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free l‑glutamate‑induced 
modulation in oxidative 
and neurochemical profile 
contributes to enhancement 
in locomotor and memory 
performance in male rats
Saiqa tabassum1,2, Saara Ahmad3, Syeda Madiha1, Sidrah Shahzad1, Zehra Batool4, 
Sadia Sadir1 & Saida Haider1*

Glutamate (Glu), the key excitatory neurotransmitter in the central nervous system, is considered 
essential for brain functioning and has a vital role in learning and memory formation. earlier it was 
considered as a harmful agent but later found to be useful for many body functions. However, studies 
regarding the effects of free l-Glu administration on CNS function are limited. Therefore, current 
experiment is aimed to monitor the neurobiological effects of free l‑Glu in male rats. l‑Glu was orally 
administered to rats for 5-weeks and changes in behavioral performance were monitored. Thereafter, 
brain and hippocampus were collected for oxidative and neurochemical analysis. Results showed that 
chronic supplementation of free l‑Glu enhanced locomotor performance and cognitive function of 
animals which may be attributed to the improved antioxidant status and cholinergic, monoaminergic 
and glutamatergic neurotransmission in brain and hippocampus. current results showed that chronic 
supplementation of l-Glu affects the animal behaviour and brain functioning via improving the 
neurochemical and redox system of brain. free l‑Glu could be a useful therapeutic agent to combat 
neurological disturbances however this requires further targeted studies.

Central nervous system (CNS) modulates behaviour and brain functioning with the help of multiple neurotrans-
mitters. One of the important neurotransmitters is Glutamate (Glu)1 which is a nonessential amino acid (AA) 
present abundantly in the  body2. It is involved in a variety of body functions either directly or by converting into 
other  products3. Evidence shows the importance of Glu in facilitating protein  synthesis4, intestinal nutrition, cell 
signalling, gene expression modulation, immune  responses5, regulating blood glucose level, removing excess 
 ammonia6, disposal of excess or waste  nitrogen7 as well as in intermediary  metabolism2 as an important energy 
 fuel5. Other than this, it is also a precursor of various biologically active components like glutathione (GSH), 
GABA, purine and pyrimidine nucleotides, polyamines, poly-glutamated folate cofactors or certain AAs like 
glutamine, alanine, aspartate, proline, arginine,  citrulline2–5,8. Glu is present in various foods either as naturally 
occurring free Glu (vegetable, seafood, milk, meat, cheese) or as a by-product of hydrolysed protein (used in 
seasoning) or as a salt; MSG (monosodium glutamate), a food additive or flavouring agent in canned foods, dry 
mixes, sauces, and  soups9.
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Nutritionally, Glu is important for taste perception and for facilitation of gastric and pancreatic  function3,9. 
Various studies have reported the potential health effects of dietary glutamate supplementation that include 
improvement of taste and  palatability10, modification of gastric secretion and motility, enhanced cellular 
 proliferation11, stimulation of gastro-intestinal exocrine secretions and prevention of incidence of  diarrhoea12. 
It is also used to treat  dyspepsia13, improves growth performance, enhances protein  synthesis4,14, restores 
mucous circulation and AA metabolism, and prevents cellular injury and apoptosis of  enterocytes4. Reports 
have also shown its potential in amelioration of endotoxin-induced intestinal damage and maintaining intestinal 
 integrity5,14, increasing nucleotide  synthesis3, improving antioxidant  status15, ROS  scavenging16, amelioration of 
hypoxia-induced oxidative  stress17, inhibition of fat  accumulation18 and progression of atherogenesis and fatty 
liver  disease19.

Glu metabolism is shown to be mainly involved in maintaining normal brain  function20 to regulate neuro-
genesis, synaptogenesis, neurite outgrowth and neuronal  survival21. Most of the brain Glu is synthesised either 
from glucose or 3-hydroxybutyrate or from other  AAs8. High concentration of Glu is present in blood and  CSF22 
and in brain regions responsible for mediating memory and cognitive functioning like cortex, hippocampus and 
 striatum1,23. Synaptic Glu signalling is involved in neuronal growth and synaptic  plasticity24 contributing to learn-
ing and memory processing and cognitive  functioning1,2,25,26. Its usefulness in facilitation of potassium transport 
across blood brain barrier (BBB) suggests its promising role in future treatment of neurological  conditions6. Glu 
neurons are widely distributed in forebrain and  hippocampus1. Hippocampus is reported to be largely dependent 
upon Glu signalling implicated in learning and memory  functions24. Supplements of Glu are available in market 
for various purposes such as to maintain blood glucose levels, to increase immunity, to build proteins, and to 
promote optimal absorption and  assimilation27–29. It was initially thought that its systemic or oral administra-
tion cannot affect its availability in CNS as Glu cannot cross the  BBB28,30. But later researchers found that Glu 
can cross the BBB up to a certain extent and dietary Glu supplements improve the brain  functioning31,32 leading 
to generation of hypothesis that chronic free Glu supplementation at a dose equivalent to average daily intake 
of humans might have beneficial effect on behaviour of animals. Despite extensive beneficial use in periphery, 
studies addressing its beneficial effects on CNS are limited. Since to date studies on the use of free l-Glu on CNS 
function are scarce, hence the objective of the present study is therefore specifically to investigate the effects of 
free Glu on brain and associated neurobehavioral alterations at a dose equivalent to adequate human intake in 
rats. In order to understand the underlying mechanism responsible for behavioural alterations, the current study 
was further aimed to monitor the effects of dietary free Glu supplements on motor and cognitive performance 
as well as associated changes in brain redox status. Glu/GABA content and monoaminergic and cholinergic 
neurotransmission in rats was also studied.

Results
The aim of the current study is to find out the effects of free l-Glu on locomotor activity and learning and 
cognitive functioning along with monitoring alterations in oxidative profile and neurochemical content in the 
brain as shown in Fig. 1. Along with behavioural the body weight and food intake of rats was also monitored 
throughout the experiment. The effects of Glu supplementation on the body weight and food intake were not 
different compared to control (Table 1).

