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Abstract—Nowadays, integration of more renewable energy
resources into distribution systems to inject more clean en-
ergy introduces new challenges to power system planning and
operation. The intermittent behaviour of variable renewbale
resources such as wind and PV generation would make the energy
balancing more difficult, as current forecasting tools and existing
storage units are insufficient. Transmission system operators may
withstand some level of power imbalance, but fluctuations and
noise of profiles are undesired. This requires local management
performed or encouraged by distribution system operators. They
could try to involve aggregators to exploit flexibility of loads
through demand response schemes. In this paper, we present an
optimal power flow-based algorithm written in Python which
reads flexibility of different loads offered by the aggregators
from one side, and the power flow deviation with respect to
the scheduled profile at transmission-distribution coupling point
from the other side, to define where and how much load to adjust.
To demonstrate the applicability of this core, we set-up a real-
time simulation-based test bed and realised the performance of
this approach in a real-like environment using real data of a
network.

Index Terms—Power flow, real-time simulation, aggregator,
demand response, Internet of things

I. INTRODUCTION

The growing penetration of renewable energy sources into
distribution systems is creating a lot of new challenges for
power system operators. The structure of power system is not
anymore following a vertically integrated scheme, in which
power is produced in large distant power plants and transmitted
to consumption areas through transmission lines. In modern
power systems a lot of small scale producers are integrated
into distribution systems. In other words the system faces
a transition from a centralised to distributed scheme. This
transition needs to be planned with the specific tools that are
able to estimate production of renewable energy sources in
time, exploit flexibility of demand, asses the capabilities and
requirements of distribution networks, and estimate the impact
on energy markets [1], [2].

Distributed Energy is the utilisation of smaller power gen-
eration and storage systems used to power homes, businesses
and communities. Most distributed energy generation systems
take advantage of renewable energy sources such as solar and
wind. In this new scheme, efficiency, flexibility, reliability
and cost savings become fundamental keywords and a new
architecture that manages this system is necessary. The Smart
Grid is a reinvention of how energy is transmitted, distributed,

and measured. It is becoming the new standard for utilities and
consumers and represents the merging of multiple technologies
into a system which provides reliable and cost-effective energy.

In smart grids, there are a lot of new actors like prosumers
and aggregators (Figure 1). Besides economic motivations of
introducing these new actors, there are technical demands for
involving such players in system control and management.
Power balance in smart grids cannot be satisfied without
accurate estimation of power production by renewable energy
sources (RES) and proper exploitation of demand flexibil-
ity [3]. Distribution system management (DSM) constantly
monitors the network using SCADA to manage RES and
provide ancillary services where needed [4].

A problem with regard to power balancing in modern
grids is caused by intermittent behaviour of RES from one
side and volatility of power demand from residential loads.
Transmission system operator expects to see a power demand
from distribution system with minimum deviation from the
scheduled profile. It could forecast the net demand power,
which is the total power deficit in distribution grid considering
local demand and distributed generation. But this forecasting
results in an scheduled power profile which may be different
in practice from the real-time demand. The real-time demand
could be deviated from the scheduled one due to intermittent
RES and also new loads like electric vehicles in distribution
networks.

Reviewing literature, there are a wide range of solutions to
take power balance challenges in distribution systems. In some
works, like [5], [6], [7], DSO uses storage units to inject or
absorb power in response to variations. However, installation
and operation of storage units are quite costly for grid op-
erators. In many cases, accurate load forecasting methods are
proposed to capture the dynamic behaviour of demand in real-
time and tune the prosumers accordingly [8], [9], [10], [11].
The new challenge in these cases is the controllability of RES.
In most cases, no better options than curtailment could be
found [12], [13], [14]. In some cases, the load is shifted or
the peak is shaved by load shedding [15], [16], [17]. These
measures would reduce customer comfort, and result in extra
costs due to violation of customer contracts.

