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Abstract 16 

Humans and nonhuman great apes share a sense for intuitive statistical reasoning, making 17 

intuitive probability judgments based on proportional information. This ability is of fundamental 18 

importance, in particular for inferring general regularities from finite numbers of observations and, 19 

vice versa, for predicting the outcome of single events using prior information. To date it remains 20 

unclear which cognitive mechanism underlies and enables this capacity. The aim of the present 21 

study was to gain deeper insights into the cognitive structure of intuitive statistics by probing its 22 

signatures in chimpanzees and humans. We tested 24 sanctuary-living chimpanzees in a previously 23 

established paradigm which required them to reason from populations of food items with different 24 

ratios of preferred (peanuts) and non-preferred items (carrot pieces) to randomly drawn samples. 25 

In a series of eight test conditions, the ratio between the two ratios to be discriminated (ROR) was 26 

systematically varied ranging from 1 (same proportions in both populations) to 16 (high magnitude 27 

of difference between populations). One hundred and forty-four human adults were tested in a 28 

computerized version of the same task. The main result was that both chimpanzee and human 29 

performance varied as a function of the log(ROR) and thus followed Weber´s law. This suggests 30 

that intuitive statistical reasoning relies on the same cognitive mechanism that is used for 31 

comparing absolute quantities, namely the analogue magnitude system.  32 

 33 

Keywords: probabilistic reasoning; numerical cognition; analogue magnitude system; 34 

signature limits; great apes; sanctuary-living 35 
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1. Introduction 36 

Statistical reasoning is of fundamental importance in human life and one of the hallmarks of 37 

human thinking: we continually generalize from sample observations and use these generalizations 38 

to predict the outcome of events and to make rational decisions under uncertainty. Nevertheless, 39 

over many decades statistical reasoning was deemed to be dependent on language and 40 

mathematical training and to remain difficult and error-prone throughout an individual’s lifespan 41 

(e.g. Piaget & Inhelder, 1975; Tversky & Kahneman, 1974, 1981). More recently, however, 42 

developmental research produced evidence that even preverbal infants are capable of basic forms 43 

of intuitive statistics: For example, when confronted with two jars containing mixtures of attractive 44 

and neutral candy in different proportions, infants were able to infer which of the two was more 45 

likely to lead to a preferred candy as randomly drawn sample (Denison & Xu, 2010a, 2014). This 46 

also works in the other direction: When confronted with samples, infants could draw conclusions 47 

about the proportional composition of the associated populations (Denison, Reed, & Xu, 2013; Xu 48 

& Garcia, 2008). Even more impressively, such statistical information is integrated with 49 

knowledge from other cognitive domains from very early on: Infants seem to understand that a 50 

sample does not necessarily reflect the population´s distribution, for instance when the 51 

experimenter has the intention to draw a certain type of object as well as visual access to the 52 

population (Xu & Denison, 2009), or when a mechanical constraint prevents her from drawing 53 

some of the objects (Denison, Trikutam, & Xu, 2014; Denison & Xu, 2010b). Similarly, infants 54 

can integrate complex spatio-temporal information into their statistical inferences to judge single 55 

event probabilities: When a population of objects bounced randomly in a container with one 56 

opening, infants formed expectations as to which object was most likely to exit, based on the 57 

proportional composition of the population (majority objects are more likely to exit) and each 58 
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objects´ spatial distance from the opening (the closer objects are, the more likely they are to exit; 59 

Teglas et al., 2011). 60 

These findings demonstrated that neither language nor mathematical education are 61 

prerequisites for basic statistical reasoning. Instead, infants seem to be equipped with a set of 62 

efficient and powerful statistical inference mechanisms from very early on, which presumably help 63 

them to rapidly learn about rules and regularities of the world. From a comparative point of view, 64 

these findings raise the question of whether intuitive statistics may be part of our evolutionary 65 

heritage and therefore not necessarily uniquely human. 66 

To shed light on this question, comparative research adapted Denison and Xu´s (2010) 67 

paradigm and tested nonhuman great apes for their statistical reasoning capacities: Rakoczy et al. 68 

(2014) presented chimpanzees, gorillas, orangutans and bonobos with two transparent buckets 69 

containing mixtures of preferred and non-preferred food items (banana pellets and carrot pieces) 70 

in specific ratios. Subsequently, the experimenter drew one sample each and the subject was 71 

allowed to choose between the two covered samples. Apes were able to infer which of the two 72 

populations was more likely to lead to a pellet as a sample. Moreover, they chose systematically 73 

even when absolute and relative frequencies were disentangled, i.e. when the population with the 74 

more favorable ratio of pellets to carrots contained absolutely fewer pellets than the other one. A 75 

very recent study (Eckert, Rakoczy, Call, Herrmann, & Hanus, 2018) showed that these statistical 76 

inferences are not an isolated and automatic process; instead, just like human infants, apes did 77 

consider additional information about the experimenter (her preferences and visual access) when 78 

predicting the outcome of her draw. Hence, some great ape intuitive statistical abilities seem to be 79 

on a par with those of human infants, suggesting that they constitute an evolutionary ancient 80 

ability. 81 
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However, when great apes were presented with the reverse task, requiring inferences from 82 

sample to population, they exhibited some limitations: Eckert, Rakoczy, and Call (2017) presented 83 

apes with covered containers holding populations of preferred and non-preferred food-items. After 84 

observing multi-item samples being drawn from these populations, apes could choose between the 85 

two covered containers. Subjects were able to correctly reason from sample to population, but only 86 

in conditions, in which the proportionally favorable sample also contained absolutely more 87 

preferred food items than the other (4:1 vs. 1:4 preferred to non-preferred food items). In 88 

experiments contrasting absolute and relative frequencies of preferred food items (e.g. 2:1 vs. 4:8 89 

preferred to non-preferred food items), apes tended to choose the population from which the 90 

sample with absolutely more preferred items was drawn (4:8), despite its unfavorable ratio.  91 