Effect of free l‑Glu on locomotor performance. Effect of Glu supplementation on rat’s ambulatory 
performance was assessed in OFT in terms of latency to move from the central square and the number of squares 
crossings made during 5 min time span which is shown in Fig. 2. Observation showed that ambulatory perfor-
mance was improved following Glu supplementation compared to controls as evident by significant decline in 
latency to move (Fig. 2a) (t (10) = 2.875, P < 0.05) and significant increase in square crossings (t (10) = 11.41, 
P < 0.01) during 5 min time span (Fig. 2a) compared to controls.

Figure 1.  Schematic representation of treatment schedule and experimental design.
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Effect of Glu supplementation on muscular strength of rats was evaluated in KIST by recording the latency to 
fall from the inverted screen during 2 min time span which is presented in Fig. 2b. It was observed that muscular 
strength of rats was increased following Glu supplementation compared to controls as a significant increment 
in latency time to fall from inverted screen was observed. Statistical analysis showed a significant (U = P < 0.01) 
difference between groups with a mean rank of 9.5 for Glu group compared to controls having mean rank of 3.5.

Effect of Glu supplementation on motor coordination and balance in rats was assessed by beam walking 
test by recording latency time taken to cross the beam and number of foot slips off the beam on three different 
beam sizes (3 cm, 2 cm and 1 cm) during 2 min time span which is presented in Fig. 2c. It was observed that 
motor coordination and balance in rats was increased following Glu treatment compared to controls as evident 
by significant reduction in latency time to cross the beam and an increase in score for foot slips off the beam. 
There is a significant decline in latency time for beam of 3 cm width (t (10) = 7.278, P < 0.01), for beam of 2 cm 
width (t (10) = 8.043, P < 0.01) and for beam of 1 cm width (t (10) = 8.154, P < 0.01) as shown in Fig. 2c. Data 
analysis of score for foot slips off the beam revealed that there was no significant difference in score for foot slips 
off the beam in Glu supplemented group over beam of 3 cm, 2 cm and 1 cm width comparable to control group.

Table 1.  Effects of dietary free glutamate supplementation on weekly food intake and the body weight of 
animals during treatment. Data presented as mean ± SD (n = 6). A non-significant effect was obtained by the 
repeated measure analysis when compared with control rats.

Food intake Body weight

Control Glutamate Control Glutamate

Initial 12.65 ± 1.93 11.85 ± 0.82 160.17 ± 10.03 160.11 ± 11.11

Week 1 11.46 ± 0.72 10.84 ± 1.21 163.67 ± 10.98 161.33 ± 11.52

Week 2 10.92 ± 0.67 11.55 ± 1.95 165.05 ± 12.55 163.17 ± 11.28

Week 3 11.41 ± 1.55 11.91 ± 1.68 166.43 ± 12.62 165.83 ± 12.73

Week 4 11.82 ± 1.12 11.90 ± 1.38 168.33 ± 13.03 167.67 ± 13.92

Week 5 10.72 ± 0.75 10.67 ± 0.27 168.67 ± 12.69 169.66 ± 13.62

Figure 2.  Effect on locomotor activity was evaluated via monitoring (a) ambulatory performance which is 
evaluated by open field test in terms of latency (s) to move from the central square (left) the number of squares 
crossed (right), (b) muscular strength evaluated by Kondziela’s Inverted screen test in terms of latency (s) to fall 
from the inverted screen and (c) motor coordination evaluated by Beam walking test in terms of latency (s) to 
cross the beam and number of foot slips off the beam on three different beam sizes (3 cm, 2 cm and 1 cm). For 
each group n = 6 and values are presented as mean ± S.D. All significant differences are expressed as * P < 0.05, ** 
P < 0.01 compared to control group.
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Effect of free l‑Glu on learning and memory function. Recognition memory was monitored by ORT 
by noting the sniffing time for novel and familiar objects followed by computing discrimination index that is 
shown in Fig. 3a and b. Observations showed that recognition memory was improved following Glu supplemen-
tation as a significant enhancement was seen in sniffing time for new object and in discrimination index. Sta-
tistical analysis showed significant decline (t (10) = 7.022, P < 0.01) in sniffing time for old object following Glu 
supplementation in comparison to control group while sniffing time for novel object was significantly increased 
(t (10) = 6.896, P < 0.01) in Glu group in comparison to control group as shown in Fig. 3a. Discrimination index 
data showed a significant enhancement in (t (10) = 28.01, P < 0.01) Glu group in comparison to controls as shown 
in Fig. 3b.

The differences in escape latencies during 4 acquisition trials showed significant effect of trials (F (4, 
40) = 287.536, P < 0.01), group (F (1, 10) = 42.04, P < 0.01) and interaction between trials x groups (F (4, 
80) = 9.918, P < 0.01). Pair-wise comparisons showed a significant decline over trials in escape latencies of ani-
mals which decreased significantly (P < 0.01) (displayed in Fig. 3c) indicating that memory performance was 
enhanced in animals over trials. For cumulative escape latency of all acquisition trials a significant increase 
was observed in Glu group (t = 6.484, P < 0.01) in comparisons to controls as shown in Fig. 3d. Data analysis 
of reference memory parameters during 1 h probe trial showed significant decline in platform latency (escape 
latency time to reach platform location) (t (10) = 9.449, P < 0.01) and in target quadrant latency (t (10) = 6.919, 
P < 0.01) while significant enhancement in duration of time spent in target quadrant (t (10) = 6.471, P < 0.01) and 
in number of entries made over target quadrant (t (10) = 6.755, P < 0.01) as shown in Fig. 3e. Statistical analysis 
of reference memory parameters during 24 hr probe trial also revealed significant decline in platform latency (t 
(10) = 7.656, P < 0.01) and in target quadrant latency (t (10) = 5.82, P < 0.01), and a significant enhancement in 
duration of time spent in target quadrant (t (10) = 9.399, P < 0.01) and in number of entries in target quadrant (t 
(10) = 6.874, P < 0.01) in comparison to controls as presented in Fig. 3f.

Associative memory performance was evaluated using PAT by recording step-through latency to enter into 
the dark chamber during both training and test phases by evaluating the difference between pre- and post-train-
ing step-through latencies presented in Fig. 3g. Observations showed a significant improvement in associative 
memory following Glu supplementation as evident by increase in difference between step-through latencies. 
Statistical analysis showed a significant increment in difference between step-through latencies of Glu group 
during 1 h. (t (10) = 14.106, P < 0.01) and 24 h. (t (10) = 21.1, P < 0.01) sessions in comparison to control group 
as presented in Fig. 4. On the basis of results, it can be suggested that following the intake of Glu tablets associa-
tive memory was improved.

