
76

The Evolution of Android Malware and Android Analysis Techniques

KIMBERLY TAM, Information Security Group, Royal Holloway, University of London
ALI FEIZOLLAH, NOR BADRUL ANUAR, and ROSLI SALLEH, Department of Computer
System and Technology, University of Malaya
LORENZO CAVALLARO, Information Security Group, Royal Holloway, University of London

With the integration of mobile devices into daily life, smartphones are privy to increasing amounts of
sensitive information. Sophisticated mobile malware, particularly Android malware, acquire or utilize such
data without user consent. It is therefore essential to devise effective techniques to analyze and detect
these threats. This article presents a comprehensive survey on leading Android malware analysis and
detection techniques, and their effectiveness against evolving malware. This article categorizes systems by
methodology and date to evaluate progression and weaknesses. This article also discusses evaluations of
industry solutions, malware statistics, and malware evasion techniques and concludes by supporting future
research paths.

CCS Concepts: � Security and privacy → Operating systems security; Mobile platform security

Additional Key Words and Phrases: Android, malware, static analysis, dynamic analysis, detection,
classification

ACM Reference Format:
Kimberly Tam, Ali Feizollah, Nor Badrul Anuar, Rosli Salleh, and Lorenzo Cavallaro. 2017. The evolution of
android malware and android analysis techniques. ACM Comput. Surv. 49, 4, Article 76 (January 2017), 41
pages.
DOI: http://dx.doi.org/10.1145/3017427

1. INTRODUCTION

Smartphones, tablets, and other mobile platforms have quickly become ubiquitous due
to their highly personal and powerful attributes. As the current dominating personal
computing device, with mobile shipments surpassing PCs in 2010 [Menn 2011], smart-
phones have spurred an increase of sophisticated mobile malware. Over six million
mobile malware samples have been accumulated by McAfee as of Q4 2014, up 14%
over Q3, and roughly 98% of them target primarily Android devices [McAfee 2015].
Given Android’s all-pervasive nature and the threats against this particular mobile
platform, there is a pressing need for effective analysis techniques to support the

Lorenzo Cavallaro would like to acknowledge that this research has been partially supported by the UK
EPSRC grant EP/L022710/1. The second author would like to acknowledge that this work was supported in
part by the Ministry of Science, Technology and Innovation, under Grant eScienceFund 01-01-03-SF0914.
Authors’ addresses: K. Tam’s present affiliation is Hewlett Packard Labs in Bristol, UK; K. Tam, 35202
Severn Dr. Newark, CA 94560, USA; email: kim.tam4@gmail.com; L. Cavallaro, Room 231, McCrea Build-
ing, Information Security Group Royal Holloway, University of London Egham Hill, Egham, Surrey TW20
0EX, United Kingdom; email: Lorenzo.Cavallaro@rhul.ac.uk; A. Feizollah, N. Badrul Anuar, and R. Salleh,
Department Of Computer System & Technology, Faculty Of Computer Science & Information Technol-
ogy, Jalan Universiti, 50603 Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia; emails:
ali.feizollah@siswa.um.edu.my, askbard@gmail.com, rosli_salleh@um.edu.my.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2017 ACM 0360-0300/2017/01-ART76 $15.00
DOI: http://dx.doi.org/10.1145/3017427

ACM Computing Surveys, Vol. 49, No. 4, Article 76, Publication date: January 2017.

http://dx.doi.org/10.1145/3017427
http://dx.doi.org/10.1145/3017427

76:2 K. Tam et al.

development of reliable detection and classification tools. In an attempt to evaluate the
progress of research within this specific area of work, this article provides the following
contributions.

(1) This work first presents background information on mobile devices and their char-
acteristics. This leads to a detailed description of the Android operating system,
as well as notable Android malware and general mobile malware traits (see Sec-
tion 2). Unlike previous mobile malware surveys, this article primarily focuses on
the malware traits that hinder accurate studies and presents them in conjunction
with a comprehensive snapshot of today’s Android research techniques.

(2) This work presents a comprehensive study on an extensive and diverse set of
Android malware analysis frameworks, including methods (e.g., static, dynamic,
hybrid), year, and outcome. Similar studies are then reviewed to identify evolving
state-of-the-art techniques in an attempt to identify their strengths, weaknesses,
performance, and uses. For example, this article discusses how robust some tech-
niques are to major changes within Android, such as replacing the Dalvik runtime.
Studies were primarily selected from well-established and top-ranked research
venues. However, this work does include, wherever appropriate, a number of ad-
ditional studies in an attempt to demonstrate the entire breadth of this research
area (see Sections 3 and 4).

(3) Section 5 addresses several Android malware tactics used to obstruct or evade
analysis. This article classifies and describes transformation attacks and examines
several advanced malware evasion techniques, such as encryption, native exploits,
and Virtual machine (VM)-awareness. With that knowledge, this article performs a
comparison of malware strengths to common analysis weaknesses, creating a more
comprehensive view than surveys focused on individual aspects. We then confirm
trends in evasive malware, found in similar studies, with our own experiments.

(4) This work further supports several directions of future research and highlights
issues that may not be apparent when looking at individual studies, including
malware trends and plausible research paths. While some have recently been re-
ceiving more attention, others have yet to be explored sufficiently. Section 6 gives
an overview of the state-of-the-art and future research discussion.

Unlike previous works, this article is not a general study on mobile attack vectors
or defense [Becher et al. 2011; Enck 2011; Suarez et al. 2014; Faruki et al. 2015] but
instead focuses on Android-related analysis techniques systematically and in detail.
As can be seen in Table I, this differs from a number of previous works. In similar sur-
veys (e.g, on Android malware families, evolution, characteristics), although analysis
techniques are often mentioned, the information is scattered throughout the article to
support other material. Furthermore, when combined, those pieces often formed an
incomplete picture of all available methods. This study fills that gap by presenting a
method-focused view. Furthermore, unlike similar surveys, for example, Vidas et al.
[2011], this article primarily concentrates on the malware aspects that hinder or deter
analysis, detection, and classification, allowing us to explore the symbiotic relationship
between malware and defense. These findings on how the newest malware and analysis
techniques influence each other sets this survey apart from those focused on purely
on malware threats or Android defense. However, while it is not the main focus, this
article does discuss aspects of malware like market infections.

By narrowing the scope, this article provides in-depth studies on both sides of the
arms race with respect to Android malware. A more general study on Android ecosystem
weaknesses, for example, the level of app developer skills, and protection schemes can
be found in Sufatrio et al. [2015]. This is unlike the focused details on analysis-related
techniques, and anti-analysis methods, for Android malware in this article. The last

ACM Computing Surveys, Vol. 49, No. 4, Article 76, Publication date: January 2017.

Evolution of Android Malware: Analysis and Detection Techniques 76:3

Table I. Comparison of Recent Surveys and Which Topics Have the Most/Least Coverage
(✗= Little to No Content)

section containing discussions and future research possibilities also differs from the
most recent, and most relevant, articles. This may be useful to a wide range of readers.

2. BACKGROUND

Prior to discussing current approaches to analyze Android malware, this article begins
with this background section on the evolution of mobile malware. This concludes with
a more in-depth section on the Android operating system (OS), which is the focus of
this article.

2.1. Evolution of Mobile Malware

Initially, when computing systems were primarily understood by a few experts, mal-
ware development was a test of one’s technical skill and knowledge. For example, the
PC Internet worm known as Creeper displayed taunting messages, but the threat risk
was considerably low. However, as time progressed from the 1980s, the drive to create
malware became less recreational and more profit driven as hackers actively sought
sensitive, personal, and enterprise information. Malware development is now more
lucrative and being aided by malware developing tools. In 2013 a report showed that
attackers can earn up to 12,000 USD per month via mobile malware [Register 2013].
This, in part, resulted in PC malware samples exceeding millions [Dirro 2011], well
before smartphones had even taken off; as of 2009, fewer than 1,000 mobile malware
samples were known [Dirro 2011].

Since 2009, however, the rise of mobile malware has been explosive, with new tech-
nologies providing new access points for profitable exploitations [McAfee 2013, 2014].
Moreover, an increase in black markets (i.e., markets to sell stolen information, system
vulnerabilities, malware source code, malware developing tools) has provided more

ACM Computing Surveys, Vol. 49, No. 4, Article 76, Publication date: January 2017.

76:4 K. Tam et al.

Fig. 1. Comparison of worldwide smartphone sales by operating systems (OSs).

incentive for profit-driven malware [InformationWeek 2014]. Although researchers
may borrow and adapt traditional PC analysis solutions, the basic principles of mobile
security differs due to inherently different computing systems. Furthermore, despite
improvements to their computing power and capabilities, mobile devices still possess
relatively limited resources (e.g., battery power), which limits on-device analysis. For
further study on the similarities between traditional and mobile malware construc-
tion (e.g., in terms of features, methods, threats) refer to Felt et al. [2011], Branco
et al. [2012], Bayer et al. [2009], and Rudd et al. [2016]. For more Android malware
capabilities and vulnerability exploit details, see Drake et al. [2014].

2.1.1. Android Popularity and Malware. Based on a report from F-Secure, Android con-
tributed to 79% of all mobile malware in 2012, compared to 66.7% in 2011 and 11.25%
in 2010 [F-Secure 2013]. In accordance with this pattern, Symantec determined that
the period from April 2013 to June 2013 witnessed an Android malware increase of
almost 200%. Furthermore, in February 2014, Symantec stated that an average of 272
new malware and five new malware families targeting Android were discovered every
month [Symantec 2014]. One of the prime contributing factors to this immense mal-
ware growth is Android’s popularity (Figure 1), its open-source operating system [Teufl
et al. 2014], and its application markets. This includes the official Google Play, which
has some vetting processes, as well as “unofficial” third-party markets across the world
(e.g., SlideME [2013]). In general, third-party markets have higher infection rates than
Google Play, but not all countries have had access to the official market since its intro-
duction. Looking towards 2016 and beyond, it is possible that Google will be adopting
manual approaches for vetting applications in an attempt to lower malware existence
further on the Google Play [Petrovan 2015].

Currently, the popularity of Android devices makes it a desirable target. However, its
popularity is relatively recent, as illustrated in Figure 1. Its popularity began roughly in
2010, as shown by the statistics provided by Canalys (2001–2004) and Gartner [2015].
Interestingly, this figure also depicts a sizable dip in Symbian market shares during
2005, which may be the result of the first mobile worm, Cabir, discovered in 2004 and
designed for Symbian [Gostev and Maslennikov 2009]. Figure 1 also illustrates why
certain studies spanning 2000–2008 focus entirely on Symbian and Windows mobile
malware threats; they were the most popular operating systems (OSs) during that
period [Dunham 2009; Aubrey-Derrick and Sahin 2008].

As general smartphone sales rose dramatically in 2010, several alternatives rose
to compete with Symbian. Studies such as La Polla et al. [2013] and Felt et al. [2011]
reflected this shift by including emerging OSs such as Android and iOS, and by 2012
Android began to clearly dominate. Studies then began to focus purely on Android as
Android malware skyrocketed [Symantec 2013; Zhou and Jiang 2012b]. Furthermore,

ACM Computing Surveys, Vol. 49, No. 4, Article 76, Publication date: January 2017.

Evolution of Android Malware: Analysis and Detection Techniques 76:5

just as the sophisticated Cabir worm targeted Symbian when it was the most popular
in 2004, the Trojan Obad, considered one of the most sophisticated mobile Trojans
today, was discovered in 2013 and targets Android [Unuchek 2013]. In general, nearly
half of all mobile malware as of 2014 are Trojans and are being tailored to target
specific demographics. Together, Russia, India, and Vietnam account for over 50%
of all unique users attacked in the world [Securelist 2013], while U.S. infections,
as determined with 3 months of Domain Name System (DNS) traffic, is less than
0.0009% [Lever et al. 2013]. However, this method indirectly measured domain-name
resolution traces. At the end of 2014, McAfee also analyzed regional infections rates
of devices running their security products. They found the infection rates in Africa
and Asia were roughly 10%, while Europe and both Americas had rates between 6%
and 8%. Further discussions on varying infection rates due to different geological and
virtual markets factors can be found in Section 6.

2.1.2. Traits of Android Malware. As mobiles are constantly crossing physical and
network domains, they are exposed to more infection venues than traditional PCs.
For example, by making full use of their host’s physical movements, mobile worms
are capable of propagating across network domains more easily [Sandeep Sarat 2007].
Additionally, with over one million available apps and near instantaneous installation,
mobile devices are subjected to a high turnover of potentially malicious software [Kuit-
tenin 2013]. Smartphones also accept a wide set of touch commands, such as swipe
and tap, which is unlike the traditional mouse and keyboard input. This added
complexity can complicate analysis, as it is hard to automatically traverse all possible
execution paths (see Section 5). Mobile devices are also accessible, and vulnerable,
through multiple (sometimes simultaneous) “connections” to the outside world, such
as email, WiFi, General Packet Radio Service (GPRS), High-Speed Circuit-Switched
Data (HSCSD), 3rd Generation (3G), Long-Term Evolution (LTE), Bluetooth, SMS,
Multimedia Messaging Service (MMS), and web browsers. They also utilize a complex
plethora of technologies such as camera, compass, and accelerometers, which may also
be vulnerable, for example, via drivers [Zaddach et al. 2014].

As an exploit attack, an alarming number of Android mobile malware send back-
ground SMS messages to premium rate numbers to generate revenue (similar malware
still affect PCs via phone lines). Although attempts to mitigate this have been made in
Android OS 4.3, released in 2012, more robust solutions such as AirBag [Xiang et al.
2014] are still necessary. This is evident as background SMS are considered a high risk
event by users, as shown in a study ranking smartphone user concerns [Felt et al. 2012]
and since malware still exhibit this behavior [McAfee 2014]. As an example, it was es-
timated that over one thousand devices were affected with one particular malicious
version of the Angry Birds game. Once installed, the malware secretly sent premium
SMS each time the game was started, costing roughly 15 GBP per text [Sophos 2012].
This is just one example of how, since 2010, the number of profit-driven malware has
reportedly surpassed the number of non-profit-driven malware, and the gap continues
to grow steadily [Techcrunch 2013].

Often, once malware is installed (e.g., social-engineering, drive-by-download), they
use privilege escalation attacks to exploit Android OS or kernel vulnerabilities. When
successful, the malware gains root access of the device [Zhou and Jiang 2012b]. Pri-
marily, these attacks provide the malware with access to the lower, higher-privileged,
architectural layers (see Figure 2). Once compromised, besides premium calls or SMS,
malware often leak data pertaining to the device, owner, or both [McAfee 2014]. Simi-
larly, malware known as spyware spy or monitor a target by exploiting mobile devices.
Spying malware are also often bots, as they are controlled remotely via a command
and control server. However, any malware can be one of many bots as long as there is
network of compromised or malicious devices. These bots can also be used for denial

ACM Computing Surveys, Vol. 49, No. 4, Article 76, Publication date: January 2017.

76:6 K. Tam et al.

Fig. 2. Overview of the Android Operating System (OS) Architecture.

of service (DoS) attacks by rerouting traffic to specific address(es). Similarly, malware
can deny services of other apps (including anti-virus apps) by overusing resources (e.g.,
battery, bandwidth) and tampering with necessary files or processes. See the Vidas
et al. [2011] survey for focus on Android malware security threats and a few common
defense mitigation techniques.

2.1.3. Notable Android Malware. There have been many malware families discovered
from 2011 to 2015, but there have been only a few pivotal samples worth mentioning
at this point. These sophisticated samples may exhibit characteristics already seen in
traditional malware, but are new—perhaps even the first of its kind—in the mobile
area. The majority of these samples has been discovered between 2014 and 2015,
showing that mobile malware is, in some ways, catching up to traditional malware.
The Android malware NotCompatible.C infected over four million devices to send spam
emails, buy event tickets in bulk, and crack WordPress accounts [Strazzere 2014].
Furthermore, this malware is persistent and self-protecting via redundant actions
and encryption, making static analysis very difficult. Conversely, malware such as
Dendroid and Android.hehe are more difficult to analyze dynamically, as they are
aware of emulated surroundings (details in Section 4.3) and have consistently evaded
Google Play’s vetting processes. The last notable Android malware mentioned here is
the first Android bootkit, which can evade anti-virus (AV) products as it only exists
in the boot partition, which is read-only memory. In the future, memory analysis may
also be necessary to analyze malware, such as Oldboot, as they can only be found in
volatile memory [Liam 2014].

2.2. Android Overview

2.2.1. Android Architecture. The open-source Android OS was initially released in 2008,
runs on top of a modified Linux kernel, and runs all Java-written applications in
isolation. Normally, this means all apps are run separately within their own Dalvik
virtual machines, but with the release of Android 5.0 in 2014, this was changed to
an ahead-of-time compiler, ahead of time compilation (ART), as opposed to the Dalvik
just-in-time compiler. As discussed in Section 3 and 6, this change has negatively
affected several current state-of-the-art analysis frameworks. The Android hardware
consists of a baseband ARM processor (future tablets may use the Intel x86 Atom), a
separate application processor, and devices such as GPS and Bluetooth. Figure 2 gives
an overview of the described Android architecture.

In order to access the system, all Java-written apps must be granted permissions by
the Android Permission System during installation (more in Section 3). Several studies

ACM Computing Surveys, Vol. 49, No. 4, Article 76, Publication date: January 2017.

Evolution of Android Malware: Analysis and Detection Techniques 76:7

evaluating the effectiveness of Android permissions can be found in Felt et al. [2011], Au
et al. [2011], Wei et al. [2012a], and Au et al. [2012]. Once installed, that is, permissions
granted and enforced by the kernel, apps can interact with each other and the system
through well-defined application program interface (API) calls. Unfortunately, this also
applies to anti-virus apps, preventing these products from easily introspecting other
apps. Because of this, most anti-virus solutions are signature-based and may be more
viable implemented in markets instead of on-device (e.g., Chakradeo et al. [2013] and
Zhou et al. [2012]).

