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The objective of the stochastic multi-path Traveling Salesman Problem is to determine the expected

minimum-cost Hamiltonian tour in a network characterized by the presence of different paths between each

pair of nodes, given that a random travel cost with an unknown probability distribution is associated with

each of these paths. Previous works have proved that this problem can be deterministically approximated

when the path travel costs are independent and identically distributed. Such an approximation has been

demonstrated to be of acceptable quality in terms of the estimation of an optimal solution compared to

consolidated approaches such as stochastic programming with recourse, completely overcoming the computa-

tional burden of solving enormous programs exacerbated by the number of scenarios considered. Nevertheless,

the hypothesis regarding the independence among the path travel costs does not hold when considering real

settings. It is well known, in fact, that traffic congestion influences travel costs and creates dependence among

them. In this paper, we demonstrate that the independence assumption can be relaxed and a deterministic

approximation of the stochastic multi-path Traveling Salesman Problem can be derived by assuming just

asymptotically independent travel costs. We also demonstrate that this deterministic approximation has

strong operational implications because it allows the consideration of realistic traffic models. Computational

tests on extensive sets of random and realistic instances indicate the excellent efficiency and accuracy of the

deterministic approximation.
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1. Introduction

Owing to its theoretical interest and wide applicability, the Traveling Salesman Problem (TSP) is

undoubtedly one of the most studied problems in combinatorial optimization. Several logistics and

routing problems, as well as other combinatorial problems (such as job scheduling), can be modeled

as a TSP or contain the TSP as a critical sub-problem. In the classical TSP version, travel costs

are deterministically known a priori and associated with arcs representing a unique path to travel

from one node to another (in general, the shortest path between the two nodes).

In this paper, we address a TSP in real routing applications where uncertainty deriving from

numerous factors including accidents, traffic congestion, and bad weather conditions can strongly

influence the travel costs. Furthermore, a decision maker can frequently choose among different

travel paths between the same pair of nodes, e.g., a different combination of streets or trans-

portation modes (as commonly occurs in multi-modal transportation networks). The stochastic

multi-path TSP (smpTSP ) introduced in Tadei, Perboli, and Perfetti (2017) addresses these two

features simultaneously. The authors demonstrate that, despite the increase in the complexity

of the problem, the savings obtained by explicitly incorporating stochasticity into a multi-path

TSP strongly justifies the effort. Unfortunately, the time required to solve the smpTSP increases

exponentially with the problem size and number of considered scenarios. Hence, a deterministic

approximation has been developed to solve large instances. In Maggioni, Perboli, and Tadei (2014),

the same approximation is applied to a real City Logistics application, where routing instances

from the literature have been extended to incorporate real data collected from a sensor network

(Fadda, Perboli, and Tadei 2018, Tadei et al. 2016).

The mentioned approximation, as with several other methods existing in the literature for sim-

ilar problems (see Section 2), assumes that travel cost variations are independent and identically

distributed (i.i.d.). However, it is well known that in real settings, network travel costs are strongly

not independent. First, in traffic conditions, it is common that time delays on a link can be propa-

gated through the preceding and consecutive links. Furthermore, under network congestion, users

are likely to select the less crowded path between two nodes, thus creating dependence on the

times influencing users traveling on different paths. For example, if a high-speed road is congested

because of an accident, then users will choose and tend to congest a sufficiently close regional

alternate route going in the same direction.

For this reason, in this paper, we investigate an smpTSP variant called stochastic multi-path

TSP with dependent travel costs (smpTSPdc), where travel costs are assumed to be identically

distributed, yet just asymptotically independent. In particular, we propose both a stochastic pro-

gramming (SP) and asymptotic approximation approach for solving the smpTSPdc. The relaxation

of the travel cost independence assumption to the asymptotic independence poses challenges that
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must be overcome. First, there does not appear to be any asymptotic approximation approach

in the literature that does not explicitly require cost independence to be proven; therefore, new

theoretical results are required. Secondly, it is necessary to demonstrate how the new assumptions

are consistent with realistic traffic networks.

The contribution of this work is as follows.

1. To the best of our knowledge, we address, for the first time, a TSP problem considering both

multi-path networks and the dependence of travel cost variations. As previously mentioned, only

the asymptotic independence is assumed for the random variations.

2. We formally prove that a deterministic approximation can be derived by using the asymp-

totic theory of extreme values (Galambos 1978). In fact, in this work, we could further relax

another assumption on the shape of the probability distribution of the cost variations required

for the approximation provided in Tadei, Perboli, and Perfetti (2017). This means that the new

approximation holds for a greater number of theoretical distributions.

3. We demonstrate that the asymptotic independence assumption is not overly restrictive in real

applications when addressing realistic traffic models based on the well-known Wardrop’s traffic

equilibrium principle (Wardrop 1952).

4. The proposed deterministic approximation provides a powerful and reasonably accurate deci-

sion support tool to address the smpTSPdc. Its quality and efficiency are assessed through an

extensive set of computational experiments, where both random networks and realistic traffic mod-

els are considered.

Finally, we stress the fact that our new theoretical results are not actually problem-dependent

and, therefore, can be generalized and applied to solve other similar optimization problems under

uncertainty.

The remainder of this paper is organized as follows. In Section 2, we briefly review the literature

available on stochastic TSP and highlight several common assumptions. In Section 3, we present

the mathematical model of the problem. In Section 4, we prove our main results enabling us to

develop a deterministic approximation of the smpTSPdc. In Section 5, we discuss the existing links

between Wardrop’s traffic equilibrium principle and the asymptotic independence of the travel

costs of a network. In Section 6, we present the performance of the proposed approximation using

several numerical examples. Section 7 provides the conclusions of our work and identifies possible

future investigations.

2. Literature review

The TSP is one of the most well-known NP-hard combinatorial optimization problems. It appears

in numerous practical applications, either directly or as a sub-problem. Although many excellent
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books devoted to the TSP have been published in the past (Lawler et al. 1985, Reinelt 1994,

Gutin and Punnen 2002), the problem continues to attract interest among researchers. Conse-

quently, several different generalizations or versions of the problem have appeared in the literature.

Vehicle Routing (Toth and Vigo 2014), Orienteering (Vansteenwegen, Souffriau, and Oudheusden

2011, Hanafi, Mansini, and Zanotti 2020), and Traveling Purchaser (Manerba, Mansini, and Riera-

Ledesma 2017) problems all belong to this broad class. All of these routing problems have also been

addressed in their stochastic counterpart (see, e.g., Kenyon and Morton 2003, Campbell, Gendreau,

and Thomas 2011, Evers et al. 2014, Verbeeck, Vansteenwegen, and Aghezzaf 2016, Beraldi et al.

2017).

The explicit consideration of stochasticity in a problem tends to make it more realistic and,

therefore, is a fundamental feature for those routing problems that embed the optimization of low-

level details, such as the minimization of pollution (green routing). Several papers have appeared

in this context (see, e.g., Ehmke, Campbell, and Thomas 2016, Huang et al. 2017, or Hwang

and Ouyang 2015). Similar to our work, Ehmke, Campbell, and Thomas (2016) approximate the

stochastic problem using a deterministic program. However, their approximation is based on the

pre-calculation of complex expectations considering the load of the vehicles, whereas we propose

an asymptotic approximation.

Of particular importance is the work by Kirkpatrick and Toulouse (1985), which introduces

the stochastic version of the TSP. A TSP model is said to be stochastic if at least one of its

components is assumed to be a random variable. The most traditional approach adopted to solve a

stochastic TSP is to assume that all the random variables considered in the problem are i.i.d. with a

given distribution. For example, in Carraway, Morin, and Moskowit (1989), Kao (1978), Sniedovich

(1981), Huang et al. (2019), the authors study a TSP with independent and normally distributed

arc costs. However, the restrictive assumptions of these problems are not sufficient to ensure that

deterministic methods function correctly in the stochastic setting, as is the case for the Shortest

Path Problem under an exponential probability distribution of the costs (see Eiger, Mirchandani,

and Soroush 1985). In other papers (e.g., Wästlund 2010, Mezard and Parisi 1986), the authors

approach stochastic TSP using statistical mechanics tools such as the mean field approximation or

replica and cavity methods. In all previous works, the arc costs are considered to be i.i.d. uniformly

or exponentially. Other important studies consider variants of the stochastic TSP problem. For

example, in Campbell and Thomas (2008), the authors present two recourse problems and one

chance-constrained model formalizing a stochastic TSP where there is a deadline associated with

each node.

