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We present an approach that, by integrating structural data with Direct Coupling Analysis, is able to pin-
point most of the interaction hotspots (i.e. key residues for the biological activity) across very sparse pro-
tein families in a single run. An application to the Class A G-protein coupled receptors (GPCRs), both in
their active and inactive states, demonstrates the predictive power of our approach. The latter can be
easily extended to any other kind of protein family, where it is expected to highlight most key sites
involved in their functional activity.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The discovery of correlated mutations in protein families across
different organisms has shown to provide valuable information on
the functional role of residues [1]. These mutations arise from evo-
lutionary pressure, that drives the changes to enhance stability
and/or biological function. Starting from the correlation between
mutations in sequence alignments (i.e., coevolutionary analysis,
CA), one can infer that the destabilization induced by a single-
point mutation can be attenuated or even counterbalanced by a
corresponding mutation in a different portion of the sequence. Dif-
ferent CA approaches include DCA [2–4], plmDCA [5], GREMLIN [6],
PSICOV [7], and many others [8,9]. These methods have been used
for different goals [10]: from the definition of coarse-grained force
fields for molecular simulation [11], to the prediction of mutation
energetics [12,13], the direct inference of 3D structures [3], refine-
ment of structure prediction [14,15], and the investigation of pro-
tein–protein interactions [16,17].

Here we introduce a structure-based CA that identifies in a sin-
gle run highly structurally and/or functionally relevant residues
across a protein family. This is achieved integrating structural
information on a modified version of Lui and Tiana’s [12] approach.
The latter uses internal interaction networks to uncover frustrated
interactions and mutation free energy differences for a specific
protein. Our protocol has several advantages. Unlike previous
approaches, mainly based on single protein domains (usually
obtained from PFAM [18]), our protocol includes entire proteins
in the calculations. In addition, it provides insight on different con-
formational states of proteins (unlike ‘‘classical” DCA analysis [2],
which is based on pure sequence information), such as receptor
active/inactive states or ion channel close/open states. Finally,
and most importantly, it can be applied to large sparse families,
i.e. with very large sequence variability due to evolution. Applica-
tions to the sparse and fairly well-structurally characterized [19]
subfamily, ‘‘class A” of the human G-Protein Coupled Receptor
(hGPCRs) superfamily, shows the predictive power of the
approach: in a single run, it identifies coevolutionary related hot-
spots, previously pinpointed by techniques other than CA [20,21],
integrating also structural information to highlight differences in
distinct conformational states. These are fundamental structural/-
functional residues or correlated with diseases. The protocol is
totally general and can easily be extended to other subfamilies of
GPCRs, from organisms other than Homo Sapiens, as well of other
large receptor families with large intrinsic variability, like the pen-
tameric ligand-gated ion channels (pLGICs) or the voltage-gated
ion channels.
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2. Results

The approach

In the following sections, we briefly describe our multistep
strategy (Fig. 1). Our approach uses structural information in two
different stages of the protocol, i.e. during the multiple sequence
alignment (MSA) generation and in the construction of the interac-
tion matrix, in contrast to most of the previously used coevolution-
ary approaches, that usually do not consider this information.

Below we report details of each of these steps.

2.1. Experimental data

Let us consider the general case for which sequences across a
given family are highly diverse. In this case several bottlenecks,
starting from the MSA generation, can be found. Thus, the use of
state of the art methodologies can be applied to overcome these
difficulties. We consider here an alignment formed byM sequences
composed by L residues ri (where i is the kind of amino acid)
obtained form curated databases (Uniprot [22], Pfam [18], or
GPCRdb [23]). The MSA can be generated using an algorithm, Pro-
mals3D [24], that utilizes structural data, and thus can alleviate the
difficulty in aligning families that displays sparse sequences.

