnessed during 

construction - it does not provide a guarantee that shortcuts were not taken 
throughout the build process then masked with a band aid prior to final testing  

- certain aspects of the build will be to a higher standard and builders who can 

do this are likely to be much better than the average but not sure they 
guarantee the overall build quality 

- 'Guarantees' is a strong word - without a system which includes post-

occupancy evaluation I don't think it can be justified. I think Passive House or 

EnerPHit makes it much more likely construction will be of high quality, as 

this is essential to deliver those challenging standards. 

- It's only one way to achieve quality and not the only way  

- fact it is verified/checked + all in team working towards a goal  

- Must past certain tests to achieve Passive House or EnerPHit status, but may 
still have design or build defects 

- Yes and no. No, because it is still a learning curve in this country. Yes, in 
the sense that constructions are learning to build with tests in mind. 

It was described in the literature review chapter that the Passive House standard, 

including EnerPHit has, through energy monitoring, demonstrated that the projects 

typically do perform as designed i.e. closing the performance gap. Specifically in the UK, 
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the Passive House Trust55 along with the annual conference offers a platform that 

provides practical evidence of the processes, challenges and limitations which offer a 

critical review and assist on the evolution of the standard to tailor the UK industry and 

vice versa.  This critical review was also observed in the survey responses while 

remarking that the standard’s “strength” stands on the fact(s) of “certification” and 

“testing” revealing that the industry recognises the need to a regulatory “Code of 

Practice”. This is actually being addressed by the BSI Retrofit Standards Task Group56 

following the Bonlfield Review (PAS 2035: www.bsigroup.com) which has not come into 

force yet but is a confident response for the industry and the retrofit market needs. In 

comparison, the EnerPHit standard follows most of the aspects that are proposed PAS 

2035 draft thus showing its feasible macroscale longevity. 

One of the interesting findings in the exploration of the participants’ opinions in the free 

text answers is the cautiousness of stating that the Passive House or EnerPHit 

guarantees quality of construction but at the same time acknowledging the technical 

rigour in the design, detailing and construction it requires for certification.  This 

cautiousness is at some level understandable as the standard is not viewed blindly as 

the “only answer” but could also point to the cultural barriers that UK still has to 

overcome in terms of fully accepting the standard  (Schoenefeldt, 2014). In UK, Passive 

House is still considered as “innovation” where as in other EU countries it has been 

adopted as the mainstream approach (Lynch, 2011)  and even in neighbour Ireland57 has 

been adopted in regional building legislation.  

C. Offsite construction and retrofit combination challenges 

Even though the multiple choice question showed that the least impact of restricting 

offsite was the statement that “Whole-House retrofit cannot be combined with offsite” 
                                                            
55 Web site:www.passivhaustrust.org.uk 

56 PAS 2035:2018 Specification for the energy retrofit of domestic buildings 

57 Dublin local authority makes passive house mandatory in historic vote: https://phai.ie/news/dublin-
local-authority-makes-passive-house-mandatory-in-historic-vote/ 

http://www.bsigroup.com/
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(Figure 6.47, Figure 6.50, Figure 6.52), the writing statements have pointed out 

significant views of the respondents in the feasible limitations of this combination. The 

main subject that was pointed out was that offsite applications on retrofit are highly 

“conditional” on each project combined by the requirement of extensive survey needed 

as the offsite could limit any modifications onsite. Some statements made are not actual 

accurate in regards to the environmental impact that has been studied and proven to be 

less intensive than onsite construction by organisations such as WRAP (Waste and 

Resources Action Programme (www.wrap.org.uk) which again raises the question of how 

informed industry is in regards to offsite. Additionally, it is observed that the industry’s 

perception barriers can be found within different aspects such as technological: “offsite 

methods suffer from more poorer airtightness”, and lack of research or even historical 

failures: “offsite process needs to be proven as beneficial” (Table 6.4), “Whole-House 

retrofit not easily combined with offsite construction” (Table 6.5).  

Table 6.4. Free text answers from survey regarding drivers of offsite mechanisms in 

housing retrofit   

IV. Please state your opinion on what would influence your decision on 
choosing offsite construction techniques for a residential retrofit project 

Other: 

- Practicality. Offsite construction uses a lot of extra material which is 
unnecessary. To externally insulate a wall you only actually need the insulation. 

For offsite construction you need to create a frame for it, and if the windows 

are included as well, a strong frame. Also I think offsite methods suffer from 
more poorer airtightness because there has to be a larger tolerance for 

manufacture. 

- The application of the offsite process needs to be proven as beneficial for 
cost, quality and ease of installation, the issue with retrofit is the quality of 

initial survey information for the existing building - any mistakes here will be 

amplified through the process and any modifications required due to error at this 

initial stage will then negate the quality, cost and speed of install. 

- higher standards (could fall under better build quality), and more eco materials  

- depending on if appropriate  

http://www.wrap.org.uk/
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V. Which of the above options do you think would have the strongest impact 
on your decision? 

Other: 

- Practicality.  