The Android apps themselves are comprised of a number of components: activities,
broadcast receivers, services, and content providers. Content providers manage access
to structured sets of data by encapsulating them for security mechanisms, while the
other three are activated by intents. The Android intent is an abstract description of
an operation one component requests another component to do and is composed of
asynchronous messages exchanged to perform this task. While broadcast receivers and
services tend to run in the background, activities are the most visible component to the
user and are often what handles user interactions like button clicking.

2.2.2. Comparison to Other Mobile Operating Systems. This section summarizes core differ-
ences between the Android OS and other mobile OSs (see their popularity in Figure 1).
In particular, this article outline differences in architecture and how applications are
handled and separated from the rest of the system. This helps determine their vulner-
ability to malware infections and malware exploits.

iOS: Released in 2007, iOS (previously iPhone OS) runs on XNU, a hybrid kernel.
Apps run on top of the OS, which is comprised of four abstractions layers: Cocoa Touch,
Media, Core Services, and Core OS. Users interact with the touch layer, triggering apps
that then interact with the media and core layers for fundamental system services.
All layers use low-level features supplied by the core layer, including the security
framework. Unlike other systems, iOS does not possess a sophisticated permissions
system and instead relies on the Apple store to screen apps [Apple 2015].

Windows OS: Developed by Microsoft and released in April 2000, Windows OS
is based on the Windows CE hybrid kernel known as NT. Both custom and Windows
applications are run on top of the OS in user mode. Apps in this less-privileged layer can
be shut down without harming lower layers and are granted capabilities like Android
permissions but with fewer options [Au et al. 2011]. The highest privileged mode is the
kernel mode. Earlier OS versions had a loophole that allowed threads to be put in and
out of kernel mode, giving attackers access to kernel-level resources.

Palm: Palm OS was released in 1996 but was discontinued after being succeeded by
WebOS in 2009. WebOS runs on a monolithic (Linux) kernel and runs all apps in a
User Interface (UI) System manager. Only the read permission is granted to third-party
apps, but certified apps can have access to more sensitive APIs [Kingpin 2001]. These
APIs are delivered as Mojo, a JavaScript framework that lies between the applications
and the core OS, supporting common application-level functions, access to built-in
applications, native services, and to protect the core OS from malicious applications.

BlackBerry: Created by Research in Motion, BlackBerry OS was released in 1999,
with a Java virtual machine kernel type. Apps are organized into sections of the app in-
frastructure layer but separated from the OS system services. These partitions include
native, web, and Android apps with their own respective infrastructure partitions in
the layer below. These layers and their application context provide security to the OS
and individual apps. Users define one set of permissions that is assigned to all apps on
the device; permissions are not customizable per app [BlackBerry 2013].

Symbian: The Symbian OS, released in 1997, runs on an EKA2 kernel that enabled a
real-time, priority, multithreaded OS. The kernel does as little as possible, outsourcing

ACM Computing Surveys, Vol. 49, No. 4, Article 76, Publication date: January 2017.

76:8 K. Tam et al.

the details to extensions, services, and drivers layered on top of the nano-kernel to
maximize device stability. The topmost layer is the user interface, which interacts with
both the application services layer below and the generic (not base) OS services layer. In
Maemo, Symbian’s successor, there is no permission system and no isolation between
applications [Dunham 2009].

3. TAXONOMY OF MOBILE MALWARE ANALYSIS

The risks introduced by mobile malware motivate the development of robust and accu-
rate analysis methods. One way to counter or detect malware is with the use of AV prod-
ucts. Unfortunately, as mentioned previously, on-device AV applications face difficulties
as they are just as limited as normal applications. Hence cloud- and signature-based
detection is more popular.

A malware signature is created by extracting binary patterns, or random snip-
pets, from a sample. Therefore, any app encountered in the future with the same
signature is considered a sample of that malware. However, this approach has at
least two major drawbacks. First, this method is ineffective for detecting unknown
threats, that is, zero-day attacks, as no previously generated signature could exist. This
is costly as additional methods are needed to detect the threat, create a new signature,
and distribute it. Second, malware can easily bypass signature-based identification by
changing small pieces of its software without affecting the semantics [Rastogi et al.
2013]. Section 3 provides further details on obfuscation techniques, including those
that break signature-based detection. As a result of these downfalls, exemplified by
the Google App Verification system released in 2012 [Jiang 2012], more effort has
been dedicated to implementing semantic signatures, signatures based on functions or
methods [Crussell et al. 2012; Zhou et al. 2012]. Alternatively, a wider set of available
app features may be analyzed statically or dynamically to detect, or classify, mali-
cious applications. In the remainder of this section, we examine such methods, their
applications, and feature choice.

Although not discussed thoroughly within this article, it is natural that research on
newer mobile environments builds on decades of traditional static and dynamic mal-
ware research. For example, although decompiling and virtualization are traditional
methods, the particulars of code packaging and VM architectures differ for Android.
Furthermore, as discussed previously, mobile malware is beginning to match tradi-
tional malware in sophistication and construction. Thus, it is prudent to adapt and
further develop traditional methods to deal with similar threats. Nonetheless, the na-
ture of Android apps and the specifics of its architecture create divergent methods, as
discussed below.

3.1. Static Analysis

Static analysis examines a program without executing any code. Although it could
potentially reveal all possible paths of execution, there are several limitations. Fur-
thermore, alternative code compilers mean traditional analyses and signature methods
(e.g., Windows whole-file, section, and code hashing) are incompatible with Android. All
static methods, however, are vulnerable to obfuscations (e.g., encryption) that remove,
or limit, access to the code [Moser et al. 2007]. Similarly, the injection of non-Java
code, network activity, and the modification of objects at runtime (e.g., reflection) are
outside the scope of static analysis as they are only visible during execution. As later
shown in Section 5.5, these do occur frequently in Android malware. Android app source
code is also rarely available, so many frameworks analyze the app bytecode inside the
app package (APK) instead. APK contents are described as follows, including changes
introduced with the new ART runtime:

ACM Computing Surveys, Vol. 49, No. 4, Article 76, Publication date: January 2017.

Evolution of Android Malware: Analysis and Detection Techniques 76:9

• META-INF folder holds manifest file, app RSA, list resources, and all resource SHA-
1 digests;

• The assets directory holds files apps can retrieve with the AssetManager;
• AndroidManifest.xml is an additional Android manifest file describing package

name, permissions, version, referenced library files for the app, and app components,
that is, activities, services, content providers, and broadcast receivers;

• The classes.dex file contains all Android classes compiled into dex file format for
the Dalvik VM. For ART, Dalvik bytecode is stored in an .odex file (pre-processed
version of .dex);

• The folder lib holds compiled code in sub-folders specific to the processor software
layer and named after the processor (e.g., armeabi holds compiled code of all ARM
based processors);

• The folder res holds resources not compiled into resources.arsc;
• resources.arsc is a file containing precompiled resources.

Two essential APK components for Android static analysis and detection are (1) the
Android- Manifest.xml, which describes permissions, package name, version, refer-
enced libraries, and app components (e.g., activities), and (2) classes.dex, which con-
tains all Android classes compiled into a Dalvik compatible, dex file format. We are
unaware of any studies analyzing odex files.

3.1.1. Permissions. Permissions such as SEND_SMS are an important feature for anal-
ysis as most actions (e.g., a series of APIs) require particular permissions in order to
be invoked [Wu et al. 2012]. For example, before accessing the camera, the Android
system checks if the requesting app has the CAMERA permission [Felt et al. 2011].
These requested permissions must be declared within the AndroidManifest.xml. As
the manifest is easy to obtain statically, many frameworks, such as PScout [Au et al.
2012], Whyper [Pandita et al. 2013], and [Felt et al. 2011; Wei et al. 2012a], use static
analysis to evaluate the risks of the Android permission system and individual apps.
Although their methods vary, their conclusions agreed that the evolution of the An-
droid permission system continues to introduce dangerous permissions and fails to
deter malware from exploiting vulnerabilities and performing escalation. During our
experiments on over nine thousand malware samples, we also found this to be true.
Three primary reasons for why this may be so are poor documentation, poor developer
habits, and malicious behaviors [Felt et al. 2011]. Two important studies have found
a detrimental lack of documentation and comprehension concerning APIs and their
required permissions, despite very little redundancy within the growing Android per-
missions system [Au et al. 2012; Pandita et al. 2013]. Furthermore, Wei et al. [2012a]
found that the number of permissions in Android releases from 2009 to 2011 had in-
creased steadily, and mostly in dangerous categories. It has also been shown by other
studies, and our experiments in Section 5.5, that malware requests more permissions
than benign apps. In the million apps Andrubis received from 2010 to 2014, malicious
apps requested, on average, 12.99 permissions, while benign apps asked for an average
of 4.5.

3.1.2. Intents. Within Android, intents are abstract objects containing information on
an operation to be performed for an app component. Based on the intent, the appro-
priate action (e.g., taking a photo, dialing a number) is performed by the system and
can therefore be useful for analysis. In one scenario, private data can be leaked to a
malicious app that requested the data via intents defined in its Android manifest file.
In DroidMat [Wu et al. 2012], intents, permissions, component deployment, and APIs
were extracted from the Manifest and analyzed with several machine-learning algo-
rithms, such as k-means, k-nearest neighbors, and naive Bayes, to develop malware

ACM Computing Surveys, Vol. 49, No. 4, Article 76, Publication date: January 2017.

76:10 K. Tam et al.

Table II. Decompiled DEX Formats and Uses Based on How They Have Been Used by Existing Tools

detection systems that were evaluated to be better than previous systems. Similarly,
DREBIN [Arp et al. 2014] collected intents, permissions, app components, APIs, and
network addresses from malicious APKs but instead used support vector machines.
The results of the experiment showed that DREBIN detected 94% of the malware with
a low false-positive rate.

3.1.3. Hardware Components. Another part of the Android Manifest that has been used
for static analysis is the listed hardware components. DREBIN [Arp et al. 2014] utilized
these components listed in the Manifest in its analysis. This can be effective as apps
must request all the hardware (e.g., microphone, GPS) they require in order to function.
Certain combinations of requested hardware can therefore imply maliciousness. For
example, there is no apparent necessity for a calculator app to require 3G and GPS
access. Dynamic analysis can be used to analyze hardware usage, but these normally
analyze API calls, or system calls, as it is easier than analyzing the hardware directly.

3.1.4. Dex Files. The dex or classes.dex files can be found in the Android APK. They
are difficult for humans to read and are often decompiled first into a more comprehen-
sible format, such as Soot. There are many levels of formats, from low level bytecode to
assembly code to human-readable source code. See Table II for a brief comparison of dis-
assembled formats. Both PScout [Au et al. 2012] and AppSealer [Zhang and Yin 2013]
use Soot directly on the dex, see Figure 3(a), to acquire Java bytecode, while [Enck et al.
2011] uses ded/DARE, and Pegasus created its own “translation tool” [Chen et al. 2013].
Alternatively, Felt et al. [2011] decompiles dex into an assembly-like code with dedexer,
while others choose to study Dalvik bytecode [Kim et al. 2012; Grace et al. 2012; Zhang
and Yin 2013], smali [Hoffmann et al. 2013; Zheng et al. 2012, 2013a; Zhou et al. 2014],
or the source code [Crussell et al. 2012; Desnosi and Gueguen 2012]. In general, more
drastic decompiling methods have a higher fail rate or error rate, due to the signifi-
cant change from the old format to the new, some of which can be amended by post-
processing. From the decompiled format, features (e.g., classes, APIs, methods), struc-
ture sequences, and program dependency graphs can be extracted and analyzed. Dex
files have also been decompiled and analyzed to track the flow of intents in interprocess
communications (IPC), also known as inter-component communications (ICC) [Yang
et al. 2015; Li et al. 2015], and to aid smart stimulation [Mahmood et al. 2014].

Different types of static analysis, such as feature, graph, or structure-based (details
in Section 4), may also be combined for a richer, more robust analysis. For example, as
seen in Figure 3(b), the framework [Zhou et al. 2013] combines structural and feature
analysis by decoupling modules and analyzing extracted semantic feature vectors to
detect destructive payloads. Also shown in Figure 3(b), Hoffmann et al. [2013] extracts

ACM Computing Surveys, Vol. 49, No. 4, Article 76, Publication date: January 2017.

Evolution of Android Malware: Analysis and Detection Techniques 76:11

Fig. 3. Approaches to Android static analysis. (Jimple = simplified Java source code, Other* = source
code [Au et al. 2011], bytecode [Davis et al. 2012; Backes et al. 2013], Manifest [Wei et al. 2012a], and
module decoupling [Zhou et al. 2013]).

Paper 10 [Au et al. 2012] 20 [Felt et al. 2011]
1 [Arp et al. 2014] 11 [Grace et al. 2012] 21 [Hoffmann et al. 2013]
2 [Wu et al. 2012] 12 [Kim et al. 2012] 22 [Zheng et al. 2013a]
3 [Hein and Myo 2016] 13 [Zheng et al. 2012] 23 [Amamra et al. 2012]
4 [Lagerspetz et al. 2014] 14 [Backes et al. 2013] 24 [Huang et al. 2014]
5 [Feng et al. 2014] 15 [Davis et al. 2012] 25 [Yang et al. 2015]
6 [Azim and Neamtiu 2013] 16 [Wei et al. 2012a] 26 [Mahmood et al. 2014]
7 [Crussell et al. 2012] 17 [Zhou et al. 2013] 27 [Arzt et al. 2014]
8 [Chen et al. 2013] 18 [Zhou et al. 2012] 28 [Li et al. 2015]
9 [Yajin Zhou 2013] 19 [Au et al. 2011]

both feature and dependency graphs, via smali program slices, to find method pa-
rameter values. Conversely, Automated system for evaluating the Detection of Android
Malware (ADAM) [Zheng et al. 2013a] tested if anti-malware products could detect apps
repackaged by altering dependency graphs and obfuscated features. While obfuscation
methods for mobile malware (e.g., native code, encryption) existed before Android in
Symbian malware [Schmidt et al. 2009b], and despite well-established static methods,
obfuscation is still an open issue as of 2014 [Sophos 2014]. This is further discussed in
Section 5.

3.2. Dynamic Analysis

In contrast to static analysis, dynamic analysis executes a program and observes the
results. Applied simplistically, it provides limited code coverage, as only one path is
shown per execution, but can be improved with stimulation. As Android apps are highly
interactive, many behaviors need to be triggered via the interface, received intents, or
with smart, automatic event injectors [Azim and Neamtiu 2013; Machiry et al. 2013;
Mahmood et al. 2014]. Another degree of complexity is also added, as the malware is
“live” and able to view and interact with its environment. This has led to two different
types of dynamic analysis: in-the-box analysis and out-of-the-box analysis.

If the analysis resides on the same permission level, or architectural layer, as the
malicious software, then malware can detect and tamper with the analysis. This is

ACM Computing Surveys, Vol. 49, No. 4, Article 76, Publication date: January 2017.

76:12 K. Tam et al.

Fig. 4. Dynamic analysis studies based on different Android architectural layers. (CN = Cell Network, K =
Kernel)

Paper 11 [Ongtang et al. 2009] 22 [Felt et al. 2011]
1 [Moreau et al. 1996] 12 [Yan and Yin 2012] 23 [Tam et al. 2015b]
2 [Samfat and Molva 1997] 13 [Vidas et al. 2014] 24 [Dini et al. 2012]
3 [Jacoby 2004] 14 [Amamra et al. 2012] 25 [Zheng et al. 2012]
4 [Miettinen et al. 2006] 15 [Zaddach et al. 2014] 26 [Xiang et al. 2014]
5 [Nash et al. 2005] 16 [Amos et al. 2013] 27 [Shabtai et al. 2012]
6 [Cheng et al. 2007] 17 [Enck et al. 2010] 28 [Bugiel et al. 2011]
7 [Becher and Freiling 2008] 18 [Yan and Yin 2012] 29 [Xu et al. 2012]
8 [Becher and Hund 2008] 19 [Bläsing et al. 2010] 30 [Chen et al. 2013]
9 [Miettinen et al. 2006] 20 [Burguera et al. 2011] 31 [Backes et al. 2014]
10 [Bose et al. 2008] 21 [Andrus et al. 2011] 32 [Li et al. 2014]

known as in-guest, or in-the-box, analysis as it relies on the Dalvik runtime (or the
ART runtime) and/or the Android OS. The upside to this approach is easier access
to certain OS-level data (see Figure 5). On the other hand, if the analysis was to
reside in a lower layer, say, the kernel, then it would increase security but make it
more difficult to intercept app data and communications. To overcome this weakness,
there are several methods to fill the semantic gap, that is, recreating OS/app semantics
from a lower observation point such as the emulator [Garfinkel and R. 2003; Tam et al.
2015b]. Details of in-the-box, out-of-the-box, and virtualization can be found later in
the article, specifically in Sections 3.2.1–3.2.3.

To better understand the progression of dynamic analysis for Android see Figure 4.
Here we attempt to illustrate the number of different architectural layers (e.g., hard-
ware, kernel, app, or OS) being studied in dynamic analysis frameworks from 1997 to
2015. One interesting trend is the increasing amount of multi-layered analyses, which
increases the number of unique and analyzable features but with increased overheads.
Different analysis environments are also represented here, including emulators, real
devices, and hybrids of both [Vidas et al. 2014]. Again, because the malware is running
during analysis, the choice of environment is more complicated. In 2013, Obad was the
first Android malware to detect emulated environments and choose not to exhibit mali-
cious behaviors [Unuchek 2013]. Despite this, most analyses still implement emulators
(discussed in Section 6).

For stimulating applications, the DynoDroid [Machiry et al. 2013] system was de-
veloped by using real user interactions for analysis; it collected user activities, such as
tapping the screen, long pressing, and dragging, in order to find bugs in Android apps.
Alternatively, hybrid solutions, like EvoDroid [Mahmood et al. 2014], use static and

ACM Computing Surveys, Vol. 49, No. 4, Article 76, Publication date: January 2017.

