
04 August 2020

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Efficient model-free Q-factor approximation in value space via log-sum-exp neural networks / Calafiore, Giuseppe Carlo;
Possieri, Corrado. - ELETTRONICO. - (2020). ((Intervento presentato al convegno European Control Conference
(ECC2020) tenutosi a Saint Petersburg, Russia nel 12-15 May, 2020.

Original

Efficient model-free Q-factor approximation in value space via log-sum-exp neural networks

ieee

Publisher:

Published
DOI:

Terms of use:
openAccess

Publisher copyright

copyright 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating .

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2837797 since: 2020-07-01T10:05:53Z

IFAC

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PORTO@iris (Publications Open Repository TOrino - Politecnico di Torino)

https://core.ac.uk/display/327178231?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Efficient model-free Q-factor approximation in value space
via log-sum-exp neural networks

Giuseppe C. Calafiore, Corrado Possieri

Abstract— We propose an efficient technique for performing
data-driven optimal control of discrete-time systems. In partic-
ular, we show that log-sum-exp (LSE) neural networks, which
are smooth and convex universal approximators of convex func-
tions, can be efficiently used to approximate Q-factors arising
from finite-horizon optimal control problems with continuous
state space. The key advantage of these networks over classical
approximation techniques is that they are convex and hence
readily amenable to efficient optimization.

I. INTRODUCTION

Optimal control is concerned with determining the best
control strategy that minimizes a certain optimization crite-
rion [1], [2]. This branch of control theory finds several ap-
plications spanning from medicine [3] to energy systems [4].

When the dynamics of the plant to be controlled are
known, the classical approach to solve a finite-horizon op-
timal control problem is the so called Dynamic Program-
ming Algorithm. Although such an algorithm provides an
exact solution to the optimal control problem, it may be
extremely time consuming, even for medium-sized problems,
[5]. For this reason a continuing research effort has been
put in determining approximate solutions to optimal control
problem. For instance, [6] proposes an approach based
on optimal control and decision theory, [7] introduces a
policy iteration method based on temporal differences, [8]
provides a reinforced learning approach; see also [9, Sec. 1.5]
and references therein. Another remarkable technique is
the Approximate Dynamic Programming, which, by using
simplified models and approximations, allows one to tackle
large scale, stochastic decision processes [10], [11].

The approach we are proposing in this paper consists in
approximating the Q-factors of the dynamic programming
problem via a novel type of convex neural networks called
LSE-networks, introduced in [12]. The method of approxi-
mating the Q-factors via linear and nonlinear functions has
been proven to be considerably successful; see, e.g., [13] and
references therein. Furthermore, approximating unknown,
possibly non-convex, functions via convex approximators
has been proved successful to solve several classes of op-
timization problems; see, e.g., [14] for the approximation
capabilities of convex algebraic polynomials.

The key advantage of approximating the Q-factors via
LSE networks rather than with classical techniques is that

G. C. Calafiore is with Dipartimento di Elettronica e Telecomunicazioni,
Politecnico di Torino, 10129 Torino, Italy, and also with IEIIT-CNR Torino,
10129 Torino, Italy (e-mail: giuseppe.calafiore@polito.it).

C. Possieri is with Istituto di Analisi dei Sistemi ed Informatica “A.
Ruberti”, Consiglio Nazionale delle Ricerche (IASI-CNR), 00185 Roma,
Italy (e-mail: corrado.possieri@iasi.cnr.it).

the former are capable of approximating any convex function
while possessing the additional and desirable property of
being themselves smooth and convex functions, a feature
which makes them optimized efficiently. In particular, these
networks allow one to perform the optimization on-line,
without requiring any approximation in policy space.

Structure of the paper: In Section II, the dynamic program-
ming algorithm is briefly reviewed following the exposition
in [9]. In Section III, it is shown how the Q-factors arising
from such an algorithm can be approximated via LSE-
networks. Numerical experiments showing the effectiveness
of such a procedure are reported in Section IV. Finally,
conclusions are drawn in Section V.

II. THE DYNAMIC PROGRAMMING ALGORITHM

Consider the discrete-time system

xk+1 = fk(xk, uk), (1)

where k ∈ N is a time index, xk ∈ Rn is the state of the
system at time k, uk ∈ Rm is the control or decision variable,
which has to be selected at each k ∈ N from the set Uk(xk)
that depends on the current state xk, and fk : Rn×Rm → Rn
is a state update map. To this system we associate a cost
function of the form

J(x0, u0, . . . , uN−1) =

N−1∑
k=0

gk(xk, uk) + gN (xN), (2)

which evaluates the performance of the sequence
{u0, . . . , uN−1} of control inputs when system (1)
is initialized at x0. Our objective is to determine an
optimal sequence {u?0, . . . , u?N−1} that minimizes the cost
function (2) over all sequences {u0, . . . , uN−1} satisfying
the control constraint, thus obtaining

J?(x0) := min
uk∈Uk(xk)
k=0,...,N−1

J(x0, u0, . . . , uN−1).

