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Abstract

Hybrid rocket engines are a promising propulsion system, albeit being not as
well developed as other chemical rocket systems at the date. Wide thrust range
and fine control features (including shut-down and re-ignition capabilities) make the
hybrids suitable for many applications, including small launchers, space propulsion
systems and upper stages, which have been considered in the present work as test
case.

Hybrid rocket engines are safer than solid rocket motors and cheaper than liquid
rocket engines, having, at the same time, a low environmental impact. In general,
a hybrid powered stage can easily be employed in place of conventional solutions,
granting larger payload mass and lower overall cost. On the other hand, the actual
use of hybrid propulsion systems is still limited by a number of issues, including
low regression rates, combustion instability and intrinsic uncertainty in the hybrid
combustion process.

The author developed a robust-based optimization procedure, which consists
of a sensitivity analysis method, used to identify the most relevant source of un-
certainty in the numerical model, and several design of experiments techniques,
employed to evaluate system performance in the presence of uncertainty and grant
robustness in the design. The optimization of a hybrid powered upper stage, suit-
able as a replacement for the actual Vega launcher upper stages, was considered as
a test case. Different feed systems were also taken into account and compared.

Results showed that robustness in the design is achievable, despite the presence
of uncertainty, when the proposed procedure is employed for the optimization of
the hybrid rocket engine, also granting a relevant payload gain with respect to the
current launcher configuration.






Abstract

Gli endoreattori a propellenti ibridi costituiscono un sistema propulsivo promet-
tente, pur non essendo, ad oggi, stati sviluppati al pari degli altri sistemi di propul-
sione chimici a razzo. LL’ampia gamma di spinta e le precise possibilita di controllo
(incluse le capacita di spegnimento e di riaccensione) rendono gli ibridi adatti per
molte applicazioni, tra cui piccoli lanciatori, sistemi di propulsione spaziali e stadi
superiori, i quali sono stati considerati nel presente lavoro come caso di studio.

Gli endoreattori a propellenti ibridi sono piu sicuri degli endoreattori a pro-
pellenti solidi e pit economici degli endoreattori a propellenti liquidi, avendo, allo
stesso tempo, un basso impatto ambientale. In generale, uno stadio ibrido puo
facilmente essere utilizzato al posto delle soluzioni convenzionali, garantendo un
carico utile maggiore e un minor costo complessivo. D’altra parte, I'utilizzo pratico
dei sistemi di propulsione ibridi e tutt’ora limitato da numerose questioni irrisolte,
tra cui il basso rateo di regressione, I'instabilita della combustione e le incertezze
intrinseche nel processo di combustione ibrido.

L’autore ha sviluppato una procedura di ottimizzazione robusta costituita da
un metodo per l'analisi di sensitivita, usato per identificare le principali fonti di
incertezza presenti nel modello numerico, e svariate tecniche di design degli esperi-
menti, impiegate per valutare le prestazioni del sistema in presenza di incertezza e
garantire la robustezza nel design. Come caso di studio ¢ stata presa in consider-
azione 'ottimizzazione di uno stadio superiore ibrido, adatto a sostituire gli stadi
superiori dell’attuale lanciatore Vega. Diversi sistemi di alimentazione sono stati
valutati e messi a confronto.

I risultati ottenuti dimostrano che la robustezza nel design puo essere ottenuta,
nonostante la presenza di incertezza, utilizzando la procedura proposta per I'ottimiz-
zazione del motore ibrido a razzo, garantendo altresi un consistente guadagno in
termini di carico utile rispetto all’attuale configurazione del lanciatore.
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Chapter 1

Introduction

1.1 Research Topic and Scope

Hybrid rocket engines are chemical rockets which employ propellants stored in
different physical states, usually a liquid oxidizer and a solid fuel. They have many
appealing feature, such as high performance, fine thrust control, high safety and
low environmental impact. In hybrid rocket engines only the flow of the liquid
propellant can be controlled, coupling thrust level and mixture ratio. This peculiar
control feature requires the development of a proper multidisciplinary design and
optimization approach, including a mission specific and coupled optimization of
both hybrid engine and vehicle trajectory.

In addition, the presence of uncertainty in the design could cause severe de-
viations from nominal engine performance, seriously jeopardizing mission accom-
plishment. A robust-based optimization approach is mandatory in order to reduce
system sensitivity, granting the fulfillment of mission goals despite the presence of
uncertainty. Unfortunately, robust-based optimization results to be a really de-
manding task, even when only few uncertain parameters are taken into account in
the mathematical model. Therefore, proper tools have to be developed, firstly to
identify the most critical source of uncertainty in the system and then to manage it
in an effective way, granting robustness in the design at an affordable computational
cost.

In this Doctoral Thesis, the author will present a novel approach to the optimiza-
tion under uncertainty of hybrid rocket engines, providing to the reader theoretical
fundamentals, numerical applications and their most significant results. In order
to help the reader, the following Section will summarize the core structure of the
present manuscript.



1 — Introduction

1.2 Thesis Structure

This Doctoral Thesis consists of seven Chapters. In the present Chapter the
author summarized the most important information about his research area and,
more specifically, the core topic and scope of his manuscript. Basic concepts, such
as hybrid propulsion and robust design, that could be helpful from the beginning
for the reader, were here introduced too.

The second Chapter, Hybrid Rocket Engine Development: an Open Topic, is
dedicated to provide the required background about hybrid propulsion issues and
potential to the reader. In the introduction to Chapter 2, the author will describe
the working principle of hybrid rocket engines and their fascinating features. In
the second Section, the most important milestones of the development of hybrid
propulsion systems will be gathered in a brief historical perspective, from the first
attempts in the early '30s to the current test and flight programs. A special focus
will be given by the author to attained performance and design choices, in order
to underline how past failures have influenced present successes. The third Section
will present the most common engines configurations and propellants, dwelling
on direct hybrids and paraffin-based fuels. In the fourth Section, pros and cons of
hybrid propulsion will be listed, with respect to heritage ones, supporting the reader
in the subsequent description of the potential applications of hybrids that can be
found in the literature at the date. The fifth, and last, Section of this Chapter
will highlight the need for an innovative design and optimization procedure when
uncertainty is considered in hybrid propulsion systems.

The third Chapter, Uncertainty and Robust Design, is divided into five Sections.
In the Introduction, the basic distinction between uncertainty-based design prob-
lems will be pointed out, introducing robust-based and reliability-based approaches.
In the second Section, the author will provide few important definitions concerning
uncertainty, that will be used in the following of the manuscript. The third Section
will introduce additional concepts developed by Dr. Taguchi in the '60s, such as
quality loss and noise, which form the basis of robust-based approaches. The fourth
Section will be devoted to Taguchi’s Robust Design Method. Problems parameters
are split into control and noise ones and robustness is defined as the insensitivity
of system performance to uncertain parameters variations. Orthogonal arrays and
specific quality loss functions are employed to determine the optimal design, i.e.
the optimal values of control parameters. In the fifth Section the author will discuss
how Taguchi’s work could be applied to hybrid rocket engines problems and which
design and optimization tools were required.

The fourth Chapter, Robust-based Optimization, summarizes the theoretical
fundamentals of the robust-based optimization approach developed in the Thesis.
In the first Section, sensitivity analysis and parameters screening methods will be
discussed. The author opts for the Morris Method in this work, thus a more detailed
description will be given and a simple numerical example will be provided. The

2



1.2 — Thesis Structure

second Section will be dedicated to design of the experiments techniques. Several
designs will be presented and compared. In the present work, fractional factorial
design, Taguchi’s design and Box-Behnken design will be employed. In the third
Section, the author will report the most important features of the direct optimiza-
tion method used in this work, namely a particle swarm optimization algorithm,
which mimics the social behavior of flocks of birds and schools of fish looking for
food.

The fifth Chapter, Real World Application: Hybrid Powered Upper Stage, is
devoted to present a numerical application of the robust-based procedure depicted
in Chapter 4. A hybrid rocket upper stage will be considered to replace the third
and fourth stages of the current Vega launcher. An hybrid powered upper stage
represents an intriguing alternative to the liquid powered one that is currently
under development for the new Vega-E launcher. In the first Section, the author
will describe actual Vega configuration and, in particular, third and fourth stages
configuration and performance. The second Section will be dedicated to a detailed
description of the hybrid rocket engine mathematical model. In Chapter 5, a gas
pressurized feed system will be considered in the engine design and operation. The
third Section will introduce the most important features of the indirect trajectory
optimization procedure employed, which is based on the optimal control theory.
The fourth Section will be dedicated to the robust-based procedure. First, the
results of the sensitivity analysis and parameters screening will be presented and
then the selection of the proper design of experiments techniques will be discussed.
The fifth Section will report the numerical results of the optimization of the hybrid
rocket engine. In the end, the sixth and last Section will present the author’s
conclusions for the test case considered in this Chapter.

The sixth Chapter, Real World Application: FElectrical Turbo Pump Upper
Stage, will concern the robust-based optimization of a hybrid powered upper stage,
similar to the one presented in Chapter 5, which employs an electric pump feed
system in place of a gas pressurized one. In the first Section the differences in
feed system operation, mass budget and ascent trajectory will be pointed out by
the author. The second Section will briefly report the optimization setup and
the uncertainty model employed. In the third Section, numerical results of the
optimization procedure will be presented. In the fourth and last Section, the author
will make his own conclusions about the use of electric feed systems in place of
heritage ones.

In the end, the seventh and last Chapter of this Thesis will be devoted to the
author’s overall conclusions and final thoughts about the work here presented and
its possible future developments.






Chapter 2

Hybrid Rocket Engine
Development: an Open Topic

2.1 Introduction

Nowadays, chemical propulsion systems could be classified into three main cate-
gories: liquid rocket engines (LREs), solid rocket motors (SRMs) and hybrid rocket
engines (HREs). Liquid and solid architecture employs oxidizer and fuel in the same
phase (both liquid and both solid, respectively). Hybrid engines, on the other hand,
take advantage of two different phases for oxidizer and fuel. In direct HREs, the
oxidizer is stored in liquid or gaseous state inside tanks whereas the fuel is located
in a solid grain inside the combustion chamber. The fuel grain is typically an
hollow cylinder with a single circular port, but more complex geometries are not
uncommon. Combustion process in hybrid engines is really distinctive. Oxidizer
injection into the port generates a boundary layer where combustion takes place,
after ignition. Solid fuel is gasified by the heat transfer from the flame zone to the
grain surface and, at the same time, the gasified fuel feeds the combustion. Gasified
fuel blowing alters the boundary layer and blocks the heat transfer.

Combustion mechanism and propellants state allow for some benefits over other
chemical rockets architectures: higher specific and density specific impulse than
SRMs and LREs respectively, higher safety level due to the physical separation
of propellants until ignition, higher reliability due to simpler feeding system and
good throttling, shutdown and re-ignition capabilities. Moreover, HREs are envi-
ronmentally friendlier than SRMs and LREs employing semi-cryogenic or storable
propellants, being at the same time cheaper, which are features gaining more and
more importance in the last decades. On the other hand, HREs have some draw-
backs too: lower specific and density specific impulse than cryogenic LREs and
SRMs respectively, low fuel regression rate, mixture ratio shifting, mixing ineffi-
ciencies and slower response to throttling than typical LREs.

Nevertheless, the positive aspects of HREs actual use are really promising and
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2 — Hybrid Rocket Engine Development: an Open Topic

thus a great number of research programs are focusing on hybrid development
worldwide.

2.2 Historical Background

The time-line of HREs development starts in the ‘30s, when Korolev and Tikhon-
ravov’s GIRD-09 reached an altitude of 1500m on 17 August 1933. The engine
burned for 15s, producing a thrust of 500 N employing gelled gasoline and LOX as
propellants . In 1937 Andrussow, Lutz and Noeggerath tested a bigger engine in
Germany, capable of 10kN of thrust, using coal as fuel and gaseous nitrous oxide
as oxidizer. Their attempt failed, highlighting, despite themselves, that carbon was
not able to grant the necessary burning rate. Shorty after, between 1938 and 1939,
Oberth developed a Liquid OXygen (LOX)/Graphite hybrid engine, sadly coming
to conclusions similar to Andrussow, Lutz and Noeggerath ones. Later, since 1947,
the Pacific Rocket Society built a bunch of experimental hybrids, called XDF-#,
employing LOX and wood-based (Douglas fir) fuels.[15] First tests resulted in noz-
zles melted and test bench destroyed. Finally, in 1951, the XDF-23 successfully
managed to reach an altitude of 30000 ft thanks to an aluminum alloy nozzle and
a LOX/rubber-based fuel propellants combination. Burning tests suggested that
chamber pressure was proportional to oxidizer mass flow in hybrids, instead to flame
surface as in solid motors, avoiding explosions risk due to fuel grain degradation.|2]

Between ‘40s and the early ‘60s exotic configurations were investigated, such as
solid-fuel air-breathing ramjet at the Jet Propulsion Laboratory and reverse hybrid
rocket (solid oxidizer and liquid fuel) at the John Hopkins University, but with-
out success due to poor performance and burning difficulties. On the other hand,
General Electric company (GE) successfully developed an hypergolic hybrid engine,
employing Hydrogen Peroxide and Polyethylene, improving the performance of the
original peroxide mono propellant system.[22] In the mid-’60s NASA promoted
many research programs aiming at the development of high-energy space engines.
In the context of HRE, Lithium was blended with Hydroxyl-Terminated PolyBu-
tadiene (HTPB) to burn with a mixture of Fluorine and Oxygen, called FLOX.
This propellant combination took advantage of the extremely energetic reactions
between Hydrogen and Lithium with Fluorine, alongside the conventional Carbon
and Oxygen one. The system showed nice throttling and cold restart capabilities,
grating at the same time high performance (specific impulse &~ 380s).[3] A different
engine concept, called tri-brid, was also developed. A classical bi-propellant engine
(e.g. oxygen/hydrogen) employed Beryllium as energetic additive, attaining the
extremely high specific impulse (450 —530s) and burning temperature (~ 5000 K).
This concept was later abandoned due to Beryllium toxicity.

In parallel, the United States Air Force (USAF) supported drones flight pro-
grams, aiming at the building of high altitude/high velocity target drones. First the

6



2.2 — Historical Background

> mid '60s: Lithium/FLOX hybrid

> mid '60s: Beryllium/Oxygen/Hydrogen tri-brid

1964-1967: LEX

1965: HR-3

1933: GIRD-09 _’ 1968: Sandpiper

1937: Andrussow et al.

——> 2002: Lockheed Martin Corp. LOX/HTPB hybrid

2004: SpaceShipOne

1938-1939: Oberth

'70s: HAST

1930-1939 | | 1940-1949 | 1950-1959 @ 1960-1969 | 1970-1979 | | 1980-1989 | 1990-1999  2000-2009 2010-2019

— 1951: XDF-23
2017: Peregrine

—  1952: Reverse hybrid 2018: Nucleus

— 1956: HP/PE hybrid
— 1995: H-1800

——— 1946: Solid-fuel Ramjet —  1995-1996: Hyperion

early '80s: Dolphin
mid '80s: Firebolt

Figure 2.1: HREs timeline.

Sandpiper was developed, employing nitrogen oxides mixture (1/4 of Nitric Oxide
and 3/4 of Nitrogen Tetroxide) and PolyMethylMethacrylate (PMMA)/Magnesium
as propellants. In 1968, the Sandpiper exhibited high throttle-ability and Mach 4
speed at 100000 ft of altitude, during a flight of more than 5 minutes. Later, in the
context of the High Altitude Super-sonic Target (HAST) program, bigger hybrids
were built using slightly different propellants combination, increasing throttling
capability. It is noteworthy that, unlike the Sandpiper, HAST was recoverable.
HAST was further improved giving origin, in the mid ‘80s, to the Firebolt.
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At the same time, in Europe, research programs focused on hypergolic propel-
lants, based on liquid nitric acid and solid amine fuels. French Lithergol EXperi-
mental (LEX) series between 1964 and 1967 performed eight successful launches,
achieving an altitude greater than 100km, breaking all existing records at that
time. In 1965, the Swedes of Volvo Flygmotor carried out two successful flight tests
of the HR-3 hybrid vehicle, using Tagaform (PolyButadiene (PB) with an aromatic
amine) as fuel. Later in the ‘70s, larger scale systems were planned employing an
improved fuel called Sagaform A, but scheduled flight tests never took place.

In the early ‘80s the Starstruck company built and launched an hybrid sounding
rocket called Dolphin, capable of more than 11 kN of thrust. Later, between 1985
and 1995, the AMerican ROcket Company (AMROC) further developed Starstruck
project creating the H-1800 engine. LOX/HTPB were used as propellants, achiev-
ing more than 100kN of thrust.

Between 1996 and 1997, four launches of the Hyperion Sounding Rocket took
place in the United States. For the first time self pressurized Nitrous Oxide was
used, alongside with HTPB as fuel. A vacuum specific impulse of 205s and an
altitude greater than 30 km were achieved.[2] Later, in 2002, the Lockheed Martin
Corporation built the greatest sounding rocket to date, employing LOX and HTPB.
The attained altitude exceeded 70 km and the rocket had an initial thrust of 267 kIN.

Figure 2.2: SpaceShipOne vehicle landing after its first flight into space

In 1996, the New Spirit of St. Louis organization announced the X Prize contest:
safely transport three people to 100 km and back, twice within two weeks. Between
1996 and 2004 the prize grew reaching $10 millions and involving teams from all over
the world. In 2004, Burt Rutan and Paul Allen’s hybrid-powered SpaceShipOne
vehicle achieved 112km, winning the contest. Nitrous oxide and HTPB were used
as propellants in the hybrid rocket engine, generating 88 kN of thrust.

8
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Between 2010 and 2018, in the context of the ESA’s Future Launchers Prepara-
tory Programme, the hybrid powered Nucleus launcher was developed. In 2018
the launcher reached 115km of altitude, successfully deploying six small payloads
in its first flight test. HP/HTPB were used by Nucleus as propellants, achieving
40kN of vacuum thrust. Future developments focus on increasing thrust level up
to 75 — 100kN by means of clustered hybrid engines and improved turbo pump
feeding systems.

Figure 2.3: Peregrin static test. Credits: NASA Ames Research Center.

In the early 2000s Stanford researchers discovered a new class of paraffin-based
fuel able to burn faster than conventional fuels. Experimental tests started from
lab-scale hybrid rocket engine and culminated in 2017 with the full scale Peregrine
hybrid rocket engine static test. Peregrine rocket was the result of a joint effort of
NASA’s Ames Research Center, Stanford University, Space Propulsion Group and
NASA’s Jet Propulsion Laboratory.

2.3 Fundamentals

As mentioned before, in HRE oxidizer and fuel are physically separated and
stored in different phases. However, this condition is achievable in several, and
sometimes weird, ways. The best-researched hybrid engine configuration, called
classical or direct HRE, employs solid fuel and liquid oxidizer.

Direct HRE popularity is mainly due to the wide choice of solid fuels, such as
hydrocarbons and metals, and liquid oxidizers, such as Oxygen, FLOX, HP and
various Nitrogen compounds. Table 2.1 reports a non-exhaustive list of direct HRE

9
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Table 2.1: Direct HRE propellants combination and performance (p. = 34.5 bar,
pe = 10.1 bar).

