

An empirical comparison of commercial and

open-source

web vulnerability scanners

Richard Amankwah, Jinfu Chen, Patrick Kwaku

Kudjo, Dave Towey

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham ePrints

https://core.ac.uk/display/327068476?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Faculty of Science and Engineering, University of Nottingham Ningbo

China, 199 Taikang East Road, Ningbo, 315100, Zhejiang, China.

First published 2020

This work is made available under the terms of the Creative Commons

Attribution 4.0 International License:

http://creativecommons.org/licenses/by/4.0

The work is licenced to the University of Nottingham Ningbo China
under the Global University Publication Licence:
https://www.nottingham.edu.cn/en/library/documents/research-
support/global-university-publications-licence-2.0.pdf

http://creativecommons.org/licenses/by/4.0

For Peer Review

RESEARCH ARTICLE

An empirical comparison of commercial and open-source
web vulnerability scanners

Richard Amankwah1 Jinfu Chen1 Patrick Kwaku Kudjo2 Dave Towey3

1School of Computer Science and Communi-
cation Engineering, Jiangsu University, Zhen-
jiang, China
2Department of Information Technology Studies

University of Professional Studies, Accra Ghana

3School of Computer Science, University of
Nottingham Ningbo China, Ningbo, Zhejiang,
China

Correspondence Author
Jinfu Chen, School of Computer Science
and Communication Engineering, Jiangsu
University, Zhenjiang, China.
Email: jinfuchen@ujs.edu.cn

Funding information
This work is partly supported by the
National Natural Science Foundation
of China (NSFC grant numbers:
U1836116, 61762040 and 61872167),
the project of Jiangsu provincial Six
Talent Peaks (Grant numbers:
XYDXXJS-016), and the Graduate
Research Innovation Project of Jiangsu
Province (Grant numbers:
KYCX17_1807).

SUMMARY
Web vulnerability scanners (WVSs) are tools that can detect security vulnerabili-
ties in web services. Although both commercial and open-source WVSs exist, their
vulnerability detection capability and performance vary. In this paper, we report on
a comparative study to determine the vulnerability detection capabilities of eight
WVSs (both open and commercial) using two vulnerable web applications:
WebGoat and Damn vulnerable web application (DVWA). The eight WVSs stud-
ied were: Acunetix; HP WebInspect; IBM AppScan; OWASP ZAP; SNLS¿VK;
Arachni; Vega; and Iron WASP. The performance was evaluated using multiple
evaluation metrics: precision; recall; Youden index; OWASP web benchmark
evaluation (WBE); and the web application security scanner evaluation criteria
(WASSEC). The experimental results show that, while the commercial scanners
are effective in detecting security vulnerabilities, some open-source scanners (such
as ZAP and Skipfish) can also be effective. In summary, this study recommends
improving the vulnerability detection capabilities of both the open-source and
commercial scanners to enhance code coverage and the detection rate, and to re-
duce the number of false-positives.

KEYWORDS
commercial scanners, open-source scanners, software vulnerability, vulnerable web application, detection
capability.

1 INTRODUCTION

The economic importance of web applications in multiple domains, including banking [1], transportation
[2], manufacturing [3], business [4], and education [5], has increased the need for a mechanism to con-
trol and improve their quality. The extensive, almost ubiquitous, use of web applications has also result-
ed in an equally dramatic increase in attacks [6]. These attacks normally target weaknesses, flaws, and
errors, (commonly referred to as security vulnerabilities) that may cause an explicit failure to protect the
confidentiality, integrity, and availability of the application [7]. Examples of attacks include: command
injection [8]; buffer overflow [9],[10]; data or path manipulation [11]; access control [12]; session hi-
jacking [13]; and cookie poisoning [6],[14]. When the attacks succeed, they can result in data breaches
and have other serious security implications.

