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Application of unsupervised learning and process

simulation for energy optimization of a WWTP under

various weather conditions

Sina Borzooei , Gisele H. B. Miranda, Soroush Abolfathi,

Gerardo Scibilia, Lorenza Meucci and Maria Chiara Zanetti
ABSTRACT
This paper outlines a hybrid modeling approach to facilitate weather-based operation and energy

optimization for the largest Italian wastewater treatment plant (WWTP). Two clustering methods,

K-means algorithm and Gaussian mixture model (GMM) based on the expectation-maximization (EM)

algorithm, were applied to an extensive dataset of historical and meteorological records. This study

addresses the problem of determining the intrinsic structure of clustered data when no information

other than the observed values is available. Two quantitative indexes, namely the Bayesian

information criterion (BIC) and the Silhouette coefficient using Euclidean distance, as well as two

general criteria, were implemented to assess the clustering quality. Furthermore, seven weather-

based influent scenarios were introduced to the process simulation model, and sets of aeration

strategies are proposed. The results indicate that incorporating weather-based aeration strategies in

the operation of the WWTP improves plant energy efficiency.

Key words | cluster analysis, clustering validation, energy optimization, expectation-maximization

algorithm, Gaussian mixture models, K-means algorithm
HIGHLIGHTS

• A hybrid modeling approach was proposed to improve the energy efficiency of the

largest Italian WWTP under various weather conditions.

• Application of K-means and Gaussian mixture model was evaluated for weather-

based cluster analysis of historical and meteorological data of the WWTP.

• A robust clustering performance evaluation was carried out by the use of Bayesian

information criterion, Silhouette coefficient, and two general criteria.

• The best case-specific clustering model was used to study the impact of various

weather conditions on the performance of the WWTP using the calibrated process

simulation model.

• The incorporation of weather-based aeration strategies can improve the energy

efficiency of the WWTP.
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GRAPHICAL ABSTRACT
INTRODUCTION
Variation in weather conditions can profoundly influence
the performance of wastewater treatment plants (WWTPs)
due to fluctuations in the influent hydraulic characteristics

and organic loads as well as thermal changes (Vo et al.
). At the operational level, preparedness and prompt
response to weather changes have rarely been observed.

Despite the recent advances in real-time monitoring, instru-
mentation, and control of WWTPs (Campisano et al. ), a
large number of utilities continue to operate in relatively

static mode for a wide range of weather and influent con-
ditions (Zhu et al. ). The efficient and adaptive
management of WWTPs under the influence of various

weather conditions is a complex and challenging task
given that an efficient management strategy should offer a
trade-off between energy consumption and stringent regu-
lations on effluent limits while handling the weather-

related fluctuations. Coupling the available mechanistic
mathematical models of the wastewater treatment process
(Monod ; Dold et al. ; Henze et al. ) and

sewer systems (Alley & Smith ; Rossman ) with
weather data can provide valuable information about
resultant dominant impacts of weather conditions on the

performance of receiving treatment systems. However, con-
tinuous monitoring of WWTPs is required to capture the
temporal patterns of key parameters included in these
mechanistic models. This usually can be performed using

high-precision and advanced sensors that are associated
with high cost, as well as labour-intensive procedures
to conduct necessary sampling campaigns. The problems

associated with quality and quantity of monitoring
data are still the most prevalent bottlenecks for more
om https://iwaponline.com/wst/article-pdf/81/8/1541/709976/wst081081541.pdf
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wide-spread use of WWTP models (Martin & Vanrolleghem
; Borzooei et al. , a). Although projected
changes in weather conditions are regionally specific and

highly uncertain, some general patterns can be obtained
by investigating the metrological data collected in the catch-
ment area of WWTPs. Several linear and non-linear data-

driven methods have been proposed to characterize patterns
in a plant’s historical data. Several studies (Karagozoglu &
Altin ; Mines et al. ) implemented linear data-

driven approaches to identify empirical relationships
between environmental data and influent flowrate and
wastewater characteristics of WWTPs. However, due to

the complex and multi-dimensional nature of the problem
as well as spatial and temporal heterogeneity of environ-
mental data, linear data-driven methods are not the best
approach to study the impact of weather conditions on

WWTPs. To this end, several non-linear data-driven
methods have been implemented for knowledge discovery
from various variables in water and wastewater treatment

sectors (Karunasinghe & Liong ; Hu ; Abolfathi
et al. ; Zhu et al. , ).