The approach that is classically employed for solving such a
problem is the Dynamic Programming Algorithm, see, e.g.,
[15]. Such an algorithm constructs sequentially the cost-to-go
functions J?N (xN), J?N−1(xN−1), . . . , J?0 (x0) starting from

J?N (xN) = gN (xN), ∀xN ,

and, going backwards for κ = N − 1, . . . , 0, letting, ∀xκ,

J?κ(xκ) := min
uκ∈Uκ(xκ)

{
gκ(xκ, uκ) + J?κ+1(fκ(xκ, uκ))

}
. (3)

By Bellman’s principle of optimality [16], defining, for κ =
0, . . . , N − 1, the tail cost function Jκ(xκ, uκ, . . . , uN−1) =∑N−1
k=κ gk(xk, uk) + gN (xN), we have that

J?κ(xκ) =: min
uk∈Uk(xk)
k=κ,...,N−1

Jκ(xκ, uκ, . . . , uN−1). (4)

Therefore, for every initial state x0, the optimal cost
J?(x0) equals J?0 (x0) that is obtained at the last step of
the dynamic programming recursion. Once the functions
J?N (xN), . . . , J?0 (x0) have been determined, the optimal con-
trol sequence can be computed as

u?k ∈ arg min
uk∈Uk(xk)

{
gk(x?k, uk) + J?k+1(fk(x?k, uk))

}
,

where x?k is the solution to system (1) when the control
sequence {u?0, . . . , u?N−1} is applied. Note that the same
algorithm can be used to solve the tail subproblem (4).

An equivalent formulation of the dynamic programming
algorithm [17], [18] can be given in terms of the Q-factors

Qκ(xκ, uκ) := gκ(xκ, uκ) + J?κ+1(fκ(xκ, uκ)), (5)

defined for κ = 0, . . . , N . Indeed, by (3), we have J?κ(xκ) =
minuκ∈Uκ(xκ)Qκ(xκ, uκ), and hence the dynamic program-
ming algorithm can be equivalently rewritten in terms of the
Q-factors as

Qκ(xκ, uκ) = gκ(xκ, uκ)

+ min
uκ+1∈Uκ+1(f(xκ,uκ))

Qκ+1(fκ(xκ, uκ), uκ+1),

for κ = N − 1, . . . , 0, starting with
QN (xN , uN) = gN (xN), ∀xN . Once the Q-factors
Q0(x0, u0), . . . , QN−1(xN−1, uN−1) have been determined,
the one-step lookahead control u?k at time k ∈ {0, . . . , N−1}
can be obtained on-line as

u?k ∈ arg min
uk∈Uk(xk)

Qk(xk, uk), (6)

where xk denotes the state of system (1) at time k.

III. Q-LEARNING VIA LSE NEURAL NETWORKS

In this section, we show how the Q-factors defined in (5)
can be approximated via LSE neural networks. The key
advantage of using these networks is that they synthesize a
convex function and hence they are readily amenable to effi-
cient optimization. In particular, if the function Qκ(xκ, uκ) is
approximated by an LSE neural network (which synthesizes
the function Q̃κ(xκ, uκ)) and the set Uk(xk) is convex, then
a solution to the minimization problem

ũ?k ∈ arg min
uk∈Uk(xk)

Q̃k(xk, uk), (7)

which has to be solved in order to determine an approximate
ũ?k of u?k, can be determined efficiently by using convex
optimization tools [19], such as interior point algorithms
[20] and disciplined convex optimization tools [21], [22].
On the other hand, minimizing a generic non-convex function
usually involves compromises such as long computation time
or sub-optimality of the solution [19]. Moreover, as classical

Q-learning approaches [17], [18], the tool given here can be
also used in a model-free setting; see also [23].

In Section III-A we briefly review LSE networks, whereas,
in Section III-B, we show how these networks can be used
to approximate the Q-factors. Finally, in Section III-C, we
discuss the quality of the determined suboptimal control.