2.2. Interaction analysis – DCA and Sequence-specific interaction
matrix

Our coevolutionary analysis protocol is based on Direct Cou-
pling Analysis [2,3]. The basic assumption of such technique is that
the interaction between different residues can be written as

Uð rif gÞ ¼
X
i<j

Eij ra;rbð Þ þ
X
i

hiðraÞ ð1Þ

where ri is the amino acid at i-th position of the sequence,
Eij ra;rbð Þ is the two-bodies term (analogous to the interaction term
of a Potts’ model) that contains the interaction energy between resi-
dues ri and rj at position i and j of the alignment, respectively, and
hiðraÞ is a one-body potential that can act on the residues (analo-
gous to the field term of a Potts’ model).
Fig. 1. Schematic representation of the workflow. We employ available sequence alignm
using a contact map, building a network that contains spatial and interaction information
of the betweenness centrality of every node, that are subsequently labeled based on the
The key quantity here is the two-bodies term Eij ra;rbð Þ, that
contains the information needed to build the interaction graph,
leading, eventually, to the identification of the hotspots (see
below). The frequency counts of pairs f ijðra;rbÞ and single f iðraÞ
residues of a sequence with n amino acids can be seen as marginals
of a probability distribution

f iðraÞ ¼
X
rk ;k–a

pðr1;r2; . . . ;rnÞ ð2Þ

f ijðra;rbÞ ¼
X

rk ;k–a;b

pðr1;r2; . . . ;rnÞ ð3Þ

where the probability p is defined as

pðr1; . . . ;rnÞ ¼ 1
Z
exp �U rif gð Þð Þ: ð4Þ

Starting from our alignment with n residues andM sequences of

length L, we can compute the empirical frequencies ~f ijðra;rbÞ and
~f iðraÞ. For M ! þ1, the empirical frequencies ~f i;~f ij will match the
theoretical distributions f i; f ij. For a realistic situation, using the
empirical distribution we will have finite-size effects, given by
the finite number of sequences available. To overcome this issue,
we reweight the empirical frequencies with the appropriate pseu-
docounts [25]. These pseudocounts are weighted on the distribu-
tion of residue types (via the weight x), on the distribution of
residue types in the considered alignment (via the weight y), and
on the distribution of residue types in a specific pair of positions
in the alignment (via the weight z), namely

f iðraÞ ¼ 1
Meðxþyþzþ1Þ � ~f iðraÞ þ x Me

q þ y

X
j

~f j ðra Þ

L þ z~f iðraÞ

2
664

3
775

f ijðra;rbÞ ¼ 1
Meðxþyþzþ1Þ

~f ijðra;rbÞ þ x Me
q2 þ y

L2Me

X
kl

~f kðraÞ~f lðrbÞ þ z
Me

~f iðraÞ~f jðrbÞ
" #

;

ð5Þ

where q is the number of residue types (here we have 21 types: the
20 amino acids and the gap),Me ¼

P
s1=ms is an effective number of

sequences and ms is the number of sequences with similarity larger
than 70%. In this work we fixed x ¼ 0:5; y ¼ 0:1, and z ¼ 1:0
ents and structures to build a coevolution-based interaction matrix that we refine
about the protein of interest. Hotspots are finally identified by means of the analysis
data available in the literature.



Table 1
Human Class A GPCRs experimental and predicted structures. The homology models were obtained from GPCRdb [23] if the sequence identity between target and template was
>50%. Some of the human chemokine receptors structures are only in the inactive state and we also analyzed models for inactive conformations that did not have an experimental
structure.

Name Species UNIPROT Active Inactive

Rhodopsin Human OPSD_HUMAN 6CMO (98%)
Cannabinoid-1 Human CNR1_HUMAN 6N4B 5U09
Cannabinoid-2 Human CNR2_HUMAN (66%) 5ZTY
Muscarinic M1 Human ACM1_HUMAN 6OIJ 5CXV
Muscarinic M2 Human ACM2_HUMAN 4MQS 3UON
Muscarinic M4 Human ACM4_HUMAN (91%) 5DSG
b2-Adrenoreceptor Human ADRB2_HUMAN 4LDE 2RH1
Adenosine A1 Human AA1R_HUMAN 6D9H 5UEN
Adenosine A2A Human AA2AR_HUMAN 5G53 5NM4
d-Opioid Human OPRD_HUMAN (82%) 4N6H
l-Opioid Human OPRM_HUMAN 5C1M 4DKL
j-Opioid Human OPRK_HUMAN 6B73 4DJK
NOP Receptor Human OPRX_HUMAN (77%) 5DHH
Serotonin 1B Human 5HT1B_HUMAN 6G79 (60%)
Serotonin 2A Human 5HT2A_HUMAN (83%) 6A94
Serotonin 2B Human 5HT2B_HUMAN 5TUD (78%)
Serotonin 2C Human 5HT2C_HUMAN 6BQG 6BQH
Dopamine 2 Receptor Human DRD2_HUMAN (60%) 6CM4
Dopamine 3 Receptor Human DRD3_HUMAN (57%) 3PBL
Dopamine 4 Receptor Human DRD4_HUMAN (57%) 5WIU
Angiotensin 1 Human AGTR1_HUMAN 6DO1 4YAY
Apelin Receptor Human APJ_HUMAN (54%) 5VBL
C–C Chemokine 2 Human CCR2_HUMAN – 6GPX
C–C Chemokine 5 Human CCR5_HUMAN – 5UIX
C–C Chemokine 9 Human CCR9_HUMAN – 5LWE
C–C Chemokine 1 Human CCR1_HUMAN – (78%)
C–C Chemokine 3 Human CCR3_HUMAN – (77%)
C–C Chemokine-Like 2 Human CCRL2_HUMAN – (62%)

