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Abstract 

 

The sociological impact of neurodegenerative diseases, such as Alzheimer’s Disease 

(AD), places a heavy burden on the healthcare industry, patients and families, not only from a 

medical and financial impact, but also in terms of quality of life. The consequences to the 

patient, family and caregivers can be life-changing, yet quantitative studies have been sparse. 

Our understanding of ways to improve cognition in these patients would be highly beneficial. 

One such potential tool to improve cognition in these patients, the lynx1 gene, has been 

identified. The purpose of this project is to compare the effects of the lynx1 gene on Alzheimer's 

development in different genetic variant mice (wildtype, knockout, and heterozygous 

genotypes).To do this, mice underwent fear conditioned learning via the Chronic Social Defeat 

Stress (CSDS) paradigm. Based on the results from these behavioral tests, as well as predicted 

data for planned experiments, I believe that an introductory case for further studies of the 

relationship between the lynx1 gene and AD has been shown.  

 

 

 

 

 

 

 

 



 

Introduction 

 

 AD is a neurodegenerative disorder, with a distinct pathology, characterized by plaques and 

neurofibrillary tangles containing aggregated -amyloid (A) and hyperphosphorylated tau protein 

(Thomsen 2016, Alud 2002). It has been shown that soluble A species are considered to be the 

most toxic form of A and are associated with cognitive deficits in AD (Thomsen 2016), including 

progressive neuronal loss, inflammation, and the gradual and inevitable decline of memory and 

cognition8. AD  is the most common cause of dementia and is currently estimated to affect more 

than 5 million people in the United States, with an expected increase to 13 million by the year 

2050. The costs of care of patients with Alzheimer’s disease in 2010 were estimated at more than 

$172 billion in the United States, an annual cost that is predicted to increase to a trillion dollars by 

205018,19.  

To date the most effective treatment for AD symptoms are Cholinesterase Inhibitors (CIs). 

Studies have shown that cholinergic systems in the basal forebrain are affected early in the disease 

process, resulting in a loss of acetylcholine neurons and loss of enzymatic function for 

acetylcholine synthesis and degradation. This in turn causes memory loss and deterioration of other 

cognitive and noncognitive functions such as neuropsychiatric symptoms9. Despite the initial 

benefit they provide, the efficacy of CIs dissipate after 6-12 months4. It is proposed that the  lynx1 

gene could be a potential tool for improved cognition and pathology improvement in AD patients.  

Lynx1 is a protein that is part of the Ly-6/neurotoxin family and is a glycophosphatidylinositol-

anchored membrane protein. Lynx1 has been shown to have several functions in the brain, 

particularly in learning and memory via inhibitory modulation on nAChR function, with high 



affinity for 7 and 42 subunit binding7. It has been shown that co-expression of lynx1 results in 

reduced agonist sensitivity and slower recovery from nACh desensitization  and that lynx1 exhibits 

inhibitory function during the critical period on nAChRs in different areas of the brain5,7. The lynx1 

gene is highly concentrated in the Pre-Frontal Cortex (PFC) and the CA1 neurons of the 

hippocampus, which are the brain areas critically impacted during AD pathology5. In addition, 

studies have also shown that the lynx1 gene competes with A1-42 plaques in binding with nicotine 

receptors, with both showing preferential binding to the 7 and 42  subunits of nAChRs2,8. 

Notably, it has been shown that the knockout of the lynx1 gene can lead to neurotoxicity and 

proliferation of the toxic effects of A1-42 plaques in the brain. The key figures from these studies 

are discussed below in greater detail. 

 

Precedential Data 

 

 Figure 1: Ws-lynx1 actively competes with oligomeric A1-42 plaques to bind/modulate 

nAChRs 

 



Previous studies have shown that both lynx1 and A1-42  plaques have a strong binding affinity to 

the 7 subunit of the nACh 

receptors2,7,11, however, it had 

not been determined how or if 

lynx1 interacts with A1-42  

plaques in regard to binding to 

the 7 subunit of nAChRs. 

Studies conducted by Thomsen 

et al.20 determined that preincubation of rat cortex tissue with 200 nM of oligomeric A1-42  plaques 

significantly decreased the amount of nAChR subunits isolated by affinity purification with Ws-

lynx1 (Figures 2A and 2B). Furthermore, preincubation of rat cortex tissues with 10 nM of Ws-

lynx1 reduced the amount of 7, 4 and 2 subunits attached to oligomeric A1-42  plaques post-

affinity purification assay (Figure 2D and 2E). These data clearly demonstrate that lynx1 competes 

with oligomeric A1-42  plaques to bind to nAChRs. 