As can be expected, the results derived in all of the aforementioned papers are strongly related

to the properties of the underlying distribution. However, in real applications, travel costs are
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determined by complex mechanisms and thus a precise derivation of the distribution that describes

the variations of the arc costs is a difficult, or even impossible, task. Nevertheless, in the literature,

there are papers where the authors overcome this problem. For example, in Toriello, William, and

Poremba (2013), the authors present and study a dynamic stochastic model of the TSP where

the realizations of the random cost vector connecting a single node to the others is known only

when the salesman is about to leave that particular node. They demonstrate that, regardless of

the distribution, if the costs are assumed to be independent with known expected values and

supports, the problem can be formulated as a dynamic programming problem solvable by an

approximation through a linear programming (LP) model. Another paper that considers a wide

class of distributions is Tadei, Perboli, and Perfetti (2017). In this work, the authors prove that

if the random costs are i.i.d. according to a probability distribution belonging to the Gumbel

distribution domain of attraction, it is possible to derive an asymptotic approximation of the

expected minimum Hamiltonian tour using the extreme value theory.

Despite the fact that the above papers propose approaches that allow the consideration of differ-

ent types of distributions, the i.i.d. assumption on the random arc costs makes them inapplicable

in many real situations. Recently, a considerable number of papers have studied both the spatial

and temporal correlation among travel times in real-life road networks (Fan, Kalaba, and Moore

2005, Samaranayake, Blandin, and Bayen 2012, Chen et al. 2014). They found that real networks

have strongly dependent arc costs. This occurs, for example, when vehicles are prone to delays due

to rush hours, road works, accidents, or in general, when the traffic is congested. Unfortunately,

the vehicle routing literature continues to lack consideration of both stochastic and dependent

costs. In Letchford and Nasiri (2015), however, the authors do study a Steiner TSP with stochastic

correlated costs and find a Pareto frontier through integer programming techniques.

In this work, we consider stochastic and dependent costs and demonstrate that an asymptotic

independence among random travel costs is sufficient to derive an effective deterministic approxi-

mation and to justify the use of realistic traffic models. In particular, the mathematical description

of the flow principles in real traffic networks is an active and demanding field of research. Because

the topic is not central in our discussion, we just recall here one of the most well-known results in

the field, i.e., Wardrop’s first traffic equilibrium principle (Wardrop 1952, Wardrop and Whitehead

1952). This principle states that, at equilibrium, no single driver can unilaterally reduce his/her

travel cost by shifting to another route. That is, the traffic tends to be distributed such that all

alternative paths between two nodes indicate the same cost. Since its introduction in the context of

road traffic research, transportation planners have developed Wardrop’s equilibrium-based models

to predict commuter decisions in real-life networks. Certain models have been and continue to be

used today to evaluate alternative future scenarios and plan future actions on the networks. Other
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models describe how the traffic flow increases with respect to the traffic conditions, such as the

U.S. Bureau of Public Roads (BPR) function (U.S. Department of Commerce, Bureau of Public

Roads 1964). We consider this last model to demonstrate how random dependencies influence the

traffic network.

3. Problem definition and mathematical formulation

Let us consider:

• G= (I,E): a directed complete graph where I is the set of nodes and E = {(i, j) | i, j ∈ I, i 6= j}

is the set of arcs;

• Pij: a set of paths for arc (i, j)∈ E ;

• cpij: a deterministic travel cost for arc (i, j)∈ E on path p∈Pij;

• Θp
ij: a random variable, associated to the probability space (Ω,F ,P), representing the stochas-

tic variation of the deterministic travel cost cpij for arc (i, j)∈ E on path p∈Pij.

Therefore, for each arc (i, j)∈ E on path p∈Pij, the total cost becomes

Cp
ij := cpij + Θp

ij. (1)

The objective of the smpTSP is to determine the expected minimum-cost Hamiltonian tour in G

and identify what path must be used to travel between each pair of nodes in that tour.

In the following, we propose a two-stage SP formulation with recourse for the smpTSP. The first

stage composes the Hamiltonian tour and the second stage selects what path to use between each

pair of nodes (e.g., what transport mode must be used) in the Hamiltonian tour determined in the

first stage. Let us consider a first-stage binary variable yij, (i, j) ∈ E , taking a value of one if node

j is visited directly after node i, and zero otherwise. The smpTSP is defined as follows

min
y

EΘ[h(y,Θ)] (2)

subject to ∑
(i,j)∈E

yij = 1, i∈ I, (3)

∑
(j,i)∈E

yij = 1, j ∈ I, (4)

∑
i∈U

∑
j 6∈U

yij ≥ 1, U 6= ∅,U ⊂I, (5)

yij ∈ {0,1}, (i, j)∈ E . (6)
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The term h(y,Θ), dependent on the solution vector y and, through the costs Cp
ij, on the random

vector Θ (whose components are the random variables Θp
ij), is the following problem

h(y,Θ) := min
x

∑
(i,j)∈E

∑
p∈Pij

Cp
ijx

p
ij (7)

subject to ∑
p∈Pij

xpij = yij, (i, j)∈ E , (8)

xpij ∈ {0,1}, (i, j)∈ E , p∈Pij, (9)

where xpij, (i, j) ∈ E and p ∈ Pij, is a binary variable taking value one if path p is selected for

traveling across arc (i, j), and zero otherwise.

The objective function (2), strictly depending on (7), minimizes the expected total travel cost.

Constraints (3) and (4) are the assignment constraints ensuring that each node is visited once

and only once and connectivity constraint (5) prevents the formation of sub-tours in the solution.

Constraints (8) link variables xpij and yij to each other. In particular, when arc (i, j) is not selected

by the first stage (yij = 0), no path belonging to that arc (i, j) can be used. Conversely, when arc

(i, j) is selected by the first stage (yij = 1), then one and only one path must be selected for that

arc. Finally, (6) and (9) are binary conditions on the variables.

Please note that the above formulation is somewhat different from the one proposed in Tadei,

Perboli, and Perfetti (2017), which included a nonlinear objective function. This new formulation,

rather, leads to an integer linear programming formulation of a deterministic equivalent problem

(see Section 3.1).

3.1. Deterministic Equivalent Problem (DEP) formulation

The stochastic model (2)–(9) is practically impossible to solve because of the difficulty of calculating

the expected value in the objective function as a multi-dimensional integral, which cannot be solved

analytically. A common SP approach to overcome this problem (see, e.g., Wallace and Ziemba 2005)

is to discretize the probability distribution of the random variables by creating a finite number

of possible realizations (called scenarios), and then to approximate the stochastic model with a

deterministic model, in our case called DEP.

Hence, in the following, we consider a set S of possible scenarios. Each scenario s∈ S, occurring

with a probability πs, is associated with a random cost variation Θps
ij for each arc (i, j) ∈ E and

path p ∈ Pij. Because πs is a probability, we have
∑

s∈S π
s = 1. The DEP of the smpTSP can be

stated as follows

min
y,x

∑
s∈S

πs
∑

(i,j)∈E

∑
p∈Pij

xpsij C
ps
ij (10)
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subject to ∑
(i,j)∈E

yij = 1, i∈ I, (11)

∑
(j,i)∈E

yij = 1, j ∈ I, (12)

∑
i∈U

∑
j 6∈U

yij ≥ 1, U 6= ∅, U ⊂I, (13)

∑
p∈Pij

xpsij = yij, (i, j)∈ E , s∈ S, (14)

xpsij ∈ {0,1}, (i, j)∈ E , p∈Pij, s∈ S, (15)

yij ∈ {0,1}, (i, j)∈ E , (16)

where Cps
ij := cpij + Θps

ij for each arc (i, j) ∈ E , path p ∈ Pij, and scenario s ∈ S, and xpsij is a binary

variable taking value the one if path p∈Pij is selected for traveling across arc (i, j)∈ E in scenario

s∈ S, and zero otherwise.