Evolution of Android Malware: Analysis and Detection Techniques 76:13

dynamic analysis to explore as much of the application code as possible in the fewest
number of executions. Besides increasing code coverage, user interactions with apps
may also be analyzed for malware detection. By crowdsourcing scenarios, PuppetDroid
[Gianazza et al. 2014] captured user interactions as stimulation traces and reproduced
the UI interactions to stimulate malicious behaviors during dynamic analysis. This is
based on the assumption that similar user interactions patterns can be used to detect
malicious apps, as malware are often repackaged code or variants of each other (i.e., a
malware family).

3.2.1. In-the-Box (In-Guest) Analysis. In this method of analysis, the examination and/or
gathering of data occurs on the same privilege level (e.g., architectural level) as the
malware. This often requires modifying, or being finely tuned into, the OS or the
Dalvik VM. For example, DIVILAR [Zhou et al. 2014] inserts hooks into the Android
internals, that is, Dalvik VM, to run apps modified against repackaging. Furthermore
Mockdroid [Beresford et al. 2011] modified the OS permission checks to revoke system
accesses at runtime. The advantage to these methods are that memory structures and
high OS-level data are easily accessible. Access to libraries, methods, and APIs are also
available but not necessarily granted to applications because of permissions. The down-
side of in-guest analysis, as mentioned previously, is that the “close proximity” to the
application leaves the analysis open to being attacked or bypassed, for example, with
native code or reflection [Xu et al. 2012]. It is possible to increase transparency by hiding
processes or loaded libraries, but this is impossible to achieve from the user space alone.
Additional downfalls to editing the OS or Dalvik are (1) necessary modifications to mul-
tiple Android OS versions, (2) more potential software bugs, and (3) the replacement
of the Dalvik just-in-time compiler with an ahead-of-time compiler (ART [Vitas 2013]).
Therefore, while in-guest methods already require moderate to heavy modifications
between most Android OS versions, with the complete change from the Dalvik runtime
to the ART runtime, many in-guest analysis need fundamental changes to adapt. Alter-
natively, kernel-level frameworks would grant the framework a higher privilege level
than user-level apps, increasing transparency and security, unless the malware gained
root privileges via a root exploit. Although high-level semantics are more difficult to
analyze out-of-the box, this method can provide greater portability across different
Android OS versions, as there is more stability in the lower architecture layers.

3.2.2. Out-of-the-Box Analysis. VM-based analyses, like traditional methods, utilize em-
ulators and virtual environments to provide increased security through isolation. While
both emulated environments and virtualization achieve isolation by sandboxing dan-
gerous software, emulators also provide complete control and oversight of the environ-
ment. For example, sandboxing native code (i.e., non-Java code compiled to run with
a Android Central processing unit (CPU)) in the future may add further protection to
Android devices [Afonso et al. 2016]. Furthermore, full system emulation completely
emulates a real device, which includes all system functionality and required peripher-
als. Traditionally, this includes CPU, memory, and devices such as network interface
cards, but for smartphones this may include the additional cameras, GPS, or accelerom-
eter. While the mobile emulator MobileSandbox [Becher and Freiling 2008] works for
both Windows and Android, most other systems like Andrubis [Weichselbaum et al.
2012], DroidScope [Yan and Yin 2012], CopperDroid [Tam et al. 2015b], and [Winter
et al. 2012; Frenzel et al. 2010] are purely Android emulators. In particular, these
were built on top of short for Quick Emulator (QEMU), an open-source CPU emulator
available for ARM hardware.

Unfortunately, malware can, and has, countered emulation by detecting false, non-
real, environments and can stop or misdirect the analysis. For example, multiple per-
sonalities can be used to fool detection systems. There are many samples of traditional

ACM Computing Surveys, Vol. 49, No. 4, Article 76, Publication date: January 2017.

76:14 K. Tam et al.

Fig. 5. Data and sandboxing available at all Android architectural layers.

PC malware that do exactly this, and more mobile malware are now exhibiting similar
levels of sophisticated VM-awareness (details in Section 5). While it was accepted that
out-of-the-box analysis meant that fewer high-level semantic data are available, it was
previously believed that recreating high-level behaviors, such as IPC/ICC, was impos-
sible outside the box. This was proven false by the CopperDroid framework [Tam et al.
2015b]. Furthermore, with CopperDroid’s agnostic approach to the Android internals,
it is able to switch between Android OS versions seamlessly, including the new 5.0
version running ART.

3.2.3. Virtualization. Analysis using virtualization assigns the system (e.g., hardware) a
privileged state to prevent unrestricted access by sandboxed software. This partial em-
ulation is lighter than full emulation, but, if implemented correctly, still provides robust
security. Furthermore, in contrast to emulators, guest systems within VMs can execute
non-privileged instructions directly on the hardware, greatly improving performance.
Currently, Android app sandboxing is handled by the kernel, but, despite this, malware
can still compromise the system using privilege escalation. To improve isolation or to
host multiple phone images (e.g., cells with lightweight OS virtualization [Andrus et al.
2011]), additional virtualization can be introduced at the kernel or hypervisor levels.
Highly privileged kernel- or hypervisor-level (either bare-metal or hosted) sandboxing
are less susceptible to corruption and, as seen in Figure 5, provide easier access to ker-
nel data such as system calls [Bugiel et al. 2011; Becher and Hund 2008]. The negative
of virtualization, and some emulators, is that the isolation introduces a discontinuity
between the data seen by the analysis and high-level OS data. Such semantic gaps
are reconstructable with virtual machine introspection (VMI). However, the Android
Dalvik VM complicates VMI, as two-level VMI might be necessary.

If implemented, then an Android hypervisor would reside on top of the hardware (i.e.,
highest possible permission level) where it can provide the most isolation and security.
Both desktops and server domains use this method for intrusion detection, isolation,
and preventing rootkits. In 2008, Heiser [2008] was one of the first to analyze the
security benefits of hypervisors in embedded (e.g., mobile) devices. Unfortunately, the
majority of on-shelf ARMs cannot currently support pure-virtualization,1 and so alter-
native solutions have relied on other methods, such as para-virtualization or hardware
extensions, to achieve similar affects. Para-virtualization simulates the underlying
hardware with software and requires modifications to critical parts of the virtualized
OS. Using para-virtualization and a Xen hypervisor, Hwang et al. [2008] successfully
created a secure hypervisor, or virtual machine monitor, on an ARM processor. In
contrast, pure-virtualization (i.e., hardware virtualization) utilizes built-in processor

1The Cortex-A15 has full virtualization support but has only been installed in a few selected devices.

ACM Computing Surveys, Vol. 49, No. 4, Article 76, Publication date: January 2017.

Evolution of Android Malware: Analysis and Detection Techniques 76:15

hardware to run unmodified virtual operating systems. This has the advantage of being
able to host guest OS kernels without modification.

Introducing hardware extensions can enhance the ARM processor in order to
grant pure-virtualization capabilities, which is significantly less complex than para-
virtualization [Varanasi and Heiser 2011]. In 2012, Frenzel et al. [2010] used an ARM
TrustZone processor extension to achieve effects similar to full virtualization, and, in
2013, Smirnov et al. [2013] implemented and evaluated a fully operational hypervisor
that successfully ran multiple VMs on an ARM Cortex A9-based server. Besides added
security, these studies have also demonstrated that hypervisors for mobiles often re-
quire an order-of-magnitude fewer lines of code than full OS hypervisors. This implies
better performance and less software bugs introduced.

3.3. Hybrid Analysis

By combining static and dynamic analysis, hybrid methods can increase robustnesses,
monitor edited apps, increase code coverage, and find vulnerabilities. For example,
Backes et al. [2013] and Chen et al. [2013] statically inserted hooks into functions
(i.e., sensitive APIs) that provided runtime data for dynamic policy enforcement. Sim-
ilarly, Ongtang et al. [2009] governed static permission assignments and then dy-
namically analyzed Android inter-process communications, as dictated by its policies.
Although unable to analyze ICC, that is, IPC, Harvester [Rasthofer et al. 2016] can
obtain important runtime data via a hybrid, static and dynamic, method.

Hybrid malware detectors like in Bläsing et al. [2010] have also used static analysis
to asses an app’s danger before dynamically logging its system calls with kernel-level
sandboxing. Alternatively, to increase code coverage, SmartDroid [Zheng et al. 2012],
EvoDroid [Mahmood et al. 2014], and [Spreitzenbarth et al. 2013] use static anal-
ysis to find all possible activity paths before guiding the dynamic analysis through
them. A5 [Vidas et al. 2014] also employed a similar hybrid analysis for detection,
triggering intents found in the code in order to examine all paths of execution for
malicious behaviors. A5 also utilized both real devices and emulators (one or the
other) in their experiments. Concolic testing, a mixture of static and dynamic anal-
ysis, has also been used to uncover malicious information leaks in Android apps
[Anand et al. 2012].

4. MALWARE ANALYSIS APPROACHES FOR ANDROID

This section provides detailed descriptions of various analysis techniques. While most
are used both statically and dynamically, several are unique to one or the other (see
Table III).

4.1. Analysis Techniques

4.1.1. Network Traffic. As we discover in our analysis in Section 5, most apps, normal
and malicious, require network connectivity. In Zhou and Jiang [2012b], 93% of col-
lected Android malware samples made network connections to a malicious resource.
Additionally, Sarma et al. [2012] analyzed 150,000 Android applications in 2012 and
found that 93.38% of malicious apps required network access while only 68.50% of
normal apps did so. Similarly, in Hein and Myo [2016], permissions of 2,000 apps were
analyzed to find that over 93% of malicious applications requested network connectiv-
ity. This demonstrates that network access is requested by most apps but particularly
by the malicious ones. Alternatively, network payloads may contain malicious drive-
by-downloads flowing into the device, or leaked data flowing out of the device. Network
ports are therefore often sinks in taint analysis and lead to more thorough network
packet analysis.

ACM Computing Surveys, Vol. 49, No. 4, Article 76, Publication date: January 2017.

76:16 K. Tam et al.

Table III. Android Malware Analysis Techniques Used by Static and Dynamic Methods

Frameworks studying network communications have been implemented on both
real and emulated devices [Shabtai et al. 2012; Bugiel et al. 2011; Wei et al. 2012b],
as well as cell networks, which is computationally easier on individual mobile devices
but must protect communication channels from attacks [Sandeep Sarat 2007; Jin and
Wang 2013; Moreau et al. 1996; Samfat and Molva 1997; Burguera et al. 2011; Lever
et al. 2013]. As a new area of research, it is still unclear how different the challenges
are between mobile malware detection and traditional malware detection via network
analysis. However, as shown in these studies, for botlike behaviors and leaked data,
network analysis seems an effective method both traditional PCs and mobiles devices.

4.1.2. Application Programming Interfaces. APIs are a set of coherent methods for apps
to interact with the device. This includes app libraries in the Dalvik VM (same per-
missions as the app) and unrestricted API implementations running in the system
processes. For example, to modify a file, the API is proxied by the public library API
to the correct system process API implementation. Pegasus [Chen et al. 2013; Zheng
et al. 2012] and Aurasium [Xu et al. 2012] dynamically monitor these APIs for app
policy enforcement and to discover UI triggers. Furthermore, if a private interface has
no corresponding public API, then it can still be invoked with reflection—the ability an
object has to examine itself. Library and system APIs can also be studied in conjunc-
tion [Yan and Yin 2012] and, once extracted, APIs can also be used to classify malware,
as shown in Amamra et al. [2012].

4.1.3. System Calls. System-level APIs are highly dependent on Android hardware,
that is, ARM. The ARM Instruction Set Architecture (ISA) provides the swi instruction
for invoking system calls. This causes a user-to-kernel transition where a user-mode
app accesses kernel-level system calls through local APIs. Once an API is proxied to a
system call and the system has verified the app’s permissions, the system switches to
kernel mode and uses system calls to execute tasks on behalf of the app. As apps can
only interact with the hardware via system calls, system call-centric analysis has been

ACM Computing Surveys, Vol. 49, No. 4, Article 76, Publication date: January 2017.

Evolution of Android Malware: Analysis and Detection Techniques 76:17

implemented for Windows devices [Becher and Freiling 2008; Hwang et al. 2008] and
Android devices [Burguera et al. 2011; Grace et al. 2012; Tam et al. 2015b]. And while
these are based on low-level information, it is still possible to reconstruct high-level
semantic behaviors using data from system call analysis.

4.1.4. Dependency Graphs. Dependency graphs provide a program method repre-
sentation, with each node a statement, and each edge a dependency between two
statements. The manner in which these edges are created determines the type of
graph. For example, a data-dependent edge exists if the value of a variable in one
state depends on another state. Once created, dependency graphs can be analyzed for
similarities such as plagiarism [Crussell et al. 2012]. Conversely, in control dependency
graphs, an edge exists if the execution trigger of one state depends on the value in
another state. For example, ScanDal [Kim et al. 2012] builds, and analyses, control flow
graphs (CFG) based on sensitive data returned by APIs to discover information leaks.
Similarly, Yajin Zhou [2013] also uses CFGs to detect information leaks but utilizes
content providers instead of APIs. DroidSIFT [Zhang et al. 2014], on the other hand,
creates weighted, contextual, API dependency graphs to construct feature sets. Using
these features and graphs, DroidSIFT creates semantic signatures for classifying
Android malware. In comparison to feature API permission mapping, PScout [Au et al.
2012] combines all call graphs from the Android framework components for a full,
flow-sensitive analysis, and Pegasus [Chen et al. 2013] constructs permission event
graphs to abstract the context in which events fire. Multiple flow analysis can also be
used together to search for malicious background actions [Felt et al. 2011; Grace et al.
2012]. To make these frameworks scalable, graphs must remove all redundancies to
avoid path explosions as more paths require more computations.

4.1.5. Features. Feature-based analysis extracts and studies sets of features from de-
compiled apps in order to enforce policies, understand API permissions, and detect code
reuse through feature hashing (e.g., Juxtapp [Hanna et al. 2013]). To enforce security
policies, hooks can be inserted at key points for later dynamic monitoring [Backes et al.
2013; Davis et al. 2012]. Conversely, to identify which permissions an API requires,
Felt et al. [2011] ran different combinations of extracted content providers and in-
tents. Besides analyzing the actual feature, like which APIs were triggered, feature
frequency analysis is also often used to see how many times certain features are found,
that is, multiple executions of the same API. The primary downside of feature-based
analysis is it cannot reveal the context (i.e., when or how) in which a permission was
triggered [Felt et al. 2011].

4.1.6. Function Call Monitoring. By dynamically intercepting function calls, such as li-
brary APIs, frameworks can analyze both single calls and sequences of calls to recon-
struct behaviors for semantic representations or monitor the function calls for misuse.
Function hooks can also be used to trigger additional analyses. For example, if a func-
tion was hooked and triggered, parameter analysis could then be applied to retrieve the
parameter values of when the function was invoked. The analysis framework InDroid
inserted function call stubs at the start of each opcode’s interpretation code in order
to monitor bytecode execution and analyze Android behaviors. While it does require
modifications to the Dalvik VM and may not work on Android 5.0 (e.g., with ART), the
method requires relatively light modifications and has been used on versions 4.0–4.2 [Li
et al. 2014].

4.1.7. Information Flow. Information flow is an essential analysis technique that tracks
the transfer of information throughout a system. While implemented for both tradi-
tional PCs and mobile devices, it is important to note that flow analysis for Android
differs greatly from traditional control flow and data flow graphs. This is largely due

ACM Computing Surveys, Vol. 49, No. 4, Article 76, Publication date: January 2017.

76:18 K. Tam et al.

to the fact that Android flow graphs are typically fragmented in real-world settings.
This is inherently caused by Android app’s component-based nature, which allows
components to be executed in an arbitrary order, depending on user interactions and
system events. The biggest challenge for any information flow analysis on Android,
therefore, is to develop these graphs or data flows. One method to analyze informa-
tion being moved, or copied, to new locations is taint analysis. Hence, traditional taint
analysis has been frequently used to find vulnerabilities in Windows [Kang et al.
2011]. Analyzing tainted data allows one to track how data propagate throughout the
program execution from a source (i.e., taint source) to a destination (i.e., taint sink).
Taint sources create and attach taint labels to data leaving designated sources, such as
phone contacts. The system can then implement different taint propagation rules, that
is, tainting data that come into contact with tainted data, during execution. Such rules
include direct taint labels for assignments or arithmetic operations, memory address
dependent taints, and control flow taint dependencies. When tainted data arrive at a
sink, different procedures can then be run depending on the data, source, and sink.
Typically, taint analysis method is used to detect leaked data, like in TaintDroid and
AndroidLeaks [Enck et al. 2010; Gibler et al. 2012]. Specifically, TaintDroid performs
dynamic taint analysis on application-level messages and VM-level variables, while
AndroidLeaks uses a mapping of API methods and permissions as the sources and
sinks in a data-flow analysis.

Alternatively, FlowDroid [Arzt et al. 2014] implemented both object and flow-
sensitive taint analysis to consider the lifecycle of an Android app through control-flow
graphs. While the graphs provided context for which each methods belonged to, Flow-
Droid is, however, computationally expensive and excludes network flow analysis. More
recently, short for Sources and Sinks (SUSI) [Rasthofer et al. 2014], built on Android
v4.2, uses machine learning on used APIs, semantic features, and syntactic features
to provide more source and sink information than both TaintDroid (Android v2.1) and
SCanDroid.

Broadly speaking, information flows can be implicit or explicit. In general, implicit
information flows (IIF) are more difficult to track than explicit. As a result, malware
often leverage IIF to evade detection while leaking data. In order to understand the
types of IIFs within Android, You et al. [2015] analyzed application Dalvik bytecode to
identify indirect control transfer instructions. By seeking various combinations of these
instructions, the authors extrapolated five types of instruction-based IIF and used them
to bypass detection frameworks such as TaintDroid. Again, while these techniques have
been implemented in traditional PCs, this is one of the first attempts to apply them to
Android. In another taint analysis framework, the tools Dflow and DroidInfer were used
in a type-based taint analysis for both log flows and network flows [Huang et al. 2015].
Using the same static decompiliation methods as FlowDroid (i.e., Soot and Dexpler),
Dflow was used to understand context -sensitive information flows and DroidInfer for
type inference analysis. By tainting data as safe, tainted, or poly (declared safe or
tainted based on the context), the authors were able to detect multiple information
leaks (including ICC leaks) more so than related works such as FlowDroid.