Effect of chronic administration of free l‑Glu on oxidative status of brain. Effects of Glu sup-
plementation on oxidative status of brain was assessed via estimating the lipid peroxidation (MDA) content, 
antioxidant enzyme activities (CAT, GPx and SOD) and content of antioxidant compounds (GSH and protein) 
in brain which is presented in Fig. 4. The MDA levels were significantly (t (10) = 6.679, P < 0.01) reduced in Glu 
group in comparison to controls as presented in Fig. 4a. Data analysis on content of antioxidant compounds 
(GSH and Protein) showed a significant increment in GSH levels (t (10) = 7.144, P < 0.01) and protein content (t 
(10) = 14.437, P < 0.01) in Glu group in comparison to controls as presented in Fig. 4b. Moreover, data analysis of 
activities of antioxidant enzymes (CAT, GPx and SOD) showed a significant enhancement in activities of CAT (t 
(10) = 21.769, P < 0.01), GPx (t (10) = 11.101, P < 0.01) and SOD (t (10) = 4.174, P < 0.01) in Glu group compared 
to controls as presented in Fig. 4c. From the findings it can be suggested that following Glu treatment oxidative 
status of brain was improved.

Effect of chronic administration of free l-Glu on neurochemical profile of brain.  Cholinergic 
status of brain was monitored via estimating ACh content and AChE activity. Results showed enhancement in 
ACh content following Glu supplementation. Significant increment (t (10) = 7.73, P < 0.01) in ACh content was 
observed in Glu group in comparison to controls as presented in Fig. 5a. While in AchE activity a significant 
reduction (t (10) = 14.437, P < 0.01) was seen following Glu supplementation compared to controls as shown in 
Fig. 5b.

Effect of Glu supplementation on Glu and GABA levels in hippocampus was also determined. It was observed 
that Glu and GABA hippocampal content was altered following Glu treatment as there is a significant increment 
in Glu (t (10) = 4.36, P < 0.01) and GABA (t (10) = 6.45, P < 0.01) levels in hippocampus of Glu group compared 
to controls as shown in Fig. 5c, d.

Effect of Glu supplementation on monoaminergic profile of brain and hippocampus was determined via esti-
mating the levels of NA, DA, 5-HT and its metabolites (DOPAC, HVA and 5-HIAA) using high pressure liquid 
chromatography coupled to electrochemical detection (HPLC-EC) method. It was observed that monoaminergic 

Figure 3.  Effect on memory performance is presented; (1) Recognition memory in terms of (a) sniffing time 
for familiar (old) and novel object and (b) discrimination index; (2) Spatial memory performance in terms of 
(c) escape latencies of acquisition training trials, (d) averaged escape latencies, (e) spatial reference memory 
acquisition (1 h probe trial) and (f) retention (24 h probe trial) by monitoring escape latency time, latency 
to find the target quadrant (NW), duration of time spent (seconds) in the target quadrant and the number of 
entries made by rat over target quadrant; (3) Associative memory performance in terms of (g) step-trough 
latency difference. For each group n = 6 and values are presented as mean ± S.D. Significant differences were 
expressed as ** P < 0.01 compared to control group and for training trials ** P < 0.01 compared to control 
and ++ P < 0.01 compared to trial 1.

◀
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profile was altered following Glu treatment. There is a significant increment in NA concentration in brain (t 
(10) = 4.84, P < 0.01) and hippocampus (t (10) = 25.823, P < 0.01) of Glu group compared to controls as shown 
in Fig. 6a. Regarding DA metabolism there is a significant rise in concentration of DA (t (10) = 3.47, P < 0.01) 
and DOPAC (t (10) = 5.96, P < 0.01) in brain following Glu treatment compared to controls while HVA levels 
remained comparable. However, in hippocampus significant increase in DA levels (t (10) = 11.87, P < 0.01) and 
significant decline in HVA levels (t (10) = 3.72, P < 0.01) was observed following Glu treatment in comparison to 
controls whereas no significant change was observed in DOPAC levels as presented in Fig. 6b. 5-HT content was 
significantly increased in both brain (t (10) = 12.46, P < 0.01) and hippocampus (t (10) = 6.62, P < 0.01) following 
Glu treatment compared to controls while levels of 5-HIAA were significantly (t (10) = 5.73, P < 0.01) decreased 
in hippocampus after Glu intake whereas brain 5-HIAA levels remained unaltered as shown in Fig. 6c. Further-
more, the ratios of HVA/DA and 5HIAA/5HT were also computed in brain and hippocampus and a significant 
decline was observed in ratio of HVA/DA in both brain (t (10) = 7.87, P < 0.01) and hippocampus (t (10) = 12.24, 
P < 0.01) and in the ratio of 5HIAA/5HT in both brain (t (10) = 7.87, P < 0.01) and hippocampus (t (10) = 12.24, 
P < 0.01) indicating that monoamine neurotransmission was enhanced following Glu administration.

Discussion
The current study found improvement in motor activity and learning and memory performance following 
chronic supplementation of free l-Glu via modulating the neurochemical and redox status in the brain. Reports 
showed that intake of l-Glu in drinking water had no effect on food intake and body  weight37,38,41. Present 
findings support these studies as we also found no significant change in body weight and food intake of rats 
which might be associated with high energy expenditure. However present findings contradict with Yin et al.15 
who reported increase in growth rate and body weight of pigs following dietary supplementation of 2% Glu for 
7 days15. Glu being a major excitatory neurotransmitter is essential for all  behaviors21. Our results showed that 
locomotor activity was improved following free Glu supplementation. Administration of Glu as a nootropic 
agent is a topic of interest since last 60 years. It is evident that Glu has a significant role in cognitive functioning 
and Glu signalling in brain contributes in synaptic maintenance and plasticity facilitating cognitive  function2,25 
and  learning1,26. Reports showed that free L-Glu in brain is required for neuronal differentiation, migration 
and survival in developing brain by facilitating calcium transport contributing to memory enhancement via 

Figure 4.  Effect on oxidative profile of rats was assessed via determining the levels of major oxidant (MDA) (a), 
levels of antioxidant (GSH and Protein) compounds (b) and levels of antioxidant enzymes (CAT, GPx, SOD) (c). 
For each group n = 6 and values are presented as mean ± S.D. Significant differences were expressed as ** P < 0.01 
compared to control group.
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use-dependent alterations in synaptic efficacy that is involved in the formation and function of  cytoskeleton42. 
But studies regarding the use of Glu as an adjunctive memory-enhancing  agent33 lacks supporting experimental 
evidences. Present findings showed that chronic supplementation of free Glu at adequate amount enhances 
memory performance leading to improved spatial, recognition and associative memory processes. These findings 
are in agreement with the recent study which observed that umami taste in GI is responsible for stimulation of 
cortical and sub-cortical brain areas that are linked to working  memory40. Moreover, studies showed that the 
effect of Glu depends upon its dosage. At low Glu levels intensity of Glu receptor is not high enough to cause 
excitotoxicity but indeed sufficient for memory  enhancement33.