It is worth noting that model (10)–(16), although deterministic, has severe drawbacks. First,

its complexity increases dramatically with the size of S and, therefore, determining an optimal

solution by considering a reasonable number of scenarios can be computationally difficult. Secondly,

to create the scenario set, it is necessary to have precise knowledge regarding the distribution of

all the random variables involved. The proposed approach overcomes both of these drawbacks.

In fact, the complexity of the deterministic model resulting from our approximation presented in

Section 4.2 is not influenced by the number of scenarios, and the knowledge of the random variables

distribution is not necessary.

3.2. The smpTSP with dependent travel costs (smpTSPdc)

As highlighted in Section 2, the smpTSP has always been studied assuming that the stochastic

travel costs are i.i.d. In this paper, however, we specifically address a generalization of the smpTSP

where the random variables Θp
ij representing travel costs have an unknown joint probability dis-

tribution and show inter-dependencies. We just assume them to be asymptotically independent in

their left tail.

Definition 1. Let X1 and X2 be two random variables. They are said to be asymptotically

independent in their left tail if

lim
r→−∞

(
P[X1 ≤ r | X2 ≤ r]−P[X1 ≤ r]

)
= 0. (17)
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That is, assuming two random variables to be asymptotically independent in their left tail means

that the probability of having a large variation of one variable in its left tail is not influenced by

the knowledge of a large variation in the left tail of the other variable.

In this particular case, we require asymptotic independence in the left tail of the random cost

distributions because the approximation approach we develop follows the optimization perspective

of the problem (10)–(16). Therefore, because our problem aims at minimizing travel cost, we are

only interested in the behavior of the cost random variables in their left tail.

Relaxing the strong independence assumption allows us to address the traffic congestion effects

in real networks, where the travel cost independence assumption is frequently unrealistic. We call

this problem variant the smpTSP with dependent travel costs (smpTSPdc).

4. Deterministic approximation of the stochastic problem

To develop the deterministic approximation presented in this section, we consider the smpTSPdc

as a discrete choice model where the decision maker selects the best alternative among a finite set

of mutually exclusive ones, i.e., the best path to move from node i to node j. The approximation

functions in two main steps; the first, where it is possible to derive how the costs of the best

alternatives are asymptotically distributed, and the second, where an estimator for the travel

cost variations can be analytically determined. This approach has been used previously in other

application domains such as location, routing, loading, and packing problems (Perboli, Tadei, and

Baldi 2012, Tadei et al. 2012, Perboli, Tadei, and Gobbato 2014). However, the independence of

the stochastic variables has never previously been relaxed.

To set our approximation, we adopt an optimistic view (i.e., guided by the objective function of

the smpTSPdc) and relax the problem by assuming that we can choose among all scenarios the one

that minimizes the random travel cost variations. More precisely, we define Θ̃p
ij as the minimum

random travel cost variations Θps
ij among all scenarios s∈ S, i.e.,

Θ̃p
ij := min

s∈S
Θps
ij , (i, j)∈ E , p∈Pij. (18)

We also define F p
ij(x) as the survival function of Θ̃p

ij, i.e., F p
ij(x) = P[Θ̃p

ij >x].

Remark 1. Because Θp
ij are asymptotically independent in their left tail, then Θ̃p

ij are also

asymptotically independent in their left tail.

Now, it is apparent that among all the alternative paths from node i to node j, the path indicating

the least cost will be selected in the optimal solution of the smpTSPdc. For simplicity and without

loss of generality, we assume such path to be unique. We define C̃ij as the cost of such optimal

path for traveling from node i to node j, i.e.,

C̃ij := min
p∈Pij

(
cpij + Θ̃p

ij

)
, (i, j)∈ E . (19)
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Note that C̃ij remains a random variable because of its dependence on Θ̃p
ij. We call its survival

function

Gij(x) = P[C̃ij >x]. (20)

Clearly, a variable xpij will take the value one in an optimal solution of the smpTSPdc if and only if p

is the optimal path from i to j and, therefore, variables xpij can be surrogated by the already existing

variables yij. Hence, because of the linearity of the expected value, problem (2)–(9) becomes

min
y

∑
(i,j)∈E

EΘ

[
C̃ij

]
yij (21)

subject to constraints (3)–(6).

Unfortunately, the distribution of C̃ij is unknown because the distribution of Θ̃p
ij is unknown.

Thus, the expected value in (21) is not solvable. We provide in the following section an asymptotic

approximation of the distribution of C̃ij, or, equivalently, of its survival function Gij(x).

4.1. Asymptotic approximation of Gij(x)

First, note that by subtracting a constant α from all random cost variations Θps
ij , the optimal

solution of problem (2)–(9) does not change. In fact, let us denote the original objective function

by

f0 :=EΘ

 ∑
(i,j)∈E

∑
p∈Pij

xpij
(
cpij + Θp

ij

) ,
and the same objective function after the normalization of the cost variations by

fα :=EΘ

 ∑
(i,j)∈E

∑
p∈Pij

xpij
(
cpij + Θp

ij −α
) .

Then, the following condition holds

fα = f0−α
∑

(i,j)∈E

∑
p∈Pij

xpij =

= f0−α
∑

(i,j)∈E

yij =

= f0−α|E|.

Hence, we can restate (19) as

C̃ij = min
p∈Pij

(cpij + min
s∈S

(Θps
ij −α)), (i, j)∈ E . (22)

Theorem 1. Let us consider any arc (i, j) ∈ E. If the random cost variations Θp
ij of each path

p∈Pij are asymptotically independent in their left tail, and if

lim
|S|→+∞

(F p
ij(x+α|S|))

|S| = exp(−eβx) for some real number β > 0 and for some sequence α|S|,

(23)
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then

lim
|S|→+∞

Gij(x) = lim
|S|→+∞

P[C̃ij >x] = lim
|S|→+∞

P
[

min
p∈Pij

(cpij + min
s∈S

(Θps
ij −α|S|))>x

]
= e−Aije

βx

, (24)

where

Aij =
∑
p∈Pij

e−βc
p
ij . (25)

Proof. Let Pij = |Pij| and Fij(x1, x2, . . . , xPij ) be the unknown joint survival function of all the

Pij random variations associated to the paths connecting node i to node j under any given scenario

s∈ S, i.e.,

Fij(x1, x2, . . . , xPij ) = P[
⋂

p=1,2,...,Pij

Θps
ij >xp]. (26)

Using De Morgan’s laws and the property of the probability over the union of a finite number of

events, we have that

Fij(x1, x2, . . . , xPij ) = P[
⋂

p=1,2,...,Pij

Θps
ij >xp] =

= 1−P[
⋃

p=1,2,...,Pij

Θps
ij ≤ xp] =

= 1−
Pij∑
k=1

(−1)k+1
∑

{p1,p2,...,pk}∈2
Pij

P[Θp1s
ij ≤ x1,Θ

p2s
ij ≤ x2, . . . ,Θ

pks
ij ≤ xk]

(27)

where 2Pij is the power set of Pij, i.e., the set containing all subsets of Pij.

Without loss of generality, let us consider two paths p1, p2 ∈Pij. From Def. 1, it can be seen that

lim
x1→−∞,
x2→−∞

P[Θp1s
ij ≤ x1|Θp2s

ij ≤ x2] = 0, s∈ S, (28)

or, equivalently

lim
x1→−∞,
x2→−∞

P[Θp1s
ij ≤ x1,Θ

p2s
ij ≤ x2]

P[Θp2s
ij ≤ x2]

= 0, s∈ S. (29)

Note that (29) can be generalized as follows:

lim
x1→−∞,
x2→−∞

P[Θp1s
ij ≤ x1,Θ

p2s
ij ≤ x2]

P[Θp2s
ij ≤min(x1, x2)]

= 0, s∈ S. (30)

In fact, when x1→−∞ and x2→−∞, it holds that

0≤
P[Θp1s

ij ≤ x1,Θ
p2s
ij ≤ x2]

P[Θp2s
ij ≤min(x1, x2)]

≤
P[Θp1s

ij ≤min(x1, x2),Θp2s
ij ≤min(x1, x2)]

P[Θp2s
ij ≤min(x1, x2)]

→ 0. (31)

The limit in (30) has the following important interpretation: when both x1 and x2 tend to −∞,

the implication is that P[Θp1s
ij ≤ x1,Θ

p2s
ij ≤ x2]→ 0. Hence in (27), if x1→−∞, x2→−∞, . . . , xPij →
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−∞, all probabilities including the intersection of two or more events are negligible. Thus, when

x1→−∞, x2→−∞, . . . , xPij →−∞,

Fij(x1, x2, . . . , xPij )→ 1 −
∑

p=1,2,...,Pij

P[Θps
ij ≤ xp], (32)

under any scenario s∈ S.

