

City, University of London Institutional Repository

Citation: Erkoyuncu, J. A., del Amo, I. F., Ariansyah, D., Bulka, D., Vrabič, R. and Roy, R.
ORCID: 0000-0001-5491-7437 (2020). A design framework for adaptive digital twins. CIRP
Annals, 69(1), pp. 145-148. doi: 10.1016/j.cirp.2020.04.086

This is the published version of the paper.

This version of the publication may differ from the final published
version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/24457/

Link to published version: http://dx.doi.org/10.1016/j.cirp.2020.04.086

Copyright and reuse: City Research Online aims to make research
outputs of City, University of London available to a wider audience.
Copyright and Moral Rights remain with the author(s) and/or copyright
holders. URLs from City Research Online may be freely distributed and
linked to.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

ARTICLE IN PRESS
JID: CIRP [m191;May 19, 2020;8:54]

CIRP Annals - Manufacturing Technology 00 (2020) 1�4

Contents lists available at ScienceDirect

CIRP Annals - Manufacturing Technology

journal homepage: https:/ /www.editorialmanager.com/CIRP/default.aspx
A design framework for adaptive digital twins

John Ahmet Erkoyuncua,*, I~nigo Fern�andez del Amoa, Dedy Ariansyaha, Dominik Bulkaa,
Rok Vrabi�c (2)b, Rajkumar Roy (1)c

a School of Aerospace, Transport and Manufacturing, Cranfield University, United Kingdom
b Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana, Slovenia
c School of Mathematics, Computer Science and Engineering, City, University of London, United Kingdom
A R T I C L E I N F O

Article history:
Available online xxx
* Corresponding author.
E-mail address: j.a.erkoyuncu@cranfield.ac.uk (J.A. Er

https://doi.org/10.1016/j.cirp.2020.04.086
0007-8506/© 2020 The Author(s). Published by Elsevier

Please cite this article as: J.A. Erkoyuncu et a
https://doi.org/10.1016/j.cirp.2020.04.086
A B S T R A C T

Digital Twin (DT) is a ‘living’ entity that offers potential with monitoring and improving functionality of inter-
connected complex engineering systems (CESs). However, lack of approaches for adaptively connecting the
existing brownfield systems and their data limits the use of DTs. This paper develops a new DT design frame-
work that uses ontologies to enable co-evolution with the CES by capturing data in terms of variety, velocity,
and volume across the asset life-cycle. The framework has been tested successfully on a helicopter gearbox
demonstrator and a mobile robotic system across their life cycles, illustrating DT adaptiveness without the
data architecture needing to be modified.
© 2020 The Author(s). Published by Elsevier Ltd on behalf of CIRP. This is an open access article under the CC

BY license. (http://creativecommons.org/licenses/by/4.0/)
Keywords:
Digital twins

Design method
Ontology
koyuncu).

Ltd on behalf of CIRP. This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

l., A design framework for adaptive digital twins, CIRP Annals - Manufacturing Technology (2020),
1. Introduction and state of the art

The digital twin (DT) is a digital representation of a physical
asset that can be used to describe its properties, condition, and
behaviour through modelling, analysis, and simulation [1]. The
vision for DTs is to reach a fully autonomous system that can col-
lect information about its operation (e.g. manufacturing) and sim-
ulate its effects; so the DT can support any decision to be made
about the asset [2]. There have been a range of applications of
DTs. Bilberg and Malik [3] present a DT driven human-robot
assembly system. Tao et al. [4] offer DT driven health manage-
ment for wind turbines. Stark et al. [5] use the test environment
of smart factory cells to research key factors to develop and oper-
ate DTs. Schleich et al. [6] describe a reference model based on
the concept of Skin Model Shapes for DTs.

A DT captures design, manufacturing and operational information,
aiming to represent with minimal differences the actual asset. This
contributes to various types of decision making [2]. DTs heavily rely
on collecting and storing vast life-cycle related data about products
using IoT technologies. This is often enabled through PLM or ERP plat-
forms, which can cover the entire product life-cycle [7]. However,
structuring the data and enabling its use across the asset life-cycle is
still a major challenge, where ontologies are attracting interest.
According to Zhu et al. [8], ontologies have been widely used in con-
text modelling, as they are independent of programming languages
and enable context reasoning. Erkoyuncu et al. [9] present adaptive
operational support using a context aware Augmented Reality (AR)
technique. Stark et al. [10] use ontology in the context of PLM to
improve sustainable product development. Abramovici et al. [7] offer
a semantic data management platform for the development and con-
tinuous reconfiguration of smart products and systems. There is also
a rich literature in computational ontologies, which cover Description
Logic used broadly for defining ontologies such as the Web Ontology
Language [11].