There are at least two possible interpretations of these findings: First, they may indicate 92 

that apes relied on absolute quantity heuristics to reason from sample to population. In fact, even 93 

in the human literature there is a great deal of research suggesting that most probabilistic inferences 94 

are actually just the result of different heuristics (e.g. Davidson, 1995; De Neys & Vanderputte, 95 

2011; Jacobs & Potenza, 1991; Kahneman & Tversky, 1972, 1973; Tversky & Kahneman, 1974, 96 

1981). Hence, controlling for absolute number heuristics is of substantial importance in the field 97 

of intuitive statistics. Nevertheless, many studies (both on human and nonhuman species) have 98 

unfortunately failed to sufficiently control for such strategies. The previously described studies on 99 

great apes, for instance, included control conditions for heuristics dealing with the absolute 100 

quantity of preferred items (which apes passed in Rakoczy et al. (2014), but failed in Eckert et al. 101 

(2017)). None of them, however, tested for the reverse strategy: a heuristic based on avoiding the 102 

population or sample containing more non-preferred food items. Hence, to be able to draw 103 
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conclusions about apes´ intuitive statistical abilities, there is an urgent need for studies controlling 104 

for all types of absolute quantity heuristics. 105 

A second interpretation for Eckert et al.´s (2017) negative findings is that they merely 106 

reflect performance, rather than competence limitations. The critical conditions in that study may 107 

have been especially difficult because the magnitude of difference between samples (i.e. the ratio 108 

of the two ratios, ROR) was relatively small, and perhaps beyond the signature limits of apes´ 109 

capacity: While the ROR was 16 in the successful confounded conditions (and also in all 110 

conditions of Rakoczy and colleagues´ population to sample study), it was as low as 4 in the critical 111 

condition in which absolute and relative frequencies of preferred food items were disentangled.   112 

This, in turn, raises a much more fundamental question: What are the cognitive foundations of 113 

intuitive statistics that explain both the scope and limits of this capacity? And are these the same 114 

in humans and our closest living relatives, the chimpanzees?  115 

Nonhuman primates (and other animals) share with humans a cognitive mechanism for 116 

basic quantitative cognition. This mechanism, the analogue magnitude system, is used for dealing 117 

with absolute numerical information: It represents number (and also other magnitudes like duration 118 

or space) by a mental magnitude that is roughly proportional to and thus a direct analogue of the 119 

number of individuals in the set being enumerated (see, e.g. Carey, 2009; Dehaene, 2011).1 It thus 120 

enables subjects to estimate and compare arbitrarily large quantities, but only in an approximate 121 

way (e.g. Nieder & Dehaene, 2009). Its accuracy follows Weber´s Law: Discriminability of two 122 

                                                 
1 We prefer to refer to the more general “analogue magnitude system” rather than the more specific “approximate 

number system” since this leaves open the possibility that the system in question is not restricted to discrete numerical 

information in the more narrow sense, but potentially also represents continuous magnitudes such as length, duration, 

etc. Whether or not there is a separate cognitive system processing numerical information only is still highly debated 

(see e.g. Lourenco 2015 for a review).  
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sets varies as a function of the ratio of the set sizes to be compared, independently of their absolute 123 

numerosity (e.g. Cantlon & Brannon, 2006, 2007). For example, if a subject can discriminate 2 124 

from 4 objects, it is also able to discriminate 10 from 20 or 500 from 1000. This fundamental 125 

characteristic yields specific signatures that can be used to identify the involvement of this system 126 

in cognitive tasks. Numerous comparative studies have shown that many species across the animal 127 

kingdom exhibit the same signatures in accordance with Weber´s law when confronted with 128 

quantity comparison tasks. For example, fish (Buckingham, Wong, & Rosenthal, 2007), birds 129 

(Ain, Giret, Grand, Kreutzer, & Bovet, 2009; Rugani, Cavazzana, Vallortigara, & Regolin, 2013), 130 

monkeys (Barnard et al., 2013; Cantlon & Brannon, 2007), and great apes (Beran, 2004; Call, 131 