Data clustering is a non-linear data-driven approach

that can be implemented to partition spatial and temporal
datasets. Data clustering is a general task that can be
performed by several algorithms that can be categorized
based on their definition of clusters and how to find them

(Jain ). Clustering algorithms can be conceptually
categorized into connectivity-based (e.g., hierarchical
clustering), centroid-based (e.g., K-means clustering), distri-

bution-based (e.g., Gaussian mixture models (GMM)) and
density-based (e.g., density-based spatial clustering of
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applications with noise (DBSCAN)). Since there is no objec-

tively correct general-purpose clustering algorithm, the most
appropriate clustering model needs to be identified by trial
for a specific problem (Estivill-Castro ). The clustering

results are highly sensitive to the choice of clustering
algorithm and variables, initial assumptions, and data pre-
processing (Hsu ).

This study adopts the K-means and GMM using the

expectation-maximization (EM) algorithms for clustering
meteorological and historical data of the largest Italian
WWTP located at Castiglione Torinese, Italy. Further, a

robust evaluation methodology is proposed to compare
clustering models. Finally, the best case-specific clustering
configuration was used with the calibrated process simu-

lation model to study the impact of various weather
conditions on the performance of the WWTP.
METHODS

Data collection and pre-processing

The analyzed database in this study was collected from the
largest Italian WWTP located in Castiglione Torinese, Italy.

The plant provides primary and secondary treatment using
the biological nutrient removal activated sludge processes
to treat approximately 590,000 m3/d combined municipal

and industrial wastewater of about 2.1 million of equivalent
inhabitants. The dataset consists of volumetric influent flow-
rate (Qin), ammonium (N-NH4), chemical oxygen demand
(COD), and total suspended solids (TSS) concentrations col-

lected by daily composite sampling from the influent of the
plant from 2009 to 2016. Two environmental variables,
namely precipitation (PI) and temperature (T), were collected

from the Piedmont Environmental Protection Agency. Daily
spatial average values of PI and T were obtained following
the procedure reported in Borzooei et al. (c) from

eight meteorological stations equipped with tipping-bucket
rain gauges, located throughout the catchment area of 38
municipalities in the Piedmont region.

Prior to data clustering, data pre-processing was per-
formed in two main steps: (i) screening of missing elements,
outlier detection, and removal followed by data imputation
and (ii) data normalization. Screening of the dataset to find

the missing elements and outlier detection based on a statisti-
cal parametric approach were carried out using the Stats
package in the R environment (R Core Team ). Further,

the missing and/or removed observations were filled by the
use of a cubic Hermite interpolation method (Catmull &
s://iwaponline.com/wst/article-pdf/81/8/1541/709976/wst081081541.pdf
Rom ) following the procedure reported in Borzooei

et al. (b). The final step of data pre-processing was the
normalization, which was performed by centralization by
mean and scaling by the standard deviation method, as pro-

posed in Zhu et al. ().
Finally, an extensive 20-day composite as well as two-

day dynamic sampling campaigns were carried out in one
of the wastewater treatment modules of Castiglione Torinese

WWTP. The plant consists of four, almost the same,
wastewater treatment modules, each resembling a typical
modified Ludzack–Ettinger (MLE) activated sludge system

with primary clarifiers. Due to restricted resources in the
study, the decision was made to focus the modeling project
on a wastewater module of the WWTP. Further details about

the model development and its data collection process can
be found in Borzooei et al. (a).

