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Abstract 1 

Lung diseases are the leading cause of mortality worldwide. The currently available therapies are not 2 

sufficient, leading to the urgent need for new therapies with sustained anti-inflammatory effects. 3 

Small/short or silencing interfering RNA (siRNA) has potential therapeutic implications through post-4 

transcriptional downregulation of the target gene expression. siRNA is essential in gene regulation, so is 5 

more favorable over other gene therapies due to its small size, high specificity, potency and no or low 6 

immune response. In chronic respiratory diseases, local and targeted delivery of siRNA is achieved via 7 

inhalation. The effectual delivery can be attained by the generation of aerosols via inhalers and nebulizers 8 

which overcomes anatomical barriers, alveolar macrophage clearance and mucociliary clearance. In this 9 

review, we discuss the different siRNA nanocarrier systems for chronic respiratory diseases, for safe and 10 

effective delivery. siRNA mediated pro-inflammatory gene or miRNA targeting approach can be a useful 11 

approach in combating chronic respiratory inflammatory conditions and thus providing sustained drug 12 

delivery, reduced therapeutic dose, and improved patient compliance. This review will be of high 13 

relevance to the formulation, biological and translational scientists working in the area of respiratory 14 

diseases. 15 

Keywords: siRNA; delivery systems; pulmonary; nanocarriers; RNA interference 16 
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Introduction 1 

Chronic respiratory disease (CRD), in particular, asthma and chronic obstructive pulmonary disease 2 

(COPD), are amongst the leading causes of mortality and morbidity that also exert huge health and 3 

economic burden globally ("Global, regional, and national deaths, prevalence, disability-adjusted life 4 

years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990-2015: a 5 

systematic analysis for the Global Burden of Disease Study 2015," 2017). Asthma is a complex and 6 

heterogeneous chronic inflammatory disorder, primarily affecting the airways. The disease is largely 7 

‘allergic’ in nature and is characterized by the upregulation of genes that lead to multiple inflammatory 8 

cascades implicated in asthma (Moheimani et al., 2016). Current asthma therapies focus on reduction of 9 

symptoms and limit exacerbations during the course of the disease. However, the proportion of asthmatics 10 

with the uncontrolled disease remain significantly high and utilizes the majority of healthcare expenses 11 

globally (P. M. Hansbro et al., 2017; Peters, Ferguson, Deniz, & Reisner, 2006). Despite the increasing 12 

classification/categorization of asthmatics into various endotypes/phenotypes (based on a number of 13 

molecular biomarkers, clinical presentation and responsiveness to common therapies)(Fajt & Wenzel, 14 

2015), the key pathological feature of asthma is involvement of multiple inflammatory mediators that are 15 

often regulated by ‘key’ genes/proteins, which are also referred as master transcription regulators(Sel, 16 

Henke, Dietrich, Herz, & Renz, 2006). Thus, targeting these key pro-inflammatory genes would 17 

potentially improve the overall disease outcomes(Sel et al., 2006).  18 

COPD is another complex and multi-factorial respiratory disease that is caused primarily due to chronic 19 

exposure to cigarette smoking(Rennard & Vestbo, 2006). In addition, exposures to biomass smoke, air 20 

pollution and a variety of occupational exposures to chemical dust and fumes also play an important role 21 

in the onset and progression of COPD(KC, Shukla, Gautam, Hansbro, & O’Toole, 2018). COPD 22 

constitutes multiple inflammatory pathways, that are induced by chronic exposure to irritants and, in 23 

addition, due to an imbalance between the oxidase/anti-oxidant ratio and/or proteases/anti-proteases ratio 24 

(Peter J. Barnes, 2016). The course of the disease is further complicated by frequent acute exacerbations, 25 

which are described as worsening of disease symptoms that require a change of daily medications and 26 

often requiring hospitalizations(Rodriguez-Roisin, 2000). Acute exacerbations are primarily caused by 27 

infections (bacterial and/or viral) which dramatically increase the risk of mortality and morbidity amongst 28 

COPD patients(Sapey & Stockley, 2006). In addition, the lack of effective therapies to limit the onset 29 

and/or progression of COPD further aids in increased global morbidity and mortality, especially in aging 30 

populations.  31 
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Idiopathic pulmonary fibrosis (IPF) is a life-threatening lung disease that involves the progressive loss of 1 

lung function along with clinically significant thickness/stiffness of lung tissues, generally accompanied 2 

by tissue scarring. The 3- and 5-year mortality rates in IPF patients are almost 50%(Meltzer & Noble, 3 

2008). Integrative network analysis revealed a total of 27 genes (CHIT1, CXCL14, LPPR4, etc.) and 22 4 

miRNAs (in particular, miR-409-5p and has-miR-376c) that are associated with the disease 5 

development(L. Wang, Huang, Zhang, Chen, & Zhao, 2018). Targeting these and similar nucleic acids 6 

that are crucial in the onset/progression of IPF would certainly lead to the development of novel therapies 7 

for treating IPF and enhancing the quality of life in IPF patients. 8 

Lung cancer is one of the leading causes of cancer-related mortality globally(Bray et al., 2018). A number 9 

of genetic mutations have been linked to the pathogenesis of two major types of lung cancer, including 10 

non-small-cell lung cancer (e.g., KRAS, EGFR, ALK, MET exon 14, BRAF, PIK3CA, ROS1, HER2, and 11 

RET)("Comprehensive molecular profiling of lung adenocarcinoma," 2014) and squamous cell carcinoma 12 

(PIK3CA, PTEN and amplification of FGFR1)(Rosell & Karachaliou, 2016). Importantly, circulating 13 

cell-free nucleic acids are now being investigated/utilized in both diagnosis and personalised treatments 14 

for lung cancers, which have been reviewed in detail by Sorber et al.(Sorber et al., 2017). Given the 15 

immense burden and limited treatment options for lung cancer, nucleic acid-based therapies may present a 16 

novel therapeutic front to develop personalised therapies.  17 

Respiratory infections, especially with viruses and bacteria, further complicate the course of chronic 18 

respiratory diseases. In particular, viral pathogens, such as rhinovirus, influenza virus and respiratory 19 

syncytial virus, are often implicated in the exacerbations of respiratory diseases, including asthma, COPD 20 

and IPF(Wark, Tooze, Powell, & Parsons, 2013). In addition, bacterial pathogens (e.g., Haemophilus 21 

influenzae, Streptococcus pneumoniae,and Moraxella catarrhalis), either on its own or as a secondary 22 

pathogen following prior viral infections seem to be more detrimental to the lung health and poorer 23 

quality of life(Didierlaurent, Goulding, & Hussell, 2007; Wark et al., 2013). A better understanding of the 24 

interactions between respiratory infections and chronic respiratory diseases (asthma, COPD) is essential 25 

for the design of more effective preventive and treatment strategies. For instance, tuberculosis seems to 26 

increase the risk of COPD and vice versa (O'Toole, Shukla, & Walters, 2015). Moreover, tuberculosis 27 

increases the oxidative burden in the lungs (K. Dua et al., 2018; Shastri et al., 2018), regulated by 28 

multiple inflammatory mediators (K. Dua et al., 2019), that could be targeted with the novel, nucleic acid-29 

based therapies for reducing the treatment regimens.  30 

Despite the huge burden of major respiratory disease, there is a lack of effective treatments that could 31 

limit the disease onset and/or disease progression(K Dua, DK Chellappan, et al., 2018; K Dua, Gupta, 32 
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Chellappan, Shukla, & Hansbro, 2018; Kamal Dua, Vamshi Krishna Rapalli, et al., 2018; Kamal Dua, 1 