- it depends on the project and the client  

- whether applicable  

- One of the first three depending on circumstances  

- the impact on indoor air quality and comfort  

 

Table 6.5. Free text answers form survey regarding barriers of offsite mechanisms in 

housing retrofit   

VI.  Which of the above options do you think would have the least impact on 
your decision? 

Other: 

- don't actually consider that tendering is likely to be easier - hard to 
nominate within contract  

- it depends on the project and the client 

VII. Please state your opinion on what would restrict your decision on 
choosing offsite construction techniques for a residential retrofit project 

Other: 

- When best to get manufacturer involved in process / complications with 

procurement. You need to commit really early to a specific product, but if 

it's a very large part of the build that can restrict competitiveness of tendering 

- env. impact of offsite not well known/studied  

- Whole-House retrofit not easily combined with offsite construction  
- Market demand depends on price which is too high. Regulatory requirement 

would cause outcry because of cost 
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The participants’ remarks showed that the offsite industry in retrofit still has a long way to 

go as most of the human perceptions are grounded in the fragmented industry structure. 

Similarities on how retrofit with offsite mechanisms and Passive House are perceived 

could be made through the prism of “innovation”. Even though Passive House/EnerPHit 

becomes more popular the comments from Table 6.3 showed both cautiousness but also 

recognition on what the standard brings in terms of quality. Equally, offsite needs to 

prove that it can respond to either misconceptions or include the same “principles” of 

delivery. One of the comments summarises those issues (Table 6.4): The application of 

the offsite process needs to be proven as beneficial for cost, quality and ease of 

installation, the issue with retrofit is the quality of initial survey information for the 

existing building - any mistakes here will be amplified through the process and any 

modifications required due to error at this initial stage will then negate the quality, 

cost and speed of install.  

From the energy and cost modelling presented in the thesis it was demonstrated that 

cost benefit is highly dependable on typology location and offsite method applied. So 

those distinctions in benefits should be accessible and transparent similar to EnerPHit 

where the cost benefits derive in the long term and through careful design.  In retrofit the 

initial quality survey and the unforeseen modifications are actions that are highly 

dependable on work done onsite as part of working with existing buildings. In the 

mechanisms reviewed in this thesis offsite Internal Wall Insulation (WHISCERS) and 

Beattie Passive include those elements in their service delivery. WHISCERS uses 3D 

laser survey ensuring the insulation panels are pre-cut and fitted accurately. The 

technology adopted ensures quality of installation while existing services are removed 

and refitted by the same provider warrants risk management. On the other hand the 

Beattie Passive approach is within the company name, as they have a Passive House 

certified building system. They do incorporate offsite techniques in their project delivery 

ensuring quality control in some elements while by understanding the complexities of 

airtightness and thermal bridging ensuring risk management on site works.  
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The responders showed that they are still very guarded in relation to offsite-retrofit 

approaches which are reasonably recent additions to the existing market. The question is 

though how much their restraint is due to their fear of leaving traditional approaches and 

how much further the offsite market needs to go to gain wider support. 

 

6.4 Social significances and findings 

The survey results provided an important insight to the industry’s knowledge and 

perceptions in two main issues explored in the thesis, the high energy efficient standard 

Whole-House retrofit (EnerPHit) and the application of offsite mechanisms. The 

quantitative and qualitative data that the survey provided explored the attitudes of the 

industry which are invaluable to have a holistic understanding of the applicability of 

offsite in housing retrofit that spans beyond technical findings. Extending beyond 

previous research done to either focused deep retrofit or offsite techniques the research 

offers an original contribution on exploring the evidenced-based technical variables and 

then assesses them through the human attitude “lens”. For this research, the 

questionnaire was influenced by the Theory of Reasoned Action (TRA) and Theory of 

planned behaviour (TPB)(Ajzen, 1991), but did not formally apply the models; specifically 

the questionnaire measured the “desire” to adopt energy efficiency standards and offsite 

mechanisms as well as the participants’ “intent” to do so. For example participants would 

have confidence in higher energy standards or offsite mechanisms (desire) but possible 

onsite complexities would be an obstacle to do so (low intent). The free text answers 

provided a deeper insight and worked in some extend as market analysis on what the 

offsite industry has to overcome, adopt or demonstrate. 
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6.4.1 Standards  

The majority of the participants were confident in their understanding of current 

regulations concerning energy efficient design in new and existing housing. In the 

following questions regarding high efficient energy standards and deep retrofit (Passive 

House and EnerPHit) the level of knowledge remained in high levels within both assign 

groups along with two main facts. The first is the number of participants, including the 

ones with “no energy background”, having participated in either Passive House or 

EnerPHit project and secondly the high level of confidence in the standard’s quality of 

construction. This is also somewhat confirmed by previous research (Hopfe and Mcleod, 

2015) recognising that Passive House is the fastest growing energy performance 

standard and the most recognizable alternative to Zero Carbon (Pitts, 2017; Greenwood, 

Congreve and King, 2017) but opinions differ on whether the UK industry has the ability 

to deliver. That signifies that there is an opportunity for the future of offsite retrofit 

mechanisms to embrace the standard as has been done with Beattie Passive’s TCozy  

6.4.2 Cost 

When the questions centred on offsite construction the participants showed in general 

positive attitudes but when focused on its combination with retrofit the level of knowledge 

and confidence was significantly lower. This is an interesting remark when it also viewed 

in relation to the cost estimation responses. When estimations came to onsite retrofit the 

opinions on cost were relative to the size of the property while the modelling (energy and 

cost) demonstrated that this is not always case. In the case of inquiring about the 

feasible cost reduction (if any) that offsite applications could offer the opinions were 

varied but with an inclination towards “relative cost reduction” which is met (as the 

modelling demonstrated) with the Internal Wall Insulation as the offsite technique. As 

repeatedly mentioned in this thesis, in existing housing stock and especially in older 

typologies unforeseen onsite issues increasing the costs would almost always be the 

case. Thus offsite “standardisation” can only be applied in some elements of delivery 
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possibly making the notion of just “upfront cost reduction” less important to the 

construction quality.   