4.1.8. Inter-Process Communications Analysis. Within the Android OS, apps rely on IPC
and remote procedure calls (RPC) to carry out most tasks. These channels use Binder,
a custom implementation of the OpenBinder protocol that allows Java processes (e.g.,
apps) to use remote objects methods (e.g., services) as if they were local methods.
Thus analyzing IPC/RPC can provide essential Android-level insights. While Copper-
Droid [Tam et al. 2015b] does this dynamically, there have been static methods tracking
the movement of intents within IPC, that is, ICC [Li et al. 2015; Yang et al. 2015]. As
data can be passed though various channels like IPC, they are often analyzed for in-
formation flow. In one static study, Epicc [Octeau et al. 2013] created and analyzed a

ACM Computing Surveys, Vol. 49, No. 4, Article 76, Publication date: January 2017.

Evolution of Android Malware: Analysis and Detection Techniques 76:19

control-flow super graph to detect ICC information leaks. While Epicc relied on Soot for
the majority of its needs, Amandroid used a modified version of dexdump (i.e., dex2IR)
to study inter-component data flows [Wei et al. 2014]. Furthermore, while Epicc built
control flow graphs, Amandroid built data dependence graphs from each app’s ICC data
flow graph. Amandroid is also capable of more in-depth analyses (e.g., libraries), which
leads to a higher accuracy but at a performance cost. Particularly for Android, ana-
lyzing ICC/IPC is essential for understanding and detecting stealth behaviors [Huang
et al. 2014] and leaked information [Li et al. 2015] as its IPC Binder protocol is unique,
a key part of the Android system, and much more powerful and complex than most
other IPC protocols. Furthermore, roughly 96% of 15,000 Android apps analyzed by Li
et al. [2015] used IPC and malware noticeably leaked more data via IPC than benign
apps.

4.1.9. Hardware Analysis. Several studies monitor the hardware status for abnormal
behavior through app power signatures [Kim et al. 2008] and power/CPU consump-
tion [Buennemeyer et al. 2008; Nash et al. 2005; Jacoby 2004]. Since 2010 (see Fig-
ure 4), most dynamic analyses that extracted hardware-based features also analyzed
additional layers and features. Furthermore, since devices like the camera can only
be accessed by system calls, they are rarely analyzed on a hardware level. The frame-
work STREAM [Amos et al. 2013] collects data regarding system components like
cpuUser,cpuIdle, cpuSystem, memActive, and memMapped. STREAM gains this informa-
tion via APIs from its own installed app and then subsequently uses machine-learning
algorithms to train the system to detect Android malware. As mentioned previously,
hardware components can also be studied statically when analyzing the Android Man-
ifest of an APK.

4.1.10. Android Application Metadata. Application market metadata are the information
users see prior to downloading and installing an app. Such data include the app’s de-
scription, requested permissions, rating, and developer information. Since app meta-
data are not a part of the APK itself, we do not categorize it as a static or dynamic
feature. In WHYPER [Pandita et al. 2013], the app permissions were acquired through
the market and Natural Language Processing was implemented to determine why
each permission was requested by parsing the app description. WHYPER achieved
82.8% precision for three sensitive-data-related permissions (address book, calendar,
and record audio). Similarly, Teufl et al. [2014] used sophisticated knowledge discovery
processes and lean statistical methods to analyze Google Play metadata. Nonetheless,
this study also stressed that metadata analysis should be used to complement other
analyses. The app metadata they fed to their machine-learning algorithms included
the last time modified, category (e.g., game), price, description, permissions, rating,
and number of downloads. Additional metadata included creator ID (i.e., developer
ID), contact email, contact website, promotional videos, number of screenshots, promo
texts, package name, installation size, version, and the app title.

4.2. Feature Selection

Choosing appropriate features is essential when conducting an analysis, as it greatly
determines the effectiveness and accuracy of the research. As Android apps have many
features to choose from, there needs to be sound reasoning why certain ones were
chosen for certain experiments.

4.2.1. Selection Reasoning. As mentioned previously, Android applications must be
granted permissions in order to perform specific actions. Therefore, many studies such
as VetDroid [Zhang et al. 2013] and DroidRanger [Zhou et al. 2012] analyze permis-
sion usage because of this reasoning. Similarly, DREBIN [Arp et al. 2014] analyzes

ACM Computing Surveys, Vol. 49, No. 4, Article 76, Publication date: January 2017.

76:20 K. Tam et al.

intents, components, and APIs in addition to permissions, as they provide additional
permission- and usage-based features for more fine-grained results. One method for
feature selection, therefore, is to understand the Android system and hypothesize that
a set of features will provide the most reliable malware analysis or detection. Al-
ternatively, new or largely unused feature sets may be explored to confirm whether
these hypotheses were correct or to discover new, novel, solutions. Alternatively, fea-
ture ranking and selection algorithms may be used to choose a subset of all available
features.

4.2.2. Feature Ranking Algorithms. Identifying the ideal feature set can be done with
pre-existing algorithms [Jensen and Shen 2008]. Such algorithms use various
mathematical calculations to rank all the possible features in the dataset. More de-
tails on datasets themselves can be found in Section 6. For example, the information
gain algorithm has been widely used for feature selection and is based on the entropy
difference between the cases utilizing, and not utilizing, certain features [Hyo-Sik and
Mi-Jung 2013]. One study [Shabtai and Elovici 2010] used feature ranking algorithms
to select feature subsets from 88 features (i.e., top 10, 20, and 50). Comparably, Shabtai
et al. [2012] analyzed the network traffic of Android apps and used selection algorithms
to study the most useful features. This step was essential due to the massive number
of network traffic features to choose from. Similarly, in Yerima et al. [2014], the au-
thors collected 2,285 Android apps and extracted over 22,000 features. Using selection
algorithms, sets of the top features were then used for analysis.

4.3. Building on Analysis

Section 3 has provided a study on a diverse set of Android analysis approaches to obtain
detailed behavioral profiles [Enck et al. 2010; Zheng et al. 2012; Wei et al. 2012a; Au
et al. 2012; Yan and Yin 2012; Tam et al. 2015b; Anand et al. 2012; Wei et al. 2012b]
and assess the malware threat [Felt et al. 2011; Enck et al. 2011; Felt et al. 2011;
Zhou and Jiang 2012b; Rastogi et al. 2013; Gomez et al. 2013; Zheng et al. 2013a;
Jing et al. 2014]. These can be further developed to build classification or clustering
frameworks [Zhang et al. 2014; Schmidt et al. 2009a; Zhou and Jiang 2012b; Grace
et al. 2012; Rasthofer et al. 2014], policy frameworks [Ongtang et al. 2009; Distefano
et al. 2010; Dietz et al. 2011; Xu et al. 2012; Davis et al. 2012; Backes et al. 2013],
and malware detectors. The primary difference between classification and clustering is
that classification generally has a set of predefined classes and the objective is to find
which class a new object, or malware sample, belongs to. Conversely, clustering groups
unlabeled objects together by seeking similarities.

With these frameworks to build on top of, it is possible to detect Android mal-
ware [Sandeep Sarat 2007; Becher and Hund 2008; Schmidt et al. 2009a; Burguera
et al. 2011; Shabtai et al. 2012], policy violations such as information leaks [Bugiel et al.
2011; Kim et al. 2012; Yajin Zhou 2013], colluding apps [Marforio et al. 2012], and even
repackaged or plagiarized apps [Crussell et al. 2012; Zhou et al. 2012]. Most malware
detection methods are anomaly based [Shabtai et al. 2012] (e.g., defining normal and
abnormal attribute sets), misuse based [Yajin Zhou 2013] (e.g., identifying specific ma-
licious actions), or signature based (e.g. semantic or bytecode) [Crussell et al. 2012].
Accurately defining “abnormal” and “malicious” becomes essential. Furthermore, once
detected, it is important to classify the threat for proper mitigation, family identifica-
tion, and so new malware (e.g., zero day malware [Grace et al. 2012]) can be dealt with
properly.

With the increasing amount of malware each year, scalability and automated classi-
fying (or clustering) are also essential as malware flood app markets. In one study, it
was shown that over 190 application markets host varied amounts of malware [Vidas

ACM Computing Surveys, Vol. 49, No. 4, Article 76, Publication date: January 2017.

Evolution of Android Malware: Analysis and Detection Techniques 76:21

and Christin 2013]. Traditionally, the output of a classifier is either binary (i.e., the
sample is either malicious or benign) multi-class (i.e., a sample can belong to one of
many malware families or types). Furthermore, as classifiers normally compute vecto-
rial data, features for study must be mapped to a vector space that the classifier can
compute. Several general methods for inputing data into different classifiers include a
binary representation, feature frequency, and by representing the states and/or tran-
sitions of a control or data flow graph. The difference between binary representation
and feature frequency is that, for binary representation, a 1 is used for features the
samples have and 0 otherwise, while feature frequency counts the number of times the
feature was seen in a sample.

One of the more popular classifiers used for Android malware has been support vector
machines, but many more are available (e.g., decision trees, naive bayes, k-Nearest
Neighbors (kNN), random forest) and should be explored to find the most suitable fit to
the features and desired task. In terms of scalability, manual efforts [Zhou and Jiang
2012b] will not scale, and sometimes accuracy is sacrificed for scalability (see Section
6). To keep accuracy high but improve its scalability, different filters or simplification
methods can be used. For instance, DNADroid [Crussell et al. 2012] implemented
several filters on their graphs to automatically reduce the search space and improve
scalability with little cost.

5. EVOLUTION OF MALWARE TACTICS

As mentioned throughout the article, there are several kinds of obfuscation and VM-
detection methods used by both traditional and mobile malware to obstruct analysis.
In this article, we place static obfuscation techniques into several tiers; trivial trans-
formations, transformations that hinder static analysis, and transformations that can
prevent static analysis (e.g., anti-disassembly).

5.1. Trivial Layout Transformations

Trivial transformations require no code or bytecode level changes and mainly deter
signature-based analysis. Unique to the Android framework, unzipping and repack-
aging APK files is a trivial form of obfuscation that does not modify any data in the
manifest. This is because when repackaging the new app, it is signed with custom
keys instead of the original developer’s keys. Therefore, signatures created with the
developer keys, or the original app’s checksum, would be rendered ineffective, allow-
ing an attacker to easily distribute seemingly legitimate applications with different
signatures. Android APK dex files may also be decompiled, as previously shown in
Figure 3(a), and reassembled. We are unaware of any studies decompiling ART oat or
odex files as of early 2015. Once disassembled, components may be re-arranged or their
representations altered. Like repackaging, this obfuscation technique also changes the
layout of the app, which primarily breaks signatures based on the order, or number, of
items within the dex file in an APK.

5.2. Transformations That Complicate Static Analysis

While some static techniques are resilient to obfuscations, each technique is vulnerable
to a specific obfuscation method. Specifically, what we have classified as feature-based,
graph-based, and structure-based static analysis can overcome some of these trans-
formations but be broken by others. For example, feature-based analysis is generally
vulnerable against data obfuscation and, depending on its construction, structural
analysis is vulnerable to layout, data, and control obfuscation.

5.2.1. Data Obfuscation. This method alters APK data, such as the Manifest’s package
name. Renaming app methods, classes, and field identifiers with tools like ProGuard

ACM Computing Surveys, Vol. 49, No. 4, Article 76, Publication date: January 2017.

76:22 K. Tam et al.

is one method of data obfuscation. Instance variables, methods, payloads, native code,
strings, and arrays can also be reordered and/or encrypted within the dex file, disrupt-
ing most signature methods and several static techniques as well. In Android, native
code (i.e., C or C++ code compiled to run with a specific processor) is normally accessed
via the Java native interface (JNI), but malicious encrypted native exploits can also be
stored within the APK itself. Furthermore, in the cases where the source code is avail-
able, the bytecode can be altered by changing variables from local to global, converting
static data to procedural data, changing variable types, and splitting or merging data
such as arrays and strings. Similar forms of obfuscation have roots in traditional PC
practices [Collberg et al. 1997].

5.2.2. Control Flow Obfuscation. This method deters call-graph analysis with call indirec-
tions: moving method calls without altering semantics. For example, a method can be
moved to a previously non-existent method that then calls the original method. Alter-
natively, code reordering also obfuscates an application’s flow. Programming languages
are also often compiled into more expressive language, such as virtual machine code.
This is the case with Java, as Java bytecode possesses the goto instruction while nor-
mal Java does not. Bytecode instructions can then be scrambled with goto instructions
inserted to preserve runtime execution.

Other obfuscation transformations include injecting dead or irrelevant code se-
quences, adding arbitrary variable checks, loop transformations (i.e., unrolling), and
function inlining/outlining, as they often add misdirecting graph states and edges.
Function inlining, the breaking of functions into multiple smaller functions, can be
combined with call indirections to generate stronger obfuscation. Alternatively, func-
tions can be joined (i.e., outlining) and Android class methods can be combined by
merging their bodies, methods, and parameters This is known as interweaving classes.
Last, Android allows for a few unique transformations by renaming or modifying non-
code files and stripping away debug data (i.e., anti-debugging), such as source file
names, source file line numbers, and local parameters [Rastogi et al. 2013].

5.3. Transformations That Prevent Static Analysis

These transformations have long been the downfall of static analysis frameworks for
traditional analyses [Moser et al. 2007] and mobile malware analysis [Rastogi et al.
2013; Hoffmann et al. 2013]. Unless also a hybrid solution, no static framework can
fully analyze Android applications using full bytecode encryption or Java reflection.
Bytecode encryption encrypts all relevant pieces of the app and is only decrypted at
runtime: Without the decryption routine, the app is unusable. This is popular with
traditional polymorphic viruses that also heavily obfuscate the decryption routine.

For Android APKs, the bulk of essential code would be stored in an encrypted dex,
or odex, file that can only be decrypted and loaded dynamically through a user-defined
class loader. Reflection for Android apps can also be used to access all of an API library’s
hidden and private classes, methods, and fields. This is possible as Java reflection allows
objects to examine and modify itself. Thus, by converting any method call to a reflective
call with the same function, it becomes difficult to discover exactly which method was
called. Moreover, encrypting that method’s name would make statically analyzing it
impossible. Cryptography, another useful tool for obfuscation, can be used by the app
developer prior installation or at runtime with the use of Android crypto APIs.

Similarly, the use of dynamically loaded code cannot be analyzed statically and may
difficult to analyze dynamically, depending on the technique. This mechanism loads a
library into memory at runtime, hence the static difficulties, in order to retrieve the
addresses of library functions and variables. Functions can then be executed to achieve

ACM Computing Surveys, Vol. 49, No. 4, Article 76, Publication date: January 2017.

Evolution of Android Malware: Analysis and Detection Techniques 76:23

the desired effect. While utilizing libraries my be a benign action, dynamically loading
code is a practical and effective form of obfuscation.

5.4. Anti-Analysis and VM-Aware

With the rapid growth of Android malware, sophisticated anti-analysis remote access
Trojans, such as Obad, Pincer, and DenDroid, are detecting and evading emulated en-
vironments by identifying missing hardware and phone identifiers. More sophisticated
anti-analysis methods include app collusion (willingly or blindly), requiring user input,
and timing attacks like QEMU scheduling (i.e., measuring emulated scheduling behav-
iors), all of which have been implemented by Petsas et al. [2014] to evade cutting-edge
detection tools. DenDroid, a real-world Trojan discovered in 2014, is capable of many
malicious behaviors but will not exhibit them if it detects emulated environments such
as Google Bouncer [Dilger 2014]. Another malware family, AnserverBot, detects and
stops on-device mobile anti-virus software by randomly restarting their processes. The
malware Android.hehe also has a split personality and acts benignly when the device
IDs (e.g., International Mobile Equipment Identity (IMEI)) and Build strings indicate
that it is running in an emulated environment [Hitesh 2014].

Other ways to deter analysis, but not necessarily detect VMs, is to make the app UI
intensive, execute at “odd” times (i.e., midnight or a day after installation), require a
network, or require the presence of another app. For example, the malware CrazyBirds
will only execute if the application AngryBirds had also been installed and played
with at least once. Additional obfuscation methods to deter dynamic analysis are data
obfuscation (e.g., encryption), misleading information flows (e.g., You et al. [2015]),
mimicry, and function indirections.

5.5. Statistics for Android Malware Evolution

In this subsection, we present our study on how Android malware has evolved to avoid
analysis and as a threat in terms of permissions from 2010 onwards to late 2014.
Our 2010–2012 dataset is made of 5,560 Android malware samples provided by the
DREBIN project [Arp et al. 2014], including those previously studied in the Android
Malware Genome Project [Zhou and Jiang 2012a]. The older dataset comes from a live
telemetry of more than 3,800 Android malware—704 samples in 2012, 1,925 in 2013,
and 1,265 in 2014—that were detected in the wild by a well-established AV vendor.2
The analysis itself was primarily based on the Androguard tool [Desnosi and Gueguen
2012]. Thus our script could compile data on how many malware in our dataset used
techniques like native code (i.e., is_native_code) from 2010 to 2015.

Android Malware Obfuscation: Overall, we automatically analyzed more than
9,300 Android malware samples to understand how the malware threat evolved in
terms of used dynamically loaded code, Java reflection, native code invocation, crypto
APIs, and top used permissions. Table IV shows the permission rankings found in
our analyses. We then examined the implication of such trends on the state-of-the-
art techniques and how it influences future research. To date, a great deal of static
analysis methods have been created to understand, and mitigate, Android malware
threats. However, trends show an increase in the usage of dynamically loaded code
and Java reflection, as depicted in Figure 6. Such features hinder the effectiveness
of static analysis and call for further research on robust hybrid or dynamic analysis
development [Zhang et al. 2013; Yan and Yin 2012].

2Due to confidentiality agreements, we cannot redistribute Android malware samples provided by the McAfee
AV vendor, but we can share their metadata to allow sample lookups and replicate our findings.