A. LSE neural network

Let LSE (Log-Sum-Exp) be the class of functions ` :
Rn → R that can be written as

`(ξ) = log

(
K∑
k=1

bk exp(α(k)>ξ)

)
,

for some K ∈ N, bk ∈ R>0, α(k) = [α
(k)
1 · · · α

(k)
n]> ∈

Rn, k = 1, . . . ,K, where ξ = [ξ1 · · · ξn]> is a vector
of variables. Further, given T ∈ R>0, define the class LSET
of functions `T : Rn → R that can be written as

`T (ξ) = T log

(
K∑
k=1

b
1/T
k exp(α(k)>ξ/T)

)
,

for some K ∈ N, bk ∈ R>0, and α(k) ∈ Rn, k = 1, . . . ,K.
By letting βk

.
= log bk, k = 1, . . . ,K, we have that functions

in the family LSET can be equivalently parameterized as

`T (ξ) = T log

(
K∑
k=1

exp(α(k)>ξ/T + βk/T)

)
,

where the βks have no sign restrictions. It may some-
times be convenient to highlight the full parameterization
of `T , in which case we shall write `

(−→α ,β)
T , where −→α =

(α(1), . . . , α(K)), and β = (β1, . . . , βK).
By [12], functions in LSET are smooth and convex. Fur-

thermore, given a real-valued convex function g(·) defined
on a compact convex set K ⊂ Rn, for all ε > 0 there exists
T ? > 0 such that, for all T ∈ (0, T ?), there exists a function
`T ∈ LSET such that

|`T (ξ)− g(ξ)| 6 ε, for all ξ ∈ K,

i.e., functions in LSET are universal, convex, smooth approx-
imators of convex functions over convex, compact sets; see
Theorem 2 of [12]. Furthermore, as shown in [12], functions
in LSET can be equivalently be represented as feedforward
neural networks with one hidden layer having exponential
activation in the hidden layer and logarithmic activation in
the output neuron (see Fig. 1).

ξ1

ξ2

...

ξn

1

1/T

1/T

...

1/T

1/T

exp

exp

exp

exp

...

exp

log T y

Fig. 1. An LSE neural network.

These networks can be trained both on-line and off-line by
using classical algorithms, such as the Levenberg-Marquardt
algorithm [24], the gradient descent with momentum [25],
the Fletcher-Powell conjugate gradient [26], or the stochastic
gradient descent [27]. Most of these algorithms make use of
the gradients of the function synthesized by the network with
respect to the parameters, which for LSET network are

∇α(i)`
(−→α ,β)
T (ξ) =

exp(α(i)>ξ/T + βi/T) ξ∑K
k=1 exp(α(k)>ξ/T + βk/T)

,

∇βi`
(−→α ,β)
T (ξ) =

exp(α(i)>ξ/T + βi/T)∑K
k=1 exp(α(k)>ξ/T + βk/T)

.

B. Convex approximation of the Q-factors

In this subsection, we show how the LSE networks
reviewed in Section III-A can be used to approximate the
Q-factors Qk(xk, uk). Assume to have at one’s disposal
state-control-successor state triples (x

(i)
k , u

(i)
k , x

(i)
k+1), where

i ∈ {1, . . . , s} denotes the experiment number, and k ∈
{0, . . . , N − 1} denotes the discrete-time in the i-th ex-
periment. By considering the triplets (x

(i)
N−1, u

(i)
N−1, x

(i)
N),

i = 1, . . . , s, define the corresponding sample Q-factor

γ
(i)
N−1 := gN−1(x

(i)
N−1, u

(i)
N−1) + gN (x

(i)
N).

An LSET approximate `
(−→αN−1,βN−1)
T (xN−1, uN−1) of the

Q-factor QN−1(xN−1, uN−1) can be determined by design-
ing the weights −→αN−1 and βN−1 so to minimize

s∑
i=1

δ
(i)
N−1

∥∥∥γ(i)N−1 − `(−→αN−1,βN−1)
T (x

(i)
N−1, u

(i)
N−1)

∥∥∥
+R(−→αN−1, βN−1), (8)

where R(·, ·) is a regularization term that is independent of
γN , and δ(i)N−1 is a weighting factor, i = 1, . . . , s. Note that
the problem above can be addressed by using one of the
algorithms recalled in Section III-A.

Once the weights αN and βN have been determined, by
considering the triplets (x

(i)
N−2, u

(i)
N−2, x

(i)
N−1), i = 1, . . . , s,

define the corresponding approximate sample Q-factor

γ
(i)
N−2 := gN−2(x

(i)
N−2, u

(i)
N−2)

+ min
uN−1∈UN−1(x

(i)
N−1)

`
(−→αN−1,βN−1)
T (x

(i)
N−1, uN−1). (9)

Note that, differently from γ
(i)
N−1 that are actually samples

of the Q-factor QN−1(xN−1, uN−1), the values γ(i)N−2 are
approximate samples of the Q-factor QN−2(xN−2, uN−2)

due to the fact that `
(−→αN−1,βN−1)
T is used rather than

QN−1(xN−1, uN−1) to compute them. Furthermore, it is
worth stressing that, differently from classical Q-learning
approaches, the second term in the right-hand side (9) can
be easily determined by using convex optimization tools.