As more advanced solutions, demand side management is
proposed to support accommodation of more RES in distri-
bution networks [18], [19], [20]. Different Demand Response
(DR) methods are in place to provide flexibility. However,
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Fig. 1. Aggregator and prosumer, new actors in smart grids.

before sending demand response signals to individual loads,
the amount of change should be defined as well as the location
of required adjustments. This is challenging when fluctuations
of the demand curve is high due to volatility of loads, specially
residential ones, and the unpredictable variation of RES power
injection.

A solution to this problem is firstly to encourage loads to
be flexible enough for filtering the noises. Aggregators are
great sources to control loads and develop demand response
schemes. However, aggregators should know where to change
the loads, if that is possible. Moreover, aggregators should
know how much power is required to be shed or shifted.
A tool in DMS should run some algorithms, and outputs
such information. This tool should run an optimal power
flow to minimise the cost while meeting the grid constraints
including the scheduled power introduced earlier in problem
description. The focus of the work presented in this paper
is on developing such a tool that estimates the deviation of
the net power at the point of connection between distribution
and transmission systems, and provides signals to aggregators
with the information of where and how much power to
change in loads. An algorithm is developed which optimally
exploits the flexibility offered by the aggregators to ensure
the power exchange of the main substation following the
schedule trajectory. A realistic energy distribution network is
modelled in MATLAB Simulink and run in a digital real-
time simulator (RTS), OPAL-RT, to reproduce the behaviour
of the real system. A distributed co-simulation framework is
also designed to integrate the algorithm, which is supposed
to be embedded in DMS, the agent-based aggregator, and the
digital real-time simulator, which represents the real grid.

In this paper, we firstly introduce our high-level architecture
of energy management system of DSO, including the optimal
operation decision (OOD), the grid or representative of the
grid which is a real-time simulation platform, forecast tools,
and aggregators. This architecture is briefly proposed in Sec-
tion II. In Section III a laboratory set-up to demonstrate the
applicability of our proposed scheme is detailed. Section IV
presents some results of the experiment on a realistic network,
and Section V concludes this work with some remarks.
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Fig. 2. High level schema.

II. HIGH LEVEL SCHEMA

Figure 2 represents the high level architecture of the
proposed scheme of ours to efficiently implement demand
response algorithms. Most of algorithms are run in aggregators
where data of loads including their coordinates, contractual
power, details of devices, information of smart meters, etc.
may exist. Therefore, flexibility of prosumers can be defined
by the aggregators (bottom-left of the scheme). The data
includes information about which node of the network has
dispatchable loads, and how much demand at that node can
be increased or decreased.

On top of “Flexibility of prosumer by aggregator”, there
are modules providing data of loads and generation. The
“load power” data is based on either previously forecast
values or real-time measurements from smart meters. The
generated power, for instance PV panel production, data can
be also estimated by using PV simulators. From these 3 sets
of information, the core code needs current operational data,
which means the data at the time the imbalance power is
calculated. The imbalance power, or power difference, along
with those 3 sets of data are fed into an Optimal power flow
algorithm (OPF).

The OPF fixes the amount of power exchange at the point
of connection (PoC) between distribution and transmission
grids. This amount must be set as the scheduled or forecast
consumption, unless the difference is bellow a threshold (e.g.
10 percent). The difference is calculated by retrieving power
measurement (“real-time active power”) at PoC and deducting
it from forecast consumption (’forecast active power”) which
is the scheduled demand at PoC.

In the OPF, parasitic generators are created to represent flex-
ibility of prosumers as dispatch able loads. The “difference”
or power imbalance is dispatched among all these parasitic
generators by minimising the objective function. If aggregator
introduces different costs for the loads at different nodes, OPF
would minimise the cost; otherwise, the power loss in the grid
will be minimised.

