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Abstract 

This investigation aims to perform a detailed natural frequency analysis of functionally graded porous 

beams integrated with transverse (d31) and shear (d15) piezoelectric layers under short circuit (SC) 

and open circuit (OC) electrical conditions. It is assumed that the core layer is made of functionally 

graded materials (FGMs) containing porosities. Due to the existence of internal pores, the mechanical 

properties of FGMs are considered according to the modified power-law rule which includes the 

effect of porosity. The distribution of electric potential within the d31 and d15 piezoelectric layers is 

modeled based on nonlinear variation for both SC and OC conditions. Employing the classical, the 

first-order and the higher-order beam theories incorporated with the virtual work principle as well as 

the Maxwell’s equation, the electromechanical equations of motion are derived. The governing 

equations are then solved analytically for simply supported boundary condition and a parametric 

study is presented. After validation of the results, some new interesting conclusions covering the 

effects of porosity volume fraction, porosity distribution, various piezoelectricity modes, power-law 

index and the beam theories on SC and OC resonance frequencies are reported. It is believed that the 

presented numerical results could provide a benchmark to check the accuracy of the approximated 

approaches. 
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1. Introduction 

As it is well-known, functionally graded materials (FGMs) are novel emerging class of composites 

within which material properties such as elasticity modulus and mass density vary continuously over 

the volume in one or more directions. The most familiar FGM is generally made of a mixture of 

ceramics and metals in which the ceramic constituent exhibits high heat resistance due to its low 

thermal conductivity, and the metal component provides large mechanical strength to resist the failure 

of structures. One of the most important benefits of FGMs against the typical laminated composites 

is that FGMs represent smooth and continuous variations in the material properties enabling them to 

be excellent solutions to avoid delamination and propagation of cracks which can be occurred due to 

large interlaminar stresses and plastic deformations1. Having these properties, FGMs have been 

attracted attention as potential materials for a wide range of applications in aerospace, energy 

conversion, engine components, electronics, biomedical, and optics1, 2. Over the past decades, 

hundreds of works have been done to investigate mechanical behaviors of FGM structures. For 

detailed investigations of structural members made of FGMs, one may see3-16 and many other works 

presented in the related literature. 
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Various special methods such as chemical and physical deposition, powder stacking, plasma spraying 

and sintering have been used to fabricate FGMs. However, it is recently reported that in production 

of FGMs, internal porosities may appear inside the material structure due to the huge difference 

between the solidification temperatures of the material constituents during the sintering process17. 

The existence of porosities can significantly influence the mechanical properties and the behavior of 

materials so that it is of concern to examine the effects of porosities on the static and dynamic behavior 

of engineering structures made of FGMs. Wattanasakulpong et al.18 discussed the effects of the 

internal porosities which appear in FGM samples manufactured within a multi-step sequential 

filtration method. Using Ritz’s method, elastic buckling and bending analysis of functionally graded 

porous beams is studied by Chen et al.19 based on Timoshenko’s beam theory. The same authors20 

investigated nonlinear free vibration of a sandwich beam with functionally graded core having 

different types of porosity distribution. Ebrahimi and his colleagues21-23 developed numerical and 

semi-analytical solutions to study the vibrational behavior of functionally graded porous structures 

using the classical and the first-order shear theories. They investigated the effects of various types of 

porosity distributions as well as thermal loadings on the natural frequencies of the systems. Recently, 

Wang and co-authors24, 25 conducted research studies on the nonlinear vibration of FGM rectangular 

plates with porosities moving in thermal environment and contacting with liquid. In their works, they 

assumed the geometrical nonlinearity based on von Karman nonlinear theory and used the Galerkin’s 

method to solve the governing equations of motion. Nonlinear free vibration of metal foam cylindrical 

shells, and forced vibration analysis of functionally graded piezoelectric plates containing porosities 

were carried out by Wang et al.26, 27, in which the harmonic balance method and Galerkin’s approach 

are employed to solve the governing equations and extract the numerical results. Also, bending 

analysis of single-layered and sandwich plates made of FGMs with porosities is investigated by 

Zenkour28 based on a quasi-3D refined shear deformation theory. Nguyen et al.29 carried out the study 

of linear and nonlinear static and dynamic responses of porous FGM plates using an efficient 

polygonal finite element method. Very recently, Wang and Zhao studied bending, buckling and 

vibration of shear deformable porous beams by means of the Navier’s approach as well as Rayleigh-

Ritz’s method for various boundary conditions30. 

On the other hand, intelligent materials, particularly piezoelectrics, have been widely integrated with 

structural systems to use in engineering applications such as vibration control, energy harvesting, 

medicine, space and many others31-35. Piezoelectrics have the capability of generating electricity when 

subjected to mechanical stress and strain fields, and vice versa, known as direct and converse 

piezoelectric effects, respectively. Having these peculiar features, piezoelectric materials are potential 

candidates for developing smart structures with self-monitoring and self-controlling capabilities. 

However, due to the superior thermo-mechanical properties of FGMs, by integrating piezoelectric 

materials onto the FGM structures, smart functionally graded structural systems are produced which 

can be used for different purposes such as active vibration suppression, energy harvesting and shape 

control32-39. Thus, the interaction between the FGM host structures and piezoelectric patches/layers 

should be well understood to effectively utilize the properties of piezoelectrics. Over the last years, 

some researchers have focused their attention on studying the mechanical response of FGM structures 

with surface-mounted piezoelectric layers/patches due to the increasing use of smart materials in 

vibration control. One of the primary studies on smart FGM structures was carried out by Reddy and 

Cheng40 to present 3D solutions for FGM plates integrated with actuator layers made of piezoelectric 

materials. Wang and Noda41 developed a finite element code for the analysis of a smart FGM 

composite structure composed of an FGM core sandwiched between a metal layer and a piezoelectric 

https://www.sciencedirect.com/topics/engineering/piezoelectric-material
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layer used as an actuator. Huang and Shen42 investigated thermomechanical nonlinear vibration and 

dynamic response of simply-supported FGM plates with two piezoelectric layers mounted on its top 

and bottom surfaces using higher-order shear deformation theory. Based on Timoshenko’s beam 

theory, Kiani et al.43 conducted thermo-electrical buckling analysis of FGM beams with or without 

piezoelectric layers subjected to both thermal loading and electrical field. Askari Farsangi and co-

authors44, 45 developed analytical solutions to study the free vibration of coupled piezoelectric FGM 

plates based on different plate models. Wang46 investigated the electro-mechanical characteristics of 

functionally graded piezoelectric plates having porosities in translation state. 

In view of the above, studies on vibration analysis of FGM beams integrated with piezoelectric layers 

are relatively less compared to smart FGM plates and shells. To the best of authors’ knowledge, no 

work has been presented for the free vibration analysis of thick FGM beams containing porosities 

surrounded by various types of piezoelectric layers based on higher-order shear theories. Concerning 

practical application of piezoelectric materials in sensor and actuator technologies, piezoelectric 

motors etc., it could be useful to carry out the above-mentioned topic to provide a benchmark for 

further application of piezoelectric materials and structures. 

In this paper, the classical and the higher-order theories are used to analytically study the effects of 

both d31 and d15 piezoelectric layers as well as different types of porosity distribution on the natural 

frequencies of thick smart functionally graded porous (FGP) beams, under both SC and OC electrical 

conditions. A nonlinear model is used for the distribution of electric potential through the 

piezoelectric layers. The material properties of the substrate layer are assumed to be graded across its 

thickness based on two different patterns, namely even and uneven distribution. Using the Hamilton’s 

principle and the Maxwell’s electrostatic equation, the governing equations of motion and the 

associated boundary conditions (BC’s) are derived for both SC and OC conditions. An exact solution 

based on Navier’s method is then employed to solve the governing equations for hybrid beams. After 

validating the presented formulation, the effects of materials properties, porosity parameter, power-

law index, geometry dimensions and piezoelectric characteristics on the beam natural frequencies are 

examined in details, and comparisons are made among various beam theories. 

 

 

2. Kinematics modeling 

The layouts of the considered FGP beams embedded with d31 and d15 piezoelectric layers are shown 

in Figures 1(a) and 1(b), respectively. The origin of the Cartesian reference system is located in the 

mid-plane of the core layer. L, b, 2tc and tp are the length, width, core thickness and each piezoelectric 

layer’s thickness of the sandwich beam, respectively. It is assumed that in each of the two cases, the 

sandwich beam consists of a functionally graded core having porosities inside its structure, and two 

piezoelectric layers which are symmetrically bonded on the top and bottom faces of the core layer. 

The bonded piezoelectric layers are considered to be made of transversely piezoelectric materials 

which are polarized in the thickness and the axial directions of the beam for d31 and d15 

piezoelectricity modes, respectively. 
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(a) d31 Mode 

 
(b) d15 Mode 

Figure 1. Layouts of the beams made of FGMs with porosities surrounded by piezoelectric layers in d31 and d15 modes 

 

Mechanical properties of FGMs including porosities are assumed to vary smoothly along the beam 

thickness. Two different patterns of porosity, namely even and uneven, are considered to describe the 

distribution of the internal pores which are occurred inside the structure of FGMs due to defects in 

manufacturing process. Thus, the effective mechanical properties such as Young’s modulus E(z) and 

mass density 𝜌(z) are modeled based on the modified rule of mixture, as recently presented in 

literature21, 24, 47, 48: 

 

{
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where the positive real number k (0 ≤ 𝑘 < ∞) and the parameter 𝛼 (0 ≤ 𝛼 < 1) show the power-law 

index and the porosity volume fraction of FGMs, respectively. Besides, the subscripts m and c 

represent the corresponded material properties of metal and ceramic parts of the FGP core, 

respectively. 

From Equation (1), it is clear that when the value of k is equal to zero, we have a fully ceramic beam 

and setting k to large values presents the properties of a beam completely made of metal. However, 

the material properties of a homogenous beam with no porosity can be obtained when 𝛼 = 𝑘 = 0. It 

should be noted that Equation (1a) is associated with the properties of FGMs with even porosity 
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distribution, while those corresponded to FGMs with unevenly distributed pores are described in 

Equation 1(b). In Figure (2), these two patterns of porosities throughout the beam cross-section are 

shown schematically for illustrative purposes. It seems from Figure (2b) that in uneven pattern, the 

internal pores are mostly distributed in the middle area of the beam cross-section and the amount of 

porosity tends to linearly drop to zero at the top and bottom areas of the beam cross-section. 

According to the fundamental of multi-step infiltration process which can be employed to fabricate 

FGM samples, most of the internal pores occur in the middle region21. This is due to the reason that 

it is not easy to totally infiltrate the materials in this area, whilst at the top and bottom zones, the 

infiltration process of material could be carried out easier and less porosities are then appeared49.  

 

           
                                         (a) Even porosity pattern                                   (b) Uneven porosity pattern 

Figure 2. Distribution of the internal pores within the cross-section of the smart FGP beam 

 

Using piezoelectric materials in various operation modes leads to different electromechanical 

behaviors due to their different piezoelectric coupling coefficients. The shear mode is actually 

corresponded with the shear deformation of the piezoelectric layers, when they are polarized in the 

axial direction of the beam. Therefore, to provide an accurate prediction, the effects of transverse 

shear deformation on the system behavior must be considered when analyzing piezoelectrics in shear 

mode50. In this study, the mechanical displacement field is modeled according to Equation (2) in order 

to consider the shear deformation effects based on various higher-order beam theories9: 

 

𝑢(𝑥,𝑧,𝑡) = 𝑢0(𝑥,𝑡) − 𝑧
𝜕𝑤0(𝑥,𝑡)

𝜕𝑥
+ 𝑓(𝑧)𝜓(𝑥,𝑡) 

(2) 𝑣(𝑥,𝑧,𝑡) = 0 

𝑤(𝑥,𝑧,𝑡) = 𝑤0(𝑥,𝑡) 

 

in which 𝑢0(𝑥, 𝑡) and 𝑤0(𝑥, 𝑡) are the axial and transverse displacement components of the mid-plane 

of the beam along 𝑥- and 𝑧-axes, respectively; 𝜓(𝑥, 𝑡) is the rotation function of transverse normal 

of the mid-plane (at z=0). The parameter 𝑡 shows time variable and f(z) is the shape function 

representing the effect of the transverse shear strain and stress along the thickness of the beam. For 

comparative purposes, various applicable shape functions51 corresponded to different beam 

displacement models and theories are employed in this study as listed in Table 1. 

 

Table 1. Various shape functions for different beam theories 

Theory Shape Function 

Classical Beam Theory (CBT) 𝑓(𝑧) = 0 
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First-order Shear Deformation Beam Theory (FBT) 𝑓(𝑧) = 𝑧 

Parabolic Shear Deformation Beam Theory (PBT) 𝑓(𝑧) = 𝑧 [1 −
4

3
(

𝑧

2𝑡𝑐 + 2𝑡𝑝
)

2

] 

Sinusoidal Shear Deformation Beam Theory (SBT) 𝑓(𝑧) =
2𝑡𝑐 + 2𝑡𝑝

𝜋
sin(

𝜋𝑧

2𝑡𝑐 + 2𝑡𝑝
) 

Exponential Shear Deformation Beam Theory (EBT) 𝑓(𝑧) = 𝑧 exp [−2(
𝑧

2𝑡𝑐 + 2𝑡𝑝
)

2

] 

 

Using the linear strain-displacement relationship, the components of the strain field for the sandwich 

beam can be derived from Equation (2) as follows: 

 

𝜀𝑥𝑥(𝑥,𝑧,𝑡) =
𝜕𝑢

𝜕𝑥
=
𝜕𝑢0
𝜕𝑥

− 𝑧
𝜕2𝑤0
𝜕𝑥2

+ 𝑓(𝑧)
𝜕𝜓

𝜕𝑥
 

(3) 

𝛾𝑥𝑧(𝑥,𝑧,𝑡) =
𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥
= 𝑓′(𝑧)𝜓 

𝜀𝑦𝑦(𝑥,𝑧,𝑡) =
𝜕𝑣

𝜕𝑦
= 0 

𝛾𝑥𝑦(𝑥,𝑧,𝑡) =
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
= 0 

𝜀𝑧𝑧(𝑥,𝑧,𝑡) =
𝜕𝑤

𝜕𝑧
= 0 

𝛾𝑦𝑧(𝑥,𝑧,𝑡) =
𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦
= 0 

 

It is noted that in CBT, since f(z)=0, the value of 𝛾𝑥𝑧 is equal to zero at any point of the beam. It 

means that the transverse shear deformation is neglected in CBT which leads to make this approach 

unsuitable for analyzing relatively thick and thick beams, unlike higher order theories. 