ACM Computing Surveys, Vol. 49, No. 4, Article 76, Publication date: January 2017.

76:24 K. Tam et al.

Table IV. Rank Variations of Top 10 Android Permission Requests from 2010 to 2014

Fig. 6. Evolution of Android malware using dynamically loaded code, native code invocations, reflection,
and crypto APIs.

Although dynamic analysis is more robust against the use of dynamically loaded
code and Java reflection, its effectiveness is often reduced by its limited code coverage.
Recent works, such as by Anand et al. [2012], Vidas et al. [2014], and Gianazza et al.
[2014], have begun to address this particular limitation, and it is clear that further
research is needed to provide effective and efficient solutions (further discussions in
Section 6). Similarly, Figure 6 shows a constant increase in the use of native code,
which calls for further research in the development of techniques able to transparently
analyze low-level semantics as well as high-level Android semantic seamlessly [Tam
et al. 2015b].

ACM Computing Surveys, Vol. 49, No. 4, Article 76, Publication date: January 2017.

Evolution of Android Malware: Analysis and Detection Techniques 76:25

Permission Usage and Malware Threat: Shifting to permission usage within our
dataset, a reasonable indicator of the growing influence (i.e., threat) of malware, the
INTERNET permission was the most requested, followed by READ_PHONE_STATE
(e.g., access to IMEI, IMSI, phone number). As seen in Table IV, their popularity has
fluctuated a few positions the first few years but eventually stabilized. Furthermore,
even though 82% of all apps read device ID and 50% collect physical locations, malware
are even more likely to gather such data. For example, malware are 8 times more likely
to steal SIM card data [McAfee 2014]. There are many ways to misuse this leaked user
information, such as determining the user’s location and differentiating between real
devices and emulators (details in Section 6). To collect geographical data, the malware
we analyzed became increasingly interested in location-based permissions (COARSE
and FINE, as seen in Table IV). We also noted the prevalence of the SEND_SMS per-
mission, although it lessened over the years due to Google’s efforts and thus is omitted
from Table IV. Despite this, it was found that SMS malware have increased over 3
times since 2012; are a top concern in the U.S., Spain, and Taiwan; and can both gen-
erate revenue for attackers and steal bank SMS tokens to hack bank accounts [McAfee
2014].

In Table IV, the number of Android malware requesting WRITE_SETTINGS permis-
sion was relatively low in 2010 (8.5%), but the number rocketed up to 20.38% in 2014.
There was also a similar increase in READ_SETTINGS, and while benign apps only
ask for this permission pair 0.2% of the time, malware do so 11.94% of the time [Lin-
dorfer et al. 2014]. Another drastic change was with the SYSTEM_ALERT_WINDOW
permission (i.e., allows an app to open a window on top of other apps) being requested
only by 0.23% of malware in 2010 but by 24.8% in 2014. Granting this permission
can be very dangerous, as malware can deny services to open apps and attempt to
trick users into clicking ads, install software, visit vulnerable sites, and other similar
actions.

We also witnessed several new permissions being requested across these years. As
an example, the dangerous permission MOUNT_FORMAT_FILESYSTEMS (i.e., used
to format an external memory card) was first used by three malware in 2011. Other
permissions starting to become popular with malware include USE_CREDENTIALS
and AUTHENTICATE_ACCOUNTS, which were categorized as dangerous by Google,
as they could greatly aid in privilege escalation. INSTALL_PACKAGES, added in 2011,
is another dangerous permission, as it allows malware to install other packages to gain
more privileges, spread the infection, or make it harder to eradicate. Partly due to the
introduction of more dangerous permissions,3 the percentage of malware in our dataset
requesting such permissions increased from 69% in 2010 to 79% by 2014. Again, this
may be the result of malware seeking more control and access over their environment
but may also reflect precarious changes in the permission system. As discussed in
Section 6, other studies on the Android permission system evolution have also shown
it growing larger, more coarse grained, and with a higher percentage of dangerous
permissions.

6. DISCUSSION

Smartphones are currently the top personal computing device, and trends show that
this is unlikely to change with over 2.5 billion mobile shipments made by early
2015 [Gartner 2015]. Of these shipped smartphones, Android is by far the most popular
smartphone OS and has attracted a growing number of dangerous malware [Securelist
2013; McAfee 2015].

3Google maintains a list of dangerous permissions at http://developer.android.com/guide/topics/security/
permissions.html.

ACM Computing Surveys, Vol. 49, No. 4, Article 76, Publication date: January 2017.

http://developer.android.com/guide/topics/security/permissions.html
http://developer.android.com/guide/topics/security/permissions.html

76:26 K. Tam et al.

To better understand the current malware threat, we use this survey on Android
malware analysis and detection methods to assess their effectiveness. We then suggest
the next logical steps for future research against malware and make a few general ob-
servations. For example, it is clear from previous studies that the Android permission
system is not becoming more fine-grained and that the number of dangerous permis-
sions is still increasing. Although it is also apparent that malware is taking advantage
of this situation, it is not clear what needs to be improved. While the permission system
does provide flexibility and allow users to be more involved in security decisions, it has
devolved the responsibility of securing Android and its users. Therefore, while it is
important to create accurate and reliable malware analysis and detection, which we
have discussed extensively, knowing which flaws need to be repaired by which party
(e.g., users or manufacturer) is also essential.

6.1. Impact and Motivation

With developing mobile technologies and a shift towards profit-driven malware, the re-
search community has striven to (1) understand and improve mobile security, (2) assess
malware risks, and (3) evaluate existing analysis frameworks and anti-virus solutions.
By amassing and analyzing various Android malware techniques and Android malware
analysis frameworks, this article has identified several risks that should motivate con-
tinuous research efforts in certain directions. These research directions are discussed
later in this section, after assessing today’s mobile security effectiveness.

6.1.1. Malware Growth and Infections. Despite encouraging trends in Android malware
detection and mitigation, we feel that mobile malware—Android, in particular—is still
growing in sophistication, and more challenging problems lie ahead. We also believe
that these threats and infections, although not spread evenly across countries, is a
global threat. Even with low infection rates in some countries, if the right devices
are compromised, a much larger number of individuals can still be negatively af-
fected. As a recap, despite low Android malware infections in some geographical areas
like the U.S. [Securelist 2013; Lever et al. 2013], the overall global infection rate is
more concerning. For example, Truong et al. [2013] has estimated a 26–28% infection
rate worldwide based on real device data, and McAfee has estimated a 6–10% infection
rate using Android devices running their security solutions. Like biological viruses,
it is also dangerous to ignore developing malware families in other app markets or
countries, as there may be future cross infection. Furthermore, when considering that
the majority of new malware are undetected by antivirus products, discussed further
below, it is highly plausible that actual infection rates are higher than reported. To
reduce malware infections, malware markets need to be able to both accurately vet
submitted applications and remove available malware as soon as they have been iden-
tified or detected by themselves or by an external party. Ideally, users should also be
encouraged to download apps from a central, official, market that rigorously checks its
applications. However, third-party markets are sometimes the only source of applica-
tions in some locations. Online application malware and virus detectors and on-device
detectors can then be used by users to lower infections rates in these cases.

Privilege escalating root exploits for Android are also easily available 74–100% of
a device’s lifetime [Felt et al. 2011]. While only one known malware sample attacked
rooted phones in 2011, by the following year, more than one-third the malware analyzed
by Zhou and Jiang [2012b] leveraged root exploits. Furthermore, more than 90% of
rooted phones were surrendered to a botnet, which is a significant amount as 15–20%
of all Android devices were rooted at that time. Built-in support for background SMS to
premium numbers was also found in 45–50% [La Polla et al. 2013; Felt et al. 2011] of the
samples, and user information harvesting, a top security issue in 2011 [Felt et al. 2011],

ACM Computing Surveys, Vol. 49, No. 4, Article 76, Publication date: January 2017.

Evolution of Android Malware: Analysis and Detection Techniques 76:27

is still a current issue with 51% of malware samples exhibiting this behavior [McAfee
2014].

6.1.2. Weaknesses in Analysis Frameworks. Many frameworks today are unable to ana-
lyze dynamically loaded code and are susceptible to at least one kind of obfuscation (see
Tables V and VI). This is significant and, within our own experiments in Section 5, we
have shown the growing correlation between current malware and the use of reflection,
native code-based attacks, and dynamically loaded code-based attacks. Methods for dy-
namic code loading within Android include class loaders, package content, the runtime
Java class, installing APKs (i.e., piggy-back attack, drive-by-downloads), and native
code. Malware often use these methods to run root exploits. Furthermore, even when
used benignly, dynamically loaded code has caused widespread vulnerabilities [Poeplau
et al. 2014; Fedler et al. 2013]. In 2014, an attack against the Android In-app Billing
was launched using dynamically loaded code and was successful against 60% of the
top 85 Android apps [Mulliner et al. 2014]. Native-based attacks can also be used on at
least 30% of the million apps Andrubis analyzed as they were vulnerable to web-based
attacks by exposing native Java objects [Lindorfer et al. 2014]. Despite this, as can be
seen in Tables V and VI, many frameworks exclude native code and dynamically loaded
code in their analyses. Similarly, as seen in these tables, static obfuscation is often the
cause of incorrect static results and sometimes prevents the complete analysis of a
subset of analyzed malware (e.g., failed during decompiling).

6.1.3. Weaknesses in AV Products. To evaluate AV products, Zhou and Jiang [2012b]
tested four AV systems in 2012. The best and worst detection rates were 79.6% and
20%, respectively, but the most current and advanced malware families were com-
pletely undetected. As shown in Section 5, signature-based AV products can be broken
by the simplest transformations, and dynamic code can be used to evade dynamic sys-
tems, such as Google Bouncer [Poeplau et al. 2014]. Unfortunately, the inner workings
of Google Bouncer and similar systems are not available but can still be evaluated.
In 2013, DroidChameleon [Rastogi et al. 2013] submitted automatically obfuscated
Android apps to ten popular AV products and found all ten vulnerable to trivial trans-
formations, the lowest of the three transformations “tiers”. Approximately 86% of apps
also use repackaging [Zhou and Jiang 2012b]. This is significant as at least 43% of the
malware signatures are not based on code-level artifacts and can therefore be broken
with trivial transformations on the APK or Manifest.

If malware alter class names, methods, files, or string/array data within the dex
file (i.e., second tier obfuscation), then they can deter 90% of popular AV products
[Rastogi et al. 2013]. Half of Android apps also use Java reflection to access API calls,
which is a top-tier obfuscation method [Felt et al. 2011]. In 2012, ADAM [Zheng et al.
2013a] showed results similar to DroidChameleon even when analyzing a different set
of AV products. Specifically, ADAM stress tested their top 10 AV products by repackag-
ing malware and found that the detection rate lowered by roughly 10%. Interestingly,
middle-tier obfuscation (e.g., renaming, altering control flow, string encryption) success-
fully lowered detection rates further from 16.5% to 42.8%, implying that higher-tiered
obfuscations are more successful. Furthermore, despite improvements in the AV prod-
ucts’ detection rate due to consistent, rigorous, signature updating, as malware shift
to stronger obfuscations, this cannot be sustained; one year after ADAM, Vidas and
Christin [2013] found that AV detection rates fell to 0–32%.

The framework AndroTotal [Maggi et al. 2013] can also be used to analyze a
malware with multiple mobile AV products to compare their results. In 2014, Mor-
pheus [Kazdagli et al. 2014] used static and dynamic techniques to create a wide range
of malware for benchmarking computational diversity in mobile malware. Although
they have not yet tested them on any AV products or analysis frameworks, such an

ACM Computing Surveys, Vol. 49, No. 4, Article 76, Publication date: January 2017.

76:28 K. Tam et al.

Table V. Android Malware Analysis Frameworks; Superscript “M” for Malicious,
“B” for Benign, “GP” for Google Play

ACM Computing Surveys, Vol. 49, No. 4, Article 76, Publication date: January 2017.

Evolution of Android Malware: Analysis and Detection Techniques 76:29

Table VI. Android Malware Detection Frameworks; Superscripts “M” Malicious,
“B” Benign, and “P” for Google Play

experiment could be very enlightening. In summary, multiple studies have tested the
top AV systems and found them lacking at all levels of transformations attacks. Fur-
thermore, higher -tiered transformations, namely Java reflection and native code (61%
and 6.3% of apps studied by Stowaway [Felt et al. 2011]), are significantly more suc-
cessful than lower tiers [Maiorca et al. 2015]. Besides being heavily obfuscated against
static analysis, sophisticated malware is also bypassing dynamic analyses like Google
Bouncer by detecting emulated environments.

6.1.4. Lack of Representative Datasets. Every Android analysis, detection, and classifica-
tion system should be evaluated on a dataset of Android app samples, benign and/or
malicious. Initially, even a few years after the first Android malware was discovered in
2010 [Lookout 2010], researchers lacked a solid, standard dataset to work with. Many

ACM Computing Surveys, Vol. 49, No. 4, Article 76, Publication date: January 2017.

76:30 K. Tam et al.

instead wrote their own malware to assess their systems [Shabtai et al. 2012]. Others
collected and shared samples with website crawlers, such as Contagio [2014]. These
approaches, however, yielded limited datasets, hindering thorough system evaluations.
In 2012, the MalGenome project [Zhou and Jiang 2012b] attempted to fix that, as it
contained 1,260 malware samples categorized into 49 different malware families and
was collected from August 2010 to October 2011. Later that year, at least four notable
research projects had used the MalGenome dataset, and in 2013 the number increased
by threefold.

However, based on the rapidly evolving nature of Android malware, it is essential to
update the dataset with newer samples to continue testing systems effectively. This, in
part, was satisfied with DREBIN [Arp et al. 2014], a collection of 5,560 malware from
179 different families collected between August 2010 and October 2012, but considering
the continuing increase in malware (400% from 2012 to 2013 [Symantec 2013]), and
all the new sophisticated malware after 2012 (e.g., Oldboot, Android.HeHe), a more
complete and up-to-date dataset is necessary [McAfee 2013, 2014]. For reasons we will
explain later in this section, it is also essential to have a diverse dataset with samples
from a range of years, app categories, popularity, markets, among others.

6.1.5. IoT. One interesting point of discussion is the Internet of things (IoT), the
concept that everything from keys to kitchen appliances will be connected via the
Internet. This poses many interesting possibilities, as well as security concerns, as
there is a high likelihood that a growing IoT will adopt a simple, open-source, pop-
ular, reasonably sized OS, such as Android. Therefore, reliable and portable Android
analysis frameworks may be even more essential. For example, there are already sev-
eral smart TVs and watches powered by Android (i.e., Android Wear watches that
communicate with the user’s phone) on the market for public consumption. Efforts
have also been made to adopt the Android operating system for satellites, espresso
makers, game controllers, and refrigerators [Vance 2013]. If the IoT were to adopt
smaller, altered versions of the Android OS, then it would give researchers an incen-
tive to create portable analysis and detection tools so they may be usable across all
Android OS versions no matter what device it powers. This added security would be
even more effective, if done in conjunction with improved application market vetting
methods.

6.2. Mobile Security Effectiveness

To evaluate the present status of Android malware analysis and detection frameworks,
this article provides Tables V and VI. These provide details on framework methods
(e.g., static or dynamic), sample selection process, scalability, accuracy, and sturdiness.

6.2.1. Analyzed Datasets. As mentioned previously in Section 4, sample selection is
essential as different markets, social circles, and geographic locations are often in-
fected by different malware and in different amounts [Zhou et al. 2012; Juniper 2013;
Securelist 2013; Lever et al. 2013; McAfee 2014]. Despite this, many studies only use
one app source and either choose several apps per category (e.g., games, business) or
select apps that best suit their research needs (see Tables V and VI). For example,
SmartDroid [Zheng et al. 2012] chose a small set of malware triggered by UI to test
its system specifically for revealing UI-based triggers. Ideally, however, malware sam-
ples should be chosen from several families to provide a more diverse set of behaviors,
including evasion techniques, with which to test the system. Hence, for most cases,
a diverse, representative dataset is desired. In actuality, however, obtaining a truly
representative dataset can be a real challenge.

AppProfiler [Rosen et al. 2013] discovered that popular Google Play apps exhibited
more behaviors, and were more likely to monitor the hardware, than an average app.

ACM Computing Surveys, Vol. 49, No. 4, Article 76, Publication date: January 2017.

Evolution of Android Malware: Analysis and Detection Techniques 76:31

This is significant, as many studies, such as VetDroid, I-ARM-DROID, and ScanDal,
only analyzed popular apps. While a dataset of only free, popular apps may provide
more malicious behaviors to analyze, the selection would not be a reasonable represen-
tation of the Android markets as a whole. Similarly, a significant number of studies only
analyze free apps, but as ProfileDroid established, paid apps behaved very differently
than their free counterparts. For example, free apps processed an order of a magnitude
more network traffic. It could be argued that popular apps affect more users and are
therefore more essential for research. However, the difference between free/paid sam-
ples should be at least considered when choosing a dataset. Furthermore, applications
selected from markets should represent several categories, as each category entails a
unique functionality and set of behaviors for study.

In the future, up-to-date datasets should continue to be expanded by incorporat-
ing new samples from multiple sources to provide more globally representative, and
diverse, datasets. If used correctly, specialized datasets may also be gathered for bench-
marking (e.g., DroidBench), and testing types of obfuscation (e.g., DroidChameleon).
Among other uses, datasets would also be highly useful to identify specific weakness
or traits in analyses, detection, and classification techniques.

6.2.2. Scalability, Accuracy, and Portability. Scalability is a vital trait as the body of mal-
ware grows and diversifies. This is due to the sheer number of samples that need to
be analyzed so we can quickly identify new malware, flag them for further analysis,
and notify others. While most systems scale well enough, some do trade scalability for
accuracy, and visa versa, and improvements for both are being continuously developed.
Despite developing faster or more accurate classifiers, finding different feature sets
or ways to map the features into a vector space that the classifier can use have also
improved accuracy and performance [Zhang et al. 2014].