2000; Hanus & Call, 2007) all showed a ratio-dependent performance when discriminating 132 

absolute quantities, suggesting that the analogue magnitude system is an evolutionary ancient 133 

mechanism (see Beran, 2017 for a review).  134 

Are the limits reported by Eckert et al. (2017) a first hint that apes employed their analogue 135 

magnitude system in a statistical reasoning task as well? Is the ability to reason probabilistically 136 

from population to sample and vice versa dependent on the ratio between the two proportions to 137 

be discriminated, i.e. on the ratio of ratios (ROR)? To our knowledge, no study has directly tested 138 

for this hypothesis in nonhuman primates yet; indeed, even in human adults the evidence is 139 

ambiguous. One study (O´Grady, Griffiths, & Xu, 2016) tested human adults in a computer based 140 

task that required them to reason statistically from population to sample. The authors varied the 141 

magnitude of difference between the two populations´ ratios and included both trials in which 142 

absolute and relative frequencies of target stimuli were confounded and trials in which they were 143 

disentangled. Statistical analysis revealed that the effect of the ROR on humans´ performance was 144 

dependent on the trial type, with much stronger effects in the confounded condition. In this 145 
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condition, participants could simply compare the two (absolute) amounts of target stimuli, a 146 

capacity known to be enabled by the analogue magnitude system. Unfortunately, it remained 147 

unclear whether there was any significant ROR impact in the crucial trials controlling for absolute 148 

quantity heuristics.2 Hence, this study is yet another example of the problematic confound of 149 

absolute and relative frequencies in intuitive statistical reasoning tasks.  150 

The only two studies investigating signatures in a statistical reasoning task in human infants 151 

used looking-time patterns and produced mixed results. On the one hand, Téglás, Ibanez-Lillo, 152 

Costa and Bonatti (2015) found that, after watching a scene containing moving objects of two 153 

ensembles, infants looked longer at an unlikely than at a likely single-case outcome when the scene 154 

depicted a 3:1 ratio. However, they did not do so with a 12:4 ratio, suggesting that absolute set 155 

sizes, rather than ratios, influenced performance in this intuitive statistical reasoning task. On the 156 

other hand, Kayhan, Gredebäck and Lindskog (2017) measured infants´ looking patterns at two 157 

multi-item-samples drawn from one population. In order to vary the magnitude of difference in 158 

likelihoods between samples, they manipulated both the ratios within samples and within the 159 

population. Here, results showed that infants´ looking patterns varied as a function of the 160 

magnitude of difference in likelihood, suggesting that ROR does modulate infants´ probability 161 

estimations. Hence, to date it remains unclear whether or not the analogue magnitude system is 162 

the primary cognitive mechanism enabling intuitive statistics in humans. 163 

                                                 
2 In fact, the authors found a significant three-way-interaction between ROR, condition and age. Hence, the effect of 

the ROR was not only dependent on the trial type, but also on the age of participants (yet this age effect was not 

discussed in the paper). It is generally not meaningful or reasonable to interpret the individual effects of the 

components of a significant interaction (Bortz, 1999; Underwood, 1997; Zar, 1999). The only legitimate statement 

this study can draw regarding ROR effects is, therefore, that the effect was only visible in certain age groups depending 

on whether or not absolute and relative frequencies were confounded.  
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Despite this controversy, there is some indirect evidence supporting the idea of the 164 

analogue magnitude system as foundation of statistical reasoning: Both developmental and 165 

comparative research have shown that one important prerequisite capacity for statistical reasoning 166 

– tracking relative frequencies – is subject to the same signatures as tracking absolute frequencies. 167 

McCrink and Wynn (2007) presented human infants with a ratio discrimination task: After 168 

habituating them with multiple examples of a single ratio, infants were able to discriminate 169 

between new examples of this ratio and novel ratios. Infants´ accuracy was highly dependent on 170 

the ratio between ratios, in accordance with Weber´s law. Similar results were found for a 171 

nonhuman primate species (Drucker, Rossa, & Brannon, 2015): two rhesus macaques were trained 172 

to choose arrays that contained the greater ratio of positive to negative stimuli. Subjects´ 173 

performance was modulated by the ratio between ratios: they responded more quickly and 174 

accurately the higher the ratio between ratios was, regardless of the absolute number of stimuli 175 

within the arrays. Results of these two studies (Drucker et al., 2015; McCrink and Wynn, 2007) 176 

suggest that the ability to discriminate ratios is a function of the ratio between the ratios to be 177 

discriminated, similarly as the ability to discriminate absolute quantities is a function of the ratio 178 

of the absolute set sizes. This raises the question whether the analogue magnitude system not only 179 

enables an individual to track relative frequencies, but also to use relative frequency information 180 

to draw statistical inferences from population to sample and vice versa.  181 

One recent study did find some such evidence for an involvement of the analogue 182 

magnitude system in decision making under uncertainty in nonhuman great apes: Hanus and Call 183 

(2014) gave chimpanzees the choice between two trays on which food items were hidden under 184 

cups. The trays differed with respect to the ratio of food items to cups and thus in chances of 185 

finding food. Results showed that chimpanzees´ performance varied as a function of the ratio 186 
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between the two ratios, even in conditions where one tray constituted a 100% likelihood of finding 187 

food. This suggests that the ratio between ratios, more than the magnitude of difference within the 188 

single ratios, is decisive for apes´ ability to discriminate probabilities. However, chimpanzees´ 189 

success in this study could be explained with an absolute quantity heuristic, not regarding the 190 

amount of food items available, but regarding the number of cups on each tray. In particular, the 191 

tray depicting the more favorable food/cup ratio always held the smaller number of cups. The 192 

authors added a control condition in which they excluded simple associative learning explanations 193 