Shukla, de Jesus Andreoli Pinto, & Hansbro, 2017; Rapalli et al., 2018). Thus, extensive research into 2 

potentially novel therapeutics is urgently required. Currently, the potential of novel classes of 3 

therapeutics, which are nucleic acid-based, for treating lung diseases is under intense investigation due to 4 

their crucial roles in regulating gene expression(Kamal Dua, Terezinha de Jesus Andreoli Pinto, et al., 5 

2018; Kamal Dua, Hansbro, Foster, & Hansbro, 2017; Kamal Dua, Shukla, Tekade, & Hansbro, 2017). 6 

For instance, antisense oligonucleotides, which are single-strand DNAs or RNAs that selectively bind to 7 

complementary mRNAs and modulate their functions, could potentially result in up-/down-regulation of 8 

particular genes, thus aiding in limiting the disease progression (Bennett, Baker, Pham, Swayze, & Geary, 9 

2017). Similarly, small interference RNAs (siRNAs) are double-strand RNA molecules (~21-23 base 10 

pairs in length) capable to ‘silence’ specific genes of a known sequence responsible for genome 11 

stability(J. K. Lam, Chow, Zhang, & Leung, 2015). siRNA works at two stages: post-transcriptional gene 12 

silencing (PTGS) resulting in direct sequence-specific cleavage causing repression of translation and 13 

degradation resulting in transcriptional gene silencing (TGS). siRNA is found associated with effector 14 

associations which are recognized by RNA-induced silencing complexes (RISCs)(Martinez, 15 

Patkaniowska, Urlaub, Lührmann, & Tuschl, 2002). Further, this siRNA uses its full sequence for the 16 

recognition of the target sequence and cleaves the target mRNA (Jie Wang, Lu, Wientjes, & Au, 2010). 17 

Micro RNAs (miRNAs) are single-stranded, endogenous non-coding RNA molecules (~18–24 base pairs 18 

long). The miRNAs act as important regulators for a variety of immunological and cellular pathways 19 

(Awasthi, Madan, Malipeddi, Dua, & Kulkarni, 2019; Hansbro & Dua, 2018; D. D. Nguyen & Chang, 20 

2017).  21 

Notably, siRNAs have been previously speculated to be an effective nucleic acid-based therapy in 22 

asthma(M. Choi, J. Gu, M. Lee, & T. Rhim, 2017; Luo et al., 2012), COPD(Luo et al., 2012), IPF(C. N. 23 

D'Alessandro-Gabazza et al., 2012), lung cancer(Merkel, Rubinstein, & Kissel, 2014) and respiratory 24 

infections(Merkel et al., 2014). We have attempted to primarily focus on the potential drug delivery 25 

strategies to enhance the efficacy of siRNAs in treating chronic respiratory diseases, because siRNA can 26 

result in multiple gene mutations (oncogenes and tumor suppressor genes) and acts as efficient and 27 

promising cure of disease in comparison to other therapies. 28 

Drug delivery systems for siRNA in pulmonary diseases 29 

siRNA has an enormous prospective for the treatment or avoidance of different lung infections. When the 30 

RNA particles effectively enter the target, they may obstruct the expression of specific gene series 31 

through RNA interference (RNAi) to produce remedial impacts(Amreddy et al., 2018; Ayatollahi et al., 32 
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2017). The greatest deterrent to translating siRNA treatment from the research facilities into the clinics is 1 

delivery. A perfect delivery operator ought to shield the siRNA from enzymatic debasement, encourage 2 

cell take-up and advance endosomal escape inside the cells, with irrelevant poisonous effect(V. Capel et 3 

al., 2018; Jin et al., 2018). Pulmonary targeting could be accomplished by fundamental delivery or lung 4 

delivery. The latter administrative route could possibly upgrade siRNA maintenance in the lungs and 5 

lessen fundamental poisonous impacts. The delivery design should be planned cautiously so as to boost 6 

the deposition of siRNA to the unhealthy region of the aviation routes. In majority of the lung siRNA 7 

treatment studies in vivo, siRNA was conveyed either intranasally or intratracheally (Figure: 1) (I. 8 

d'Angelo et al., 2018; Ding et al., 2018; He et al., 2018).  9 

Limited studies have been reported on siRNA formulations via inhalation, although, it is expected for 10 

potential future prospects.  Following are the delivery systems of siRNA in pulmonary diseases:  11 

1. Lipid-based delivery vectors  12 

The lipid-based delivery system is generally used to deliver siRNA in vitro and in vivo. Ordinarily, 13 

cationic lipids or liposomes utilizes negatively charged siRNA through electrostatic forces and are known 14 

as lipoplexes. Several commercially available agents are lipid-based, some of which are for in vivo lung 15 

delivery, for example, DharmFECT, lipofectamine, and Oligofectamine. The main difficulties of utilizing 16 

lipid-based conveyance vectors in the clinical setup are their harmfulness and their non-specific activation 17 

of inflammatory cytokines and interferon reactions. Lipid-based delivery vectors can be classified into 18 

five types of molecules: Cationic lipoplexes and liposomes; PEGylated lipids; Neutral lipids; Lipids 19 

particles and Lipid-like molecules(Kaczmarek et al., 2018; Liu et al., 2019; Mokhtarieh, Lee, Kim, & 20 

Lee, 2018; O. S. Muddineti, A. Shah, S. V. K. Rompicharla, B. Ghosh, & S. Biswas, 2018). 21 

2. Polymer-based delivery vectors 22 

The polymer-based delivery vectors have an adaptable nature, which enables their physicochemical 23 

qualities to change effectively to accommodate their purpose. Also, it has been recommended that 24 

polymers usually do not induce a strong immune response (Ni et al., 2018; Otsuka et al., 2017). Polymer-25 

based vectors are separated into two classes: polycations and polymeric nanoparticles. Engineered 26 

polycations, for example, polyamidoamine dendrimers and polyethyleneimine and natural polycations, for 27 

example, chitosan are utilized for conveying DNA for a long time(Y. Qiu et al., 2017; Sasaki & Guo, 28 

2018). 29 

3. Peptide-based delivery vectors 30 
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Since the discovery of TAT protein from HIV-1, which assista in the uptake of the virus in the cell, a 1 

range of cell-penetrating peptides (CPPs) have been identified. CPPs are most commonly utilized as 2 

vehicles of restorative macromolecules. This technique can thus be used to deliver siRNA(Veilleux et al., 3 