6.4.3 Incentives and Barriers 

The exploration in the incentives and barriers that would influence the selection of offsite 

mechanisms in retrofit presents an insight not only into the current perceptions of the 

participants but also the prospects that the offsite industry could embrace for better 

quality of build followed by shorter building times and lower cost. Therefore, quality, time 

and cost would be main drivers similar to previous research done on offsite construction 

industry  (Pan et al., 2004a; Goodier and Gibb, 2005).  In the case of exploring the 

opinions on what would constitute a barrier in the selection of offsite mechanisms the 

three predominant themes were: lack of regulation drivers, insufficient access and 

knowledge of product and techniques and lack of market demand. These are factors that 

are equally reflected in the research regarding UK housing retrofit in general (NEF, 2014; 

Killip, 2013a; Dowson et al., 2012; Pelenur, 2013b). 

Finally the thematic analysis from the open text answers somewhat provided a deeper 

insight to the participants’ opinions or experience to both energy standards and offsite. 

The main concerns that rose in delivering either Passive House or EnerPHit standard in 

UK was finding a competent contractor alongside general skill shortages an issue that is 

widely relevant in retrofit and has been extensively brought to the attention from other 

research along with the unintended consequences this entails (Marina Topouzi et al., 

2017). Still the responders recognise that the standard holds the element of assured 

quality delivery due to the rigorous path of certification needed. 

In regards to the combination of offsite techniques the answers had a more tentative 

approach to the success their applicability. This presents an opportunity for the 

offsite/retrofit industry to “prove its worth” and links back to the need for making the 

information available more accessible. Previous research has showed negative public 

attitudes to prefabrication (Pan et al., 2004) due to the mass prefabricated problematic  
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housing during the 1960’s but more recent qualitative research within SMEs  (Killip, 

2013a) showed that there is room of implementation of innovation in retrofit where the 

“conditions are favourable”. Killip, (2013a) summarizes that contractors’ wiliness to 

embrace innovation depends:” on an informal approach to risk assessment, taking 

account of cost, time efficiency, client demands, and installer confidence in the reliability 

of the resulting work” (page 522). From this research similar issues derived in terms of 

perceptions on integrating offsite with retrofit but with the participants’ background 

ranging beyond the contractor “title”. This shows that there is a “standardisation” in the 

incentives of the wider construction industry where the offsite mechanisms need to 

deliver. 

 

6.4.4 Survey and model results interrelated 

The main question is how are these responses interrelating with the energy and cost 

research model?  The EnerPHit standard modelled within the predetermined typologies 

showed a great reduction to the heating demand demonstrating the standard’s effect. 

Similarly, the survey results showed its popularity and confidence within the participants 

indicating an energy standard goal that the offsite manufacturers could aim to include in 

their market strategies. This is delivered by one of the offsite mechanisms modelled, the 

“Offsite Package” from Beattie Passive’s TCozy. In terms of cost the model showed high 

variation within each type of offsite mechanism modelled along with their long term 

payback and range of benefits such as lower upfront cost, additional living (and 

profitable) space and all-encompassing delivery services. When those results are looked 

at in comparison to the survey’s varying answers it is visible that there is a need for more 

transparency and accessibility on the possibilities that offsite mechanisms could offer. 

Even within the research process obtaining straightforward costings was highly 

challenging. It is obviously recognized that unforeseen costs could arise on site since 

existing house conditions could prove unpredictable. The relatively new RealCosting 
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software for example, as used in this thesis has taken a step of “user-friendly” 

breakdown of the retrofit complexities and could be a good opportunity if offsite 

techniques could also be intergraded in the process.  

Regulation and market demand were also recognised as prime barriers for offsite uptake 

in retrofit and are issues previously explored in the retrofit market and innovation in 

general with somewhat conflicting views on whether one drives the other (“bottom up or 

top down”) (Kenington et al., 2014; Greenwood, Congreve and King, 2017).  

Due to the ‘failures’ of previous mass retrofit ventures such as the Green Deal and 

unintended consequences of faulty installations the Bonfield Review (Bonfield, 2016) has 

sparked the expected mandatory building BSI (British Standards Institution)  PAS203558  

(2019) which will ensure quality assurance of retrofit applications. Thus, the regulation 

will set in motion the much needed guarantee in the retrofit products and services and 

possibly the industry will look at the offsite mechanisms to be a delivering force in the 

market. 

In conclusion, the research by examining those available offsite mechanisms showed 

that there are more than technical implications, cost or energy paybacks. A focused 

analysis without an interdisciplinary method would not be comprehensive. The mixed 

method approach illuminated on both technical and non-technical complexities, benefits 

and possibilities this arising market could embrace, especially within the UK‘s typologies 

that are in greater need of being retrofitted.  

 

 

  

                                                            
58 PAS 2035 PAS 2035:2018 Specification for the energy retrofit of domestic buildings: 

https://standardsdevelopment.bsigroup.com/projects/2017-04146 
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7 Conclusions, reflections and further research 

This chapter summarises the overall research project, starting with the rationale and 

original research questions, followed by the results and discussion. The implications of 

the results and recommendations for policy and retrofit professionals are also presented; 

as well as future research guidance and final concluding remarks. 