Oxidizer Fuel aopt Isp c*
- - - s m/s
FLOX Li/LiH/HTPB 2.8 326 2118
FLOX HTPB 3.3 314 2042

FLOX  HTPB/AI(60%) 2.5 312 2006
LOX NH3(s)/Be(26%)  0.47 307 1967
LOX CH4(s)/Be(36%) 1.3 306 1918

LOX CH4(s) 3 201 1871
LOX Paraffin 2.5 281 1804
LOX HTPB 1.9 280 1820
LOX PE 2.5 279 1791
LOX Pentane(s) 2.7 279 1789

LOX HTPB/AI(40%) 1.1 274 1757
N204 HTPB/AL(40%) 1.7 261 1679

LOX PMMA 1.5 259 1661
N204 Paraffin 4 259 1667
N204 HTPB 3.5 258 1663
N20 HTPB/AL(40%) 3.5 252 1637
LOX Carbon 1.9 249 1599
N20 Paraffin 8 248 1606
N20 HTPB 7.1 247 1604
RFNA HTPB 4.3 247 1591
N20 PE 8 247 1600
GOX  Cellulose(C6H1005) 1 247 1572
N20 Carbon 6.3 236 1522
Air Carbon 11.3 184 1224

propellants, sorted from the highest specific impulse Igp to the lowest one; oy
indicates the oxidizer-to-fuel mixture ratio required for the maximum Igp and c*
the characteristic velocity.[2]

An alternative configuration is the reverse hybrid, mostly developed in the ‘50s,
which uses liquid fuel and solid oxidizer. Solid oxidizers are really hard to manu-
facture because inert fillers or small quantities of fuels are required in the process.
The former reduce propellants performance, whereas the latter make the mixture
hazardous. A third configuration is the so called “tri-brid” that employs a bi-
propellant combustion core, e.g. Oxygen/Hydrogen, with the addition of a third
component, such as Aluminum or Beryllium compounds. The tri-brid exhibits ex-
tremely high specific impulse and combustion temperature. The last configurations

10
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are the solid-fuel ramjet and the ducted rocket. The first uses ram air as oxidizer
and a solid fuel, avoiding the feeding system required by more conventional liquid-
fuel ramjet. The latter, on the other hand, burns the exhausted gases, produced
by the combustion of a fuel rich solid grain, with ram air to obtain stoichiometric
condition and optimal performance. Reverse hybrid, tri-brid, solid-fuel ramjet and
ducted rocket will not be detailed in this Section.

Oxidizer injector

Oxidizer feed system /
\ Solid fuel grain
Oxidizer

pressurization — Liquid oxidizer tank Grain port Nozzle
system

Oxidizer flow

Flame

Regression rate

Solid fuel grain ‘

Figure 2.4: Direct HRE schematic and combustion process.

A simple schematic of a direct HRE is presented in Fig. 2.4. Typically, the solid
fuel grain is cylindrical and the oxidizer is injected longitudinally from the engine
head end into a single circular port. Due to such geometry, the combustion process
is quite peculiar in direct HRE: oxidizer flow generates a boundary layer, where,
after engine ignition, a diffusion flame takes place. The heat due to combustion
gasifies the fuel, which in turn feeds the flame blowing from the surface. The
blowing modifies the boundary layer, blocking the heat transfered to the solid fuel
surface in a feed-back mechanism. Fuel regression rate ¢ determines the amount of
gasified fuel that reaches the flame zone and its typical behavior is reported in Fig.
2.5 as a function of the total mass flux G' that flows through the grain port. One
can distinguish three different regions:[19, 20, 21]
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A
Radiation Convective Chemical
heat transfer heat transfer kinetics
region region region
[
el
©
} -
[
o
A -
o :
8’ Cooking
} .
©
=
(s

Mass flux

Figure 2.5: Regression rate regions.

1. Radiation heat transfer region (in yellow in Fig. 2.5), in which the convective
heat transfer is reduced due to the low values of mass flux GG and, on the other
hand, radiation heat transfer from gases increases. The resulting regression
rate ¢ depends on the partial pressure of the emitting compounds and on port
diameter. In this region, a lower limit of the mass flux exists. As GG decreases,
the fuel residence time in the thermal layer increases and the solid fuel may
be cooked or melt underneath its surface before being gasified. This operative
condition may occur at the end of an HRE burn, when a gas pressurized feed
system is used;

2. Convective heat transfer region (in orange in Fig. 2.5), in which diffusion
phenomena dominate and the regression rate ¢ depends only on the magnitude
of the mass flux GG. Regression rate behavior in this region will be detailed in
the following paragraphs;

3. Chemical kinetics region (in red in in Fig. 2.5), in which the combustion
process is mainly controlled by chemical kinetics, whereas diffusion plays a
minor role, resulting in a pressure dependent regression rate g.[23] In this
region, an upper limit of the mass flux , called the flooding limit, exists. As

12
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G grows, the flame may be extinguished due to too small Damkohler numbers
(i.e. the ratio between reaction and transport phenomena rates) and/or too
fuel-lean conditions.

In the mid-’60s Marxman et al. developed the present theory about regression
rate modeling. A heat flux balance is applied to a portion of the surface of the fuel
grain as presented in Eq.(2.1), where ¢ is the total heat flux entering into the fuel
grain, pp indicates the fuel density and AH, s is the amount of thermal energy
required to change the solid fuel into gas per unit mass.

q=YprAH, 55 (2.1)

Heat transfer is mainly convective, i.e. depends on the local mass flux G. Assum-
ing a turbulent layer and negligible radiation, they suggested the semi-empirical
relation[1] for the regression rate given in Eq.(2.2), where B is the ratio between
main stream thermal energy, relative to the grain surface, AHy,, and AH, s and
x is the position along the grain longitudinal axis.

ypp o< BY¥2G%827%2 0 < B < 100 (2.2)

One can notice that the effect of boundary layer growth on heat transfer is taken
into account by the small negative exponent of = in Eq.(2.2), resulting in slightly
decreasing regression rate as x grows. On the other hand, total mass flux G increases
with x because of the addition of gasified fuel. Hence, an axial position of minimum
regression rate exists, but usually differences are sufficiently small that regression
rate can be assumed constant along grain axis.

mo

P

Therefore, oxidizer mass flow G is widely used in regression rate semi-empirical
correlation, in place of the total mass flux G, as presented in Eq.(2.3), where m is
the oxidizer mass flow rate through grain port area A,. Coefficient a and exponent n
are obtained by experimental data and strongly depends on G value, propellants
combination, engine dimensions, grain, injectors and flow features. The relation
reported by Eq.(2.3) fits well regression rate behavior in the intermediate range
of G, when turbulent heat transfer is dominant. Table 2.2 summarizes reference
values of @ and n for the most used HRE propellants.[6]

In the early 2000’s, a new class of high regression rate fuels were studied by
Karabeyoglu et al. at Stanford University. [17] These fuels are able to produce a
really thin liquid layer on the surface of the solid fuel during engine burn.

Liquid layer instability, due to the oxidizer flow along the grain port, causes the
entrainment of droplets into the gas stream from fuel surface (see Fig. 2.6). The
entrainment mechanism is able to increase by far fuel mass transfer rate into the

13
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Table 2.2: Values of the regression rate coefficient a and exponent n consistent with
¢ in m/s and Go in kg/(m?s).

Oxidizer Fuel a n
_ _ m2n+ lgn — 1kg—n

HP PE 7.00-10°%  0.800
HP(90%) HTPB  247-1075  0.666
LOX HTPB  9.29-10°6  0.852
LOX  Wax 9.10-10°  0.690

Oxidizer flow

Reacting droplets

Diffusion flame

Entrainment droplets

DAPD LR PP

Liquid layer

Solid fuel grain

Figure 2.6: Droplets entrainment mechanism.

flame zone. Moreover, droplets are not subject to the heat transfer blocking effect
due to the gas blowing from fuel surface, as previously described for conventional
fuels, granting much higher (from 3 to 4 times) overall fuel regression rate, i.e.
better HRE performance.

The mass transfer due to entrainment results to depend inversely on the lig-
uid layer viscosity and surface tension. Normal-alkane hydrocarbons, with carbon
numbers higher than 14, are suitable fuels, being in solid state in standard con-
dition and exhibiting the required characteristics at the condition typical of HRE
operation. Examples of these fuels are the paraffin and polyethylene waxes, whose
typical values of regression rate coefficient and exponent are reported in the last
row of Tab. 2.2.

The unique combustion process and architecture of HREs lead to a bunch of
intriguing characteristics, both positive and negative. In Fig. 2.7 main pros and

14



2.4 — Potential Applications

cons of HREs use are presented. In the subsequent Sec. 2.4, potential HREs

applications will be discussed.
| EPROs CONs
Low regression rate

Safety
(fuels inert and non-explosive) (multi-port grain design or low thrust/long
duration applications)

Low cost
(large design margins and feasibility of
commercial manufacture)

Grain robustness
(no catastrophic events due to grain cracks)

Simple throttling and
shutdown

(one flow to be controlled/interrupted)

Low bulk density
(low volumetric fuel loading and unburned
slivers)

Slow response

(both in ignition transients and throttling)

L

Low temperature
sensitivity

(ambient condition are not an issue)

O/F shiftting

(grain geometry evolution during operation
causes O/F ratio to change, resulting in
performance losses)

Propellant versatility

(wide variety of propellants and additives)

Environmentally Low combustion
friendly efficiency
(non-toxic exhaust) (bad mixing due to large diffusion flame)

¢

Figure 2.7: HREs pros and cons.

2.4 Potential Applications

HREs are suitable for every application in which conventional chemical rockets
are actually employed. However, the hybrid architecture is superior in certain
application, due to propellant versatility, performance range and thrust flexibility
(throttling and shutdown).
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The most extensive uses of hybrids are definitely the sounding rockets, due to
their low cost, safety of engine manufacturing, transport and operation and the
wide choice of propellants combinations. One possible application of a sounding
rocket is the building of a micro-gravity platform. In [12] a coupled optimization of
mission and engine has been carried out. A simple gas-pressurized feed system has
been used and the performance of several propellants have been evaluated: HP/PE
showed better performance than LOX/HTPB, whereas nitrous oxide/HTPB re-
mained competitive due to simplicity and low cost. Accelerators for hyper-sonic
testing are other possible applications of an hybrid powered sounding rocket. In
[14] single stage and two stages rockets performance have been compared. Results
showed that hybrids are a suitable propulsion system for hyper-sonic testing and
single stage rockets are preferable, unless the payload fraction is really small and/or
large final velocity is required.

HRESs are capable of both high thrust levels, mandatory for velocity increments
in space, and throttling/shutting-down /restarting, required to perform coast arcs,
multiple burns missions and precise orbit insertion. These features makes HREs
an attractive solution for space engines and launcher upper stages. This kind of
application has been deeply analyzed at the Politecnico di Torino since 2005.[10, 11,
13, 6, 24, 5, 4, 8]. Different feeding systems, such as blowdown, partially regulated
and electrically driven turbopump, and propellants, e.g. HP/PE, LOX/HTPB,
LOX/Wax and N20/Wax, have been considered. Deterministic and robust-based
design and optimization have been carried out. Results showed that target missions
can be fulfilled at the cost of small payload reduction, due to the presence of un-
certainties in the design, still granting nice performance improvement with respect
to conventional engines.

Low cost, safety and simplicity make the hybrids an ideal propulsion system in
the context of small satellites and CubeSats, whose research interests and business
opportunities are in constant growth since early 2000’s. A stand-alone interplan-
etary mission has been considered and hybrids resulted able to outperform liquid
mono-propellant propulsion systems, in terms of delivered payload.[16] On the other
hand, the current offer of launchers does not meet the demand for this kind of low
weight payload missions. Hybrids are, one more time, definitely suitable in these
applications because they are cheap, safe and eco-friendly while still providing high
performance and thrust flexibility. Deterministic and subsequently robust opti-
mization of an hybrid powered launcher has been performed at the Politecnico di
Torino.[7, 4] Clusters of the same hybrid engine have been employed in each of the
three stages of the launcher aiming at cost minimization alongside a simple gas
pressurized feeding system. LOX/Wax have been used as propellants and an air-
borne launch has been considered. Results showed that optimal designs can grant
both satisfactory performance and mission robustness.

Low temperature sensitivity, high specific impulse and re-ignition capability are
fascinating hybrids features for a potential Mars Ascent Vehicle (MAV) as part of
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a Mars sample return mission. Viable designs of hybrid MAVs have been presented
in [6] and [18]. HREs resulted to outperform conventional propulsion systems in
the context of a Mars mission, albeit lower in technology readiness level.

2.5 The Need for Robustness

In the previous Sections, the author described the numerous appealing features
of hybrid propulsion systems and the wide variety of their potential applications.
However, the actual use of hybrid technology is still limited to date, with respect
to heritage chemical rockets architectures. In HREs, performance and mission are
linked inextricably one another, due to their unique combustion process resulting
in mixture ratio shifting and thrust variation during engine burn. Conceptual
design, essential for a successful and affordable development of hybrids, has to be a
multidisciplinary process, in which uncertainties in design parameters and operating
conditions are taken into account to predict and manage the subsequent variability
in the attained performance.

Concerning HREs, it is well known that uncertainty in the regression rate eval-
uation are extremely critical due to their strong effect on burning process. In [9]
optimal designs for a hybrid powered upper stage have been selected by means
of a 2-layer procedure involving indirect trajectory optimization and direct engine
optimization. Several pairs of values for regression rate correlation coefficient a
and exponent n have been used in the optimization procedure, obtaining slightly
different optimized engine configurations. Then, off-design performance of these
optimized designs have been evaluated varying regression rate parameters, in order
to quantify the deviation from nominal performance. Optimized design for nomi-
nal regression rate parameters showed really poor off-design performance, making
the mission unfeasible when regression rate was greater than the values employed
for the design. On the other hand, optimized design for regression rate greater
than nominal resulted in better off-design performance, albeit attained off-design
altitude variation remained significant.

These results have been obtained by means of a preliminary and not rigorous ap-
proach to uncertainty. In [24] the topic of the design approaches under uncertainty
for HREs has been further developed: uncertainty has been taken into account
inside the optimization procedure, instead of being checked "a posteriori' as done
before. Optimized design, this time, proved to grant the achievement of mission
goals, despite the uncertainty in the regression rate behavior. These concepts go
under the name of "robust design'. However, even this robust-based approach is
based on 'a priori" assumptions on the sources of uncertainty, e.g. only in the
regression rate value.

In this thesis, the main focus is the overcoming of these limitations and the
development of an even more rigorous approach to robust-based design for HREs.
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Thus, the author will provide a summary of the basic concept of uncertainty and
robust design in the subsequent Chapter 3.
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Chapter 3

Uncertainty and Robust Design

3.1 Introduction

The term uncertainty-based design is usually used to describe design problems
whose formulation is non-deterministic, i.e. some crucial components of the de-
sign problem (e.g. statement, experimental data or computational solutions) are
regarded as non-deterministic.[5] Uncertainty-based design problems can be dis-
tinguished in robust-based and reliability-based design and optimization problem.
Robust-based design is such that resulting system performance are relatively insen-
sitive to fluctuation in the non-deterministic components of the problem, whereas
reliability-based design is such that failure probability is lower that an acceptable
threshold, despite the presence of non-deterministic components in the problem
formulation.
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Figure 3.1: Uncertainty-based design domains.

A better understanding of uncertainty-based design domains can be achieved by
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means of Fig. 3.1.[2] On the x-axis is reported the frequency of an event, whereas
the y-axis presents its relative impact. If everyday (i.e. certain) fluctuations result
in catastrophic events, no applications are viable from an engineering point of
view (top right corner in Fig. 3.1). Instead, the design should be able to tolerate
such fluctuation, i.e. be robust, anyway granting good performance (bottom right
corner). On the other hand, if extreme events could lead to catastrophic effects
on the system, the design should grant that such events are very unlikely, i.e. be
reliable (top left corner). In the end, if system performance losses are due to extreme
events, uncertainty in the design is not an issue (bottom left corner).

A

Robustness

Probability density

Reliability Reliability

>

Non-deterministic component

Figure 3.2: Robustness vs. reliability

The dualism of robust-based and reliability-based design can also be explained
looking at the Probability Density Function (PDF) of a non-deterministic compo-
nent of the problem, reported in Fig. 3.2. Basically, robust-based design deals
with events concerning the fluctuation around the mean value of the PDF, whereas
reliability-based design events in its tails. Traditional design procedures, which
involve factor of safety and knockdown factors, fail in uncertainty-based design,
because no robustness or reliability measures are provided by the design process.
Moreover, traditional design procedures lack of the proper tools for uncertainty
characterization and management.
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3.2 Classification and Management

In uncertainty-based design uncertainties are classified as computational or ex-
perimental ones. Computational uncertainties can further be distinguished in pa-
rameter uncertainties and model form uncertainties. The former are those uncer-
tainties related to the inputs or the intrinsic parameters that define a computational
process, whereas the latter are associated with model validity, i.e. the actual ad-
herence of the mathematical model to the physical reality of the problem. The ter-
minology model uncertainty can be also used to indicate uncertainties in the model
due to both parameters and model form uncertainties. An alternative classification,
proposed by Oberkampf et al. [3], is based on the differences in the approaches
used to manage and characterize uncertainty. Three classes are defined:

o variability as the inherent variation associated with the physical system or the
environment under consideration;

« uncertainty as a potential deficiency in any phase or activity of modeling and
simulation that is due to lack of knowledge;

e error as a recognizable deficiency in any phase or activity of modeling and
simulation that is not due to lack of knowledge. It should be noted that
either acknowledged error or unacknowledged error exist.

- Probability
A Possibility A density
L
Area=1
< > > >
Uncertain parameter Uncertain parameter Uncertain parameter
Coarser characterization More detailed characterization

Figure 3.3: Parameter uncertainties management approaches: interval bounds,
membership functions and PDFs

Concerning numerical models, three are the main approaches to parameter un-
certainties management, as presented in Fig. 3.3: interval bounds, membership
functions and PDFs. Interval bound is the simpler and coarser one, requiring
only the lower and the upper bound of the uncertain parameter. On the other
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hand, PDFs are the most precise approach, but need more information about the
uncertain parameter, which are not always available. Membership functions are
somewhere between interval bounds and PDFs and are widely used in fuzzy logic.
The characterization of model form uncertainties, on the contrary, is not as well
developed. Systematic approaches are available for discretization error only (e.g.
mesh refinement), that unfortunately is only a part of the uncertainty in numerical
model outputs.

3.3 Quality and Robustness

After World War II, Japan was going to stand out in the international mar-
ket improving the quality of its productive system. Dr. Genichi Taguchi took the
challenge and between the 50’s and the early 60’s developed the basis of robust
design. The first concept that has to be introduced is quality. Taguchi defines the
quality of a product, a process or a service in terms of “the total loss to society
due to functional variation and harmful side effects”[4]. Thus the quality is in
inverse relation to performance deviation from nominal ones and quality improve-
ment requires deviation reduction. The second key concept introduced by Taguchi
is that variations in system performance have to be reduced without eliminating
their causes, because it can be either impossible or too costly, through a proper
optimization process that makes the performance insensitive to the source of the
variations. Taguchi calls this process parameter design.

L(y)

Ag

m-4, m m+4y

Figure 3.4: Classical concept of quality: the step function. m 4+ A, are engineering
specifications, m is the target performance, L(y) is the quality loss function and
Ap is the cost linked to system failure.

Engineering specification are invariably defined by means of tolerances: a sys-
tem that meets tolerances is good whereas a system that does not is bad. Taguchi’s
concept of quality requires a different approach because systems could present qual-
ity losses, despite meeting tolerances, having not exactly the target performance.
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3.3 — Quality and Robustness

Formally, the quality loss is described by a step function (see Fig. 3.4), when
traditional engineering approaches are used.

L(y)

m-4y m m+4,

Figure 3.5: Quadratic loss function.

Taguchi’s approach, on the other hand, makes use of a quadratic loss func-
tion defined by means of Eq.(3.1) and plotted in Fig. 3.5, where m is the target
performance, y is the actual performance, L(y) is the associated quality loss and
k =constant is here called quality loss coefficient.

L(y) = k(y —m)* (3.1)

The quadratic loss function is such that L(y = m) = 0 and L(y) increase is limited
near the condition y = m and grows faster the farther away from there. The value
of k defines the rate of increasing and can be defined by means of Eq.(3.2), where
Ay is the cost related to system failure and m + A, are the functional limits for 1,
i.e. the values of y such that the system will incur in a failure half the time.