Clustering algorithms

Two clustering algorithms, K-means and GMM, were
implemented to partition the two environmental variables

(T, and PI) as well as one WWTP-related attribute (Qin).
The K-means clustering algorithm using an iterative refine-
ment technique was implemented in the Stats and

ClusterR packages of the R environment (R Core Team
). The initialization or the selection of the initial cen-
troids was performed using the K-meansþþ algorithm

(Arthur & Vassilvitskii ). The squared (Euclidean) dis-
tance function was used as a similarity criterion, as it was
found that other distance functions could lead to a diverging
algorithm. The stop criterion was defined as the conver-

gence of the mean and the standard deviation of intra- and
inter-cluster distance. For further conceptual information
about K-means clustering algorithms, Jain () should be

consulted.
Application of the K-means algorithm for clustering has

several benefits such as its easy implementation, guaranteed

convergence, relatively short computational time etc.;
however, it has some critical drawbacks which should be
considered before its implementation. Since the centroids

are randomly chosen, different runs of K-means may yield
very distinct clustering results. Besides, K-means does not
perform well when the clusters are not round-shaped.
Another issue with K-means is that the assignment of data-

points to clusters is deterministic, i.e., a single observation
will be assigned to a single cluster, even if this observation
is in an overlapping region.

GMM, on the other hand, is a probabilistic clustering
method that can overcome some of the K-means drawbacks.
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This method provides a combination of K Gaussian distri-

butions as a weighted sum of Gaussian density functions
as follows (Reynolds ):

p(xjλ) ¼
XM
i¼1

wig(xjμi, Σi) (1)

where x corresponds to a D-dimensional vector composed
of continuous data values, and wi are the mixture weights,
which should satisfy

PM
i¼1 wi ¼ 1. The Gaussian densities

are represented by g(xjμi, Σi), each component being
described by the following D-variate function:

g(xjμi, Σi) ¼ 1

(2π)
D
2 jΣij

1
2

exp � 1
2
(x� μi)

0 X�1

i

(x� μi)

( )
(2)

where μi is the mean vector and Σi accounts for the covari-
ance matrix. A Gaussian mixture model is parametrized by
λ ¼ {wi, μi, Σi}, such that i ¼ 1, . . . , M.

Therefore, instead of identifying clusters only by their cen-
troids, a set of probability distributions are fitted to the data
observations. Consequently, the assumption that the obser-

vations are Gaussian-distributed is less restrictive than
assuming that the clusters are round-shaped. Also, in addition
to the number of centroids, two parameters are used to

describe each cluster: mean (centroid) and standard deviation.
Cluster methods based on GMM, as well as other statistical
models, work iteratively to find the best parameter fit to a data-
set. For this purpose, GMM makes use of an optimization

method. Although several techniques can be employed for esti-
mating λ, the expectation-maximization (EM) algorithm is
often used to obtain the maximum likelihood estimator

(Reynolds ; Steele & Raftery ). The EM starts with
an initial model λ, and iteratively estimates a new model para-
metrized by �λ, such that p(Xj �λ) � p(Xj λ), p being the GMM

likelihood andX the training vectors. As such, the GMM clus-
tering approach can be summarized as the following steps:

• Random selection of Gaussian parameters and fitting
them to the data-points.

• Iterative optimization of the Gaussian parameters.

• Assignment of data-points to their closest distributions,

after convergence of local minima.

Clustering performance evaluation

In contrast to supervised learning, clustering analyses do not
have general and sound evaluation matrices to assess the
om https://iwaponline.com/wst/article-pdf/81/8/1541/709976/wst081081541.pdf
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results obtained from implementing various clustering algor-

ithms (Duda et al. ; Machicao et al. ). There are two
crucial measures to assess clustering performance: the opti-
mal number of clusters and clustering quality. The two

clustering algorithms implemented in this study required set-
ting the number of clusters (K) in advance. Since identifying
the conceptually right K value is a non-trivial problem, the
performance of these two algorithms for different K values

was evaluated and compared. Therefore, the dataset was
clustered by both algorithms with K ranging from 2 to 10
with enough iterations to achieve stable and convergent