 

 

3. Materials modelling and constitutive equations 

3.1. Piezoelectric layers in d31 and d15 modes 

In the current study, the piezoelectric materials are assumed to be homogenous and transversely 

isotropic, with the z and x axes as the axes of isotropy in d31 and d15 operation modes, respectively. 

The general constitutive equations for the transverse piezoelectric mode are taken to be52: 
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where 𝜎𝑖𝑗, 𝜀𝑖𝑗, 𝛾𝑖𝑗 , 𝐷𝑖 and 𝐸𝑖 represent mechanical stress, normal strain, shear strain, electric 

displacement and electric field components, respectively. The piezoelectric material properties of 𝐶𝑖𝑗, 

𝑒𝑖𝑗 and Ξ𝑖𝑗 are also stiffness, electromechanical coupling and permittivity coefficients, respectively.  

Furthermore, the interaction between mechanical and electrical fields in the shear piezoelectric mode 

can be extracted from Equation (4) through a 90o rotation around the y-direction, followed by a 180o 

rotation around the z-direction50. By applying these rotations to the above relation, the 

electromechanical constitutive equations in the shear operation mode can be expressed as: 
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It should be mentioned that here and hereafter, the superscripts 31 and 15 denote the corresponding 

variables for the transverse and shear modes of piezoelectric layers, respectively. From Equations (4) 

and (5), it can be easily seen that the electromechanical relationships between stress and strain 

components as well as mechanical and electrical properties of piezoelectric materials are highly 

dependent on the polarization direction. Thus, these differences in the constitutive equations result in 

different electromechanical behaviors when using piezoelectric materials in transverse and shear 

modes. 

Approximation of the electric potential variation 𝜙 through the piezoelectric layers is an important 

issue. In this study, the electric potential is assumed to have a nonlinear variation along the thickness 

of piezoelectric layers for both transverse and shear modes as well as SC and OC conditions, as 

proposed in53, 54. Furthermore, in each operation mode, two common electrical circuit conditions (i.e. 

SC and OC conditions) are considered. It is known that in the SC condition, both inner and outer 

surfaces of each piezoelectric layer are held at zero electric voltage, 𝜙(𝑥,±𝑡𝑐 ,𝑡) = 𝜙(𝑥,±(𝑡𝑐 +
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𝑡𝑝),𝑡) = 0. On the other hand, applying these conditions only on the outer surfaces and electrically 

insulating the inner surfaces of each piezoelectric layer result in the OC electrical condition, 

𝜙(𝑥,±𝑡𝑐 ,𝑡) = 𝐷𝑧(𝑥,±(𝑡𝑐 + 𝑡𝑝),𝑡) = 0. Concerning these conditions, the electric potential function 

through the piezoelectric layers is first assumed to have the following nonlinear form with respect to 

z-coordinate53, 54: 

 

𝜙(𝑥,𝑧,𝑡) =

{
 
 

 
 𝜙0(𝑥, 𝑡) [1 − (

+2𝑧 − 2𝑡𝑐 − 𝑡𝑝
𝑡𝑝

)

2

] + 𝐴𝑧 + 𝐵                          𝑡𝑐 ≤ 𝑧 ≤ 𝑡𝑐 + 𝑡𝑝

𝜙0(𝑥, 𝑡) [1 − (
−2𝑧 − 2𝑡𝑐 − 𝑡𝑝

𝑡𝑝
)

2

] + 𝐶𝑧 + 𝐷                − 𝑡𝑐 − 𝑡𝑝 ≤ 𝑧 ≤ −𝑡𝑐  

 (6) 

 

where 𝜙0(𝑥, 𝑡) is the electric potential distribution in the mid-plane of each piezoelectric layer. Also, 

A, B, C and D are four unknown functions of the x-coordinate and time variable which should be 

determined satisfying the electrical BC’s corresponded to each of SC and OC electrical conditions. 

Applying these conditions to Equation (6), the final form of the electric potential function is obtained 

as follows: 

 

For the top piezoelectric layer (𝑡𝑐 ≤ 𝑧 ≤ 𝑡𝑐 + 𝑡𝑝): 

 

𝜙(𝑥,𝑧,𝑡) = 𝜙0(𝑥, 𝑡) [1 − (
+2𝑧 − 2𝑡𝑐 − 𝑡𝑝

𝑡𝑝
)

2

]

+ (𝑧 − 𝑡𝑐) [𝛼1 (
4

𝑡𝑝
𝜙0(𝑥, 𝑡) +

𝑒15𝜁1
Ξ11

𝜓(𝑥, 𝑡))

+ 𝛼2 (
4

𝑡𝑝
𝜙0(𝑥, 𝑡) +

𝑒31
Ξ33

𝜕𝑢0
𝜕𝑥

−
𝑒31(ℎ + ℎ𝑝)

Ξ33

𝜕2𝑤0
𝜕𝑥2

+
𝑒31𝜂1
Ξ33

𝜕𝜓

𝜕𝑥
)] 

(7) 

 

For the bottom piezoelectric layer (−𝑡𝑐 − 𝑡𝑝 ≤ 𝑧 ≤ −𝑡𝑐): 

 

𝜙(𝑥,𝑧,𝑡) = 𝜙0(𝑥, 𝑡) [1 − (
−2𝑧 − 2𝑡𝑐 − 𝑡𝑝

𝑡𝑝
)

2

]

+ (𝑧 + 𝑡𝑐) [𝛼3 (
−4

𝑡𝑝
𝜙0(𝑥, 𝑡) +

𝑒15𝜁2
Ξ11

𝜓(𝑥, 𝑡))

+ 𝛼4 (
−4

𝑡𝑝
𝜙0(𝑥, 𝑡) +

𝑒31
Ξ33

𝜕𝑢0
𝜕𝑥

+
𝑒31(ℎ + ℎ𝑝)

Ξ33

𝜕2𝑤0
𝜕𝑥2

+
𝑒31𝜂2
Ξ33

𝜕𝜓

𝜕𝑥
)] 

(8) 

 

where the coefficients 𝛼𝑖  (𝑖 = 1, 2, 3, 4) can only be equal to zero (𝛼𝑖 = 0) and unit number (𝛼𝑖 = 1) 

for the studied piezoelectric modes and electrical circuit conditions as given in Table 2. Furthermore, 

the coefficients 𝜁1 = 𝑓
′(𝑧 = 𝑡𝑐 + 𝑡𝑝), 𝜁2 = 𝑓

′(𝑧 = −𝑡𝑐 − 𝑡𝑝), 𝜂1 = 𝑓(𝑧 = 𝑡𝑐 + 𝑡𝑝) and 𝜂2 =

𝑓(𝑧 = −𝑡𝑐 − 𝑡𝑝) have different values for each mechanical displacement field, since 𝑓 and 𝑓′ are the 

shape function (listed in Table 1) and its derivative with respect to the z-coordinate, respectively. 
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Table 2. Values of the parameters 𝛼𝑖  (𝑖 = 1, 2, 3, 4) for various piezoelectric modes and electrical boundary conditions 

Piezoelectric layers (Electrical Circuit Condition) 𝛼1 𝛼2 𝛼3 𝛼4 

d31 Mode (SC) 0 0 0 0 

d31 Mode (OC) 0 1 0 1 

d15 Mode (SC) 0 0 0 0 

d15 Mode (OC) 1 0 1 0 

 

Using the electric potential functions from Equations (7) and (8), the components of the electric field 

in piezoelectric layers could be derived from the following equation: 

 

[𝐸𝑥 , 𝐸𝑦 , 𝐸𝑧] = − [
𝜕𝜙

𝜕𝑥
,
𝜕𝜙

𝜕𝑦
,
𝜕𝜙

𝜕𝑧
] (9) 

 

 

3.2. Functionally graded core with porosities 

Since FGMs are isotropic materials, they simply obey the Hooke’s law and their constitutive 

equations can be expressed in the following general form44: 

 

11 12

12 11

44

55

66

0 0 0

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

c
xxxx

c
yyyy

c
yzyz

c
xzxz

c
xyxy

Q Q

Q Q

Q

Q

Q











    
    
        

    
    
    
       

 (10) 

 

where the elastic coefficients 𝑄𝑖𝑗  are defined as 𝑄11 = 𝐸(𝑧) (1 − 𝜈2)⁄ , 𝑄12 = 𝜈𝑄11 and 𝑄44 = 𝑄55 =

𝑄66 = 𝐸(𝑧) (2 + 2𝜈)⁄  in which 𝜈 is the Poisson ratio. Here and hereafter, the superscript c represents 

the corresponding variables for the core layer of the coupled smart beam. 

 

 

4. Electromechanical equations of motion 

Based on the Hamilton’s principle, the equations of motion for the free vibration problem can be 

derived using the following relation: 

 

∫ (𝛿𝑈 − 𝛿𝐾)
𝑡1

𝑡0

𝑑𝑡 = 0 (11) 

 

in which 𝛿 denotes the variational operator, and 𝛿𝑈 and 𝛿𝐾 are the variation of the strain and kinetic 

energy of the system.  

In the Equation (11), the energy variations 𝛿𝑈 and 𝛿𝐾 can be calculated with the help of Equations 

(2) and (3) as follows: 
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∫ 𝛿𝑈 𝑑𝑡
𝑡1

𝑡0

= ∫ ∫𝜎𝑖𝑗𝛿𝜀𝑖𝑗𝑑𝑉𝑑𝑡
 

𝑉

𝑡1

𝑡0

= ∫ ∫ ∫ ∫ (𝜎𝑥𝑥𝛿𝜀𝑥𝑥 + 𝜎𝑥𝑧𝛿𝛾𝑥𝑧) 𝑑𝑧𝑑𝑦𝑑𝑥𝑑𝑡
+𝑡𝑐+𝑡𝑝

−𝑡𝑐−𝑡𝑝

𝑏

0

𝐿

0

𝑡1

𝑡0

 (12a) 

∫ 𝛿𝐾 𝑑𝑡
𝑡1

𝑡0

= ∫ ∫ ∫ ∫ 𝜌 [
𝜕𝑢

𝜕𝑡
𝛿 (
𝜕𝑢

𝜕𝑡
) +

𝜕𝑤

𝜕𝑡
𝛿 (
𝜕𝑤

𝜕𝑡
)]  𝑑𝑧𝑑𝑦𝑑𝑥𝑑𝑡

+𝑡𝑐+𝑡𝑝

−𝑡𝑐−𝑡𝑝

𝑏

0

𝐿

0

𝑡1

𝑡0

 (12b) 

 

where 𝜌 is the effective mass density of the sandwich beam.  

Substituting the strain and kinetic energy variations into the Hamilton’s principle and applying several 

integrations by parts, the electromechanical equations of motion for the beam are obtained as follows: 

 

𝛿𝑢0: 
𝜕𝑁𝑥𝑥

𝑝𝑞

𝜕𝑥
− 𝐼0

𝜕2𝑢0
𝜕𝑡2

− 𝐼01
𝜕2𝜓

𝜕𝑡2
+ 𝐼1

𝜕3𝑤0
𝜕𝑥𝜕𝑡2

= 0 (13a) 

𝛿𝑤0: 
𝜕2𝑀𝑥𝑥

𝑝𝑞

𝜕𝑥2
− 𝐼1

𝜕3𝑢0
𝜕𝑥𝜕𝑡2

− 𝐼11
𝜕3𝜓

𝜕𝑥𝜕𝑡2
− 𝐼0

𝜕2𝑤0
𝜕𝑡2

+ 𝐼2
𝜕4𝑤0
𝜕𝑥2𝜕𝑡2

= 0 (13b) 

𝛿𝑢1: 
𝜕𝑀̂𝑥𝑥

𝑝𝑞

𝜕𝑥
− 𝑄̂𝑥𝑧

𝑝𝑞
− 𝐼01

𝜕2𝑢0
𝜕𝑡2

− 𝐼02
𝜕2𝜓

𝜕𝑡2
+ 𝐼11

𝜕3𝑤0
𝜕𝑥𝜕𝑡2

= 0 (13c) 

 

where 𝑁𝑥𝑥, 𝑀𝑥𝑥, 𝑀̂𝑥𝑥 and 𝑄̂𝑥𝑧 are the stress resultants. It should be noted that here and hereafter, the 

superscript pq represents the associated variables and coefficients for the transverse and shear modes 

of piezoelectric materials so that it can only be equal to 31 and 15 for d31 and d15 piezoelectricity 

modes, respectively. For instance, when pq is equal to 31, it does mean that the constitutive equations 

corresponded to d31 mode (given in Equation (4)) must be used to determine the related coefficients 

and variables such as the stress resultants. Moreover, the appearance of the terms 𝑀̂𝑥𝑥
𝑝𝑞

 and 𝑄̂𝑥𝑧
𝑝𝑞

 in 

Equations (13) is due to the particular form of the mechanical displacement field and they are not 

appeared in the equations of motion, when using the classical beam theory.  