(subjects did not preferentially choose the tray with fewer cups when the food was visibly removed 194 

from all cups). Nevertheless, it cannot be excluded that, as soon as there was any food to be found, 195 

chimpanzees at least partially relied on a mental shortcut such as “fewer cups= higher likelihood 196 

of finding food”. 197 

In sum, nonhuman great apes share with humans the fundamental ability to draw statistical 198 

inferences from population to sample and (to a certain extent) vice versa. Yet, it still remains an 199 

open question what the cognitive foundations of intuitive statistics are and whether they are the 200 

same in humans and their closest living relatives. To date, two main reasons suggest that the 201 

analogue magnitude system is the most plausible candidate for a basic statistical inference 202 

mechanism. First, the prerequisite capacity for this kind of inferences, tracking ratios, shows the 203 

same signatures as absolute quantity discrimination, both in human and nonhuman primates. 204 

Second, decision making under uncertainty seems to be ratio dependent in chimpanzees. What is 205 

missing is a comparative study testing great apes and humans in an intuitive statistical reasoning 206 

task that systematically varies the ROR and, crucially, controls for the use of absolute quantity 207 

heuristics. 208 
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The rationale of the present study, therefore, was threefold. First, we wanted to elucidate 209 

the cognitive and evolutionary underpinnings of intuitive statistics in chimpanzees and humans by 210 

testing its signatures. If intuitive statistics are based on the same analogue magnitude system, we 211 

would expect the characteristic performance patterns and signatures in both species. Much like the 212 

discrimination of absolute set sizes varies as a function of the ratio of the set sizes, we expected 213 

that the accuracy of intuitive statistics would vary as a function of the ROR between sets. We were 214 

particularly interested in determining the ROR lower threshold where performance breaks down 215 

in each species. Moreover, a comparison of these signature limits with those found in simple 216 

quantity discrimination tasks helped us determine whether the inclusion of the statistical operation 217 

adds error to the representation in comparison to basic quantity discrimination. As described 218 

earlier, quantities are represented in an analogue, approximate way. We assumed that 219 

discriminating ratios of quantities and forming probabilistic expectations on their basis adds 220 

considerable noise relative to absolute quantity discrimination, since it requires representing and 221 

operating on quantities over multiple accounts (see, e.g. Barth et al. 2006 for an example of how 222 

subtraction operations add error to the quantity representation in comparison to simple quantity 223 

discrimination tasks). Accordingly, we expected the ROR threshold to be higher (i.e. less sensitive) 224 

than the threshold for discriminating absolute quantities. To address these questions, we presented 225 

chimpanzees with a previously established paradigm (Rakoczy et al., 2014) that required them to 226 

reason from populations of food items with different ratios of preferred and non-preferred food 227 

items to randomly drawn samples. We systematically varied the ratio between the two ratios (of 228 

preferred to non-preferred food items; ROR) ranging from 1 (equal proportions in both 229 

populations) to 16 (high magnitude of difference between populations). We tested human adults 230 

in a computerized version of the same task.  231 
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Our second goal was to replicate and validate previous findings on intuitive statistics in 232 

great apes. So far, only one experimentally highly experienced population of chimpanzees (and 233 

other apes) has been tested for their statistical abilities (Rakoczy et al. 2014). Therefore, it remains 234 

an open question whether findings of this particular population are generalizable to chimpanzees 235 

as a species. To investigate whether intuitive statistics is in fact a common, natural capacity in 236 

chimpanzees, we used the same task setup to test completely naïve individuals who were raised 237 

and housed in a different environment. This allowed us to directly compare between the previously 238 

tested, captive born and zoo housed chimpanzees, and the wild born, sanctuary housed 239 

chimpanzees tested in the present study.  240 

Lastly, our study rules out alternative explanations based on absolute quantity heuristics. 241 

Most importantly, we included a crucial experiment to control for the possibility that apes used a 242 

strategy based on avoiding the population with the largest number of non-preferred items. The to 243 

date only study on nonhuman primates addressing such an avoidance heuristic has produced 244 

negative results: Capuchin monkeys failed to choose the sample from the proportion wise 245 

favorable population when they could not rely on the absolute amount of non-preferred items 246 

(Tecwyn, Denison, Messer, & Buchsbaum, 2016). It is, therefore, crucial to explore the possibility 247 

that apes´ success in the present and previous studies was due to this simple quantity heuristic. 248 

Moreover, our study design ensured that apes could not succeed by choosing based on the absolute 249 

quantity of preferred food items. While previous studies (Eckert et al. 2017; Rakoczy et al., 2014) 250 

addressed this issue in separate control conditions, we designed our study in a way that apes were 251 

prevented from using such a strategy in all test conditions. Lastly, we also controlled for heuristics 252 

dealing with the total amount of food in each population. Hence, this is the first study on intuitive 253 



13 

 

statistics in great apes comprehensively controlling for absolute number heuristics both regarding 254 

preferred and non-preferred items as well as their absolute total amount. 255 

2. Methods 256 

2.1. Chimpanzees 257 

2.1.1. Subjects 258 

We tested 24 chimpanzees (12 females) aged between 9 and 32 years at Ngamba Island 259 

Chimpanzee Sanctuary, Uganda. Research strictly adhered to the legal requirements of Uganda 260 

and was approved and reviewed by the Ugandan Wildlife Authorities and the Ugandan National 261 

Council for Science and Technology. The study was approved by the ethics committees of the Max 262 