In an attempt to improve both vulnerability detection and the general quality of web applications,
several web vulnerability scanners (WVSs) have been developed and studied, including: the web appli-
cation attack and audit framework (W3af) [15]; OWASP zed attack proxy (OWASP ZAP) [16]; SNLS¿VK
[17]; Arachni [18]; Vega, [19]; Stalker [20]; and IronWASP [21]. Seng et al. [22] defined WVSs as tools
used to test and detect common security breaches in web applications. The National Institute of Stand-

Page 4 of 22

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

2

ards and Technology (NIST) reported varied vulnerability detection capability among the WVSs [23],
findings supported by later studies [24],[25],[26]. A key question regarding both commercial and open-
source WVSs is: Which MVS is most suited for detecting a particular class of security vulnerability, do-
ing so with high detection and low false-positive rates? Previous studies have attempted to answer this,
with Fonseca et al. [20] and Suto [27], for example, performing comparative studies of various open-
source and commercial WVSs. Antunes and Vieira [28] investigated the vulnerability detection capabili-
ties of three WVSs (IPT-WS, SIGN-WS and RAD-WS), assessing their effectiveness based on coverage
and false-positives, and finding that they could effectively detect the topmost web vulnerabilities, such
as SQL injection and cross-site scripting (XSS). Makino and Kleve [25] examined the vulnerability de-
tection capability of two open-source scanners, OWASP ZAP and Skipfish, using the damn vulnerable
web application (DVWA) and web application vulnerability scanner project [29],[30]: Their experi-
mental results showed ZAP to be superior to Skipfish.

Although there are several comparative studies on WVSs, the focus has mainly been on commercial
scanners, with few studies empirically examining the effectiveness of open-source tools. To address this,
following a similar procedure to that of Makino and Kleve [25], this study examines the vulnerability
detection capabilities of both the commercial scanners Acunetix [22], HP Webinspect [19], IBM
Appscan [31], and the open-source scanners OWASP Zed Attack Proxy (OWASP ZAP) [16], SNLS¿VK
[32], Arachni, Vega [33] and Iron WASP [34]. This choice of WVSs was partly motivated by software
vendor interest in these specific tools (including reported skepticism over their detection capabilities, in
terms of their false positive, false negative and coverage [35]), but also due to their apparent wide usage
and regular updates [36]. In addition, vendors need to be well-informed of the effectiveness of the tools
(both open-source and commercial) to enable appropriate evaluation and informed choices. This com-
parative study of the detection capabilities of the tools (both open-source and commercial) will support
veQdRUV¶ VeOecWion of the most appropriate WVS.

To the best of our knowledge, no other study has empirically analyzed these scanners against the
DVWA [37] and WebGoat tools [38], using our selected evaluation metrics (precision; recall; Youden
index; OWASP web benchmark evaluation (WBE); and the web application security scanner evaluation
criteria (WASSEC)) [39],[40]. This study makes the following contributions:

x An extensive experiment evaluating the vulnerability detection effectiveness of eight commercial
and open-source WVSs is reported on.

x The functionality of the commercial and open-source WVSs is studied and compared.
x A number of possible measures to improve the commercial and open-source WVSs are suggested.
The rest of this paper is structured as follows: Section 2 presents the background of the study and

some previous related research. The methodology and experimental setup are given in Section 3. The
experimental results are presented in Section 4. Section 5 presents a detailed discussion of the results.
Section 6 examines the threats to validity of the study, and, finally, the conclusion and recommendations
are presented in Section 7.

2 BACKGROUND AND RELATED WORK

This section presents the background to the study and an overview of some related work. It includes a
description of the evolution of web applications, web vulnerability scanners (WVSs), and the various
security vulnerabilities in web applications. There is also a summary of recent research into the evalua-
tion of web scanners.

The web application security consortium (WASC) [41] defines a Zeb aSSOLcaWLRQ aV ³a VRfWZaUe ap-
plication executed by a Zeb VeUYeU, ZKLcK UeVSRQdV WR d\QaPLc Zeb Sage UeTXeVWV RYeU HTTP.´ AccRUd-
ing to Paulson [42], the turning point in web application development was the introduction of Asynchro-
nous JavaScript and XML (AJAX), a technique for creating better, faster, and more interactive web ap-
plications, which helped transition the old concept of static web pages into a method for deploying inter-
active web applications. The common gateway interface (CGI) became the first standard environment

Page 5 of 22

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

3

used to generate dynamic web pages, with the use of CGI for website processing becoming known as
web applications [43]. The introduction of CGI led to the appearance of other web application develop-
ment tools such as PHP, Perl, Java Server Pages (JSP), JavaScript, and VBScript [43]. Figure 1 shows
the evolution of web applications.

 F I G U R E 1 Web application evolution

A web application typically includes a client, a web server, an application server (sometimes sever-
al), and a persistent database server, often with a firewall placed between the client and the webserv-
er/application. Figure 2 depicts a simplified web application framework.