Once the approximate samples γ(i)N−2 have been computed,
an LSET approximate `(

−→αN−2,βN−2)
T (xN−2, uN−2) of the Q-

factor QN−2(xN−2, uN−2) can be determined by designing

the weights −→αN−2 and βN−2 so to minimize

s∑
i=1

δ
(i)
N−2

∥∥∥γ(i)N−2 − `(−→αN−2,βN−2)
T (x

(i)
N−2, u

(i)
N−2)

∥∥∥
+R(−→αN−2, βN−2),

where δ(i)N−2 is a weighting factor, i = 1, . . . , s.
By iterating such a procedure backward, we obtain weights
−→α κ and βκ such that the LSE function `(

−→α κ,βκ)
T (xκ, uκ) is

a convex, smooth approximate of the Q-factor Qκ(xκ, uκ),
κ = 0, . . . , N − 1. Hence, once these functions have been
computed, an approximate optimal control ũ?k is given by (7)
with Q̃κ(xκ, uκ) := `

(−→α κ,βκ)
T (xκ, uκ). It is worth pointing

out that, if the set Uκ(xκ) is convex, the problem in (7) is
convex and hence it can be solved efficiently on-line, without
the need of an approximation in policy space.

Note that, as in classical data-driven approaches (see, e.g.,
the one given in [9, Sec. 2.1.4]), the technique given in
this section to approximate Q-factors via convex function
does not require a mathematical model of the system under
consideration, but just samples of its trajectories.

It is worth noticing that, once a new set of triplets
(x

(i+1)
k , u

(i+1)
k , x

(i+1)
k+1) is gathered (e.g., by using the ap-

proximate optimal controls obtained by solving (7)), k =
0, . . . , N − 1, the approximate samples

γ(i+1)
κ := gκ(x(i+1)

κ , u(i+1)
κ)

+ min
uκ+1∈UN−1(xκ+1)

`
(−→α κ+1,βκ+1)
T (x

(i+1)
κ+1 , uκ+1)

can be used to iteratively update the weights −→α κ and βκ by
using, for instance, the stochastic gradient descent algorithm.

Finally, note that if the Q-factors Qκ(xκ, uκ) are convex,
then by Proposition 4 of [12], they can be approximated
with arbitrary precision by letting K be sufficiently large
and T sufficiently small. On the other hand, if the Q-
factors Qκ(xκ, uκ) are not convex, they can however be
approximated in a neighborhood of their minimum by a
convex function by suitably selecting the parameters δ(i)k ,
thus making the proposed Q-learning approach suitable even
in the non-convex case.

C. Quality of the suboptimal control

A predictor of the quality of the suboptimal control that
is usually employed in the literature [9] is the difference

Qk(xk, ũ
?
k)−Qk(xk, u

?
k),

where u?k is given by (6) and ũ?k is given by (7). If the Q-
factor Qk(·, ·) is a convex function, we can guarantee that
this difference can be made arbitrarily small over a compact,
convex set by letting Q̃k(xk, uk) = `

(−→α k,βk)
T (xk, uk). As a

matter of fact, consider the quality index

(Qk(xk, ũ
?
k)−Qk(xk, u

?
k)) + (Q̃k(xk, u

?
k)− Q̃k(xk, ũ

?
k))

= (Q̃k(xk, u
?
k)−Qk(xk, u

?
k))−(Q̃k(xk, ũ

?
k)−Qk(xk, ũ

?
k))

Since u?k and ũ?k are given by (6) and (7), we have that

Qk(xk, ũ
?
k)−Qk(xk, u

?
k) > 0,

Q̃k(xk, u
?
k)− Q̃k(xk, ũ

?
k) > 0,

for all admissible xk. Hence, by the convex universal ap-
proximation theorem given in [12], it results that, given
a convex compact set C such that (xk, u

?
k, ũ

?
k) ∈ C,

there exists T ? ∈ R>0 such that, for all T ∈ (0, T ?),
there exists a function `(

−→α k,βk)
T (xk, uk) in LSET such that,

if Q̃k(xk, u
?
k) = `

(−→α k,βk)
T (xk, uk), then (Q̃k(xk, u

?
k) −

Qk(xk, u
?
k)) − (Q̃k(xk, ũ

?
k) − Qk(xk, ũ

?
k)) < ε, for all

(xk, u
?
k, ũ

?
k) ∈ C. Hence, we have that

Qk(xk, ũ
?
k)−Qk(xk, u

?
k) 6 ε,

for all (xk, u
?
k, ũ

?
k) ∈ C, thus guaranteeing good quality of

the suboptimal control obtained via (7), provided that xk lies
in the projection of C onto the xk–coordinates.