The terms 𝐼𝑖 and 𝐼𝑖𝑗 which represent the mass inertias of the sandwich beam are defined as: 

 

𝐼𝑖 = ∫ 𝜌 𝑧𝑖
−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 +∫ 𝜌(𝑧) 𝑧𝑖
+𝑡𝑐

−𝑡𝑐

𝑑𝑧 +∫ 𝜌 𝑧𝑖
+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧,       (𝑖 = 0, 1, 2) (14a) 

𝐼𝑖𝑗 = ∫ 𝜌 𝑧𝑖  [𝑓(𝑧)]𝑗
−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 +∫ 𝜌 𝑧𝑖 [𝑓(𝑧)]𝑗
+𝑡𝑐

−𝑡𝑐

𝑑𝑧 + ∫ 𝜌 𝑧𝑖 [𝑓(𝑧)]𝑗
+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧,        (14b) 

(𝑖 = 0, 1 and 𝑗 = 1, 2)  

 

and similarly, the stress resultants are defined in terms of stress components in the following forms: 

 

(𝑁𝑥𝑥
𝑝𝑞
, 𝑀𝑥𝑥

𝑝𝑞) = ∫ 𝜎𝑥𝑥
𝑝𝑞
 (1, 𝑧)

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 + ∫ 𝜎𝑥𝑥
𝑐  (1, 𝑧)

+𝑡𝑐

−𝑡𝑐

𝑑𝑧 +∫ 𝜎𝑥𝑥
𝑝𝑞
 (1, 𝑧)

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 (15a) 

𝑀̂𝑥𝑥
𝑝𝑞
= ∫ 𝜎𝑥𝑥

𝑝𝑞
 𝑓(𝑧)

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 + ∫ 𝜎𝑥𝑥
𝑐  𝑓(𝑧)

+𝑡𝑐

−𝑡𝑐

𝑑𝑧 + ∫ 𝜎𝑥𝑥
𝑝𝑞
 𝑓(𝑧)

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 (15b) 
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𝑄̂𝑥𝑧
𝑝𝑞
= ∫ 𝜎𝑥𝑧

𝑝𝑞
 𝑓′(𝑧)

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 + ∫ 𝜎𝑥𝑧
𝑐  𝑓′(𝑧)

+𝑡𝑐

−𝑡𝑐

𝑑𝑧 + ∫ 𝜎𝑥𝑧
𝑝𝑞
 𝑓′(𝑧)

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 (15c) 

 

Moreover, from the Hamilton’s principle, the following mechanical BC’s at the edges 𝑥 = 0 and 𝑥 =

𝐿 of the beam can be obtained: 

 

𝑢0 = 0 or 𝑁𝑥𝑥
𝑝𝑞
= 0 

(16) 

𝜕𝑤0
𝜕𝑥

= 0 or 𝑀𝑥𝑥
𝑝𝑞
= 0 

𝑤0 = 0 or 
𝜕𝑀𝑥𝑥

𝑝𝑞

𝜕𝑥
= 0 

 𝜓 = 0 or 𝑀̂𝑥𝑥
𝑝𝑞
= 0 

 

Generally, the left-hand side BC’s in equation (16) are called essential or geometric BC’s because 

they correspond to prescribe displacements and rotations, and must be rigorously imposed according 

to the beam boundaries. Besides, the right-hand side ones are called natural BC’s which are associated 

with the loads and moment resultants acting on each end of the beam and they are implicitly contained 

in the Hamilton’s principle. In the next section, the expressions given in relation (16) will be 

summarized for a particular type of mechanical BC at the beam boundaries. 

Using the mechanical displacement field and strain-displacement relations given in equations (2) and 

(3) as well as with the help of constitutive equations (4), (5) and (10) for both piezoelectrics and 

FGMs, the stress resultants (15a) to (15c) can be rewritten in terms of displacement components and 

electric potential function as follows: 

  

𝑁𝑥𝑥
𝑝𝑞
= 𝑎1

𝑝𝑞 𝜕𝑢0
𝜕𝑥

+ 𝑎2
𝑝𝑞 𝜕

2𝑤0
𝜕𝑥2

+ 𝑎3
𝑝𝑞 𝜕𝜓

𝜕𝑥
+ 𝜇1

𝑝𝑞
𝜙0 + 𝛽1

𝑝𝑞 𝜕𝜙0
𝜕𝑥

 (17a) 

𝑀𝑥𝑥
𝑝𝑞
= 𝑎4

𝑝𝑞 𝜕𝑢0
𝜕𝑥

+ 𝑎5
𝑝𝑞 𝜕

2𝑤0
𝜕𝑥2

+ 𝑎6
𝑝𝑞 𝜕𝜓

𝜕𝑥
+ 𝜇2

𝑝𝑞
𝜙0 + 𝛽2

𝑝𝑞 𝜕𝜙0
𝜕𝑥

 (17b) 

𝑀̂𝑥𝑥
𝑝𝑞
= 𝑎7

𝑝𝑞 𝜕𝑢0
𝜕𝑥

+ 𝑎8
𝑝𝑞 𝜕

2𝑤0
𝜕𝑥2

+ 𝑎9
𝑝𝑞 𝜕𝜓

𝜕𝑥
+ 𝜇3

𝑝𝑞
𝜙0 + 𝛽3

𝑝𝑞 𝜕𝜙0
𝜕𝑥

 (17c) 

𝑄̂𝑥𝑧
𝑝𝑞
= 𝑎10

𝑝𝑞
𝜓 + 𝑎11

𝑝𝑞 𝜕
2𝜓

𝜕𝑥2
+ 𝑎12

𝑝𝑞 𝜕
2𝜓

𝜕𝑥2
+ 𝑎13

𝑝𝑞 𝜕
3𝑤0
𝜕𝑥3

+ 𝜇4
𝑝𝑞
𝜙0 + 𝛽4

𝑝𝑞 𝜕𝜙0
𝜕𝑥

 (17d) 

 

where the coefficients 𝑎𝑖
𝑝𝑞
 (𝑖 = 1, 2,… , 13), 𝛽𝑖

𝑝𝑞
 (𝑖 = 1, 2,… , 4), and 𝜇𝑖

𝑝𝑞
 (𝑖 = 1, 2,… , 4) are 

functions of the geometry parameters as well as mechanical and electrical properties of both FGP 

core and piezoelectric layers which are defined in relations (A.1-A.4) of the Appendix. It should be 

mentioned that these coefficients have different values for transverse and shear modes as well as SC 

and OC electrical boundary conditions, as reported in the Appendix. 

Substituting Equations (17) into Equations (13a) to (13c) leads to the beam equations of motion in 

terms of displacement field components and the electric potential function: 
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𝑎1
𝑝𝑞 𝜕

2𝑢0
𝜕𝑥2

+ 𝑎2
𝑝𝑞 𝜕

3𝑤0
𝜕𝑥3

+ 𝑎3
𝑝𝑞 𝜕

2𝜓

𝜕𝑥2
+ 𝜇1

𝑝𝑞 𝜕𝜙0
𝜕𝑥

+ 𝛽1
𝑝𝑞 𝜕

2𝜙0
𝜕𝑥2

− 𝐼0
𝜕2𝑢0
𝜕𝑡2

− 𝐼01
𝜕2𝜓

𝜕𝑡2

+ 𝐼1
𝜕3𝑤0
𝜕𝑥𝜕𝑡2

= 0 

(18a) 

𝑎4
𝑝𝑞 𝜕

3𝑢0
𝜕𝑥3

+ 𝑎5
𝑝𝑞 𝜕

4𝑤0
𝜕𝑥4

+ 𝑎6
𝑝𝑞 𝜕

3𝜓

𝜕𝑥3
+ 𝜇2

𝑝𝑞 𝜕
2𝜙0
𝜕𝑥2

+ 𝛽2
𝑝𝑞 𝜕

3𝜙0
𝜕𝑥3

− 𝐼1
𝜕3𝑢0
𝜕𝑥𝜕𝑡2

− 𝐼11
𝜕3𝜓

𝜕𝑥𝜕𝑡2

− 𝐼0
𝜕2𝑤0
𝜕𝑡2

+ 𝐼2
𝜕4𝑤0
𝜕𝑥2𝜕𝑡2

= 0 

(18b) 

(𝑎7
𝑝𝑞
− 𝑎12

𝑝𝑞)
𝜕2𝑢0
𝜕𝑥2

+ (𝑎8
𝑝𝑞
− 𝑎13

𝑝𝑞)
𝜕3𝑤0
𝜕𝑥3

+ (𝑎9
𝑝𝑞
− 𝑎11

𝑝𝑞)
𝜕2𝜓

𝜕𝑥2
− 𝑎10

𝑝𝑞
𝜓

+ (𝜇3
𝑝𝑞
− 𝛽4

𝑝𝑞)
𝜕𝜙0
𝜕𝑥

+ 𝛽3
𝑝𝑞 𝜕

2𝜙0
𝜕𝑥2

− 𝜇4
𝑝𝑞
𝜙0 − 𝐼01

𝜕2𝑢0
𝜕𝑡2

− 𝐼02
𝜕2𝜓

𝜕𝑡2

+ 𝐼11
𝜕3𝑤0
𝜕𝑥𝜕𝑡2

= 0 

(18c) 

 

After deriving the above governing equations for the smart FGP beam, the last equation which is 

actually the electric displacement equation coupled with the induced mechanical displacements could 

be determined according to the Maxwell’s approach: 

  

∫ (𝐷𝑥,𝑥
𝑝𝑞
+ 𝐷𝑧,𝑧

𝑝𝑞)
−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 +∫ (𝐷𝑥,𝑥
𝑝𝑞
+𝐷𝑧,𝑧

𝑝𝑞)
+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 = 0 (19) 

 

Using Equations (4), (5) and (9), and substituting the electric displacement field components in the 

Equation (19), the last electromechanical governing equation can be derived for both transverse and 

shear modes as follows: 

 

𝑏1
𝑝𝑞
𝜓 + 𝑏2

𝑝𝑞 𝜕𝜓

𝜕𝑥
+ 𝑏3

𝑝𝑞 𝜕
2𝜓

𝜕𝑥2
+ 𝑏4

𝑝𝑞 𝜕
3𝜓

𝜕𝑥3
+ 𝑏5

𝑝𝑞 𝜕
2𝑢0
𝜕𝑥2

+ 𝑏6
𝑝𝑞 𝜕

3𝑢0
𝜕𝑥3

+ 𝑏7
𝑝𝑞 𝜕

2𝑤0
𝜕𝑥2

+ 𝑏8
𝑝𝑞 𝜕

3𝑤0
𝜕𝑥3

+ 𝑏9
𝑝𝑞 𝜕

4𝑤0
𝜕𝑥4

+ 𝜇5
𝑝𝑞
𝜙0 + 𝛽5

𝑝𝑞 𝜕
2𝜙0
𝜕𝑥2

= 0 

(20) 

 

The coefficients 𝑏𝑖
𝑝𝑞

 (𝑖 = 1,… ,9), 𝜇5
𝑝𝑞

 and 𝛽5
𝑝𝑞

 are defined in relation (A.1-A.4) of the Appendix for 

all the considered piezoelectric modes and electrical boundary conditions. 

 

 

5. Solution Procedure 

In the previous section, all four electromechanical governing equations of motion (18a) to (18c) and 

(20) were derived according to the considered mechanical displacement field. Here, it is assumed that 

the edges x=0 and x=L of the sandwich beam are mechanically simply supported and electrically 

grounded to zero potential in both transverse and shear modes. Therefore, the essential and natural 

BC’s (16) can be expressed for beams with simply supported edges as follows: 

 

𝑁𝑥𝑥
𝑝𝑞
= 𝑤0 = 𝑀𝑥𝑥

𝑝𝑞
= 𝑀̂𝑥𝑥

𝑝𝑞
= 𝜙0 = 0 (21) 
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The Navier-type procedure is employed to analytically solve the governing equations (18) and (20) 

to determine the exact natural frequencies, thus the unknown components of the mechanical 

displacement field as well as the electric potential function may be of the form: 

 

{

𝑢0
𝜓
𝑤0
𝜙0

} = ∑

{
 
 

 
 
𝑋𝑚
𝑢0 cos(𝛽𝑚𝑥)

𝑋𝑚
𝜓
cos(𝛽𝑚𝑥)

𝑋𝑚
𝑤0 sin(𝛽𝑚𝑥)

𝑋𝑚
𝜙0 sin(𝛽𝑚𝑥)}

 
 

 
 ∞

𝑚=1

𝑇(𝑡) (22) 

 

where 𝑚 denotes number of half-waves in the axial direction and 𝛽𝑚 = 𝑚𝜋 𝐿⁄ . Also, 𝑋𝑚
𝑢0, 𝑋𝑚

𝜓
, 𝑋𝑚

𝑤0  

and 𝑋𝑚
𝜙0  are the unknown coefficients, and 𝑇(𝑡) = 𝑒𝑖𝜔𝑡 in which 𝑖 = √−1  and 𝜔 is the natural 

frequency of the system. It can be simply verified that the considered set of series for the unknowns 

can satisfy the obtained BC’s stated in relation (21). 