2018; P. Y. Xu et al., 2018). CPPs and subsidiaries have been explored for siRNA conveyance which 4 

include MPG, TAT, transportan, penetratin, CADY and LAH4. The peptides are either covalently 5 

connected to siRNA through disulfide bond development or electrostatically in a non-covalent way(Yuan 6 

et al., 2017; D. Zhang et al., 2018). 7 

Immune response in siRNA-mediated drug delivery to lungs  8 

Airway inflammation is the major contributing factor in the pathogenesis of lung diseases, which 9 

corresponds to the degree of symptoms, airways hyper-responsiveness, and obstruction. Therefore, 10 

siRNA mediated delivery vehicle, as well as the products of secondary RNAi, stimulate the immune 11 

system by enhancing the expression or suppressing pro-inflammatory cytokines, interferons, and toll-like 12 

receptors via signaling pathways(Sioud, 2015). This is evident from an in vivo study for intratracheal 13 

administration of penetratin (peptide) conjugated siRNA capable of penetrating cytosol, activating several 14 

biochemical pathways and elevates the expression of TNF-α, IL-12, and p40. It also activates the innate 15 

immune system to target p38 MAP kinase (Moschos et al., 2007).  16 

The approach of siRNA based therapeutics against tuberculosis infections directs the gene expression 17 

modulation of the host rather than the bacilli(Man, Chow, Casettari, Gonzalez-Juarrero, & Lam, 2016). 18 

The genes that regulate autophagy in the host can be targets for M. tuberculosis infection such as Rap22a, 19 

Bfl-1/A1, Ras homologue enriched in brain (Rheb) and UV radiation resistance associated genes 20 

(UVRAG) (Kathania, Raje, Raje, Dutta, & Majumdar, 2011; Kim et al., 2015; Roberts, Chua, Kyei, & 21 

Deretic, 2006; Jinli Wang et al., 2013). The suppression of these genes can hinder bacterial growth and 22 

proliferation. Another strategy is immunosuppression to inhibit bacterial growth. TNF-α and IFNγ are 23 

essential for macrophage activation to initiate granuloma formation for the proliferation of M. 24 

tuberculosis (Ramakrishnan, 2012; Silva Miranda, Breiman, Allain, Deknuydt, & Altare, 2012). 25 

Chemokine and Lymphotacin/XCL-1 activate CD8+T cells during severe tuberculosis infection. In 26 

addition to this, XCL-1 regulates IFN-γ and CD4+T cells to maintain granuloma. When siRNA targeting 27 

XCL-1 is delivered in TB infected mice, the expression of XCL-1 is greatly reduced, therefore, 28 

decreasing T lymphocytes, INFγ, and granuloma (Rosas-Taraco, Higgins, Sanchez-Campillo, et al., 29 

2009).  30 

The intranasal siRNA mediated delivery of SOC3 in chronic asthma mouse model had been reported to 31 

improve eosinophil count and airways hyper-responsiveness. This has also been correlated to improved 32 
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mucus secretion, collagen reduction, and airway remodeling. siRNA mediated SOC3 reduces RhoA/Rho 1 

kinase signaling pathway, thereby, regulating inflammation, bronchial smooth muscle contractions and 2 

upregulating IL-13, IL-4  via RhoA protein and STAT6 activation. This reduces cytokine expression and 3 

airways hyper-responsiveness. It is known that IL-17 and IL-23 are responsible for neutrophilic and 4 

eosinophilic inflammation in mice (Figure.2)(Molet et al., 2001; Wakashin et al., 2008). Thus, siRNA 5 

mediated silencing of SOC3 regulates IL-17 expression(Staff, 2014).  6 

siRNA drug delivery in asthma/allergic airway diseases 7 

 8 

The combination therapy for asthma includes the use of inhaled corticosteroids, β2adrenergic receptor 9 

agonists, injected immunoglobulin E antibodies and quick-relief medications for effective control of 10 

asthma (Peter J Barnes, 2004). However, conventional inhaled corticosteroid therapies do not work in 11 

severe asthmatic patients (refractory asthma) and may cause adverse effects after long-term treatment 12 

(Kamal Dua, Hansbro, & Hansbro, 2017; Philip M Hansbro et al., 2017; Mealey, Kenyon, Avdalovic, & 13 

Louie, 2007). Therefore, more attention is needed in asthma research focused on the development of 14 

target-specific therapeutics. It has been previously reported that proteins such as 15 

chemokines(Rosenwasser, Zimmermann, Hershey, Foster, & Rothenberg, 2003) and cytokines (Peter J 16 

Barnes, 2008) are involved in the asthmatic-inflammatory processes. Leukotrienes are also involved in 17 

the pathogenesis of asthma (Ogawa & Calhoun, 2006). 18 

Omalizumab (Xolair® - a monoclonal antibody against IgE), reslizumab (Cinqair® in the US and 19 

Cinqaero® in Europe -a humanized antibody against human interleukin-5) and mepolizumab (Nucala® - 20 

blocks interleukin-5) are commercially available potential targeted therapeutics to treat asthma (Catley, 21 

Coote, Bari, & Tomlinson, 2011; Corren, 2012). Due to the complex nature of the disease, there is no 22 

single medication available for effective control of the asthmatic symptoms. Such targeted therapies may 23 

provide a valuable breakthrough in the pathophysiology of asthma and increase the possibility of 24 

decreasing asthma burden (M Choi, J Gu, M Lee, & T Rhim, 2017; Cook & Bochner, 2010). 25 

siRNA delivery to the pulmonary system has ameliorated the therapeutic benefits of RNA interference 26 

(RNAi) for asthma (H.-Y. Huang & Chiang, 2009). RNAi has been reported to be effective in blocking 27 

functions of molecular targets of asthma. siRNAs (21-23 bp in length) are involved in the sequence-28 

specific degradation of messenger RNA (mRNA) and decrease the expression of the corresponding 29 

proteins (Agrawal et al., 2003; Xie & Merkel, 2015). Prolonged lung retention of siRNA administered via 30 

the pulmonary route can reduce systemic side effects and improve the therapeutic benefits in the 31 
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treatment of asthma (Deng et al., 2014; Rettig & Behlke, 2012; Xie & Merkel, 2015). Intranasal 1 

administration of siRNA formulation with or without a transfection agent has been reported to inhibit 2 

replication of the respiratory syncytial virus in mice models (Whitehead, Langer, & Anderson, 2009). 3 

Xie et al., (2016) developed a siRNA based delivery system, transferring polyethylenimine (Tf-PEI), to 4 

target specific delivery of siRNAs and activated T cells in the lung. The optimized polyplexes possess 5 

ideal physical properties such as zeta-potential, size, distribution and siRNA condensation efficiency. 6 

Formulated polyplexes showed significant enhancement in cellular uptake and gene knockdown. 7 

Biodistribution studies in murine asthmatic model confirmed effective delivery of siRNA to the activated 8 

T cells (Xie et al., 2016). Based on the literature evidence, Xie and Merkel summarized that chemokines, 9 

cytokines, tyrosine kinases, transcription factors, and co-stimulatory factors are the target of siRNA-10 

mediated asthma treatment. Further, the authors proposed potential applications of targeted siRNA 11 

delivery to macrophages, T cells, and dendritic cells in asthma therapy (Xie & Merkel, 2015). 12 

Wang et al., 2008 reported imiquimod cream-chitosan nanoparticle system containing siRNA green 13 

indicator (siGLO) or siRNA for natriuretic peptide receptor (siNPRA). The formulation was applied to 14 

the mice skin. Fluorescence microscopy confirmed the delivery of SiGLO to the lungs via transdermal 15 

route. OVA-sensitized asthmatic BALB/c mice model treated with imiquimodcream-siNPRA chitosan 16 

nanoparticles showed significant (< 0.05) decrease in airway hyper-responsiveness, lung histopathology, 17 

eosinophilia and pro-inflammatory cytokines IL-4 and IL-5 (X. Wang et al., 2008). 18 