As evidenced in the literature review (Chapters 2 and 3), there is a social, economic and 

environmental need for housing retrofit in UK. Attempts made so far to address the issue 

collectively have not generated the desirable outcomes but have brought to the forefront 

the factors presented as barriers to the sector’s growth. 

On reviewing this evolution, this research aimed to understand how the latest efforts of 

the industry introducing offsite mechanisms in the retrofit market along with the voluntary 

high energy efficient standard EnerPHit correspond to the current industry needs.  

The research focused on examining how this offsite mechanisms dovetail with aspects of 

regulation, technical implications, financial gain and social acceptance with an emphasis 

on the most challenging typologies found in UK housing stock of pre-1919. In pursuit of 

this analysis the following research questions were raised: 

RQ .1 Can the cost of UK Whole-House retrofit to EnerPHit standard be 

reduced via current offsite mechanisms in pre 1919 UK house 

typologies? 

 

RQ .2 Could the UK industry be confident in adopting this combination as 

common practice? 

 

RQ .3 What innovations are needed by the industry for ‘Whole-House’ retrofit 

practice to have a macro-scale effect in the UK?  
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7.1 Summary of findings, discussion and recommendations 

In response to these questions, the research took upon an interdisciplinary approach in 

its methodology with the regulatory, technical, financial and social interconnected 

aspects as its guide. Those were tested by undertaking energy and cost modelling of the 

most common pre-1919 typologies and conducting an online survey with target 

responders from construction industry professionals. The findings summaries are 

presented in the next sections according to the analysis methods.  

 

7.2 Regulatory findings  

The energy modelling tested three energy standards scenarios for each of the five most 

common pre-1919 typologies in four different climatic conditions in UK.  This was the 

basis data collection and analysis that provided a clear comparison on energy results 

that by extension became the basis for the financial analysis. 

The energy standards compared were the Base case where no retrofit has taken place, 

minimum Building Regulations Part L1B and EnerPHit. Those were chosen so there 

could be a parallel view of the results on an un-retrofitted dwelling (Base Case), a 

dwelling with the minimum “mandatory” standard (Building Regulations) and a “voluntary” 

high energy efficient standard (EnerPHit).   

The results showed that there is a significant difference between typologies and within 

different UK locations (Figure 5.1 and Figure 5.2). In average the differences from a non-

retrofitted dwelling upgraded to minimum Building Regulations resulted to 40-50% 

reduction in heat demand and a staggering ~90% reduction when the equivalent 

typologies were retrofitted to EnerPHit standard. Additionally, the regional differences 

had an average 30% between “warm” (South UK) and “cool” climate (North UK) on the 

Base Case and Building Regulations scenarios. 

This analysis was the initial critical understanding of the impact in energy reduction 

EnerPHit standard could provide throughout the range of typologies. While the Base 
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Case and the Building Regulations scenarios heating energy demand varied according to 

typology and location, the EnerPHit remained “invariable (≤20-25kWh/m2/a). 

Nonetheless, the significant differences of heat demand between typologies and 

locations (Base Case) demonstrates that different amount of materials and labour is 

required to achieve EnerPHIt showing that a “fit for all” applications would be challenging 

through the pre-1919 housing stock. The variations and their impact in retrofit 

applications were explored in more detail in the next section allowing to understand the 

limitations and possibilities of offsite approaches. 

Recommendations:  

Even though the complexity of the pre-1919 housing stock makes the deep retrofit more 

challenging, energy standards such as EnerPHit provide a whole-house approach that 

takes those into consideration. Regulation on retrofit has shown no clear direction in the 

past but some changes such as the future implementation of PAS 2035 show that this 

would be the way forward for energy reduction and construction quality. The offsite 

supply chain therefore is required to have the same attitude approaches on energy 

standards to ensure their macroscale influence. 

 

7.3 Technical findings 

By using the novel software RealCosting that works in conjunction to the Passive House 

Planning Package (PHPP) the research managed to analyse in detail the elements that 

contribute on the energy demand (PHPP) and direct cost related factors (RealCosting). 

This dovetailing of energy and cost in retrofit as a “tool” proved that it could be of great 

significance in understanding retrofit and which factors or elements could impact any 

feasible offsite uptake. 

In the research the cost and energy correlation was evident in the analysis as it was 

feasible to demonstrate heat loss per element, per typology and per location. This has an 

impact on the cost/amount of the necessary application to upgrade and understanding 

the limitations and feasible strengths of adopting offsite in retrofit. For example the End 
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Terrace typology heat loss through its walls accounts for almost 50% of its total elements 

in contrast to the Terrace Flat of 35%. When the same typologies are located in different 

climatic conditions within UK, the heat loss from the same element varies to almost 30% 

from a warm to a cool climate. Consequently to upgrade those elements different 

amounts of insulation is required in each corresponding typology when are located in 

different regions in UK.  Additionally, heat losses through the windows and ventilation 

have the second greater impact in the total heat loss with the amount varying between 

typology and location. To upgrade those two elements (to EnerPHit) a great amount of 

onsite works is usually needed showing that applying offsite construction to retrofit could 

have its limitations. How those impact the upfront cost and payback over time was 

explored in detail in the next section of the analysis. 

Recommendations: 

The modelling showed that according to the typology and location the retrofit amount of 

materials and work differ significantly. This diversity of the housing of the pre-1919 stock 

means that offsite supply chains need to deploy bespoke and unique solutions that offer 

flexibility within their delivery services.  