It is worth noticing that, in several applications, the Q-
factor Qk(·, ·) are indeed convex functions. For instance,
linear quadratic (LQ) optimal control problems, in which the
function fk(·, ·) and gk(·, ·) are defined as

fk(xk, uk) = Ak xk +Bk uk, (10a)

gk(xk, uk) = x>kWk xk + u>k Rk uk, (10b)

gN (xN) = x>NWN xN , (10c)

where Wk, k = 0, . . . , N , are symmetric, positive semi-
definite matrices and Rk, k = 0, . . . , N − 1, are symmetric,
positive definite matrices, are characterized by convex Q-
factors. In fact, by [28], letting Pκ be the solution to

Pκ = Wκ +A>κ Pκ+1Aκ

−A>κ Pκ+1Bκ(Rκ +B>κ Pκ+1Bκ)−1B>κ Pκ+1Aκ,

starting with PN = WN , κ = N − 1, . . . , 0,
one has J?k (xk) = x>k Pk xk, whence Qk(xk, uk) =
[x>k u>k] Λk [x>k u>k]>, with

Λk =

[
Wk +A>k Pk+1Ak A>k Pk+1Bk
B>k Pk+1Ak Rk +B>k Pk+1Bk

]
.

Therefore, the Q-factor Qk(xk, uk) is convex due to the
positive semi-definiteness of the matrix Λk, whose Schur
complement [29] equals Pk. More generally, a class of
problems admitting convex Q-factors are those in which the
function fk(·, ·) is defined as in (10a) and the functions
g0(x0, u0), . . . , gN−1(xN−1, uN−1), gN (xN) are convex. In
fact, in such a case, the function

QN−1(xN−1, uN−1) = gN−1(xN−1, uN−1)

+ gN (AN−1xN−1 +BN−1uN−1)

is the sum of a convex function and of another con-
vex function composed with a linear mapping, whence
it is convex [19]. Furthermore, since J?N−1(xN−1) =
minuN−1

QN−1(xN−1, uN−1), i.e., J?N−1 is the inf-
projection of QN−1, it is a convex function. Thus, by
considering the definition of Q-factors in (5) and iterating this
reasoning backward, we obtain that the Q-factor Qk(xk, uk),
k = 0, . . . , N − 1, are convex.

IV. NUMERICAL EXPERIMENTS

In this section, we validate the proposed technique to
perform Q-learning via LSE networks through two numerical
experiments. In particular, in Section IV-A, we show that,
when dealing with linear quadratic optimization problems,
the Q-learning via LSE neural networks perform similarly to
the actual optimal control. On the other hand, in Section IV-
B, we show that, when dealing with a genuinely nonlinear
optimization problem, the Q-learning via LSE neural net-
works perform better than classical Q-learning with quadratic
approximation functions.

A. LQ optimal control of a mechanical system

Consider the mechanical system depicted in Figure 2.

m1 m2

k1

d1

k2

d2
u

Fig. 2. A simple mechanical system.

The dynamics of this system are given by

ẋ =


0 1 0 0

−k1−k2
m1

−d1−d2
m1

k2
m1

d2
m1

0 0 0 1
k2
m2

d2
m2

− k2
m2

− d2
m2

x+


0
0
0
1
m2

u,
where x(t) ∈ R4 denotes the positions and speeds of the
bodies having masses m1 and m2. Assuming that k1 =
103 N/m, k2 = 2 · 103 N/m, m1 = 0.1 Kg, m2 = 0.15 Kg,
d1 = d2 = 1 N s/m, and that the system is controlled through
an impulsive force applied to the body having mass m2 every
τM = 1 s seconds, its discrete-time dynamics are given by a
system of the form (10a), with

Ak =

[
0.0289 0.0010 0.0475 0.0019
−3.0836 0.0226 −6.4323 0.0442
0.0379 0.0013 0.0621 0.0026
−4.1300 0.0295 −8.6020 0.0578

]
, Bk =

[
0
0
0

6.6667

]
.

Hence, assume that the objective of the control input u is to
minimize the cost function (2), with N = 8 and with gk and
gN given by (10b) and (10c), where Wk = I , k = 0, . . . , N ,
and Rk = 1, k = 0, . . . , N − 1.