Substituting the expansions of 𝑢0, 𝜓, 𝑤0 and 𝜙0 from equations (22) into the governing equations 

(18) and (20) results in the following eigenvalue problem: 

 

([

𝑘11 𝑘12
𝑘21 𝑘22

𝑘13 𝑘14
𝑘23 𝑘24

𝑘31 𝑘32
𝑘41 𝑘42

𝑘33 𝑘34
𝑘43 𝑘44

] − 𝜔2 [

𝑚11 𝑚12

𝑚21 𝑚22

𝑚13 𝑚14

𝑚23 𝑚24
𝑚31 𝑚32

𝑚41 𝑚42

𝑚33 𝑚34

𝑚43 𝑚44

])

{
 
 

 
 
𝑋𝑚
𝑢0

𝑋𝑚
𝜓

𝑋𝑚
𝑤0

𝑋𝑚
𝜙0}
 
 

 
 

= {

0
0
0
0

} (23) 

 

in which [𝑘], [𝑚] and {𝑋} denote the stiffness matrix, mass matrix and the vector of unknown 

coefficients, respectively. Equation (23) represents a system of four algebraic homogenous equations 

in terms of the unknown coefficients. For a nontrivial solution of the vector of coefficients {𝑋}, the 

determinant of the coefficient matrix must be set to zero (i.e. |[𝑘] − 𝜔2[𝑚]| = 0), which yields a 

characteristic equation in terms of 𝜔. Positive real roots of this equation are the natural free vibration 

frequencies of the smart FGP beam. 

 

6. Numerical Results and Discussion 

6.1. Verification Studies 

First, to ensure the accuracy of the present models and formulations, the obtained numerical results 

are compared with those available in the literature. It must be mentioned that due to slight variation 

of the Poisson ratio 𝜐 through the thickness direction of the core layer, its value is assumed to be 

constant (equal to 𝜐=0.3)44, 55. In Table 2, for a sandwich beam composed of an isotropic core and d31 

piezoelectric layers, the present results are compared with those reported by Pradhan et al.9. It is 

obvious that as the value of tp/2tc goes to zero, the natural frequencies of the sandwich beam approach 

those of the homogenous beam. The numerical results reported by Pradhan et al.9 are calculated based 

on Bernoulli-Euler’s and Timoshenko’s beam theories (called CBT and TBT, respectively, in the 

study of Pradhan et al.9) using Rayleigh-Ritz’s approach, for the following material properties of an 

FGM beam: 

 

Alumina: 𝐸𝑐=380 GPa, 𝜌𝑐=3800 kg/m3, 𝜈𝑐=0.3 
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Aluminum: 𝐸𝑚=70 GPa, 𝜌𝑚=2700 kg/m3, 𝜈𝑚=0.3 

 

Table 2. Comparison of the first five dimensionless frequencies, [𝜔𝐿2/2𝑡𝑐]√𝜌𝑚/𝐸𝑚, with those  

reported in the studies of Pradhan et al.9 (𝛼 = 0, 𝑘 = 0) 

𝑡𝑝/2𝑡𝑐   Reference 1st mode 2nd mode 3rd mode 4th mode 5th mode 

𝐿/2𝑡𝑐 = 20 

10−1 CBT (Present) 6.1549 24.4738 54.5326 95.6643 126.7363 

10−2 CBT (Present) 6.8282 27.2202 60.9025 107.4347 149.8236 

10−3 CBT (Present) 6.9386 27.6686 61.9359 109.3302 153.0845 

10−4 CBT (Present) 6.9503 27.7160 62.0450 109.5302 153.4245 

10−5 CBT (Present) 6.9515 27.7207 62.0560 109.5503 153.4586 

0 CBT (Present) 6.9516 27.7212 62.0572 109.5525 153.4624 

0 CBT (Pradhan et al.9) 6.9516 27.7212 62.0573 109.5542 153.4624 

𝐿/2𝑡𝑐 = 5 

10−1 CBT (Present) 5.9790 22.0144 31.6841 44.2232 63.3681 

10−2 CBT (Present) 6.7147 25.5444 37.4559 53.3843 74.9118 

10−3 CBT (Present) 6.8331 26.1012 38.2711 54.8405 76.5422 

10−4 CBT (Present) 6.8456 26.1599 38.3561 54.9946 76.7122 

10−5 CBT (Present) 6.8469 26.1658 38.3646 55.0102 76.7293 

0 CBT (Present) 6.8470 26.1665 38.3656 55.0119 76.7312 

0 CBT (Pradhan et al.9) 6.8470 26.1665 38.3655 55.0119 76.7312 

 

In Table 3, the fundamental frequency of a simply supported beam made of FGMs is computed for 

different power-law indices namely 0, 0.5, 1, 2, 5 and 10 and compared with those of Pradhan et al.9 

and Metin et al.56. As one can see from Table 2 and the second column of Table 3, when 𝑘 = 0, the 

present results correspond closely to those of Metin et al.56 and Pradhan et al.9 which were computed 

based on analytical and numerical (i.e. Rayleigh-Ritz) methods, respectively. For 𝑘 ≠ 0, again, 

excellent agreement is clearly seen when compared with the analytically computed results of Metin 

et al.56. However, in some cases, the differences between the results of the present analytical models 

and the Rayleigh-Ritz’s method which was used in the study of Pradhan et al.9 are greater compared 

to those with the frequency values predicted by Metin et al56. It is possible that the numerical approach 

used in the work of Pradhan et al.9 did not give fully converged values of the frequencies. 

 

Table 3. Comparison of the dimensionless fundamental frequency, [𝜔𝐿2/2𝑡𝑐]√𝜌𝑚/𝐸𝑚, of a FG beam with those of 

Pradhan et al.9 and Metin et al.56 for different values of power-law index (𝐿/2𝑡𝑐 = 20, 𝛼 = 0) 

Theory k=0 k=0.5 k=1 k=2 k=5 k=10 

CBT (Pradhan et al.9) 6.9516 5.7627 5.2563 4.8259 4.3803 4.0208 

CBT (Metin et al.56) 6.9510 - 4.9070 4.3340 - 3.8040 

CBT (Present) 6.9516 5.5942 4.9039 4.3305 3.9814 3.7998 

FBT (Pradhan et al.9) 6.9317 5.7471 5.2417 4.8112 4.3647 4.0059 

FBT (Metin et al.56) 6.9310 - 4.8950 4.3230 - 3.7910 

FBT (Present) 6.9314 5.5797 4.8919 4.3197 3.9695 3.7870 

PBT (Present) 6.9273 5.5770 4.8895 4.3168 3.9643 3.7815 

SBT (Present) 6.9274 5.5771 4.8895 4.3168 3.9641 3.7814 

EBT (Present) 6.9275 5.5771 4.8895 4.3168 3.9641 3.7814 
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To further asses the calculated results by the present models, the fundamental resonant frequencies 

of an FG beam with 𝑘 = 1 are calculated and the dimensionless results are listed in Table 4 for three 

values of L/2tc alongside those of Su et al.57 in which the Bernoulli-Euler’s beam theory in conjunction 

with the Wittrick-Williams’s algorithm are used to extract the natural frequencies. A maximum error 

of 3% is seen among the results, which may be appeared due to employing the different numerical 

and analytical solution approaches developed in the two studies. 

 

Table 4. Comparison of the dimensionless fundamental frequency of a FG beam, [100𝜔(2𝑡𝑐)]√𝜌𝑚/𝐸𝑚,  

with those of Su et al.57 for different values of 𝐿/2𝑡𝑐 (𝑘 = 1, 𝛼 = 0) 

Theory 𝐿/2𝑡𝑐 = 5 𝐿/2𝑡𝑐 = 10 𝐿/2𝑡𝑐 = 100 

CBT (Su et al.57) 15.436 3.9059 0.039218 

CBT (Present) 15.912 4.0312 0.040492 

FBT (Present) 15.275 3.9868 0.040487 

PBT (Present) 15.157 3.9781 0.040486 

SBT (Present) 15.158 3.9782 0.040486 

EBT (Present) 15.162 3.9784 0.040486 

 

Having completed the above verification examples that confirmed the accuracy of the present model, 

a parametric study covering the effects of various significant beam parameters and piezoelectric 

characteristics on the system’s response is now performed. 

 

6.2. New results and simulations 

In this section, new results are presented in both tabular and graphical forms for the free vibration of 

FGP beams integrated with d31 and d15 piezoelectric layers. The mechanical and electrical properties 

of the materials used in this study are listed in Table 558. Al and Al2O3 are considered as the metal 

and ceramic parts of the FGM core, respectively; and the piezoelectric layers are assumed to be made 

of PZT-5H. 

 

Table 5. Mechanical and electrical properties of materials58 

Material Properties 

 Elastic moduli (GPa)  Dielectric moduli (10-9 F/m) 

 C11 C12 C33 C13 C55 C66  Ξ11 Ξ33 

PZT-2 134.9 67.9 113.3 68.1 22.2 33.4  4.46 2.4 

PZT-4 139.0 77.8 115.0 74.3 25.6 30.6  6.75 5.9 

PZT-5H 127.2 80.2 117.4 84.7 23.0 23.5  15.1 12.7 

 Piezoelectric moduli (C/m2) Density (kg/m3) Young’s modulus (GPa) 

 e31 e33 e15  𝜌   E 

PZT-2 -1.82 9.05 9.8  7600   - 

PZT-4 -5.2 15.1 12.7  7500   - 

PZT-5H -6.6 23.2 17.0  7500   - 

 

Aluminum (Al) - - -  2700 70 

Alumina (Al2O3) - - -  3800 380 

 

In Tables 6 to 9, based on the presented CBT, FBT, PBT, SBT and EBT, the effects of porosity 

volume fraction 𝛼, porosity distribution, power-law index k and electrical circuit condition on the 
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resonance frequencies of both d31 and d15 piezoelectric coupled FGP beams are investigated. These 

tables list the first three SC and OC eigenfrequencies of smart FGP beams for different values of 

power-law index and porosity parameter. 

These tables imply that FGP beams sandwiched between d15 piezoelectric layers provide lower SC 

and OC resonant frequencies in comparison with the ones corresponding to the beams surrounded by 

d31 piezoelectric layers. In addition, when the bonded piezoelectric layers are polarized through their 

thickness, the OC natural frequencies are considerably larger than those of the similar beams with SC 

electrical condition, whereas there is almost no difference between SC and OC resonant frequencies 

when the beams are surrounded by d15 piezoelectric layers. Moreover, the power-law index plays an 

important role on the frequency behavior of the smart FGP beams. As seen in the tables, for both even 

and uneven porosity distributions, increasing the power-law index significantly decreases the first 

three natural frequencies of the smart sandwich beam irrespective of the value of 𝛼, piezoelectricity 

mode and electrical boundary condition. This is due to the fact that an increase in the value of k leads 

to a decrease in the effective modulus of elasticity, and consequently the beam becomes less rigid. 

Thus, as it is well-known from mechanical vibration, resonance frequencies reduce as the structure 

stiffness decreases. Considering the tabulated results in Tables 6 to 9, it is obvious that the beam 

resonant frequencies are the same for both even and uneven porosity distribution, when 𝛼=0. This is 

due to the considered functions for the mechanical properties of FGMs with porosity which are 

defined by Equation (1). For the studied power-law indices and porosity parameters, the smart FGP 

beams with uneven porosity pattern exhibit higher frequencies than those of the beams with evenly 

distributed pores. Inspection of these tables reveals that the natural frequencies predicted by CBT are 

comparatively greater than those forecasted by higher deformation beam theories, regardless of the 

considered electrical and material parameters of the smart FGP beams. It is also observed that the 

results of the higher-order theories (i.e. PBT, SBT and EBT) are close to each other for all the 

considered beam parameters. 
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Table 6. First three SC resonance frequencies (Hz) of piezoelectric coupled FGP beams with Even porosity distribution 

(L/2tc=10, tp/2tc=0.2) 

 

Sour

ce 

Mode 1 (m=1)  Mode 2 (m=2)  Mode 3 (m=3) 

K=0 K=1 K=10  K=0 K=1 K=10  K=0 K=1 K=10 

𝛼=0 

FGP Beam with d31 Piezoelectric Layers 

CBT 435.309 374.916 349.683  1691.218 1453.180 1353.334  3637.466 3114.708 2894.397 

FBT 428.399 368.360 339.793  1600.435 1368.370 1230.287  3286.992 2793.157 2444.241 

PBT 427.996 368.151 337.747  1594.783 1365.460 1207.247  3263.123 2781.008 2367.621 

SBT 427.979 368.172 337.624  1594.517 1365.688 1205.928  3261.883 2781.719 2363.508 

EBT 427.974 368.205 337.529  1594.398 1366.072 1204.915  3261.190 2783.005 2360.444 

FGP Beam with d15 Piezoelectric Layers 

CBT 429.433 367.290 340.917  1668.391 1423.583 1319.352  3588.370 3051.166 2821.552 

FBT 422.792 361.115 331.726  1581.021 1343.545 1204.554  3250.641 2747.146 2400.152 

PBT 422.360 360.873 329.753  1574.984 1340.207 1182.130  3225.237 2733.332 2324.884 

SBT 422.339 360.888 329.631  1574.662 1340.358 1180.794  3223.773 2733.751 2320.650 

EBT 422.329 360.914 329.533  1574.480 1340.656 1179.743  3222.836 2734.716 2317.404 

𝛼=0.15 

FGP Beam with d31 Piezoelectric Layers 

CBT 438.306 371.104 343.240  1700.688 1435.809 1325.258  3651.151 3069.517 2824.439 

FBT 431.172 364.338 331.531  1607.609 1349.187 1183.332  3294.759 2744.973 2318.360 

PBT 430.770 364.163 327.491  1602.029 1346.743 1140.739  3271.113 2734.810 2184.861 

SBT 430.763 364.196 327.167  1601.815 1347.125 1137.516  3270.049 2736.085 2175.412 

EBT 430.763 364.243 326.872  1601.754 1347.675 1134.621  3269.554 2737.970 2167.085 

FGP Beam with d15 Piezoelectric Layers 

CBT 432.023 362.684 333.362  1676.310 1403.179 1286.971  3598.814 2999.601 2742.457 

FBT 425.183 356.356 322.589  1586.941 1321.977 1155.814  3256.171 2694.766 2272.850 

PBT 424.756 356.147 318.791  1580.953 1319.103 1115.291  3230.911 2682.946 2144.459 

SBT 424.739 356.174 318.483  1580.677 1319.398 1112.175  3229.607 2683.899 2135.195 

EBT 424.733 356.213 318.201  1580.548 1319.851 1109.361  3228.849 2685.428 2126.979 

𝛼=0.3 

FGP Beam with d31 Piezoelectric Layers 

CBT 441.771 365.741 333.189  1711.595 1411.897 1281.583  3666.819 3008.766 2715.761 

FBT 434.368 358.731 317.771  1615.777 1323.272 1103.598  3303.404 2681.509 2108.475 

PBT 433.977 358.594 303.600  1610.253 1321.386 975.9310  3279.916 2673.802 1755.067 

SBT 433.970 358.644 301.470  1610.100 1321.975 959.1190  3279.057 2675.826 1713.398 

EBT 433.976 358.710 299.089  1610.108 1322.746 940.9700  3278.793 2678.506 1669.579 

FGP Beam with d15 Piezoelectric Layers 

CBT 435.020 356.298 321.571  1685.438 1375.361 1236.523  3610.783 2930.664 2619.086 

FBT 427.942 349.803 307.633  1593.686 1293.026 1074.488  3262.293 2625.992 2063.365 

PBT 427.518 349.634 294.665  1587.728 1290.733 955.2960  3237.110 2616.738 1728.135 

SBT 427.506 349.676 292.705  1587.508 1291.223 939.4290  3235.992 2618.404 1688.057 

EBT 427.505 349.732 290.511  1587.441 1291.883 922.2590  3235.443 2620.684 1645.799 
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Table 7. First three OC resonance frequencies (Hz) of piezoelectric coupled FGP beams with Even porosity distribution 