 

7.4 Financial findings 

The financial analysis took three types of offsite approaches that were applied in the cost 

calculation; Offsite Internal Wall Insulation, Offsite Internal Wall Insulation with Offsite 

Roof and Offsite Package that includes offsite mechanisms in delivering Whole-House 

retrofit under a central coordinator/contractor. The upfront capital cost of the selected 

offsite approaches when compared with onsite construction was only reduced when the 

Internal Wall Insulation was introduced as an offsite element with cost reductions ranging 

between 11 to 19% (Figure 5.24). When the Roof was added as an offsite element in the 

calculation the upfront cost was increased by 18 to 23% (Figure 5.25) and finally the 

Offsite Package increased between 17 to 49% (Figure 5.26).  The variations between 

typologies’ morphology and location reflected the reduced or increased cost accordingly 
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to each offsite measure tested.  For example typologies with relatively larger amounts of 

external wall achieved greater cost reduction with the Internal Wall Insulation as the 

offsite element, typologies with relatively greater roof area had greater cost increase 

when the Offsite Roof element was applied and finally typologies with relatively greater 

floor area had greater cost increase when the Offsite Package was applied.   

The upfront cost differences showed a clear monetary distinction but when analysed in 

terms of payback the cost efficiency determinants show to have a wider implication 

depending on the typology that could essentially amount to a. location and b. “comfort”. 

The “location-energy” determinant relates to the amount of materials need to be used in 

different climatic regions (Warm/Cool) to achieve the same standard. The “location-

energy labelled” house determinant relates to the amount of the House Value increase 

(EPC rating) by the amount of energy efficient measures. Finally, the “location-property 

value” where in the case of additional space is introduced in the property, its value will 

automatically increase. The most evident example of the high impact of this effect can be 

seen when the two regions are compared (Warm/Cool); a dwelling in London (Warm) will 

need less amount of materials to be retrofitted (EnerPHit) than one in Borders (Cool). 

The payback time in Borders, due to harsher climatic conditions is faster and its better 

EPC rating “worth” 17 times more than the one in London (Table 5.2). But then again, 

when it is viewed from the “real estate” spectrum if the retrofit is combined with living 

space addition (Offsite Internal Wall Insulation with Offsite Roof) the asset value of the 

property, especially in the case of London, not only is equal to the cost of works but has 

more than double the return (Figure 5.30).  

The “comfort” element in this aspect of the research is related to the services that offsite 

can offer. As the co-benefit of the increase in internal temperature has been applied in 

monetary terms in the model via previous research done by the RealCosting creators the 

same rationality can be applied in the offsite mechanisms reviewed in this thesis. The 

Internal Wall Insulation with offsite mechanisms includes in its price the cost related on 

removing and reapplying services under one “umbrella”, the Offsite Roof has the 
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possibility to “deliver” an extra room in the property within hours and the Offsite package 

takes the responsibility of “absorbing” the unseen cost and “secure”/guarantee 

certification (EnerPHit).   

The analysis in summary showed that in terms of cost either upfront or payback does not 

only depend on the amount of energy reduction but are other factors that could make the 

offsite construction in retrofit a desirable approach. Still the industry’s perceptions play a 

great role in materialising those approaches.  The survey conducted in this research 

aimed to understand the barriers and incentives that could have an impact on the 

sector’s future. 

Recommendations: 

 With the modelling showing that there are different aspects of “payback” (reduced time 

on the return of investment, additional space, direct increased house value and reliable 

return on investment due to commission guarantee) offsite supply chains can create 

business models incentivising on those aspects that focus on older housing stock. Per 

offsite examples such as Beattie Passive and Energiesprong that ensure delivery, 

investment mechanisms that support retrofit can provide finance aid to homeowners and 

therefore made retrofit more attractive to private markets. These are finance 

mechanisms (for low energy retrofit) are available in other countries such as grants and 

very low interest loans from a state own bank in Germany (KfW)59 and finance 

programme in France (Picardie Pass Rénovation)60 targeting homeowners that provides 

both finance aid and technical support. In UK even though the Ecology Building Society61 

provides mortgage discount rates for low energy retrofits (not as low as the German 

KfW) but offsite mechanisms with the provision of guarantee can make financing retrofit 

more attractive to invest (public and private). 
                                                            
59Kreditanstalt für Wiederaufbau (KfW):  

 www.kfw.de/inlandsfoerderung/Privatpersonen/Bestandsimmobilie/Energieeffizient-Sanieren/Das-KfW-

Effizienzhaus/ 

60 Picardie Pass Rénovation: www.pass-renovation.picardie.fr/project-funded-by-europe/ 

61 Ecology Building Society: www.ecology.co.uk/mortgages/c-change-discounts/ 

http://www.kfw.de/inlandsfoerderung/Privatpersonen/Bestandsimmobilie/Energieeffizient-Sanieren/Das-KfW-Effizienzhaus/
http://www.kfw.de/inlandsfoerderung/Privatpersonen/Bestandsimmobilie/Energieeffizient-Sanieren/Das-KfW-Effizienzhaus/
http://www.pass-renovation.picardie.fr/project-funded-by-europe/
https://www.ecology.co.uk/mortgages/c-change-discounts/
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7.5 Social findings 

The survey objective was to understand the industry’s perceptions on both high energy 

efficient standards on housing retrofit and the integration of offsite mechanisms. The 

survey structure and consequently the results could almost be summarized thematically 

as knowledge, trust and aspiration.  