Oxidative stress, a state representing enhancement in levels of intracellular reactive oxygen species (ROS) 
that either act as free radicals themselves or breakdown to form free  radicals43,44. Oxidative stress generation 
is attributed to disrupted balance between ROS generation and antioxidant scavenging  activity45,46. ROS, the 
products of normal cellular metabolism attack PUFAs causing peroxidation of lipids (LPO) and generate MDA 
which is an important and sensitive marker of peroxidative  damage47. This damage is overcome by the action of 
SOD that converts reactive superoxide anions to hydrogen peroxide which then by the action of CAT and GPx 
converts into water and molecular  oxygen48. Along with these redox enzymes, certain endogenous antioxidants 
primarily GSH and proteins also provide defence against ROS via maintaining redox  homoeostasis48. Studies 
have reported that ingested glutamate is transported to enterocytes via specific Na-dependent transporters and 
major amount (75–80%) is metabolized in the intestine by transamination, some amount (5–10%) enters into 
blood circulation, while 10–15% is converted to Glutamine and other bioactive molecules of sensory and signal-
ing  pathways49,50. Along with this free glutamate is also reported to have an important role in protein stability 
as it provides a negative  charge50. Previously it has been observed that Glu addition to culture medium leads to 
enhanced cellular proliferation and membrane integrity and protects against oxidative  stress5. A recent report also 
validated that Glu has ROS scavenging ability, so it is protective against oxidative  stress16. Present findings also 
support this notion as we found reduced levels of MDA, the by-product of LPO in the brain of Glu-supplemented 
rats showing that it is protective against oxidative stress. Along with reduction in LPO, the GSH and total protein 
levels as well as antioxidant enzymes (SOD, CAT and GPx) activities also increased following chronic Glu sup-
plementation. Previous researchers reported that the relationship between Glu and ROS is very  complex35,46 as 

Figure 5.  Effect on cholinergic and glutamatergic profile of rats was assessed via determining the levels of ACh 
content (a) and AChE activity (b) and the levels of hippocampal Glu (c) and GABA (d). For each group n = 6 
and values are presented as mean ± S.D. Significant differences were expressed as ** P < 0.01 compared to control 
group.
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some have reported Glu to be beneficial in ameliorating oxidative stress while others reported it as a neurotoxic 
agent. However, current findings are in agreement with the reports that stated beneficial impact of l-Glu sup-
plementation in ameliorating hypoxia-induced oxidative stress via reducing MDA levels and enhancing GSH 
levels in  rats17, while in pigs it occurs via enhancing SOD levels and GSH content and inhibiting lipid peroxida-
tion and MDA  generation15. However, other reports showed that l-Glu supplementation either had no effect on 
SOD and CAT  levels1 or failed to alleviate  H2O2-induced oxidative  stress46 producing oxidative  damage35. It had 
little effect on increasing SOD and GPx concentration and decreasing MDA content in  boars46,51. The antioxi-
dant function of Glu as observed in current study might be due to the fact that it is the major substrate for GSH 
synthesis compared to cysteine and  glycine15,52,53. GSH homoeostasis is considered to be essential for cellular 
defence against oxidative  stress15,52 as it regulates redox state of cell and is involved in detoxification process in 
all cell  types5,54. It can be depicted from previous reports that reduction in oxidative stress along with improved 
neurotransmission might be responsible for enhancement in cognitive retention capacity of  animals43. Hence, the 
improvement in memory and retention capacity observed in present study might be attributed to the improved 
oxidative status of the brain following Glu administration in rats.

Cholinergic neurons play a key role in memory and  attention32,55 and the neurotransmitter present in these 
neurons is acetylcholine (ACh). Evidence showed that both Glu and ACh play important role in  memory56 as 
interactions between these neurotransmitters may be important for memory  formation57. In particular, ACh 

Figure 6.  Effect on brain and hippocampal monoaminergic profile of rats was assessed via determining the 
levels of monoamines [NA (a), DA (b), 5-HT (c)] and its metabolites [DOPAC (b), HVA (b), 5-HIAA (c)] and 
ratio HVA/DA ratio (d) and 5HIAA/5HT (e). For each group n = 6 and values are presented as mean ± S.D. 
Significant differences were expressed as ** P < 0.01 compared to control group.



9

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:11206  | https://doi.org/10.1038/s41598-020-68041-y

www.nature.com/scientificreports/

might be involved in facilitating Glu activity via coordination of acquisition and recall states in cortex and 
 hippocampus57. Intra-hippocampal infusion of receptor agonist of ACh and Glu also reported to improve reten-
tion while infusion of antagonists impaired  retention58. The action of ACh is terminated upon its hydrolysis by 
the enzyme AChE thus reducing the availability of ACh in synapse and producing memory  deficits59. In current 
study we found that supplementation of free Glu reduces the activity of AChE and enhances the ACh content in 
brain which might be responsible for improved cognitive performance. Further, we also determined the effect 
of Glu supplementation on monoaminergic neurotransmission in brain and found that Glu supplementation 
enhances concentration of NA, DA and 5-HT via affecting their metabolism in brain. It has been seen that 
HVA/DA (Fig. 6d) and 5HIAA/5HT ratio (Fig. 6e) is reduced following chronic Glu supplementation showing 
that turnover of DA and 5HT is reduced and their greater amount is available in synapse for performing their 
action which might be responsible for improved locomotor and cognitive function. Previous reports from our 
laboratory have shown that increased levels of monoamines (noradrenaline, dopamine and serotonin) par-
alleled the improvement in cognition and memory  function32,60. Moreover, both Glu and GABA levels were 
increased following chronic Glu supplementation that may also be responsible for memory improvement in 
the present study. These findings contradict the previous studies reporting that Glu behaved as a neurotoxic 
agent impairing cognitive  performance34, increasing oxidative  stress35, damaging neuronal cells and producing 
excitotoxic  lesions36 ultimately leading to neurodegenerative  disorders34,36. However, later on researchers found 
free l-Glu as a beneficial  agent3,10–12,18,37–39. Although Glu is found abundantly in  foods18, but a brief review of 
all the reports regarding beneficial effect of free l-Glu shows that these beneficial effects are only addressed in 
periphery while effects on CNS are limited. Moreover, a recent report showed that umami taste (of Glu) activates 
para-hippocampal gyrus, an important memory retrieval area, that involves the modulation of working memory 
processing and contributes to efficient  learning40.