results. An approximation to the Bayes factor by Bayesian
information criterion (BIC), as well as the Silhouette coeffi-
cient using Euclidean distance, were further implemented to

compare the models. Using BIC and the Silhouette coeffi-
cient to assess clustering quality can avoid the compared
models being nested. Consequently, both issues of determin-
ing K and the optimum clustering algorithm were solved

simultaneously by choosing the best model.
Bayesian methods have been widely used to select the

number of components in the finite mixture of models

since frequentist inferences could not sufficiently address
this issue (Steele & Raftery ). The BIC, proposed by
Schwarz (), is a criterion for model selection, which

can provide an approximation to the integrated likelihood
over the model parameters. The model with the lowest
BIC is preferred among a finite set of models. The Silhouette

coefficient is the average of a series of quantitative measures,
ranging from �1 to 1, which evaluates the cohesion and
separation characteristics of attributes within the cluster
(Rousseeuw ). A high value of the Silhouette coefficient

of a cluster indicates that the objects are well matched to the
cluster and poorly matched to other neighboring clusters.

In addition to the abovementioned quantitative criteria,

two further measures as general criteria were considered in
the clustering evaluation: first, the resulting cluster from
each model was checked for representing the distinctive

and meaningful characteristics in accordance with the gen-
eral objectives of the study, and second, to avoid too low
and high population in clusters, the number of attributes

in each cluster was monitored to be less than 95% and
more than 5% of a total number of observations.

Wastewater treatment process simulation

Wastewater treatment processes in Castiglione Torinese
WWTP were modeled using GPS-X ver. 6.5.1 simulator

(Snowling ). The modeling boundary conditions were
set according to the available plant information, including
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data collected during sampling campaigns. The modeling

project was conducted for half of a single wastewater treat-
ment module, which resembles the MLE configuration
with a primary clarifier. The developed model consists of

biokinetic activated sludge model no. 1 (Henze et al.
), aeration, hydraulic and transport approximated by a
‘tanks-in-series’ approach, primary and secondary clarifier,
influent, effluent, and energy consumption sub-models.

The implemented sub-models for treatment processes in
the Castiglione Torinese WWTP are summarized in Table 1.

Two performance assessment criteria (PAC) were con-

sidered for this study to evaluate the model performance
under various weather-based scenarios. Firstly the energy-
based PAC was introduced as the daily delivered power

blower in the aeration units, modeled by the adiabatic com-
pression equation (Mueller et al. ). The airflow rate in
the aeration units was modeled by linear proportional-inte-
gral (PI) controllers calibrated based on the measured

dissolved oxygen (DO) data. Secondly, a new function of
the net moving average effluent quality index (EQIn-a) (kg
pollution per unit time) was defined as follows:

EQIn�a ¼ 1
T :1000

ðtþT

t
Qe(t)

Xn
i¼1

wi:max [0, (Ci(t)� Ci,limit)]:d(t)

(3)

where Qe(t) is the effluent flow rate time function (m3/d), n
is the number of effluent quality parameters, Ci(t) and Ci,limit

are the effluent concentration-time function (g/m3) and
limits respectively, wi is the weight factor of the parameter
i, and T is the period considered for the moving average cal-

culation (d) (Borzooei et al. b). Five effluent quality
parameters, namely BOD5, COD, TSS, TKN, and NO3

were considered for the measurement of EQIn-a in this
Table 1 | Sub-models implemented in the developed model for Castiglione Torinese

WWTP

Unit process Process model

Influent wastewater COD states influent
(Snowling )

Primary settling Ideal clarifier (Snowling )

Pre-denitrification ASM1 (Henze et al. )

Aeration system ASM1 (Henze et al. )

Secondary clarification Simple 1-D (Takács et al. )

Denitrification in secondary
clarifiers

ASM1 (Henze et al. )