Because of (22), P[C̃ij >x] can be written as a function of |S| as follows

P[C̃ij >x] = P[ min
p∈Pij

(cpij + min
s∈S

(Θps
ij −α|S|))>x] =

= P[
⋂
p∈Pij

(cpij + min
s∈S

(Θps
ij −α|S|))>x] =

= P[
⋂
p∈Pij

(min
s∈S

(Θps
ij −α|S|))>x− c

p
ij] =

= P[
⋂
p∈Pij

⋂
s∈S

(Θps
ij −α|S|)>x− c

p
ij] =

= P[
⋂
p∈Pij

⋂
s∈S

Θps
ij >x− c

p
ij +α|S|] =

= P[
⋂
s∈S

⋂
p∈Pij

Θps
ij >x− c

p
ij +α|S|] =

=
∏
s∈S

P[
⋂
p∈Pij

Θps
ij >x− c

p
ij +α|S|] =

= [Fij(x− cp
1

ij +α|S|, x− cp
2

ij +α|S|, . . . , x− cp
Pij

ij +α|S|)]
|S|. (33)

From the assumption of (23), it can be observed that, when |S|→+∞,

F p
ij(x+α|S|)→ 1, p∈Pij. (34)

In fact, if F p
ij(x+α|S|) was bounded by any real number strictly less than one, then (F p

ij(x+α|S|))
|S|

would tend to zero for any real number x and that would contradict (23).

Using (34), one has that lim|S|→∞(x+α|S|) =−∞, x∈R. Thus, under any scenario s∈ S

lim
|S|→∞

(x− cpij) +α|S| =−∞, p∈Pij, x∈R. (35)

Because of (32) and (35), when |S|→+∞,

Fij((x1− cp
1

ij ) +α|S|, (x2− cp
2

ij ) +α|S|, . . . , (xPij − c
p
Pij

ij ) +α|S|)→ 1−
∑
p∈Pij

P[Θps
ij ≤ (xp− cpij) +α|S|].

(36)

Hence, using (33) and (36), one obtains

lim
|S|→+∞

P[C̃ij >x] = lim
|S|→+∞

e
|S| log(1−

∑
p∈Pij

P[Θ
ps
ij ≤(x−cpij)+α|S|]). (37)
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Because (35) implies that lim|S|→+∞ P[Θps
ij ≤ (xp− cpij) +α|S|] = 0, p∈Pij, s∈ S, then (37) leads to

lim
|S|→+∞

P[C̃ij >x] = lim
|S|→+∞

e
−|S|(

∑
p∈Pij

P[Θ
ps
ij ≤(x−cpij)+α|S|]) =

= lim
|S|→+∞

(e
−(

∑
p∈Pij

P[Θ
ps
ij ≤(x−cpij)+α|S|]))|S| =

= lim
|S|→+∞

∏
p∈Pij

(e−P[Θ
ps
ij ≤(x−cpij)+α|S|])|S| =

= lim
|S|→+∞

∏
p∈Pij

(1−P[Θps
ij ≤ (x− cpij) +α|S|]))

|S| =

=
∏
p∈Pij

lim
|S|→+∞

(F p
ij((x− c

p
ij) +α|S|))

|S|. (38)

Now, owing to (23) and (38), it holds that

lim
|S|→∞

P[C̃ij >x] =
∏
p∈Pij

exp(−eβ(x−cpij)) = e−Aije
βx

. (39)

This proves the theorem. �

Basically, Theorem 1 states that if the unknown probability distribution of the stochastic cost

variations satisfies assumption (23), then the costs asymptotically converge in the distribution to

a Gumbel function (double exponential), even if the costs are asymptotically independent. Note

that the expression Aij in (25) represents the “accessibility” in the sense of Hansen (1959), which

is a measure of “visibility” that the decision maker has for each arc (i, j) on the entire set of

its alternative paths Pij. In turn, this accessibility depends on a parameter β > 0 that must be

calibrated (see Section 6.1) and represents the dispersion of the alternatives in the decision making

process. A small value of β means to consider a large number of alternatives to choose from, while

a large value means to concentrate the choice just on a small subset of alternatives (when β→+∞,

the set of alternatives collapses to the most convenient one).

4.1.1. Applicability of Theorem 1. After having presented, proved, and commented on

Theorem 1, we now present a brief discussion highlighting the vast applicability of the results

obtained by demonstrating the mildness of assumption (23) made on the structure of the distribu-

tion of the random cost variations.

First, note that assumption (23) can be equivalently rewritten as

lim
|S|→+∞

(F p
ij(

1

β
x+α|S|))

|S| = exp(−ex)

and thus, for an accurate calibration of β, it just requires that the distribution belongs to the

domain of attraction of the Gumbel distribution. This domain consists a large family of distri-

butions including common distributions such as the Normal, Gumbel, Weibull, Logistic, Laplace,
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Lognormal, and numerous others (i.e., any distribution of the form 1− e−P (x), where P (x) is a

polynomial function). Hence, (23) can actually be considered an extremely mild assumption.

Secondly, it is important to notice that (23) is a more general assumption compared to the one

used in Tadei, Perboli, and Perfetti (2017) and in similar approaches appearing in the literature,

where a more restrictive behavior on the distribution tails is imposed. In particular, the following

asymptotic exponential behavior for the left tail of the distribution F p
ij(x) is required

lim
y→−∞

1−F p
ij(x+ y)

1−F p
ij(y)

= eβx for some real number β > 0. (40)

We prove in the following proposition that (23) is a more general assumption than (40).

Proposition 1 Assumption in (40) implies assumption in (23).

Proof. From (23), it holds that lim|S|→+∞α|S| =−∞. From (40), we have that

lim
|S|→+∞

1−F p
ij(x+α|S|)

1−F p
ij(α|S|)

= eβx. (41)

Using (23), (41) becomes

lim
|S|→+∞

1−F p
ij(x+α|S|)

1
|S|

= eβx,

and thus,

lim
|S|→+∞

F p
ij(x+α|S|) = lim

|S|→+∞

(
1− e

βx

|S|

)
.

Hence,

lim
|S|→+∞

(F p
ij(x+α|S|))

|S| = lim
|S|→+∞

(
1− e

βx

|S|

)|S|
= exp(−eβx).

This proves the proposition. �

This means that any distribution satisfying (40) also satisfies our assumption. Conversely, it

is easy to verify that several of the previously mentioned distributions satisfying (23), e.g., the

Normal and Lognormal, do not follow the behavior expressed in (40).

4.2. Deterministic approximation of smpTSPdc

It is worth noting that given the result of Theorem 1, it is also possible to derive for each arc,

a Multinomial Logit model for the choice probability of its alternative paths (see Tadei, Perboli,

and Manerba 2018). This could lead to a continuous assignment of paths to arcs, and to a possible

feasible solution of the proposed smpTSPdc through rounding. However, given the hard feasibility

constraints of our problem, we noticed in preliminary experiments that this rounding leads to

considerably poor approximated solutions. Therefore, we decided instead to exploit the knowledge

of the asymptotic distribution of the random cost variations to calculate their expected value, and

thus to achieve an approximated model for the problem based only on deterministic parameters.
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More precisely, if |S| is sufficiently large, the limit obtained in (24) can be used as the survival

function of costs C̃ij and therefore, we can calculate their expected value as follows

EΘ[C̃ij] =

∫ +∞

−∞
x dP[C̃ij ≤ x] =−

∫ +∞

−∞
x dP[C̃ij >x] =Aijβ

∫ +∞

−∞
xe−Aije

βx

eβxdx. (42)

After manipulation (see details in Appendix A), the above expected value becomes

EΘ[C̃ij]≈−
1

β
(ln(Aij) + γ), (43)

where γ =−
∫∞

0
ln(t)e−tdt≈ 0.5772 is the Euler constant.