A WVS performs penetration testing by going through its web pages without executing the program.
Most MVSs have three main components: one for crawling, one for attacking, and one for analysis [44].
The crawling component identifies the input and related pages of the web application based on its uni-
form resource locator (URL). The attacking component breaks down information discovered from the
various webpages for each input vector and vulnerability type, and then sends the content to the web-
server. The analysis component evaluates and interprets the responses from the server to determine if the
attacks were successful or not. Techniques for testing web applications for vulnerabilities can be catego-
rized as either white or black box testing [45]. White box testing is often used to analyze the applica-
WLRQ¶V VRXrce code (manually or using a code analysis tool); Black box testing, also known as penetration
testing, executes the application to detect and locate security vulnerabilities [46]. Ashcan [47], Web
King [48], Web Inspect [49], and Topsider [50] are some of the most widely applied commercial web
application scanners.

 F I G U R E 2 Simplified view of a web application framework

Since its creation in 1997, the National Vulnerability Database (NVD) [51] has published infor-

mation about more than 43,000 software vulnerabilities affecting more than 17,000 software applications
[52]. Previous studies have successfully used vulnerabilities in this database to validate the vulnerability
detection capabilities of their models [53], [54], [55]. Our study also used vulnerabilities presented in
this database, as well as the vulnerabilities in DVWA and WebGoat. Table 1 presents a summary of the
studied vulnerability types. There has been growing interest in research evaluating WVS. For example,
Vieira et al. [56] evaluated the flaw detection capability of four commercial WVSs (Webinspect,

Page 6 of 22

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

4

Appscan, WSDigger, and Wsfuzzer): They conducted an experiment using 300 well-known web appli-
cations, finding that the selected scanners generated false positives between 35% and 40% of the time.
Parvez et al. [26] later conducted a comparative study of three other WVSs (Acunetix, Appscan, and
ZAP), with results indicating an improved detection rate.

Alsaleh et al. [57] examined four open-source scanners, finding similar detection rates for all four.
More recently, Sagar et al. [7] evaluated the vulnerability detection capability of three other open-source
WVSs (w3af, Skipfish, and OWASP ZAP) on the damn vulnerable web application (DVWA), conclud-
ing that OWASP ZAP performed better than the other scanning tools. An examination of these related
studies reveals that most evaluated the effectiveness of commercial scanners or open-source scanners,
but not both. Most studies focused only on SQL injection and cross-site scripting. Finally, none of the
studies examined and compared the WVS performance based on both DVWA and OWASP WebGoat,
using all the metrics used in our study.

T A B L E 1 Web application vulnerability types

Vulnerability type Abbr. Vulnerability description

Denial of Service DOS EYeQW RU acWLRQ WKaW UedXceV RU SUeYeQWV WKe fXQcWLRQ Rf a XVeU¶V WaUgeW Ue-
source or application [58].

Code Execution CMD
Exec

A situation where an attacker capitalizes on the weakness of a web appli-
cation injects and executes a malicious server script on the targeted appli-
cation to gain access to authorized resources [59].

Buffer Overflow BO When an attacker exploits a vulnerability to exceed the memory buffer
size and copy data from the adjacent memory location to make changes to
the application [60].

Authentication
Flaws

AF When an attacker gains access to a user's data through an exposed pass-
word [61]. These types of weaknesses can allow an attacker to either cap-
ture or bypass the authentication methods that are used by a web applica-
tion.

Cross-Site Script-
ing

XSS WKeQ aQ aWWacNeU gaLQV acceVV WR a XVeU¶V Zeb aSSOLcaWLRQ SULYLOegeV b\
LQMecWLQg PaOLcLRXV JaYaScULSW cRde LQWR WKe XVeU¶V Zeb bURZVeU [44].

Cross-Site-
Request Forgery

CSRF WKeQ WKe aWWacNeU VeQdV aQ XQaXWKeQWLcaWed HTTP UeTXeVW WR a XVeU¶V
bURZVeU LQWeQdLQg WR VeQd LQfRUPaWLRQ (VXcK aV WKe XVeU¶V VeVVLRQ cRRNLe
and other relevant information) to a web application [62].

SQL injection
(blind)

BSQLi When an attacker has access to security details (error details) which de-
velopers have hidden. The attack uses a sequence of SQL statements to
snip the hidden details to perform malicious activities [63].

File inclusion FI This error is caused when an application builds a path to executable code
using an attacker-controlled variable in a way that allows the attacker to
control which file is executed at run time [64].