Stark et al. [5] highlight the need for further development in the
linkage between existing DTs’ brownfield systems and their data.
Tomiyama et al. [2] state that the feedback mechanism, particu-
larly the one from the as-is model to the product model, is not yet
sufficiently understood. Bilberg and Malik [3] also raise future
work needs in seamless integration of different modules with min-
imum manual intervention. Even though DTs are used in different
contexts, limited research evaluates how a DT and its architecture
can accommodate changes occurred to the asset during its life-
cycle. Lack of approaches for adaptiveness is one of the main rea-
sons preventing industrial adoption of DTs.

Software integration in DTs is currently achieved using standard
formats for data exchange [5]. This paper argues that this may not be
feasible for evolving DTs, which require software changes due to
asset modifications across its life-cycle. Hence, several research chal-
lenges remain to be addressed: (1) DT comprises multiple models of
varying granularity, describing various aspects across the life-cycle,
(2) the models need to be interlinked and synchronised with the
asset, and (3) presents challenges in data and models in terms how
we manage big data in DTs in terms of variety, volume, and velocity.
This paper contributes with an ontology-based approach for design-
ing DT data architectures to semantically link data and models to rep-
resent an asset. The research question is: How to design a DT data
architecture adaptable to changes in its software and the asset over
its life-cycle?

http://creativecommons.org/licenses/by/4.0/
mailto:j.a.erkoyuncu@cranfield.ac.uk
https://doi.org/10.1016/j.cirp.2020.04.086
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.cirp.2020.04.086
https://doi.org/10.1016/j.cirp.2020.04.086
https://doi.org/10.1016/j.cirp.2020.04.086
http://www.ScienceDirect.com
http://https://www.editorialmanager.com/CIRP/default.aspx

ARTICLE IN PRESS
JID: CIRP [m191;May 19, 2020;8:54]

2 J.A. Erkoyuncu et al. / CIRP Annals - Manufacturing Technology 00 (2020) 1�4
2. System overview for adaptive DTs

An asset evolves over its life-cycle through modifications. These
can be due to changes of its systems/components (e.g. retrofitting),
or modifications in the processes that manage the asset (e.g. monitor-
ing). From a DT perspective, these changes have various implications:
(1) data representing the asset should reflect the modifications made,
(2) software using such data should be able to manage the changes in
data, and (3) new software included in the DT over the asset evolu-
tion should be able to manage existing data and add new. The conse-
quences of the abovementioned implications are varied for distinct
DT data management options. Decentralised approaches (Fig. 1.a)
include data repositories for each software system. Hence, they are
more redundant and secure but require much more effort to spread
changes. Instead, centralised approaches (Fig. 1.b) are better at man-
aging data changes, though they can be less redundant. They use a
central repository to manage and serve data to each software on
demand. Centralised repositories require less effort when a new soft-
ware is introduced (only one interface to be created). Although, if a
new software implies changes to the repository’s data architecture
(e.g. a new column in an existing relational database), then it would
still require all existing interfaces to be modified. That is solved by
shared language approaches (Fig. 1.c) that also maintain centralisa-
tion advantages.
Fig. 1. DT data architures: Decentralised, centralised and ontology-based.

Fig. 2. Ontology Design Framework: Ontologies in asset KDs over time.
Compared to other shared languages (e.g. structured query lan-
guage - SQL), ontologies offer additional advantages. Firstly, they
organise data semantically according to knowledge domains (KD). So
that DT data can be shared with the same meaning for both software
systems and users. Secondly, ontologies are based on the ‘open-
world’ assumption. Since data not declared is not implied to not exist,
data changes can spread easier as interfaces are prepared to receive
new data schemas. Thirdly, ontologies can provide inferencing capa-
bilities to the data stored, offering additional capabilities to reason
over existing data. These inferencing capabilities can be integrated
through the use of interfaces between different DT software. Such
interfaces can be either generic (e.g. standard inferencing engines) or
ad-hoc for specific issues (e.g. high-frequency big data storages).
3. Ontology based design framework for adaptive DTs