Now, using (43) and disregarding the constant terms, the following deterministic approximation

of the stochastic problem (2)–(9) is obtained

min
y
− 1

β

∑
(i,j)∈E

yij ln(Aij) (44)

subject to constraints (3)–(5), and (6).

Note that the deterministic approximation developed allows a reduction of the combinatorial

structure of the DEP of the proposed smpTSPdc in formulation (10)–(16) to a common TSP, over-

coming the complexity resulting from the presence of both multiple paths and multiple scenarios.

5. Asymptotic independence of the travel costs for realistic networks

In this section, we discuss how requiring the random cost variations to be asymptotically inde-

pendent in their left tail (see Def. 1) is not in any manner a restrictive condition to exhaustively

model the stochastic behavior of a realistic traffic network. Our argument is performed by proving

that, under common conditions for realistic networks, travel costs are actually highly correlated,

yet remain asymptotically independent in their left tail.

Realistic networks can include peculiarities compared to theoretical networks. In the following,

we list and discuss the realistic features of a network that we want to consider and that make

reasonable use of our approximation approach.

1. In real routing applications, the support of random travel cost variations is such that the

total cost of a path remains strictly positive. Hence, for each (i, j) ∈ E , p ∈ Pij, the random cost

variation Θp
ij is lower-bounded by −cpij.

2. The travel cost on a given path increases when the flow of traffic increases on the same path.

More precisely, we assume that there exists an increasing function Hps
ij such that

Cps
ij =Hps

ij (Qps
ij ), (i, j)∈ E , p∈PUij , s∈ S, (45)

whereQps
ij denotes the actual flow of traffic on path p∈PUij under scenario s∈ S. Such an assumption

is commonly made in transportation engineering studies (see, e.g., U.S. Department of Commerce,
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Bureau of Public Roads 1964, where the cost of each path is evaluated by the Bureau of Public Road

function). Please note that the considered function Hps
ij also depends on the particular conditions

of a specific scenario s, such as bad weather or accidents.

3. The network dynamics are coherent with the well-known concept of user equilibrium based

on Wardrop’s first principle of route choice (Wardrop 1952, Wardrop and Whitehead 1952). We

recall that Wardrop’s first principle states: “The traffic arranges itself in networks such that all

used routes between an origin and destination pair have equal and minimum costs, whereas all

unused routes demonstrate greater costs”. The principle derives basically from the classical game

theory field, and in particular from Nash’s equilibrium (see, e.g., Osborne and Rubinstein 1994).

This means that the network traffic tends to equilibrium where each traveler cannot obtain savings

in travel costs by choosing a different path. Let us denote by PUij ⊆Pij, the subset of paths used

at the equilibrium for arc (i, j) ∈ E . From Wardrop’s first principle, given a scenario s and an arc

(i, j)∈ E , if p1, p2 ∈PUij , the relative random costs Cp1s
ij and Cp2s

ij are equal, i.e.,

Θp1s
ij −Θp2s

ij = cp
2

ij − c
p1

ij (i, j)∈ E , p1, p2 ∈ PUij , s∈ S. (46)

Equation (46) demonstrates the high correlation that exists among the random cost variations.

4. The user equilibrium state discussed in Wardrop’s first principle is virtually never achieved,

i.e., the network is essentially always in transition from an equilibrium to another one. This is

reasonable as the theoretical equilibrium is continuously perturbed by new users entering or exit-

ing the network (and, therefore, changing the amount of flow on the different paths). Moreover,

perturbations also depend on the stochastic nature of the travel costs, which can vary because of

accidents or other unforeseen events.

We can now state the following proposition.

Proposition 1. Let us consider a realistic traffic network G= (I,E) (defined as in Section 3),

i.e., a network where

• Cps
ij > 0, for each arc (i, j)∈ E, each path p∈Pij, and each scenario s∈ S;

• the cost on a path increases as the flow on the same path increases, according to an increasing

function Hps
ij as in (45);

• condition (46) holds at the user equilibrium (Wardrop’s first principle).

Then, when the network is not at equilibrium, for any pair of different paths p1, p2 ∈Pij of any arc

(i, j)∈ E, the following condition holds

lim
r1→−cp

1

ij ,r
2→−cp

2

ij

P[Θp1

ij ≤ r1 | Θp2

ij ≤ r2] = 0. (47)
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Proof. See Appendix B.

The above proposition basically states that the travel cost variations Θp
ij are asymptotically

independent in the right-hand side neighborhood of the lower bound (−cpij) of their distribution

support. Note that this is not strictly equivalent to the definition of asymptotic independence

proposed in Definition 1, which considers an unbounded support. However, in our realistic case, it

is reasonable to evaluate the asymptotic independence for the largest possible negative variations of

the costs, i.e., when the costs tend to zero. Finally, note that the behavior described in Proposition

1 holds when the network is not at equilibrium. This is compatible with the previous observation

where realistic traffic networks are virtually never at equilibrium because of perturbations. Thus,

the assumption made in Section 3.2 holds and the use of the derived approximation approach

(which is based on such an assumption) is suitable for realistic networks as well.

6. Computational experiments

To assess the performance of the proposed approach, we compared the results obtained by the

Deterministic Approximation (DA) proposed in Section 4.2 with those of the DEP formulated in

(10)–(16) on a large set of benchmark instances. The DA was implemented using MATLAB v9.4 and

its internal integer solver; the DEP was solved using Cplex v12.7.1 and its C++ Concert Technology.

In all experiments, we considered a discretization of the probability space in 100 scenarios (|S|=

100). This choice enforces both in-sample and out-of-sample stability of the problem (see Kaut

et al. 2007). We executed all experiments on an Intel Core I7 2.5 GHz workstation with 16 GB

RAM, running the Windows 10 operating system.

In Section 6.1, we propose an empirical method to calibrate the parameter β, required to calculate

our deterministic approximation. In Section 6.2, we discuss the generation of the instances. In

Section 6.3, the computational results are given.

6.1. Calibration of parameter β

As mentioned previously, the DA depends on the parameter β, which must be calibrated. In all

experiments, the calibration of β was accomplished as in Tadei, Perboli, and Perfetti (2017). More

precisely, let us consider the standard Gumbel distribution exp(−e−x). If an approximation error

of 2h is accepted, then exp(−e−x) = 1 ⇐⇒ x= 6.08 and exp(−e−x) = 0 ⇐⇒ x=−1.76. Hence, if

the support of the unknown distribution of the cost variations is [m, M ], then

β(m− ζ) =−1.76, (48)

and

β(M − ζ) = 6.08, (49)
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where ζ is the mode of the Gumbel with distribution exp(e−β(x−ζ)). Then, by subtracting (48) from

(49), we obtain

β =
7.84

M −m
. (50)

In our experiments, m is the minimum arc cost of the considered instance and M := 2 |P|maxfdet|I| ,

where |P|max = max(i,j)∈E |Pij| is the number of paths considered between each pair of nodes. fdet

is the value of a deterministic TSP obtained by choosing, for each arc, the minimum cost path. In

this manner, we hold M to be proportional to the magnitude of the average cost variation in the

final solution (fdet/|I|), without considering paths with extreme costs.

6.2. Benchmark instances

To better assess the quality and efficiency of our approximation, we generate two different sets of

instances. In the first set (presented in Section 6.2.1), we use well-known distributions for modeling

the random cost variations; in the second set (presented in Section 6.2.2), we use a more realistic

traffic model.

In both sets, nodes are randomly selected from a database providing the position of 16,862 Italian

locations (http://www.math.uwaterloo.ca/tsp/world/it16862.tsp. Last access: Ovtober 13,

2019) in terms of Cartesian coordinates, and we assume to have the same number |P| of available

paths for each arc of the network, i.e., |P|= |Pij|, (i, j)∈ E .