Packaging RNAs (pRNAs), a component of the bacteriophage phi29-packaging motor, have been used to 19 

deliver signal transducer and activator of transcription (STAT5b) siRNA to asthmatic spleen 20 

lymphocytes. Reverse transcription-polymerase chain reaction (RT-PCR) study showed that the STAT5b 21 

gene mRNA expression was effectively inhibited by the pRNA dimer. It is suggested that pRNA dimer 22 

carrying aptamer (ligand to interact with receptors) and siRNA can deliver functional siRNA to cells (C. 23 

Qiu, Peng, Shi, & Zhang, 2012). The first report on lung alveolar epithelial A549 cell targeting by 24 

siRNA-generation four, amine-terminated poly (amidoamine) dendrimerdendriplexes and about 40% gene 25 

silencing via siRNA exposed to the propellant used in oral inhalation devices was given by Conti et al., 26 

(Conti, Brewer, Grashik, Avasarala, & da Rocha, 2014). 27 

Choi et al., developed dexamethasone and vitamin D binding protein (VDBP) siRNA combination 28 

therapeutic system for the treatment of asthma. The results showed that the dexamethasone-conjugated 29 

polyethyleneimine/ vitamin D binding protein (DEXA-PEI/VDBP) siRNA, reduced goblet cell 30 

hyperplasia, ovalbumin sensitization, challenge-induced enhancement of airway inflammation, and 31 
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expressions of interleukin-4 (IL-13), interleukin-4 (IL-4) and eosinophil mobilizing chemokine (CCL11) 1 

(M Choi et al., 2017). Wu et al., investigated the ability of c-kit silenced siRNA to decrease the 2 

inflammation caused by allergic asthma using asthmatic mouse model treated with intranasal anti-c-kit 3 

siRNA. The result showed that siRNA significantly inhibited c-kit gene expression and decreased airway 4 

mucus secretion. The production of stem cell factor, IL-4, and IL-5 declined significantly by c-kit siRNA. 5 

However, no effect was recorded on interferon-γ (IFN-γ) generation (Wu et al., 2014). 6 

Ambient particulate matters (PMs) are the major causative agents for asthma and chronic obstructive 7 

pulmonary disease, by increasing mucus hypersecretion and inflammation. Wang et al., used ambient 8 

particulate matter (PM)-exposed human bronchial epithelial cells (HBEC) to determine the function of 9 

Amphiregulin (AREG), a ligand for epidermal growth factor receptor (EGFR), in PM-induced 10 

inflammation and mucus hypersecretion. The AREG-siRNA significantly suppressed the PM-induced 11 

inflammation and mucus hypersecretion. This also suppressed the activation of the EGFR-AKT/ERK 12 

pathway (Jian Wang, Zhu, Wang, Chen, & Song, 2019). 13 

siRNA drug delivery in lung cancer 14 

Lung cancer is the leading cause of death all over the world (Siegel, Naishadham, & Jemal, 2012). The 15 

widely available therapies include chemotherapy, radiotherapy, and surgery, while, NSCLC treatment is 16 

majorly dependent on chemotherapy. Conventionally, chemotherapy has been practiced by intravenous 17 

(IV) administration.  However, IV administration has side effects like bioavailability of the drug 18 

throughout the body via the bloodstream, which affects both malignant as well as healthy cells, the death 19 

of healthy cells causes adverse side effects like hair loss, fatigue and infections(Gandhi et al., 2018; 20 

Moding, Kastan, & Kirsch, 2013). Dobashi et al., reported that the Akt/mTOR pathway is abnormally 21 

activated in NSCLC (Dobashi, Watanabe, Miwa, Suzuki, & Koyama, 2011). Several tumor suppressors 22 

have been found to be mutated in NSCLC, proposing the function of mTOR pathway. Furthermore, the 23 

use of mTOR inhibitors is responsible for adverse side effects on healthy cells. Several molecular 24 

targeting drugs such as gefitinibcause inhibition of phosphorylation and tyrosine kinase activity of 25 

intracellular ATP binding domain of EGFR via competitive inhibition, erlotinib also inhibits tyrosine 26 

kinase and bevacizumab inhibits angiogenesis (Y.K. Oh & Park, 2009; Tiseo, Bartolotti, Gelsomino, & 27 

Bordi, 2010). Due to numerous side effects, there is an emerging need for therapeutics for the treatment of 28 

lung cancer especially NSCLC (Sadowski, Kotulska, & Jóźwiak, 2016). 29 

Taratula and his co-workers developed nanostructured lipid-based carriers (NLCs) for simultaneous 30 

delivery of anticancer drug and siRNA specifically for lung cancer. The drug encapsulated nanocarriers 31 
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induce cell death, whereas, siRNA suppresses multi-drug resistance. Two types of siRNA were delivered 1 

to improve efficacy; the first siRNA was targeting the MRP1 (Multidrug resistance-associated protein) 2 

mRNA which is responsible for the suppression of main drug efflux transporter. The second siRNA was 3 

targeting Bcl2 (B-cell lymphoma) mRNA, which suppresses cellular anti-apoptotic defense. The drug was 4 

delivered to lungs by inhalation after encapsulation in NLCs. Inhalation leads to high accumulation of 5 

nanocarriers in lungs whereas, intravenous injection led to major accumulation in liver, spleen, and 6 

kidney compared to lungs. The developed NLC formulation effectively delivered the drug and siRNA 7 

into cancer cells. This induced cell death of lung tumor cells by targeted gene silencing (Taratula, 8 

Kuzmov, Shah, Garbuzenko, & Minko, 2013). 9 

Xu et al., studied the combined effect of doxorubicin and Bcl2 siRNA using polyethyleneimine as a 10 

carrier for pulmonary delivery. Confocal laser scanning microscopy and flow cytometry exhibited a high 11 

cellular uptake of drug and siRNA in B16F10 cell lines. Real-time polymerase chain reaction (RT-PCR) 12 

observations had high gene silencing, where, 70% of Bcl2 mRNA were bashed down. The combination 13 

has increased cell apoptosis and cell proliferation inhibition in B1F10 cells. The in-vivo studies in mice 14 

showed high accumulation of doxorubicin and siRNA in metastatic lung cancer upon pulmonary delivery 15 