The “New Active Power” defines the adjustment of power
at the candidate nodes for demand response. This signal
is promptly communicated with the aggregator to change



Algorithm 1 Comparison algorithm
1: Input: RealTimeActive Power : RT = [Nyys| x [Time]
2: Input: ForecastActivePower : FO = [Ny,,] x [Time]
3: Output: Difference
1: procedure CoMpARISON(RT, FO)

for (i=1, i++, i < Time) do

6 for (j =1, j++,i < N;,.) do
T FO[i][j] — RT[i][4]
8 return Dif ference & Difference between Input values
0: if (Dif ference < Threshold) then
10 Wait15minutes()
11: if (Dif ference > Threshold) then
12 RunOPF()

Algorithm 2 Optimal Power Flow algorithm
1: Input: LoadPower : L
2: Input: GeneratedPower : G

3: Input: Flexibility : F

1: Output: New Active Power

5. procedure RUNOPF(())

¢ Launch communication protocol to obtain the needed data
T L. = Load Power Data

8 G = Photovoltaic Data

0: F = Flexibility Data
10: Powery,e., = RunOPF()

11: return Power,,., > New Active power

Fig. 3. Pseudocode of OPF-based algorithm.

the loads. The particular role of our aggregator in demand
response is detailed in section III-B.

The set points and parameters are periodically configured
in the OPF script which is implemented in Python. The
Pseudocode of the high level algorithm as well as the modified
OPF are shown in Figure 3.

III. EXPERIMENTAL SETUP

To demonstrate the implementation and performance of
our schema, a real-time co-simulation platform is configured.
We believe this platform is the closest one to the real-
world system, and all components of this setup can easily
replaced by the real physical systems in plug-and-play fashion.
Figure 4 shows the high level infrastructure of our laboratory
setup. It contains A) a digital real-time simulator representing
the real network, B) the aggregator, C) DMS of DSO, D)
real-time data of the load profiles collected either by smart
meters or load forecast tools, E) distributed generation real-
time estimation, and finally F) communication adapter to glue
all aforementioned components. In this section, we briefly
introduce these components and the way they are coupling
and communicating with each other.

A. Digital real-time simulator

In order to reproduce the behaviour of the grid, digital
real-time simulators are integrated to the platform. They are
capable of capturing the fast dynamic behaviour of system in
electromagnetic analysis (EMT) as well as slow transients of
the system in phasor domain. They are also capable of being
used in co-simulation setups so-called software in-the-loop
or hardware in-the-loop very efficiently. The communication
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Fig. 4. Experimental setup in the laboratory

capability of these simulators is very wide and different real-
world configurations could be made using them. For our
specific platform, which is based on Internet-of-Things (IoT)
paradigms, real-time simulators can bidirectionally communi-
cate with clouds or brokers through TCP/IP or UDP/IP.

In our laboratory setup, we used an OPAL-RT real-time
simulator to run the model of grid which is implemented in
MATLAB Simulink. The generation and load trajectories are
based on some scenarios which are unknown to the DMS
OPF algorithm. They are fed into the grid model running
on real-time hardware. The minimum data retrieved from
the grid is the power exchange measurement at the point of
connection between transmission and distribution networks.
This is the active power measured at the medium side of
HV/MV transformers in primary substation.

B. Aggregator

To represent the aggregator, a separate PC with a Python
script running is set up, which is in charge of controlling
the end-users including prosumers and storage units from
one side, and communicating with market entities as well
as distribution system operators from the other side. For our
particular practice, the aggregator is communicating data and
signals related to demand response. This means the aggregator
periodically (i.e. in real-time), intra-day, or day-ahead sends
information about prosumers’ flexibility to the DMS. The data
includes 3 vectors: bus ID (i.e. location) of the flexible loads,
amount of flexibility in power unit of measurement, and the
price or cost of the reserves. DMS, instead, returns the exact
amount of load adjustment along with the corresponding bus
IDs to the aggregator. It is out of scope of this paper to discuss
how the aggregator, then, control the loads and appliances to
perform demand response. The aggregators seek to achieve
this demand set-point defined by DMS by providing monetary
incentives to household users to modify their demand pattern,
or through direct load control. The objective of each aggregator
is to maximise its own net profit, namely the income received
from the operator minus the compensation it provides to the
end-users.