6.2.1. Randomly generated instances In this set of random instances, the deterministic

costs cpij are computed as follows cpij := τpdij, where dij is the Euclidean distance between nodes i

and j, and τp is randomly sampled in the interval [1,3]. We first create five different deterministic

instances for each combination of number of nodes (|I|= {50,100}) and number of paths (|P|=

{3,4,5}), i.e., 30 deterministic instances in total. For each deterministic instance, the random cost

variations Θps
ij , (i, j) ∈ E , p ∈ Pij, s ∈ S are generated according to five different marginal distribu-

tions (Gumbel, Normal, Logistic, Laplace, and Uniform). The set of randomly generated instances

is therefore composed by 150 instances. It is important to note that the Uniform distribution does

not satisfy condition (23), required to apply our deterministic approximation. Nevertheless, because

in real settings it is not always possible to derive a precise knowledge in terms of the distribution

of the observed scenarios, we want to test the approximation, in addition, for distributions that

would not fulfill the assumptions of our theory.

To combine the aforementioned marginal distributions into a multivariate distribution, we use

the Normal copula (see Nelsen 2006). This simulates the dependency structure of random variations

and maintains the asymptotic independence property. In all cases, the support of the distribution

of the random cost variation Θps
ij has been truncated to [−0.8cpij, 0.8cpij] to consider significant

changes in costs.

http://www.math.uwaterloo.ca/tsp/world/it16862.tsp
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6.2.2. Instances based on a realistic traffic model. In this set of realistic instances, the

deterministic cost cpij was assumed to be proportional to the time required to travel from node i to

j on path p, thus cpij := c0t
p
ij, where c0 is a constant value representing the cost per unit of time and

tpij is the time required to travel from i to j in normal traffic condition (i.e., without congestion)

on path p. For each path p∈Pij, let qpij, v
p
ij, and lpij denote the capacity (i.e., the maximum traffic

flow that such path can support), the average speed, and the length of path p, respectively. To

model a network containing both high capacity paths (main roads or highways) and low capacity

paths (secondary roads), qpij are randomly generated from a Uniform distribution with support in

Q1 = [70,100] for half of the paths and in Q2 = [20,50] for the other half. The average speed vpij on

any path p∈Pij is assigned according to the type of the path (p). More precisely, we set vpij = 100

if qpij ∈Q1 and vpij = 40 if qpij ∈Q2. The length lpij is obtained by uniformly sampling a value in the

interval [dij,3dij]. The time tpij is then computed as tpij = lpij/v
p
ij.

For each deterministic instance, the random cost variations Θps
ij are obtained using the following

formula

Θps
ij = cpij

(
0.15

(
Qps
ij (λij)

qpij

)3+λij

+ δpsij

)
, (51)

where Qps
ij (λij) is the actual traffic flow on path p∈Pij under scenario s∈ S and δpsij is an additive

term generated from a standard Normal distribution truncated in [−0.3, 0.3]. δpsij models the effect

of exogenous events (e.g., weather conditions and road works) that can influence the travel cost,

other than the traffic flow. Note that equation (51) is based on the previously presented Bureau of

Public Road (BPR) model (U.S. Department of Commerce, Bureau of Public Roads 1964), which is

widely used and consolidated in transportation engineering. More precisely, the function has been

mildly modified by including a positive real parameter λij that enables us to modulate the traffic

flow on a specific arc (i, j) and therefore, to simulate different traffic conditions.

The flows Qps
ij (λij) are computed as follows. First, under each scenario s ∈ S, the total flow of

traffic Qs
ij is randomly generated in the interval [0.3

∑
p∈Pij

qpij, 0.7
∑

p∈Pij
qpij] for low-congested

networks, and in [0.7
∑

p∈Pij
qpij,

∑
p∈Pij

qpij] for high-congested networks. Then, the flows Qps
ij (λij)

for each path p ∈ Pij are computed as Qps
ij (λij) := Qs

ijπ
p
ij, where πpij denotes the probability of

choosing path p among all paths available. This can be calculated according to the following Logit

model

πpij =
exp(−λij(lpij − loij))∑

p∈Pij
exp(−λij(lpij − loij))

, (52)

where loij denotes the length of the shortest path poij between node i and j. It is worth noting that the

costs obtained on the paths by this simulation are necessarily dependent because
∑

p∈Pij
Qps
ij (λij) =

Qs
ij. The rationale behind the above formula is the following. Assume that a user must make a

choice among all paths linking nodes i and j. It is clear that under normal traffic conditions (no



Fadda et al.: The stochastic multi-path TSP with dependent travel costs
20 Article submitted to Transportation Science; manuscript no. TS-2019-0022

congestion) the user would choose, with high probability, the shortest path poij. Furthermore, the

longer a path, the less the probability of being selected. However, under traffic congestion, the

shortest path is likely overused. Hence, users attempt to minimize their travel time by evaluating

the possibility of using alternative paths and thus, the traffic tends to be redistributed uniformly

among all paths (Wardrop principle). These aspects are captured by the Logit model in (52). In

fact, when λij is close to zero (high-congested network), the probability of choosing path p ∈ Pij
tends to 1

|Pij |
for all paths. For large values of λij (low-congested network), the probability tends

to zero for all paths p∈Pij \ poij and to one if p= poij.

Eventually, we generated 144 instances. More precisely, for each combination of |I|= {50,100}
number of nodes and |P|= {3,4,5} number of paths, we create

• ten instances (representing high-congested networks) where λij was randomly selected in the

interval [0.1,2], (i, j)∈ E ;

• ten instances (representing low-congested networks) where λij was randomly selected in the

interval [8,20], (i, j)∈ E ;

• four instances (representing a mixed situation indicating both congested and uncongested

paths) where λij was randomly selected in the interval [0.1,20], (i, j)∈ E .

6.3. Results and analysis

To quantify the performance of the proposed methodology, we performed the DA and DEP (here

used as a benchmark) approaches on each generated instance and calculated the percentage gaps

f% and t% in terms of objective function value of the returned solution and computational time,

i.e.,

f% := 100
fDA− fDEP

fDEP
,

where fDA and fDEP are the values of the objective function of the solution computed using the

proposed DA and by solving DEP in (10)–(16) using Cplex within a threshold time of 7200 seconds

(2 hours), respectively.

It is important to note that the value of fDA was not obtained directly from the objective function

in (44), which only represents an approximation of the overall decision process cost. Rather, a more

reasonable evaluation of the real objective function can be obtained, for each instance, through the

following steps.

1. Optimally solve the model in (44) and derive, for each arc (i, j) ∈ E , the values y∗ij of the

variables yij in the optimal solution, which represent the first-stage decisions;

2. For each scenario s ∈ S, solve DEP (10)–(16) where the yij variables are fixed to the val-

ues y∗ij determined in Step 1, calculating the relative objective function f sDA. Note that through

this variable fixing, the optimization problem actually resorts to simply computing f sDA :=∑
(i,j)∈E y

∗
ij minp∈Pij C

ps
ij ;
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3. Finally, compute fDA :=
∑

s∈S π
sf sDA.

Basically, fDA represents the expected cost that can be obtained by implementing, at the first

stage, the decisions suggested by the deterministic problem derived through our approximation.

Consequently, tDA represents, in our tests, the computational time to execute all three of the above

steps, including the β calibration procedure and calculation of the logarithm of the accessibility

for each arc in the objective function of (44).

Table 1 displays the percentage gaps f% obtained comparing the DA and DEP approaches

on the 150 instances randomly generated from the theoretical distributions. More precisely, each

entry reports the average and standard deviation (in square brackets) of the percentage gaps f%

among the five random instances generated for each number of nodes, number of paths, and type

of distribution. Columns and rows labelled with Total report averages and standard deviations on

the relative aggregation of instances.