The design framework determines the steps to generate or update
ontologies, so that diverse DT software can communicate with each
other using a common language. Such language should describe
every KD to be considered in an asset’s life-cycle. Besides, it should
also include unique references for every object to be part of an asset.
These are why this design framework consists of two main stages
(Fig. 2). The first one, only to be conducted once, enables to uniquely
declare any possible asset’s part, including those to be modified over
the asset’s life-cycle. The second stage enables to generate interfaces
for each new DT software to be incorporated. These may include new
information regarding existing or new assets’ life-cycle KD. This stage
is where the design change requirements are captured, and a suitable
DT data architecture is developed. In order to quantitatively evaluate
Please cite this article as: J.A. Erkoyuncu et al., A design framework for ad
https://doi.org/10.1016/j.cirp.2020.04.086
modifications of ontology-based data architectures, the following
definitions are used: (1) variety (number of attributes and/or rela-
tionships to modify/update), (2) volume (number of individuals to
modify or update when assigning new attributes/relations), and (3)
velocity (number of interfaces to update due to asset’s evolution).
3.1. Stage 1: asset description for adaptive DT

In order for diverse DT software to exchange data consistently,
it is necessary to declare unique references for every possible
object (e.g. component or sensor) that is part of an asset. So, the
changes experienced (e.g. replacement) over the asset’s life-cycle
can be tracked. This stage includes the following steps: Step 1:
Identify all possible hierarchical levels the asset can consist of and
declare these as classes. Step 2: Declare all necessary hierarchical
relationships to correlate these classes. Step 3: Declare all neces-
sary attributes to identify assets’ parts temporality (e.g. disposal).
Step 4: Determine a standard to name every object, so they can
have unique references (e.g. spare part). Although, the ontology
elements may be subject to change, the number of attributes and
relationships assigned for each class should not vary. If so, every
time an asset’s part is modified, any existing or new DT software
can keep track of it. Consequently, additional information regard-
ing an asset and its parts should be allocated in separate ontologies
as described in Stage 2.

3.2. Stage 2: designing dynamic behaviour of DT

In Stage 2, the focus is on offering design flexibility and choices
to introduce adaptiveness in DT data architecture deriving from
changes in the asset. In order to maintain the ontologies’ ‘open-
world’ assumption, there are two aspects of ontology-based data
to consider: temporality and hierarchy. A temporal attribute/
relationship is such that includes temporal information regarding
the asset (e.g. manufacturing date). A hierarchical attribute/rela-
tionship is such that refers to a specific asset’s element category
(e.g. component or system) as declared in Stage 1. If every attri-
bute or relationship that is temporal or hierarchical is maintained
in a separate ontology class, then these classes can be kept sepa-
rated to each other while maintaining their semantic connec-
tions. So, different interfaces can treat ontology classes
differently while maintaining data consistency. The following
steps assume these aspects to explain a method to generate muta-
ble ontologies, so data can be shared and updated consistently
over the asset’s life. These steps are triggered every time a DT
software is introduced or renewed:
aptive digital twins, CIRP Annals - Manufacturing Technology (2020),

https://doi.org/10.1016/j.cirp.2020.04.086

Fig. 4. Co-evolution of DT with its physical asset in the gearbox example.

ARTICLE IN PRESS
JID: CIRP [m191;May 19, 2020;8:54]