In order to validate the proposed technique, we approxi-
mated the Q-factors of the considered optimization problem
both via LSE networks (K = 10) and via classical polyno-
mial functions. In particular, we first run 100 simulations of
the considered mechanical system by selecting the control
input u and the initial condition x0 of the plant at random
with distributionN (1, 0) andN (I, 0), respectively. Then, we
approximated the Q-factors both via an LSE networks (by
using the technique given in Section III-B) and via second
order polynomials in the variables x1, x2, x3, x4, u, whose
coefficients have been determined through the least absolute
shrinkage and selection operator (LASSO) [30]. Once the
LSE networks and the second order polynomials have been
determined, we picked other 100 initial conditions x0 of the
plant at random with distribution N (I, 0) and we simulated

the behavior of the mechanical system by selecting the input
u according to (7), where Uk(x) = R and the functions Q̃k
are either the polynomials or the functions in LSET obtained
after the first epoch of training. The trajectories of the system
obtained in such a way have then been used, together with
the ones obtained selecting the control input u at random,
to perform a second epoch of training, thus obtaining new
polynomials and new LSET functions that approximate the
Q-factors Q0, . . . , Q8. This procedure has been repeated 6
times, thus obtaining 6 polynomial and 6 LSET approxima-
tions of the Q-factors Q0, . . . , Q8. Finally, we picked other
100 initial conditions x0 at random with distributionN (I, 0),
we simulated the behavior of the mechanical system by
selecting the input u according to (7), with Uk(x) = R and
with Q̃k substituted by either the polynomial or the LSET
approximation of Qk, and we evaluated the corresponding
cost (2). Table I reports the average cost from the application
of the pseudo-optimal control laws and the average optimal
value obtained using classical LQ tools. Note that, in both
the polynomial and LSET cases, the pseudo-optimal inputs
have been obtained assuming that the dynamics of the system
are not known, whereas the application of the LQ methods
required perfect knowledge of both the system and the cost
function.

TABLE I
AVERAGE COSTS OBTAINED BY USING THE CONTROL LAW (7).

Epoch Polynomials LSE networks Optimal solution
1 59.009277 59.0255 59.009277
2 59.009277 59.0112 59.009277
3 59.009277 59.0127 59.009277
4 59.009277 59.0171 59.009277
5 59.009277 59.0125 59.009277
6 59.009277 59.0126 59.009277

As shown by such a table, the pseudo-optimal control law
obtained by using LSE networks has performance similar
to the one obtained by using quadratic polynomials. Note
that, since the considered optimal control problem is of
the form (10), by the reasoning given in Section III-C,
the Q-factors are actually quadratic polynomials and hence
the pseudo-optimal control obtained by using polynomial
approximates is actually optimal. This implies that the perfor-
mance obtained by using LSET networks, although pseudo-
optimal, is very close to the optimal one.

B. Control of lithium ions distribution in the human body

Lithium ions are one of the most used treatments for the
bipolar disorder and for the manic-depressive illness. In [31],
a pharmacokinetic model for the distribution of such ions
in the human body have been obtained from experimental
data. In particular, assuming that the drug is administrated
intravenously every 3 hours, the discrete-time dynamics of
the drug are given by system (10a) with

Ak =

 0.3973 0.1025 0.3054
0.7061 0.2357 0.3545
0.2607 0.0439 0.6648

 , Bk =

 10.9
0
0

 ,

where x = [x1 x2 x3]>, x1, x2, and x3 denote the
plasma, the red blood cells, and the muscle cells concentra-
tion of lithium ions, respectively. In order to let the treatment
be effective, the concentrations of ion have to satisfy [32]

0.4 nmol/L 6 x1 6 0.6 nmol/L, (11a)
0.6 nmol/L 6 x2 6 0.9 nmol/L, (11b)
0.5 nmol/L 6 x3 6 0.8 nmol/L. (11c)

If the dynamics of the system are known, then the model
predictive control technique given in [32] can be used to steer
the trajectories of the system to the therapeutic window given
in (11). On the other hand, if the dynamics of the system are
not known, as it will be assumed in the remainder of this
section, it is possible to use Q-learning in order to steer the
trajectories of the system to the therapeutic window given
in (11). Namely, define the function

g(x) =

{
(x1 − 0.5)2, if 0.4 6 x1 6 0.6,

|x1 − 0.5| − 0.0900, otherwise,

+

{
(x2 − 0.75)2, if 0.6 6 x2 6 0.9,

|x2 − 0.75| − 0.1275, otherwise,

+

{
(x3 − 0.65)2, if 0.5 6 x3 6 0.8,

|x1 − 0.65| − 0.1275, otherwise,

which is minimized if x is in the therapeutic window and
consider the cost function (2) with N = 8 (corresponding
to a time window of 24 hours), gk(xk, uk) = g(xk), k =
0, . . . , 7, and gN (xN) = g(xN).