Reflected Cross-
site scripting

RXSS When an attacker supplies code (using different dynamic programming
languages such as ActiveX, Flash, JavaScript, or Java) to the web browser
of a user through viewed pages [65].

SQL Injection SQL When an attacker inserts unvalidated input into the database of the web
application to compromise its expected use [66].

Access Control
Flaws

ACF It is an unintended access decision caused by PLVcRQ¿gXUed UXOeV, SROi-
cies, or algorithms within an access control system [67].

3 EMPIRICAL STUDY

Our empirical study first identified the most widely-used and applied open-source and commercial
WVSs, according to criteria from the Web Application Security Consortium [68]. We scanned the two
benchmark web applications (WebGoat and DVWA) for vulnerabilities by configuring the browser and
the selected WVSs for vulnerability detection. The detection results for each scanner were analyzed, and
the performances were compared using the target metrics (precision, recall, Youden index, WBE and
WASSEC).

Page 7 of 22

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

5

3.1 Research questions

Most commercial WVSs have automated crawlers and scanners, simplifying the vulnerability detection
process. Open-source scanners, in contrast, typically do not have automated crawlers and scanners, and
require human intervention, including to configure the tool as a proxy server. Because of this, it may be
expected that commercial scanners would outperform the open-source scanners. Therefore, our first re-
search question addresses the effectiveness of the commercial and open-source WVSs:
x RQ1 - How do commercial WVSs compare with open-source WVSs, in terms of detection capability,

for all vulnerability types in web applications?
Similar to the motivation behind RQ1, it may also seem more likely that open-source WVSs would

generate more false-positive results than commercial WVSs. Automated crawlers in commercial WVSs
can more efficiently crawl all parts of a web application than the manual crawling of open-source WVSs.
This leads to the second research question:
x RQ2 - How well do commercial WVSs compare with open-source WVS in terms of the number of

false-positives generated?
Penetration testing is an important issue in cybersecurity, which partly explains the large number of

WVSs developed. Typical questions asked by stakeholders lead to the third research question(s):
x RQ3 - Which WVS is the most effective for vulnerability detection?

3.2 Experimental setup

The experimental activity was divided into three steps: pre-experimental activities, experimental activi-
ties, and post-experimental activities. In the first stage, we conducted a detailed analysis of the eight
WVSs to generate the workload (i.e., an idea of the actual work going to be performed). This was fol-
lowed by the selection and detection of vulnerabilities in the respective vulnerable web applications.

The last stage involved the analysis and performance evaluation of the WVSs against the target met-
rics. The experiment was conducted on a workstation with an Intel(R) Core (TM) i5-6500 CPU at
3.20GHz, 4 GB of RAM, running Windows 7 Ultimate.

3.3 Vulnerable web applications

To test our approach, we used two vulnerable web application programs: DVWA and WebGoat. Both
DVWA and WebGoat consist of the OWASP TOP 10 security vulnerabilities. DVWA has a friendly
user interface that allows developers, teachers, and students to explore and analyze web service security.
It consists of multiple vulnerabilities, including command execution; cross-site request forgery; insecure
captcha; file inclusion; SQL injection (standard and blind); reflected cross-site scripting (RXSS); and
stored cross-site scripting (XSS) [25]. WebGoat is an open-source OWASP application created to help
developers and experts examine the detection capability of WVS tools. The vulnerability types in
WebGoat include: access control flaws; ajax security issues; authentication flaws; buffer overflows;
poor code quality problems; concurrency cross-site scripting; bypass error handling flaws; injection
flaws; denial of service; insecure communication; insecure configuration; insecure storage; malicious
execution; parameter tampering; and session management flaws [69]. These vulnerabilities which we
intend to detect in DVWA and WebGoat are intentionally injected based on the OWASP TOP 10 vul-
nerability in our study. These main web application vulnerability types in DVWA and WebGoat are
shown in Table 1.