 

Figure 2: Ws-lynx1 prevents A1-42  induced cytotoxicity 



 

Another key hypothesis explored20 was that Ws-lynx1 prevented 

A1-42  induced cytotoxicity on nAChRs in vitro. Mouse cortical 

neurons were incubated with Ws-lynx1 (0.01e10 mM) for 2 hours 

followed by addition of 20 mM oligomeric A1-42 for an 

additional 24 hours. The release of lactate dehydrogenase (LDH) 

to the media was used as a measure of cytotoxicity, and the overall 

experiment resulted in significantly decreased levels of LDH release by mouse cortical neurons 

where Ws-lynx1 was expressed compared to when only oligomeric A1-42 plaques were expressed 

(Figure 3). 

 

 

 

 

 

 

Figure 3: Enhancement of Associative Learning Ability in lynx1 Null Mutant Mice 

Observed in Fear-Conditioning Assays  



It has been determined in previous studies that nAChR activation has been shown to be an 

important component of specific aspects of learning and memory3,6. Therefore, due to the fact 

that lynx1 directly modulates nAChRs, it was hypothesized that manipulation of  lynx1 would 

have significant effects on learning and 

memory. To test this, behavioral tests 

conducted by Miwa et al7. were run on 

lynx1KO mice to evaluate their learning 

abilities compared to lynx1 wildtype variant 

mice. It was determined that both lynx1KO 

mice and lynx1 wildtype variant mice did 

not behave differently in regard to novel 

contextual response and tone (Figure 4A), 

nor did lynx1KO mice show significant differences to lynx1 wildtype variant mice in regard to 

latency to enter a light/dark box (Figure 4B) or in training and location time for the hidden 

platform in the Morris water maze (Figure 4C). Therefore, it was demonstrated that lynx1 doesn’t 

display a significant change in contextual learning between lynx1KO and wildtype mice.  

 

 

Figure 4: Enhancements in Nicotine-Mediated Motor Learning Performance is expressed 

in lynx1 Null Mutant Mice  



Comparatively, when nicotine was introduced to lynx1KO and wildtype mice in relation to motor 

coordination and learning, lynx1KO mice 

showed significantly improved motor 

training compared to lynx1 wildtype mice 

that received a placebo or nicotine and 

placebo (Figure 5D). This data is 

consistent with the hypothesis that that 

elimination of lynx1 alters nAChRs 

toward heightened receptor sensitivity6.   

Based on these findings, the purpose of this project was to determine if manipulation of the 

lynx1 gene reduces A1-42  plaque and tau protein tangle levels and improves cognition in 

genetically variant mice.  

 

Hypothesis  

The hypothesis for this project was that  lynx1 knockout variant mice would have increased 

learning but altered pathology development via heightened levels of present A1-42 plaque and tau 

protein tangles, lynx1 wildtype variant mice would have decreased learning abilities but greater 

protection against A1-42 plaque and tau protein pathology development, and lynx1 heterozygous 

variant mice would have greater learning abilities and protection against levels of A1-42 plaque 

and tau protein tangle pathology development.  

  

Material and Methods  

 



Behavioral Testing Lynx1 variant mice underwent fear cue conditioning testing to examine 

variation in fear learning between genotypes. For the experimental setup, mice underwent an 

acclimation to a novel environment followed by two tone-shock pairings. The following day 

mice underwent a cued test which consisting of a two-minute time period without any sound 

followed by a two-minute sound (same sound as day 1). The context was changed between each 

day. Data collected was the percent freezing to sound. Any mouse that froze over 90% or below 

30% was not included. 

 

Histological Staining Histological analyses was to be carried out on a total of 25 mice, 23 test 

mice and two control mice (aged 6 months, both lynx1 knockout variant mice). Each genotype 

group was broken down into two age groups: one group 12-14 months of age at the time of 

histological analysis and another group 16-18 months of age. This was to compare the levels of 

AD pathology in the brain and to serve as a control for one another. Initially two stains were 

planned to be utilized, the Campbell-Switzer Silver stain to image the A1-42 plaques present in 

the brain, and an AT8 monoclonal antibody (mouse) to image levels of tau protein tangles. 

However, due to time and cost only the AT8 monoclonal antibody (mouse) was planned to be 

utilized. The protocol for AT8 immunochemistry staining protocol was planned to be based off 

of the one used by Liu et. al., 201215. Both stains would have focused on the PFC and 

hippocampus, as these are the two brain areas immediately affected by the development of AD 

pathology and express the highest concentration of lynx1 in the brain. 