(L/2tc=10, tp/2tc=0.2) 

 

  

Sour

ce 

Mode 1 (m=1)  Mode 2 (m=2)  Mode 3 (m=3) 

K=0 K=1 K=10  K=0 K=1 K=10  K=0 K=1 K=10 

𝛼=0 

FGP Beam with d31 Piezoelectric Layers 

CBT 437.319 377.513 352.659  1699.004 1463.229 1364.830  3654.124 3136.178 2918.911 

FBT 430.260 370.747 342.382  1606.324 1375.787 1237.283  3296.560 2804.957 2453.361 

PBT 429.908 370.606 340.405  1601.322 1373.728 1215.129  3275.147 2795.954 2379.920 

SBT 429.895 370.631 340.288  1601.100 1374.015 1213.873  3274.074 2796.888 2376.040 

EBT 429.893 370.669 340.198  1601.024 1374.460 1212.928  3273.551 2798.402 2373.227 

FGP Beam with d15 Piezoelectric Layers 

CBT 429.433 367.290 340.917  1668.391 1423.595 1319.362  3588.370 3051.225 2821.608 

FBT 423.017 361.454 332.786  1583.783 1347.653 1216.734  3260.564 2761.687 2441.427 

PBT 422.360 360.874 329.753  1574.984 1340.216 1182.137  3225.237 2733.371 2324.910 

SBT 422.339 360.889 329.631  1574.662 1340.367 1180.801  3223.773 2733.790 2320.676 

EBT 422.329 360.915 329.534  1574.480 1340.665 1179.750  3222.836 2734.754 2317.429 

𝛼=0.15 

FGP Beam with d31 Piezoelectric Layers 

CBT 440.454 373.966 346.592  1708.998 1446.871 1338.171  3668.898 3093.103 2851.946 

FBT 433.157 366.960 334.357  1613.855 1357.261 1190.439  3304.845 2757.701 2326.738 

PBT 432.816 366.860 330.351  1608.978 1355.760 1148.459  3283.841 2750.981 2195.712 

SBT 432.807 366.899 330.029  1608.812 1356.210 1145.272  3282.957 2752.506 2186.432 

EBT 432.811 366.952 329.736  1608.799 1356.829 1142.420  3282.646 2754.647 2178.294 

FGP Beam with d15 Piezoelectric Layers 

CBT 432.023 362.685 333.363  1676.310 1403.195 1286.991  3598.814 2999.686 2742.571 

FBT 425.437 356.759 324.260  1590.035 1326.799 1174.401  3267.203 2711.650 2334.091 

PBT 424.756 356.148 318.792  1580.953 1319.116 1115.303  3230.911 2683.001 2144.497 

SBT 424.739 356.175 318.484  1580.677 1319.411 1112.186  3229.607 2683.954 2135.233 

EBT 424.733 356.214 318.202  1580.548 1319.864 1109.372  3228.849 2685.482 2127.015 

𝛼=0.3 

FGP Beam with d31 Piezoelectric Layers 

CBT 444.079 368.944 337.096  1720.506 1424.256 1296.685  3685.808 3035.060 2748.004 

FBT 436.494 361.651 320.876  1622.424 1332.172 1110.363  3314.058 2695.388 2114.974 

PBT 436.164 361.600 306.425  1617.666 1331.338 981.4270  3293.427 2691.468 1760.467 

SBT 436.161 361.657 304.244  1617.565 1332.004 964.3930  3292.765 2693.774 1718.554 

EBT 436.171 361.729 301.807  1617.626 1332.855 946.0130  3292.702 2696.744 1674.495 

FGP Beam with d15 Piezoelectric Layers 

CBT 435.020 356.300 321.574  1685.438 1375.385 1236.574  3610.783 2930.793 2619.379 

FBT 428.232 350.292 310.864  1597.194 1298.812 1108.407  3274.695 2646.008 2169.794 

PBT 427.518 349.635 294.668  1587.728 1290.753 955.3130  3237.110 2616.820 1728.172 

SBT 427.506 349.677 292.707  1587.508 1291.243 939.4440  3235.992 2618.485 1688.087 

EBT 427.505 349.734 290.513  1587.441 1291.902 922.2730  3235.443 2620.765 1645.823 
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Table 8. First three SC resonance frequencies (Hz) of piezoelectric coupled FGP beams with Uneven porosity distribution 

(L/2tc=10, tp/2tc=0.2) 

 

  

Sour

ce 

Mode 1 (m=1)  Mode 2 (m=2)  Mode 3 (m=3) 

K=0 K=1 K=10  K=0 K=1 K=10  K=0 K=1 K=10 

𝛼=0 

FGP Beam with d31 Piezoelectric Layers 

CBT 435.309 374.916 349.683  1691.218 1453.180 1353.334  3637.466 3114.708 2894.397 

FBT 428.399 368.360 339.793  1600.435 1368.370 1230.287  3286.992 2793.157 2444.241 

PBT 427.996 368.151 337.747  1594.783 1365.460 1207.247  3263.123 2781.008 2367.621 

SBT 427.979 368.172 337.624  1594.517 1365.688 1205.928  3261.883 2781.719 2363.508 

EBT 427.974 368.205 337.529  1594.398 1366.072 1204.915  3261.190 2783.005 2360.444 

FGP Beam with d15 Piezoelectric Layers 

CBT 429.433 367.290 340.917  1668.391 1423.583 1319.352  3588.370 3051.166 2821.552 

FBT 422.792 361.115 331.726  1581.021 1343.545 1204.554  3250.641 2747.146 2400.152 

PBT 422.360 360.873 329.753  1574.984 1340.207 1182.130  3225.237 2733.332 2324.884 

SBT 422.339 360.888 329.631  1574.662 1340.358 1180.794  3223.773 2733.751 2320.650 

EBT 422.329 360.914 329.533  1574.480 1340.656 1179.743  3222.836 2734.716 2317.404 

𝛼=0.15 

FGP Beam with d31 Piezoelectric Layers 

CBT 439.971 377.265 351.524  1707.924 1460.703 1358.639  3669.067 3125.971 2900.099 

FBT 432.801 370.392 340.421  1614.195 1372.408 1222.581  3309.303 2793.832 2409.524 

PBT 432.322 370.068 336.877  1607.598 1368.134 1184.239  3281.976 2776.951 2286.552 

SBT 432.297 370.078 336.543  1607.223 1368.227 1180.804  3280.334 2777.185 2276.160 

EBT 432.283 370.101 336.225  1606.996 1368.482 1177.559  3279.244 2778.010 2266.487 

FGP Beam with d15 Piezoelectric Layers 

CBT 433.944 369.355 342.375  1684.530 1430.031 1323.200  3618.811 3060.202 2824.199 

FBT 427.057 362.893 332.084  1594.373 1346.847 1196.535  3272.307 2746.697 2365.818 

PBT 426.551 362.542 328.713  1587.402 1342.203 1159.683  3243.480 2728.344 2246.465 

SBT 426.521 362.546 328.393  1586.971 1342.223 1156.340  3241.617 2728.300 2236.224 

EBT 426.502 362.562 328.085  1586.682 1342.395 1153.169  3240.285 2728.814 2226.649 

𝛼=0.3 

FGP Beam with d31 Piezoelectric Layers 

CBT 444.932 379.650 353.235  1725.657 1468.187 1363.125  3702.488 3136.641 2903.019 

FBT 437.477 372.417 340.506  1628.719 1375.999 1210.070  3332.682 2792.822 2360.871 

PBT 436.907 371.940 333.870  1621.001 1369.924 1142.228  3301.309 2769.798 2153.628 

SBT 436.871 371.934 332.968  1620.492 1369.823 1133.638  3299.182 2769.363 2129.197 

EBT 436.846 371.940 331.997  1620.133 1369.885 1124.572  3297.609 2769.523 2103.865 

FGP Beam with d15 Piezoelectric Layers 

CBT 438.746 371.426 343.640  1701.665 1436.329 1325.973  3651.012 3068.418 2823.493 

FBT 431.589 364.641 331.878  1608.471 1349.642 1183.837  3295.021 2744.491 2318.004 

PBT 430.993 364.144 325.630  1600.396 1343.283 1119.174  3262.199 2720.277 2118.325 

SBT 430.952 364.132 324.777  1599.832 1343.116 1110.937  3259.855 2719.587 2094.601 

EBT 430.923 364.133 323.859  1599.412 1343.102 1102.234  3258.042 2719.457 2069.968 
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Table 9. First three OC resonance frequencies (Hz) of piezoelectric coupled FGP beams with Uneven porosity distribution 

(L/2tc=10, tp/2tc=0.2) 

 

  

Sour

ce 

Mode 1 (m=1)  Mode 2 (m=2)  Mode 3 (m=3) 

K=0 K=1 K=10  K=0 K=1 K=10  K=0 K=1 K=10 

𝛼=0 

FGP Beam with d31 Piezoelectric Layers 

CBT 437.319 377.513 352.659  1699.004 1463.229 1364.830  3654.124 3136.178 2918.911 

FBT 430.260 370.747 342.382  1606.324 1375.787 1237.283  3296.560 2804.957 2453.361 

PBT 429.908 370.606 340.405  1601.322 1373.728 1215.129  3275.147 2795.950 2379.920 

SBT 429.895 370.631 340.288  1601.100 1374.015 1213.873  3274.074 2796.888 2376.040 

EBT 429.893 370.669 340.198  1601.024 1374.460 1212.928  3273.551 2798.402 2373.227 

FGP Beam with d15 Piezoelectric Layers 

CBT 429.433 367.290 340.917  1668.391 1423.595 1319.362  3588.370 3051.225 2821.608 

FBT 423.017 361.454 332.786  1583.783 1347.653 1216.734  3260.564 2761.687 2441.427 

PBT 422.360 360.874 329.753  1574.984 1340.216 1182.137  3225.237 2733.371 2324.910 

SBT 422.339 360.889 329.631  1574.662 1340.367 1180.801  3223.773 2733.790 2320.676 

EBT 422.329 360.915 329.534  1574.480 1340.665 1179.750  3222.836 2734.754 2317.429 

𝛼=0.15 

FGP Beam with d31 Piezoelectric Layers 

CBT 442.033 379.958 354.626  1715.902 1471.113 1370.618  3686.116 3148.183 2925.620 

FBT 434.706 372.857 343.076  1620.188 1380.001 1229.467  3318.972 2805.783 2417.995 

PBT 434.279 372.604 339.576  1614.259 1376.601 1191.799  3294.162 2792.113 2297.641 

SBT 434.257 372.619 339.244  1613.928 1376.755 1188.396  3292.690 2792.573 2287.402 

EBT 434.247 372.646 338.927  1613.747 1377.071 1185.187  3291.774 2793.629 2277.899 

FGP Beam with d15 Piezoelectric Layers 

CBT 433.944 369.356 342.376  1684.530 1430.045 1323.214  3618.811 3060.272 2824.277 

FBT 427.302 363.277 333.452  1597.366 1351.455 1211.953  3283.004 2762.890 2417.196 

PBT 426.551 362.543 328.714  1587.402 1342.214 1159.691  3243.480 2728.380 2246.495 

SBT 426.521 362.547 328.393  1586.971 1342.234 1156.348  3241.617 2728.344 2236.253 

EBT 426.502 362.563 328.086  1586.682 1342.405 1153.177  3240.285 2728.858 2226.677 

𝛼=0.3 

FGP Beam with d31 Piezoelectric Layers 

CBT 447.048 382.448 356.485  1733.838 1478.994 1375.669  3719.949 3159.672 2929.730 

FBT 439.427 374.969 343.226  1634.818 1383.778 1216.747  3342.450 2804.919 2368.464 

PBT 438.911 374.564 336.568  1627.787 1378.595 1149.089  3313.654 2785.155 2162.713 

SBT 438.879 374.562 335.654  1627.323 1378.554 1140.446  3311.700 2784.945 2138.260 

EBT 438.858 374.574 334.672  1627.010 1378.679 1131.324  3310.303 2785.337 2112.907 

FGP Beam with d15 Piezoelectric Layers 

CBT 438.746 371.427 343.641  1701.665 1436.345 1325.993  3651.012 3068.502 2823.606 

FBT 431.857 365.078 333.713  1611.727 1354.849 1204.022  3306.591 2762.647 2383.878 

PBT 430.993 364.145 325.631  1600.396 1343.296 1119.185  3262.199 2720.329 2118.356 

SBT 430.952 364.133 324.778  1599.832 1343.128 1110.947  3259.855 2719.639 2094.631 

EBT 430.923 364.133 323.860  1599.412 1343.115 1102.243  3258.042 2719.509 2069.995 
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                                          (a) Even                                                                                (b) Uneven 

Figure 3. Variation of  𝛽 versus the length-thickness ratio (L/2tc) for an FGP beam without  

piezoelectric layers (𝛼=0.3, tp=0) 

To gain a deeper insight into the effect of various beam theories on the eigenfrequency response, the 

variation 𝛽 of percentage difference in frequency, defined by Equation (24), with respect to the 

length-thickness ratio L/2tc is plotted in Figure 3 for a FGP core beam with different patterns of 

porosity distribution. 