J.A. Erkoyuncu et al. / CIRP Annals - Manufacturing Technology 00 (2020) 1�4 3
Step 1: Declare new/updated software’s exchangeable data as
ontology attributes and relationships. This captures the design
requirement for digital twin adaptiveness based on the data to be
exchanged. Step 2: If they are all declared in the existing ontologies,
generate a new interface straightaway. Otherwise continue to the fol-
lowing step. Step 3: Identify all ‘missing’ attributes and relationships
from the existing ontologies and list the classes containing those that
are not missing. Step 4: If all attributes and relationships are ‘miss-
ing’, then jump to Step 6. Otherwise, continue to Step 5. Step 5: For
each ‘missing’ attribute and/or relationship: Step 5.1: List all possible
classes from Step 3 to which the ‘missing’ attribute/relationship can
be assigned to. Step 5.2: If the ‘missing’ attribute/relationship is tem-
poral, then generate a new class, assign it the new class, and a rela-
tion to the classes listed in Step 5.1. Step 5.3: If the ‘missing’
attribute/relationship is hierarchical, then assign it to all the possible
classes listed in Step 5.1. If these classes already include hierarchical
attributes or relationships, duplicate the classes by splitting them.
Step 5.4: If the ‘missing’ attribute/relationship is none of the above,
assign it to all the possible classes listed in Step 5.1. Step 5.5: If as a
result of previous steps there is more than one potential class to be
declared/modified, then continue to Step 7. Otherwise continue to
Step 8. Step 6: For all ‘missing’ attributes and/or relationships: Step
6.1: Create new classes by grouping attributes and relationships so
each temporal and hierarchical aspect is separated. Step 6.2: Ensure
each new class includes a relationship to a class from the hierarchical
ontology schema (Stage 1). Step 6.3: Ensure that each new class
whose individuals can be modified without modifying its reference
to the hierarchical individual (Stage 1) have a temporal attribute or
relationship. Step 6.4: If as a result of previous steps there is more
than one potential class to be declared, then continue to Step 7. Oth-
erwise continue to Step 8. Step 7: Existing options of class declara-
tions should be evaluated based on their impact to the data
architecture: Step 7.1: For each new/modified class declaration, cal-
culate its changes in variety, velocity and volume. Step 7.2: Select the
class declaration that better matches the DT’s data architecture in
terms of variety, velocity and volume. Step 8: Declare all new/modi-
fied ontologies classes, update their knowledge bases and generate
the new software interface.

4. Case studies: helicopter gearbox and robotic system

4.1. Helicopter gearbox demonstrator

This case study focuses on retrofitting a helicopter’s gearbox. It
consisted of adding a proximity sensor to measure the gearbox’ per-
formance through the shaft’s rotational speed. To do so, a ring shaft
was retrofitted by adding a new screw to it. So, the proximity sensor
can detect that new screw to measure the shaft’s rotational speed for
improving the gearbox’ availability.

The implementation of the framework began by identifying the
common language to describe an asset and its composition in a hier-
archical way. Fig. 3(a) shows the asset hierarchy, classes, and
Fig. 3. Ontology Design Framework: Cases of study.

Please cite this article as: J.A. Erkoyuncu et al., A design framework for ad
https://doi.org/10.1016/j.cirp.2020.04.086
relations for Stage 1. Stage 2 focused on a new hole that needed to be
manufactured on a ring and the KD of the hole was formalised. Step 1
defined the properties of the hole including the object (Fig. 3(a)).
Since no existing schema can represent the new KD of a hole (Step 2),
all the missing classes and properties were identified (Step 3). Since
neither existing classes nor attributes were present to describe a hole
(Step 4), the design process proceeded to Step 6, which is to create
new classes (e.g. GeometricalHole) with the required attributes
including temporal attributes (e.g. hasDesigned-DateTimeUpdated)
and relation to the existing class. Since no other plausible declaration
of class with its attributes was identified (Step 7), the existing ontol-
ogy was updated followed by the implementation of software inter-
face (Step 8). A web-based software that records manufacturing
activities done on the asset was created to update the component (e.
g. adding a hole). This action created a new individual for a hole on a
specific component and communicated to the design software to
update its 3D model through a plug-in.

Fig. 4 shows the final result, working on a plug-in for the design
software that understands changes in DT data made by other soft-
ware using inferencing and automatically generates a new version of
the component representation to reflect co-evolution with the asset.
This ensures that the latest change (e.g. 3D model) has been automat-
ically incorporated. The result is that the updated DT is readily avail-
able to other software systems e.g. condition monitoring, which
results in feedback to the physical asset. From a variety perspective,
the ontology-based architecture requires two new relationships and
six new attributes (variety = 8). The SQL approach would require two
new tables to add the foreign keys (2 relationships) and 6 new col-
umns (attributes). Although, the ‘variety’ number is similar, the
ontology-based approach would require less effort to apply these
changes because it does not require to modify pre-existing schemas.
From a volume perspective, the amount of data to be modified is sim-
ilar in both cases. However, when the number of individuals to mod-
ify due to updates on a class declaration (a table in SQL) increase, the
ontology-based approach would simplify data consistency. For
aptive digital twins, CIRP Annals - Manufacturing Technology (2020),

https://doi.org/10.1016/j.cirp.2020.04.086

ARTICLE IN PRESS
JID: CIRP [m191;May 19, 2020;8:54]

4 J.A. Erkoyuncu et al. / CIRP Annals - Manufacturing Technology 00 (2020) 1�4
velocity, the number of interfaces to be changed (speed to spread
changes) is lesser (faster), since it will only require to update the CAD
interface (velocity = 1), rather than the CAM and CAD interfaces (as in
the SQL approach, velocity = 2).