1 In graph theory a connected graph is a network where, choosing any possible pair
of nodes i and j, it is possible to go from i to j via a path defined by the edges of the
graph.
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following Contini and Tiana [13], that tested these parameters for
both cytosolic and membrane proteins.

After the reweighting, if we apply a mean-field approximation
we can obtain the associated correlation matrix Cij for the frequen-
cies defined as

Cijðra;rbÞ ¼ f ijðra;rbÞ � f iðraÞf jðrbÞ;

and finally obtain the two-bodies interaction energy in Table 2

Eijðra;rbÞ ¼ ðC�1Þijðra;rbÞ ð7Þ
As shown in Refs. [3,12].
This two-bodies term Eijðra;rbÞ (that have the form of a 4-

dimensional tensor) contains the two-bodies interaction of all
the possible residue pairs. Choosing our sequence of interest, we
can extract from this tensor the interaction matrix Eij that
describes the interaction between all the possible amino acid pairs
in the system.

2.3. Network analysis

Eij contains interaction information that is complementary to
3D structural data, because can discriminate the most important
energetic contribution of residue that are located in spatial prox-
imity. To integrate spatial and energetic information in a single
object, we computed a residue-residue contact map Qij for every
protein structure:

Qij ¼
1; if ri � rj

�� �� 6 10Å

0; if ri � rj
�� �� > 10Å

(
ð8Þ

Where ri � rj
�� �� is the distance between the Cbs of the i-th and

the j-th residues (in the case of glycine, the hydrogen atom in
the analogue position).

To insert structural information in Eij, we proceed following
Scarabelli et al.[26]. There, the authors perform an Hadamard pro-
duct (a element-by-element multiplication of the two matrices)
between the contact map and the interaction matrix, obtaining
the local interaction matrix Lij, namely

Lij ¼ Qij � Eij ð9Þ
If the experimental structure considered contains non-resolved

residues, one can remove the part of Eij involving such parts.
Now, let us consider each residue of the protein family as a node

of a weighted graph G. In this graph, we connect two nodes if the
modulus of the interaction obtained from DCA between the respec-
tive residues is larger than a threshold value ethr defined itera-
tively: we start building a network considering the maximum
energy of the matrix (in modulus), obtaining an unconnected graph
(i.e., a network of isolated nodes except for the two residues with
the strongest interaction).1 At this point, we iteratively lower ethr
value until we obtain a connected graph. The maximum value of
ethr that still returns a connected graph defines the final interaction
network and the connected graph (G) itself.

2.4. Hotspots

The betweenness centrality of a node BðkÞ in G reads [27]:

BðkÞ ¼
X
i;j2G

nði; jjkÞ
nði; jÞ ð10Þ

where nði; jjkÞ is the number of the shortest paths in the graph that
connect i and j passing through k, and nði; jÞ is the number of the
shortest paths in the graph that connect i and j.

If the considered node is ‘‘central” in the network (i.e., the infor-
mation flow passes through it to connect different portion of the
protein), its betweenness centrality will be larger. We considered
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residues as hotspots if the betweenness centrality of their associ-
ated node is larger than half of the maximum betweenness central-
ity in all the nodes.
2.5. Application to class A hGPCRs