 

𝛽 =
𝜔|Predicted by CBT − 𝜔|Predicted by PBT

𝜔|Predicted by PBT
× 100 (24) 

 

Since the frequencies predicted by higher-order beam theories are very close to each other, PBT is 

only employed in Equation (24). Figures (3a) and (3b) show the variation of 𝛽 for the first three 

natural frequencies of FGP beams with different values of power-law index, namely 0, 0.2 and 4. As 

expected, positive values are obtained for 𝛽 in all the vibration modes, which show that CBT predicts 

higher frequencies with respect to those calculated by PBT. As obvious in the figures, at a fixed value 

of L/2tc, the amplitude of 𝛽 is the most for the frequency related to the third vibrational mode, and 

the least value of 𝛽 is determined for the fundamental frequency of the FGP beam. It does mean that 

there is a considerable difference between the results of CBT and higher-order theories, when 

calculating the frequencies of higher vibrational modes, especially for thicker beams (i.e. L/2tc < 15). 

In other words, the influence of shear transverse deformation becomes more significant for thick 

beams and affects the corresponded results remarkably. Similar trends have been seen for FGP beams 

surrounded by surface-bonded piezoelectric layers. Hereafter, in order to increase the accuracy of the 

presented numerical simulations, all the figures are plotted based on the results of PBT, which 

virtually predicts the same frequencies as other higher-order theories presented in this study (i.e. SBT 

and EBT). 
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                               (a) Even - d31 Piezo Layers                                                    (b) Uneven - d31 Piezo Layers 

     
                               (c) Even - d15 Piezo Layers                                                    (d) Uneven - d15 Piezo Layers 

Figure 4. Variation of the fundamental natural frequency versus the power-law index for FGP beam with integrated 

piezoelectric layers in SC electrical condition (L/2tc=10, tp/2tc=0.2) 

One may see a specific upward or downward trend in Tables 6 to 9 for the eigenfrequency behavior 

of the smart FGP beams versus the porosity volume fraction for any given k regardless of the pattern 

of porosity distribution. For example, by carrying out a careful inspection of Tables 6 to 9, it can be 

ascertained that for k=0, the first three SC and OC natural frequencies increase as the value of 𝛼 

increases for both porosity distribution, whereas opposite trend is seen for frequencies of the beams 

with evenly distributed pores when the power-law index increases up to 1. To further investigate this 

matter, the effects of changes in the value of porosity parameter and the type of porosity distribution 

on variation of the SC fundamental frequency versus the power-law index are shown in Figure 4 for 

FGP beams with d31 and d15 piezoelectric layers. It can be observed that the free vibration behavior 

of the beam with even porosity distribution is influenced remarkably by changing the power-law 

index as well as the porosity parameter in comparison with the beam with uneven porosity 

distribution. Furthermore, it can be inferred from the figures that before the crossing point, the natural 

frequency increases as the value of 𝛼 rises, while the opposite trend is seen after the mentioned point, 

regardless of the porosity distribution pattern and the type of piezoelectric layers. Moreover, the value 
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of k at the point of intersection is much higher for the hybrid FGP beam with unevenly distributed 

pores (around k=2.5) than that of the beam with even distribution (about k=0.3). Therefore, the trends 

for variation of the resonance frequencies versus porosity volume fraction depend on the value of 

power-law index for the beams with both even and uneven distribution. 

Figures 5(a) to 5(f) show the combined effects of changes in power-law index and porosity 

distribution on variation of the first three eigenfrequencies of smart FGP beams with respect to the 

porosity volume fraction. Inspection of the figures concludes that the curves corresponded to even 

porosity distribution tend to incrementally lie below those related to beam with unevenly distributed 

pores, as k increases. Besides, for the small values of k, by increasing the porosity parameter, the SC 

and OC resonant frequencies of the first three vibrational modes increase, for both even and uneven 

porosity distribution. Nevertheless, the frequencies become lower as k is increased up to a prescribed 

value for FGP beams with even porosity distribution. This behavior can finally be seen for beams 

with unevenly distributed pores as the power-law index gets greater. These trends are seen mainly 

because the influence of dropping effective stiffness of the smart hybrid beam (owing to increasing 

k) overcomes its decreasing inertia at this point, which results in a downward trend for resonance 

frequencies. Similar trends may be observed for the FGP beams with d15 piezoelectric layers. 

 

  

                            (a) Mode 1 - SC condition                                                           (b) Mode 1 - OC condition 
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                             (c) Mode 2 - SC condition                                                        (d) Mode 2 - OC condition 

  
                             (e) Mode 3 - SC condition                                                        (f) Mode 3 - OC condition 

Figure 5. Variation of the first three SC and OC eigenfrequencies versus porosity volume fraction for FGP beam 

surrounded by d31 piezoelectric layers (L/2tc=15, 2tc/tp=15) 

 

In the following, the influence of the piezoelectric layer thickness on the resonant frequencies of FGP 

beams are quantified for different power-law indices and porosity volume fractions. To this end, the 

new parameter 𝜃, which represents the relative difference in natural frequency of the beams with and 

without piezoelectric layers is defined as follows 

 

𝜃 =
𝜔|With Piezo Layers −𝜔|Without Piezo Layers

𝜔|Without Piezo Layers
× 100 (25) 

 

For smart FGP beams with L/2tc=15 and 𝛼=0.2, the variation of 𝜃 versus tp/2tc is plotted in Figures 

6(a) to 6(d). The figures reveal that, at a fixed value of tp/2tc, the value of 𝜃 is more sensitive to k for 

the beams with evenly distributed pores than that of the ones with uneven distribution. When k is 

small, the values of 𝜃 are negative regardless of the type of piezoelectric layers and porosity 

distribution, meaning that the coupled FGP beams have lower frequencies than the corresponding 

core beams. This behavior is due to the fact that the mass density of the material of piezoelectric 

layers (here PZT-5H) is greater than that of the considered material for the core layer, and 

consequently the effective mass density of the hybrid beam increases. Furthermore, the elastic 

modulus of the material of the core layer is higher than that of piezoelectric material, resulting in a 

decrease in the effective structural stiffness of the sandwich beam. On the other hand, when coupling 

piezoelectric layers with the core layer, the electromechanical coupling effect of piezoelectrics tends 

to increase the natural frequency of the hybrid structure, as concluded in the study of Wu et al.54. 

Thus, negative values of 𝜃 show that the electromechanical coupling effect of piezoelectric layers is 

less than that of the combined effects coming from the reduction in overall mass density and the 

growth in the effective stiffness. In addition, when the power-law index gets larger, the addition of 

piezoelectric layers results in opposite changes in the effective mass density and stiffness of the hybrid 

structure which finally leads to increase the natural frequencies, as seen from the curves corresponded 

to k=0.5, 1 and 5. 
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                     (a) Even porosity distribution – d31 Mode                             (b) Even porosity distribution – d15 Mode 

 
                   (c) Uneven porosity distribution – d31 Mode                         (d) Uneven porosity distribution – d15 Mode 

Figure 6. Variation of 𝜃 versus the thickness ratio for FGP beams coupled with d31 and d15 piezoelectric layers in SC 

condition (L/2tc=15, 𝛼=0.2) 
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                     (a) Even porosity distribution (k=0.1)                                    (b) Uneven porosity distribution (k=0.1) 

   

                        (c) Even porosity distribution (k=2)                                    (d) Uneven porosity distribution (k=2) 

Figure 7. Variation of 𝜃 versus the thickness ratio for a FGP beam integrated with d31 and d15 piezoelectric layers in OC 

condition (L/2tc=5) 

In Figure 7, for different values of the porosity parameter 0, 0.15 and 0.3, and the power-law index 

0.1 and 2, variations of 𝜃 versus tp/2tc are depicted for the FGP beams with integrated d31 and d15 

piezoelectric layers in OC electrical condition. Again, it is seen that the addition of both transverse 

and shear piezoelectric layers to FGP core beam has a greater effect on the natural frequencies when 

the internal pores are evenly distributed with respect to uneven distribution, regardless of the value 

of k. Moreover, by increasing the porosity volume fraction, the magnitude of 𝜃 increases for both 

even and uneven porosity distribution in such a way that this growth is more significant for the beam 

with even distribution and k=2 (see Figure 7(c)). It is also observed that when k=0.1, the magnitude 

of 𝜃 raises with an increase in the thickness of piezoelectric layers till tp/2tc=0.25; subsequently, the 

magnitude of 𝜃 drops as the value of tp/2tc increases. It is due to the reason that when tp/2tc is less than 

0.25, the combined effects of the rise in the effective mass density and the fall in the structural 

stiffness are more than the increasing electromechanical effect due to increasing the piezoelectric 

layers’ thickness. However, from tp/2tc=0.25 to 0.5, the trend of 𝜃 changes reversely, as the thickness 

ratio increases, meaning that the electromechanical effect overcomes the other two mentioned effects, 

which leads to the increasing trend of 𝜃, as shown in Figures 7(a) and 7(b). By examining the 

numerical results, it is simple to acquire the similar conclusions for SC electrical boundary condition. 
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                            (a) Even porosity distribution                                            (b) Uneven porosity distribution 

Figure 8. Variation of 𝜃 versus the thickness ratio for smart FGP beams in SC condition with different values of L/2tc 

(k=5, 𝛼=0.2) 

The last numerical example is provided in Figure (8) to show the effect of the piezoelectric layers’ 

thickness on the SC fundamental frequency of FGP beams having 2tc/L=0.05, 0.1 and 0.2. As obvious, 

the value of 𝜃 decreases with an increase in the value of the core thickness for both d31 and d15 modes. 

It does mean that adding piezoelectric layers to FGP beams has a greater effect on the 

eigenfrequencies of the beams with lower core thickness. 

 

 

7. Conclusion  

In this article, employing various beam theories, an analytical approach has been developed to study 

the eigenfrequency behavior of simply supported smart FGP beams having different porosity 

distributions as well as various types of piezoelectric layers. The effects of material variation, 

porosity, beam dimensions, beam theories and piezoelectric characteristics on the resonance 

frequencies have been investigated in details. By analyzing the numerical simulations, the following 

conclusions are reached: 

 

 FGP beams coupled with d15 piezoelectric layers provide lower resonant frequencies than the 

ones integrated with d31 piezoelectric layers; 

 In d31 mode, the OC natural frequencies are greater than those of the SC condition, while there 

is virtually no difference between SC and OC frequencies when the FGP beam is surrounded by 

d15 piezoelectric layers; 

 Adding piezoelectric layers has more effects on the eigenfrequencies when the internal pores are 

evenly distributed, and the changes in natural frequency due to adding piezoelectric layers is 

highly dependent upon the value of k; 

 Variation of the eigenfrequencies versus porosity depends on the value of power-law index and 

the type of porosity distribution regardless of the piezoelectric characteristics; 

 The smart FGP beams with unevenly distributed pores usually provide higher resonant 

frequencies than those of the beams with even porosity pattern; 
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 Increasing the power-law index k remarkably decrease the eigenfrequencies irrespective of the 

type of porosity pattern; 

 The beam natural frequencies are more sensitive when the internal pores are evenly distributed. 