Planck Institute for Evolutionary Anthropology and the Chimpanzee Sanctuary & Wildlife 263 

Conservation Trust. 264 

2.1.2. Design and procedure 265 

Subjects were tested in eight ROR conditions and one condition controlling for the usage 266 

of a non-preferred food avoidance heuristic (hereafter: carrot avoidance control; see Fig 2). All 267 

conditions consisted of 12 trials, presented in a single session. The sequence of conditions was 268 

randomized for each subject, with the exception of the carrot avoidance control, which was the 269 

fifth condition for all subjects (see SI for more details). 270 

We presented subjects with two transparent buckets filled with mixed populations of 271 

peanuts and carrot pieces of roughly equal size and shape. In all but one condition (ROR 1), one 272 

of the buckets contained a population that was more favorable in terms of its proportion of peanuts 273 
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to carrots compared to the other. The experimenter showed both buckets to the subject, directed 274 

her gaze towards the ceiling and drew one item (always of the majority type) out of each of the 275 

buckets in a way that the chimpanzee could not see what was drawn. The experimenter kept the 276 

items hidden in her fists and the subject was allowed to indicate a choice to receive the chosen 277 

sample. In half of the trials, the experimenter crossed her arms when moving the fists towards the 278 

mesh to ensure that subjects made a choice between samples and not just chose the side where the 279 

favorable population was still visible. Trials with and without crossing were alternated (see Fig 1 280 

for an illustration). 281 

 282 

 283 

 284 

Fig 1 Experimental setup. The experimenter simultaneously drew one sample from each of two populations in a 285 
way that kept the object hidden from the chimpanzee. The experimenter then gave the subject a choice between 286 
the two hidden samples (A). In half of the trials the experimenter crossed her arms before the subject was given a 287 
choice (B). 288 

 289 

A 

B 
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2.1.2.1. ROR conditions 290 

To find the signatures of intuitive statistics, we systematically varied the ratio between 291 

populations` ratios (ROR) ranging from 1 (equal ratio in both populations) to 16 (high magnitude 292 

of difference between ratios). In all ROR conditions we disentangled absolute and relative 293 

frequencies of peanuts: the bucket containing the less favorable ratio of peanuts to carrots 294 

contained twice as many peanuts as the bucket containing the more favorable ratio (see Fig 2). 295 

This ensured that subjects truly reasoned about proportional information, rather than about 296 

absolute numbers of peanuts. RORs were calculated in the following way (following Drucker et 297 

al., 2016; for more details see SI): 298 

Ratio of peanuts to carrots in the more favorable population

Ratio of peanuts to carrots in the less favorable population
 299 

One consequence of this was that the favorable population always contained a smaller total 300 

amount of food items across ROR conditions (see Fig 2). Hence, it is theoretically possible that 301 

subjects learned over the course of sessions to always pick the sample from the bucket with fewer 302 

items. Although this seems unlikely considering that chimpanzees have proven to be poor in 303 

learning arbitrary associations (e.g., Call, 2004), we included a ROR 1 condition in which both 304 

populations contained the same proportion of peanuts to carrots (i.e. both of them were equally 305 

likely to lead to a peanut as randomly drawn sample), while one contained double the amount of 306 

food items in absolute terms. If they still preferred the sample of one of the two populations, this 307 

would suggest that chimpanzees used other information than intended to solve the task. The reward 308 

pattern in this condition was adjusted accordingly: In randomized order, the experimenter drew a 309 

peanut from both buckets in half of the trials; in the other half she drew a carrot. 310 
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2.1.2.2. Carrot avoidance control 311 

To test whether subjects solved the task using a non-preferred food avoidance strategy 312 

focusing on the absolute number of carrots, here the favorable population contained four times 313 

more carrot pieces than the unfavorable population, while the ROR was 16 (see Fig 2). If 314 

chimpanzees used a carrot avoidance strategy, we expected them to perform worse than in the 315 

ROR 16 condition.  316 

 317 

Fig 2 List of conditions (eight ROR conditions and carrot avoidance control) and the respective proportions within 318 
the populations as well as the likelihood of drawing a peanut as a sample. Numerals in front of the colon depict 319 
numbers of preferred items, numerals after the colon depict numbers of non-preferred items. The first line always 320 
displays the favorable population except in ROR 1 in which both proportions were identical. 321 

 322 

2.1.3. Coding and data analysis 323 

The apes´ choice was coded live by the experimenter. A second blind observer coded 25% 324 

of the trials from video. Both raters were in excellent agreement (K = .95, N = 576). To investigate 325 

whether there was an effect of the ROR on chimpanzees’ performance across ROR conditions, we 326 
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ran a Generalized Linear Mixed Model (GLMM; Baayen 2008). “Correct choice” (choice of 327 

sample from population with higher peanut proportion) was the dependent variable. Note that data 328 

for the ROR 1 condition was not included in the model, since there was no “correct choice” in this 329 

condition (both populations were equally likely to lead to a preferred food item as a reward). As 330 

fixed effects we included logROR (since we expected the effect to be logarithmic), session and 331 

trial number (to test for potential learning effects) as well as all second and third order interactions 332 

among logROR, session number and trial number. To control for the effect of age and age2 (in case 333 

of a nonlinear age-effect) they were included as further fixed effects. Subject ID and session ID 334 

were included as random effects. To keep type I error rate at the nominal level of 5% (Schielzeth 335 