Thus, it can be concluded that chronic supplementation of free Glu effects the behaviour and brain functioning 
of animals via inducing changes in the oxidative and neurochemical systems in brain (see Fig. 7). In addition to 
previously reported beneficial effects on periphery, the use of free l-Glu and its beneficial effects in enhancing 
neurobiological function highlight the novelty of this work. These beneficial effects may be attributed to the 
improvement in redox homoeostasis and neurotransmission in brain. The findings therefore suggest future sup-
plementation of free l-Glu as a useful therapeutic strategy to combat neurological disorders. However, further 
targeted studies are needed to elucidate the exact mechanisms behind the efficacy of free l-Glu.

Materials and methods
Animals.  Locally bred male Albino-Wistar rats (n = 12) utilised in the study, were purchased from Dow Uni-
versity of Health Sciences, OJHA campus, Karachi, Pakistan. Animals housing and handling conditions were 
same as described  previously60. Animals were caged individually (to avoid effect of social interaction) with 
ad libitum access to cubes of standard rodent diet [A control diet (4.47 kcal/g) containing 25% fat, 50% carbohy-
drate, and 25% protein] and tap water under a 12:12 h light/dark cycle (lights on at 7:00 am) at controlled room 
temperature (22 ± 2 °C). For seven days prior to the experiment, prior to experiments, animals were subjected to 
acclimation period and to various handling procedures in order to nullify the psychological affliction of environ-
ment for reducing the novelty and handling stress. All animal handling and experimentation were approved by 
the institutional ethics and animal care committee of the University of Karachi and were conducted under the 

Figure 7.  Schematic representation of findings following chronic supplementation of free Glu in rats.
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guidelines of National Institute of Health Guide for the Care and Use of Laboratory  Animals61. Balanced design 
was followed during all treatment and behavioural assessment to avoid order and time effect.

Drugs. Glutamate (Solgar, USA) tablets (available commercially) used during the study were purchased from 
Kousar Medicos. Analytical grade chemicals used in the study were purchased from Sigma Aldrich, USA and 
Alfa Aesar, USA. All the reagents for experiments were prepared fresh before starting the experiment. For oral 
administration drug solutions were made fresh each day. Tablets were dissolved in distilled water. Controls 
received equal volume of distilled water. Glu was administered at the dose of 103 mg/kg body  weight32 daily via 
oral route for 5 weeks in the volume of 0.2 ml/100 g body weight to each rat. The selection of dose was done 
in accordance with the prescription given on the tablets and from this human recommended dose the animal 
equivalent dose (AED) was calculated as mentioned by Nair and Jacob,62. The period of experimentation was 
5 weeks.

experimental protocol. Rats (n = 12) (age, 3–4 months, weight, 150–200 g) were divided randomly into 
two experimental groups each containing 6 rats (n = 6). Control (Group 1) rats received distilled water daily 
while test (Glu) group received aqueous suspension of glutamate tablets at a dose of 103 mg/kg body weight 
daily via oral route in a volume of 0.2 ml/150 g body weight to each rat for 5 weeks. At the end of treatment, 
the behavioural analysis was conducted as presented in the Fig. 1. Behavioural testing paradigms include; Open 
Field test (OFT) for assessing ambulatory activity, Kondziela’s Inverted screen test (KIST) for assessing muscu-
lar strength and Beam walking test (BWT) to determine motor co-ordination, Novel Object Recognition test 
(NORT) for determining recognition ability, Morris Water Maze test (MWM) and Passive Avoidance task (PAT) 
for determining spatial reference and associative memory performance. Subsequent to behavioural analysis, rats 
were decapitated to dissect out their brains from the skull as described by Tabassum et al.63. Hippocampus was 
also dissected out as described  previously60.

Behavioral protocols.  Food intake and body weight. Food intake and body weight of rats was monitored 
daily during the 5 weeks of the treatment as described  previously32 (see details in the supplementary file).

Assessment of locomotor performance.  Locomotor performance of rats was assessed by using OFT 
to assess ambulatory activity, KIST and BWT to determine muscular strength and motor co-ordination. The 
apparatus and procedures used for all these tasks were exactly similar as described  earlier63 which is provided in 
detail in the supplementary file.

Memory assessment.  Memory performance of rats was monitored by using NORT to determine recogni-
tion ability, MWM and PAT for assessing the spatial reference and associative memory performance. The appa-
ratus and procedures used for all these tasks were essentially the same as described  previously60. The details of 
the procedures are provided in the supplementary file.

Sample collection. For dissecting out the brain rats were decapitated 24 h after the behavioral analysis and 
their brains were taken out within 30 s and dipped in ice-cold saline. Thereafter, immediately placed in brain 
slicer with ventral side up to dissect out the hippocampus as previously  mentioned60,63 by inserting the blade at 
into the slots of the brain slicer just above and below the hypothalamus, to cut the brain into three slices which 
were then shifted to a petri dish placed on ice, moistened with chilled saline (0.9% NaCl). The middle slice was 
used to dissect out hippocampus bilaterally with the help of sharp scalpel blade. All the brain and hippocampus 
samples were stored at low temperature (− 20 °C) until biochemical (redox and neurochemical) analysis.