(C.-N. Xu et al., 2017). 16 

Hybrid lipid-polymer nanoparticles comprising of dipalmitoylphosphatidylcholine and poly(lactic-co-17 

glycolic) acid were developed to encapsulate siRNA. siGENOMESMART pool siRNA was used to check 18 

their fate on the human epithelial airway barrier, which acts against α and β subunits of the sodium trans 19 

epithelial channel. The developed nanoparticles exhibited ~150nm hydrodynamic diameter, with -25mV 20 

zeta potential. In-vitro aerosolization studies were performed on a triple cell co-culture model which 21 

mimic human epithelial airway barrier. There were no changes in nanoparticulate structure by 22 

transmission electron microscopic imaging after nebulization. Nanoparticles were internalized in 23 

epithelial cells and there were no cytotoxic effects or acute inflammation towards cell components. In-24 

vitro inhibition of sodium trans-epithelial channel protein expression was evaluated in A549 cell lines, 25 

which confessed prolonged inhibition (Ivana d'Angelo et al., 2018). 26 

Capel et al., reported delivery of siRNA using water-soluble piperazine substituted chitosan derivatives 27 

for efficient delivery by inhalation. The piperazine derivative chitosan is water-soluble at physiological 28 

pH, and forms nano-complexes with siRNA up to the size of 300nm at a relatively low polymer to siRNA 29 

ratio (5:1). Glyceraldehyde-3-phosphate dehydrogenase (GADPH) targeting siRNA was complexed with 30 

siRNA, in-vitro studies performed on lung epithelial cells revealed chitosan and siRNA complexes 31 

exhibited silencing of a gene from 40-80%. There was no effect of the aerosolization by PenCenturyTM 32 
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microsprayer device on particle size and integrity. In-vivo studies performed to determine the potential of 1 

piperazine chitosan complex in subcutaneous bioluminescent tumor A540-lucxenograft model. There was 2 

a significant reduction of the tumor with absence of adverse effects. The modified chitosan siRNA 3 

complexes were found to be safe and had the potential to deliver by inhalation therapy (Victoria Capel et 4 

al., 2018). 5 

Ihara et.al., developed dry powdered chitosan siRNA complexes, and its gene silencing efficiency was 6 

quantified histologically after intratracheal administration into murine lungs. EGFP-siRNA chitosan 7 

complex efficacy was studied in EGFP transgenic mice and mice carrying metastatic lung cancer of 8 

Lewis lung carcinoma. Transgenic mice are divided into three groups, where, one group was treated with 9 

targeting siRNA, one group treated with non-targeting siRNA and one was left without any treatment.  10 

The fluorescence in bronchus, bronchioles, alveolar walls of the group treated with targeting siRNA is 11 

reduced to a large extent in comparison to mice group treated with non-targeting siRNA and group 12 

without treatment. Similarly, the same results were observed in the metastatic lung tumor consisting of 13 

mice groups. The results conclude a high extent of gene silencing in proximal airways compared to 14 

peripheral lung tissues. The study proves pulmonary delivery of siRNA is a predominant approach to 15 

target gene expression in respiratory disorders involving airways, parenchyma and lung cancers (Ihara et 16 

al., 2015). 17 

A dry powder siRNA based formulation was developed targeting vascular endothelial growth factors 18 

(VEGF), which inhibits lung tumor growth in mice. In-vivo studies were performed on mice with 19 

metastatic lung cancer, which were induced by B16F10 melanoma cells or Lewis lung carcinoma cells. 20 

VEGF siRNA efficiency in gene suppression was evaluated by treating B16F10 and Lewis lung 21 

carcinoma cell lines. There was reduced VEGF protein and mRNA pertaining to VEGF. In-vivo studies 22 

were performed in tumor-bearing mice, where, chitosan was used to deliver siRNA. Prior to delivery of 23 

siRNA, VEGF levels were measured in bronchoalveolar lavage fluid (BALF) collected from mice bearing 24 

a tumor. The results showed reduced VEGF concentrations in BALF after single intratracheal 25 

administration of dry siRNA powder. Repeated intratracheal administration reduced tumor growth in the 26 

lungs. An in-vitro inhalation performance study was performed with jethaler single, which exhibited a 27 

low-pressure drop. These results suggest chitosan dry powder of siRNA is a novel strategy for lung 28 

cancer-specific and high gene silencing effect (Miwata et al., 2018). 29 

Bohr and his co-workers developed phosphorus-based dendrimers for delivery of siRNA. Pyrrolidinium 30 

and morpholinium were selected as protonated amino groups for better compatibility. The dendriplexes 31 

form strong complexes with siRNA targeting tumor necrosis factor-α (TNF-α). The in-vitro studies 32 
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revealed high cellular uptake and in-vitro silencing efficiency of TNF-α in RAW264.7 lipopolysaccharide 1 

activated macrophage cell line with pyrrolidiniumdendriplexes. The improved efficiency of pyrrolidinium 2 

complexes is expected due to high pKa value which improves stronger siRNA complex formation. Nasal 3 

administration of complexed dendriplexes has higher efficacy towards lung injury in comparison to non-4 

complexed siRNA (Table 1) (Bohr et al., 2017).  5 

The RNAi mechanism and siRNA provides the potential for designing therapeutics for the treatment of 6 

disease like cancer (Leung & Whittaker, 2005). siRNA has intrinsic efficacy as it utilizes the endogenous 7 

RNAi pathway, reduces the expression of disease-linked genes and can be used for any gene with its 8 

complementary sequence(Vogelstein & Kinzler, 2004). Several genes, their mutations, and pathways 9 

have been found to be associated in different cancers, thus it is evident that siRNA can provide 10 

therapeutic effect in cancers. siRNA mediated silencing of cancer associated proteins causes a remarkable 11 

apoptotic effect (Pai et al., 2006). The major barriers for effective delivery of siRNA to the lungs are 12 

complex branching of lungs associated with biomechanical barriers including mucus over the airways and 13 

the airways cell membrane. Gene silencing will be achieved only when siRNA delivered is stable, is of 14 

good concentration, penetrates the cell and reaches the cytoplasm (Durcan, Murphy, & Cryan, 2008).  15 

Zhang et al., reported siRNA counters K-RAS mutants and observed the anti-cancer effect by reducing K-16 

RAS in lung cancer cell line. Additionally, adenovirus-mediated siRNA precisely targets RAS and acts as 17 

a drug for lung cancer treatment (Z. Zhang, Jiang, Yang, & Wang, 2006). Han et al., proposed the use of 18 

p65 siRNA for anti-tumor effect by blocking PI3-kinase and NFκB(Han & Roman, 2006). 19 

Presently, in clinical trials, siRNA was locally administered to the target site to bypass the systemic 20 

delivery but the systemic route is required for the treatment of cancers and other diseases. For an in vivo 21 

delivery system, it ought to be biocompatible, non-immunogenic and biodegradable. The siRNA should 22 

be effectively delivered to the target site and must be protected from the action of serum nucleases. The 23 

system must evade from immediate hepatic or renal clearance and foster endosomal siRNA release into 24 

the cytoplasm for endogenous RISC interaction (Juliano, Alam, Dixit, & Kang, 2008). Development and 25 

validation of different strategies of siRNA delivery are underway. Zhang et al., studies the in vitro 26 

delivery of encapsulated human double-minute gene 2-specific siRNA in arginine octamer surface-27 

modified liposomes. The complex was reported to be stable for 24 hours in blood and had potentially 28 

good transfection in different lung cancer cell lines (C. Zhang et al., 2006). Another study based on 29 

siRNA against human survivin was coated with cationic liposomes containing DOTAP and cholesterol 30 

(1:1 molar ratio) which resulted in LPD (liposome-polycation-DNA) nanoparticles. Further, LPD was 31 

PEGylated for ligand targeting and steric stabilization for selective delivery to the lungs. Further analysis 32 

suggested that PEGylated LPD has an anti-cancer effect via surviving downregulation(Li & Huang, 33 
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2006). In the in vivo mouse model, LPD nanoparticle encapsulating siRNA for epidermal growth factor 1 

showed anti-tumor activity in combination with cisplatin on intravenous injection (Li, Chen, Hackett, & 2 