Tables V and VI attempt to make note of any performance statistics or scalability
information. They also attempt to base each framework’s sturdiness on several key
points, made previously concerning native code, Java reflection, VM-awareness, and
obfuscation. With Tables V and VI, we discovered that several systems were able
to detect, but not analyze, samples with such traits. Furthermore, these traits often
contributed to their false positives/negatives. An encouraging number of frameworks
such as Apposcopy [Feng et al. 2014] are making efforts to overcome limitations like low
levels of obfuscation but still do not cope with higher ones. Portability is also essential
so malware can be analyzed on multiple Android OS versions, as they have different
vulnerabilities, and to minimize the window of vulnerability whenever a new Android
version is released.

6.2.3. Significant Changes in Android. One of the most recent significant changes to An-
droid has been the switch from the Dalvik runtime to the ART runtime. This was
introduced in Android version 5.0 in 2015. Moderate changes to the operating system
itself are introduced with each Android version which, as seen in Table VII, happens
frequently (i.e., more often than traditional operating systems). Changes to the kernel
have also been made, albeit less frequently, with the introduction of Android 2.x and
4.x [Tam et al. 2015a]. Ideally, solutions should be agnostic to the parts of Android that
may frequently change; however, many static solutions rely on the Dalvik dex file, as
opposed to the new odex files, and many dynamic solutions either modify or are very
in tune with specific aspects of Dalvik runtime internals. It is possible that no more
drastic changes will be made to the Android OS, but ideally frameworks and techniques
should be resilient or easily adaptable to changes within Android. The benefit of this is
high portability across all Android versions, possible Android variants applied to the
future IoT, and possibly even other platforms.

ACM Computing Surveys, Vol. 49, No. 4, Article 76, Publication date: January 2017.

76:32 K. Tam et al.

Table VII. Frequency of Android OS Version Releases (x.y.[0,1] Translates to Version X.Y and X.Y.1)

6.3. Future Research Directions

In summary, we feel Android malware analysis is trending in the right direction.
Many simple solutions and anti-virus products do provide protection against the bulk
of malware, but methods such as bytecode signatures are weak against the growing
amount of advanced and contemporary malware [Securelist 2013; Symantec 2013;
McAfee 2015; Vidas and Christin 2013]. We therefore suggest the following areas for
future research.

6.3.1. Hybrid Analysis and Multi-leveled Analysis. Static solutions are beginning to harden
against trivial obfuscations [Feng et al. 2014], but many apps, and most malware, are
already using higher levels of obfuscation [Felt et al. 2011; Securelist 2013]. As recent
static systems are still effective, and scalable, we suggest that, in the cases where ob-
fuscation (e.g., native code, reflection, encryption) is detected, dynamic analysis can
be used in conjunction for completion. Alternatively, dynamic solutions inherently
have less code coverage but can use static analysis to guide analyses through more
paths [Zheng et al. 2012; Spreitzenbarth et al. 2013; Mahmood et al. 2014] or use apps
exercisers like MonkeyRunner, manual input, or intelligent event injectors [Azim and
Neamtiu 2013; Machiry et al. 2013; Mahmood et al. 2014].

Hybrid solutions could therefore combine static and dynamic analysis in ways that
their added strengths mitigate each other’s weakness. For example, the Harvester
[Rasthofer et al. 2016] tool can reduce obfuscation generated by encrypted strings and
reflective methods with its hybrid methods. It also seems beneficial to develop multi-
level systems, as it often provides more, and richer, features. Furthermore, in a multi-
level system analysis, it would be harder for malware to hide actions if multiple layers
of the Android architecture are being monitored. Parallel processing could also greatly
enhance multi-level analyses and provide faster detection systems [Dini et al. 2012].
The downside of this multi-level methods, however, is it can cause large additional over-
head, decrease transparency, increase chances of code bugs, and may be less portable.

6.3.2. Code Coverage. As mentioned previously, code coverage is essential for complete,
robust malware analyses. Statically, this can be difficult when dealing with dynamically
loaded code, native code, and network-based activity. Dynamically, this is challenging,
as only one path is shown per execution, user interactions are difficult to automate, and
malware may have split behaviors. There are several benefits to dynamic out-of-the-
box solutions, considering the launch of ART [Vitas 2013], like being able to cope with
multiple available Android versions, and to bar malware avoiding analyses with native
code or reflection. For example, system-call-centric analysis is out-of-the-box but can

ACM Computing Surveys, Vol. 49, No. 4, Article 76, Publication date: January 2017.

Evolution of Android Malware: Analysis and Detection Techniques 76:33

still analyze Android-level behaviors and dynamic network behaviors [Tam et al. 2015b]
and can be used to stop certain root exploits [Vidas and Christin 2014]. While hybrid
solutions and smarter stimulations (e.g., IntelliDroid, a static and dynamic API-based
input generator [Wong and Lie 2016]) would greatly increase code coverage, different
approaches should be further researched based on malware trends. For example, while
manual input is normally not scalable, crowdsourcing [Gianazza et al. 2014] may be
an interesting approach. However, zero-day malware will introduce complications as
time is needed to create and collect user input traces.

Code coverage also introduces an interesting question on whether malware tend to
use “easily” chosen paths to execute more malicious behavior or harder paths to avoid
detection. This would be an interesting area for future research, as it would help iden-
tify malware trends and, therein, increase the effectiveness of future analyses. Another
topic that may be beneficial is identifying and understanding subsets of malware be-
havior through path restrictions (e.g., remove permissions or triggers like user UI or
system events) to see which behavior equates to whic permission(s) and/or trigger(s).
We also feel that there needs to be a better understanding of when an event is user
triggered or performed in the background and how. To increase code coverage, apps
should also be run on several different Android OS versions as different versions have
different sets of vulnerabilities. This would be much more difficult to implement if any
modifications were made to the Dalvik VM or the OS to accommodate for high-level
analyses but feasible with out-of-the-box analyses.

6.3.3. Hybrid Devices and Virtualization. In addition to smart stimuli, modifying emu-
lators for increased transparency (e.g., realistic GPS, realistic phone identifiers) or
using emulators with access to real physical hardware (e.g., sensors, accelerometer)
to fool VM-aware malware may prove useful and interesting [Zaddach et al. 2014].
Newer, more sophisticated, malware from 2014 and 2015 are becoming increasingly
aware of emulated environments, but achieving a perfect emulator is, unfortunately,
unfeasible. Things such as a timing attack, where certain operations are timed for dis-
crepancies, are still open problems for traditional malware as well and are difficult to
fool.

Furthermore, malware such as DenDroid and Android.hehe do not just detect their
emulated environments but often hide their malicious behaviors or tamper with the
environment. Based on a previous study, malware can check on several device features
to detect emulators. This includes, but does not stop at, the device IMEI, routing table,
timing attacks, realistic sensory output, and the serial number of the device [Petsas
et al. 2014]. It is also possible to fingerprint and identify particular emulated envi-
ronments, such as different dynamic analysis frameworks, via the device performance
features aforementioned [Maier et al. 2014]. One solution to this problem would be
to use real devices in all dynamic experiments. However, this makes analyzing large
malware sets a laborious and expensive task, as many devices would be needed as well
as a way to restore a device to a clean state for quick, efficient, and reliable analysis.

Here we would also like to propose combining real devices and emulators as a new
hybrid solution, where real devices pass necessary values to emulators to enhance
their transparency. Data from a real device can also be slightly and randomly altered
in order to generate information for multiple emulators. This would ideally reduce
the cost and speed of experiments while revealing more malicious behaviors. A simi-
lar hybrid device method has proved to be effective for analyzing embedded systems’
firmware [Zaddach et al. 2014], and it would be very interesting to see if it would
also work for Android malware detection and analysis and how effective it would be
against VM-aware malware. As an alternative to virtualization, it would also be in-
teresting to see if splitting the kernel, where untrusted system calls are directed to

ACM Computing Surveys, Vol. 49, No. 4, Article 76, Publication date: January 2017.

76:34 K. Tam et al.

the hardened kernel code, can be applied to Android. This method has only been ap-
plied to a traditional Linux kernel, and it would be interesting if regular application
system calls can be redirected to, and monitored by, the hardened part of the “split”
kernel [Kurmus and Zippel 2014]. Last, we look forward to new technology, such as the
new ARM with full virtualization support, and more explorations into ART and its new
challenges.

7. CONCLUSION

This article studied a wide range of Android malware analysis and detection frame-
works, illustrating changing trends in their methods. This article also discussed An-
droid malware’s ability to obstruct analysis and avoid detection, including its roots in
traditional malware when applicable. By analyzing both threats and solutions, this
article evaluated the effectiveness of several current analysis and detection methods
in order to understand, and suggest, several areas for future research in more scal-
able, portable, and accurate manners for Android. This differs from previous surveys
studying mobile security in general, Android malware attacks only, and more general
Android security.

REFERENCES

Vitor Afonso, Antonio Bianchi, Yanick Fratantonio, Adam Doupe, Mario Polino, Paulo de Geus, Christopher
Kruegel, and Giovanni Vigna. 2016. Going native: Using a large-scale analysis of Android apps to create
a practical native-code sandboxing policy. In Proceedings of the ISOC Network and Distributed System
Security Symposium (NDSS). San Diego, CA.

Hussain M. J. Almohri, Danfeng (Daphne) Yao, and Dennis Kafura. 2014. DroidBarrier: Know what is exe-
cuting on your Android. In ACM Conference on Data and Application Security and Privacy (CODASPY).

A. Amamra, C. Talhi, and J. Robert. 2012. Smartphone malware detection: From a survey towards taxonomy.
In Malicious and Unwanted Software (MALWARE).

B. Amos, H. Turner, and J. White. 2013. Applying machine learning classifiers to dynamic Android malware
detection at scale. In Wireless Communications and Mobile Computing Conference (IWCMC).

Saswat Anand, Mayur Naik, Mary Jean Harrold, and Hongseok Yang. 2012. Automated concolic testing of
smartphone apps. In Foundations of Software Engineering (FSE).

Jeremy Andrus, Christoffer Dall, Alexander Van’t Hof, Oren Laadan, and Jason Nieh. 2011. Cells: A virtual
mobile smartphone architecture. In ACM Symposium on Operating Systems Principles (SOSP).

Apple. 2015. iOS developer library. Retrieved from https://developer.apple.com/library/ios/navigation/.
Daniel Arp, Michael Spreitzenbarth, Malte Hübner, Hugo Gascon, and Konrad Rieck. 2014. DREBIN: Effec-

tive and explainable detection of Android malware in your pocket. In Network and Distributed System
Security Symposium.

Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques Klein, Yves Le
Traon, Damien Octeau, and Patrick McDaniel. 2014. FlowDroid: Precise context, flow, field, object-
sensitive and lifecycle-aware taint analysis for Android apps. In ACM Programming Language Design
and Implementation.

Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, Phillipa Gill, and David Lie. 2011. Short paper: A look
at smartphone permission models. In ACM Security and Privacy in Smartphones and Mobile Devices
(SPSM).

Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. 2012. PScout: Analyzing the Android permis-
sion specification. In ACM Computer and Communications Security (CCS).

Schmidt Aubrey-Derrick and A. Sahin. 2008. Malicious Software for Smartphones. Technical Report. Uni-
versität Berlin.

Tanzirul Azim and Iulian Neamtiu. 2013. Targeted and depth-first exploration for systematic testing of
Android apps. In ACM Object Oriented Programming Systems Languages (OOPSLA).

Michael Backes, Sven Bugiel, Sebastian Gerling, and Philipp von Styp-Rekowsky. 2014. Android security
framework: Extensible multi-layered access control on Android. In Annual Computer Security Applica-
tions Conference.

Michael Backes, Sebastian Gerling, Christian Hammer, Matteo Maffei, and Philipp von Styp-Rekowsky.
2013. AppGuard—fine-grained policy enforcement for untrusted Android applications. In Data Privacy
Management (DPM).

ACM Computing Surveys, Vol. 49, No. 4, Article 76, Publication date: January 2017.

https://developer.apple.com/library/ios/navigation/

Evolution of Android Malware: Analysis and Detection Techniques 76:35

Ulrich Bayer, Imam Habibi, Davide Balzarotti, Engin Kirda, and Christopher Kruegel. 2009. A view on
current malware behaviors. In USENIX Large-scale Exploits and Emergent Threats (LEET).

M. Becher, F. C. Freiling, J. Hoffmann, T. Holz, S. Uellenbeck, and C. Wolf. 2011. Mobile security catching
up? Revealing the nuts and bolts of the security of mobile devices. In IEEE Security and Privacy (S&P).

Michael Becher and Felix C. Freiling. 2008. Towards dynamic malware analysis to increase mobile device
security. In Sicherheit.

Michael Becher and Ralf Hund. 2008. Kernel-level interception and applications on mobile devices. Technical
Report. Department for Mathematics and Computer Science, University of Mannheim; TR-2008-003.
http://ub-madoc.bib.uni-mannheim.de/1933/.

Alastair R. Beresford, Andrew Rice, Nicholas Skehin, and Ripduman Sohan. 2011. MockDroid: Trading
privacy for application functionality on smartphones. In Mobile Computing Systems and Applications
(HotMobile).

BlackBerry. 2013. Architecture and data flow overview. Retrieved from https://help.blackberry.com/en/bes10/
10.2/.

T. Bläsing, L. Batyuk, A.-D. Schmidt, S. A. Camtepe, and S. Albayrak. 2010. An Android application sandbox
system for suspicious software detection. In Malicious and Unwanted Software (MALWARE).

Abhijit Bose, Xin Hu, Kang G. Shin, and Taejoon Park. 2008. Behavioral detection of malware on mobile
handsets. In ACM Mobile Systems, Applications, and Services (MobiSys).

Rodrigo Branco, Gabriel Barbosa, and Pedro Neto. 2012. Scientific but not academical overview of malware
anti-debuggin, anti-disassembly and anti-VM technologies. Blackhat USA.

T. K. Buennemeyer, T. M. Nelson, L. M. Clagett, J. P. Dunning, R. C. Marchany, and J. G. Tront. 2008. Mobile
device profiling and intrusion detection using smart Batteries. In Hawaii International Conference on
System Sciences (HICSS).

Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Stephan Heuser, Ahmad-Reza Sadeghi, and Bhargava
Shastry. 2011. Practical and lightweight domain isolation on Android. In Security & Privacy in Smart-
phones & Mobile Devices (SPSM).

Iker Burguera, Urko Zurutuza, and Simin Nadjm-Tehrani. 2011. Crowdroid: Behavior-based malware de-
tection system for android. In ACM Security and Privacy in Smartphones and Mobile Devices (SPSM).

Saurabh Chakradeo, Bradley Reaves, Patrick Traynor, and William Enck. 2013. MAST: Triage for market-
scale mobile malware analysis. In ACM Security and Privacy in Wireless and Mobile Networks
(WiSec).

Kevin Zhijie Chen, Noah Johnson, Vijay D’Silva, Shuaifu Dai, Kyle MacNamara, Tom Magrino, Edward
XueJun Wu, Martin Rinard, and Dawn Song. 2013. Contextual policy enforcement in Android ap-
plications with permission event graphs. In Network and Distributed System Security Symposium
(NDSS).

Jerry Cheng, Starsky H. Y. Wong, Hao Yang, and Songwu Lu. 2007. SmartSiren: Virus detection and alert
for smartphones. In ACM Mobile Systems, Applications, and Services (MobiSys).

Christian Collberg, Clark Thomborson, and Douglas Low. 1997. A taxonomy of obfuscating transformations.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.38.9852.

Contagio. 2014. Contagio. Retrieved from http://contagiodump.blogspot.com/.
Jonathan Crussell, Clint Gibler, and Hao Chen. 2012. Attack of the clones: Detecting cloned applications on

aAndroid markets. In European Symposium on Research in Computer Security (ESORICS).
B. Davis, B. Sanders, A. Khodaverdian, and H. Chen. 2012. I-ARM-Droid: A rewriting framework for in-app

reference monitors for Android applications. In IEEE Mobile Security Technologies (MoST).
Anthony Desnosi and Geoffroy Gueguen. 2012. Android: From reversing to decompilation. In Black Hat Abu

Dhabi.
Michael Dietz, Shashi Shekhar, Dan S. Wallach, and Anhei Shu Yuliy Pisetsky. 2011. QUIRE: Lightweight

provenance for smart phone operating systems. In USENIX Security (SEC).
Daniel Eran Dilger. 2014. New Android RAT infects Google play apps. Retrieved from http://appleinsider.com/

articles/14/03/07/new-android-rat-infe cts-google-play-apps-turning-phones-into-spyware-zombies.
Gianluca Dini, Fabio Martinelli, Andrea Saracino, and Daniele Sgandurra. 2012. MADAM: A multi-level

anomaly detector for Android malware. In Mathematical Methods, Models, and Architectures for Com-
puter Network Security.

Toralv Dirro. 2011. Straight from the anti-malware labs. Retrieved from http://www.mcafee.com/uk/
resources/reports/rp-mobile-security-consumer-trends.pdf.

Alessandro Distefano, Antonio Grillo, Alessandro Lentini, and Giuseppe F. Italiano. 2010. SecureMyDroid:
Enforcing security in the mobile devices lifecycle. In ACM Cyber Security and Information Intelligence
Research (CSIIRW).

ACM Computing Surveys, Vol. 49, No. 4, Article 76, Publication date: January 2017.

http://ub-madoc.bib.uni-mannheim.de/1933/
https://help.blackberry.com/en/bes10/10.2/
https://help.blackberry.com/en/bes10/10.2/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi$=$10.1.1.38.9852
http://contagiodump.blogspot.com/
http://appleinsider.com/articles/14/03/07/new-android-rat-infe cts-google-play-apps-turning-phones-into-spyware-zombies
http://appleinsider.com/articles/14/03/07/new-android-rat-infe cts-google-play-apps-turning-phones-into-spyware-zombies
http://www.mcafee.com/uk/resources/reports/rp-mobile-security-consumer-trends.pdf
http://www.mcafee.com/uk/resources/reports/rp-mobile-security-consumer-trends.pdf

76:36 K. Tam et al.