Biochemical protocols.  Oxidative status parameters. The tissue homogenate (10%, w/v) was prepared in 
phosphate buffer (0.1 M, pH 7.4) followed by centrifugation at 12,000 × g for 20 min at 4 ◦C for estimating the 
redox state parameters [lipid peroxidation (LPO) levels, catalase (CAT), glutathione peroxidase (GPx) and su-
peroxide dismutase (SOD) activities, reduced glutathione (GSH) and total protein content] in the same manner 
as mentioned by Haider et al.60,64. For further reading refer to the supplementary file.

neurochemical analysis. Frozen brain samples (20%) were homogenized in extraction medium contain-
ing 0.4 M PCA  (HClO4; 70%), sodium meta-bisulfate (0.1%), EDTA (0.1%) and cysteine (0.01%) with the help of 
an electrical homogenizer using a simple one-step sample preparation method. After homogenization, the sam-
ples were placed inside the refrigerator for 15 min to aid the precipitation and then centrifuged at 10,000 rpm for 
15 min at 4 °C to precipitate out the protein. The supernatant was collected for determining the GLU, GABA and 
monoamine content in brain samples. Thereafter, the content of acetylcholine (ACh), Glu and GABA was esti-
mated in the same manner as determined by Tabassum et al.32 (For details of all protocols see the supplementary 
file). The activity of Acetylcholinesterase (AChE) and the concentration of monoamines (NA, DA, 5-HT) and its 
metabolites (DOPAC, HVA and 5-HIAA) in the brain and hippocampus was determined as described by Haider 
et al.60 (For details of all protocols see the supplementary file). The results were expressed as ng/g of tissue. Along 
with this, ratios of HVA/DA and 5-HIAA/5-HT are also presented to determine the turnover rate.

Statistical analysis. The data is presented as mean ± SD and SPSS software version 20.0 was used for the 
statistical analysis. The data of the behavioural and neurochemical analysis was analysed by Student’s t-test. 
Escape latencies during acquisition trials in MWM were analysed by two-way ANOVA (repeated measures) fol-
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lowed by multiple comparisons by Bonferroni’s test. Results of latency score for Kondziela’s inverted screen test 
and no of slips during beam walking test was statistically analyzed via Non-parametric (Man-Whitney) analysis. 
Statistical differences between experimental groups were determined by two-tailed analysis and the significance 
level was set at P ≤ 0.05 for all comparisons.

ethical approval. The authors declare that the procedures performed in this study were in accordance with 
all applicable international, national, and institutional guidelines for the care and use of animals.

Data availability
Authors will provide data upon request.

Received: 20 July 2019; Accepted: 4 May 2020

References
 1. Onaolapo, O. J., Onaolapo, A. Y., Akanmu, M. A. & Gbola, O. Evidence of alterations in brain structure and antioxidant status 

following ‘low-dose’ monosodium glutamate ingestion. Pathophysiology 23(3), 147–156 (2016).
 2. Brosnan, J. T. & Brosnan, M. E. Glutamate: A truly functional amino acid. Amino Acids 45(3), 413–418 (2013).
 3. Yoshida, C., Maekawa, M., Bannai, M. & Yamamoto, T. Glutamate promotes nucleotide synthesis in the gut and improves avail-

ability of soybean meal feed in rainbow trout. SpringerPlus 5(1), 1–12 (2016).
 4. Duan, J. et al. Dietary glutamate supplementation ameliorates mycotoxin-induced abnormalities in the intestinal structure and 

expression of amino acid transporters in young pigs. PLoS ONE 9(11), e112357 (2014).
 5. Jiao, N. et al. l-glutamate enhances barrier and antioxidative functions in intestinal porcine epithelial cells. J. Nutr. 145(10), 

2258–2264 (2015).
 6. Dutta, S., Ray, S. & Nagarajan, K. Glutamic acid as anticancer agent: An overview. Saudi Pharmaceut. J. 21(4), 337–343 (2013).
 7. Tsurugizawa, T., Uematsu, A., Uneyama, H. & Torii, K. Different BOLD responses to intragastric load of l-glutamate and inosine 

monophosphate in conscious rats. Chem. Senses 36(2), 169–176 (2010).
 8. Yüksel, C. & Öngür, D. Magnetic resonance spectroscopy studies of glutamate-related abnormalities in mood disorders. Biol. 

Psychiat. 68(9), 785–794 (2010).
 9. Jinap, S. & Hajeb, P. Glutamate: Its applications in food and contribution to health. Appetite. 55(1), 1–10 (2010).
 10. Tomoe, M. et al. Clinical trial of glutamate for the improvement of nutrition and health in the elderly. Ann. N. Y. Acad. Sci. 1170(1), 

82–86 (2009).
 11. Yamamoto, S., Tomoe, M., Toyama, K., Kawai, M. & Uneyama, H. Can dietary supplementation of monosodium glutamate improve 

the health of the elderly?. Am. J. Clin. Nutr. 90(3), 844S-849S (2009).
 12. Somekawa, S., Hayashi, N., Niijima, A., Uneyama, H. & Torii, K. Dietary free glutamate prevents diarrhoea during intra-gastric 

tube feeding in a rat model. Br. J. Nutr. 107(1), 20–23 (2012).
 13. Ishibashi-Shiraishi, I. et al. l-Arginine l-glutamate enhances gastric motor function in rats and dogs and improves delayed gastric 

emptying in dogs. J. Pharmacol. Exp. Ther. 359(2), 238–246 (2016).
 14. Lin, M. et al. l-Glutamate supplementation improves small intestinal architecture and enhances the expressions of jejunal mucosa 

amino acid receptors and transporters in weaning piglets. PLoS ONE 9(11), e111950 (2014).
 15. Yin, J. et al. Effects of dietary supplementation with glutamate and aspartate on diquat-induced oxidative stress in piglets. PLoS 

ONE 10(4), e0122893 (2015).
 16. Demircan, C., Gül, Z. & Büyükuysal, R. L. High glutamate attenuates S100B and LDH outputs from rat cortical slices enhanced 

by either oxygen-glucose deprivation or menadione. Neurochem. Res. 39(7), 1232–1244 (2014).
 17. Kumar, D. et al. Biochemical and immunological changes on oral glutamate feeding in male albino rats. Int. J. Biometeorol. 42(4), 