Huang, 2008). Biodegradable cationic poly (amino-ether) (mPAE) were accessed as a carrier for mTOR 3 

siRNA for lower toxic effect, the prohibition against nuclease degradation and inhibition of cancer cell 4 

proliferation (Gandhi et al., 2018). Chono et al., reported on the immunotoxicity and organ defects of 5 

siRNA-LPD nanoparticle administration intravenously (Chono, Li, Conwell, & Huang, 2008). Cationic 6 

immune-liposomes conjugated with anti-transferrin receptor single chain antibody fragment with the 7 

fluorescent label have been studied for systemic delivery for lung cancer metastasis. It was observed that 8 

the labeled siRNA was distributed in lung metastasis rather than liver (Pirollo et al., 2006). Cationic 9 

single-walled carbon nanotubes having siRNA for telomerase reverse transcriptase are being currently 10 

studied as in vitro lung cancer models. In vitro internalization of siRNA suppresses target gene 11 

expression. Furthermore, this model has also been reported for mice model for subcutaneous Lewis lung 12 

tumors (Zhuohan Zhang et al., 2006). Xu and his colleagues developed a pH-sensitive nanoparticulate 13 

system for co-delivery of doxorubicin and survivin siRNA. Doxorubicin was conjugated with 14 

polyethylenimine by a pH-sensitive hydrazine bond using 3-maleimidopropionic acid hydrazide. The 15 

formed polyethyleneimine-doxorubicin -3- maleimidopropionic acid hydrazides are cationic in nature, 16 

and form complexes with anionic survivin siRNA with electrostatic interactions. On pulmonary delivery 17 

of these complexes in B16F10 tumor-bearing mice, resulted in the high accumulation of doxorubicin and 18 

siRNA in lungs. There was limited accumulation in case of normal lung tissues which indicates targeted 19 

drug delivery. The nanoparticulate system has improved anti-tumor efficacy in comparison to individual 20 

delivery of doxorubicin or surviving siRNA(C. Xu, Tian, Wang, Wang, & Chen, 2016). A similar study 21 

was performed using Bcl2 siRNA with pH-sensitive polyethyleneimine hydrazine doxorubicin complex. 22 

The in-vitro and in-vivo studies showed pH sensitive complex nanoparticles improved anti-tumor efficacy 23 

by pulmonary administration. There were high deposition and prolonged retention time in the lungs by 24 

pulmonary administration (C. Xu et al., 2015). 25 

Self-assembled cholesterol conjugated chitosan nanoparticles were used to deliver curcumin and siRNA 26 

concurrently to achieve a synergistic effect against the cancer cells. Curcumin and siRNA were 27 

internalized by clathrin-dependent endocytosis in a time-dependent manner. This method was successful 28 

for A549 human lung carcinoma cell line for the co-delivery of siRNA and hydrophobic drug (Omkara 29 

Swami Muddineti, Aashma Shah, Sri Vishnu Kiran Rompicharla, Balaram Ghosh, & Swati Biswas, 30 

2018). Similarly, cationic polyethyleneimine-polylactic acid (PEI-PLA) was synthesized for systemic 31 

delivery of paclitaxel and siRNA for the knockdown of survivin gene for lung carcinoma. Upon 32 

nanoparticle uptake by the A549 cells, they turn electrically neutral due to lower endosomal pH. These 33 
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nanoparticles have pH-responsive property as pH 5.5 leads to drug release while pH 7.4 for cellular 1 

uptake. This study proved tumor growth inhibition along with surviving mRNA knockdown. Such co-2 

delivery systems provide large surface area for high drug loading, time-dependent drug release which 3 

allows extended exposure to tumor treatment, passive targeting, lower cytotoxicity increased the 4 

proliferative effect and anti-cancer activity (Jin et al., 2018) as depicted in the Figure:3. 5 

Inhalation therapy can be potentially used for siRNA delivery due to high gene silencing effect and 6 

sequence specificity. In vivo study on mice with Lewis lung carcinoma reveals the effect of intratracheal 7 

vascular endothelial growth factor (VEGF) siRNA dry powder delivery downregulates the VEGF levels 8 

in both tumor tissue as well as broncho-alveolar lavage and reduces the metastatic loci in lungs (Miwata 9 

et al., 2018). The aerosol composed of PEA and siRNA for Akt1 was administered in mice with urethane-10 

induced inhaled lung cancer. The use of aerosol for 4 weeks reduces Akt1 levels and inhibits the tumor 11 

progression (C.-X. Xu et al., 2008).  12 

Clinical trial studies for siRNA drug delivery in pulmonary diseases 13 

A drug called ExcellairTM was developed by ZaBeCor Pharmaceuticals for the treatment of 14 

asthma. The drug targets mRNA of spleen tyrosine kinase (Syk) which is responsible for 15 

activation of several pro-inflammatory transcription factors. In the Phase I of the study, patients 16 

received siRNA ExcellairTM via inhalation for 21 days (Watts & Corey, 2010). The drug did not 17 

cause any side effects to the asthma patients and almost 75% of the patients reported improved 18 

breathing and reduction in the use of inhalers while placebo patients showed no improvement. 19 

Further, in 2009, ExcellairTM entered Phase II of clinical trials but in 2015 it was discontinued as 20 

Syk can act as both suppressor and promoter of cell growth(Krisenko & Geahlen, 2015). 21 

Alnylan Pharmaceuticals developed ALN-RSV01, a siRNA therapeutic to target mRNA of viral 22 

protein in respiratory syncytial virus (RVS) (DeVincenzo et al., 2010). ALN-RSV01 targets 23 

nucleocapsid (N) protein of RSV which is essential for viral replication. In the Phase I of the 24 

clinical trial, 100 healthy males of 18 to 45 years age group were accounting to 65 having single 25 

and multiple dose of ALN-RSV01 while 36 were placebo. All the volunteers were given the 26 

therapeutic doses via nasal spray. No severe adverse effects were observed in different treated 27 

groups which lead ALN-RSV01 to enter Phase II (DeVincenzo et al., 2008). The Phase II study 28 

comprised of 85 healthy males of 18-45 years of age. All subjects received RSV01 inoculation at 29 

day 0, and the ALN-RSV01 treated cohorts received the siRNA intranasal spray at days −1, 0, 30 
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+1, +2, and +3. A statistically significant reduction in detected RSV by quantitative culture and 1 

real-time PCR was reported for patients receiving 150mg of study drug, the highest dosage 2 

tested. Averaged for all treated patients vs. placebo, an acquisition over time effect was observed 3 

by either PCR or quantitative culture. Indeed, the strongest effects of treatment with ALN-4 

RSV01 were observed by its prophylactic efficacy. The drug provided an antiviral effect over an 5 

11-day time course, which resulted in reduced infection over time noticeable within 3–4 days 6 

after inoculation (DeVincenzo et al., 2008). The safety trial for antiviral activity was conducted 7 

for lung transplant patients with RSV. In Phase II b it was showed the safety of ALN-RSV01 8 

treated RSV infections across the broader groups for lung transplant (Alvarez et al., 2009). 9 

Atu-027 is composed of siRNA with lipoplex delivery system represents RNAi mediated 10 

suppression of protein kinase N3 (PKN3) in vascular endothelial cells and prevents lung 11 

metastasis. Phase Ib trials for the safety of Atu-027 with gemcitabine have been completed 12 