The knowledge of the Passive House/EnerPHit standard has a high percentage in 

responders with and without a professional energy background demonstrating its 

increasing popularity in the industry. When industry’s knowledge though is examined in 

terms on the costs related to the standard the answers varied and in their majority were 

overestimated. The same diversity of knowledge was evident when the offsite elements 

were questioned; a high majority felt confident on understanding offsite construction but 

when feasible cost reductions were asked about in relation to retrofit the answers highly 

varied. This cost variation is also evident from the energy and cost analysis where 

different offsite approaches showed different results. 

When the question of trust was posed which relates to guarantee or confidence the 

answers provided a great insight to the industry’s perceptions and experience in regards 

to both EnerPHit and offsite mechanisms. The EnerPHit standard, with a high majority in 

both energy and non-energy background groups; was considered to be able to 

guarantee quality of construction. Still, when the free text answers were reviewed it 

seems that there is a tentative constrain in “dogmatically” connect guarantee with 

EnerPHit standard in connection with concerns on current skill sets in the industry to 

deliver (contractors’ competency).  In the case of offsite there is clear shift in opinion 

from when it is applied in new build which has a high percentage of confidence but in the 

case of retrofit there is an evident decline demonstrating that there is a constraint in 

adopting these measures.  

The aspiration relates to the incentive and barriers considered in choosing offsite 

mechanisms.  The stronger incentives were in expressions of higher quality, reduced 

cost and fast application with the quality having the highest impact. In terms of barriers 
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the lack of regulation requirement, market demand and lack of accessible information 

were on the highest percentages with lack of accessible information having a moderate 

higher impact.    

In summary the survey results showed that even though there is support in better energy 

standards such as EnerPHit due to the rigorous design required there is still a level of 

distrust in the industry to deliver. Similarly, the offsite measures in retrofit are viewed at 

some level with “suspicion” meaning that the sector still needs to be established. 

Recommendations:  

The survey showed that participants had a sufficient level of knowledge and trust in 

energy standards, both mandatory and voluntary Passive House/EnerPHit even within 

the group that did not have an energy background. This suggests that even though 

regulation in low energy retrofit is yet undeveloped, voluntary energy standards are 

becoming more accustomed and possibly more trustworthy.  The offsite construction in 

retrofit could possibly follow the route in proving that can deliver those standards with 

fast application, reduce cost and more accessible information. 

  

7.6 Research questions  

This section presents an overview on how the research answered the questions raised. 

 

RQ .1 Can the cost of UK Whole-House retrofit to EnerPHit standard be 

reduced via current offsite mechanisms in pre 1919 UK house 

typologies? 

The research reviewed and compared three types of offsite approaches of retrofit in 

typical pre-1919 UK housing typologies. The findings showed that the “cost reduction” 

per say is more complicated and depends on various factors:  

- Shape: the initial difference is understandably within the different morphology of 

the typologies. With the shape of any building having a vital role in its heating 

energy demand, the upfront cost with either onsite or offsite constructions 
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approaches differ significantly demonstrating that one price “fit for all” would be 

very challenging at the least for this UK stock.  

- Location: Adding to the variation is the location the equivalent dwelling typology is 

situated within the UK, where the climatic conditions differ significantly. This also 

has an effect on the energy heat demand and subsequent materials or works 

needed for retrofit.  Apart from the climatic conditions, the location has an impact 

on the property value of the equivalent typology.  

- Payback: The upfront cost comparison from onsite construction to the three offsite 

approaches analysed showed that only the Internal Wall Insulation with offsite 

measures presented a capital cost reduction in comparison and the cost increased 

when the Offsite Roof is added or the Offsite Package applied, with the latter 

having the highest increase. Due to the morphology of each typology in 

combination to the related cost there is an interconnected impact; high external 

wall (IWI offsite), roof size (IWI offsite and Offsite roof) and floor area (Retrofit 

Package). While it would be expected the same logic would apply when 

considering payback time and Return On Investment additional factors were 

consider to have a great effect such as when taking into account the increase of 

property value due to feasible additional space, access to lower mortgage rates 

due to EnerPHiit certification and reduced snagging and defects due to the quality 

of construction assurance.       

 

RQ .2 Could the UK industry be confident in adopting this combination as 

common practice? 

The research conducted the survey to investigate and identify the industry’s perspectives 

on energy standards, offsite mechanisms and their practical combination.  

- Energy standards: The findings showed that in terms of energy standards, the 

majority of responders had a high level of knowledge with current Building 

Regulations but equal knowledge and confidence was shown for the voluntary 
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Passive Houses and EnerPHit standards of higher energy efficiency. Still, further 

analysis on open text answers showed barriers on existing skills to deliver. 

- Offsite: In regards to offsite the participants suggested both high levels of 

knowledge and confidence in its applications but this was declined in comparison 

when asked for its combination on retrofit. 

- Retrofit with offsite measures: The exploration of incentives on retrofit with offsite 

measures uptake showed that feasible higher quality would have the highest 

impact followed with feasible lower cost and faster delivery in comparison to 

onsite construction. On the other hand the main barriers considered were the lack 

of accessible information on measures followed by regulation and market 

demand.  

 

RQ .3 What innovations are needed by the industry for ‘Whole-House’ retrofit 

practice to have a macro-scale effect in the UK?  