 

 

Appendix: Definition of materials’ coefficients 

The coefficients 𝑎𝑖
𝑝𝑞
 (𝑖 = 1, 2,… , 13), 𝛽𝑖

𝑝𝑞
 (𝑖 = 1, 2,… , 4), and 𝜇𝑖

𝑝𝑞
 (𝑖 = 1, 2,… , 4) in Transverse 

(d31) Mode are defined as 

 

In the SC electrical condition: 

 

(

𝑎1
31

𝑎4
31

𝑎7
31

) = ∫ (
1
𝑧

𝑓(𝑧)
) 𝐶11

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 +∫ (
1
𝑧

𝑓(𝑧)
)𝑄11

+𝑡𝑐

−𝑡𝑐

𝑑𝑧 +∫ (
1
𝑧

𝑓(𝑧)
)𝐶11

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

(

𝑎2
31

𝑎5
31

𝑎8
31

) = −∫ (
1
𝑧

𝑓(𝑧)
) 𝑧𝐶11

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 −∫ (
1
𝑧

𝑓(𝑧)
) 𝑧𝑄11

+𝑡𝑐

−𝑡𝑐

𝑑𝑧 −∫ (
1
𝑧

𝑓(𝑧)
)𝑧𝐶11

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

(

𝑎3
31

𝑎6
31

𝑎9
31

) = ∫ (
1
𝑧

𝑓(𝑧)
) 𝑓(𝑧)𝐶11

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 + ∫ (
1
𝑧

𝑓(𝑧)
) 𝑓(𝑧)𝑄11

+𝑡𝑐

−𝑡𝑐

𝑑𝑧 +∫ (
1
𝑧

𝑓(𝑧)
)𝑓(𝑧)𝐶11

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

𝑎10
31 = ∫ [𝑓′(𝑧)]2𝐶55

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 + ∫ [𝑓′(𝑧)]2𝑄55

+𝑡𝑐

−𝑡𝑐

𝑑𝑧 +∫ [𝑓′(𝑧)]2𝐶55

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

(

𝑎11
31

𝑎12
31

𝑎13
31

) = (
0
0
0
) 

(

𝜇1
31

𝜇2
31

𝜇3
31

) = ∫ (
1
𝑧

𝑓(𝑧)
)
4𝑒31
𝑡𝑝

[
−2𝑧 − 2𝑡𝑐 − 𝑡𝑝

𝑡𝑝
]

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 − ∫ (
1
𝑧

𝑓(𝑧)
)
4𝑒31
𝑡𝑝

[
2𝑧 − 2𝑡𝑐 − 𝑡𝑝

𝑡𝑝
]

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

𝜇4
31 = 0 

𝜇5
31 = ∫

8Ξ33

(𝑡𝑝)
2

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 + ∫
8Ξ33

(𝑡𝑝)
2

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

(

𝛽1
31

𝛽2
31

𝛽3
31

) = (
0
0
0
) 
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𝛽4
31 = ∫ 𝑓′(𝑧) 𝑒15 [1 − (

−2𝑧 − 2𝑡𝑐 − 𝑡𝑝
𝑡𝑝

)

2

]
−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧

+∫ 𝑓′(𝑧) 𝑒15 [1 − (
2𝑧 − 2𝑡𝑐 − 𝑡𝑝

𝑡𝑝
)

2

]
+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

𝛽5
31 = −∫ Ξ11 [1 − (

−2𝑧 − 2𝑡𝑐 − 𝑡𝑝
𝑡𝑝

)

2

]
−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 − ∫ Ξ11 [1 − (
2𝑧 − 2𝑡𝑐 − 𝑡𝑝

𝑡𝑝
)

2

]
+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

(

 
 
 
 
 

𝑏1
31

𝑏3
31

𝑏4
31

𝑏5
31

𝑏6
31

𝑏8
31

𝑏9
31)

 
 
 
 
 

=

(

 
 
 
 

0
0
0
0
0
0
0)

 
 
 
 

 

𝑏2
31 = ∫ 𝑓′(𝑧)(𝑒31 + 𝑒15)

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 +∫ 𝑓′(𝑧)(𝑒31 + 𝑒15)
+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

𝑏7
31 = −∫ 𝑒31

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 − ∫ 𝑒31

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 (A.1) 

 

 

In the OC electrical condition: 

 

(

𝑎1
31

𝑎4
31

𝑎7
31

) = ∫ (
1
𝑧

𝑓(𝑧)
) [𝐶11 +

𝑒31
2

Ξ33
]

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 +∫ (
1
𝑧

𝑓(𝑧)
)𝑄11

+𝑡𝑐

−𝑡𝑐

𝑑𝑧

+∫ (
1
𝑧

𝑓(𝑧)
) [𝐶11 +

𝑒31
2

Ξ33
]

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

(

𝑎2
31

𝑎5
31

𝑎8
31

) = ∫ (
1
𝑧

𝑓(𝑧)
) [−𝑧𝐶11 +

(𝑡𝑐 + 𝑡𝑝)𝑒31
2

Ξ33
]

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 −∫ (
1
𝑧

𝑓(𝑧)
)𝑧𝑄11

+𝑡𝑐

−𝑡𝑐

𝑑𝑧

+∫ (
1
𝑧

𝑓(𝑧)
) [−𝑧𝐶11 +

(𝑡𝑐 + 𝑡𝑝)𝑒31
2

Ξ33
]

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

(

𝑎3
31

𝑎6
31

𝑎9
31

) = ∫ (
1
𝑧

𝑓(𝑧)
) [𝑓(𝑧)𝐶11 +

𝜂2𝑒31
2

Ξ33
]

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 + ∫ (
1
𝑧

𝑓(𝑧)
) 𝑓(𝑧)𝑄11

+𝑡𝑐

−𝑡𝑐

𝑑𝑧

+∫ (
1
𝑧

𝑓(𝑧)
) [𝑓(𝑧)𝐶11 +

𝜂1𝑒31
2

Ξ33
]

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 
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𝑎10
31 = ∫ [𝑓′(𝑧)]2𝐶55

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 + ∫ [𝑓′(𝑧)]2𝑄55

+𝑡𝑐

−𝑡𝑐

𝑑𝑧 +∫ [𝑓′(𝑧)]2𝐶55

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

(

𝑎11
31

𝑎12
31

𝑎13
31

) = ∫ (

𝜂2
1

𝑡𝑐 + 𝑡𝑝
)
𝑓′(𝑧)𝑒15𝑒31(𝑧 + 𝑡𝑐)

Ξ33

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 +∫ (

𝜂1
1

𝑡𝑐 + 𝑡𝑝
)
𝑓′(𝑧)𝑒15𝑒31(𝑧 − 𝑡𝑐)

Ξ33

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

(

𝜇1
31

𝜇2
31

𝜇3
31

) = −∫ (
1
𝑧

𝑓(𝑧)
)
8𝑒31
𝑡𝑝

(𝑧 + 𝑡𝑐 + 𝑡𝑝)
−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 −∫ (
1
𝑧

𝑓(𝑧)
)
8𝑒31
𝑡𝑝

(𝑧 − 𝑡𝑐 − 𝑡𝑝)
+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

𝜇4
31 = 0 

𝜇5
31 = ∫

8Ξ33

(𝑡𝑝)
2

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 + ∫
8Ξ33

(𝑡𝑝)
2

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

(

𝛽1
31

𝛽2
31

𝛽3
31

) = (
0
0
0
) 

𝛽4
31 = ∫ 𝑓′(𝑧) 𝑒15 [1 − (

−2𝑧 − 2𝑡𝑐 − 𝑡𝑝
𝑡𝑝

)

2

−
4(𝑧 + 𝑡𝑐)

𝑡𝑝
]

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧

+∫ 𝑓′(𝑧) 𝑒15 [1 − (
2𝑧 − 2𝑡𝑐 − 𝑡𝑝

𝑡𝑝
)

2

+
4(𝑧 − 𝑡𝑐)

𝑡𝑝
]

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

𝛽5
31 = −∫ Ξ11 [1 − (

−2𝑧 − 2𝑡𝑐 − 𝑡𝑝
𝑡𝑝

)

2

−
4(𝑧 + 𝑡𝑐)

𝑡𝑝
]

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧

−∫ Ξ11 [1 − (
2𝑧 − 2𝑡𝑐 − 𝑡𝑝

𝑡𝑝
)

2

+
4(𝑧 − 𝑡𝑐)

𝑡𝑝
]

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

(

 
 

𝑏1
31

𝑏3
31

𝑏5
31

𝑏8
31
)

 
 
= (

0
0
0
0

) 

𝑏2
31 = ∫ 𝑓′(𝑧)(𝑒31 + 𝑒15)

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 +∫ 𝑓′(𝑧)(𝑒31 + 𝑒15)
+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

(

𝑏4
31

𝑏6
31

𝑏9
31

) = −∫ (

𝜂2
1

𝑡𝑐 + 𝑡𝑝
)
Ξ11𝑒31(𝑧 + 𝑡𝑐)

Ξ33

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 − ∫ (

𝜂1
1

−𝑡𝑐 − 𝑡𝑝
)
Ξ11𝑒31(𝑧 − 𝑡𝑐)

Ξ33

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

𝑏7
31 = −∫ 𝑒31

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 − ∫ 𝑒31

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 (A.2) 
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The coefficients 𝑎𝑖
𝑝𝑞
 (𝑖 = 1, 2,… , 13), 𝛽𝑖

𝑝𝑞
 (𝑖 = 1, 2,… , 4), and 𝜇𝑖

𝑝𝑞
 (𝑖 = 1, 2,… , 4) in Shear (d15) 

Mode are defined as 

 

In the SC electrical condition: 

 

(

𝑎1
15

𝑎4
15

𝑎7
15

) = ∫ (
1
𝑧

𝑓(𝑧)
) 𝐶33

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 +∫ (
1
𝑧

𝑓(𝑧)
)𝑄11

+𝑡𝑐

−𝑡𝑐

𝑑𝑧 +∫ (
1
𝑧

𝑓(𝑧)
)𝐶33

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

(

𝑎2
15

𝑎5
15

𝑎8
15

) = −∫ (
1
𝑧

𝑓(𝑧)
) 𝑧𝐶33

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 −∫ (
1
𝑧

𝑓(𝑧)
) 𝑧𝑄11

+𝑡𝑐

−𝑡𝑐

𝑑𝑧 − ∫ (
1
𝑧

𝑓(𝑧)
)𝑧𝐶33

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

(

𝑎3
15

𝑎6
15

𝑎9
15

) = ∫ (
1
𝑧

𝑓(𝑧)
) 𝑓(𝑧)𝐶33

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 +∫ (
1
𝑧

𝑓(𝑧)
)𝑓(𝑧)𝑄11

+𝑡𝑐

−𝑡𝑐

𝑑𝑧 +∫ (
1
𝑧

𝑓(𝑧)
)𝑓(𝑧)𝐶33

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

𝑎10
15 = ∫ [𝑓′(𝑧)]2𝐶55

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 + ∫ [𝑓′(𝑧)]2𝑄55

+𝑡𝑐

−𝑡𝑐

𝑑𝑧 + ∫ [𝑓′(𝑧)]2𝐶55

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

(

𝑎11
15

𝑎12
15

𝑎13
15

) = (
0
0
0
) 

(

𝜇1
15

𝜇2
15

𝜇3
15

) = (
0
0
0
) 

𝜇4
15 = ∫

4𝑒15𝑓
′(𝑧)

𝑡𝑝
[
−2𝑧 − 2𝑡𝑐 − 𝑡𝑝

𝑡𝑝
]

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 − ∫
4𝑒15𝑓

′(𝑧)

𝑡𝑝
[
2𝑧 − 2𝑡𝑐 − 𝑡𝑝

𝑡𝑝
]

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

𝜇5
15 = ∫

8Ξ11

(𝑡𝑝)
2

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 + ∫
8Ξ11

(𝑡𝑝)
2

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

(

𝛽1
15

𝛽2
15

𝛽3
15

) = ∫ (
1
𝑧

𝑓(𝑧)
)  𝑒33 [1 − (

−2𝑧 − 2𝑡𝑐 − 𝑡𝑝
𝑡𝑝

)

2

]
−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧

+∫ (
1
𝑧

𝑓(𝑧)
)  𝑒33 [1 − (

2𝑧 − 2𝑡𝑐 − 𝑡𝑝
𝑡𝑝

)

2

]
+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

𝛽4
15 = 0 

𝛽5
15 = −∫ Ξ33 [1 − (

−2𝑧 − 2𝑡𝑐 − 𝑡𝑝
𝑡𝑝

)

2

]
−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 − ∫ Ξ33 [1 − (
2𝑧 − 2𝑡𝑐 − 𝑡𝑝

𝑡𝑝
)

2

]
+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 



 

32 
 

(

 
 
 

𝑏2
15

𝑏4
15

𝑏6
15

𝑏7
15

𝑏9
15)

 
 
 
=

(

 
 

0
0
0
0
0)

 
 

 

𝑏1
15 = ∫ 𝑒15𝑓

′′(𝑧)
−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 +∫ 𝑒15𝑓
′′(𝑧)

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

𝑏3
15 = ∫ 𝑒33𝑓(𝑧)

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 + ∫ 𝑒33𝑓(𝑧)
+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

𝑏5
15 = ∫ 𝑒33

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 +∫ 𝑒33

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

𝑏8
15 = −∫ 𝑧𝑒31

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 − ∫ 𝑧𝑒31

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 (A.3) 

 

 

In the OC electrical condition: 

 

(

𝑎1
15

𝑎4
15

𝑎7
15

) = ∫ (
1
𝑧

𝑓(𝑧)
) 𝐶33

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 +∫ (
1
𝑧

𝑓(𝑧)
)𝑄11

+𝑡𝑐

−𝑡𝑐

𝑑𝑧 +∫ (
1
𝑧

𝑓(𝑧)
)𝐶33

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

(

𝑎2
15

𝑎5
15

𝑎8
15

) = −∫ (
1
𝑧

𝑓(𝑧)
) 𝑧𝐶33

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 −∫ (
1
𝑧

𝑓(𝑧)
) 𝑧𝑄11

+𝑡𝑐

−𝑡𝑐

𝑑𝑧 − ∫ (
1
𝑧

𝑓(𝑧)
)𝑧𝐶33

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

(

𝑎3
15

𝑎6
15

𝑎9
15

) = ∫ (
1
𝑧

𝑓(𝑧)
) [𝐶33𝑓(𝑧) +

𝑒15𝑒33𝜁2(𝑧 + 𝑡𝑐)

Ξ11
]

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 +∫ (
1
𝑧

𝑓(𝑧)
)𝑓(𝑧)𝑄11

+𝑡𝑐

−𝑡𝑐

𝑑𝑧

+∫ (
1
𝑧

𝑓(𝑧)
) [𝐶33𝑓(𝑧) +

𝑒15𝑒33𝜁1(𝑧 − 𝑡𝑐)

Ξ11
]

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

𝑎10
15 = ∫ (𝐶55[𝑓

′(𝑧)]2 +
𝜁2𝑓

′(𝑧)𝑒15
2

Ξ11
)

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 + ∫ 𝑄55[𝑓
′(𝑧)]2

+𝑡𝑐

−𝑡𝑐

𝑑𝑧

+∫ (𝐶55[𝑓
′(𝑧)]2 +

𝜁1𝑓
′(𝑧)𝑒15

2

Ξ11
)