=20
Aj

(3.2)

Hence, the quadratic loss function can be rewritten substituting Eq.(3.2) in Eq.(3.1),
giving:
2
L{y) = 5y —m) (3.3)
This formulation of the loss function is well suited when m is a finite value and
the loss is symmetric with respect to the target performance, i.e. both lower than
nominal and higher than nominal performance affect equally negatively on system

quality. This quality characteristics was called “nominal-the-best” by Taguchi.
Other quality loss functions have to be defined accordingly to system characteristics:

o “smaller-the-better”, target performance m = 0 and y > 0, resulting in the
quality loss function reported in Eq.(3.4);

Ly) = ky’ (3.4)
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3 — Uncertainty and Robust Design

“larger-the-better”, target performance m = +oo and y > 0, resulting in the
quality loss function reported in Eq.(3.5). In this case k = AyA2 obtained
analogously to what done for the “nominal-the-best” loss function;

1
1) = () (35)
asymmetric loss function, analogous to “nominal-the-best” function but two
different values of k are employed for positive and negative off-nominal per-

formance, as reported in Eq.(3.6). This loss function have to be used when
quality deviations in a direction are far worst than in the other one.

) kily—m)® ify>m
L(y)—{kZ(y_m)2 ity < m (3.6)

Nominal-the-best Asymmetric
L(y) L(y)
Ag AD
y y
m-Ag m m+4, m-Ay m m+4,
Smaller-the-better Larger-the-better
L(y) L(y)
Ag
Ay
y y
0 4y 0 4

Figure 3.6: Quadratic loss function comparison.

System performance, measured by the quality loss functions previously defined,

are prone to variation due to many causes in actual operation. These causes are
called noise factors in the context of Taguchi’s method. Concerning a certain sys-
tem, noise factors can be distinguished in external (due to environment and work
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load, e.g. temperature, humidity, vibrations, human error, etc), unit-to-unit vari-
ation (due to the manufacturing process, formally identical products could show
slightly different characteristics) and deterioration (due to wear and ageing). Man-
ufacturing process itself is affected by noise factors, categorized in external to the
process (e.g. variation in the raw material and manufacturing environmental con-
dition), process non-uniformity (e.g. differences due to item position in a simulta-
neous process) and process drift (wearing of tools and machines could cause quality
deviation throughout production).

Quality (i.e. performance) varies from a system to an other, despite being
formally identical, or throughout time because of noise factors. Hence an aver-
age quality loss () can be defined, considering for example a nominal-the-best loss
characteristic and a group of n systems, being m the target performance:

Q=13 1) = E > —mf =k w2+ it 3)
1 n

w= n ZZ/@ (3.8)

o= S (39

where quality loss is expressed by means of Eq.(3.1). The mean p and the variance
o2 of y are introduced in Eq.(3.7) and defined in Eq.(3.8) and (3.9). If the number
n is large, the term ”T_l ~ 1 and thus the average quality loss ) can be rewritten
as:

Q = kl(p —m)* + o’ (3.10)

m-Ay m m+4,

Figure 3.7: Quality loss distribution with g # m and o # 0.

Looking at Eq.(3.10), one can notice that the average quality loss @) has two
contributions, the first is due to the deviation of u from the target performance
m and the latter depends on the deviation of y around u. A graphical represen-
tation of the quality loss distribution is provided by Fig.3.7. The easier quality
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improvement strategy is to reduce the gap between p and m, whereas dealing with
variance is often harder and expensive: system that exhibits performance outside
m =+ A*, with A* < Ay can be discarded or the source of variation can be found out
and eliminated. In both cases quality will increase but the relative costs may be
impractical. A third way consists in the use of the Robust Design Method (RDM),
making the system less sensitive to noise factors and achieving better quality in a
cheaper and more effective way.

3.4 Robust Design Method

In Fig. 3.8 the basic block diagram employed in RDM is reported: the response
y of a system or a product/process (i.e. its output or quality characteristic) is
influenced by many factors (also called parameters in this context) that are usually
classified as signal factors M, noise factors & and control factors z.

Control factors, z

Signal factor, M => => Response, y

Noise factors, x

Figure 3.8: Block diagram of a system or a product/process.

Signal factors M express user’s will in terms of response magnitude, e.g. the
throttle position in a motorcycle. Noise factors & are parameters whose values
cannot be set by the designer, are hard (or too costly) to control during operation
and usually differ among formally identical units. The response y deviates from the
target specified by M due to noise factors . On the other hand, the designer is free
to choose the values of the control factors z. Control factors that affect system cost,
beyond its response, are called tolerance factors. Both noise and control factors are
discretized in levels in RDM.

RDM assumes that system response is a non-linear function of noise and control
factors. Under nominal noise condition, i.e. when all noise levels are at their
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3.4 — Robust Design Method

nominal values, many combination of the control factors can lead to the same
response value. However, these designs can result in really different quality losses
when noise factors are at their off-nominal values, due to the non-linearities. RDM
aims at finding out the combination of control factors that gives the smallest quality
characteristic variation around its target value.

y=f(z 2) (3.11)

One can consider, as an example, the simple relation presented in Eq.(3.11),
where © = [z1,...,x,] and z = [z, ..., 2] express, respectively, noise and control
factors in a vectorial form. Response deviation Ay due to noise factors variations
Ax; from nominal conditions can be written by means of Eq.(3.12).

Ay = Z: (g;: Aa:i> (3.12)

Moreover, if noise factors deviations Ax; are not correlated, the variance of the

response 05 can be written as a function of the individual noise factor variances

2 : ar\? e . .
o,., as reported in Eq.(3.13). The terms ( ax-) are called sensitivity coeflicients in

RDM and are functions of @ too. A robust design (product, process or system) is
such that its sensitivity coefficients are the smallest.

oy =2 [(35)202] (3.13)

=1

RDM employs orthogonal arrays to perform experiments and obtain robustness
in the design efficiently. A proper discretization of the design space is made by
means of a certain number of finite levels for the control factors, e.g. “lower than
nominal”, “nominal” and “higher than nominal”, when three levels are employed.
Noise factors are discretized in levels too, but, in general, the number of noise levels
and control levels can be different.

Two orthogonal arrays, called inner and outer, are used to specify levels combi-
nation respectively for control and noise factors. For each combination of control
factors (i.e. for each row of the inner array) a bunch of tests is performed, varying
noise factors values accordingly to the outer array. Thus, being p and ¢ the number
of row of the inner and outer array, the total number of tests required by RDM is
p-q. All the tests are often listed in the form of a third array, called crossed array
in the RDM.

Examples of orthogonal arrays are reported in Tab. 3.1-3.3, where factors are
represented by the capital letters. Lg is a 2-levels array suitable to deal with up
to seven factors, whereas Lg is a 3-levels array able to manage up to four factors.
Ls orthogonal array has 2 levels for one factor (A) and 3 levels for the other seven
factors (from B to H).
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Table 3.1: Lg orthogonal array.

Test# A B C D E F G
1 11 1 1 1 1 1
2 1 1 1 2 2 2 2
3 1 2 2 1 1 2 2
4 1 2 2 2 2 1 1
5 2 1 2 1 2 1 2
6 2 1 2 2 1 2 1
702 2 1 1 2 2 1
8§ 2 2 1 2 1 1 2

Table 3.2: Ly orthogonal array.

Test #

O 00 O Ui W N~

W W WM NN~ = >
WNHWNRFR WND R~ T
N — Wk Wk Wb~ 0O
— W NN~ WWN | O

Once all tests have been performed, the designer is able to estimate control
factors effects. RDM defines a “signal-to-noise (S/N) ratio” 7; through Eq.(3.14),
where (G; is the mean of a certain quality loss function or generic performance to be
minimized for the i-th tests prescribed by the employed inner array (i.e. the mean
output of the set of tests performed with constant control factors and variable noise
factors).

The overall mean value m of 7; for the tests can be computed by means of
Eq.(3.15), where n;, denotes the number of tests prescribed by the inner array
employed. Analogously, the effect of a factor level (i.e. the average deviation that
it can cause from the overall mean) is calculated as the difference between the
mean of the n; in which that factor assumes that level and the overall mean m.
Considering, for example, an Lg array reported in Tab.3.1 as inner array, one can
notice that the factor D is at its level 2 in the second, fourth, sixth and eighth test,
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Table 3.3: Lig orthogonal array.

Test # A B C D E F G H
1 11 1 1 1 1 1 1
2 11 2 2 2 2 2 2
3 11 3 3 3 3 3 3
4 12 1 1 2 2 3 3
) 12 2 2 3 3 1 1
6 12 3 3 1 1 2 2
7 13 1 2 1 3 2 3
8 13 2 3 2 1 3 1
9 13 3 1 3 2 1 2
10 2 1 1 3 3 2 2 1
11 2 1 2 1 1 3 3 2
12 2 1 3 2 2 1 1 3
13 2 2 1 2 3 1 3 2
14 2 2 2 3 1 2 1 3
15 2 2 3 1 2 3 2 1
16 2 3 1 3 2 3 1 2
17 2 3 2 1 3 1 2 3
18 2 3 3 2 1 2 3 1

thus the mean has to be calculated from the corresponding four values 7y, 14, 16
and ng. Thus, the mean my, can be computed as reported in Eq.(3.16) and the
main effect is then mp, —m. The same can be done for all the other effects.

Nin

m = an (3.15)

1
mp, = 7 (02 + 14 + 16 + 1s) (3.16)

Once factors effects have been estimated, a procedure, called ANalysis Of Means
(ANOM) in the RDM, is performed. A graphical representation of the ANOM is
given in Fig. 3.9. The optimum level for each factor is the one which results in the
highest S/N ratio. Thus, in the example presented in Fig.3.9, the optimum factors
levels are As, By, Cy, Do, Ey, F5 and G1. The optimal combination of levels may
not correspond to any of the rows of the inner array used in the RDM.

Moreover, S/N ratios are able to provide information about the relative magni-

tude of the factors effects on the system performance thanks to variance decompo-
sition. In RDM this phase is called ANalysis Of VAriance (ANOVA). The outputs
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A n[dB]

Overall mean / \

\ 4

Levels |1 2|1 2|1 2|1 2|1 2|1 2|1 2
Factors | A | B | C | D | E | F | G

Figure 3.9: Graphical representation of the ANOM (2 levels and 8 control factors
have been considered).

of the ANOVA are the sum of squares due to a certain factor k:

L

SSk =" [k (my, — m)?| (3.17)

i=1

where ny, is the number of experimental tests in which the factor k& assumes the
t-th level. The higher is the value of SSj, the greater is the portion of the total
variation of 1 due to a variation in the factor k.

3.5 Conclusions

Orthogonal arrays, ANOM and ANOVA constituted the basis of robust opti-
mization approaches developed by the author first in his Master Degree Thesis
and then in [1]. Taguchi’s RDM proved to be suitable as a local search procedure
or an enhancement of evolutionary algorithms. However, results underlined that
the use of the RDM as a stand alone global optimization procedure leads to poor
performance.

In the present work, the tools of RDM have not been employed as design by
Taguchi himself, but the basic concepts behind RDM are still valid: the distinction
between control and noise factor, the basic concept of robustness as the insensitivity
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of system performance to uncertain parameters variation, the duality of system
mean performance and its variance and the importance of the relative contributions
of factor to overall system variability.

Hence, the core tools required by a robust-based optimization procedure are
basically three:

1. a method to identify noise factors among the set of problem parameters;

2. an approach able to consider both mean problem response and variance due
to uncertainty within optimization merit function;

3. an efficient global optimization algorithm which leads the whole procedure.

In the following Chapter, the author will introduce his robust-based optimiza-
tion procedure, which consists of sensitivity analysis and parameters screening
method (4.1), design of experiments techniques (4.2) and particle swarm optimiza-
tion algorithm (4.3).

References

[1] L Casalino, F Masseni, and D Pastrone. “Robust Design Approaches for Hy-
brid Rocket Upper Stage”. In: Journal of Aerospace Engineering 32.6 (2019),
p- 04019087.

[2] Luc Huyse and R Michael Lewis. Aerodynamic shape optimization of two-
dimensional airfoils under uncertain conditions. Institute for Computer Ap-
plications in Science and Engineering, NASA Langley, 2001.

(3] William L Oberkampf et al. “Variability, uncertainty, and error in computa-
tional simulation”. In: ASME-PUBLICATIONS-HTD 357 (1998), pp. 259-
272.

[4] Madhan Shridhar Phadke. Quality engineering using robust design. Prentice
Hall PTR, 1995.

[5] Thomas A Zang et al. “Needs and opportunities for uncertainty-based mul-
tidisciplinary design methods for aerospace vehicles”. In: (2002).

33



34



Chapter 4

Robust-based Optimization

4.1 Sensitivity analysis and screening

Sensitivity analysis (SA) methods are crucial in the definition of a robust-based
numerical model. In general, complex and/or multi-disciplinary models can be char-
acterized by an extremely high number of parameters, which can probably include
some uncertain parameters. Insight about how uncertainties in numerical models
inputs could affect their outputs is mandatory when robustness in the design have
to be obtained. Local SA methods focus on outputs deviations, due to modest per-
turbations of model inputs parameters around their reference or nominal values, by
partial derivative estimation around a given design point. This approach fails when
strong non-linearity are involved in the numerical model. In fact, a small fluctua-
tion of a certain input parameter can have a negligible or decisive impact on model
outputs, depending on the point in the design space around which that fluctuation
takes place. On the other hand, global SA methods allow for the quantification
of outputs deviations, due to inputs perturbations, regardless of the design point.
Thus, global SA methods are helpful to recognize the most influential input param-
eters, whose uncertainties can not be neglected, and non influential ones, that can
be regarded as constants, making easier the building process of a numerical model.
Moreover, in robust-based approaches, a proper selection of uncertain parameters
is strongly advisable to avoid unnecessary model complexity.

Main SA methods are shown in Fig.4.1.[8] In the present work, a single model
evaluation requires a significant amount of time (roughly few seconds) and, on the
other hand, the numerical model is characterized by non-linearity and domain dis-
continuity (details about mathematical model will be given in Chapter 5). Hence,
Morris method has been chosen by the author to perform SA and parameters screen-
ing because requires the lowest number of model evaluations, among the group of
approaches well suited for highly complex numerical model.

Morris method, also known as the Elementary Effects method, aims at dividing
model input parameters into three groups: parameters with negligible, linear and
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Figure 4.1: SA methods classification.

additive or non-linear effects on model outputs.[10] Input parameters are discretized
in m finite levels and then model evaluation are performed to compute incremental
ratios, called Elementary Effects (EE), in which input parameters are varied One
at A Time (OAT), while keeping the others fixed. Starting input point, order and
direction of the parameters variations are random. Being N;,, the number of input
parameters, Ny,, + 1 model evaluation are required to compute V;,, elementary
effect. This set of EE forms a so called Morris trajectory. Trajectories computation
is repeated typically 10 < r < 50 times.[2] Thus, the overall number of model
evaluation required by Morris method is equal to r (N, + 1).

F (X9 + Aej) — F; (X9)

X (4.1)

() _

Formally, the EE of the j-th input parameter at the i-th repetition is computed
as reported in Eq.(4.1), where F' denotes the generic numerical model output, X
the input parameters vector, A is the relative input parameter variation and e; is
a vector of the canonical base (i.e. all its elements are zeros, but the j-th that is
equal to one). Two sensitivity measures, also known as Morris indices, are then
computed: the mean of the absolute values p1} of EJ@ and its standard deviation o;
(Eq.(4.2) and (4.3)). If a variation in the j-th input parameter value has negligible
effects on model outputs, its g will be small, and vice-versa. On the other hand,
o; expresses the non-linearity in the model outputs due to the j-th parameter:
small values of o; characterize input parameters whose effect is the same all over
the input space, suggesting a linear relationship between that input and model
outputs. Instead, large values of o; highlight that the effect of the j-th parameter
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depends on the starting point in the input space.

* 1 1
=72 B (4.2)

T 7
o= J%Z (50 -3 8) (43
"= i1

Usually, a graphical representation of Morris indices is employed to perform input
parameters screening. Parameters s.t. 7 >> 0 and o; >> 0 (top right in Fig.4.2)
are the most significant ones, in SA, because their influence on model output is
consistent and variable among the input space. This behavior can not be neglected
when the numerical model is defined and its management is even thorny when
robust-based design is considered. Oun the other hand, parameters s.t. p; ~ 0 and
o; = 0 (bottom left in Fig.4.2) are not an issue in the definition of the numerical
model, they can simply be treated as constant since their influence on model out-
put is minor or null. Parameters s.t. pu; ~ 0 but o; >> 0 (top left in Fig.4.2) are
characterized by little or negligible influence on model outputs but exhibit interac-
tions with other parameters or non-linearity. In the end, parameters s.t. p; >> 0
but ¢; ~ 0 (bottom right in Fig.4.2) show remarkable linear influences on model
outputs but a lack of interactions with other input parameters.

A
2

Small but Significant
non-linear and non-linear

. Significant
Ivegigiaic but linear

y
Hj*

Figure 4.2: Graphical representation of Morris indices.

In the following, a simple numerical example of the employment of Morris
method in a SA and screening is presented. Three input parameters (i.e. N, = 3),
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discretized in 3 levels each (i.e. m = 3), are considered to perform a better repre-
sentation of Morris trajectories in a 3-dimensional input space. Only one random
starting input point and three repetition (i.e. r = 3) are employed, for simplicity.
The numerical model has only one output that is F'(a,b,c) = ab — ¢. All input pa-
rameters have the same levels, whose values are 1, 3 and 5. Looking at the formal
expression of F'() one could suppose that a and b will show large and non-linear
influences, whereas the impact of ¢ will be smaller and linear.

The first trajectory starts from the point (3,3,3), thus Fl(l) =3-3—-3=6.
The second point of the trajectory is (3,3,1), that is a negative variation of the
third parameter, thus F2(1) = 3-3—1 = 8. The third point is (3,5,1), that is
a positive variation of the second parameter, thus F3(1) =3-5—1 = 14. The
fourth point is (1,5,1), that is a negative variation of the first parameter, thus
F4(1) =1-5—1=4. Elementary effects are computed by means of Eq.(4.1), where
one always has A = 2, giving Eil) = —5, Eél) = 3 and Eél) = 1. The second
trajectory starts again from the point (3,3,3), thus F1(2) = Fl(l) = 6, but the order
and direction of parameters variation are different, because they are both randomly

chosen: F\? =3.5-3=12, Y =3.5-5=10and F\? =1-5—5 = 0. The
corresponding EE are: EP = —5, E§2) = 3 and E’g(,Q) = —1. Analogously stands for

the third trajectory: F©) = FY =6, F{¥ =5.3-3=12, ¥ =5.3 -1 = 14,
F® =5.1-1=4, leading to E\¥ =3, E{¥ = —5 and E{¥ = 1.

EJ@ are reported in Tab. 4.1 alongside with the corresponding values of 1
and o;. A graphical representation of Morris indices for the considered numercial
example is given in Fig. 4.3 and trajectories are plotted in Fig. 4.4. One can observe
that @ and b exhibits a similar, strong and non-linear influences on F(), whereas the
influence of ¢ on the example output is far more limited. This is an useful example
to understand how Morris method works, but clearly actual SA requires a greater

number of random starting point and an higher number of repetition (at least ten).

Table 4.1: EJ@, ; and o for the numerical example.

T1 T2 T3 0j
EY 5 5 3 433 377
ESY 3 3 5 367 3.77
EY 1 -1 1 100 094

In robust-based optimization models, SA and screening are matchless tools.
Robust approaches distinguish parameters, involved in a numerical model, in design
and input parameters. The former can be freely adjusted by the designer to obtain
the required performance, whereas the latter could be affected by uncertainty. SA
allows for the identification of the most significant uncertainty sources, that are the
most influential input parameters. At the same time, the less influential parameters
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Figure 4.3: Graphical representation of Morris indices for the numerical example.
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Figure 4.4: Graphical representation of Morris trajectories in the input domain.
Dot markers represent Fj(z) evaluation. Blue, red and green lines are the first,
second and third trajectory, respectively. The black dot marker is the starting
point a = 3, b = 3 and ¢ = 3 of the trajectories. The order of OAT parameters

variations and variation directions are both randomly chosen.

can be considered as constant in the robust-based model.
Since design parameters are not input ones in robust-based design and opti-
mization, the starting points for Morris trajectories are randomly chosen inside
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design domain instead of inside input domain. Then, OAT variations of input pa-
rameters are performed aiming at exploring the input domain of the problem and
obtain SA results. Clearly, some form of acceptance criterion, for example on the
attained performance, must be applied to the starting points for the SA. In this
way, one can avoid useless and counter-productive analysis of unfeasible part of the
design domain or testing design condition resulting in poor performance. The au-
thor will apply Morris method to perform SA and screening of the considered HRE
design and optimization in Sec.5.4.1. Concerning HRE optimization, for example,
the effects of a certain input variation around a design point corresponding to a
launcher unable to lift-off, not only are not relevant, but are also a waste of model
evaluations, when the optimal design of the same launcher have to be found out.