201–204 (1999).
 18. Nakamura, H., Kawamata, Y., Kuwahara, T., Uneyama, H. & Sakai, R. Removal of glutamate from diet suppresses fat oxidation 

and promotes fatty acid synthesis in rats. FASEB J. 27(1 Suppl.), 631–636 (2013).
 19. Yanni, A. E. et al. Oral supplementation with l-aspartate and l-glutamate inhibits atherogenesis and fatty liver disease in choles-

terol-fed rabbit. Amino Acids 38(5), 1323–1331 (2010).
 20. Kanunnikova, N. P. Role of brain glutamic acid metabolism changes in neurodegenerative pathologies. J. Biol. Earth Sci. 2(1), 1–10 

(2012).
 21. Mattson, M. P. Glutamate and neurotrophic factors in neuronal plasticity and disease. Ann. N. Y. Acad. Sci. 1144(1), 97–112 (2008).
 22. Sanacora, G., Rothman, D. L., Mason, G. & Krystal, J. H. Clinical studies implementing glutamate neurotransmission in mood 

disorders. Ann. N. Y. Acad. Sci. 1003(1), 292–308 (2003).
 23. Park, C. H. et al. Glutamate and aspartate impair memory retention and damage hypothalamic neurons in adult mice. Toxicol. 

Lett. 115(2), 117–125 (2000).
 24. Tamminga, C. A., Southcott, S., Sacco, C., Wagner, A. D. & Ghose, S. Glutamate dysfunction in hippocampus: Relevance of dentate 

gyrus and CA3 signaling. Schizophr. Bull. 38(5), 927–935 (2012).
 25. Gécz, J. Glutamate receptors and learning and memory. Nat. Genet. 42(11), 925–926 (2010).
 26. Ikeda, K. New seasonings. Chem. Senses 27(9), 847–849 (2002).
 27. Patel, A. B. et al. The contribution of GABA to glutamate/glutamine cycling and energy metabolism in the rat cortex in vivo. Proc. 

Natl. Acad. Sci. USA. 102(15), 5588–5593 (2005).
 28. Hertz, L., O’Dowd, B. S., Ng, K. T. & Gibbs, M. E. Reciprocal changes in forebrain contents of glycogen and of glutamate/glutamine 

during early memory consolidation in the day-old chick. Brain Res. 994(2), 226–233 (2003).
 29. Asrani, V. et al. Glutamine supplementation in acute pancreatitis: A meta-analysis of randomized controlled trials. Pancreatology 

13(5), 468–474 (2013).
 30. Stamoula, E. et al. Low dose administration of glutamate triggers a non-apoptotic, autophagic response in PC12 cells. Cell. Physiol. 

Biochem. 37(5), 1750–1758 (2015).
 31. Madhavadas, S., Kapgal, V. K., Kutty, B. M. & Subramanian, S. The neuroprotective effect of dark chocolate in monosodium 

glutamate-induced nontransgenic Alzheimer disease model rats: Biochemical, behavioral, and histological studies. J. Dietary Suppl. 
13(4), 449–460 (2016).

 32. Tabassum, S., Haider, S., Ahmad, S., Madiha, S. & Parveen, T. Chronic choline supplementation improves cognitive and motor 
performance via modulating oxidative and neurochemical status in rats. Pharmacol. Biochem. Behav. 159, 90–99 (2017).

 33. Onaolapo, O. J., Aremu, O. S. & Onaolapo, A. Y. Monosodium glutamate-associated alterations in open field, anxiety-related and 
conditioned place preference behaviours in mice. Naunyn-Schmiedeberg’s Arch. Pharmacol. 390(7), 1–13 (2017).



12

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:11206  | https://doi.org/10.1038/s41598-020-68041-y

www.nature.com/scientificreports/

 34. McEntee, W. J. & Crook, T. H. Glutamate: Its role in learning, memory, and the aging brain. Psychopharmacology. 111(4), 391–401 
(1993).

 35. Kowluru, R. A., Engerman, R. L., Case, G. L. & Kern, T. S. Retinal glutamate in diabetes and effect of antioxidants. Neurochem. Int. 
38(5), 385–390 (2001).

 36. Greenamyre, J. T. The role of glutamate in neurotransmission and in neurologic disease. Arch. Neurol. 43(10), 1058–1063 (1986).
 37. Yanni, A. E. et al. Dietary l-aspartate and l-glutamate inhibit fatty streak initiation in cholesterol-fed rabbit. Nutr. Metab. Cardio-

vasc. Dis. 13(2), 80–86 (2003).
 38. López-Miranda, V. et al. Effects of chronic dietary exposure to monosodium glutamate on feeding behavior, adiposity, gastroin-

testinal motility, and cardiovascular function in healthy adult rats. Neurogastroenterol. Motil. 27(11), 1559–1570 (2015).
 39. Otter, S. & Lammert, E. Exciting times for pancreatic islets: glutamate signaling in endocrine cells. Trends Endocrinol. Metab. 27(3), 

177–188 (2016).
 40. Meyer-Gerspach, A. C. et al. Gut taste stimulants alter brain activity in areas related to working memory: A pilot study. Neurosignals 

24(1), 59–70 (2016).
 41. Garlick, P. J. The nature of human hazards associated with excessive intake of amino acids. J. Nutr. 134(6), 1633S-1639S (2004).
 42. Tapiero, H., Mathe, G., Couvreur, P. & Tew, K. D. II. Glutamine and glutamate. Biomed. Pharmacother. 56(9), 446–457 (2002).
 43. Abu-Taweel, G. M., Zyadah, M. A., Ajarem, J. S. & Ahmad, M. Cognitive and biochemical effects of monosodium glutamate and 

aspartame, administered individually and in combination in male albino mice. Neurotoxicol. Teratol. 42, 60–67 (2014).
 44. Xu, L. C. et al. The roles of metallothionein on cadmium-induced testes damages in Sprague-Dawley rats. Environ. Toxicol. Phar-

macol. 20(1), 83–87 (2005).
 45. Lobo, V., Patil, A., Phatak, A. & Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharma-

cogn. Rev. 4(8), 118 (2010).
 46. Ni, H. et al. Effects of glutamate and aspartate on serum antioxidative enzyme, sex hormones, and genital inflammation in boars 

challenged with hydrogen peroxide. Mediators Inflamm. 2016, 4394695. https ://doi.org/10.1155/2016/43946 95 (2016).
 47. Agarwal, A., Makker, K. & Sharma, R. Clinical relevance of oxidative stress in male factor infertility: An update. Am. J. Reprod. 