C. Distribution Management System

The DMS in our configuration is actually a part of DMS
which is in charge of controlling power exchange at primary
substations. It ensures the scheduled demand profile of the
distribution network is not violated. The violation may happen
if loads or generation change beyond what was predicted. Not
all DMS features are modelled, but a PC as a gateway or the
SCADA system is set up to represent the DMS. It runs Python
script of the modified Optimal power Flow developed as the
core algorithm.

DMS, for this demand response support application, re-
trieves flexibility data from the aggregators, the measurement
of active power flow at primary substations, and the forecast
values of loads and generation in the network. It runs the
OPF to minimise overall cost of load dispatching and network
losses subject to assuring the power exchange set-point from
the scheduled profile. It should be noted that not any devia-
tion from the scheduled trajectory will trigger DMS to take
actions; there is a sort of thresholds considered. The upper and
lower thresholds define an acceptable zone where deviation is
tolerated.

D. Load Profile

Not necessarily in real-time, but in advance, DMS should
have load profile data. This could come either from widely
distributed smart meters in the network which periodically
report consumption data, or from load forecasting tools. In
both cases, historic data of the loads is used. In our platform,
we provided all load profiles at different buses to DMS, but the
values are corrected once the load profile module is requested.
The algorithm is always running based on the data at time ¢;
to achieve the set-point at time ¢; + dt, where dt is the time-
step. In our DR practice, 15-minute intervals are considered
as time-step.

E. Distributed Power Generator

Similar to load data, power flow calculation requires the
generation data. This is a separate PC which estimates the
generation values and responds to any requests from DMS to
provide the power values. In our demonstration test case, we
used our “PV Simulator” which was developed to estimate the
power output of roof-top PV panels in urban areas [21].

F. Communication Adapter

The communication adapter is in charge of enabling data
exchange among the RTS and other infrastructure mod-
ules. It implements two communication paradigms: i) pub-
lish/subscribe which is based on message queuing telemetry
transport (MQTT) protocol; and ii) request/response which is
based on representational state transfer (REST).

In particular, the publish/subscribe communication model
allows the development of loosely coupled event-based sys-
tems. Each module can publish data and this data can be
independently received by a number of subscribers. On the
other hand, the request/response approach enables the RTS in
retrieving information from REST web services.

In its core, the communication adapter exploits the
TCP/UDP module to allow a bidirectional communication
with the digital real-time simulator. It is worth noting that the
communication adapter also allows the integration of the RTS
with other smart metering infrastructure, where each smart
meter is an [oT device. Hence, data coming from such devices
can be used to simulate and test innovative control strategies
with (near) real-time data from the grid. Conversely, each
simulated grid component is also seen by other modules as an
IoT device able to send information and to receive commands.
Our simulated devices could be also replaced by real smart
meters integrated in the infrastructure.

IV. EXPERIMENTAL RESULTS

The case study made based on an urban district area located
in Northern Italy with about 2200 residential buildings. The
MYV grid in the district (Figure 5) consists of a primary
substation with three 22-kV bus-bars, each of which is fed by
a transformer characterised by voltage ratio of 220 kV/22 kV.
Forty-three substations are supplying loads (mainly residential
buildings). These substations are equipped with MV/LV trans-
formers characterised by voltage ratio of 22 kV/400 V, and a
nominal power of 400 kVA or 250 kVA. The total length of
MYV lines, mostly constituted by underground cables, is around
39 km.