There is a current shift momentum on legislation (Bonfield Review and PAS 2035) that 

focuses more on the quality of delivery in UK housing retrofit than just the set of energy 

targets. Taking into account the Whole-House approach is the foundation to achieve 

these objectives; voluntary high energy efficient standards such as EnerPHit 

encompassing Whole-House retrofit demonstrate that energy reduction and quality go 

hand-in-hand. It can then be presumed that this is the reason for its stronger presence as 

the survey demonstrated. 

The offsite approaches are also becoming more present in the retrofit sector but as this 

research showed by exploring their applicability in the pre-1919 housing stock and 

through the exploration of the industry’s perceptions there are barriers but also great 

potential. Building from existing knowledge and from the main findings of this research a 

number of recommendations could be made for offsite in retrofit to have a feasible 

macro-scale effect in the UK housing retrofit sector: 
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- Accessible data: Accessing data even for this research (apart from the ones 

used) was challenging and it was also identified as the barrier with the highest 

impact in the survey. With the introduction of software like RealCosting there is a 

recognisable beginning on interactive modelling that could be a tool to access 

retrofit possibilities to be used by designers, retrofit co-ordinators and clients. 

Offsite construction has an opportunity to take advantage of such tools.  

- Clearer focus on feasible benefits: Through the energy and cost modelling in the 

pre-1919 typologies it was discovered that there could be a series of benefits 

(cost reduction, payback, comfort, reduced disruption, guarantee of quality 

construction etc.) that could be tailored on different typologies and locations being 

incentives for wider uptake.  

- Compliance with legislation and clear standards: With the legislation 

requirements changing (PAS 2035) the offsite market has an excellent 

opportunity to take advantage of in-house or coordination of specialists that 

guarantee that the delivery is compliant. Additionally, as per Energiesprong’s and 

Beattie Passive’s examples, setting a target (zero bills) or standard (Passive 

House/EnerPHit) provides a clearer objective on the on feasible benefits.  

- Focus on older stock: As stated in the beginning of the thesis there are very few 

examples of offsite approaches on pre-1919 UK stock. Being the most 

challenging the one in greater need retrofit more examples of offsite approaches 

focus on those typologies could provide access to wider markets. 

- Economies of scale and economies of scope: Social housing is the most usual 

starting point for large-scale programmes of deep retrofit. This is practical as 

retrofit can be done in volume and offsite practices such Beattie Passive and 

Energiesprong have started their applications with this housing stock. This is a 

strategy that also reduces the cost i.e. economies of scale that both those 

examples are aiming for (3.2.1 and 3.2.2) and aspire that this will eventually be 

replicated in the private sector. Nonetheless, the data shows that the private 
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occupied and rented sector has the highest percentage of pre-1919 properties 

that are in the highest need of retrofit (majority of the least efficient properties and 

fuel poverty). This begs the question whether better policy and funding 

mechanisms need to for a kick start in this housing stock. Programmes such as 

Green Deal that targeted homeowners did not succeed because of its over-

complexity, high loan interest rates that did not reflect the energy and cost 

payback from the retrofit upgrades. The cost and energy modelling of this 

research showed that there are different types of payback along with the fact that 

offsite mechanisms with consistent standards such as EnerPHit can have reliable 

results. Therefore if government would subsidize supply led initiatives such offsite 

mechanisms in retrofit the capital cost would be reduced, these approaches 

would be more attractive to the private market and their energy assurance would 

guarantee quality, payback and by extension macro scale impact in the reduction 

of fuel poverty and carbon emissions.  Finally, offsite mechanisms have evolved 

with technology and examples such as Retrofit for the Future Cottesmore and 

WHISCERS (3.2.3) show that economies of scope can be applied to meet 

customised solutions that retrofit requires and especially in older stock that 

planning restrictions are more usual. This shows that offsite could overcome 

barriers such as planning or ownership (i.e. visual impact to neighbours from 

external wall insulation in rows of terrace houses). 

 

7.7 Conclusions 

In summary, this research contributed to an increased understanding of the complexities 

and future possibilities of offsite approaches in the UK industry in conjunction with the 

high energy efficient standard of EnerPHit applied to pre-1919 dwellings.  

In terms of policy implications there has been a shift in beginning to regulate housing 

retrofit delivery in UK stemming from the Bonfield Review (PAS 2035) that has been a 



221 
 

result of previous failures and lessons. The EnerPHit standard as demonstrated in the 

research modelling has the potential of achieving great energy reductions and monetary 

payback even if it is in the long run. In terms of how the EnerPHit standard and offsite 

mechanisms correspond to the future national regulation could be summed up; in 

transparency and in guarantee. 

The research tested first-hand the software RealCosting that stemmed and work in 

conjunction with the Passive House Planning Package. The standard and by extension 

its software offers the user the ability to trace inputs and the physics behind them. The 

RealCosting works with the same principle as PHPP and most importantly is a novel 

approach in retrofit cost as there is no current equivalent in the UK retrofit market. This is 

important as it will be able to correspond to the access and awareness of the industry 

and by extension the consumer on the cost of retrofit in both more detail and in clearer 

representations. 

The guarantee that the offsite mechanisms can offer is the absorption of the unforeseen 

costs and technical complexities that any energy model cannot actually predict especially 

in old typologies such as the pre-1919. The quality mark and the consumer protection is 

an issue that has been at the forefront in the Bonfield Review and will be strongly 

presented in the future legislation of PAS 2035. So offsite mechanisms have a great 

opportunity in adapting to this future demand and their presence even if it is still in post 

1950’s properties has a sense of “smart regulation” approach. As presented in  

Greenwood, Congreve and King, (2017) in assessing the UK energy policies: “Non-

mandatory, industry-defined standards of the kind advocated by ‘smart regulation’ are 

widely viewed as having an important potential supplementary role in driving innovation 

and fostering consumer engagement, especially in those localities and markets most 

receptive to environmental sustainability concerns” (page 496). 