4.2. Robotic system

The second case study demonstrates (Fig. 3b) how the existing DT
of a laboratory-scale mobile robot system is adapted using the devel-
oped framework. The final result (Fig. 5), shows how the proposed
framework improves tracking, monitoring, and navigating the exist-
ing DT. The existing system consists of real robots and a DT that com-
prises a simulator and navigation software that works with the
simulator. The goal of the adaptation is to design and implement a
camera-based tracking system that will enable the navigation soft-
ware to work with real robots by providing the transformations
between the robots’ coordinate systems required by the navigation
software. Also, a monitoring system is envisioned that enables real-
time tracking of robot trajectories over time. The adaptation there-
fore includes installing an overhead camera, developing a tracking
software that detects robot markers and calculates their global poses,
and developing a monitoring module for visualising trajectory.

This case study shows how the steps of Stage 2 can be used to
evolve the DT. The existing ontology already contains classes that
describe the robots for the purposes of the simulation, e.g. classes
describing locations, velocities, and coordinate system transforma-
tions of robots and their joints: Odometry, Twist, and Pose. The track-
ing system can reuse these interfaces (Steps 1 and 2). However, there
are neither classes that can be used to describe the images generated
by the camera, nor are there classes that provide a suitable interface
for trajectory tracking, required by the monitoring system (identified
in Steps 3 and 4). New classes, Image and Trajectory, are added (Step
6) and evaluated (Step 7).
Fig. 5. Ontology-based communication in the mobile robotic case study.
Similar to the helicopter gearbox case, there are advantages in
variety, volume and velocity in the ontology based approach. In total,
two classes, six attributes, and four relationships are created (vari-
ety = 10). One interface is modified due to the change to the
Please cite this article as: J.A. Erkoyuncu et al., A design framework for ad
https://doi.org/10.1016/j.cirp.2020.04.086
Odometry class (velocity = 1). If, on the other hand, the system was
implemented using a relational database, a new table would have to
be created for each new class and each new relationship, which
would result in a total of six new tables and one modified table.
5. Conclusions and future work

This paper offers a design framework to capture changes in the
asset across its life-cycle within a DT from the perspective of data
architecture. This contributes to research with the ability for synchro-
nization between the physical and the digital world to establish
closed loops. The developed ontology-based approach offers oppor-
tunities for model and model-traceability to apply model-based sys-
tems engineering development approaches for DT solutions. It also
offers a unified single object model, which enables to replace a group
of translational interface standards. Future work is needed in apply-
ing the developed framework through a simulation study in a con-
trolled experiment to test the life-cycle and in giving feedback from
DT to the physical asset.
Acknowledgements

The research was partially supported by the EPSRC funded project
DigiTOP (EP/R032718/1), and the Slovenian Research Agency (P2-
0270). The work was cooperated between Cranfield University, City,
University of London and Ljubljana University. The authors also
acknowledge Babcock International for their support with this work.
Data underlying this paper can be accessed at https://doi.org/
10.17862/cranfield.rd.12136074.
References

[1] Helu M, Joseph A, Hedberg T (2018) A Standards-Based Approach for Linking as-
Planned to as-Fabricated Product Data. CIRP Annals - Manufacturing Technology
67:487–490.

[2] Tomiyama T, Lutters E, Stark R, Abramovici M (2019) Development Capabilities
for Smart Products. CIRP Annals - Manufacturing Technology 68:727–750.

[3] Bilberg A, Malik A (2019) Digital Twin Driven Human-Robot Collaborative Assem-
bly. CIRP Annals - Manufacturing Technology 68:499–502.

[4] Tao F, Zhang M, Liu Y, Nee AYC (2018) Digital Twin Driven Prognostics and Health
Management for Complex Equipment. CIRP Annals - Manufacturing Technology
67:169–172.

[5] Stark R, Fresemann C, Lindow K (2019) Development and Operation of Digital
Twins for Technical Systems and Services. CIRP Annals - Manufacturing Technology
68:129–132.

[6] Schleich B, Anwer N, Mathieu L, Wartzack S (2017) Shaping the Digital Twin for
Design and Production Engineering. CIRP Annals - Manufacturing Technology
66:141–144.

[7] Abramovici M, Go€bel J, Dang H (2016) Semantic Data Management for the Devel-
opment and Continuous Reconfiguration of Smart Products and Systems. CIRP
Annals - Manufacturing Technology 65:185–188.