Energy consumption Operating cost (Snowling )

s://iwaponline.com/wst/article-pdf/81/8/1541/709976/wst081081541.pdf
study, and their corresponding weights were assigned

according to Nopens et al. (). The value of the Ci,limit

corresponding to each of the effluent quality parameters
was considered based on EU Directive 91/271/EEC (EEC

Council ).
Eventually, the developed model was calibrated follow-

ing an iterative step-wise calibration procedure reported in
Borzooei et al. (a), where the calibration parameters

were identified based on sensitivity analysis, available cali-
bration protocols and full-scale observations. For the
aeration units, the α factors (ratio of process water to

clean water mass transfer coefficients) were numerically
tuned based on the recorded DO and airflow data collected
in the sampling period. For calibration of the aeration

energy model, the pressure drop in piping and diffuser
downstream of the blower (ΔPa) and the combined blower
and motor efficiency (e) were numerically adjusted based
on the energy audit data reported in Panepinto et al. ().
RESULTS AND DISCUSSION

Weather-based clustering approach

Following the data pre-processing steps, amongst the total
17,520 records collected in 2,920 days, 57 days with missing
values and 118 days with outliers were identified; thus, data

of 2,745 days were further analyzed for clustering. Two
weather-related attributes, namely PI and T as well as Qin

were considered for the clustering approach. For a given
number of clusters from two to ten, K-means and GMM

algorithms were employed to generate the clusters. Each
cluster was further evaluated initially by BIC index as a
model selection criterion followed by the average Silhouette

coefficient. Figure 1 depicts the results of the clustering
evaluation for both methods adopted in this study.

Figure 1(a) shows the variation of BIC value as the

number of clusters increases; for K-means the BIC value
steadily declines with increasing K as the likelihood satu-
rates. However, for the GMM, the BIC value declines in

the beginning, followed by a jump from K¼ 7 to K¼ 8, indi-
cating a higher degree of complexity associated with GMM.
Additionally, the lower value of the BIC in GMM compared
with K-means for K¼ 7, 9 and 10 is a measure of the pos-

terior probability and trueness of the GMM in these
conditions (Schwarz ). By looking at the BIC, which is
a model selection criterion, and following the two general

clustering evaluation criteria defined previously, the ideal
value of K is 7, since it is the lowest BIC given K � 7.
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When K > 7, some clusters only account for a small fraction
of the data resulting in too low a population in some of the
clusters, which does not meet the general clustering evalu-

ation criteria explained before.
Figure 1(b) shows the variation of average Silhouette as

K increases in both algorithms. The Silhouette coefficient

indicates a quantitative interpretation of cohesion and sep-
aration of each object in its cluster. The higher the value
of the Silhouette, the better the clustering configuration.
Figure 1(b) shows that the maximum value of the Silhouette

index in the K-means algorithm was observed for K¼ 5,
which confirms the viability of the results presented in the
previous study (Borzooei et al. b). However, for the

GMM algorithm, the maximum value of the Silhouette
index was observed for K¼ 2 and 3, followed by 9 and
om https://iwaponline.com/wst/article-pdf/81/8/1541/709976/wst081081541.pdf
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7. The GMM with two clusters (K¼ 2) could only differen-
tiate between days in wet-weather conditions (average
PI≈ 18.1 mm) and dry-weather (average PI≈ 0 mm).

Although this model had the highest average Silhouette
value, the observations in the dry-weather cluster showed
a very high standard deviation, confirming the necessity

for further partitioning. Additionally, the K¼ 2 model
could not cluster observations based on the temperature
clustering attributes. The GMM K¼ 3 included two clusters
representing dry-weather conditions, which were distin-

guished by temperature attribute and one cluster related to
extreme wet weather. This model was rejected since it
could not capture the difference between extreme and

normal wet-weather conditions. GMM with K¼ 9 was
rejected because it provides clusters including data with
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similar characteristics or accounted for less than 5% of the

total dataset (general criteria for clustering evaluation). It
was eventually decided to use K¼ 7, because this configur-
ation shows a lower BIC for both GMM and K-means. At

the same time, the GMM Silhouette index, given K¼ 7,
is higher than the same index for K-means clustering.
Consequently, the entire dataset was classified into seven
weather-based clusters using the GMM algorithm (Figure 2).