The Q-factors corresponding to the optimization problem
have been approximated via both quadratic polynomials
and LSET functions (K = 10). In particular, since the
amount of administered dose should not exceed 5.95 nmol,
we firstly run 100 simulations by selecting the control input
u and the initial condition x0 of the plant at random with
uniform distribution over [0, 1]3 and [0, 5.95], respectively.
Then, we approximated the Q-factors both via an LSE
networks and via second order polynomials in the vari-
ables x1, x2, x3, u, whose coefficients have been determined
through the LASSO. Once the LSE networks and the second
order polynomials have been determined, we picked other
100 initial conditions x0 of the plant at random with uniform
distribution over [0, 1]3 and we simulated the behavior of
the system by selecting the input u according to (7), where
Uk(x) = [0, 5.95] and the functions Q̃k are either the
polynomials or the functions in LSET obtained after the
first epoch of training. These trajectories have then been
used, together with the ones obtained by selecting the input
uniformly at random, to perform a second epoch of training.
This procedure has been repeated 6 times, thus obtaining
6 polynomial and 6 LSET approximations of the Q-factors
Q0, . . . , Q8. Finally, we picked other 100 initial conditions
x0 uniformly at random in [0, 1]3, we simulated the system
behavior by selecting u according to (7), with Uk(x) =
[0, 5.95] and with Q̃k substituted by either the polynomial
or the LSET approximation of Qk, and we evaluated the

cost (2). Table II reports the average cost yield from the
application of the pseudo-optimal control laws and from
the application of the optimal control inputs obtained by
minimizing the cost function (2) through the Matlab function
fmincon assuming perfect knowledge of the system.

TABLE II
AVERAGE COSTS OBTAINED BY USING THE CONTROL LAW (7).

Epoch Polynomials LSE networks Optimal solution
1 3.9925 3.9925 1.04975
2 3.9925 2.4126 1.04975
3 3.9925 2.2527 1.04975
4 3.9925 1.9026 1.04975
5 3.9925 1.6736 1.04975
6 3.9925 1.6430 1.04975

As shown by such a table, the Q-learning algorithm that
uses LSE networks to approximate the Q-factors outperforms
the one using second order polynomial approximates. Fur-
thermore, differently from the pseudo-optimal control laws
gathered using polynomial approximates, the ones obtained
using LSE networks approach, as the number of epochs
increases, the solution found assuming perfect knowledge
of both the system dynamics and the cost function.

V. CONCLUSIONS

A novel method to perform Q-learning has been proposed.
In particular, it has been shown that LSE neural networks
can be used to approximate the Q-factors arising from
finite-horizon optimal control problems with continuous state
space. The key advantage of using these networks is that
they synthesize a convex function and hence are optimized
efficiently, without requiring approximations in policy space.

As other Q-learning strategies, the proposed approach may
suffer of inadequate exploration since the control input is
selected as in (7). However, this issue can be mitigated by
selecting uk at random in Uk(xk) with a small probability.

Future work will deal with the use of different classes of
networks for the approximation of the Q-factors, as, e.g.,
the class of DLSET networks introduced in [33], which are
capable of approximating any continuous functions over con-
vex, compact sets while still possessing a specific difference-
of-convex-functions form that makes them optimizable via
relatively efficient numerical methods [34], and with the use
of these networks to solve infinite horizon optimal control
problems in a data-driven setting by using a receding horizon
approach similar to that used in model predictive control.

REFERENCES

[1] D. Liberzon, Calculus of variations and optimal control theory: a
concise introduction. Princeton University Press, 2011.

[2] D. E. Kirk, Optimal control theory: an introduction. Courier Corpo-
ration, 2012.

[3] G. W. Swan, Applications of optimal control theory in biomedicine.
Dekker, 1984.

[4] C. Diaz, F. Ruiz, and D. Patino, “Smart charge of an electric vehicles
station: A model predictive control approach,” in 2018 IEEE Confer-
ence on Control Technology and Applications, pp. 54–59, 2018.

[5] D. P. Bertsekas and J. N. Tsitsiklis, “Neuro-dynamic programming:
an overview,” in 34th IEEE Conference on Decision and Control,
pp. 560–564, 1995.

[6] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-dynamic programming.
Athena scientific, 1996.