Instance Distribution

|I| |P| Gumbel Laplace Logistic Normal Uniform Total:

50 3 0.23 [0.17] 2.12 [2.44] 0.92 [1.08] 1.09 [0.93] 2.14 [2.85] 1.30 [1.80]
4 0.58 [0.32] 0.53 [0.57] 0.61 [0.64] 2.00 [2.29] 2.58 [0.93] 1.26 [1.39]
5 1.62 [3.19] 0.66 [0.45] 0.31 [0.68] 0.66 [0.75] 1.08 [0.76] 0.87 [1.49]

Total: 0.81 [1.82] 1.10 [1.55] 0.62 [0.81] 1.25 [1.50] 1.93 [ 1.78] 1.14 [1.56]

100 3 1.76 [2.71] 0.69 [0.67] 0.71 [0.37] 2.46 [2.25] 2.02 [1.52] 1.53 [1.75]
4 1.26 [0.82] 0.70 [0.49] 1.27 [0.83] 0.62 [0.65] 1.41 [1.16] 1.05 [0.82]
5 0.60 [0.69] 2.58 [1.51] 6.11 [9.25] 2.10 [2.22] 1.52 [0.61] 2.58 [4.39]

Total: 1.21 [ 1.63] 1.32 [1.30] 2.70 [5.56] 1.72 [1.91] 1.65 [1.11] 1.72 [2.81]

Table 1 Percentage gaps (f%) obtained for random generated instances. Each entry indicates average gap and

its standard deviation in square brackets over all random generated instances characterized by |I| number of

nodes, |P| number of paths, and specific distribution (Gumbel, Laplace, Logistic, Normal, Uniform).

The results were excellent in terms of quality. The overall average gaps were 1.14% for all

instances with 50 nodes and 1.72% for those with 100 nodes. The standard deviations confirm

the acceptable stability of the approximation. All average gaps (and deviations) increased only

marginally by increasing the size of the instances (in terms of nodes or paths) for virtually all types

of distribution. The poorest behavior was demonstrated by the Logistic distribution, in particular

concerning the largest instances (|I|= 100 and |P|= 5), for which an average gap of approximately

6% was observed. In all remaining cases, the average gaps did not exceed 2.6% and were less than

1% in approximately half of the cases.
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Special attention should be given to the results concerning the Uniform distribution. As pre-

viously highlighted, although it does not satisfy assumption (23), we decided to include these

experiments to investigate the behavior of the proposed method when the distribution of the vari-

ations was not known. In this case, the observed gaps were interesting and in line with the other

distributions (i.e., 1.93% for |I|= 50 and 1.65% for |I|= 100). This indicates a broader applicabil-

ity for the proposed deterministic approximation, as it can be expected to provide accurate results

for a class of distribution even larger than the Gumbel domain of attraction (possibly indicating

that assumption (23) is sufficient, yet not necessary for the derivation of our results).

The quality of the proposed approximation method was also tested considering a more realistic

traffic model, which totally disregarded any assumption on the resulting empirical distribution of

the costs. The percentage gaps f% obtained comparing the DA and DEP approaches on the 144

realistic instances are displayed in Table 2. Again, each entry reports the average and standard

deviation (in square brackets) of the percentage gaps f% among the random instances generated

for each number of nodes, number of paths, and type of traffic congestion. In this case, the results

obtained remain acceptable, considering the complexity of the underlying problem. The approxi-

mation provides, on average, a solution differing from that of DEP by less than 4.6% for all type of

networks (with reasonable standard deviations). Furthermore, the gaps do not appear to increase

as the number of nodes or paths increase, demonstrating, again, acceptable stability and scalability

of the approach. In fact, the approximation appears to function more effectively when the number

of nodes and number of possible alternatives per arc (paths) are greater.

Instance Type of traffic

|I| |P| Low congestion Mixed situation High congestion Total:

50 3 2.99 [1.61] 7.36 [11.02] 3.98 [2.81] 4.78 [4.73]
4 3.33 [1.78] 3.87 [1.16] 3.92 [2.03] 3.71 [1.76]
5 5.74 [2.13] 2.35 [2.67] 5.58 [2.79] 4.56 [2.71]

Total: 4.02 [2.60] 4.53 [6.34] 4.49 [2.18] 4.35 [3.31]

100 3 2.70 [1.41] 2.16 [0.80] 3.91 [1.91] 2.92 [1.67]
4 3.99 [1.43] 3.46 [1.32] 5.02 [1.18] 4.16 [1.40]
5 4.64 [2.52] 3.07 [1.42] 4.65 [2.40] 4.12 [2.31]

Total: 3.78 [1.87] 2.90 [1.23] 4.53 [1.97] 3.74 [1.89]

Table 2 Percentage gaps (f%) obtained for realistic instances. Each entry indicates average gap and its

standard deviation in square brackets over all realistic instances characterized by |I| number of nodes, |P| number

of paths, and specific traffic condition (Low or High congestion, and Mixed situation).

To confirm that the performances presented actually depend on the estimator derived from

our approximation, we also report the results obtained by approximating the problem simply
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using mean values for the stochastic costs. This mean-value approximation (MVA) also creates a

deterministic problem where, for each traveled arc, the minimum-cost path is selected by default.

More precisely, for each arc (i, j)∈ E , we consider a deterministic cost

cij = arg min
p∈Pij

(
1

|S|
∑
s∈S

cpsij

)
.

Similar to the previous tests, we compared MVA to DEP in terms of quality, i.e., we calculated

fm% := 100
fMVA− fDEP

fDEP
,

where fMVA is the value of the objective function of the optimal solution of the problem approx-

imated through mean-values. The detailed results of fm% for the random-generated and realistic

instances are reported in Table 6 and 7, respectively (see Appendix C). For the random instances,

we observed an average gap of 6%, whereas for the realistic instances, the average gap was higher

(approximately 18%). Moreover, in specific instances, the theoretical instances also presented

extremely high standard deviation, highlighting the unstable behavior of the mean-value estimator.

These results were strongly outperformed by those obtained using our approximation. In fact, on

average, DA provided solutions that were 5% and 14% better than those obtained by MVA on the

theoretical and realistic instances, respectively.

In Table 3, we have summarized the computational times tDA and tDEP observed for the solution

approaches of DA and DEP, respectively, on both random generated and realistic instances. For

Instance Random instances Realistic instances

|I| |P| tDA(s) tDEP (s) tDA(s) tDEP (s)

50 3 7.0 714.7 1.9 722.1
4 5.6 1037.0 1.8 437.4
5 6.0 655.8 2.1 830.0

Avg: 6.2 802.5 1.9 663.2

100 3 97.7 6791.1 33.5 6805.1
4 86.9 5930.6 29.2 6670.0
5 104.7 7006.2 24.8 7162.9

Avg: 96.4 6576.0 29.1 6879.3

Table 3 Computational times in seconds of DA (tDA) vs. DEP (tDEP ) approaches for both random-generated

and realistic instances, grouped by number of nodes |I| and number of paths |P|.

both cases, we do not provide the detailed results per type of distribution or type of network

because the differences were not meaningful, and depended primarily on the number of nodes. In
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all experiments, the time required to obtain the DA solution was negligible compared to the time

required to perform the DEP solution. DEP required, on average, approximately 800 seconds to

solve instances with 50 nodes and approached the threshold time of 2 hours for instances with 100

nodes. Conversely, DA required, on average, less than 7 seconds and less than 100 seconds to solve

instances with 50 and 100 nodes, respectively. We can also observe that, on average, the realistic

instances were solved in less time by DA compared to the random instances. Approximately 2

seconds and 30 seconds were required for solving |I|= 50 and 100 instances, respectively.

Finally, in Tables 4 and 5, we summarize the value of the compromise offered by DA for the two

main sets of instances in terms of efficiency and effectiveness. More precisely, we compared the loss

in effectiveness f% and gain in efficiency t%, calculated as

t% := 100
tDEP − tDA

tDEP
,

when using the proposed DA compared to DEP. On average, by sacrificing from 1% to 4% of the

solution quality, the approximation allowed a gain of two orders of magnitude in efficiency.

Distribution f% t%

Gumbel 1.01 97.93
Laplace 1.21 98.69
Logistic 1.66 96.98
Normal 1.49 98.10

Uniform 1.79 98.46

Avg: 1.43 98.03

Table 4 Loss in effectiveness (f%) vs. gain in efficiency (t%) of DA compared to DEP for random instances.