Once uncertain parameters have been selected among input parameters, by
means of SA and screening, proper techniques to evaluate their actual effects on
model outputs have to be employed. Thus, in the following Sec. 4.2 approaches for
uncertainty management will be detailed.

4.2 Design of Experiments

An experiment can be defined as a set of tests in which model outputs are eval-
uated modifying input parameters aiming at finding out the relationships between
input variations and model response. Design Of Experiments (DOE) is the set of
techniques and methods developed to guide the choice of the experiments to be
performed in the most efficient and effective way. Three are the basic principles
involved: replication, randomization and blocking. Replication implies the repeti-
tion of the experiments, aiming at the evaluation of mean values and the relative
deviations. Randomization avoids relationships between previous and current test
or current and subsequent one. Blocking is employed to isolate a bias effect, pre-
venting main ones suppression, by means of groups of similar experiments. Main
DOE techniques, that are usually employed in the literature[6], are the following:

« Randomized Complete Block Design (RCBD), that focus on the evaluation
of the influence of one parameter, called here primary, design or control fac-
tor. The other parameters are called nuisance factors or disturbance factors.
Primary and nuisance factors can be discretized in a different number of lev-
els L; and the number of model evaluation required by the DOE is then
Nyg(L;) = 1% L;, where k is the number of factors. One can notice that

the growth of Ny, results to be strongly dependent on the number of factors
k;

o Latin square design, that shares the core idea with RCBD, requires far less
model evaluations but strict conditions to be applied: & = 3 (one primary
and two nuisance factors) and L; = L for i = 1,2,3, resulting in Ny p = L?.
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Actually the number of factors k£ can be greater than three, but different
names are employed such as Graeco-Latin square and Hyper-Graeco-Latin
squares;

Figure 4.5: Graphical representation of a Latin square design (k = 3, L = 3,
Ny g =9): green dots are the tests to be performed and the black dot corresponds
to the all-nominal condition.

o Full factorial design, that requires the evaluation of every possible combi-
nation of the factor values, which are no longer split between primary and
nuisance ones. Thus, Ny, = L*. Levels are usually two (high and low, +1
and -1, etc.) or three (high, nominal and low, +1, 0 and -1, etc.). Full facto-
rial design is able to evaluate main effects and interactions of factors totally,
but the required number of model evaluation Ny, g grows exponentially with

both k£ and L;
.
.// R /
.
[ S
¢

Ll s

Figure 4.6: Graphical representation of a full factorial design (k = 3, L = 3,
Nyep = 27): green dots are the tests to be performed. One can notice that the
point corresponding to all-nominal condition is a test point too.
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» Fractional factorial design, that is essentially a subset of a full factorial design,
requiring less model evaluation, albeit information about mean effects and
interactions of factor are more limited. Considering L = 2, fractional factorial
design can be one-half (p = 1), one-quarter (p = 2), etc. of the full factorial
design. In general, the number of model evaluation can be written as Ny g =

k—p.
LY=P;

Figure 4.7: Graphical representation of fractional factorial designs (on the left
k=3, L=2 p=1, Nyg =4and on theright k =3, L=3, p=1, Nyp =9
): green dots are the tests to be performed and the black dot corresponds to the
all-nominal condition. One can notice that the 3>~! design is equal to Latin square
design with k = L = 3.

« Central composite design, that is a 2* full factorial design with the addition
of the central point (all factors set to their nominal values) and 2k star points
(all factors but one set to their nominal values). Thus, Nyp = 2F + 2k + 1
for the central composite;

« Box-Behnken design, that can be regarded as incomplete 3* factorial designs
and were developed to reduce the number of model evaluation required as
k grows. Unfortunately, there are not general rules to build a Box-Behnken
design, but the authors provided many designs in [1] for 3 < k£ < 7,9 <
k <12 and k = 16. An example of Box-Behnken design is presented in Tab.
4.2 for k = 6 by means of an useful concise notation: table rows represent
factorial blocks (in the present case 23 ones), the symbol + identifies the
parameters involved in the factorial design, whereas the symbol 0 stands for
the parameters that are fixed to their nominal level. For example, the first
row represents all the 2> = 8 possible combinations that can be obtained
through a factorial design involving the first, second and fourth parameters,
whereas the third, fifth and sixth are kept constant to their nominal value.
Thus the total number of tests is equal to 6 - 8 + 1 = 49, due to the last row
in which all parameters assume their nominal values;
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k7

1]
P

Figure 4.8: Graphical representation of a central composite design (k = 3, L = 2,
Nyg = 15 ): green dots are the tests to be performed due to the original 23 full
factorial design, the red dots are the 2k additional star points and the blue dot is
the 4+1 additional central point corresponding to the all-nominal condition.

Table 4.2: Box-Behnken design for k = 6.

+ £ 0 £ 0 0
0O £ £ 0 £ O
0 0 £ £ 0 =+
£ 0 0 £ £ 0
0O £ 0 0 £ =£
£+ 0 £ 0 0 =+
0 0 0 0 0 O
.
-
¢ 14 ®
[ ¢
.

Figure 4.9: Graphical representation of a Box-Behnken design for & = 3 (Nyp =
13): green dots are the tests to be performed. One can notice that the prescribed
tests are at the middle points of the edges of the design space with the addition of
the central point corresponding to the all-nominal condition.
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o Plackett-Burman design, that are two levels design requiring really few model
evaluations and are able to study the influences of kK = N — 1 factors, albeit
mean effects and interactions could be confounded;

o Taguchi’s method, that has been developed by Genichi Taguchi to improve
the quality of Japanese products. The core idea of Taguchi’s approach is to
find out the best combination of control factors to minimize the variation in
the output due to uncontrollable, here called noise, factors. Details about
Taguchi’s so called robust parameter design problem are given in Sec. 3.3.
The number of model evaluations Ny,g required by Taguchi’s approach de-
pends on the number k;, of controllable and k,,; of uncontrollable factors.
Proper designs are reported in [12] and Table 4.3 presents a short summary
of the arrays prescribed by Taguchi’s method for 2 < k£ <23 and L = 2,3;

Table 4.3: Taguchi’s designs.

Number of parameters, & 2-levels 3-levels

2.3 L4 L9
4 L8 L9
5.7 L8 L18
8 L12 L18
9-11 L12 L.27
12,13 L16 L27
14,15 L16 L36
15-23 L32 L36

» Space filling techniques, whose core idea is to fill uniformly the input space.
The number of model evaluations is chosen by the designer and the discretiza-
tion in levels is not required. The main application of these techniques is the
building of response surfaces. Most common filling techniques are random
filling, Halton, Faure and Sobol sequences and Latin Hypercube sampling;

o Optimal design, that is an iterative and really costly method aiming at the
identification of the set of samples that minimize a certain function, for ex-
ample the normalized average of the response variables. Optimal design is
well suited and commonly used for the building of response surfaces.

In Fig.4.11 the number of model evaluations N,z required by various DOE
techniques is reported as a function of the number of parameters k. One can
observe that, even when £ is low, the number of model evaluations prescribed by
full factorial, p = 1 fractional factorial and central composite design is remarkably
high. On the other hand, Taguchi’s method and Box-Behnken design are able to
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grant Ny < 50 for £ < 7. Plackett-Burman design exhibits the smallest and
almost constant number of model evaluations as k grows, also when k& > 7.

200

150
—Full factorial (L=3)

—Full factorial (L=2)

—Fractional factorial (L=2,p=1)

—Central composite

—Box-Behnken
Plackett-Burman

—Taguchi

-
o
o

Number of model evaluations, N,
3

3 4 5 6 7 8 9 10

Number of factors, k

Figure 4.10: DOE technique comparison: Ny/p vs. k.

In the present work, the robust-based optimization of an HRE is considered.
Details about the test case, the mathematical model and the optimization methods
will be detailed in Chapter 5. The number of uncertain parameters involved in
the engine and trajectory model results to be equal to six and a single merit func-
tion evaluation requires few seconds to be performed. Thus the number of model
evaluation required is the main driver in the choice of the proper DOE technique:
Taguchi’s method and Box-Behnken design are both well fitted to deal with k = 6
parameters in robust design and optimization, whereas Plackett-Burman design
fails in the quantification of mean effects of input variations on model outputs, and
have to be discarded. Also a highly fractional factorial design could be employed,
albeit to be competitive with Taguchi and Box-Behnken approaches, the number of
model evaluation can results too low to effectively grant robustness in the design.

4.3 Optimization

The basic concept of an optimization problem can be expressed as the prob-
lem involving the research of the best solution, namely the one that minimizes or
maximizes a specific merit function, among all feasible ones, given a certain set
of constraints. Problem variables, in general, can be discrete or continuous and
constraints can be inequalities or equalities ones. Optimization methods can be
split into direct methods, indirect methods and evolutionary algorithms.

Direct methods start from a tentative solution, evaluate local gradients of merit
function and constraints and then adjust the solution aiming at merit function
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improvement and constraints fulfillment. Direct methods are able to deal with
complex problems and constraints sets, but their computational cost is high, op-
timized solutions might depend on the initial guess and tend to get stuck in local
optimal points. Indirect methods are well suited for continuous optimization prob-
lems described by a system of differential equations. The optimization strategy is
to evaluate conditions for optimality, defining a boundary value problem, and then
minimize errors on boundary conditions adjusting iteratively the solution. Indi-
rect methods are really accurate and faster than direct methods, but can struggle
against complex problems and, like directs methods, the optimized solution might
be suboptimal and guess dependent. Evolutionary algorithms (EAs) are population
based and excel when the number of variables is limited. A starting population of
different solutions, usually randomly generated, evolves through recombination of
older ones, improving the merit function. EAs do not require initial solutions and
perform truly global optimization, albeit complex constraints management might
be an issue. Moreover, no proof exists that the optimized solution is the actual
global optimal solution, since EAs are heuristics.

In the present work, the robust design of an HRE is considered, involving cou-
pled optimization of the propulsion system and the ascent trajectory. Trajectory
is optimized by means of an indirect procedure developed at the Politecnico di
Torino in the early 90’s, that has been widely and successfully applied in many
research activities.[4, 5| Details about the procedure will be given in Sec. 5.3. In-
direct trajectory optimization can be regarded as the inner layer of a two layers
optimization procedure. The outer layer concerns propulsion system optimization
and once engine design parameters are given the trajectory is optimized and the
merit function is computed. Here, propulsion system design is defined by means of
six parameters, as will be presented in Sec. 5.4. Thus, an evolutionary algorithm
is employed to work as the outer layer in the two-layers optimization procedure,
since it is very well suited to deal with the few optimization variables involved in
propulsion system optimization.

Several EAs have been developed at the Politecnico di Torino over the years by
the research group which the author belongs.[11, 3] In the present work, the author
chooses to make use of particle swarm optimization (PSO) algorithm, because, in
previous optimization works on similar topic, it managed to find out really good
solutions in an affordable computational time. PSO has been developed for the first
time in the early 90’s by Eberhart and Kennedy, mimicking the social behavior of
bird flocking or fish schooling:[9, 7] a swarm, looking for food, will follow its own
member that is the nearest to it, until all the swarm will reach the food.

In PSO algorithm, the members of the swarm are particles that fly through the
design space and the distance from the food is the merit function of the optimization
that have to be minimized to reach the optimal solutions. Positions and velocities of
the particles are updated iteration by iteration while they follow the optimum one.
Each particle tends to maintain its velocity, but it is subject to two pulls, toward its
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Updated
position

Updated
velocity

Swarm
best
solution

Figure 4.11: PSO algorithm visual explanation. At each iteration, the updated ve-
locity of each particle is a linear combination of three components: particle current
velocity (grey bold arrow), particle pull toward the position of the best solution it
found out until that iteration (light blue bold arrow) and particle pull toward the
position of the best solution the swarm found out (red bold arrow). The relative
magnitude of these three components is a function of both the learning factor of
the algorithm and of randomly generated quantities.

best individual solution found out until the previous iteration (here called cognitive
acceleration) and toward the best solution found out by the entire population (here
called social acceleration). Particle velocity and position are updated by means of
Eq.(4.4) and (4.5), where v; and v;4; are particle velocities at the i-th and i + 1-th
iterations, X; and X, are particle positions (i.e. variables values) at the i-th and
t + 1-th iterations, Xp,pes; is the current position of particle best solution and
Xspest 1s the current position of the swarm best solution. RAND; and RAND,
are random numbers in [0,1] interval, whereas C and C5 are the learning factors of
the algorithm whose role is to mediate particles trends toward their best solution
vs. swarm best one, usually one has C; = Cy = 2. In the present PSO algorithm
the Trelea IT strategy has been adopted, thus ¢ = ¢(Cy, Cs).[13] Particle maximum
velocity is limited by a fixed value to grant both exploration and exploitation of
the whole design space.

Vig1 = ¢-v; +Cy - RAND; - (XPrt,best - Xi) +Cy- RAND;, - (XS,best - Xi) (4-4)
Xi+1 = Xz + Vi1 (45)
PSO algorithm implementation is simpler than others EAs because no operators,
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4 — Robust-based Optimization

such as crossover or mutation ones, have to be employed. Particles have memory of
previous solutions, that is beneficial to algorithm performance. PSO information
sharing mechanism is also peculiar, since the position of Xg .4 only is shared among
all particles in a one-way communication. Usually, PSO algorithm uses the reaching
of a maximum number of iterations or a minimum error requirements as stopping
criterion.

In this Chapter, the main features of the robust-based optimization procedure
have been presented and described from a theoretical point of view by the author,
also providing some simple numerical examples. On the other hand, Chapter 5 and
Chapter 6 will present real world applications, in the context of the optimization
problem of hybrid propulsion systems, of the developed robust-based procedure.
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Chapter 5

Real World Application: Hybrid
Powered Upper Stage

The Vega program arises in the early 1990s aiming at extending Ariane family
through the development of a small launcher, based on the available solid booster
know-how. Present Vega launch vehicle has four stages. First, second and third
stage employs solid propellants whereas the fourth stage is liquid-powered because
precise throttling and re-ignition capabilities are mandatory to perform orbital
maneuvers. Typical Vega missions concern payload insertion into Sun-synchronous
orbits, polar circular orbits and generic inclination orbits.[1]

Nowadays, the future replacement for the Vega launcher, namely the Vega-E; is
at its early design phases and will be put into operation starting in 2024. A newly
developed LRE, called M10, will employ LOX and liquid methane as propellants and
will be used as the upper stage in an innovative three-stage architecture. The M10
engine is the results of an European joint venture of industries, leaded by Italy, from
Belgium, Czech republic, Switzerland, France, Austria and Romania. The engine
will have high throttling capabilities, allowing for multiple satellites/multiple orbits
missions at an affordable cost.[2]

In the present work, an alternative to M10 engine will be presented: a hybrid
rocket engine suitable for the replacement of Vega launcher third and fourth stage.
In section 5.1 actual Vega configuration will be summarized. Then, details about
engine model, ascent trajectory optimization and robust model will be presented
respectively in Section 5.2, 5.3 and 5.4. In the end, Sections 5.5 and 5.6 will report
numerical results and conclusions about the considered HRE application.

5.1 Case Study

Vega Launch Vehicle (VLV) current configuration is composed by three SRM
powered stages, called P80, Zerfiro 23 (Z223) and Zefiro 9 (Z9) with the addition of a
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Payload
&
fairing

Z9 { )

Figure 5.1: Vega Launch Vehicle and staging: P80, Z23, Z9 and AVUM.

small LRE powered Attitude Vernier Upper Module (AVUM). The whole launcher
height is 30 m and the maximum diameter is 3 m. First and second stage designs and
operations are not considered in the present work, whereas a single HRE powered
stage is proposed for the replacement of both Z9 and AVUM stages, since hybrid
architecture can grant both high performance and fine thrust control. Z9 and
AVUM main features are reported in Tab. 5.1.[1]

Actual Vega upper stages total mass is given by the sum of Z9 gross mass,
AVUM gross mass, payload mass and fairing mass, and is equal to 15235 kg. In this
Thesis a slightly different initial mass (14522 kg) has been considered in the robust
design of the hybrid upper stage, based on previous launcher specifications and
used in optimization works of the whole 3-stage launcher, to grant consistency and
coherence with older in-house results.[8] Engine design and trajectory are optimized
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Table 5.1: Z9 and AVUM main features.

79 AVUM

Diameter m 1.90 2.18

Height m 4.12 2.04

Gross mass kg 12000 1265

Engine dry mass kg 1433 688

Propellants mass kg 10567 Y
Propellants - HTPB 1912 NTO/UDMH

Vacuum thrust kN 317 2.45

Vacuum specific impulse s 295.9 314.6

Burn time S 119.6 612.5

aiming at the maximization of the payload mass inserted in an assigned orbit. In the
present work, payload delivery into a 700 km circular polar orbit is considered by
the author as reference mission taking into account a launch from the Guiana Space
Center. The current VLV payload for such a mission is equal to 1430 kg including
payload adapter. Mass normalized ratios for the current Z9 and AVUM stages
combined, performing the considered mission, are % = 0.094, £ = 0.731 and
ﬁ;d— = 0.840. In the following Sections, first engine and tr aJectory optimization
procedures will be described, then robust-based approaches will be explained and,
in the end, HRE optimal designs will be presented.

5.2 Hybrid Rocket Engine Model

The choice of propellants combination is crucial in the development of any
rocket propulsion system because it has a major impact on engine overall perfor-
mance and thus on mission accomplishment. In the present application Liquid
OXygen (LOX) and a paraffin-based wax are considered, respectively, as oxidizer
and fuel. This propellant combination showed a peculiar combustion mechanism
during experimental testing. An unstable liquid melting layer is generated at solid
fuel surface, due to combustion heat transfer, causing the entrainment of liquified
fuel droplets into outer gas stream. The entrainment causes a significant rise in
mass transfer rate of the fuel into actual flame zone and therefore an increase in
overall fuel regression rate.[7] Higher regression rate of paraffin-based wax is note-
worthy because allows for a single circular port grain design. The use of classical
fuels would require a more complex multi-port grain to avoid excessive grain and
stage length-to-diameter ratio.[21, 22]

Circular port geometry is determined by three design parameters: grain outer
radius R,, web thickness w and grain length L, as reported in Fig.5.2. The initial
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Figure 5.2: Grain geometry (not to scale). The injection of the oxidizer is axial,
causing the majority of the combustion to occur inside the grain port. Grain lateral
ends are affected by the combustion too, albeit having a far smaller regression rate.

grain inner radius is B; = R, — w and thus initial port area is (4,), = 7R?. The
evolution of port area and burning perimeter, during engine operation, is described
by means of Eq.(5.1), Eq.(5.2) and Eq.(5.3), where y refers to the burning distance.