 



222 
 

7.8 Research limitations and further research  

After assessing the energy cost and implications on social/technical aspect of the high 

energy efficient standard retrofit and its relation to the offsite construction approach there 

were clear diverse results on cost payback and their determinants. The wide regional 

differences that expand further from just climatic conditions that effect heat demand have 

a direct effect not only on actual monetary gain and investment but also on the prospect 

of regional sustainable markets. 

The research acknowledged the limitations of the modelling versus actual implications 

found on live projects but also understood that the offsite mechanisms could absorb 

those even if their cost is higher. Therefore, with the same mind-set of previous research 

(RealCosting co-benefits) of people placing a monetary value on comfort of better/higher 

internal temperatures would they also be willing to pay more in return of a 

certified/guarantee energy efficient and fast delivering retrofit that would be come from 

single coordinator/supplier? How would that differ between UK regions? 

With offsite mechanisms in retrofit having a stronger presence in UK with examples such 

as Energiesprong and Beattie Passive along with software creation such as RealCosting 

more data and tools are becoming available to quantify the impact offsite has in housing 

retrofit. Further research with modelling and information from existing and live projects 

could ensure to realise more transparent quantifiable data of offsite especially in the 

challenging older UK housing stock.   
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Appendix A – Typology Examples 
 

Below are plans and front elevation examples of the typologies used in the energy and 
cost modelling. The drawings are not to scale. 

 

 

Figure A.1 Detached example  
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Figure A.2 Semi-Detached example 
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Figure A.3 End-Terrace example 
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Figure A.4 Terrace-Bay example 
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Figure A.5 Terrace-Flat example 
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Appendix B – RealCosting modelling process  
 

 

Figure B.1 Location & Climate data input 
 

 

Figure B.2 U-values input 
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Figure B.3 Areas input 
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Figure B.4 Window type, morphology & location input 
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Figure B.5 Thermal bridges input 
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Figure B.6 Cost allocation & breakdown input part 1 



255 
 

 

Figure B.7 Cost allocation & breakdown input part 2 
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Figure B.8  Retrofit evaluation period, co-benefits & calculation method  
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Figure B.9 Results 
 

  



258 
 

Appendix C – Survey 
 

Below is the example of the online survey used in the research  
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Appendix D– Percentage differences between Onsite and Offsite ROI  
 
 

 

Figure D.1 Return On Investment that includes House Value. Percentage difference of 
Offsite measure using Internal Wall Insulation 
 

 
Figure D.2 Return On Investment that includes Residual Value. Percentage difference 

of Offsite measure using Internal Wall Insulation 
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Figure D.3 Return On Investment that includes House Value. Percentage difference of 

Offsite measure using Internal Wall Insulation and Roof 

 

 

Figure D.4 Return On Investment that includes Residual Value. Percentage difference 

of Offsite measure using Internal Wall Insulation and Roof 
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Figure D.5 Return On Investment that includes House Value. Percentage difference of 

Offsite measure using “Retrofit Package” 

 

 

Figure D.6 Return On Investment that includes Residual Value. Percentage difference 

of Offsite measure using “Retrofit Package” 

 

  



271 
 

Appendix E – NVP per typology 
 

 

 
 
Figure E.1 Net Present Value with Internal Wall Insulation-
Detached 
 
The Building Regulations scenario is only below the 30 year 

mark in the Borders region (including House Value). 
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Figure E.2 Net Present Value with Internal Wall Insulation-Semi-
Detached 
 
The Building Regulations scenario is below the 30 year mark in 

all regions with the exception of London (including House Value). 
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Figure E.3 Net Present Value with Internal Wall Insulation-End-
Terrace 
 
The Building Regulations scenario is below the 30 year mark in 

all regions with the exception of London (including House Value). 
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Figure E.4 Net Present Value with Internal Wall Insulation-
Terrace Bay 
 
The Building Regulations scenario is below the 30 year mark in all 

regions with the exception of London (including House Value). 
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Figure E.5 Net Present Value with Internal Wall Insulation-
Terrace-Flat 
 
The Building Regulations scenario when House Value is included 

is below the 30 year mark in all regions with the exception of 

London and in Borders when the Residual Value is taken into 

account. 
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Figure E.6 Net Present Value with Internal Wall Insulation 
and Roof –Detached 
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Figure E.7 Net Present Value with Internal Wall Insulation and 
Roof –Semi-Detached 
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Figure E.8 Net Present Value with Internal Wall Insulation and 
Roof –End Terrace 
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Figure E.9 Net Present Value with Internal Wall Insulation and 
Roof- Terrace-Bay 
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Figure E.10 Net Present Value with Internal Wall Insulation and 
Roof –Terrace Flat 
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Figure E.11 Net Present Value with “Retrofit Package“-
Detached 
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Figure E.12 Net Present Value with “Retrofit Package“-Semi-
Detached 
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Figure E.13 Net Present Value with “Retrofit Package“-End-
Terrace 
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Figure E.14 Net Present Value with “Retrofit Package“-Terrace-
Bay 
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Figure E.15 Net Present Value with “Retrofit Package“-Terrace-
Flat 
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