Traffic situation f% t%

Low congestion 4.51 99.60
Mixed situation 3.71 99.80

High Congestion 3.90 99.52

Avg: 4.12 99.60

Table 5 Loss in effectiveness (f%) vs. gain in efficiency (t%) of DA compared to DEP for realistic instances.

7. Conclusions

In this paper, we studied the smpTSPdc. We demonstrated that, under a mild assumption on the

distribution of the random cost variations and if such variations are just asymptotically indepen-

dent, a deterministic approximation of the problem can be derived using the theory of extreme

values. We also demonstrated that the asymptotic independence assumption on the travel costs
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is not overly restrictive in real network applications. In fact, it allows the addressing of realistic

traffic models such as the well-known BPR function. Finally, we validated the behavior of the pro-

posed methodology using extensive computational experiments on random generated and realistic

instances with up to 100 nodes and five possible different paths per arc. The deterministic approx-

imation is definitely capable of solving the problem with a very good compromise between the

quality of the solution and overall efficiency compared to the standard equivalent SP approaches

and state-of-the-art solvers. On average, the deterministic approximation can determine solutions

with a 1–4% gap compared to the optimal ones in less than 100 seconds. Conversely, an exact

solver requires hours to obtain an optimal solution. Please note that the proposed approach is

expected to achieve similar (or superior) performance for instances with a greater number of paths

and considered scenarios, being an asymptotic approximation.

Our future research can be outlined as follows. First, encouraged by the good results obtained

even in those cases where the theoretical assumptions for the derivation of our approximation did

not hold, we would like to further investigate the possible relaxations of such assumptions. More-

over, we would like to concentrate on determining a general method to calibrate the β parameter

that better exploits the instance features. Finally, a time-dependent version of the problem can

be studied and approximated through other recent developments on random utility choice models

(Tadei, Perboli, and Manerba 2019, Roohnavazfar et al. 2019, 2020).
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Appendix A: Analytical derivation of EΘ[C̃ij] in (43).

From (42), we have

EΘ[C̃ij ] =

∫ +∞

−∞
x dP[C̃ij ≤ x] =−

∫ +∞

−∞
x dP[C̃ij >x] =

∫ +∞

−∞
xβAije

βxe−Aije
βx

dx.

By performing the substitution t = Aije
βx, i.e., x = 1

β
ln(t/Aij) and dx = 1

βt
dt, the integral in (43) can be

analytically calculated as follows

EΘ[C̃ij ] =

∫ +∞

0

1

β
ln(t/Aij)βte

−t 1

βt
dt=

=
1

β

∫ +∞

0

ln(t/Aij)e
−tdt=

=
1

β

∫ +∞

0

(ln(t)− ln(Aij))e
−tdt=

=
1

β

(∫ +∞

0

ln(t)e−tdt

)
− 1

β
ln(Aij)

(∫ +∞

0

e−tdt

)
=

=− 1

β
γ− 1

β
ln(Aij) =

=− 1

β
(γ+ ln(Aij)),

where γ =−
∫ +∞
0

ln(t)e−tdt is the Euler constant.
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Appendix B: Proof of Proposition 1

Proof. Let us consider a multi-agent system characterized by a set N = {1, . . . , N} of rational agents

solving our two stage stochastic problem (2)–(9). We assume that the agents arrive in the network at different

times.

Without loss of generality, let us consider a given arc (i, j) ∈ E and the set of agents that have chosen to

travel on that arc (i, j) during the first stage. When each agent approaches the actual travel on (i, j), he

must complete the information regarding the costs of the different alternative paths (i.e., the stochasticity

has been realized). Then, according to the second stage of our problem, each agent (being rational) will

choose the least expensive path.

From Wardrop’s first principle, at equilibrium, each path used by at least one agent is the minimum-cost

path. Thus, it holds that

Cp1s
ij =Cp2s

ij , ∀p1 6= p2 ∈PUij , s∈ S,

where PUij ⊆ Pij is the subset of paths used at equilibrium. Let us now assume that on a path p̂ ∈ Pij , a

scenario ŝ occurs such that Θp̂ŝ
ij ≤ r̂, with r̂ close to −cp̂ij .

This event perturbs the equilibrium and leads to the following new conditions

C p̂ŝ
ij ∼ 0,

C p̂ŝ
ij <C

pŝ
ij , p∈Pij .

This means that from this point onward, all agents willing to travel on arc (i, j) will use path p̂. Consequently,

the traffic flow Qp̂ŝ
ij will increase and the traffic flow Qpŝ

ij for all p 6= p̂ will decrease. Because the cost function

Hpŝ
ij is increasing, the cost C p̂ŝ

ij will increase, whereas the cost Cpŝ
ij for all p 6= p̂ will decrease. Moreover, during

all transition to the next equilibrium, it holds that

Cpŝ
ij >C

p̂ŝ
ij > 0, p∈Pij .

Thus, for each p 6= p̂∈Pij , the random cost variation Θpŝ
ij is not expected to assume a value close to its lower

bound −cpij . This proves that the travel cost variations Θp
ij are asymptotically independent in the right-hand

side neighborhood of the lower bound (−cpij) of the support of their distribution. �
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Appendix C: Results of the mean-value approximation (MVA)

Tables 6 and 7 present the detailed results obtained by solving the mean-value approximation (MVA) for

random and realistic instances, respectively.

Instance Distribution

|I| |P| Gumbel Laplace Logistic Normal Uniform Total:

50 3 20.82 [33.87] 3.53 [2.63] 3.84 [2.32] 4.57 [1.70] 17.70 [23.45] 10.09 [18.18]
4 16.47 [25.79] 3.39 [1.74] 4.18 [1.83] 7.45 [2.35] 4.23 [09.34] 7.15 [12.06]
5 9.86 [04.27] 3.91 [1.88] 2.93 [0.93] 6.59 [1.46] 7.27 [01.36] 6.11 [03.26]

Total: 15.72 [22.83] 3.61 [1.93] 3.65 [1.71] 6.20 [2.11] 9.74 [14.51] 7.78 [12.63]

100 3 7.31 [5.06] 2.56 [1.19] 4.18 [1.29] 6.48 [3.86] 12.36 [15.30] 6.58 [7.46]
4 5.62 [1.86] 3.84 [1.57] 4.56 [1.44] 3.59 [1.74] 8.38 [07.14] 5.20 [3.60]
5 4.98 [2.03] 3.53 [1.96] 4.61 [1.89] 11.47 [7.92] 7.58 [01.71] 6.43 [4.55]

Total: 5.97 [3.18] 3.31 [1.56] 4.45 [1.42] 7.18 [5.79] 9.44 [9.13] 6.07 [5.40]

Table 6 Percentage gaps (fm%) obtained for random generated instances. Each entry displays average gap and

its standard deviation in square brackets over all random generated instances characterized by |I| number of

nodes, |P| number of paths, and specific distribution (Gumbel, Laplace, Logistic, Normal, Uniform).

Instance Type of traffic

|I| |P| Low congestion Mixed situation High congestion Total:

50 3 15.11 [0.94] 14.62 [1.10] 14.58 [1.13] 14.81 [1.02]
4 18.29 [1.18] 18.31 [1.08] 19.18 [1.02] 18.48 [1.11]
5 22.23 [1.11] 21.76 [1.24] 21.54 [1.72] 21.90 [1.25]

Total: 18.54 [3.15] 18.23 [3.17] 18.43 [3.25] 18.40 [3.13]

100 3 14.54 [0.69] 14.10 [0.75] 14.26 [0.79] 14.31 [0.72]
4 17.99 [0.59] 17.96 [1.07] 19.00 [0.82] 18.18 [0.91]
5 21.06 [0.72] 20.85 [0.83] 21.89 [0.76] 21.14 [0.83]

Total: 17.86 [2.79] 17.63 [2.95] 18.38 [3.36] 17.88 [2.94]

Table 7 Percentage gaps (fm%) obtained for realistic instances. Each entry displays average gap and its

standard deviation in square brackets over all realistic instances characterized by |I| number of nodes, |P| number

of paths, and specific traffic condition (Low or High congestion, and Mixed situation).