A, =7 (Ri+y)* (5.1)
P =21 (R +y) (5.2)
0<y<w (5.3)

Pressure losses inside the combustion chamber are taken into account by means
of an approximate relation: chamber head-end pressure p; is written as a function of
nozzle-stagnation pressure p. using Eq.(5.4), where Ay, is the nozzle throat area.[4]

2
1+40.2 <@>
Ap

According to Marxman et al’s theory about fuel regression rate in HRE, two
opposing effects are present: total mass flux increases with axial position due to
additional fuel gasification and, at the same time, the negative dependence of re-
gression rate on axial position reduces its value.[19] Thus, fuel regression rate ¥ is
assumed to be uniform along the grain port axis. Then g is determined by oxidizer
mass flow rate 7o and port area A, employing the semi-empirical correlation re-
ported in Eq.(5.5). Nominal values for regression rate coefficient and exponent are
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n

respectively @ = 9.1 - 107> m?" * 1" = kg™ and n = 0.69, when the International

System of Units is used.[18]
§=a(mo/A,)" (5.5)

Cryogenic LOX is stored inside a tank in liquid state. During engine burn,
oxidizer flow rate 7o is maintained by the pressure difference between oxidizer tank
pressure p; and chamber head-end pressure p;. Assuming incompressible turbulent
flow, 1o can be computed by means of Eq.(5.6) where Z indicates the hydraulic
resistance in the oxidizer flow path, from tank to combustion chamber. Hydraulic
resistance is assumed to be a constant throughout engine burn and it is calculated
to have ];LZ = 2.5 at HRE ignition, in nominal conditions.

o =\/(pe = p1)/Z (5.6)

Fuel mass flow rp is given by the product of fuel density pg, regression rate g

and burning area A, = L, P as reported in Eq.(5.7). The contribution of lateral end
to combustion (%f)% is here neglected and will be checked a posteriori by means of
Eq.(5.8). Equation(5.9) shows the relation between mixture ratio a = o /1y and
grain geometry. A7 /Ay is usually a function of time during HRE burn. Thus, the
mixture ratio changes even if 1 is kept constant. This mechanism is a distinctive

feature of hybrids and it is known as mixture-ratio shifting.

mp = pryAs = pryLyP (5.7)
Age (Ri + Ry)w
i I S e Fad | 5.8
( Ay >% 2R; Ly, 00 (58)
_ @ ‘ s 1—-n gn
a= - o g "AY Ay (5.9)

Total propellants mass flow mp = mo + myp, chamber pressure p. and nozzle
throat area A, are put in relation by means of the characteristic velocity ¢*, assum-
ing an isentropic expansion in the nozzle, as shown in Eq.(5.10). In general, propel-
lants performance are function of mixture ratio a and chamber pressure p.. Actual
pressure range of variation is wide during engine burn, but its effect on propellants
performance is far smaller than mixture ratio one. Thus, p, = 10° Pa=constant is
used and propellants performance are evaluated varying only the mixture ratio a.

. C s
Do = (moz—mF)C (5.10)
th

Frozen equilibrium expansion is adopted: chemical composition of exhausted
gas is fixed throughout nozzle expansion and equal to combustion chamber one.
The underestimation of actual rocket performance, due to the assumed frozen equi-
librium expansion, ranges from 1% to 4%. resulting in conservative solutions.
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Moreover, a c*-efficiency, equal to 96% in nominal condition, is considered in
the engine model.[23] Accurate and quick estimations of the proper values for char-
acteristic velocity ¢* and specific heat ratio v have to be performed as the mixture
ratio shifts during engine operation. Thus, third-degree polynomial curves, fitting
c* and ~ values for LOX/wax, are embedded in the code.[20]

In previous works at Politecnico di Torino, gas pressurized and electrical feeding
systems have been studied and their performance has been compared.[13, 14, 15,
12] In the present test case, a partially regulated feed system is considered and
two operational modes are employed: constant tank pressure and a subsequent
blow-down phases. During the first operational mode, the pressure level in the
oxidizer tank is kept constant by a helium flow from an auxiliary tank to the
oxidizer tank. In nominal conditions, 3% of the total oxidizer tank volume is
earmarked for the initial ullage volume V,,;, granting a sufficiently regular response
when engine burn starts.[6] In consequence, the amount of pressurizing gas inside
the oxidizer tank, before engine ignition, is equal to the initial ullage volume, i.e.
(Vy); = Vau- An initial pressurizing gas pressure in the auxiliary tank p, = 2.5- 10"
is employed in nominal condition. Pressure levels in the oxidizer tank are evaluated
by means of Eq.(5.11) and Eq.(5.12), respectively for the constant tank pressure
and the subsequent blow-down phase. The pressure drop in the blow-down phase
is calculated assuming an isentropic expansion of the helium located in the oxidizer
tank.

pe = (pe)i = 2.5-10° Pa (5.11)
ap] V), (mo)pp 179
= o[22 — ), | Bt o ] (5.12)

In Eq.(5.12) mo is the generic oxidizer mass exhausted, 7, is helium specif heat
ratio and po is LOX density. The relative durations of the two operational modes
are determined by the oxidizer mass exhausted until the beginning of the blow-
down phase (mo)zp (i.e. by the amount of oxidizer exhausted during the previous
constant pressure phase) and by the total oxidizer mass exhausted (mo) ;o T hus
(mo)gp and (mo); are the fourth and fifth engine model design parameters.

Thrust coefficient C is evaluated, by means of Eq.(5.13), considering an isen-
tropic expansion from chamber pressure p. to exit pressure p., constant heat ratio
v equal to combustion chamber one and nozzle area ratio £. Moreover, an 7,
correction factor, equal to 98% in nominal conditions, is employed to modify the
vacuum thrust coefficient of the considered 1-D isentropic expansion. One can no-
tice that the term E2 is directly proportional to the atmospheric static pressure
Po, that is always small in the present test case because the upper stage flies at
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sufficiently high altitude.

02 5 \2H 11
g ” De v Pe Do

Cr = e 1-[= +E= L - B2 5.13
neer 7—1<“/+1> [ (m) Pe Pe (5:13)

Initial propellants mass flow rate (rmp); at engine ignition (i.e. at t = 0s) is
calculated by means of Eq.(5.14), where «; is the initial mixture ratio and (rp); is
the oxidizer mass flow at ignition. Once (rmp); is known, initial nozzle throat area
(Au,); and initial fuel grain port area (A,); are computed thanks to Eq.(5.15) and
Eq.(5.16), respectively. The nominal value of the initial throat-to-port area ratio
is J = 0.5.

(e = (L+ au) g = = 1o (5:14)
o (rup)i

(Ath)z - (pc)zC;k (515)

(Ap)i = (A}h)i (5.16)

The initial nozzle area ratio F; is the sixth (and last) design parameter required
to define HRE performance. Nevertheless, during engine burn, nozzle area ratio £
may vary due to erosion effects. In the present model, the author neglect erosion
along the nozzle and employed Bartz’s method to relate throat erosion rate $ to
throat radius Ry, and combustion chamber pressure p,., as shown in Eq.(5.17).[10,

17
] b o Ry, f 02
5= 8¢ < — 5.17
d <pc,ref> < Rth > ( )

Computational Fluid Dynamics (CFD) analysis on the ablation of carbon/car-
bon nozzle, used in LOX/wax-powered HRE, suggest a reference value for throat
erosion rate $,.; = 0.1 mm/s.[5] The integration of Eq.(5.17) allows for a proper
computation of Ry, and E during HRE burn. The presence of the eroded mass
is neglected in rocket performance evaluation, thus thrust augmentation or rocket
mass reduction are not taken into account in the present model.

Total initial stage mass m; is given by the sum of payload mass m,,, engine dry
mass Mgry, propellants mass mp = mp+mo and fairing mass m sqiring (that is given,
see Sec.5.3), as shown in Eq.(5.12). Grain outer radius R,, web thickness w, grain
length L, and fuel density pp allows for fuel mass determination through Eq.(5.19).
Total oxidizer mass mo is equal to (mo) ! that is an engine design parameter.

M; = My + Mgy + Mp + Miairing = My + Mary + Mp + Mo + Migiring  (5.18)
mp = prLyAy = prlem (R — RY) = prLym (2R,w — w?) (5.19)
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Engine dry mass is in turn equal to the sum of engine components masses
and propellant sliver mass: combustion chamber mass m,., oxidizer tank mass my,
nozzle mass m,,,, engine case mass Meqse, auxiliary tank mass m,, pressurizing gas
mass m, and propellant sliver mass mg. The masses of the feeding system parts,
such as valves and plumbings, are here neglected. Moreover, for circular port grain
design in nominal condition, propellant sliver is not present at the end of the engine
burn, thus mg = 0. Equation(5.20) summarizes significant contributions to engine
dry mass.

Mary = Mee + My + My + Megse + Mg + my (520)

Engine components masses are computed using a suitable set of assumptions
and proper approximations. Combustion chamber consists of a thin wall hollow
cylinder and it is insulated by a 6 mm liner (the density of the liner is considered
equal to pp). Outer diameter of Vega’s third stage fixes cylindrical oxidizer tank
diameter to 1.9 m. Pressurizing Helium is contained in a spherical auxiliary tank.
Helium mass and auxiliary tank volume are known once engine design is fixed. A
1.25 safety factor is assumed in wall thickness computation for combustion chamber,
oxidizer tank and auxiliary tank to withstand internal pressures during HRE burn.
Moreover, a 1-mm-thick cylindrical casing, that encapsulates the whole engine, is
considered. Aluminum, with a density equal to p4;, is employed for combustion
chamber, oxidizer tank, auxiliary tank and engine casing. An ablative layer (with
density equal to pay) protects a 45 deg convergent and 20 deg divergent nozzle.|3]
Nozzle structural mass is neglected in the mass budget because it is far smaller
than ablative layer mass.

In the end, engine design is determined by six parameters: grain outer radius
Ry, web thickness w, grain length L, oxidizer mass exhausted until the beginning
of blow-down phase (mo) ),, total oxidizer mass exhausted (mo) ; and initial nozzle
area ratio E;. Once engine design is determined (i.e. payload is given), an indi-
rect trajectory optimization is performed aiming at the maximization of the orbit
insertion altitude. Trajectory optimization approach will be discussed in Section
5.3.

On the other hand, seventeen input parameters play a role in the engine model:
reference throat erosion rate 3,5, reference chamber pressure p, .z, reference throat
radius Ry, rer, regression rate coefficient a, regression rate exponent n, aluminum
density pa;, ablative density pqy;, fuel density pp, oxidizer density po, pressurizing
gas temperature Ty, liner thickness s;,, combustion chamber wall thickness s,
initial throat area-to-port area ratio .J, initial tank pressure (p;);, ullage volume
Vi, thrust coefficient correction n¢, and c*-efficiency 7.+. In Section 5.4 the model
response to this set of input parameters will be discussed.
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Figure 5.3: Mass budget scheme. Arrows represent the functional relationships
between design parameters (green boxes) and masses. m; and m fqiring are assigned
(see Sec.5.3). The scheme is approximately scaled to the mass budget of robust
solutions presented in Sec.5.5.

5.3 Ascent Trajectory

Ascent trajectory is optimized by means of an indirect procedure, which is based
on the Optimal Control Theory (OCT). The procedure has been widely used in the
Politecnico di Torino since the early 90’s for space trajectory and mission optimiza-
tion.[9, 13] The spacecraft is considered as a point mass and its state equations are
written in a vectorial form in Eq.(5.21) providing the time derivative of position 7,
velocity v and mass M.The position components are radius, latitude and longitude
whereas velocity components are in the radial, eastward and northward directions.
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Earth mass Mg and the gravitational constant Gy defines the inverse-square grav-
ity field as shown in Eq.(5.22). Equation(5.23) reports the aerodynamic drag as a
function of the relative velocity v, = v — w X r, where w is Earth’s angular ve-
locity. An interpolation of the standard atmosphere gives the atmospheric density
Patm as a function of the rocket altitude during the ascent trajectory.

dr dv F-D dM |F|
= R = — 5.21
T i~ eCr (5:21)

GNM@
= Ne, (5.22)
|[r3]]
1 2

D= épatmODSvml (5.23)

A non-dimensional form is employed to rewrite the equation of motion, enhanc-
ing the accuracy of the numerical integration. Five arcs, in which the control law
is homogeneous, model the trajectory: first burn at constant-pressure with fairing
(1), first burn at constant-pressure without fairing (2), first burn blow-down (3),
coasting (4) and second burn (5). The performance of the first and second stage of
the Vega launcher are given, consistent with a launch from Kourou, in the French
Guiana. Exhausted masses and HRE ignition condition are known in nominal con-
ditions: altitude h = 86.88km, latitude & = 9.11 deg, radial velocity component
u, = 0.142km /s, velocity in the eastward direction v, = 0.230 km/s, velocity in the
northward direction w, = 4.146km/s, hybrid stage overall initial mass 14,522 kg
and payload fairing mass 535 kg.

An adjoint variable is introduced for each equation of the set presented in (5.21).
The Euler-Lagrange equations for the adjoint variables, the algebraic equations for
the control variables and the boundary condition for optimality are provided by
the OCT. A Newton’s method-based procedure is employed to solve the multi-
point Boundary Value Problem (BVP) generated by the application of the OCT.
First, a set of tentative values is selected for the problems unknowns and then
varied to satisfy the boundary conditions.

In the present optimization work, the unknowns parameters are the time length
of each arc and the initial values of five adjoint variables. The longitude-related
adjoint variable is null and the mass-related one is fixed at one: the problem is ho-
mogeneous in the adjoint variables, thus they can be arbitrarily scaled. Additional
problem unknowns are R; and (mo),,,, i.e. the fuel grain inner radius and the
overall oxidizer exhausted mass at the end of the engine burn. Dynamic pressure,
heat flux and acceleration are explicitly unconstrained during the optimization.
However, without explicit constraints, optimized trajectories are characterized by
a deeper penetration into the atmosphere during the coasting arc. This behavior
could result in extreme thermal loads, since the fairing is supposed to be jettisoned
during HRE first burn. Thus, a horizontal velocity is forced, at the end of the first
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burn, by an additional constraint. Analogously, an additional unknown is intro-
duced in the optimization problem, due to the free discontinuity of the horizontal
velocity at the end of the first burn. The resulting constrained-trajectories are able
to grant reduced thermal loads but, typically, at the cost of a small payload penalty
(roughly 10kg).

In the end, in the indirect trajectory optimization, two additional input param-
eters are present: initial velocity v; and radius 7;. In the following Section 5.4 the
role of model input parameters, in the coupled optimization of propulsion system
and trajectory, will be discussed.

5.4 Robust-based Optimization

5.4.1 Sensitivity Analysis and Parameters Screening

In Sec.5.2 hybrid rocket engine design has been detailed, whereas in the pre-
vious Sec.5.3 the main features of the indirect trajectory optimization have been
summarized. In the present case, the design parameters result to be six, all involved
in the design of the propulsion system. On the other hand, the input parameters
of the model are nineteen: seventeen concerning engine design and two related to
trajectory optimization. Thus, design parameters vector b (i.e. the group of pa-
rameters that can be freely set by the designer) and the input parameter vector
X (i.e. the other parameters that have a role in the considered engine/trajectory
model) are reported in (5.24) and (5.25).

b= Ry, w, Ly, (mo) pp » (o) ; , Ei] (5.24)

X = [srefa Perefs Rth,refa Q, Ty PAL; Pably PF5 PO, Ty» Slin, Sce; ']7 Pri, Ui, T4, Vull) NCps nc*]
(5.25)
Vectors b and X are the input for the sensitivity analysis described in the
fourth Chapter of this thesis (Sec.4.1). Lower and upper boundary vectors, by,
and by, for the design parameters are reported in Tab.5.2 whereas Tab.5.3 sum-
marizes nominal and off-nominal values for input parameters. One can notice that
v; and 7; have been replaced by their normalized forms in Tab.5.3 to easily define
off-nominal values: v;,.¢ is the velocity vector at third stage ignition in nominal
condition (detailed in Sec.5.3) and rg is Earth equatorial radius (i.e. Earth semi-
major axis). The choice of the boundaries for b defines problem design space and
has been driven by application-related requirements (e.g. the maximum value for
2R, is limited by the outer diameter of the third stage of the current Vega launcher)
and previous know-how about the use of evolutionary algorithm (i.e. reduce pa-
rameters ranges to speed-up algorithm convergence and, at the same time, grant
that optimal solutions will be on the edges of or inside the defined design space).
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Table 5.2: Boundaries of the elements of b.

Ry w Ly (mo); (mo)pp Ei
m m m kg kg -
b, 055 0.25 43 6971 3195 15
by 060 0.35 4.5 7697 3631 20

Table 5.3: Nominal and off nominal values of the elements of X.

Input parameter Low Nom High
1 Sres m/s 0.85-107* 1-10-4 1.15-10~*
2 Deref bar 9.7 10 10.3
3 Riprey m 0.198 0.200 0.202
4 a m?»® gt = kg™ 9.0-107° 9.1-107% 9.2.107°
5 n - 0.68 0.69 0.70
6 ol kg/m? 2758 2800 2842
7 Pabl kg/m? 1724 1750 1776
8 Pr kg/m? 926 940 954
9 P0 kg/m? 1123 1140 1157
10 T, K 278 298 318
11 Slin m 5.60-107% 6.0-107% 6.40-1073
12 See m 4.67-107* 5.00-10~* 5.33-107*
13 J - 0.495 0.500 0.505
14 Dt bar 24.25 25.00 25.75
15 ot % 97 100 103
16 |'|¢";'|ﬁ - 1.0133 1.0136 1.0139
17 Vau % 2.85 3.00 3.15
18 NC - 0.975 0.980 0.985
19 N - 0.955 0.960 0.965

On the other hand, off-nominal values for X are based on existing literature and
technical considerations.[10, 18, 26, 27]

The merit function employed in the sensitivity analysis is defined in Eq.(5.26),
where m,, is the stage payload, h* the target orbit altitude (i.e. 700 km) and h the
attained orbit. @ is a linear combination of payload and altitude violation, with
respect to the target one, because both a large payload mass and the ability to reach
a given orbit are crucial for the mission. An e-constraint approach is employed with
e =h* =700km and k;, = 20kg/km.[25]

® = m, — kpmax(0,h" — h) (5.26)
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The ranges defined by by — by, are divided in one hundred finite steps for each
design parameters, resulting in a 100%-points discretization grid. A minimum ad-
missible altitude h,,;, = 500km (i.e. a maximum altitude violation equal to 200
km) is defined. In this way, starting points that are not meaningful in the present
application (i.e. leading to low insertion altitude or rocket crashes) are discarded
in the sensitivity analysis. One hundred starting points (i.e. Nyga = 100) s.t.
h > hyn are randomly gathered from the discretization grid and used for the sen-
sitivity analysis of the engine/trajectory model. Table 5.4 presents a recap of SA
setup and computational cost in terms of merit function evaluations.

Table 5.4: SA settings and computational cost.

number of steps for design parameters 100
number of input parameters 19
number of starting points 100
number of repetitions 10

number of function evaluations 100 - (19 + 1) - 10 = 20000

The Morris method, detailed in Sec.4.1, is used for the sensitivity analysis. Ten
repetition (i.e. the number of Morris trajectories starting from a single deisgn
point) are taken into account in the SA. Portions of Morris trajectories resulting
in unfeasible solutions are neglected in the evaluation of the elementary effects.
Morris indices pj and oy, calculated for each input parameters j = 1,...,19, are
reported in Tab.5.5.

The magnitude of x} (namely the mean of the absolute values of the j-th ele-
mentary effects) expresses the response of the merit function ® to a variation of the
j—th input parameter, whereas o; (namely the standard deviation, with respect to
the mean value, of the j-th elementary effects) measures non-linear effects related
to such variation. Morris method divides input parameters into two groups:

o Parameters with negligible or no effect on model output (i.e. uj ~ 0 and

[|Vs]| 17l
og; =~ 0): s
7 ) Sees [Viresll” ITall

be neglected in the robust-based optimization because their effects on model
output are feeble: these input parameters are constants. Their values are fixed

Ne, and 7. These parameters variations can

and equal to the nominal ones reported in Tab.5.3: s.. = 0.5 mm, II’lllpilLll =1,
||||7T;|||| = 1.0136 (i.e. third stage ignition occurs at h = 86.88km), n¢, = 0.98

and 7. = 0.96.

o Parameters with non-linear effect on model output (i.e. both x; and o are
not neghglble) érefv Peyrefs Rth,ref7 a, N, paAl, PF, PO, Tg7 Slin, ‘]7 Pi,i and
Vuu- The effect of these parameters on model output is strong (,u;‘ values
are significant) and unpredictable (o; values are large). Their fluctuations
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Table 5.5: Sensitivity analysis outputs: y; and o;.