& Forstmeier 2009; Barr 2013) we included all possible random slopes components (logROR, 336 

session number, trial number within subject ID and trial number within session ID) and also the 337 

respective correlations between random slopes and intercepts (see SI for more details on the 338 

statistical analysis). In order to determine the ROR lower threshold where performance breaks 339 

down, we inspected the confidence interval limits of the model: The model predicts performance 340 

to be above chance level in conditions for which the confidence interval limits lie above 0.5.      341 

To investigate whether chimpanzees’ performance in the carrot avoidance control was 342 

different from the ROR 16 condition, we ran a second GLMM. Again, “correct choice” was the 343 

response variable. As fixed effects we included condition (carrot avoidance control vs. ROR 16), 344 

session number and trial number as well as the two-way interactions between condition and trial 345 

number and between session number and trial number. Again, we included age and age2 as further 346 

fixed effects, subject ID and session ID as random effects, and all random slopes components 347 

(condition, session number and trial number within subject ID and trial within session ID) as well 348 

as the respective correlations between random slopes and intercepts (see SI for more details).  349 
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2.2. Humans 350 

2.2.1. Subjects 351 

We tested 144 adult humans (80 women) aged between 18 and 34 years at the University 352 

of Göttingen, Germany. Participants were tested in a computerized version of the same task as the 353 

chimpanzees. On a test computer, they were invited to imagine collecting as many red balls as 354 

possible from pairs of transparent urns filled with red and blue balls. They were asked to envision 355 

drawing from one urn of each pair with eyes closed and to indicate their choice by pressing one of 356 

two keys as quickly as possible. 357 

2.2.2. Design and procedure 358 

Similar to the apes, humans were tested in eight ROR conditions ranging from 1 to 16, with 359 

proportions resembling those for chimpanzees (see Fig 2). To prevent participants from learning 360 

to always pick the urn with the smaller absolute quantity (since humans were tested in a single 361 

session the likelihood for learning such a rule was high), we also tested seven additional conditions 362 

(RORs between 1.5 and 16) in which absolute and relative frequencies were confounded. Since 363 

we expected getting a ceiling effect for confounded conditions (and their interpretation would not 364 

have been meaningful in terms of statistical reasoning), we did not plan to focus on these 365 

conditions in the analysis (but see SI for results). To prevent participants from counting the balls, 366 

images were only displayed for a maximum of 4 seconds (see SI for an example stimulus). 367 

Participants saw six trials per condition and trials of all conditions were randomized for each 368 

subject in one single test session. 369 

2.2.3. Coding and data analysis 370 
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Participants´ choice and response time were recorded automatically by EPrime (mean 371 

response times are depicted in SI Fig. 2). We used the same analysis as for chimpanzees, with the 372 

following exceptions: We ran two separate models, one for disentangled RORs and one for 373 

confounded RORs. Since humans were tested in a single session, we did not include session 374 

number as fixed effect, nor did we include session ID as random effect. Further, we only included 375 

age, but not age2 as fixed effect, since we tested a small age range and did therefore not expect a 376 

nonlinear effect. Due to a significant effect of trial number, we ran the model for disentangled 377 

RORs again with only trial 1 performance considered (see SI for further details and results of the 378 

trial 1 model). 379 

3. Results 380 

3.1. Chimpanzees 381 

3.1.1. ROR conditions 382 

Chimpanzees performance was significantly influenced by the logROR (GLMM, 383 

estimate±SE=0.21±0.05, X2=15.44, df=1, P<0.001; see Table 1 and SI for details), i.e. performance 384 

increased as a function of the ROR (see Fig 3 A) from a mean of 56.9% correct trials in ROR 1.5 385 

to 69.8% in ROR 16 (see Table 2). The mean number of correct trials in ROR 1 was 51.4%. The 386 

model predicted the limit of chimpanzees´ abilities to be between ROR 2 and 4 (see Fig 3 A). 387 

There was no effect of session or trial number, suggesting that chimpanzees’ performance did not 388 

change with increasing experience within a session or over the course of sessions (see Table 1 and 389 

SI for more detailed information).  390 
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Table 1 Influence of logROR, session, trial, age and age2 on chimpanzees´ proportion of correct choices  391 

Term Estimate SE X2 Df P 

Intercept 0.60 0.11 (1) (1) (1) 

logROR(2) 0.21 0.05 15.44 1 p<0.001 

session(2) 0.12 0.07 2.65 1 0.098 

trial(2) -0.02 0.05 0.19 1 0.666 

age(2) 0.03 0.09 0.10 1 0.749 

(age) 2(2) -0.08 0.06 2.06 1 0.143 

Note: (1) not shown because lacking a meaningful interpretation; (2) these predictors were z-transformed 392 

3.1.2. Carrot avoidance control 393 

We found that subjects performed significantly better in the carrot avoidance control 394 

compared to the ROR 16 condition (GLMM, estimate±SE=0.78±0.25, X2=9.44, df=1, P=0.0016; 395 

see Fig 3 A and SI for details), which suggests that they did not use a strategy based on avoiding 396 

the population with more non-preferred food items. 397 

Table 2 Mean percentage of correct choices for each condition. *In ROR1 was no correct answer; here the percentage 398 
depicts the mean proportion of trials in which subjects chose the sample drawn from the population with the smaller 399 
absolute number of items. 400 