Given the importance of the PI attribute in clustering,
the algorithm detects cluster 5 (C5) containing 175 days
with extreme wet-weather conditions, identified by average

PI¼ 20.9 mm and consequently very high flowrates, with
average temperature. Clusters 6 and 7 (C6 and C7) corre-
spond to 352 wet-weather days with average PI¼ 5.3 and

3.7 mm, respectively; however, they are distinguished by
the temperature. Whilst the average temperature of C6 is
the second-lowest among all the clusters (average T¼
9.3 �C), the temperature of C7 is relatively high (average

T¼ 21.1 �C). Cluster 4 (C4) includes 175 days with absolute
dry-weather conditions (PI≈ 0 mm) and very high tempera-
ture (the highest among the seven clusters), while the

flowrate is low. Cluster 2 (C2) and cluster 3 (C3) with 885
and 356 observations are the dry-weather clusters with low
and high temperatures, which correspond to low and high

flowrate, respectively. Finally, cluster 1 (C1) includes days
in dry-weather conditions with medium temperature and
flowrate. Table 2 summarizes the average and standard devi-

ation of variables in each cluster.
Comparing the wet-weather clusters (C5, C6, and C7),

one can observe that there are positive relations between
PI and Qin in all the clusters. The dilution effect due to

wet-weather events prevails only in C5, whereas in C6, all
the influent compositions are more likely to be higher
than most of the dry-weather clusters. High influent concen-

trations in C6 and C2 at low temperatures could be due to
wastewater production patterns in the catchment area,
such as inhabitants traveling in summer. For instance, on

days with dry weather and high temperature, the expected
influent compositions include relatively medium to low
TSS, COD, and NH4 concentrations. However, it should

be noted that among the three influent compositions, COD
and NH4 showed relatively more sensitivity towards the PI

variations in comparison with TSS, which could be the
impact of the first flush event (Gupta & Saul ).

Weather-based process optimization

The developed and calibrated process model was
implemented to assess how the knowledge about the
s://iwaponline.com/wst/article-pdf/81/8/1541/709976/wst081081541.pdf
weather-based influent scenarios could facilitate process

control and improve process efficiency in the Castiglione
WWTP. Several steady-state simulations were performed
under the initial conditions set according to weather-based

influent scenarios identified by clustering. These influent
scenarios contain variations of average Qin and three influ-
ent compositions (COD, TSS, and NH4), as well as air
temperature. Two important parameters for simulating the

biological activities and aeration energy consumptions,
namely wastewater temperature and air temperature at the
inlet of the blower in the aeration units, were altered for

each scenario based on experience-based empirical relations
with air temperature. Scenario-based process optimization
was designed to find an optimal or non-dominated solution

offering a trade-off between energy consumption in aeration
units and effluent quality. Initially, DO set-points of the
implemented and calibrated PI controllers in the aeration
units were identified as the most sensitive parameters in

aeration energy by use of systematic sensitivity analysis
(see Borzooei et al. (a)). For each influent scenario,
sets of DO set-points were identified by the use of the

Nelder–Mead simplex (polyhedron) algorithm (Nelder &
Mead ) to minimize the aeration energy consumption
while managing the EQIn�a¼ 0 accounting for the oper-

ational condition in which all the considered effluent
quality parameters are above the limits of EU Directive
91/271/EEC. Further, the weather-based dynamic operation

was compared with the aeration strategies of the plant
during the sampling period (static DO set-points with
manual changes to manage fluctuations) in terms of
energy consumption of aeration units in one wastewater

treatment module as can be seen in Figure 3.
The simulation results presented in Figure 3 suggest that

possible aeration energy savings range from about 4.1% to

6.8% in seven influent scenarios based on clusters. It
should be noted that the dynamic operation results account
for the conditions with no violation of the effluent con-

straints; hence, all the proposed strategies can enhance the
energy efficiency of the aeration units while meeting all
the effluent limits. In general, the highest aeration savings

were associated with cold weather as the highest aeration
energy consumption and saving was obtained for influent
scenarios related to C2 followed by C6. This could be
because of the wastewater temperature impact on DO solu-

bility; however, nutrient loading is also a critical point to be
considered. On the other hand, the lowest aeration energy
savings were associated with warm-weather conditions

such as C7 and C3, mainly due to their relatively lower
influent compositions.