Input parameter 1 0j

1 Spef 52.71 99.07
2 Deref 42.30 79.43

3 Rippes 11.14 2041

4 a 11267.57 20119.48
5 n 28938.43  43635.39
6 oAl 699.06 699.01
7 Pabl 375.11 376.62
8 PE 9054.35  12355.32
9 PO 463.84 463.88
10 T 25.31 25.34
11 Slin 95.59 95.54
12 See 0.00 0.00
13 J 3868.66  6609.87
14 Dti 4006.43  6401.29
15 ot 0.00 0.01
16 |||?";z-|( 0.29 1.10

oll

17 Vi 8.11 8.11
18 Ncy 0.01 0.02
19 N 0.01 0.02

must be taken into account in each merit function evaluation performed in
the robust-based optimization: these input parameters are uncertain.

Omne can notice that Morris indices, related to nozzle throat erosion (i.e. the
effects of fluctuation in $,¢¢, Perer and Ry ref), are small, albeit not negligible. In
order to reduce the number of uncertain parameters (and consequently the com-
putational cost of the optimization) but preserve the uncertainties in nozzle throat
erosion phenomenon, the author defines a synthetic uncertain parameter K,,,, re-
ported in Eq.(5.27). The rate of throat erosion $, according to Eq.(5.17), can be
written as a function of K., as shown in Eq.(5.28). Off-nominal values of K., are
the highest and the lowest possible ones due to 3,cf, Deyer and [ rop variation,
according to Eq.(5.27).

Kero = Sref ’ R?ﬁ%ref/pg,vfef (527)
0.8
b
S = Kero - (528)
7

Moreover, looking at Tab.5.5, one can observe that some parameters, classified
as uncertain by Morris method, exhibits a peculiar feature: uj ~ o; # 0. These
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parameters are pai, Pabl, PO, Ly, Sin and V. It is noteworthy that Wy is defined
as the mean of the absolute values of the j-th elementary effects, whereas o; is
the standard deviation with respect to their mean value, that is calculated without
modulus operator. Thus, the condition p} ~ o; # 0 means that the j-th parameter
has an effect on model outputs that can be positive or negative (i.e. p; # 0),
different in magnitude from a design point to an other (i.e. o; # 0) but null on
average when arithmetic mean is used. For example, p4; determines payload mass
being involved in engine dry mass computation. When off-nominal values are taken
into account the resulting payload mass, and thus the resulting merit function,
increases or decreases of the same amount, due to heavier or lighter propulsion
system, because off-nominal values of input parameters are symmetrical around
nominal ones. A change in the design parameters, for example a longer fuel grain,
results in a heavier engine casing and merit function increase and decrease due to
pa; variations are again equal, but their magnitude is different from the previous
design point, because engine geometry is changed.

Thus the effect of ps on model output is not linear (depends on the design
point) but it is predictable. Moreover, in robust-based optimization, average per-
formance are considered and the mean effect of these parameters variation is null
(or negligible). The author choses to keep out pai, pap, po, Ty, sin and Vi from
the group of uncertain parameters involved in the robust-based optimization to
further improve computational speed. Their off-nominal behavior will be checked
"a posteriori" only for the optimized design points found out. In the end, the con-
stant vector K, the uncertain parameter vector p and the "a posteriori" uncertain
parameter vector p, are defined as:

K = [Scc>vi>ri7nCF7nC*] (529)
b= [Ke'r‘oaa7n7pF7pt,i7J] (530)
P, = [pa1; Pabt; PO Ty, Stin, Vil (5.31)

5.4.2 Design of Experiments

After vectors b and p have been defined, the robust-based optimization problem
can be formally cast in (5.32), where 2P expresses the noise (i.e. the uncertainties)
that affects the elements of p and g (b, p + 2z”) < 0 the set of inequality constraints
of the optimization problem.

find becR"

to maximize @, (b, D)

subject to  g; (byp+2¥) <0,5=1,..,r
and to by <b<by
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In the same way as previously done in the SA, three levels are assigned to each
uncertain parameter of p: lower than nominal, nominal and higher than nominal.
For each design point defined by vector b, several combinations of the uncertain pa-
rameters of p are considered in the computation of an average merit function ®,,,
according to a proper DOE technique. One can notice that both p and p, contain
six parameters, thus the same design of experiment technique can be employed
in the robust-based optimization and in the subsequent "a posteriori' performance
verification. Attained orbit altitude h; and payload m,,; are determined for each
i-th combination prescribed by the DOE technique and average performance are
obtained by means of Eq.(5.33). P; is the probability function of the i-th uncertain
parameters combination calculated as reported in Eq.(5.34), where p; = 0.5 if the
j-th level is equal to 2 (i.e. the nominal value is taken into account for the j-th
element of p), p; = 0.25 if the j-th level is equal to 1 or 3 (i.e. off-nominal values
are considered) and pio; = Yypjforj=1,.6 (e ;P =1).

(I)avg = Z R(I)z (533)
P, = M (5.34)
Dot

The ¢-th contribution ®; to the optimization merit function ®,,, is computed
as a linear combination of m,; and h; analogously to what done in the SA (see
Eq.(5.26):

®; = my; — kpmax(0,h" — hy) (5.35)

In Eq.(5.35) k, = 20kg/km to nullify the average altitude violation and h* =
700 km, chosen to grant the highest performance in terms of robustness. Average
violation A, and payload mass m,, 4 can be computed by means of Eq.(5.36)
and (5.37).

Agvg = Z P, A; (5.36)

Muy,avg = Z P)imu,i (537)

The proper sets of uncertain parameters combinations are prescribed by DOE
techniques. Details about DOE theory has been given in Sec.4.2. As aforemen-
tioned, uncertain parameters combinations are coded in three levels and six un-
certain parameters are present. The combinations of uncertain parameters are en-
coded, thanks to levels discretization, in experimental arrays. In the present case,
the author employs only Fractional Factorial Design (FFD) to reduce the compu-
tational cost of the robust-based optimization. Three different FFD are employed
and here listed by means of the corresponding experimental arrays:
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1. the first, and smallest, array used is here called Fj5. In this array only one
parameter at a time presents an off-nominal value. The number of experi-
mental tests is equal to twice the number of uncertain parameters. The idea
behind Fi, is to evaluate, through the comparison with the other arrays, the
actual impact of multi-parameter fluctuations and to determine whether the
additional experimental runs required are worthy or not. Table 5.6 shows the
levels combinations prescribed by Fis;

2. the second experimental array is called Lig and it is borrowed directly from
Taguchi’s theory about robust design. L;g is the smallest orthogonal array
suitable to deal with six parameters discretized in three levels.[24] Table 5.7
presents Taguchi’s Lz array. One can notice that the first row of Lz repre-
sents an off-nominal condition in which all the uncertain parameters assume
the lowest value. This experimental run is neglected by the other FFD and,
as will be showed in the results section, it is particularly demanding in terms
of launcher performance degradation;

3. the third, and last, experimental array used is based on Box-Behnken’s works
and it is here called B,g array.[16] This array is the biggest one considered in
the present work, and prescribes the execution of 48 experimental runs. The
comparison between Byg and Taguchi’s Lig, that is definitely smaller (i.e.
the computation will be considerably faster), aims at finding out whether
the additional experimental runs, required by Box-Behnken’s method, are
effective or not.

One additional parameters combination is added to these arrays in which all
levels are equal to 2, i.e. all nominal values are considered in the merit function
evaluation. This combination can be regarded as the center point of the uncer-
tainties distribution and it is useful to compute in detail the reference launcher
performance, given the design parameter set (i.e. given the vector b) throughout
the optimization. For this reason the actual number of experimental runs performed
is 13, 19 and 49 when Fis, L1g and Byg arrays are respectively used.

In the robust-based optimization, a particle swarm optimization (PSO) algo-
rithm leads the selection of tentative values for b. PSO belongs to the class of
evolutionary algorithms and mimics the motion typical of flocks of bird or school
of fish. Details about PSO features can be found in Sec. 4.3. The setup of the
PSO, used in the present application, is presented in Tab.5.9 and it is based on
a previous work of the author on the same topic.[11] The number of generation
N¢ = 1000 has been chosen to ensure convergence of the optimization algorithm
to the global optimal solutions. Table 5.10 compares the computational costs, in
terms of ®; evaluation, for optimization runs employing Fio, L1z and Bjg arrays.
For the sake of clarity, also the computational cost of the SA is reported. One can
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Table 5.6: Fio array. Table 5.7: Taguchi’s Lg array.
1 2 2 2 2 2 1 1 1 1 1 1
3 2 2 2 2 2 1 2 2 2 2 2
2 1 2 2 2 2 1 3 3 3 3 3
2 3 2 2 2 2 21 1 2 3 3
2 2 1 2 2 2 2 2 2 3 1 1
2 2 3 2 2 2 2 3 3 1 2 2
2 2 2 1 2 2 31 2 3 2 3
2 2 2 3 2 2 3 2 3 1 3 1
2 2 2 2 1 2 3 3 1 2 1 2
2 2 2 2 3 2 1 1 3 2 2 1
2 2 2 2 2 1 1 2 1 3 3 2
2 2 2 2 2 3 1 3 2 1 1 3

21 2 1 3 2
2 2 3 2 1 3
2 3 1 3 2 1
3 1 3 3 1 2
3 2 1 1 2 3
3 3 2 2 3 1

notice that SA cost is at least one order of magnitude smaller than optimization
runs ones.

As aforementioned, the number of uncertain parameters of p are equal to the
number of the elements of p,. Thus, after the robust-based optimization, also
the scattering of the optimized robust solutions, due to the uncertainties of p,,
could be evaluated taking advantage of Fo, L1g and Byg arrays. The scattering of
the optimized solutions is determined employing a single evaluation of the merit
function ®,,, for the optimal value of b, using all nominal values for the uncertain
parameters of p, whereas the elements of p, are varied in accordance with the DOE
array.

5.5 Numerical Results

Optimization runs are performend on a 20-cores parallel computing machine
and 100 hours, 35 hours and 25 hours are required when Byg, Lg and F|5 arrays
are respectively employed. Optimized design parameters are presented in Tab.
5.11 for robust solutions. Deterministic optimal design is also added to solutions
comparison as DET. my, g,y and Ag,, are also reported and calculated by means of
Eq.(5.37) and (5.36). One can see that all the robust solutions exhibit an average
violation null or close to zero thanks to the chosen value of kj, in the merit function
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Table 5.8: Box—Behnken’s array.

DD DNDNDNDNDNNDNDNDDNDDNDNDNDDNWWWWR = = =
NN DNDNDDNDDNDWWWWH = = =W W Wwee =
LW W W WHF — = = = =W W WWwHF NDDNDNDDNDDNDNDDNDND
W W H HF W WHF FPFNDNDNDNDNDNDDNDDNWWRFRRFWRF W
DN DNDNDNNDNDDNREF WRF WWWEFEFFNDNDNDNDNDDNDND DN
W H W W HF WRF DNDNNNNDDNDDDNDDDNDDNDNDNDNDDNDDND NN N
O W W W F F F DD NDNDNDDNDDNDDN WWWWRE ==
DO DO DN NN WWWWEF FF FNDNDNDNDDNDNDDND DN
LW WHF = WWHF P NNDNDNDDNDDNDNDNDNDDNDND NN
DO DO DN DNDDNNNDDNDDDNDDNDDNDNNNWWRFRF WWH -
DN DNDNDNDNDDNDDNWWRF = WWH = W W W W
W H W HFE WHF WHF WHF W WHF WHFNDDNDDNDNDDNDNDDNDDND

formulation (see Eq.(5.35)). For this reason @, and my, 4,y have roughly the same
magnitude.

Looking at the values of grain length L, and web thickness w in Tab. 5.11,
all robust solutions have a longer and thicker fuel grain but almost constant grain
outer radius R, with respect to DET solution, resulting in an approximately 200
kg increase in fuel mass mpg, as shown in Tab. 5.12. On the other hand, total
oxidizer mass mo, that is the design parameters reported as (mg) f in Tab. 5.11,
presents small differences between robust and deterministic solutions: Lz and Byg
optimized solutions are characterized by a ~ 50kg increase in oxidizer mass with
respect to DET solution, whereas Fjs shows an even smaller difference (less than
0.1%).

Engine dry mass myg,, of Lig solution is significantly greater than DET and
other robust solutions ones. Looking at Tab.5.12 one can observe that the main
differences in robust solutions mass budgets concern nozzle mass m,,,, pressurizing
gas mass m, and auxiliary tank mass m,. Structural nozzle mass is given by
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Table 5.9: PSO settings.

Number of generations, Ng 1000
Number of particles, Ny 20
Dimension of particles 6
Ranges of particles by — by,
PSO method 1-trelea type 1
Cognitive acceleration, C'1 2.0
Social acceleration, C'2 2.0

Check population method Saturation

End velocity weight 0.4

Linear varying factor 0.2
Maximum velocity, vm,qz 0.25(by — by)
Mass mutation parameter 98%

Table 5.10: Computational cost comparison.

DOE technique Number of ®; evaluations

Iy array 13-20- 1000 = 2.6 - 10°

Lqg array 19-20- 1000 = 3.8 - 10°

B,g array 49-20-1000 = 9.8 - 10°
SA 100-(19+1)-10=2-10*

expansion area ratio E; and initial throat area (A;),, which in turn is a function
of initial port area (Ay), and initial throat-to-port area ratio .J = 0.5 in nominal
condition. Lig solution has a longer and heavier nozzle due to higher FE;, despite
its initial port and throat areas are slightly smaller than Fj5 and Byg ones due to a
thicker fuel grain. The amount of pressurizing gas (i.e. m, magnitude), required to
grant sufficiently high thrust levels during operation, is determined by (mo) 5, and
pri- The latter is fixed and equal to 25 bar in nominal conditions, whereas the first
is remarkably higher for Lqg solution with respect to deterministic and other robust
solutions ones, resulting in greater m,. The same goes for m, since it is a function
of (mo)pp too. For the sake of completeness, Table 5.13 presents normalized mass
ratios for deterministic and robust solutions, that could be useful to compare the
present case with other launcher architectures.

In the end, payload mass differences between robust solutions and deterministic
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Table 5.11: DET, Fiy, L1z and Byg results.

Rg w Lb (mO)BD (m())f Ez Muy,avg Aavg (I)avg
m m m kg kg - kg km kg

DET 0.585 0.276 4.430 3269 7350  15.00 2281 172 -1135
Fip 0589 0.292 4466 3279 7343 16.11 2102 0.0 2101
Lig 0588 0.297 4.473 3609 7397 1723 1977 0.0 1977
Bys  0.592 0.292 4.463 3254 7396  15.73 2001 1.3 2001

Table 5.12: Mass budget comparison (in nominal conditions).

my, mp My mo mg Mee My Mpz Mease Mg Mg

kg kg ke kg kg kg kg ke kg kg kg

DET 2281 10578 1127 7350 3228 160 298 327 164 24 153
I, 2102 10754 1131 7343 3411 163 297 327 165 24 154
Lig 1977 10848 1161 7397 3451 163 299 337 167 27 169
By, 2026 10830 1131 7396 3434 164 299 326 165 24 153

Table 5.13: Mass budget comparison: normalized ratios (in nominal conditions).

My mp __mp
myg m; mp+mMdry

DET 0.157 0.728  0.904
Fi, 0145 0.741  0.905
Lig  0.136 0.747  0.903
Bys  0.140 0.746  0.905

one are due to an increase in total propellant mass mp, that is required to fulfill the
mission even when uncertain parameters assume off-nominal values. Results show
that the additional fuel mass is obtained increasing grain length and web thickness,
whereas grain outer radius remains almost equal to deterministic solution. This
optimization strategy seems to be caused by the functional relationship that links
grain outer radius, web thickness and grain length to engine dry mass. Looking at
Fig.5.3 presented in Sec.5.2, one can observe that an increase in R, would lead to
heavier combustion chamber and nozzle, an increase in L; to a heavier combustion
chamber and engine casing, whereas an increase in w to a lighter nozzle (see Eq.(5.1)
and (5.16) in Sec.5.2). Thus, optimization algorithm tends to converge to robust
solutions that use the beneficial effect of a larger w to maintain an almost constant
engine dry mass, reducing nozzle mass, and at the same time obtain the required
larger fuel mass. The alternative strategy to increase mp (i.e. increase also or
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only R;) would lead to both a heavier combustion chamber and a heavier nozzle,
resulting in greater dry mass and thus smaller payload mass.

25 - 299 -
]
q PR -_———- -
. ﬁj 4 N /,’
el g / N
2 8_ 297 e A \/ ...............
9 § *:‘.- '._.. -----------
‘E ...... F 12 é
= - =L18 3
——B_48 &
15 : : ‘ 205 ‘ ‘
0 50 100 150 0 50 100 150
Time from ignition t, s Time from ignition £, s

Figure 5.4: Mixture ratio v vs. time.  Figure 5.5: Specific impulse Igp vs.

time.
(@)} (o]
g g !
T T ,'
S g 881
o o /
(] © /
© ©
= c
° °
g g ...... F 12
2 2 --L18
9 s —B 48
1.5 T . T 3
0 50 100 150 ' ' ' ' '
2980 3000 3020 3040 3060 3080

Time Frerm igeitien £, & Time from ignition ¢, s

Figure 5.6: Longitudinal acceleration vs.

time: frst burm. Figure 5.7: Longitudinal acceleration vs.
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Figures 5.4-5.9 show main performance index and other quantities of interest for
the optimized robust solutions. Plots of the second burn are here omitted (except
longitudinal acceleration one) because they are not very significant due to its short
duration. One can notice that Lig solution exhibits a slightly different behavior
with respect to Fio and Byg ones: lower mixture ratio «, higher specific impulse
Isp, smaller thrust F' during a longer constant pressure phase and greater thrust
during a shorter blowdown phase. Looking at Fig.5.6 and 5.8, the thrust plot
is smooth, whereas longitudinal acceleration presents a small gap approximately
around 10s after engine ignition. This gap is caused by a stage mass discontinuity
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due to the fairing jettisoning that occurs at the turn of trajectory phases (1) and
(2) as presented in Sec.5.3. Fig.5.7 shows that the longitudinal acceleration of Ljg
at HRE burnout exceed 3.5g, whereas other robust solutions does not, because
thrust level during second burn is actually greater against an almost equal stage
final mass. However, all robust solutions have a maximum acceleration within the
third stage maximal acceleration requirement of the current VLV.[1]

Table 5.14: Results of the cross evaluation of the optimal solutions.

Method of evaluation

F12 L18 B48
kg kg kg

Iap 2101.6 181.6 -3.7
Lqg - 1977.4 1977.5
Byg - 1334.2 2000.9

Solution

A deeper insight into actual solution robustness and effectiveness of the em-
ployed DOE techniques can be obtained by means of a cross-evaluation of the
optimization merit function. Fj, optimal design is tested using Lis and Byg ar-
rays, that requires 6 and 36 additional uncertain combination in the average merit
function evaluation. Results are presented in the first row of Tab.5.14. Fis design
shows remarkable performance drops when the merit function is evaluated through
bigger DOE arrays. This behavior proves that Fj, optimized solution does not
grant an acceptable robustness when more than one uncertain parameters have
off-nominal values, confirming the supposed strong effect on model outputs of un-
certainties interactions that Iy array neglects. The second row of Tab.5.14 reports
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the average merit function for the optimal design of Taguchi’s Lig array evalu-
ated also by means of Byg array. In this case, merit functions results to be really
close to each other, highlighting the robustness of Taguchi’s solution even when
calculated using a bigger DOE array (Byg array requires 20 additional uncertain
parameters combinations with respect to Lig). In the third row of Tab.5.14, Byg
optimal design is evaluated using also Lig array, resulting in a significantly reduced
D49 = 1334.18 kg. This behavior is caused by an uncertain parameter combination
corresponding to "all parameters lower than nominal", that is considered by Lg
array and neglected by B,g one. This particular uncertainties combination leads to
a launcher crash on Earth’s surface when B,g optimal design is used. Hence, Lig
solution seems to be characterized by a greater robustness than Byg one. On the
other hand, Byg solution outperforms L;g one when optimal payload mass is merely
considered, since my, qy = 2001 kg for Bug, that is a 23 kg improvement with re-
spect to Taguchi’s optimal solution. In the end, when a fast and thoroughly robust
solution is required, Lig array appear to be the better choice, albeit the optimized
solution could be too conservative. Instead, the use of B,g array can grant higher
payload mass along with a fair robustness level, but the computational cost of the
optimization results to be more than doubled with respect to Taguchi’s DOE array.