In this study, we demonstrate the advantage of using our
IoT-based real-time control of power exchange at primary
substation in presence of high penetration of PV generation.
A cloudy day scenario is considered when PV production
is less predictable and also lower than a clear sky day.
The net demand of the distribution network from upstream
transmission system at primary substation is plotted in Figure 6
for two cases as with and without PV integration. The net
demand is the power exchange at the primary substation,
which is sum of total load and total loss of the network
minus total generation. As it is shown in the figure, during
the day when PV production rises, a portion of the demand
is supplied locally so that less power is absorbed from the
primary substation. The amount of power which could be
locally generated would not be purchased from the main
upstream network. This amount could be estimated by running
some PV production forecast tools or simulators. Nevertheless,
there is always some error in predictions especially on cloudy
days, which may result in fluctuations beyond estimated curve.

Figure 6 shows the behaviour of end-user consumption
during a cloudy day. Even if we are considering a cloudy
day scenario, in which PV panel production is quite low, the
introduction of the distributed generator (DG) reduce the total
demand of the distribution grid. Obviously the improvement
is visible only during daytime hours during which, despite the
cloudiness, the sun allows the production of a certain amount
of energy that can be spent by the prosumer. The cloudy-day
scenario is chosen to stress the impact of low predictability of
PV production on total net demand deviation.

In our implementation, the load profile is retrieved from a
MATLAB matrix that contains consumer behaviour forecast
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Fig. 6. Net demand profile at primary substation.

a day-ahead and give information about active and reactive
power of each MV/LV substation. However, the load profile
generator module can be replaced either with a consumer
behaviour model or a forecasting tool. This flexibility of our
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Fig. 7. Net demand profile: forecast vs. real measurement

platform eases future tests in different configurations.

The scheduled power profile at the point of connection (i.e.
primary substation) is based on the day-ahead or intra-day
forecast of prosumer behaviour anticipated by distribution sys-
tem operator. In practice, the operator is committed to respect
the scheduled profile. This means any violations beyond some
sort of thresholds must be resolved locally in the distribution
grid, otherwise there may be more expensive reserve power
from HV system to buy or even some penalties for local grid
operator. In practice, specially in a cloudy day, at some points,
there is deviation of total demand with respect to the scheduled
or forecast profile. Figure 7 depicts the forecast profile and the
real measurement of power exchange at primary substation.
The real measurements come from the grid simulator. An
OPAL-RT 5600 machine runs the model of network in real-
time. The real cloudy-day scenario is injected as generation
data to the network model, while the system operator is blind
to this data. System operator would run PV simulators to
forecast the generation.

Figure 7 represents the overall behaviour of the system with-
out real-time control of power exchange using our developed
schema. During the central hours of the day the active power
required by the substations far exceeds that expected on the
basis of the data available a day ahead, violating the two
thresholds set by the DSO.

Assuming this scenario, the modified OPF algorithm,
scripted in Python, is called by DMS to calculate the total
power adjustment needed, and associate it to all network nodes
which are candidates to provide flexibility. New trend of the
curve obtained after the application of the algorithm is shown
in Figure 8. Differently from Figure 7, this time the active
power is always kept within the threshold. Subsequently, the
high volatility of the residential prosumers due to the presence
of rooftop PV panels is controlled in real-time, and the peak
demand is reduced about 30% in this scenario.
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V. CONCLUSION

Integration of widely distributed small-scale RES like roof-
top PV panels and emerging loads like plug-in EVs would
cause more volatility in total net demand of distribution
networks. The trajectory of the power exchange at primary
substation needs to be controlled in real-time, since forecast
error may deviate the real power flow with respect to the
agreed or scheduled one. In this paper, we presented our
solution to solve this problem by running a modified OPF
to adjust dispatchable loads which are nominated by their
aggregators. A laboratory test bed is also developed based on
IoT paradigms in which the grid simulator can be replaced
by the real grid with minimum effort. The test platform
demonstrated the performance of the algorithm in filtering the
noise or deviation of power flow at primary substations. The
outcome of the algorithm is a set of load adjustments sent to
the aggregators. As a future work, the way this outcome is
used by the aggregator to perform demand response can be
investigated.
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