Joshua Drake, Zach Lanier, Collin Mulliner, Pau Oliva Fora, Stephen A. Ridley, and Georg Wicherski. 2014.
Android Hacker’s Handbook (1st ed.). Wiley Publishing.

Ken Dunham. 2009. Mobile Malware Attacks & Defense. Syngress.
William Enck. 2011. Defending users against smartphone apps: Techniques and future directions. In Infor-

mation Systems Security Association (ISSA).
William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol

N. Sheth. 2010. TaintDroid: An information-flow tracking system for realtime privacy monitoring on
smartphones. In USENIX Operating Systems Design and Implementation (OSDI).

William Enck, Damien Octeau, Patrick McDaniel, and Swarat Chaudhuri. 2011. A study of Android appli-
cation security. In USENIX Security (SEC).

F-Secure. 2013. Android accounted for 79% of all mobile malware in 2012, 96% in q4 alone. Retrieved from
http://www.f-secure.com/static/doc/labs_global/Research/Mobile_Threat_Report_Q4_2012.pdf.

P. Faruki, A. Bharmal, V. Laxmi, V. Ganmoor, M. S. Gaur, M. Conti, and M. Rajarajan. 2015. Android security:
A survey of issues, malware penetration, and defenses. In IEEE Communications Surveys Tutorials.

Rafael Fedler, Marcel Kulicke, and Julian Schütte. 2013. Native code execution control for attack mitigation
on Android. In ACM Security and Privacy in Smartphones and Mobile Devices (SPSM).

Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wagner. 2011. Android permissions
demystified. In ACM Computer and Communications Security (CCS).

Adrienne Porter Felt, Serge Egelman, and David Wagner. 2012. I’ve got 99 problems, but vibration ain’t
one: A survey of smartphone users’ concerns. In ACM Security and Privacy in Smartphones and Mobile
Devices (SPSM).

Adrienne Porter Felt, Matthew Finifter, Erika Chin, Steve Hanna, and David Wagner. 2011. A survey of
mobile malware in the wild. In ACM Security and Privacy in Smartphones and Mobile Devices (SPSM).

Yu Feng, Saswat Anand, Isil Dillig, and Alex Aiken. 2014. Apposcopy: Semantics-based detection of Android
malware. In ACM Foundations of Software Engineering (FSE).

Torsten Frenzel, Adam Lackorzynski, Alexander Warg, and Hermann Hrtig. 2010. ARM TrustZone as a
virtualization technique in embedded systems. In OSADL Real-Time Linux Workshop (RTLWS).

Tal Garfinkel and R. Mendel. 2003. A virtual machine introspection based architecture for intrusion detec-
tion. In Proc. Network and Distributed Systems Security Symposium. 191–206.

Gartner. 2015. Devices by operating system and user type. Retrieved from http://www.gartner.com/
newsroom/id/3010017.

Andrea Gianazza, Federico Maggi, Aristide Fattori, Lorenzo Cavallaro, and Stefano Zanero. 2014. Puppet-
Droid: A user-centric UI exerciser for automatic dynamic analysis of similar Android applications. ACM
CoRR. abs/1402.4826. http://arxiv.org/abs/1402.4826.

Clint Gibler, Jonathan Crussell, Jeremy Erickson, and Hao Chen. 2012. AndroidLeaks: Automatically detect-
ing potential privacy leaks in android applications on a large scale. In Trust and Trustworthy Computing
(TRUST).

Lorenzo Gomez, Iulian Neamtiu, Tanzirul Azim, and Todd Millstein. 2013. RERAN: Timing- and touch-
sensitive record and replay for android. In ACM International Conference on Software Engineering.

Michael I. Gordon, Deokhwan Kim, Jeff Perkins, Limei Gilham, Nguyen Nguyen, and Martin Rinard. 2015.
Information-flow analysis of Android applications in DroidSafe. In Network and Distributed System
Security Symposium.

Alexander Gostev and Denis Maslennikov. 2009. Mobile malware evolution: An overview. Retrieved from
http://www.viruslist.com/en/analysis?pubid=204792080.

Michael Grace, Yajin Zhou, Qiang Zhang, Shihong Zou, and Xuxian Jiang. 2012. RiskRanker: Scalable
and accurate zero-day android malware detection. In ACM Mobile Systems, Applications, and Services
(MobiSys).

Steve Hanna, Ling Huang, Edward Wu, Saung Li, Charles Chen, and Dawn Song. 2013. Juxtapp: A scalable
system for detecting code reuse among android applications. In Detection of Intrusions and Malware
and Vulnerability.

Gernot Heiser. 2008. The role of virtualization in embedded systems. In Isolation and Integration in Embed-
ded Systems.

Dharmdasani Hitesh. 2014. Android.HeHe: Malware disconnects phone calls. Retrieved from http://www.
fireeye.com/blog/technical/2014/01/Android-shehe-malware-now-disconnects-phone-calls.html.

Johannes Hoffmann, Martin Ussath, Thorsten Holz, and Michael Spreitzenbarth. 2013. Slicing droids:
Program slicing for smali code. In ACM Symposium on Applied Computing (SAC).

ACM Computing Surveys, Vol. 49, No. 4, Article 76, Publication date: January 2017.

http://www.f-secure.com/static/doc/labs_global/Research/Mobile_Threat_Report_Q4_2012.pdf
http://www.gartner.com/newsroom/id/3010017
http://www.gartner.com/newsroom/id/3010017
http://www.viruslist.com/en/analysis?pubid$=$204792080
http://www.fireeye.com/blog/technical/2014/01/Android-shehe-malware-now-disconnects-phone-calls.html
http://www.fireeye.com/blog/technical/2014/01/Android-shehe-malware-now-disconnects-phone-calls.html

Evolution of Android Malware: Analysis and Detection Techniques 76:37

Jianjun Huang, Xiangyu Zhang, Lin Tan, Peng Wang, and Bin Liang. 2014. AsDroid: Detecting stealthy
behaviors in Android applications by user interface and program behavior contradiction. In ACM Inter-
national Conference on Software Engineering (ICSE).

Wei Huang, Yao Dong, Ana Milanova, and Julian Dolby. 2015. Scalable and precise taint analysis for Android.
In Proceedings of the 2015 International Symposium on Software Testing and Analysis.

Joo-Young Hwang, Sang bum Suh, Sung-Kwan Heo, Chan-Ju Park, Jae-Min Ryu, Seong-Yeol Park, and
Chul-Ryun Kim. 2008. Xen on ARM: System virtualization using Xen hypervisor for ARM-based secure
mobile phones. In IEEE Consumer Communications and Networking Conference (CCNC).

Ham Hyo-Sik and Choi Mi-Jung. 2013. Analysis of Android malware detection performance using machine
learning classifiers. In Cybercrime and Trustworthy Computing (CTC).

InformationWeek. 2014. Cybercrime black markets grow up. Retrieved from http://www.informationweek.
com/cybercrime-black-markets-grow-up/d/d-id/1127911.

Grant A. Jacoby. 2004. Battery-based intrusion detection. In IEEE Global Communications (GLOBECOM).
Richard Jensen and Qiang Shen. 2008. Computational Intelligence and Feature Selection: Rough and Fuzzy

Approaches. Wiley-IEEE Press.
Xuxian Jiang. 2012. An evaluation of the application (“app”) verification service in Android 4.2. Retrieved

from http://www.cs.ncsu.edu/faculty/jiang/appverify/.
Ruofan Jin and Bing Wang. 2013. Malware detection for mobile devices using software-defined networking.

In GENI Research and Educational Experiment Workshop (GREE).
Yiming Jing, Gail-Joon Ahn, Ziming Zhao, and Hongxin Hu. 2014. RiskMon: Continuous and automated risk

assessment of mobile applications. In ACM Data and Application Security and Privacy (CODASPY).
Juniper. 2013. Networks 3rd annual mobile threats report March 2012 through March 2013. Retrieved from

http://www.juniper.net/us/en/local/pdf/additional-resources/jnpr-2012-mobile-threats-report.pdf.
Min Kang, Stephen McCamant, Pongsin Poosankam, and Dawn Song. 2011. Network and distributed system

security symposium, (NDSS). The Internet Society.
Mikhail Kazdagli, Ling Huang, Vijay Reddi, and Mohit Tiwari. 2014. Morpheus: Benchmarking compu-

tational diversity in mobile malware. In Hardware & Architectural Support for Security & Privacy
(HASP).

Hahnsang Kim, Joshua Smith, and Kang G. Shin. 2008. Detecting energy-greedy anomalies and mobile
malware variants. ACM Mobile Systems, Applications, and Services (MobiSys). (2008).

Jinyung Kim, Yongho Yoon, Kwangkeun Yi, and Junbum Shin. 2012. ScanDal: Static analyzer for detecting
privacy leaks in Android applications. In IEEE Mobile Security Technologies (MoST).

Mudge Kingpin. 2001. Security analysis of the palm operating system and its weaknesses against malicious
code threats. In USENIX Security.

Tero Kuittenin. 2013. Google play app revenue rockets to more than half of iOS. Retrieved from http://bgr.
com/2013/09/20/google-play-app-revenue-ios-august/.

Anil Kurmus and Robby Zippel. 2014. A tale of two kernels: Towards ending kernel hardening wars with
split kernel. In ACM Computer and Communications Security (CCS).

M. La Polla, F. Martinelli, and D. Sgandurra. 2013. A survey on security for mobile devices. IEEE Commu-
nications Surveys Tutorials (COMST).

E. Lagerspetz, Hien Thi Thu Truong, S. Tarkoma, and N. Asokan. 2014. MDoctor: A mobile malware prognosis
application. In IEEE Conference on Distributed Computing Systems Workshops (ICDCS).

Charles Lever, Manos Antonakakis, Reaves, Patrick Traynor, and Wenke Lee. 2013. The core of the matter:
Analyzing malicious traffic in cellular carriers. In Network and Distributed System Security Symposium
(NDSS).

Juanru Li, Wenbo Yang, Junliang Shu, Yuanyuan Zhang, and Dawu Gu. 2014. InDroid: An automated online
analysis framework for Android applications. In Crisis Intervention Team (CIT).

Li Li, Alexandre Bartel, Tegawendé F. Bissyandé, Jacques Klein, Yves Le Traon, Steven Arzt, Siegfried
Rasthofer, Eric Bodden, Damien Octeau, and Patrick Mcdaniel. 2015. IccTA: Detecting inter-
component privacy leaks in android apps. In ACM International Conference on Software Engineering
(ICSE).

Tung Liam. 2014. Modded firmware may harbour worlds first Android bootkit. Retrieved from http://www.
zdnet.com/modded-firmware-may-harbour-worlds-first-android-bootkit-7000025665/.

Martina Lindorfer, Matthias Neugschwandtner, Lukas Weichselbaum, Yanick Fratantonio, Victor van der
Veen, and Christian Platzer. 2014. ANDRUBIS-1,000,000 apps later: A view on current Android malware
behaviors. In Building Analysis Datasets and Gathering Experience Returns for Security (BADGERS).

ACM Computing Surveys, Vol. 49, No. 4, Article 76, Publication date: January 2017.

http://www.informationweek.com/cybercrime-black-markets-grow-up/d/d-id/1127911
http://www.informationweek.com/cybercrime-black-markets-grow-up/d/d-id/1127911
http://www.cs.ncsu.edu/faculty/jiang/appverify/
http://www.juniper.net/us/en/local/pdf/additional-resources/jnpr-2012-mobile-threats-report.pdf
http://bgr.com/2013/09/20/google-play-app-revenue-ios-august/
http://bgr.com/2013/09/20/google-play-app-revenue-ios-august/
http://www.zdnet.com/modded-firmware-may-harbour-worlds-first-android-bootkit-7000025665/
http://www.zdnet.com/modded-firmware-may-harbour-worlds-first-android-bootkit-7000025665/

76:38 K. Tam et al.

Lookout. 2010. Security alert: Geinimi, sophisticated new Android trojan found in wild. Retrieved from
https://blog.lookout.com/blog/2010/12/29/geinimi_trojan/.

Aravind Machiry, Rohan Tahiliani, and Mayur Naik. 2013. Dynodroid: An input generation system for
Android apps. In ACM Foundations of Software Engineering (FSE).

Federico Maggi, Andrea Valdi, and Stefano Zanero. 2013. AndroTotal: A flexible, scalable toolbox and service
for testing mobile malware detectors. In ACM Security and Privacy in Smartphones and Mobile Devices
(SPSM).

Riyadh Mahmood, Nariman Mirzaei, and Sam Malek. 2014. EvoDroid: Segmented evolutionary testing of
android apps. In Foundations of Software Engineering (FSE).

Dominik Maier, Tilo Mller, and Mykola Protsenko. 2014. Divide-and-conquer: Why Android malware cannot
be stopped. In Availability, Reliability and Security (ARES).

Davide Maiorca, Davide Ariu, Igino Corona, Marco Aresu, and Giorgio Giacinto. 2015. Stealth attacks: An
extended insight into the obfuscation effects on Android malware. In Computers & Security (JCS).

Claudio Marforio, Hubert Ritzdorf, Aurélien Francillon, and Srdjan Capkun. 2012. Analysis of the commu-
nication between colluding applications on modern smartphones. In Annual Computer Security Appli-
cations Conference (ACSAC).

McAfee. 2013. Threats report. Retrieved from http://www.mcafee.com/uk/resources/reports/rp-quarterly-
threat-q1-2013.pdf.

McAfee. 2014. Mobile security report. Retrieved from http://www.mcafee.com/uk/resources/reports/rp-mobile-
security-consumer-trends.pdf.

McAfee. 2015. Labs threats report. Retrieved from http://www.mcafee.com/uk/resources/reports/rp-quarterly-
threat-q1-2015.pdf.

Joseph Menn. 2011. Smartphone shipments surpass PCs. Retrieved from http://www.ft.com/cms/s/2/
d96e3bd8-33ca-11e0-b1ed-00144feabdc0.html.

M. Miettinen, P. Halonen, and K. Hatonen. 2006. Host-based intrusion detection for advanced mobile devices.
In Advanced Information Networking and Applications (AINA).

Yves Moreau, Peter Burge John Shawe-taylor, Christof Stoermann, Siemens Ag, and Chris Cooke Vodafone.
1996. Novel techniques for fraud detection in mobile telecommunication networks. In Association for the
Advancement of Artificial Intelligence (AAAI).

A. Moser, C. Kruegel, and E. Kirda. 2007. Limits of static analysis for malware detection. In Annual Computer
Security Applications Conference (ACSAC).

Collin Mulliner, William Robertson, and Engin Kirda. 2014. VirtualSwindle: An automated attack against
in-app billing on Android. In ACM Symposium on Information, Computer and Communications Security
(AsiaCCS).

D. C. Nash, T. L. Martin, D. S. Ha, and M. S. Hsiao. 2005. Towards an intrusion detection system for battery
exhaustion attacks on mobile computing devices. In IEEE Pervasive Computing and Communications
(PerCom).

Damien Octeau, Patrick McDaniel, Somesh Jha, Alexandre Bartel, Eric Bodden, Jacques Klein, and Yves
Le Traon. 2013. Effective inter-component communication mapping in android with epicc: An essential
step towards holistic security analysis. In USENIX Security (SEC).

M. Ongtang, S. McLaughlin, W. Enck, and P. McDaniel. 2009. Semantically rich application-centric security
in Android. In Annual Computer Security Applications Conference (ACSAC).

Rahul Pandita, Xusheng Xiao, Wei Yang, William Enck, and Tao Xie. 2013. WHYPER: Towards automating
risk assessment of mobile applications. In USENIX Security (SEC).

Bogdan Petrovan. 2015. Google is now manually reviewing apps. Retrieved from http://www.
androidauthority.com/google-now-manually-reviewing-apps-submitted-to-play-store-594879/.

Thanasis Petsas, Giannis Voyatzis, Elias Athanasopoulos, Michalis Polychronakis, and Sotiris Ioannidis.
2014. Rage against the virtual machine: Hindering dynamic analysis of Android malware. In European
System Security Workshop.

Sebastian Poeplau, Yanick Fratantonio, Antonio Bianchi, Christopher Kruegel, and Giovanni Vigna. 2014.
Execute this! Analyzing unsafe and malicious dynamic code loading in Android applications. In Network
and Distributed System Security Symposium (NDSS).

M. La Polla, F. Martinelli, and D. Sgandurra. 2013. A survey on security for mobile devices. IEEE Commu-
nications Surveys Tutorials 15, 1 (2013), 446–471. DOI:10.1109/SURV.2012.013012.00028

Siegfried Rasthofer, Steven Arzt, and Eric Bodden. 2014. A machine learning approach for classifying and cat-
egorizing Android sources and sinks. In Network and Distributed System Security Symposium (NDSS).

Siegfried Rasthofer, Steven Arzt, Marc Miltenberger, and Eric Bodden. 2016. Harvesting runtime values in
Android applications that feature anti-analysis techniques. In 23nd Annual Network and Distributed

ACM Computing Surveys, Vol. 49, No. 4, Article 76, Publication date: January 2017.

https://blog.lookout.com/blog/2010/12/29/geinimitrojan/
http://www.mcafee.com/uk/resources/reports/rp-quarterly-threat-q1-2013.pdf
http://www.mcafee.com/uk/resources/reports/rp-quarterly-threat-q1-2013.pdf
http://www.mcafee.com/uk/resources/reports/rp-mobile-security-consumer-trends.pdf
http://www.mcafee.com/uk/resources/reports/rp-mobile-security-consumer-trends.pdf
http://www.mcafee.com/uk/resources/reports/rp-quarterly-threat-q1-2015.pdf
http://www.mcafee.com/uk/resources/reports/rp-quarterly-threat-q1-2015.pdf
http://www.ft.com/cms /s/2/d96e3bd8-33ca-11e0-b1ed-00144feabdc0.html
http://www.ft.com/cms /s/2/d96e3bd8-33ca-11e0-b1ed-00144feabdc0.html
http://www.androidauthority.com/google-now-manually-reviewing-apps-submitted-to-play-store-594879/
http://www.androidauthority.com/google-now-manually-reviewing-apps-submitted-to-play-store-594879/

Evolution of Android Malware: Analysis and Detection Techniques 76:39

System Security Symposium (NDSS). San Diego, California, USA. http://www.internetsociety.org/
sites/default/files/blogs-media/harvesting-runtime-values-android-applications-feature-anti-analysis-
techniques.pdf.