[8] Zhu E, Ong P, Nee AYC (2015) A Context-Aware Augmented Reality System to
Assist the Maintenance Operators. International Journal of Computer Integrated
Manufacturing 28(2):213–225.

[9] Erkoyuncu JA, Fern�andez I, Mura MD, Roy R, Dini G (2017) Improving Efficiency of
Industrial Maintenance With Context Aware Adaptive Authoring in Augmented
Reality. CIRP Annals - Manufacturing Technology 66(1):465–468.

[10] Stark R, Pfortner A (2015) Integrating Ontology Into PLM- Tools to Improve Sus-
tainable Product Development. CIRP Annals - Manufacturing Technology 64
(1):157–160.

[11] Kr€otzsch M, Frantisek S, Horrocks I (2015) Description Logics. IEEE Intelligent Sys-
tems 29(1):12–19.
aptive digital twins, CIRP Annals - Manufacturing Technology (2020),

https://doi.org/10.17862/cranfield.rd.12136074
https://doi.org/10.17862/cranfield.rd.12136074
http://refhub.elsevier.com/S0007-8506(20)30108-6/sbref0001
http://refhub.elsevier.com/S0007-8506(20)30108-6/sbref0001
http://refhub.elsevier.com/S0007-8506(20)30108-6/sbref0001
http://refhub.elsevier.com/S0007-8506(20)30108-6/sbref0002
http://refhub.elsevier.com/S0007-8506(20)30108-6/sbref0002
http://refhub.elsevier.com/S0007-8506(20)30108-6/sbref0003
http://refhub.elsevier.com/S0007-8506(20)30108-6/sbref0003
http://refhub.elsevier.com/S0007-8506(20)30108-6/sbref0004
http://refhub.elsevier.com/S0007-8506(20)30108-6/sbref0004
http://refhub.elsevier.com/S0007-8506(20)30108-6/sbref0004
http://refhub.elsevier.com/S0007-8506(20)30108-6/sbref0005
http://refhub.elsevier.com/S0007-8506(20)30108-6/sbref0005
http://refhub.elsevier.com/S0007-8506(20)30108-6/sbref0005
http://refhub.elsevier.com/S0007-8506(20)30108-6/sbref0006
http://refhub.elsevier.com/S0007-8506(20)30108-6/sbref0006
http://refhub.elsevier.com/S0007-8506(20)30108-6/sbref0006
http://refhub.elsevier.com/S0007-8506(20)30108-6/sbref0007
http://refhub.elsevier.com/S0007-8506(20)30108-6/sbref0007
http://refhub.elsevier.com/S0007-8506(20)30108-6/sbref0007
http://refhub.elsevier.com/S0007-8506(20)30108-6/sbref0007
http://refhub.elsevier.com/S0007-8506(20)30108-6/sbref0008
http://refhub.elsevier.com/S0007-8506(20)30108-6/sbref0008
http://refhub.elsevier.com/S0007-8506(20)30108-6/sbref0008
http://refhub.elsevier.com/S0007-8506(20)30108-6/sbref0009
http://refhub.elsevier.com/S0007-8506(20)30108-6/sbref0009
http://refhub.elsevier.com/S0007-8506(20)30108-6/sbref0009
http://refhub.elsevier.com/S0007-8506(20)30108-6/sbref0009
http://refhub.elsevier.com/S0007-8506(20)30108-6/sbref0010
http://refhub.elsevier.com/S0007-8506(20)30108-6/sbref0010
http://refhub.elsevier.com/S0007-8506(20)30108-6/sbref0010
http://refhub.elsevier.com/S0007-8506(20)30108-6/sbref0011
http://refhub.elsevier.com/S0007-8506(20)30108-6/sbref0011
http://refhub.elsevier.com/S0007-8506(20)30108-6/sbref0011
https://doi.org/10.1016/j.cirp.2020.04.086

	A design framework for adaptive digital twins
	1. Introduction and state of the art
	2. System overview for adaptive DTs
	3. Ontology based design framework for adaptive DTs
	3.1. Stage 1: asset description for adaptive DT
	3.2. Stage 2: designing dynamic behaviour of DT

	4. Case studies: helicopter gearbox and robotic system
	4.1. Helicopter gearbox demonstrator
	4.2. Robotic system

	5. Conclusions and future work
	Acknowledgements
	References