[7] D. P. Bertsekas and S. Ioffe, “Temporal differences-based policy
iteration and applications in neuro-dynamic programming,” Tech. Rep.
LIDS-P-2349, Department of Electrical Engineering and Computer
Science , MIT, Cambridge, MA, 1996.

[8] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[9] D. P. Bertsekas, Reinforcement Learning and Optimal Control. Athena
scientific, 2018.

[10] W. B. Powell, Approximate Dynamic Programming: Solving the curses
of dimensionality, vol. 703. John Wiley & Sons, 2007.

[11] D. P. De Farias and B. Van Roy, “The linear programming approach
to approximate dynamic programming,” Operations research, vol. 51,
no. 6, pp. 850–865, 2003.

[12] G. C. Calafiore, S. Gaubert, and C. Possieri, “Log-sum-exp neural
networks and posynomial models for convex and log-log-convex data,”
IEEE Transactions on Neural Networks and Learning Systems, 2019.

[13] H. van Hasselt, “Reinforcement learning in continuous state and action
spaces,” in Reinforcement Learning: State-of-the-Art (M. Wiering and
M. van Otterlo, eds.), pp. 207–251, Springer, 2012.

[14] K. A. Kopotun, D. Leviatan, and I. A. Shevchuk, “Convex polynomial
approximation in the uniform norm: conclusion,” Canadian Journal of
Mathematics, vol. 57, no. 6, pp. 1224–1248, 2005.

[15] D. P. Bertsekas, Dynamic programming and optimal control, vol. I, II.
Athena scientific, 2012.

[16] R. Bellman, Dynamic programming. Courier Corporation, 2013.
[17] C. J. C. H. Watkins, Learning from delayed rewards. PhD thesis,

King’s College, Cambridge, 1989.
[18] J. N. Tsitsiklis, “Asynchronous stochastic approximation and q-

learning,” Machine learning, vol. 16, no. 3, pp. 185–202, 1994.
[19] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge

University Press, 2004.
[20] F. A. Potra and S. J. Wright, “Interior-point methods,” Journal of

Computational and Applied Mathematics, vol. 124, no. 1-2, pp. 281–
302, 2000.

[21] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex
programming, version 2.1.” http://cvxr.com/cvx, Mar. 2014.

[22] M. Grant and S. Boyd, “Graph implementations for nonsmooth convex
programs,” in Recent Advances in Learning and Control (V. Blondel,
S. Boyd, and H. Kimura, eds.), Lecture Notes in Control and Infor-
mation Sciences, pp. 95–110, Springer-Verlag Limited, 2008.

[23] K. G. Vamvoudakis, “Q-learning for continuous-time linear systems:
A model-free infinite horizon optimal control approach,” Systems &
Control Letters, vol. 100, pp. 14–20, 2017.

[24] D. W. Marquardt, “An algorithm for least-squares estimation of non-
linear parameters,” Journal of the society for Industrial and Applied
Mathematics, vol. 11, no. 2, pp. 431–441, 1963.

[25] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance
of initialization and momentum in deep learning,” in International
conference on machine learning, pp. 1139–1147, 2013.

[26] L. E. Scales, Introduction to non-linear optimization. Springer, 1985.
[27] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Efficient

backprop,” in Neural Networks: Tricks of the Trade (G. Montavon,
G. B. Orr, and K.-R. Müller, eds.), pp. 9–48, Springer, 2012.

[28] B. D. O. Anderson and J. B. Moore, Optimal control: linear quadratic
methods. Courier Corporation, 2007.

[29] F. Zhang, The Schur complement and its applications. Springer, 2006.
[30] R. Tibshirani, “Regression shrinkage and selection via the lasso,”

Journal of the Royal Statistical Society: Series B (Methodological),
vol. 58, no. 1, pp. 267–288, 1996.

[31] B. E. Ehrlich, C. Clausen, and J. M. Diamond, “Lithium pharmacoki-
netics: Single-dose experiments and analysis using a physiological
model,” Journal of pharmacokinetics and biopharmaceutics, vol. 8,
no. 5, pp. 439–461, 1980.

[32] P. Sopasakis, P. Patrinos, H. Sarimveis, and A. Bemporad, “Model
predictive control for linear impulsive systems,” IEEE Transactions
on Automatic Control, vol. 60, no. 8, pp. 2277–2282, 2015.

[33] G. C. Calafiore, S. Gaubert, and C. Possieri, “A universal approxi-
mation result for difference of log-sum-exp neural networks,” 2019.
arXiv:1905.08503.

[34] H. A. Le Thi and T. P. Dinh, “DC programming and DCA: thirty
years of developments,” Mathematical Programming, vol. 169, no. 1,
pp. 5–68, 2018.

http://cvxr.com/cvx