Species  ROR1 ROR1.5 ROR2 ROR4 ROR6 ROR8 ROR12 ROR16 
Carrot 

Avoidance 

Chimpanzees 

 

Mean 

proportion 

correct 

choices 

51.4%* 56.9% 59.0% 53.1% 63.4% 66.2% 64.2% 69.8% 81.9% 

Humans 

 

Mean 

proportion 

correct 

choices   

51.9%* 43.4% 59.8% 69.3% 72.1% 78.6% 79.5% 80.0% / 

 401 
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 402 

 403 

Fig 3 Chimpanzee (A) and human (B) performance across conditions. Shown is the proportion of trials in which subjects 404 
chose the sample from the favourable population for all (disentangled) ROR conditions (in ROR 1 proportion of trials in 405 
which subjects chose sample from smaller population) and, for chimpanzees the carrot avoidance control (CA). The dot 406 
size indicates the number of subjects performing at the same level (for readability purposes we used a different scale for 407 
the number of subjects in humans and chimpanzees). The horizontal line depicts chance level. The solid diagonal and 408 
vertical lines indicate the fitted model and its confidence limits. The model predicts performance to be above chance level 409 
in conditions for which the confidence interval limits lie above 0.5.      410 

 411 

3.2. Humans  412 

Humans´ performance was significantly influenced by the logROR (GLMM, 413 

estimate±SE=1.36±0.08, X2=163.53, df=1, P<0.001; see Table 3 and SI for details): Performance 414 

increased logarithmically as a function of the ROR (see Fig 3 B) from a mean of 43.4% correct 415 

trials in ROR 1.5 to 80.0% in ROR 16 (see Table 2 and Fig 3B). The model predicted the same 416 

limit as for chimpanzees. We found an effect of trial number (X2=4.58, df=1, P=0.029) indicating 417 

that participants´ performance slightly increased with increasing experience. However, 418 

significance of the overall results did not change when considering trial 1 performance only (see 419 

SI for more information).  420 

A B 
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Table 3 Influence of logROR, trial number and age and on humans´ proportion of correct choices  421 

Term Estimate SE X2 df P 

intercept 1.96 0.27 (1) (1) (1) 

logROR(2) 1.36 0.08 163.53 1 p<0.001 

trial(2) 0.16 0.07 4.59 1 0.029 

age(2) -0.32 0.27 1.36 1 0.239 

Note: (1) not shown because lacking a meaningful interpretation; (2) these predictors were z-transformed 422 

4. Discussion 423 

We found that chimpanzee and human performance in a task requiring inferences from 424 

population to sample varied systematically as a function of the ROR, i.e., the magnitude of 425 

difference between the ratios of two populations. In accordance with Weber´s law, performance 426 

increased logarithmically as a function of the ROR. This is the first piece of evidence to suggest 427 

that the analogue magnitude system is involved in intuitive statistical reasoning in both species. 428 

Intriguingly, and although methods for both species were somewhat different (e.g. live 429 

demonstration for chimpanzees vs. computer setup for humans) chimpanzees and humans 430 

displayed the same approximate limit: While the model predicted above chance level performance 431 

for ratios that differed by a factor of 4, it predicted failure for those that differed by a factor ≤2. 432 

Given that this is the first study addressing this topic and considering the small sample size, these 433 

results should be treated with caution. Nonetheless, the rather high threshold may suggest that, in 434 

comparison to simple quantity discrimination tasks, the statistical operation adds some error to the 435 

representation. Human adults, for instance, are able to discriminate absolute set sizes that differ by 436 

a factor of 1.15 (e.g. Barth, Kanwisher, and Spelke, 2003; Pica, Lemer, Izard, & Dehaene, 2004) 437 

compared to 6-month old infants who can discriminate ratios >1.5 (Lipton & Spelke, 2003; Xu & 438 

Spelke, 2000). Not many studies documented the threshold for absolute quantity discrimination in 439 

nonhuman primates. Reported limits range from values as low as 0.9 for great apes (Hanus and 440 
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Call, 2007) to 1.25 for rhesus macaques (Brannon & Terrace, 2000). The finding of a higher 441 

threshold for ratio discrimination within the realms of statistical inferences relative to basic 442 

quantity discrimination is consistent with the idea that additive error is to be expected when an 443 

organism represents and operates over multiple amounts (see, e.g. Barth et al., 2006 and McCrink 444 

& Wynn, 2007 for discussion of this hypothesis). Future studies with other populations of 445 

chimpanzees and humans, as well as different absolute quantities will have to examine whether 446 

we are truly dealing with a universal signature limit of statistical reasoning abilities. While 447 

chimpanzee performance was still far from ceiling even at the highest tested RORs, human 448 

performance rapidly increased and reached a plateau at ROR 8. This resembles findings on 449 

absolute quantity discrimination, where humans showed higher accuracy compared to other 450 

primates (e.g. Cantlon & Brannon, 2007), therefore suggesting that the same cognitive mechanism 451 

is utilized in both types of tasks. Future studies should test chimpanzees with a wider range of 452 