The last step of the robust-based optimization is the evaluation of the scattering
of the optimized solutions due to the elements of the vector Py that are pa;, pasis
po; Ty, Stin, Vau- As aforementioned, since the number of elements of p, are equal to
the number of uncertain parameters considered in the robust-based optimization,
the same DOE arrays are used in the scattering evaluation. The elements of p are
now regarded as constants and their nominal values are taken into account (see
Tab. 5.3). On the other hand, the elements of p, are varied in accordance with
the levels combinations of F'9, L1z and Byg arrays. The computational effort of the
scattering evaluation is quite negligible, with respect to optimization one, because a
single average merit function evaluation is performed by means of each DOE array
(i.e. a total of three additional merit function evaluations have to be performed).
Table 5.15 presents ®g,,, values of Fi5 optimal design point when Fig, Lig and Byg
arrays are employed to deal with p, variation. Analogously, the results obtained
considering Lig and Byg optimal design points are presented in Tab. 5.16 and 5.17.
0¢ indicates the weighted standard deviation of the average merit function values
due to p, uncertainties. Weights here used are the same employed in ®,,, and
defined in Eq.(5.34). Nominal merit function value, corresponding to all nominal
values for both p and p,, elements, is reported as NOM in Tab. 5.15-5.17.

In all experimental runs performed in the scattering evaluation, the insertion
altitude h; is always greater than mission target one (i.e. h; > h* = 700km),
thus ®upg = Myaug. All h; values, obtained varying D, elements, are equal to
corresponding nominal ones, that are h = 951.13km, h = 1129.37km and h =
1043.12km when F}, L1z and Byg optimal design points are respectively considered.
Thus p, variations results to be unable to cause altitude violation. ®,,, values

74



5.5 — Numerical Results

Table 5.15: Scattering of Fi, robust solution.

(I)avg 09

kg kg

NOM 2101.6 0.0
Fo 21016 6.0
Lis 21015 11.9
By 21015 10.4

Table 5.16: Scattering of Lig robust solution.

(I)avg 09

kg kg

NOM 1977.5 0.0
Fio 19774 6.2
Lis 19773 12.2
B,s 19773 10.7

Table 5.17: Scattering of Byg robust solution.

(I)avg 09

kg kg

NOM 2026.5 0.0
Fio  2026.5 6.0
Lis 20264 11.9
Bis  2026.4 10.5

are close to nominal ones for all optimal design points, since o¢ is always small.
Moreover, ®; values due to p, variations, are larger than the corresponding optimal
solutions ones in each i-th experimental run performed in scattering evaluation (i.e.
actual m,,; are all larger than my, 4y).

In the end, results suggest that fluctuation in pai, pan, pos Ty, Siin, Vuu values
are not able to threaten mission goals fulfillment, having really small impacts on
model outputs around optimized design points. Hence, the choice to neglect p,
uncertainties in the first part of the optimization procedure allows to speed up
the whole robust-based process, granting at the same time the achievement of the
required robustness in the design.
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5.6 Conclusions

In first sections of this chapter, the author has outlined the main features of the
current design of the Vega launcher (5.1), described the hybrid rocket engine model
and direct optimization approach (5.2), summarized the indirect trajectory opti-
mization method (5.3), presented the sensitivity analysis and parameters screening
procedure (5.4.1) and depicted the design of experiment techniques required by the
robust-based procedure (5.4.2).

{ Input parameters X ‘ { Design parameters b F;:::,

|

Indirect Direct

parameters p L—ﬁ trajectory engine
Sensitivity AVA V4 I=||-_:> DOE ——> optimization optimization :

g

f[ Constants K f_=||
- —

Uncertain

v

analysis (oCT) (PSO)

Engine

.ﬂm"::;zfﬁ :
e & ;

{ Average merit } __________________ i

‘ Boundaries b; and by ‘

function
4
"A posteriori" -
uncertain N Scattering
parameters pp test
Robust-based

2-layer
optimization procedure

\v4

\V/

Optimal robust solution

Figure 5.10: Scheme of the employed robust-based optimization procedure. Green
boxes are the input of the optimization problem, light blue boxes contain SA out-
puts, orange boxes present the main sub-models and tools used and the blue box
reports optimization outputs. The dotted link on the right represents the feed-
back due to PSO algorithm which adjusts the design parameters aiming at the
maximization of the merit function.

Figure 6.9 graphically illustrates the developed robust-based optimization pro-
cedure, pointing out the inputs and the outputs of the whole numerical model and
highlighting functional links and relationships between sub-models. Clearly, the

76



REFERENCES

robust-based optimization of a HRE is intrinsically and deeply multi-disciplinary,
not only concerning engine and trajectory optimization, that are linked by HRE
unique architecture, but also because uncertainties have to be considered at every
level in the design process (model, sub-models and components).

The number of uncertain parameters plays a major role in the computational
time required by the optimization because even few additional parameters cause
an exponential growth in the number of experimental runs performed accordingly
to the chosen DOE technique. Luckily, a proper SA and screening of the input
parameters proved to allow for an affordable robust-based optimization process. In
the previous Sec. 5.5 numerical results showed that a sufficiently high robustness
level can be achieved when Taguchi’s or Box-Behnken’s methods are employed to
manage uncertainties. In the present case, the cost to grant robustness in the design
resulted to be a reasonably small payload reduction (12 — 13%), with respect to
deterministic optimal design point.

The robust solutions tend to have large web thickness w and grain length L,
obtaining the additional amount of fuel required to manage the effects of uncertain-
ties during HRE burn. At the same time, the resulting engine dry mass increase
is limited and the average altitude violation is zero, granting 100% target orbit
reaching and satisfactory performance in terms of payload mass.
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Chapter 6

Real World Application:
Electrical Turbo Pump Upper
Stage

In the previous Chapter 5, the author presented the robust design and opti-
mization of a hybrid powered upper stage able to replace the upper stages of the
current Vega launcher. A simple Gas-Pressurized Feed System (GPFS) has been
considered in such application because of its low cost and reliability. However, gas-
pressurized systems are characterized by some drawbacks and thus an innovative
turbo-pump feed system will be taken into consideration in this Chapter.

In HREs, large thrust level during operation requires large regression rate values,
that can be achieved by having a high oxidizer mass flow in the combustion chamber.
Oxidizer flow in turn is determined by the pressure drop between oxidizer tank and
combustion chamber head-end pressures. Thus, high oxidizer and auxiliary tanks
pressures are mandatory to grant nice thrust level, when a gas-pressurized feed
system is employed, making the tanks structural masses remarkably high. Looking
at Tab. 5.12 (see Chapter 5 on page 71) one can notice that tanks structural
masses m; + mg, represent approximately one-third of the total engine dry mass
and that oxidizer mass constitutes half of the total stage mass for the optimized
robust solutions. Hence, the use of a turbo-pump feed system could greatly reduce
the engine dry mass thanks to lighter oxidizer tank, the absence of auxiliary vessels
for the pressurizing gas and the elimination of the gas itself.

The power source of the turbo-pump feed system is classically a turbine fed by a
working fluid. Most common LREs architectures use hot gases coming from a sepa-
rated gas generator (gas generator cycle), energized engine coolant (expander cycle),
a pre-burned propellants mixture (staged combustion cycle) or hot gases directly
from the main combustion chamber (tap-off cycle).[13] Since the '90s, Electrical
Pump Feed Systems (EPFSs) have been also considered for small bi-propellant
LREs, where an electric motor replaces the turbine and batteries are employed
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as power source.[6, 10] More recently, the development of batteries and electric
motors technologies makes EPFSs even more intriguing and increases their com-
petitiveness from a purely performance-based point of view.[1, 12, 9, 3] An EPFS
bi-propellant liquid engine has been also taken into consideration to be used in a
Mars Ascent Vehicle (MAV) in 2016.[14] Alongside electric powered ones, also con-
ventional propulsion systems have been considered. Nevertheless, EPFS resulted
able to outperform conventional GPFSs, albeit lower in technology readiness level.
In 2018, the successful launch of the Rocket Lab’s Electron launch vehicle proved
the feasibility of an EPFS-based small satellite launcher.[15] Electron is a two-
stage launcher, powered by the Rutherford engine, a LOX/RP1 LRE developed by
Rocket Lab’s itself that uses an innovative EPFS. In 2018, Kwak et al. proposed
the use of an EPFS LOX /kerosene engine in the Korean Space Launch Vehicle-II
(KSLV-II), demonstrating the feasibility of the electric-powered system. KSLV-II
reference mission is the insertion of a 1500 kg payload into a 700 km orbit.[7]
Concerning direct HREs operation, the generation of a proper working fluid,
to be used in the turbine to power the turbo-pump, is more challenging than in
LREs because only the oxidizer is in liquid state. A gas generator cycle can be
employed, but auxiliary liquid fuel have to be boarded. Liquid HP can produce hot
gases through catalytic decomposition, whereas an expander cycle is not feasible
for LOX due to ineffective heating. On the other hand, a tap-off cycle could be
used, but its complexity, cost and low reliability make it ill-suited for the use in a
HRE. For these reasons, the electrically driven solution is much more intriguing in
HREs than in LREs and will be detailed by the author in the following Sections.

6.1 Mathematical Model

In this Chapter the author proposed an alternative configuration, employing
a different oxidizer feed system, for the same application presented previously in
Chapter 5. Thus, the case study is exactly the same (see Section 5.1). Moreover,
the vast majority of hybrid rocket engine model, ascent trajectory and optimization
procedure are similar too (see Sections 5.2, 5.3 and 5.4 respectively). Differences
are present in uncertainty model, design of the experiments method, merit function
formulation and, obviously, in engine operational mode, due to the different feed
system employed. In this Chapter, the author will present only the discrepancies
in the mathematical model, since details about unchanged aspects of the procedure
have been already reported in Chapter 5.

6.1.1 Feed System

During HRE operation, the oxidizer flow rate is a function of hydraulic resis-
tance Z, pressure provided by the feed system employed p;s and chamber head-end
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pressure pq, as reported in Eq.(6.1). In Eq.(5.6) on page 55 pss = p; due to the
oxidizer pressurization system, whereas here ps, is equal to the pump discharge
pressure py. since an EPFS is considered in place of a GPFS.

mo =/ (pgs — 1)/ 72 (6.1)

In an EPFS, oxidizer is fed to the combustion chamber by a pump, which is
driven by an electric motor. The required energy is supplied to the motor by
a battery pack during engine burn. Electrical components masses (i.e. motor,
pump, auxiliary systems and batteries) are computed by means of typical power
density (power to mass ratio) values that can be found in the existing literature.
Therefore, motor and pump mass can be written by means of Eq.(6.2), where
P, 1naz i1s the maximum electrical power required. Concerning power density value

dep, both current technology and advanced designs have been considered, assuming
respectively (0p), = 1.25kW /kg and (d¢,),, = 3.92kW /kg.[1, 11, 7]

P,

Mep = —‘}’”‘“ (6.2)

ep

m _
Pe _ O(pd pt) (63)

POTep
The electrical power required by the motor to drive the pump can be evaluated
thanks to Eq.(6.3), where p; = 1lbar = constant is the oxidizer tank pressure.

The amount of pressurizing gas required to keep p, constant is small and can be
neglected. 7., is the conversion overall efficiency of the electrical energy, stored in
the battery pack, into the flow head rise. The author assumes two efficiency values:
(Nep)y = 0.64 and (1ep),, = 0.53. The reader can notice that (9ep),; < (Mep)
but motor and pump mass me, X (dep - fr]ep)_l which is actually smaller when an
advanced design is considered.

Batteries have to fulfill two requirements: provide the maximum electrical power
P, 1mae and the total electrical energy E. ;, needed by the EPFS during the whole
engine burn time. Here, the discharge time of the pump is equal to HRE burning
time ¢y, Hence, the total electrical energy can be calculated by means of Eq.(6.4).
Then, the mass of the required battery pack can be obtained employing typical
values of power density d;, and energy density d. (energy to mass ratio). Moreover,
the author assumed a safety factor of 1.2 in battery mass evaluation, as reported
in Eq.(6.5).

t urn
Epror = /0 " pdt (6.4)
Pe max Ee tot
=1.2 : : 6.5
my max ( 5bp 5 51)@ > ( )
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The author chooses to take into consideration Lithium batteries in the present
application, because of their small size and light weight. Two couples of densi-
ties have been considered: (d;,), = 3.0kW/kg and (d.),, = 90 Wh/kg, based on
Ragone plots,[8] and (0y,),;, = 6.95kW /kg and (d),, = 198.5Wh/kg, based on
the most recent literature concerning Lithium-Polymer batteries state of the art.[7]
Equation (6.4) can be easily integrated assuming constant power operation of the
pump (i.e. P, = P,;x = constant), resulting in Eq.(6.6), which gives the total
energy E. o required by the EPFS.

Ee,tot = Pe,mamtburn (66)

On the other hand, the pump constant power level P, = P, 4, is fixed by the
value of the initial discharge pressure of the pump (pg); (see Eq.(6.3)). Thus, (pa);
substitutes (mo) g, in the design parameters vector b, when a EPFS is employed
in place of a GPFS, as reported in Eq.(6.7).

b= [Ry,w, Ly, (mo) . (pa); . B (6.7)

The reader can notice that the evaluation of power-constrained battery pack
mass can be done before the trajectory optimization takes place, because it is only
function of (pg), and the selected power density. Energy-constrained mass, instead,
has to be calculated "a posteriori’, because depends on the actual engine burn time
tpurn (i-€. on the optimized trajectory). Therefore, a characteristic burning time
ty . can be defined (see Eq.(6.8)), representing the mission duration for which both
constraints are simultaneously fulfilled.

6be
ty, = 6.8
burn 5bp ( )

If tyurn <ty energy-constrained mass is smaller than power-constrained one
(the mission is short, energy is not an issue). Thus, the actual ascent trajectory does
not affect batteries mass. On the other hand, if tyn > t7,,,. POWer-constrained
mass is smaller than energy-constrained one (the mission is long, energy is an issue).
In this case, an “a posteriori” check of the battery pack mass is required to take
into account the additional energy needed by a longer mission (i.e. actual launcher
payload is reduced due to the additional batteries boarded). For the sake of clarity,
Tab.6.1 reports all the electric properties values here employed.

6.1.2 Mass Budget and Ascent Trajectory

The modification of the feed system requires a slightly different formulation of
engine dry mass, with respect to Eq.(5.20) on page 58, to keep into account elec-
tric motor, pump and batteries masses. Moreover, engine dry mass, and thus the
actual launcher payload, has to be adjusted after trajectory optimization keeping
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Table 6.1: Electric properties.

5bp 6be 5ep Nep t;;urn
kW/kg Wh/kg kW/kg - S

current technology  3.00 90.00 1.25 0.68 108
advanced design 6.95 198.50 3.92 053 103

into account the mass of the additional batteries required if ¢y, > t},,,- There-
fore, "a priori" engine dry mass is given by Eq.(6.9), where (mb)prior is power con-
strained (see Eq.(6.10)). The "a priori" payload mass can be computed by means
of Eq.(6.11).

(Mdry) prior = Mee + M + Mz + Mease + Mg + (10) 5,50, + Mep (6.9)
Pem

(M) = 1270022 (6.10)
bp

(mu)prior =m; — ((mdry)prior + mp + mfairing) (611)

Once the ascent trajectory has been optimized, total HRE burn time tpy., is
known. If the latter is greater than the characteristic burning time ¢, batteries
mass has to be increased to the energy constrained value reported in Eq.(6.12).
Then, actual engine dry mass and payload mass are given by Eq.(6.13) and (6.14).

Ee,tot 1 2Pe,maxtburn

my = 1.2—25 = 5 = (M) ppior + 12— (bhurn — Lpyry)  (6.12)
be be be
Pe,ma,x %
Mary = (mdry)prior +1.2 5b (tburn - tbu'rn) (613)
€
Pe,ma:z: *
My = (m“)prior —1.2 5b (tbmn - tbu'rn) (6'14)
e

Ascent trajectory optimization procedure is the same that has been presented in
Sec.5.3 on page 59. The only difference concerns arcs splitting, due to the presence
of a single operational mode for the feed system (i.e. constant power) in place
of two (i.e. constant pressure and blow-down). Thus, only four arcs are needed
to model the trajectory: first burn with fairing (1), first burn without fairing (2),
coasting (3) and second burn (4).
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6.2 Robust-based Optimization

Engine design is determined by six parameters when both GPFS and EPFS are
employed. However design parameters vectors are slightly different as mentioned
before (see Eq.(6.7)). Upper and lower boundaries are the same for the parameters
that are in common between GPFS and EPFS, allowing for a better performance
comparison. Table 6.2 reports boundaries vectors b;, and by;.

Table 6.2: Boundaries of the elements of b.

Ry, w Ly (mo); (pa); Ei
m m m kg bar -

b, 0.55 0.25 43 6971 10 15
by 0.60 0.35 4.5 7697 o0 20

In a previous work, the use of an EPFS has been considered, but HRE design
and optimization has been performed only from a deterministic point of view.[3]
Here, uncertainties in the classical regression rate correlation has been taken into
account. Thus uncertain parameters vector p can be written as:

p=[a,n] (6.15)

whose levels are the same presented in Tab. 5.3 on page 62 that have already
been used in Chapter 5. Here, a sensitivity analysis and screening of uncertain
parameters have not been performed to maintain the problem as simple as possible
in this early design stage. However, the management of regression rate uncertainties
is well known to be the most challenging issue to the actual employment of hybrid
based propulsion system.

Table 6.3: Lg orthogonal array.

W W W NN ==
W N~ W WND -

Therefore, merit function formulation is simpler than the one presented on page
66 in the previous Chapter 5. Each possible combination of levels for a and n is
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considered, i.e. a 3-level Ly orthogonal array is used in the DOE (see Tab.6.3).
The average altitude constraint violation is given by Eq.(6.16) where a binomial
distribution is assumed (p; = p3 = 0.25 and py = 0.5). The average altitude is then
havg = h* — Agyy and the optimization merit function can be written by means
of Eq.(6.17). The author selects k;, = 20kg/km and € = h* = 700km as done in
Chapter 5 in the merit function formulation.

A(wg - Zp1p] maX(07 h* — hu) (616)
ij

ij

Pypg = p — Kk max(0, € — hgyy) (6.17)

6.3 Numerical Results

Optimized robust design parameters and resulting performance are presented by
means of Tab.6.4 and Tab.6.5. Current technology and advanced design have been
considered in battery mass evaluation. The first row of both tables has been added
by the author, for the sake of comparison, and reports optimal design parameters
values and HRE performance using a GPFS and the same robust approach. Further
details can be found in [4].

Looking at Tab.6.5, one can notice that all solutions have a null average alti-
tude violation, resulting in m, = ®,,, and granted robustness. Both EPFS solu-
tions present smaller grain outer radius R,, greater web thickness w and a longer
grain, with respect to GPFS solution. Hence, fuel grains result slender and thicker,
whereas the initial port area (A,), and the initial throat area (A;), are smaller
(J = 0.5 = constant) when an EPFS is used.

Table 6.4: Robust optimal design parameters.

R, w Ly (mO)f E;  (mo)pp (pa);

m m m kg - kg bar

GPFS 0.591 0.294 4.360 7403 17.32 3195 -
EPFS. 0.579 0.303 4.438 7408 17.44 - 27.7
EPFS,; 0.563 0.334 4.368 7381 18.14 - 39.8

Concerning mass budget, Tab.6.6 highlights that total propellants masses are
really close between GPFS and EPFS solutions. On the other hand, engine dry mass
is remarkably smaller when electrical turbo pump systems are employed, regardless
which power and energy densities are taken into account. Looking at Tab.6.7 one
can notice that the main sources of dry mass saving are a far lighter oxidizer tank
and nozzle. Oxidizer tank is lighter because of the absence of the high pressure
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Table 6.5: Robust optimal design performance.