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

(

𝑎11
15

𝑎12
15

𝑎13
15

) = (
0
0
0
)  
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(

𝜇1
15

𝜇2
15

𝜇3
15

) = (
0
0
0
) 

𝜇4
15 = −∫

8𝑒15𝑓
′(𝑧)

𝑡𝑝
[
𝑧 + 𝑡𝑐 + 𝑡𝑝

𝑡𝑝
]

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 −∫
8𝑒15𝑓

′(𝑧)

𝑡𝑝
[
𝑧 − 𝑡𝑐 − 𝑡𝑝

𝑡𝑝
]

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

𝜇5
15 = ∫

8Ξ11

(𝑡𝑝)
2

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 + ∫
8Ξ11

(𝑡𝑝)
2

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

(

𝛽1
15

𝛽2
15

𝛽3
15

) = ∫ (
1
𝑧

𝑓(𝑧)
)  𝑒33 [1 − (

−2𝑧 − 2𝑡𝑐 − 𝑡𝑝
𝑡𝑝

)

2

−
4(𝑧 + 𝑡𝑐)

𝑡𝑝
]

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧

+∫ (
1
𝑧

𝑓(𝑧)
)  𝑒33 [1 − (

2𝑧 − 2𝑡𝑐 − 𝑡𝑝
𝑡𝑝

)

2

+
4(𝑧 − 𝑡𝑐)

𝑡𝑝
]

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

𝛽4
15 = 0 

𝛽5
15 = −∫ Ξ33 [1 − (

−2𝑧 − 2𝑡𝑐 − 𝑡𝑝
𝑡𝑝

)

2

−
4(𝑧 + 𝑡𝑐)

𝑡𝑝
]

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧

−∫ Ξ33 [1 − (
2𝑧 − 2𝑡𝑐 − 𝑡𝑝

𝑡𝑝
)

2

+
4(𝑧 − 𝑡𝑐)

𝑡𝑝
]

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

(

 
 
 

𝑏2
15

𝑏4
15

𝑏6
15

𝑏7
15

𝑏9
15)

 
 
 
=

(

 
 

0
0
0
0
0)

 
 

 

𝑏1
15 = ∫ 𝑒15𝑓

′′(𝑧)
−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 +∫ 𝑒15𝑓
′′(𝑧)

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

𝑏3
15 = ∫ (𝑒33𝑓(𝑧) −

𝑒15𝜁2Ξ33(𝑧 + 𝑡𝑐)

Ξ11
)

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 +∫ (𝑒33𝑓(𝑧) −
𝑒15𝜁1Ξ33(𝑧 − 𝑡𝑐)

Ξ11
)

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

𝑏5
15 = ∫ 𝑒33

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 +∫ 𝑒33

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

𝑏8
15 = −∫ 𝑧𝑒33

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 − ∫ 𝑧𝑒33

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 (A.4) 

 

8. References 

1. Miyamoto Y, Kaysser WA, Rabin BH, et al. Functionally graded materials: design, processing and 
applications. Springer Science & Business Media, 2013. 



 

34 
 

2. Jha DK, Kant T and Singh RK. A critical review of recent research on functionally graded plates. 

Composite Structures 2013; 96: 833-849. 

3. Qatu MS. Vibration of laminated shells and plates. Elsevier, 2004. 
4. Ying J, Lü CF and Chen WQ. Two-dimensional elasticity solutions for functionally graded beams 

resting on elastic foundations. Composite Structures 2008; 84: 209-219. 

5. Xu YP and Zhou D. Three-dimensional elasticity solution of simply supported functionally graded 
rectangular plates with internal elastic line supports. The Journal of Strain Analysis for Engineering Design 

2009; 44: 249-261. 

6. Huang Y and Li XF. A new approach for free vibration of axially functionally graded beams with non-

uniform cross-section. Journal of sound and vibration 2010; 329: 2291-2303. 
7. Ke LL, Yang J and Kitipornchai S. An analytical study on the nonlinear vibration of functionally 

graded beams. Meccanica 2010; 45: 743-752. 

8. Alshorbagy AE, Eltaher MA and Mahmoud FF. Free vibration characteristics of a functionally graded 
beam by finite element method. Applied Mathematical Modelling 2011; 35: 412-425. 

9. Pradhan KK and Chakraverty S. Free vibration of Euler and Timoshenko functionally graded beams 

by Rayleigh–Ritz method. Composites Part B: Engineering 2013; 51: 175-184. 

10. Chakraverty S and Pradhan KK. Vibration of functionally graded beams and plates. Academic Press, 
2016. 

11. Wang Q, Shi D, Liang Q, et al. A unified solution for vibration analysis of functionally graded circular, 

annular and sector plates with general boundary conditions. Composites Part B: Engineering 2016; 88: 264-
294. 

12. Paul A and Das D. A study on non-linear post-buckling behavior of tapered Timoshenko beam made 

of functionally graded material under in-plane thermal loadings. The Journal of Strain Analysis for 
Engineering Design 2017; 52: 45-56. 

13. Wang YQ and Zu JW. Nonlinear dynamics of functionally graded material plates under dynamic liquid 

load and with longitudinal speed. International Journal of Applied Mechanics 2017; 9: 1750054. 

14. Paul A and Das D. Non-linear forced vibration analysis of higher-order shear-deformable functionally 
graded material beam in thermal environment subjected to harmonic excitation and resting on non-linear elastic 

foundation. The Journal of Strain Analysis for Engineering Design 2018; 53: 446-462. 

15. Wang YQ and Zu JW. Nonlinear dynamics of a translational FGM plate with strong mode interaction. 
International Journal of Structural Stability and Dynamics 2018; 18: 1850031. 

16. Burlayenko VN and Sadowski T. Free vibrations and static analysis of functionally graded sandwich 

plates with three-dimensional finite elements. Meccanica 2019: 1-18. 
17. Zhu J, Lai Z, Yin Z, et al. Fabrication of ZrO2–NiCr functionally graded material by powder 

metallurgy. Materials Chemistry and Physics 2001; 68: 130-135. 

18. Wattanasakulpong N, Prusty BG, Kelly DW, et al. Free vibration analysis of layered functionally 

graded beams with experimental validation. Materials & Design (1980-2015) 2012; 36: 182-190. 
19. Chen D, Yang J and Kitipornchai S. Elastic buckling and static bending of shear deformable 

functionally graded porous beam. Composite Structures 2015; 133: 54-61. 

20. Chen D, Kitipornchai S and Yang J. Nonlinear free vibration of shear deformable sandwich beam with 
a functionally graded porous core. Thin-Walled Structures 2016; 107: 39-48. 

21. Ebrahimi F, Ghasemi F and Salari E. Investigating thermal effects on vibration behavior of 

temperature-dependent compositionally graded Euler beams with porosities. Meccanica 2016; 51: 223-249. 

22. Ebrahimi F and Jafari A. A four-variable refined shear-deformation beam theory for thermo-
mechanical vibration analysis of temperature-dependent FGM beams with porosities. Mechanics of Advanced 

Materials and Structures 2018; 25: 212-224. 

23. Ebrahimi F, Dabbagh A and Rastgoo A. Vibration analysis of porous metal foam shells rested on an 
elastic substrate. The Journal of Strain Analysis for Engineering Design 2019: 0309324719852555. 

24. Wang YQ and Yang Z. Nonlinear vibrations of moving functionally graded plates containing 

porosities and contacting with liquid: internal resonance. Nonlinear Dynamics 2017; 90: 1461-1480. 
25. Wang YQ and Zu JW. Vibration behaviors of functionally graded rectangular plates with porosities 

and moving in thermal environment. Aerospace Science and Technology 2017; 69: 550-562. 

26. Wang YQ and Zu JW. Porosity-dependent nonlinear forced vibration analysis of functionally graded 

piezoelectric smart material plates. Smart Materials and structures 2017; 26: 105014. 
27. Wang YQ, Ye C and Zu JW. Nonlinear vibration of metal foam cylindrical shells reinforced with 

graphene platelets. Aerospace Science and Technology 2019; 85: 359-370. 



 

35 
 

28. Zenkour AM. A quasi-3D refined theory for functionally graded single-layered and sandwich plates 

with porosities. Composite Structures 2018; 201: 38-48. 

29. Nguyen NV, Nguyen HX, Lee S, et al. Geometrically nonlinear polygonal finite element analysis of 
functionally graded porous plates. Advances in Engineering Software 2018; 126: 110-126. 

30. Wang YQ and Zhao HL. Bending, buckling and vibration of shear deformable beams made of three-

dimensional graphene foam material. Journal of the Brazilian Society of Mechanical Sciences and Engineering 
2019; 41: 422. 

31. Cao L, Mantell S and Polla D. Design and simulation of an implantable medical drug delivery system 

using microelectromechanical systems technology. Sensors and Actuators A: Physical 2001; 94: 117-125. 

32. He XQ, Ng TY, Sivashanker S, et al. Active control of FGM plates with integrated piezoelectric 
sensors and actuators. International journal of Solids and Structures 2001; 38: 1641-1655. 

33. Ray MC. Optimal control of laminated shells using piezoelectric sensor and actuator layers. AIAA 

Journal 2003; 41: 1151-1157. 
34. Peng F, Ng A and Hu YR. Actuator placement optimization and adaptive vibration control of plate 

smart structures. Journal of Intelligent Material Systems and Structures 2005; 16: 263-271. 

35. Yang Z, Zhou S, Zu J, et al. High-performance piezoelectric energy harvesters and their applications. 

Joule 2018; 2: 642-697. 
36. Ebrahimi F. Piezoelectric Actuators for Functionally Graded Plates-Nonlinear Vibration Analysis. 

Piezoelectric Materials and Devices-Practice and Applications. IntechOpen, 2013. 

37. Zhang SQ and Schmidt R. Static and dynamic FE analysis of piezoelectric integrated thin-walled 
composite structures with large rotations. Composite Structures 2014; 112: 345-357. 

38. Zhang SQ, Li YX and Schmidt R. Modeling and simulation of macro-fiber composite layered smart 

structures. Composite Structures 2015; 126: 89-100. 
39. Zhang SQ, Li YX and Schmidt R. Active shape and vibration control for piezoelectric bonded 

composite structures using various geometric nonlinearities. Composite Structures 2015; 122: 239-249. 

40. Reddy JN and Cheng ZQ. Three-dimensional solutions of smart functionally graded plates. J Appl 

Mech 2000; 68: 234-241. 
41. Wang BL and Noda N. Design of a smart functionally graded thermopiezoelectric composite structure. 

Smart Materials and Structures 2001; 10: 189. 

42. Huang XL and Shen HS. Vibration and dynamic response of functionally graded plates with 
piezoelectric actuators in thermal environments. Journal of Sound and Vibration 2006; 289: 25-53. 

43. Kiani Y, Rezaei M, Taheri S, et al. Thermo-electrical buckling of piezoelectric functionally graded 

material Timoshenko beams. International Journal of Mechanics and Materials in Design 2011; 7: 185-197. 
44. Askari Farsangi MA and Saidi AR. Levy type solution for free vibration analysis of functionally 

graded rectangular plates with piezoelectric layers. Smart Materials and Structures 2012; 21: 094017. 

45. Askari Farsangi MA, Saidi AR and Batra RC. Analytical solution for free vibrations of moderately 

thick hybrid piezoelectric laminated plates. Journal of Sound and Vibration 2013; 332: 5981-5998. 
46. Wang YQ. Electro-mechanical vibration analysis of functionally graded piezoelectric porous plates in 

the translation state. Acta Astronautica 2018; 143: 263-271. 

47. Wang YQ, Wan YH and Zhang YF. Vibrations of longitudinally traveling functionally graded material 
plates with porosities. European Journal of Mechanics-A/Solids 2017; 66: 55-68. 

48. Wang YQ and Zu JW. Vibration characteristics of moving sigmoid functionally graded plates 

containing porosities. International Journal of Mechanics and Materials in Design 2018; 14: 473-489. 

49. Wattanasakulpong N and Chaikittiratana A. Flexural vibration of imperfect functionally graded beams 
based on Timoshenko beam theory: Chebyshev collocation method. Meccanica 2015; 50: 1331-1342. 

50. Malakooti MH and Sodano HA. Piezoelectric energy harvesting through shear mode operation. Smart 

Materials and Structures 2015; 24: 055005. 
51. Sobhy M. Buckling and free vibration of exponentially graded sandwich plates resting on elastic 

foundations under various boundary conditions. Composite Structures 2013; 99: 76-87. 

52. Yang J. Special topics in the theory of piezoelectricity. Springer Science & Business Media, 2010. 
53. Wang Q, Quek ST, Sun CT, et al. Analysis of piezoelectric coupled circular plate. Smart Materials 

and Structures 2001; 10: 229. 

54. Wu N, Wang Q and Quek S. Free vibration analysis of piezoelectric coupled circular plate with open 

circuit. Journal of Sound and Vibration 2010; 329: 1126-1136. 
55. Askari M, Brusa E and Delprete C. Electromechanical Vibration Characteristics of Porous Bimorph 

and Unimorph Doubly Curved Panels. In: Actuators 2020, p.7. Multidisciplinary Digital Publishing Institute. 



 

36 
 

56. Aydogdu M and Taskin V. Free vibration analysis of functionally graded beams with simply supported 

edges. Materials & design 2007; 28: 1651-1656. 

57. Su H, Banerjee J and Cheung C. Dynamic stiffness formulation and free vibration analysis of 
functionally graded beams. Composite Structures 2013; 106: 854-862. 

58. Sayyaadi H and Rahnama F. On the energy harvesting via doubly curved piezoelectric panels. Journal 

of Intelligent Material Systems and Structures 2016; 27: 2692-2706. 

 