Vaibhav Rastogi, Yan Chen, and Xuxian Jiang. 2013. DroidChameleon: Evaluating Android anti-malware
against transformation attacks. In ACM Special Interest Group on Security, Audit and Control (SIGSAC).

Lenin Ravindranath, Jitendra Padhye, Sharad Agarwal, Ratul Mahajan, Ian Obermiller, and Shahin Shayan-
deh. 2012. AppInsight: Mobile app performance monitoring in the wild. In Operating Systems Design
and Implementation (OSDI).

The Register. 2013. Earn 8,000 a month with bogus apps from Russian malware factories. Retrieved from
http://www.theregister.co.uk/2013/08/05/mobile_malware_lookout/.

Sanae Rosen, Zhiyun Qian, and Z. Morely Mao. 2013. AppProfiler: A flexible method of exposing privacy-
related behavior in Android applications to end users. In ACM Conference on Data & Application Security
& Privacy (CODASPY).

Ethan Rudd, Andras Rozsa, Manuel Gunther, and Terrance Boult. 2016. A survey of stealth malware: At-
tacks, mitigation measures, and steps toward autonomous open world solutions. CoRR. abs/1603.06028.
http://arxiv.org/abs/1603.06028.

Didier Samfat and Refik Molva. 1997. Idamn: An intrusion detection architecture for mobile net-
works. IEEE Journal on Selected Areas in Communications (J-SAC) 15, 7 (Sept. 1997), 1373–1380.
DOI:10.1109/49.622919

Andreas Terzis Sandeep Sarat. 2007. On the detection and origin identification of mobile worms. In ACM
Workshop on Rapid Malcode (WORM).

Chit La Pyae Myo Hein and Khin Mar Myo. 2016. Characterization of malware detection on Android ap-
plication. Genetic and Evolutionary Computing: Proceedings of the Ninth International Conference on
Genetic and Evolutionary Computing, Thi Thi Zin, Jerry Chun-Wei Lin, Jeng-Shyang Pan, Pyke Tin,
and Mitsuhiro Yokota (Eds.). Vol. 1. Springer International Publishing, Yangon, Myanmar, 113–124.
DOI:10.1007/978-3-319-23204-1_13

Bhaskar Pratim Sarma, Ninghui Li, Chris Gates, Rahul Potharaju, Cristina Nita-Rotaru, and Ian Molloy.
2012. Android permissions: A perspective combining risks and benefits. In Symposium on Access Control
Models & Technologies.

A.-D. Schmidt, R. Bye, H.-G. Schmidt, J. Clausen, O. Kiraz, K. A. Yuksel, S. A. Camtepe, and S. Albayrak.
2009a. Static analysis of executables for collaborative malware detection on Android. IEEE International
Conference on Communications (ICC).

A.-D. Schmidt, J. H. Clausen, A. Camtepe, and S. Albayrak. 2009b. Detecting symbian OS malware through
static function call analysis. In Malicious and Unwanted Software (MALWARE).

Securelist. 2013. Mobile malware evolution: 2013. Retrieved from https://www.securelist.com/ en/analysis/
204792326/Mobile-Malware-Evolution-2013.

Asaf Shabtai and Yuval Elovici. 2010. Applying behavioral detection on Android-based devices. In Mobilware.
Asaf Shabtai, Uri Kanonov, Yuval Elovici, Chanan Glezer, and Yael Weiss. 2012. “Andromaly”: A behavioral

malware detection framework for Android devices. Journal of Intelligent Information Systems (JIIS) 38,
1 (2012), 161–190. DOI:10.1007/s10844-010-0148-x

SlideME. 2013. SlideME Android apps market: Download free & paid Android application. Retrieved from
http://slideme.org/.

Alexey Smirnov, Mikhail Zhidko, Yingshiuan Pan, Po-Jui Tsao, Kuang-Chih Liu, and Tzi-Cker Chiueh. 2013.
Evaluation of a server-grade software-only ARM hypervisor. In IEEE Conference on Cloud Computing
(CLOUD).

Sophos. 2012. Angry birds malware—Firm fined 50,000 for profiting from fake Android apps. Retrieved from
http://nakedsecurity.sophos.com/2012/05/24/angry-birds-malware-fine/.

Sophos. 2014. Feejar-B. Retrieved from http://www.sophos.com/en-us/threat-center/threat-analyses/viruses-
and-spyware/Andr Feejar-B.aspx.

Michael Spreitzenbarth, Felix Freiling, Florian Echtler, Thomas Schreck, and Johannes Hoffmann. 2013.
Mobile-sandbox: Having a deeper look into android applications. In ACM Symposium on Applied Com-
puting (SAC).

Tim Strazzere. 2014. The new NotCompatible. Retrieved from https://blog.lookout.com/blog/2014/11/19/
notcompatible/.

G. Suarez, J. E. Tapiador, P. Peris-Lopez, and A. Ribagorda. 2014. Evolution, detection and analysis of
malware for smart devices. IEEE Communications Surveys Tutorials (COMST).

Sufatrio, Darell J. J. Tan, Tong-Wei Chua, and Vrizlynn L. L. Thing. 2015. Securing Android: A survey,
taxonomy, and challenges. ACM Computing Survey.

ACM Computing Surveys, Vol. 49, No. 4, Article 76, Publication date: January 2017.

http://www.theregister.co.uk/2013/08/05/mobile_malware_lookout/
https://www.securelist.com/ en/analysis/204792326/Mobile-Malware-Evolution-2013
https://www.securelist.com/ en/analysis/204792326/Mobile-Malware-Evolution-2013
http://slideme.org/
http://nakedsecurity.sophos.com/2012/05/24/angry-birds-malware-fine
http://www.sophos.com/en-us/threat-center/threat-analyses/viruses-and-spyware/Andr Feejar-B.aspx
http://www.sophos.com/en-us/threat-center/threat-analyses/viruses-and-spyware/Andr Feejar-B.aspx
https://blog.lookout.com/blog/2014/11/19/notcompatible/
https://blog.lookout.com/blog/2014/11/19/notcompatible/

76:40 K. Tam et al.

Symantec. 2013. Mobile adware and malware analysis. Retrieved from http://www.symantec.com/content/
en/us/enterprise/media/security_response/whitepapers/madware_and_malware_analysis.pdf.

Symantec. 2014. The future of mobile malware. Retrieved from http://www.symantec.com/connect/blogs/
future-mobile-malware.

Kimberly Tam, Nigel Edwards, and Lorenzo Cavallaro. 2015a. Detecting Android malware using memory
image forensics. In Engineering Secure Software and Systems (ESSoS) Doctoral Symposium.

Kimberly Tam, Salahuddin Khan, Aristide Fattori, and Lorenzo Cavallaro. 2015b. A system call-centric
analysis and stimulation technique to automatically reconstruct android malware behaviors. Network
and Distributed System Security Symposium (NDSS).

Techcrunch. 2013. Android accounted for 79 alone, says f-secure. Retrieved from http://techcrunch.com/
2013/03/07/f-secure-android-accounted-for-79-of-all-mobile-malware-in-2012-96-in-q4-alone/.

Peter Teufl, Michaela Ferk, Andreas Fitzek, Daniel Hein, Stefan Kraxberger, and Clemens Orthacker. 2014.
Malware detection by applying knowledge discovery processes to application metadata on the Android
market (Google play). Journal Security and Communication Networks (SCN).

Hien Thi Thu Truong, Eemil Lagerspetz, Petteri Nurmi, Adam J. Oliner, Sasu Tarkoma, N. Asokan, and
Sourav Bhattacharya. 2013. The company you keep: Mobile malware infection rates and inexpensive
risk indicators. ACM Computing Research Repository (CoRR).

Roman Unuchek. 2013. The most sophisticated Android trojan. Retrieved from http://www.securelist.com/en/
blog/8106/The_most_sophisticated_Android_Trojan.

Ashlee Vance. 2013. Behind the “Internet of Things” is Android. Retrieved from http://www.bloomberg.com/
bw/articles/2013-05-29/behind-the-internet-of-things-is-android-and-its-everywhere.

Prashant Varanasi and Gernot Heiser. 2011. Hardware-supported virtualization on ARM. In APSys.
Timothy Vidas and Nicolas Christin. 2013. Sweetening android lemon markets: Measuring and combating

malware in application marketplaces. In ACM Conference on Data and Application Security and Privacy
(CODASPY).

Timothy Vidas and Nicolas Christin. 2014. PREC: Practical root exploit containment for Android devices. In
ACM Conference on Data and Application Security and Privacy (CODASPY).

Timothy Vidas, Jiaqi Tan, Jay Nahata, Chaur Lih Tan, Nicolas Christin, and Patrick Tague. 2014. A5:
Automated analysis of adversarial Android applications. In ACM Security and Privacy in Smartphones
and Mobile Devices (SPSM).

Timothy Vidas, Daniel Votipka, and Nicolas Christin. 2011. All your droid are belong to us: A survey of
current android attacks. In USENIX Conference on Offensive Technologies (WOOT).

Marko Vitas. 2013. ART vs Dalvik. Retrieved from http://www.infinum.co/the-capsized-eight/articles/art-vs-
dalvik-introducing-the-new-android-runtime-in-kit-kat. (2013).

Fengguo Wei, Sankardas Roy, Xinming Ou, and Robby. 2014. AmAndroid: A precise and general inter-
component data flow analysis framework for security vetting of Android apps. Computer & Communi-
cations Security (CCS).

Xuetao Wei, Lorenzo Gomez, Iulian Neamtiu, and Michalis Faloutsos. 2012a. Permission evolution in the
android ecosystem. In Annual Computer Security Applications Conference (ACSAC).

Xuetao Wei, Lorenzo Gomez, Iulian Neamtiu, and Michalis Faloutsos. 2012b. ProfileDroid: Multi-layer pro-
filing of android applications. In ACM Mobile Computing and Networking (MobiCom).

Lukas Weichselbaum, Matthias Neugschwandtner, Martina Lindorfer, Yanick Fratantonio, Victor van
der Veen, and Christian Platzer. 2012. Andrubis: A tool for analyzing unknown android ap-
plications. Retrieved from http://blog.iseclab.org/2012/06/04/andrubis-a-tool-for-analyzing-unknown-
android-applications-2/.

Johannes Winter, Paul Wiegele, Martin Pirker, and Ronald Tögl. 2012. A flexible software development
and emulation framework for ARM TrustZone. In International Conference on Trustworthy Systems
(INTRUST).

Michelle Wong and David Lie. 2016. Going native: Using a large-scale analysis of Android apps to create
a practical native-code sandboxing policy. In Network and Distributed System Security Symposium
(NDSS).

Dong-Jie Wu, Ching-Hao Mao, Te-En Wei, Hahn-Ming Lee, and Kuo-Ping Wu. 2012. DroidMat: Android
malware detection through manifest and API calls tracing. In Asia Joint Conference on Information
Security (Asia JCIS).

Cui Xiang, Fang Binxing, Yin Lihua, Liu Xiaoyi, and Zang Tianning. 2014. AirBag: Boosting smartphone
resistance to malware infection. In Network and Distributed System Security Symposium (NDSS).

Meng Xu, Chengyu Song, Yang Ji, Ming-Wei Shih, Kangjie Lu, Cong Zheng, Ruian Duan, Yeongjin Jang,
Byoungyoung Lee, Chenxiong Qian, Sangho Lee, and Taesoo Kim. 2016. Toward engineering a secure

ACM Computing Surveys, Vol. 49, No. 4, Article 76, Publication date: January 2017.

http://www.symantec.com/content/en/us/enterprise/media/securityresponse/whitepapers/madwareandmalwareanalysis.pdf
http://www.symantec.com/content/en/us/enterprise/media/securityresponse/whitepapers/madwareandmalwareanalysis.pdf
http://www.symantec.com/connect/blogs/future-mobile-malware
http://www.symantec.com/connect/blogs/future-mobile-malware
http://techcrunch.com/2013/03/07/f-secure-android-accounted-for-79-of-all-mobile-malware-in-2012-96-in-q4-alone/
http://techcrunch.com/2013/03/07/f-secure-android-accounted-for-79-of-all-mobile-malware-in-2012-96-in-q4-alone/
http://www.securelist.com/en/blog/8106/ThemostsophisticatedAndroidTrojan
http://www.securelist.com/en/blog/8106/ThemostsophisticatedAndroidTrojan
http://www.bloomberg.com/bw/articles/2013-05-29/behind-the-internet-of-things-is-android-and-its-everywhere
http://www.bloomberg.com/bw/articles/2013-05-29/behind-the-internet-of-things-is-android-and-its-everywhere
http://www.infinum.co/the-capsized-eight/articles/art-vs-dalvik-introducing-the-new-android-runtime-in-kit-kat
http://www.infinum.co/the-capsized-eight/articles/art-vs-dalvik-introducing-the-new-android-runtime-in-kit-kat
http://blog.iseclab.org/2012/06/04/andrubis-a-tool-for-analyzing-unknown-android-applications-2/
http://blog.iseclab.org/2012/06/04/andrubis-a-tool-for-analyzing-unknown-android-applications-2/

Evolution of Android Malware: Analysis and Detection Techniques 76:41

android ecosystem: A survey of existing techniques. ACM Comput. Surv. 49, 2 (Aug. 2016), 38:1–38:47.
DOI:10.1145/2963145

Rubin Xu, Hassen Saı̈di, and Ross Anderson. 2012. Aurasium: Practical policy enforcement for Android
applications. In USENIX Security (SEC).

Xuxian Jiang Yajin Zhou. 2013. Detecting passive content leaks and pollution in Android applications. In
Network and Distributed System Security Symposium (NDSS).

Lok Kwong Yan and Heng Yin. 2012. DroidScope: Seamlessly reconstructing the OS and Dalvik semantic
views for dynamic Android malware analysis. In USENIX Security (SEC).

Wei Yang, Xusheng Xiao, Benjamin Andow, Sihan Li, Tao Xie, and William Enck. 2015. AppContext: Dif-
ferentiating malicious and benign mobile app behaviors using context. In International Conference on
Software Engineering.

Zhemin Yang, Min Yang, Yuan Zhang, Guofei Gu, Peng Ning, and X. Sean Wang. 2013. AppIntent: Ana-
lyzing sensitive data transmission in Android for privacy leakage detection. In ACM Computer and
Communications Security (CCS).

Suleiman Y. Yerima, Sakir Sezer, and Gavin McWilliams. 2014. Analysis of Bayesian classification-based
approaches for Android malware detection. IET Information Security (IETIS).

Wei You, Bin Lian, Wenchang Shi, and Xiangyu Zhang. 2015. Android implicit information flow demystified.
In Asia Computer and Communications Security (AsiaCCS).

Jonas Zaddach, Luca Bruno, Aurelien Francillon, and Davide Balzarotti. 2014. Avatar: A framework to
support dynamic security analysis of embedded systems’ firmwares. In Network and Distributed System
Security Symposium.

Mu Zhang, Yue Duan, Heng Yin, and Zhiruo Zhao. 2014. Semantics-aware android malware classification
using weighted contextual API dependency graphs. In 21st ACM Conference on Computer and Commu-
nications Security.

Mu Zhang and Heng Yin. 2013. AppSealer: Automatic generation of vulnerability-specific patches for prevent-
ing component hijacking attacks in Android applications. In Network and Distributed System Security
Symposium (NDSS).

Yuan Zhang, Min Yang, Bingquan Xu, Zhemin Yang, Guofei Gu, Peng Ning, X. Sean Wang, and Binyu Zang.
2013. Vetting undesirable behaviors in Android apps with permission use analysis. In Computer &
Communications Security.

Cong Zheng, Shixiong Zhu, Shuaifu Dai, Guofei Gu, Xiaorui Gong, Xinhui Han, and Wei Zou. 2012. Smart-
Droid: an automatic system for revealing UI-based trigger conditions in Android applications. ACM
SPSM.

Min Zheng, Patrick P. C. Lee, and John C. S. Lui. 2013a. ADAM: An automatic and extensible platform
to stress test Android anti-virus systems. In Detection of Intrusions and Malware and Vulnerability
(DIMVA).

Min Zheng, Mingshen Sun, and John C. S. Lui. 2013b. DroidAnalytics: A signature based analytic system to
collect, extract, analyze and associate Android malware. ACM Computing Research Repository (CoRR).

Wu Zhou, Zhi Wang, Yajin Zhou, and Xuxian Jiang. 2014. DIVILAR: Diversifying intermediate language for
anti-repackaging on Android platform. In ACM Data and Application Security and Privacy (CODASPY).

Wu Zhou, Yajin Zhou, Michael Grace, Xuxian Jiang, and Shihong Zou. 2013. Fast, scalable detection of
“piggybacked” mobile applications. In ACM Conference on Data and Application Security and Privacy
(CODASPY).

Wu Zhou, Yajin Zhou, Xuxian Jiang, and Peng Ning. 2012. Detecting repackaged smartphone applications
in third-party Android marketplaces. In ACM Conference on Data & Application Security & Privacy
(CODASPY).

Yajin Zhou and Xuxian Jiang. 2012a. Android malware genome project. Retrieved from http://www.
malgenomeproject.org/.

Yajin Zhou and Xuxian Jiang. 2012b. Dissecting Android malware: Characterization and evolution. IEEE
S&P.

Yajin Zhou, Zhi Wang, Wu Zhou, and Xuxian Jiang. 2012. Hey, you, get off of my market: Detecting ma-
licious apps in official and alternative Android markets. In Network and Distributed System Security
Symposium (NDSS).

Received May 2015; revised September 2016; accepted November 2016

ACM Computing Surveys, Vol. 49, No. 4, Article 76, Publication date: January 2017.

http://www.malgenomeproject.org/
http://www.malgenomeproject.org/