hGPCRs, with more than 800 members [19], is the largest family
of cell-surface receptors. External signals are translated by this
family into cell stimuli. A widely used classification system of
hGPCRs is the A-F system that is mainly based on their amino acid
sequences and functional similarities. This classification identifies
six classes, labeled A-F. Class A, also known as the ‘‘rhodopsin-
like family”, is the largest group of hGPCRs [28], which includes
hormones, neurotransmitters, and light receptors and accounts
for around 80% of hGPCRs. These proteins share a common topo-
logical signature, namely seven a-helical transmembrane (TM)
domains [29]. The members of the family share also positions of
residues directly involved in ligand binding and receptors activa-
tion. These include for example positions 3.28, 3.32, 3.33, 3.36,
3.37, 5.39, 6.44, 6.48, 6.55, 7.35 and 7.39 [30–32], functionally con-
served along the entire class A [32,20].2 Such common structural
organization contrasts strongly with the agonists’ structural diver-
sity, from subatomic particles (a photon), to small molecules, up to
peptides and even proteins [29]. Agonist binding to class A hGPCRs
triggers receptor activation. The residues involved in the activation
extend from the binding cavity, [20,34–37] to the intracellular side
of the receptor. Activation lead to binding of a cognate proteins,
e.g. G-protein and b-arrestins, and finally downstream signaling
pathways. However, these proteins do not simply switch between
alternative agonist-bound and inactive forms in this process. They
rather adopt a series of intermediate states -likely represented by
an ensemble of conformations [38]- influenced not only by agonist
binding, but also by other receptors, signaling and regulatory pro-
teins, by post-translational modifications, and by environmental
cues [39].

The input of the workflow (Fig. 1) consists of sequence align-
ments and of experimentally solved (PDB) structures of vertebrate
class A GPCRs.3 We considered the vertebrates GPCRs for building up
the evolutionary history of the family because, out of vertebrate spe-
cies the classification in subfamilies is more difficult and not always
accurate [19].

The subclass sequences were downloaded from the Uniprot
database [22]. The reviewed sequences were firstly chosen (2514
sequences). New sequences from the unreviewed data set were
then manually added. All the resulting curated sequences (5,000)
were aligned using the Promals3D web-server [24]. We used the
default parameters of the server. The MSA obtained by using this
program satisfies all the class A hGPCR features, a set of highly con-
served residues in each of the transmembrane helices [30], that
gives rise to the Ballesteros-Weinstein nomenclature [33] (see
footNote 3). The alignment was aided by 50 experimental or pre-
dicted structures belonging to 28 different human class A GPCRs,
both in the active and inactive states (see Table 1). In all the cases,
the structure was not resolved in its entirety: parts of the sequence
(typically the intracellular loop and the C- and N-termini of the
chain) was missing in the experimental structure. To match struc-
tural/sequence information (and matrices dimension), we removed
the parts of the Eij that involved unresolved residues. Next, we built
2 From here on, we will use the Ballesteros-Weinstein (or generic) numbering
scheme [33] commonly used for class A GPCRs. Within this framework, the first
number indicates the helix and the second number indicates the residue position
with respect to the most conserved residue in that helix (x.50). For example, position
3.52 refers to a residue in helix 3, two positions after the most conserved residue, the
3.50.

3 We consider only non-olfactory class A GPCRs as in [19].
the local interaction network and computed the betweenness cen-
trality of every residue. As mentioned in the description of the
method, in this phase we used again the structural information
of Table 1. Several hotspot positions underwent site-directed
mutagenesis experiments (see Tables 2 and 1 SI and references
within). Many mutants have a lower ligand activity or prevent acti-
vation ( https://gpcrdb.org) [23]) or are linked to disease. Residues
identified as hotspots across 30% or more hGPCRs have a docu-
mented biological function (Table 2), such as: belonging to the
ligand binding site (i), or to the micro-switch network of activation
(ii) or being located within the allosteric Na+ binding cavity (iii).
Not all the hotspots listed in Table 2 are present in all the struc-
tures in Table 1 (the number of hotspots per single structure rang-
ing from 2 to 26, see Table 2 SI). In particular, for some identified
hotspots we can infer their functional role via a direct comparison
with other members within the same family. Some examples are
briefly discussed below,
2.5.1. Ligand binding
Our protocol is able to capture residues with a fundamental role