My, Aavg (I)avg tburn
kg km kg S
GPFS 2069.8 0.0 2069.8 177

EPFS. 2321.7 0.0 2321.7 157
EPFS,; 2467.7 0.0 2467.7 158

pressurization required by GPFS, whereas nozzle mass is smaller because of the
smaller initial throat area, despite a higher expansion ratio.

Due to the consistent reduction in engine dry mass, EPFS solutions have a
remarkably greater payload mass, with respect to GPFS one: an improvement
of roughly 230 kg (that is 11% of GPFS payload mass) is achieved employing
current technology for electrical system, whereas payload mass grows of roughly
400 kg (that is &~ 1/5 of GPFS payload mass) when advanced design properties are
considered. In Tab.6.8 normalized ratios are reported to compare EPFS solutions
with other launcher architectures.

Table 6.6: Mass budget comparison: payload, propellants and total engine dry
masses.

my, mp My mo mg
kg kg kg kg kg

GPFS 2070 10768 1149 7404 3364
EPFS. 2322 10800 865 7408 3392
EPFS.; 2468 10796 724 7381 3415

Table 6.7: Mass budget comparison: engine components and electrical systems
masses.

Mee my Mpz Mease my mg my Mep

kg kg kg kg kg kg kg kg

GPFS 160.2 299.4 351.1 165.6 23.6 1498 - -
EPFS.,; 1474 12,0 309.7 163.7 0.032 - 98.0 134.4
EPFS,; 162.3 12.0 239.7 1584 0.031 - 77.3 744

Since the second burn of the HRE has a very short duration, its influence on
the rocket performance is limited. For this reason the following Figures 6.1-6.7 will
show only rocket performance relative to the first burn, for the sake of simplicity.
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Table 6.8: Mass budget comparison: normalized ratios.

my mp mp
m; m; mp+mMdry

GPFS 0.143 0.741  0.904
EPFS, 0.160 0.744  0.926
EPFS,; 0.170 0.743  0.937

Looking at Fig. 6.1 and 6.2 one can notice that pump discharge pressure and
oxidizer mass flow present limited variations during operation (~ 5%) because of
the constant power operation of the pump. Therefore the set of assumptions about
electrical efficiency and power density for electric motor and pump are valid.
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Figure 6.1: Pump discharge pressure p; Figure 6.2: Oxidizer mass flow mip vs.
vs. time. time.

Mixture ratio (see Fig.6.3) and fuel regression rate (see Fig.6.6) tend to be
greater at the end of engine burn when EPFS is employed in place of GPFS. GPFS
solution exhibits a greater thrust in the first half of the engine burn than EPFS
solutions (see Fig.6.5) to avoid unacceptably low thrust during the subsequent
blow down phase. On the other hand, the use of a turbo-pump system grants
an almost constant thrust for all the burn duration, allowing for a lower initial
thrust. EPFS. and EPFS,,; have similar thrust history but are the result of different
optimization strategies. Current technology solution is characterized by a lower
discharge pressure p; (i.e. lower chamber pressure) and a larger nozzle (i.e. large
throat area) than advanced design solution ones, because the lower value of J.,
penalizes high-pressure designs. The better electrical properties of EPFS,; solution,
instead, allows for higher pressures and remarkable saving in electrical systems and
nozzle masses.
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Figure 6.4 displays specific impulse Igp histories for optimized robust solutions,
highlighting different trends when GPFS or EPFS are used. In the end, Fig. 6.7
and Fig. 6.8 presents longitudinal acceleration histories for the first and second
engine burn. One can notice that the maximum accelerations are obtained at the
end of the second burn for all the solutions, but both EPFS solutions exhibits a
final acceleration approximately equal to 6g, that, albeit being almost twice the
GPEFS one, falls within the third stage maximal acceleration requirement of the
current VLV (i.e. 7g).[2]
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6.4 Conclusions

In this Chapter, the performance of two different feed systems, namely a gas
pressurized feed system and an electrical pump feed system, have been compared
when employed in a HRE upper stage. In Sec. 6.1 and 6.2 the author described the
differences in the problem statements and robust optimization approaches between
the present application and the one previously presented in Chapter 5.

Numerical results, reported in Sec. 6.3, pointed out that electrical pump sys-
tems are able to grant the required robustness, despite the uncertainty in the re-
gression rate during operation, and, at the same, time outperform conventional
gas-pressurized systems in HRE applications.

References

[1] Terry M Abel and Thomas A Velez. Electrical drive system for rocket engine
propellant pumps. US Patent 6,457,306. Oct. 2002.

[2] Arianespace. VEGA, User’s Manual, Issue 4 - Revision 0. [Online; accessed
2-July-2019]. 2014. URL: http://www . arianespace . com/wp - content /
uploads/2015/09/Vega-Users-Manual_ Issue-04_April-2014.pdf.

3] PRE Bahn. Rocket Engine System. US Patent 9677503 B2. 2017.

[4] Lorenzo Casalino, Filippo Masseni, and Dario Pastrone. “Robust Design Ap-
proaches for Hybrid Rocket Upper Stage”. In: Journal of Aerospace Engineer-
ing 32.6 (2019), p. 04019087.

91



6 — Real World Application: Electrical Turbo Pump Upper Stage

‘ Uncertain parameters p ‘ Boundaries b; and by

Design parameters b F.'- -5
Indirect Direct
trajectory engine «
AV4 DOE —> optimization optimization
(OCT) (PSO)
Engine
design n
'=|_|_> Mass ::
budget ::
l_;rl J[ N Robust-based
Average merit F________________;: 2-layer
function [T TTTTTTTTTTT optimization procedure
AV 4

Optimal robust solution

Figure 6.9: Scheme of the employed robust-based optimization procedure. Green
boxes are the input of the optimization problem, orange boxes present the main sub-
models and tools used and the blue box reports optimization outputs. The dotted
link on the right represents the feedback due to PSO algorithm which adjusts the
design parameters aiming at the maximization of the merit function. A backward
link connects mass budget and trajectory optimization boxes, underlining that the
actual battery mass, and thus the payload mass, have to be verified "a posteriori".

[5] Lorenzo Casalino and Dario Pastrone. “Optimization of a hybrid rocket upper
stage with electric pump feed system”. In: 46th AIAA/ASME/SAE/ASEE
Joint Propulsion Conference € Ezhibit. 2010, p. 6954.

[6] Goran Johnsson and Mikael Bigert. “Development of small centrifugal pumps
for an electric propellant pump system”. In: Acta Astronautica 21.6-7 (1990),
pp. 429-438.

92



REFERENCES

[14]

[15]

Hyun-Duck Kwak, Sejin Kwon, and Chang-Ho Choi. “Performance assess-
ment of electrically driven pump-fed LOX/kerosene cycle rocket engine: Com-

parison with gas generator cycle”. In: Aerospace Science and Technology 77
(2018), pp. 67-82.

Woodbank Communications Ltd. Battery and Energy Technologies. [Online;
accessed 1-July-2010]. 2005. URL: https://www.mpoweruk.com/performance.
htm.

PA Pavlov Rachov, H Tacca, and D Lentini. “Electric Feed Systems for
Liquid-Propellant Rockets”. In: Journal of Propulsion and Power 29.5 (2013),
pp. 1171-1180.

Steven J Schneider. “Low thrust chemical rocket technology”. In: (1992).

AJ Sobin and WR Bissell. Turbopump systems for liquid rocket engines. Na-
tional Aeronautics and Space Administration, 1974.

N Solda’ and D Lentini. “Opportunities for a liquid rocket feed system based
on electric pumps”. In: Journal of propulsion and power 24.6 (2008), pp. 1340—
1346.

George P Sutton and Oscar Biblarz. Rocket propulsion elements. John Wiley
& Soms, 2016.

D Vaughan et al. “Technology development of an electrically driven pump
fed storable liquid bi-propellant for a Mars ascent vehicle”. In: Proceedings
of the 68th International Astronautical Congress, Adelaide, Australia. 2017,
ppP- 25-29.

G Waxenegger-Wilfing, RHS Hahn, and J Deeken. “Studies on Electric Pump-
Fed Liquid Rocket Engines for Micro-Launchers”. In: Proceedings of the Space
Propulsion Conference, Seville, Spain. 2018, pp. 14—18.

93



94



Chapter 7

Conclusions

In Chapter 5 and 6 the author presented two numerical applications of the de-
veloped robust-based design and optimization procedure for hybrid rocket engines.
A hybrid powered upper stage, suitable as a replacement of the third and fourth
stages of the current Vega launcher, has been considered in both cases.

In Chapter 5 a gas pressurized feed system has been taken into account in the
hybrid rocket engine design and a complete uncertainty analysis has been performed
prior to optimization. First a sensitivity analysis has been carried out by means
of the Morris Method, which allowed for the identification of the most significant
source of uncertainty. Six parameters had major effects: nozzle throat erosion coef-
ficient, fuel regression rate correlation coeflicient and exponent, fuel density, initial
oxidizer tank pressure and initial throat to port area ratio. The effect of the uncer-
tainty due to these parameters was so strong that their variations had to be taken
into account in each merit function evaluation. A mission specific robust-based for-
mulation has been used, in order to grant robustness in the optimized design found
out and the actual attainment of mission goals, despite the presence of such uncer-
tainties. In addition, the outputs of the sensitivity analysis showed that a second
group of model parameters had minor, but not negligible, effects on model outputs.
In the proposed robust-based procedure, performance variation due to this group
of parameters has been checked "a posteriori', since the computational cost associ-
ated to additional uncertain parameters within the optimization procedure would
have been remarkably high. Several design of experiments techniques, namely a
fractional factorial design, Taguchi’s Ligz orthogonal array and Box Behnken design
have been employed to properly characterize the effects of both groups of uncertain
parameters on system performance.

In Chapter 6 the same hybrid rocket engine application has been considered, but
an electrical turbo pump feed system has been employed in place of a gas pressurized
one, aiming at testing the viability of such feed system for hybrid powered upper
stages. In order to reduce the performance variability due to uncertainty, in this
first attempt employing electrical systems, a simpler robust model has been used.
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Only regression rate correlation coefficient and exponent have been regarded as
uncertain, since they resulted to be the most critical ones both in the literature
about hybrids and in the sensitivity analysis performed in the previous Chapter.

In either case the optimization focused on the maximization of the payload mass
inserted in an assigned orbit (i.e. 700 km circular polar orbit). A linear combination
of payload mass and attained orbit altitude has been employed as merit function.
A particle swarm optimization algorithm has been used to guide the procedure ad-
justing design parameters values, whereas an indirect method optimized the ascent
trajectory for each given engine design. In order to properly evaluate the noise due
to uncertain parameters, several merit function evaluations have been performed
varying uncertain parameters, as prescribed by the selected design of experiments
technique, while keeping fixed the design parameters. In this way, an average per-
formance has been calculated for each engine design and the robust-based procedure
resulted able to minimize the effect of uncertainty achieving designs able to fulfill
mission requirements (i.e. ensure target altitude reaching) despite the presence of
uncertainty.

Table 7.1: General mass budget comparison for robust solutions. VLV stands for
the current Vega launcher performance.

My mp mp
m; m; mp+mdry

ke - ) ;

VLV 1430 0.094 0.731  0.840
Fi, 2102 0.145 0.741  0.905
Lqg 1977 0.136  0.747  0.903
Bug 2001 0.140 0.746  0.905

GPFS 2070 0.143 0.741  0.904
EPFS, 2322 0.160 0.744  0.926
EPFS,; 2468 0.170 0.743  0.937

My,

The numerical results presented in Chapter 5 showed that the cost of robust-
ness was a payload reduction smaller than 15% with respect to the deterministic
optimal design. Robust solutions had larger web thickness and grain length than
deterministic one. This optimization strategy aimed at obtaining the surplus of
fuel mass, required to withstand the effects of uncertainties during hybrid rocket
engine burn, and, at the same time, maintain the increase in engine dry mass as
small as possible. In any case, the performance, in terms of delivered payload mass,
of the robust solutions employing a gas pressurized feed system resulted better by
almost one-third than the actual Vega launcher one.

The hybrid powered upper stage exhibited even better performance considering
an electrical pump feed system, as presented in Chapter 6. Optimized solutions were
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able to grant robustness in the design and a relevant payload mass gain, between
one-tenth and one-fifth depending on the properties taken into account for electrical
systems, with respect to the robust optimal solution obtained employing the same
uncertainty model and a gas pressurized feed system. Moreover, the robust optimal
solution employing electrical feed system outperformed by far actual Vega launcher
performance. In this case the payload gain resulted to be of roughly one tonne,
which is almost 70% of the total current Vega launcher payload mass.

In the end, the results presented in this Doctoral Thesis proved that hybrid
rocket engines are a viable option for upper stages, when a robust-based optimiza-
tion procedure, able to accurately manage the intrinsic uncertainty in the design,
is available. Moreover, innovative solutions, such as electrical turbo pump feed
system, resulted able to further increase the appeal of hybrid propulsion system
with respect to heritage propulsion architectures granting relevant performance
boosts. Future developments of the work here presented should include the use
of the developed optimization procedure to different applications, such as small
satellite launchers and space engines, and a more refined modeling of electrical sys-
tems. Moreover, additional enhancement of the uncertainty characterization and
management methods here employed should be researched, aiming at an affordable
computational cost even when a large number of uncertain parameters have to be
taken into account within the optimization procedure.
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Nomenclature

Acronyms

AMROC  AMerican ROcket Company
ANOM ANalysis Of Means

ANOVA  ANalysis Of VAriance

AVUM Attitude Vernier Upper Module

BVP Boundary Value Problem

CFD Computational Fluid Dynamics
DOE Design Of Experiments

EAs Evolutionary Algorithms

EE Elementary Effects

EPFS Electric Pump Feed System
EPFSs Electric Pump Feed Systems
ESA European Space Agency

FFD Fractional Factorial Design
FLOX Fluorine Liquid OXygen

GE General Electric company
GIRD group for the study of reactive motion, Russian: Gruppa Izucheniya

Reaktivnogo Dvizheniya (I"pynmna V3yuenus Peakrusuoro /IBmkenns)
GPFS Gas Pressurized Feed System
GPFSs Gas Pressurized Feed Systems
HAST High Altitude Super-sonic Target
HP Hydrogen Peroxide
HRE Hybrid Rocket Engine
HREs Hybrid Rocket Engines
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Nomenclature

HTPB Hydroxyl-Terminated PolyButadiene

LEX Lithergol EXperimental
LOX Liquid OXygen

LRE Liquid Rocket Engine

LREs Liquid Rocket Engines

MAV Mars Ascent Vehicle

NASA National Aeronautics and Space Administration
NTO Nitrogen TetrOxide

OAT Once at A Time

oCT Optimal Control Theory

PB PolyButadiene

PDF Probability Density Function
PE Poly Ethylene

PMMA PolyMethylMethacrylate
PSO Particle Swarm Optimization
RCDB Randomized Complete Block Design
RDM Robust Design Method
RFNA Red Fuming Nitric Acid

RP1 Rocket Propellant-1

SA Sensitivity Analysis

S/N Signal to Noise ratio

SRM Solid Rocket Motor

SRMs Solid Rocket Motors

SSO Sun Synchronous Orbit

SS Sum of Squares

s.t. Such That

UDMH Unsymmetrical DiMethylHydrazine
USAF United States Air Force

VLV Vega Launch Vehicle
XDF eXperimental Douglas Fir
723 Zephiro 23
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Nomenclature

79 Zephiro 9

Greek Symbols

«a Mixture ratio

A Altitude violation, [m)]

Ay Engineering tolerance

Obe Batteries energy density, [Wh/kg]

Sbp Batteries power density, kW /kg]

ep Electric motor and pump power density, [kW /kg]
AHy, Main stream thermal energy per unit mass, [J/kg|
AH,.r;  Latent heat of sublimation per unit mass, [J/kg]
€ Multi-objective constraint, [km]|

n Efficiency

i Signal to Noise ratio

Nep Electric motor and pump efficiency

y Specific heat ratio

1 Mean value

1 Mean of the absolute values

w Earth’s angular velocity, [s7']

o Merit function, [kg]

o) Latitude, [deg]

s Pi, Archimedes’ constant

) Density, [kg/m?]

o Standard deviation

o? Variance

Roman Symbols

a Regression rate correlation coefficient, [m? +!'s" = kg™]
Ay Failure cost

A, Burning surface area, [m?

A, Port area, [m?]

A, Nozzle throat area, [m?]

b Design parameters vector
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Nomenclature

Bys Box-Behnken’s array

b, Lower bound vector

by Upper bound vector

B AHy, to AH, .s5 ratio

C Learning factor

c* Characteristic velocity, [m/s]

Cr Thrust coefficient

D Drag vector, [N]

D Rocket outer diameter, [m]

DET Deterministic design

E Nozzle area-ratio

E. Electric energy, [Wh]

€j Vector of the canonical base

E’](-i) Elementary effect of the j-th input parameter at the i-th repetition
F Thrust vector, [N]

F Generic model output

i F5 fractional factorial array

g Gravity acceleration, [m/s?]

G Mass flux, [kg/(m?s)]

g5 (b) j-th inequality constraint

Gn Gravitational constant, [Nm?/kg?|
h Altitude, [km]

h* Target altitude, [km]

Isp SPecific Impulse, [s]

J Initial throat area to port area ratio
k Number of factors

kp, Linear combination constant, [kg/km]|
Kero Nozzle throat erosion constant, [m!'?s~'bar=%%]
L Number of levels

L(y) Quality loss function

Lqg Taguchi’s Lz orthogonal array
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Nomenclature

Uy

Lg orthogonal array

Fuel grain length, [m]
Orthogonal array

Signal factors vector

Rocket mass, [kg]

Mass, [kg]

Earth mass, [kg]

Payload mass, [kg]

Number of model evaluation
Number

Regression rate correlation exponent
Number of input parameters
Nominal

Uncertain parameters vector
Burning perimeter, [m]
Electric Power, [kW]
Probability function

"A posteriori" uncertain parameters vector
Pressure, [bar]

Heat flux, [J/(m?s)]

Average quality loss

Position vector, [m]

Number of repetition

Random number

Grain outer radius, [m]

Grain initial inner radius, [m]
Throat radius, [m]

Eroded distance, thickness, [m]
Temperature, [K]

time, [s]

Velocity component in the radial direction, [km/s]
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Nomenclature

v Velocity vector, [m/s]

Volume, [m?]

v Particle velocity

Ve Velocity component in the eastward direction, [km/s]
Umnaz Particle maximum velocity

w Web thickness, [m]

W, Velocity component in the northward direction, [km/s]
X Input parameters vector

x Noise factors vector

X Particle position

=

Axial position, [m]

y Burning distance, [ m]

z Control factors vector

Z Hydraulic resistance, [1/(kg m)]
zP Noise vector of p
Superscripts

Time derivative

* Characteristic value
Subscripts

0 Ambient

1 Combustion chamber at head-end
% Percentage

a Auxiliary gas tank

abl Ablative layer

ad Advanced design

Al Aluminum

avg Average

b Batteries

BD Beginning of blow-down phase
best Best

burn Burn
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Nomenclature

case
ce

Cr

ct

d

dry

e

ep

F

f
fairing
FE

F

fs

G
g
I

~.

le
lin
max
ME
man

nz

opt

out

Combustion chamber at nozzle entrance
Characteristic velocity
Engine case

Combustion chamber wall
Thrust coefficient
Current technology
Discharge

Engine dry

Nozzle exit

Electric motor and pump
Fuel

Final

Fairing

Merit function evaluations
Fuel

Feed system

Generations

Pressurizing gas
Individuals

Initial

Inner

Lateral end

Liner

Maximum

Model evaluation
Minimum

Nozzle

Oxidizer

optimal

Outer

Propellants
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Nomenclature

D Grain port

prior "a priori"

Prt Particle

ref Reference

rel Relative

S Swarm

SA Sensitivity Analysis

sl Propellant sliver

t Oxidizer tank

tot Total

U Payload

ull Ullage

Other Symbols

@ Standard astronomical symbol for planet Earth
+ Factorial design-involved parameters
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