Immunol. 59(1), 2–11 (2008).
 48. Li, Y., Jiang, B., Zhang, T., Mu, W. & Liu, J. Antioxidant and free radical-scavenging activities of chickpea protein hydrolysate 

(CPH). Food Chem. 106(2), 444–450 (2008).
 49. Cynober, L. Metabolism of dietary glutamate in adults. Ann. Nutr. Metab. 73(5), 5–14 (2018).
 50. Tomé, D. The roles of dietary glutamate in the intestine. Ann. Nutr. Metab. 73(5), 15–20 (2018).
 51. Han, D. et al. Protection against glutamate-induced cytotoxicity in C6 glial cells by thiol antioxidants. Am. J. Physiol. Regulat. 

Integr. Comp. Physiol. 273(5), R1771–R1778 (1997).
 52. Yin, J. et al. Oxidative stress-mediated signaling pathways: A review. J. Food Agric. Environ. 11(2), 132–139 (2013).
 53. Deng, Y. et al. Riluzole-triggered GSH synthesis via activation of glutamate transporters to antagonize methylmercury-induced 

oxidative stress in rat cerebral cortex. Oxidative Med. Cell. Longev. 2012, 534705 (2012).
 54. Blachier, F., Boutry, C., Bos, C. & Tomé, D. Metabolism and functions of l-glutamate in the epithelial cells of the small and large 

intestines. Am. J. Clin. Nutr. 90(3), 814S-821S (2009).
 55. Mufson, E. J., Counts, S. E., Fahnestock, M. & Ginsberg, S. D. Cholinotrophic molecular substrates of mild cognitive impairment 

in the elderly. Curr. Alzheimer Res. 4(4), 340–350 (2007).
 56. Thorajak, P. et al. Effects of aged garlic extract on cholinergic, glutamatergic and GABAergic systems with regard to cognitive 

impairment in Aβ-induced rats. Nutrients. 9(7), 686 (2017).
 57. Aigner, T. G. Pharmacology of memory: Cholinergic—glutamatergic interactions. Curr. Opin. Neurobiol. 5(2), 155–160 (1995).
 58. Farr, S. A., Flood, J. F. & Morley, J. E. The effect of cholinergic, GABAergic, serotonergic, and glutamatergic receptor modulation 

on posttrial memory processing in the hippocampus. Neurobiol. Learn. Mem. 73(2), 150–167 (2000).
 59. Nilsen, L. H., Rae, C., Ittner, L. M., Götz, J. & Sonnewald, U. Glutamate metabolism is impaired in transgenic mice with tau 

hyperphosphorylation. J. Cereb. Blood Flow Metab. 33(5), 684–691 (2013).
 60. Haider, S., Tabassum, S. & Perveen, T. Scopolamine-induced greater alterations in neurochemical profile and increased oxidative 

stress demonstrated a better model of dementia: A comparative study. Brain Res. Bull. 127, 234–247 (2016).
 61. National Research Council, Guide for the Care and Use of Laboratory Animals. 8th edn. (National Academies Press, Washington, 

DC, 2011). https ://www.ncbi.nlm.nih.gov/books /NBK54 050/. https ://doi.org/10.17226 /12910 .
 62. Nair, A. B. & Jacob, S. A simple practice guide for dose conversion between animals and human. J. Basic Clin. Pharm. 7(2), 27–31 

(2016).
 63. Tabassum, S. et al. Impact of oral supplementation of Glutamate and GABA on memory performance and neurochemical profile 

in hippocampus of rats. Pak. J. Pharmaceut. Sci. 30(3 Suppl.), 1013 (2017).
 64. Haider, S. & Tabassum, S. Impact of 1-day and 4-day MWM training techniques on oxidative and neurochemical profile in rat 

brain: A comparative study on learning and memory functions. Neurobiol. Learn. Mem. 155, 390–402 (2018).

Acknowledgements
Authors are thankful to University of Karachi and Higher Education Commission (HEC), Pakistan for their 
support and funding to carry out the current study. Authors are also thankful to ICCBS, University of Karachi 
for giving access to use Fluorometric ELISA reader. The experimental material and animals used in the current 
study were funded by University of Karachi and Higher Education Commission (HEC), Pakistan. Authors also 
declare that there are no competing financial interests in relation to the work described.

Author contributions
Author S.T. wrote the main manuscript text and performed the statistical analysis and formatting of the manu-
script, S.H. given the idea, supervise the whole work and reviewed the main manuscript text and figures, S.T., 
S.M., S.S., S.A., S.S., and Z.B. performed the experimental work and gathered the data. All authors reviewed the 
manuscript.

competing interests 
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https ://doi.org/10.1038/s4159 8-020-68041 -y.

Correspondence and requests for materials should be addressed to S.H.

Reprints and permissions information is available at www.nature.com/reprints.

https://doi.org/10.1155/2016/4394695
https://www.ncbi.nlm.nih.gov/books/NBK54050/
https://doi.org/10.17226/12910
https://doi.org/10.1038/s41598-020-68041-y
www.nature.com/reprints


13

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:11206  | https://doi.org/10.1038/s41598-020-68041-y

www.nature.com/scientificreports/

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this license, visit http://creat iveco mmons .org/licen ses/by/4.0/.

© The Author(s) 2020

http://creativecommons.org/licenses/by/4.0/

	Free l-glutamate-induced modulation in oxidative and neurochemical profile contributes to enhancement in locomotor and memory performance in male rats
	Recommended Citation
	Authors

	Free l-glutamate-induced modulation in oxidative and neurochemical profile contributes to enhancement in locomotor and memory performance in male rats
	Anchor 2
	Anchor 3
	Results
	Effect of free l-Glu on locomotor performance. 
	Effect of free l-Glu on learning and memory function. 
	Effect of chronic administration of free l-Glu on oxidative status of brain. 
	Effect of chronic administration of free l-Glu on neurochemical profile of brain. 

	Discussion
	Materials and methods
	Animals. 
	Drugs. 
	Experimental protocol. 
	Behavioral protocols. 
	Food intake and body weight. 

	Assessment of locomotor performance. 
	Memory assessment. 
	Sample collection. 
	Biochemical protocols. 
	Oxidative status parameters. 

	Neurochemical analysis. 
	Statistical analysis. 
	Ethical approval. 

	References
	Acknowledgements