Data and Interpretation of Results 

 



Lynx1KO Mice showed increased Freezing Percentage to sound compared to lynx1 

wildtype and heterozygous mice 

 

Percent freezing to sound. Lynx1KO mice displayed increased freezing to sound during the CSDS paradigm. This effect is diminished in 

lynx1 wildtype variant mice. L2KO and L1L2 DKO (double knock out) were used as controls. Data was collected from a previous study, 

none of the mice used for histology underwent this behavioral testing paradigm. 

 

As predicted, the lynx1KO mice displayed increased percent freezing to sound compared 

to lynx1 wildtype and heterozygous mice, suggesting that the lynx1KO mice experienced altered 

cognition due to deletion of the lynx1 gene. A possible explanation for this is that the increase in 

acetylcholine accessed by the nAChRs as a result of the loss of lynx1 inhibitory modulation 

resulted in increased neural plasticity6. Interestingly, the lynx1 heterozygous variant mice also 

experienced heighted levels of percent freezing to sound, implying that these mice also 

experienced some level of altered neural cognition. A possible explanation for this is that in these 

lynx1 heterozygous variant mice acetylcholine was able to leak into the nAChRs due to the lynx1 

gene being defective as a result of misappropriate binding to the nAChRs resulting in increased 

neural plasticity. Further experiments will need to be done to assess these predictions. 
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Predicted Data and Future Experiments 

 

Predicted Histological Data 

Unfortunately due to unforeseen circumstances, the histological portion of the project could not 

be completed. However, based on previous studies conducted as well as the behavioral data 

collected for this project, it could be postulated that the following result histological results would 

occur: lynx1KO variant mice will show more expansive AD pathology development; Lynx1 

wildtype variant mice will show reduced AD pathology development. Lynx1KO variant mice will 

likely show increased AD pathology because the lynx1gene is not present to compete with A1-42 

plaque to bind to nAChRs. Examples of this can been seen in Figures 1 and 2 in the Precedential 

Experimental Data Section. Heterozygous lynx1 variant mice will likely show lower levels of AD 

pathology development similar to that of lynx1 wildtype mice, likely because while defective, the 

lynx1 gene is still present in heterozygous mice and can still express some form of binding 

competition with A1-42 plaques. 

 

 

 

 

 

 

Future Experiments and Further Directions of Study 



One potential area of future research that could be explored in relation to this project is better 

elucidating the binding affinity relationship between the lynx1 gene and the 7 subunit of nAChRs. 

Structurally, the lynx1 gene is a protoxin variant with similar three finger fold binding mechanisms 

to that of -bungarotoxin5,8. However unlike -bungarotoxin, lynx1 does not bind irreversibly to 

nAChRs. It has been determined that the lynx1 gene has three functional conformational states: 

open, closed, and desensitized. Previous studies have determined the structure of ws-lynx1 and 

have postulated that the C-loop is a key structure in relation to correct binding affinity between 

lynx1 and nAChRs17. Specifically, the movement of the C-loop is critical for correct agonist 

binding from the closed to the open state. Previous studies have shown that the interactions 

between the C loop and that low stoichiometry binding at the 4: 4 interface on the 42 subunit 

of nAChRs are of significant importance. Based on these studies it has been determined that the 

following residues on the C-loop are of particular interest for study: Arg38, Trp156 and Tyr20416. 

In addition, as previously noted, both the lynx1 gene and A1-42 plaques demonstrate preferential 

binding to the 7 and 42  subunits of nAChRs with similar binding affinities2,8 . Based on these 

precedents, could be hypothesized that there are specific residues between the lynx1 gene and the 

7 subunit that will be critical for correct binding affinity, and lack of these residues would cause 

misappropriate binding. If the case, this would provide a potential mechanism for the increased 

cognition and protection against AD pathology predicted to be demonstrated in heterozygous lynx1 

variant mice12,13,14   

In addition, several more iterations of the behavioral assessment/histological study done 

for this project should be conducted to demonstrate a more concrete relationship between the lynx1 

gene and its cognitive and biological effects on AD pathology. A more robust design that could be 



utilized in the future is to run behavioral assessments on the same mice that will be utilized in the 

histological study.  

 

Conclusion 

Overall, this project illuminated a potential relationship between the lynx1 gene and AD 

pathology progression. While introductory in scope, this project has the potential to be a valuable 

first step for future AD research via better understanding of upstream mechanisms involved in the 

development of AD pathology (via exploration of the lynx1 gene and its function within the 

cholinergic system) and illuminate a possible avenue for improved treatment via providing 

potential targets for genetic or pharmacological study in regard to AD treatment.  
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