(Schultheis et al., 2014). 13 

Future prospects of drug delivery with siRNA in pulmonary diseases 14 

RNA interference plays a key role in the treatment of several disorders. siRNA induces gene silencing by 15 

acting on sequence-specific cleavage of complementary mRNA (messenger RNA) and thereby inhibiting 16 

protein synthesis. siRNA based therapy was found to be a better strategy over the existing therapeutics, 17 

such as drug molecules, monoclonal antibodies and proteins (Fujita, Takeshita, Kuwano, & Ochiya, 18 

2013). Apart from its advantages, administration and delivery of siRNA is the major challenge. siRNA 19 

undergoes degradation in the presence of serum nucleases when they are administered directly into the 20 

blood. Several strategies are utilized for delivery of siRNA to the target organ (T. Nguyen, Menocal, 21 

Harborth, & Fruehauf, 2008). siRNA demonstrated as potential therapeutic agents to treat pulmonary 22 

disorders including lung cancer, infectious diseases, airway inflammatory diseases, and cystic fibrosis. 23 

Delivery of siRNA directly by pulmonary route has added advantages such as reduced dose, reduced 24 

systemic side effects and reduced degradation due to a lower concentration of nuclease enzymes in 25 

airways. Pulmonary delivery of siRNA can also be helpful in systemic action, due to the large surface 26 

area, thin epithelium and high vascularization in alveoli which favors rapid absorption of siRNA(Fujita et 27 

al., 2013). Inhalation is the most preferred and easy mode of non-invasive administration which can be 28 

applied for siRNA by liquid aerosol or dry aerosol formulations. There is a need for a high attention 29 

regarding stability and biological activity of siRNA at the time of formulation development and delivery. 30 

However, the pulmonary delivery of these siRNA is challenging due to mucociliary clearance by ciliated 31 
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epithelium cells, mucus, alveolar fluid and macrophages along the airways. Particles inhaled get deposited 1 

on ciliated cells and eventually get cleared by cough and swallowed. The mucus secreted, form a thin film 2 

thereby restricting diffusion and penetration of siRNA into the cell membrane. The alveolar fluids form a 3 

thin film as a pulmonary surfactant (phospholipids and surfactant proteins) obstruct permeation efficiency 4 

of lipid-based formulations to some extent and there was no effect in case of polymer-based systems. 5 

Macrophages engulf the inhaled particles as part of the defense mechanism. There will be altered 6 

conditions like increased mucus secretion, viscosity and ciliary clearance in diseased conditions. siRNA 7 

with a negative charge and high molecular weight (13kDa), has also contributed to the poor ability to 8 

cross cell membrane even it reaches the target surface area. Viral vectors and non-viral vectors are used 9 

for the delivery of siRNA. Viral vectors are found to be more efficient to transfer genetic material into 10 

host cells. Despite of its advantages, activation of immune responses after repeated administration may 11 

lead to organ failure and chances of serious concerns. Non-viral vectors which include lipids, polymers, 12 

inorganic materials and transfection agents (i.e., Lipofectamine, Oligofectamine, TransIT-TKO and 13 

DharmaFECT) are more vastly utilized for siRNA delivery. The ideal characteristic feature for a siRNA 14 

delivery system should include a) Protection from enzymatic degradation, b) Ability to penetrate cell 15 

membrane (facilitate cell uptake) c) It should able to protect from endosomal degradation and induce gene 16 

silencing d) Should not affect siRNA activity and specificity e) Non-toxic (Feldmann & Merkel, 2015; J. 17 

K.-W. Lam, Liang, & Chan, 2012; Yingshan Qiu, Lam, Leung, & Liang, 2016; Youngren-Ortiz, Gandhi, 18 

España-Serrano, & Chougule, 2016, 2017). Several strategies are utilized to overcome stated challenges 19 

in the delivery of siRNA some of them are discussed below. 20 

Conclusion 21 

The potential siRNA based therapeutics for lung diseases have to be explored further. The nanoparticle-22 

based inhalable and aerosols have been studied extensively for improved delivery and clinical efficiency. 23 

Therefore, ex vivo models for inhaled particulate distribution and in vivo models for 24 

pharmacokinetics/pharmacodynamics are being taken under consideration to understand their distribution, 25 

safety, and efficiency of siRNA in the pulmonary system. Different organic and inorganic nanoparticle 26 

with varied size, charge, and chemistry have been used as carriers of siRNA or siRNA drug conjugate 27 

delivery. Also, upon internalization at the target site siRNA should be able to escape the endosomal 28 

mechanism. Furthermore, a nanoparticle with small size have been preferred for longevity at the target 29 

site, non-specific interactions and to prevent the off-site toxic effect.  30 
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Table 1: siRNA delivery systems for targeted pulmonary therapy 27 

Delivery system 
siRNA 

delivered 
Target 

Route of 

administration 
Outcome Reference 

Polyethylenimine

-cis-aconitic 

anhydride-

doxorubicin and 

(B cell) Bcl2 

siRNA complex 

nanoparticles 

Bcl-2 

siRNA 

Lung 

cancer 
Intratracheal 

The polyethyleneimine-

cis-aconitic anhydride-

doxorubicin/Bcl2 siRNA 

complex nanoparticles 

are for treating metastatic 

lung cancer by pulmonary 

delivery with low side 

effects on the normal 

tissues. 

(C. Xu et 

al., 2015) 

Arginine-glycine-

aspartic acid 

peptide (RGD) 

gold 

nanoparticles 

c-

mycsiRNA 

Lung 

cancer 
Intratracheal 

c-myc-RGD gold 

nanoparticles are capable 

of targeting tumor cells, 

significant tumor growth 

inhibition, as well as 

extended survival of mice 

bearing tumors. 

(Conde et 

al., 2013) 
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Glycerol 

propoxylatetriacr

ylate and 

spermine 

Sodium-

dependent 

phosphate 

co-

transporter 

2b(NPT2b) 

siRNA 

Lung 

cancer 
Intratracheal 

siNPT2b successfully 

suppressed lung cancer 

growth and decreased 

cancer cell proliferation 

and angiogenesis, 

facilitating apoptosis. 

(Hong et al., 

2014) 

 

Chitosan dry 

powder 

Luciferase 

siRNA 

Lung 

cancer 
Intratracheal 

siRNA/chitosan powder 

prepared using super 

critical carbon dioxide 

has an effective and 

specific gene silencing 

against the tumor cells 

metastasized in the lungs 

of mice 

(Okuda et 

al., 2013) 

Naked siRNA or 

TransIT-TKO 

Phosphopr

oteinsiRN

A 

Parainfl

uenzavir

us 

(PIV), 

Respirat

ory 

syncytia

l 

virus(R

SV) 

Intranasal 

Animals were 

successfully protected 

from RSV and PIV 

infections specifically 

(Bitko, 

Musiyenko, 

Shulyayeva, 

& Barik, 

2005) 

Naked siRNA 

Nucleocaps

id gene-

specificsiR

NA 

Viral 

infectio

ns 

Intranasal 

Significant reductions of 

viral load were achieved 

in both 

prophylactic and 

therapeutic regimens 

(Alvarez et 

al., 2009) 