RORs to investigate whether (and when) they, like humans, also reach a maximum performance 453 

plateau. 454 

One question that the present findings raise is whether intuitive statistics is based on an 455 

analogue magnitude system that is potentially not restricted to numerosity, but extends to all kinds 456 

of magnitudes, or alternatively on an approximate number system (ANS) in the more narrow sense, 457 

restricted to numerosity alone. This is related to the broader debate of whether numerical cognition 458 

is a quintessential cognitive domain with a specialized cognitive mechanism or whether the ANS 459 

is part of a broad domain in which all quantitative dimensions share computational mechanisms 460 

(see, e.g. Cantlon, Platt, & Brannon, 2009 and Lourenco, 2015 for reviews). One way to inform 461 

this debate is to develop an intuitive statistical inference task disentangling discrete from 462 

continuous quantity information.  463 
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Another important question is whether the signatures of intuitive statistics and their limits 464 

extend to differences across life-stages known to apply in the case of the ANS with regard to 465 

absolute set sizes. More specifically, do we find better accuracy in older compared to younger 466 

individuals (analogous to findings by Halberda & Feigenson, 2008)? And are early inter-individual 467 

differences in accuracy predictive of later explicit statistical reasoning, as it is the case regarding 468 

the ANS with respect to absolute set sizes and later mathematical achievement (Mazzocco, 469 

Feigenson, & Halberda, 2011)?  470 

Our study not only gives insights into the cognitive foundation of intuitive statistics, the 471 

results also replicate those from our previous study (Rakoczy et al. 2014) in which we tested 472 

chimpanzees (and other nonhuman great apes) with substantial experience with cognitive testing. 473 

In that study, we had included a critical condition in which absolute and relative frequencies of 474 

preferred items were disentangled while keeping the ROR at a value of 16 – similar as in the 475 

present ROR 16 condition. While chimpanzees in Rakoczy et al. (2014) chose the sample from the 476 

favourable population in 66% of trials, chimpanzees in our present study performed correct in 477 

69.8% of trials, even slightly exceeding the previously tested individuals´ performance. Therefore, 478 

our ROR 16 condition replicated previous findings with a new population of chimpanzees that was 479 

completely naïve to this kind of task and was raised and housed in a different environment (wild 480 

born and sanctuary housed vs. captive born and zoo housed). This suggests that intuitive statistical 481 

reasoning is a natural capacity in chimpanzees and not restricted to a single population with 482 

extensive experimental experience. Recent studies with two different monkey species (capuchin 483 

monkeys: Tecwyn et al., 2016; long-tailed-macaques: Plací, Eckert, Rakoczy, and Fischer, 484 

unpublished) using the same test paradigm failed to find unambiguous evidence for the presence 485 
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of intuitive statistical abilities in levels comparable to apes3. Although much more research is 486 

needed, this might indicate that statistical reasoning has emerged late in primate evolution, perhaps 487 

only in the ape lineage. It would be of great interest to investigate the ecological pressures that 488 

could have led to the evolution from quantity discrimination abilities to probabilistic reasoning 489 

capacities. 490 

Importantly, and in contrast to previous studies, our test design comprehensively controlled 491 

for the usage of simple heuristics based on absolute numbers of food items. In all ROR conditions 492 

we disentangled absolute and relative frequencies of peanuts, excluding the possibility that 493 

chimpanzees succeeded by simply picking the sample from the population with absolutely more 494 

preferred items. Crucially, the carrot avoidance control, which had not been tested in previous 495 

studies with apes, revealed that chimpanzees did not simply avoid the population containing more 496 

non-preferred food items (by contrast, capuchin monkeys did not perform significantly above 497 

chance level in a comparable condition in Tecwyn et al., 2016). Moreover, our ROR 1 condition 498 

provided evidence that chimpanzees truly used proportional information to solve the task, rather 499 

than, e.g. a “choose the sample from the bucket with less food”-strategy. Lastly, we did not detect 500 

any effect of session or trial number on chimpanzees´ performance, making it unlikely that subjects 501 

used strategies learned over trials. 502 

In sum, this study revealed that the signatures of intuitive statistics in chimpanzees and 503 

humans closely resemble those found in quantity discrimination tasks, thus strongly suggesting 504 

                                                 
3 On the group level, long-tailed macaques were only successful in conditions in which they could rely on a quantity 

heuristic dealing with the absolute number of preferred food items (e.g. 64:16 vs. 16:64). They failed in conditions, in 

which absolute and relative frequencies were disentangled (e.g. 48:12 vs. 12:192; Placi et al., unpublished). Capuchin 

monkeys, by contrast, succeeded even in conditions disentangling absolute and relative frequencies of preferred food 

items. Their performance in a non-preferred food avoidance control, however, was not significantly different from 

chance, even when individuals who exhibited a side-bias in this condition were removed from the analysis (Tecwyn 

et al., 2016). 
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that these two abilities share the same basic and evolutionary ancient cognitive foundation, the 505 

analogue magnitude system. Moreover, we replicated previous findings on statistical reasoning in 506 

great apes with a new population of chimpanzees with a different housing and rearing background, 507 

suggesting that intuitive statistics is in fact a common capacity in chimpanzees. Lastly, this is the 508 

first study on intuitive statistics in great apes controlling for absolute number heuristics both 509 

regarding preferred and non-preferred items as well as absolute total amount, providing further 510 

evidence for true intuitive statistical reasoning in chimpanzees. 511 
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