Figure 2 | Visualization of K¼ 7 clustering for GMM: (a) Qin vs T, (b) Qin vs PI and (c) T vs PI.
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Figure 3 | Potential aeration energy savings in steady-state conditions of the seven influent scenarios for one wastewater treatment module of Castiglione Torinese WWTP.

Table 2 | Average (±standard deviation) of attributes in seven clusters obtained by the GMM algorithm

Cluster
Unit Precipitation (PI) Temperature (T) Flowrate (Qin) Total suspended solids (TSS)

Chemical oxygen
demand (COD)

Ammonia
(NH4)

(mm) (
�
C) (103·m3/d) (mg/l) (mg/l) (mg/l)

C1 0.1± 0.4 15.7± 2.9 574± 46 186.7± 56.1 403.7± 93.9 22.7± 4.7

C2 0.1± 0.1 4.2± 3.7 561.7± 64.2 200.9± 55.9 457.9± 97.5 27.4± 4.5

C3 0.1± 0.3 23.1± 2.3 633.4± 48.6 182.3± 58.6 364.2± 95.4 19.5± 3.3

C4 ≈0.0 24.6± 2.0 502.8± 39.1 151.6± 53.1 314.1± 92.1 17.1± 4.0

C5 20.9± 11.2 14.3± 6.1 702.9± 93.6 153.9± 56.3 291.8± 91.6 16.2± 5.1

C6 5.3± 2.4 9.3± 4.5 655.9± 76.5 187.8± 54.1 406.4± 108.2 23.1± 6.1

C7 3.7± 1.5 21.1± 2.8 613.5± 73.1 175.3± 65.6 361.4± 113.9 18.9± 4.1
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CONCLUSIONS

This study presented the application of K-means and
Gaussian mixture clustering algorithms to assess the

impact of weather variations on WWTP influent charac-
teristics. An average Silhouette coefficient and Bayesian
Information Criterion were used as quantitative clustering

evaluation measures to select the clustering algorithm and
the optimum number of clusters. The results of the cluster-
ing evaluation confirmed that K¼ 7 for the GMM

algorithm provides the best clustering configuration.
Further analysis of the selected configuration highlighted
the importance of precipitation rate (PI), by categorizing
the observation days into dry (clusters C1, C2, C3, and

C4), wet (clusters C6 and C7), and extreme wet (cluster
C5) weather conditions. The results also showed that the
temperature (T) attribute is categorized into low,
s://iwaponline.com/wst/article-pdf/81/8/1541/709976/wst081081541.pdf
medium, and high conditions. Clusters with high PI

have high influent flowrate (Qin) except for the case of

C3, which represents dry weather, high T, and Qin. Dry-
weather and low-temperature days (C2), accounting for
almost 30% of observations, deserve a special note since

they include relatively higher influent TSS, COD, and
NH4 concentrations. Extreme wet-weather days in cold
and warm conditions (C5) identified by PI �10 mm are

of importance for operational preparedness since the Qin

is likely to be double on these days with a dilution
effect in all influent compositions. Finally, seven influent
scenarios based on clustering results were developed

and introduced to the calibrated process simulation
model. A series of steady-state model-based optimization
scenarios were proposed to reduce the energy consump-

tion of the aeration units in Castiglione Torinese
WWTP. The results from the process simulation model
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confirmed that aeration energy consumption among the

seven influent scenarios could be reduced up to 6.8%.
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