in selectivity, ligand binding affinity [30] and in dynamical events
underlying hGPCR activation (see Table 2; [31,32,20]). For exam-
ple, it identifies the conserved hotspots involved in ligand binding
3.32, 3.37 and 6.48 [40,30,32,20] (Tables 2 and 1 SI for references).
The first residue plays a role for ligand charge detection [32]. It is
an aspartic acid in 22% of the class A hGPCRs, interacting with ami-
nes or with other positively charged groups [32]. The second resi-
due is involved not only in ligand recognition but also in receptor
activation [41]. The last one, is a tryptophan residue in more than
77% of the class A subfamily. This position is well known in litera-
ture, since it is a hub involved either in ligand detection and as
forming the ‘toggle switch’ involved in receptor activation (see
below) [42].
2.5.2. Micro-switches
The so-called ‘‘micro-switches” are small groups of residues

that undergo conformational changes during receptor activation
and are mechanistically involved in the activation of GPCRs
[43,42,44]. Those include: (i) D[E]R3.50Y in helix III which is a
common motif that forms the ’ionic lock’, during inactivation, (ii)
NP7.50xxY in helix VII which plays an important role in proteins’
conformational changes upon activation [42]. The link between
this region and the binding cavity is the ’toggle switch’ formed
by positions 6.44, 6.48, 3.40, 5.50: upon ligand binding, position
3.40 rotates and locates between 6.48 and 6.44. This, induce a con-
formational change of the ‘‘hydrophobic barrier”, located below the
‘‘toggle switch” that includes positions 2.43, 2.46, 3.43, 3.46, 6.36,
6.37 and 6.40 [45]42. The conformational change is important for
receptor activation [30,31]. All the residues involved in this com-
plex mechanism were detected as hotspots in one single run of
our protocol (Table 2).
2.5.3. Na+ binding cavity
An allosteric binding cavity for a partially hydrated Na+ ion is

conserved across class A hGPCRs, excluding the opsins [46]. The
hydrated Na+ is bound in the middle of 7TM helices bundle, it sta-
bilizes the inactive state and reduces basal G-protein activity [46].
D2.50 (90% conserved as Asp) directly coordinates the Na+ ion,
N1.50 (97% Asn), S3.39 (75% Ser), N7.45 (70% Asn), S7.46 (66%
Ser), N7.49 (75% Asn), and finally Y7.53 (89% Tyr) [46] complete
the coordination of the ion. The protocol identifies, as hotspots,
D2.50, S3.39 and 7.49 across class A subfamily members, except
for the opsins, consistently with experiments [46] (Table 2 SI).

https://gpcrdb.org


Table 2
Details of the hotspots. For every hotspot identified, we highlight the state (active or inactive) of the hGPCR
where the residue was identified, the presence of a documented function, interaction with a ligand, the
existence of a mutant or variant in the GPCRdb, and the amino acid consensus. Hy indicates general
hydrophobic residues; Ha, Hydrophobic aliphatic; Hb, hydrogen bonding; Sm, small. For references of the
experimental data, see [11] to [100] of SI.
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3. Conclusions

We have presented an approach able to capture most of the
coevolution-related events relevant for the function of a very
sparse protein family or subfamily (Fig. 1). The protocol provides
information not only on residues spanning along the full-length,
but also on different activation states of the receptors. In contrast
to previous approaches, we make use of structural information.

Application to human class A hGPCRs structures shows that,
from a sparse family multiple sequence alignment, we were cap-
able of extracting all the residues known to be involved in the dif-
ferent aspects of the receptor activity that were previously
identified [20,21]. These include i) all the position within the bind-
ing cavity with a conserved functional role; ii) residues forming the
activation microswitches and iii) residues forming the Na+ allos-
teric binding cavity and those that were found to be mutated in
correlation with disease. Importantly, the method was able to cap-
ture the functional role of all the residues in one single shot.

Our approach is totally general and can easily be extended to
other subfamilies of GPCRs for which experimental structures are
available.4 As an example, we cite here the pentameric ligand-
gated ion channels (pLGICs) protein family, that mediate fast neuro-
transmission in the nervous system [47,48]49. These are evolution-
ary correlated, they share a common architecture that consists of
three distinct domains, and they exist in at least three distinct func-
tional states [47,48,50]. By exploiting the available structural infor-
mation [47,48], the approach might be able to identify all hotspots
across the family in a single run. As soon as a statistical significant
number of structure will be available, a more specific analysis on sin-
gle subfamilies of class A hGPCRs can be readily be performed.

One of the present limitations of the protocol regards the study
of the oligomers, because the integration of the structural data
removes the interaction between residues that are far away in
the single monomer. In the future, we plan to remove this restric-
tion integrating oligomers data coming from experiments.
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