Oligofectamine 

Nucleocaps

id protein 

and 

Polymerase 

acidic 

protein 

Influenz

a type A 

Intranasal and 

hydrodynamic 

injection 

Treated animals lung 

virus titres were reduced 

and protected from lethal 

challenge 

with highly pathogenic 

viruses 

(Tompkins, 

Lo, 

Tumpey, & 

Epstein, 

2004) 

Naked siRNA 

Lymphotac

tin (XCL1) 

siRNA 

Tubercu

losis 
Intratracheal 

XCL1 expression in the 

lungs was significantly 

suppressed; decreased T 

lymphocytes, 

IFN- response and 

disorganized 

granulomatous 

lesions and high fibrosis 

(Rosas-

Taraco, 

Higgins, 

Sánchez-

Campillo, et 

al., 2009) 

Naked siRNA 

Transformi

ng growth 

factor-β1 

siRNA 

Tubercu

losis 
Intratracheal 

Increased expression of 

antimicrobial mediators, 

with the reduced bacterial 

load in the lungs of 

treated mice 

(Rosas-

Taraco et 

al., 2011) 

Naked siRNA Suppressor Asthma Intranasal Decrease in lung • (Staff, 2014) 



29 
 

s of 

cytokine 

signaling 

protein 3 

(SOCS) 

siRNA 

eosinophilia, 

normalization of 

hyperresponsiveness, 

increase in mucus 

secretion and reduction in 

collagen deposition in the 

lungs. 

Naked siRNA 

Interleukin 

-4 siRNA 

and 

Phosphopr

otein 

siRNA 

Asthma Intranasal 

Esinophilia in 

bronchoalveolar lavage 

fluid, 

hyperresponsiveness and 

airway inflammation 

were 

significantly reduced 

(Khaitov et 

al., 2014) 

Naked siRNA 

Signal 

transducer 

and 

activator of 

transcriptio

n factor 6 

(STAT6) 

siRNA 

Asthma 
Intratracheal and 

intranasal 

Allergen-induced lung 

inflammation was 

significantly reduced and 

Expression of key 

cytokines (IL-4, IL-13) 

and 

allergen-induced 

inflammation in lung 

tissues were 

significantly reduced 

(Darcan-

Nicolaisen 

et al., 2009) 

Naked siRNA 

Receptor-

interacting 

protein 2 

(Rip2) 

siRNA 

Asthma Intratracheal 

Ovalbumin-induced 

cytokine release, 

inflammatory cell 

infiltration 

and mucus 

hypersecretionwas 

inhibited. elevation of 

serum Ovalbumin-

specific IgE level was 

markedly suppressed 

(Goh et al., 

2013) 

Naked siRNA 

cluster of 

differentiati

on 86 

(CD86) 

siRNA 

Asthma Intratracheal 

Ovalbumin-induced 

airway eosinophilia, 

airway 

hyperresponsiveness,and 

cytokines 

production was reduced 

(Asai-Tajiri 

et al., 2014) 

Naked siRNA 

Spleen 

tyrosine 

kinase 

(syk) 

siRNA 

Asthma Intranasal 

siRNA administration by 

intranasal route  inhibited 

inflammatory cells in the 

bronchoalveolar lavage 

fluid(BALF) of allergen 

sensitized mice. 

(Z.-Y. 

Huang, 

Kim, Kim-

Han, Indik, 

& Schreiber, 

2013) 

Naked siRNA c-kitsiRNA Asthma Intranasal 

Airway mucus secretion 

and eosinophil infiltration 

in BALFwas effectively 

reduced. C-kit further 

(Wu et al., 

2014) 
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reduced the production of 

stem cell factor, IL-4,and 

IL-5, but had no effect on 

interferon-γ (IFN-γ) 

generation 

Transferrin 

polyethylenimine 

(Tf-PEI) 

Fluorescent

ly 

labeledsiR

NA 

Asthma Intratracheal 

Tf-PEIpolyplexes 

selectively delivered 

siRNA to activated 

T cells 

(Xie et al., 

2016) 

R3V6 peptides 

were used as a 

carrier. (Ternary 

complex of 

siS1PLyase, 

HMGB1A, and 

R3V6 was 

produced by 

charge 

interaction) 

siS1PLyase

/HMGB1A

/R3V6 

ternary 

complex 

Acute 

lung 

injury 

Intratracheal 

siS1PLyase/HMGB1A/R

3V6 complex reduced the 

levels-6 and TNF-αmore 

efficiently compared to 

HMGB1A  alone and 

siS1PLyase/R3V6 

complexin 

lipopolysaccharides 

activated macrophages  

and reduced 

the inflammatory 

response and apoptosis in 

acute lung injury 

(B. Oh & 

Lee, 2014) 

Naked siRNA, 

i.v, liposomes 

Tumor 

necrosis 

factor-α 

Acute 

lung 

injury 

Intratracheal 

Systemic injection but not 

intratracheal delivery of 

TNF-α siRNA 

significantly reduced the 

incidence of acute lung 

injury. Results suggest 

pulmonary endothelial 

and/or other possible 

vascular resident cells, 

not epithelial cells, play a 

greater role in mediating 

the TNF-α priming 

response in 

hemorrhage/sepsis-

induced acute lung injury. 

 

(Lomas-

Neira, Perl, 

Venet, 

Chung, & 

Ayala, 

2012) 

Naked siRNA 

Transformi

ng growth 

factor- β1 

(TGF-β1) 

siRNA 

Pulmon

ary 

fibrosis 

Intratracheal 

Levels of inflammatory 

cytokines, including IFN-

α and IFN-β, were not 

significantly affected, 

whereas TGF-β1 was 

significantly inhibited. 

(Corina N 

D'Alessandr

o-Gabazza 

et al., 2012) 

PEGylated 

poly(dimethylami

no)ethylmethacry

late  

(PDMAEMA) 

Connective 

tissue 

growth 

factor 

(CTGF) 

siRNA 

Pulmon

ary 

fibrosis 

Intratracheal 

There was a reduction in 

collagen deposition, 

inflammatory cytokines 

production and drastic 

attenuation of pulmonary 

fibrosis 

(Sung et al., 

2013) 
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Self-assembled 

micelle 

interfering RNA 

(siRNA) 

nanoparticles 

Amphiregu

lin (AR) 

and 

connective 

tissue 

growth 

factor 

(CTGF) 

targeting 

siRNA 

Pulmon

ary 

fibrosis 

Intratracheal/intra

venous 

Collagen accumulation 

was significantly reduced 

and lung function was 

substantially restored in 

TGF-β transgenic mice. 

(Yoon et al., 

2016) 

Chitosan-based 

siRNA 

nanoparticle 

siRNA 

specific to 

the 

BCR/ABL-

1 junction 

sequence 

Potentia

l of 

chitosan 

nanocar

riers 

Nasal 

In bronchiole epithelial 

cells of transgenic EGFP 

(endogenous enhanced 

green fluorescent protein) 

mice. 

 

(Howard et 

al., 2006) 

Spray dried naked 

siRNA using L-

leucine as 

dispersion 

enhancer 

siRNA 

targeting 

interleukin 

10 

2%W/

W 

siRNA 

develop

ed into 

an 

inhalabl

e dry 

powder 

Not applicable 

The integrity of siRNA 

was successfully retained 

after spray drying. Spray 

dried powder were crystal 

in nature with low 

moisture levels traits 

stable formulation. 

(Chow et 

al., 2017) 
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