Page 8 of 22

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

6

3.4 WVSs under-study

Although there are several distributed network scanners with complex architecture, Makino and Kleve
[25] reported that WVS architecture generally includes four modules: scan engine; scan database; report
module; and user interface. The scan engine identifies security vulnerabilities with respect to its installed
plug-ins and compares the outcome with known vulnerabilities. The scan database stores detailed infor-
mation about various vulnerabilities. The report module presents a scan result with recommended solu-
tions for developers and security administrators. The user interface provides a visual platform that can be
graphical or command-driven, or both, for users to interact with the WVS. Our study examined eight
WVSs, both commercial and open-source, all of which have a graphical user interface and run under
Windows OS:

x Acunetix [70] WVS is a commercial security web tool that scans web applications to detect ex-
ploitable vulnerabilities. It scans for cross-site scripting, SQL Injections and other types of vul-
nerabilities in web applications. Additionally, the tool uses a multi-threaded fast approach to
crawl through a series of web pages without breaks and produces various forms of compliance
and technical reports.

x WebInspect [71] is an automated commercial web application security testing tool that identifies
known and unknown vulnerabilities, including parameter injection; cross-site scripting; and di-
rectory traversal in web applications.

x AppScan [22] is a commercial secure web that finds and resolves known vulnerabilities in web
applications.

x ZAP [25] is an open-source WVS with a user-friendly interface used for penetration testing. It
can be used by people with different software security abilities.

x SNLS¿VK [72] is an open-source web application security reconnaissance tool. It provides an in-
teractive sitemap for the targeted site by carrying out a recursive crawl and dictionary-based
probes. The resulting map is then annotated with the output from several active security checks.
TKe ¿QaO UeSRUW geQeUaWed b\ WKe WRRO is meant to serve as a foundation for professional web ap-
plication security assessments.

x Arachni [21] is an effective and user-friendly open-source WVS, written in Ruby. It is very fast
at scanning, and offers different user interfaces. It also provides a customized, command-driven
input, and its output is in the form of HTML.

x IronWASP [73] (iron web application advanced security testing platform) is an advanced open-
source web application security testing platform that comes in various external libraries such as
IronPython, IronRuby, JSON, and .NET.

x Vega [74] is an automated open-source WVS for detecting SQL and other vulnerability types.
These scanners were selected for the study based on the comparison criteria proposed by the Web

Application Security Consortium, Web Application Security Scanner Evaluation [75] and a study con-
ducted by Suteva et al. [34] on the most popular open-source vulnerability scanners.

3.5 Performance metrics

Similar to previous studies [25],[76], we compared the performance of the eight WVSs using five evalu-
ation metrics: precision; recall; Youden index; OWASP web benchmark evaluation (WBE); and the web
application security scanner evaluation criteria (WASSEC). Table 2 summarizes the notation and abbre-
viations [77].

Page 9 of 22

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

7

T A B L E 2 Confusion matrix

Metrics Description

True Positive (TP) Correctly detected vulnerability.

False Positive (FP) Vulnerabilities incorrectly classified as vulnerabilities.

True Negative (TN) No vulnerabilities present, and the tool confirms by not detecting any.

False Negative (FN) The tool does not identify a vulnerability that is actually present.

3.5.1 Precision

OWASP [78] defined precision as the percentage of correctly detected vulnerabilities as a proportion of
all reported vulnerabilities (including those incorrectly labeled). The formula for this metric is given in
Eq. 1. High precision values indicate a high detection accuracy of actual vulnerabilities.

 TPPrecision=
TP+FP

(1)

3.5.2 Recall

Recall [79] is the number of correctly detected vulnerabilities represented as a proportion of all the
known vulnerabilities (including those that should have been detected by the tool but were not). The
formula for the recall is given in Eq. 2.

 TPRecall=
TP+FN

(2)

3.5.3 OWASP WBE

The OWASP benchmark project proposed a system for evaluating the effectiveness of static analysis
tools called the WBE result interpretation guide [78]. The guide is a visual representation of a tRRO¶s
detection performance based on fall-out (false positive) and recall rates. As shown in Figure 3, the line
e[WeQdLQg fURP WKe SRLQW (0%, 0%) WR (100%, 100%) LV WKe ³gXeVVLQg OLQe´, ZLWK the bug detection TP
rate equal to the FP rate: performance on this line indicates the same performance as random selection.
A SORW Rf a WRRO¶V FP UaWe agaLQVW LWV TP UaWe WKaW LV ORcaWed LQ WKe WRS ULgKW cRUQeU LQdLcaWeV WKaW WKe WRRO
reported everything as vulnerabilities; location in the bottom left corner means that the tool recorded no
vulnerabilities. The top left corner is the ideal location, indicating the best detection accuracy.

3.5.4 Youden index

The Youden index [80] was proposed to evaluate the performance of analytical (diagnostic) tests. It out-
puts values in the range [-1, 1], where a value of 1 (perfect detection) indicates detection of all vulnera-
bilities with no false positives; -1 indicates only false positives, and no true positives (no actual vulnera-
bilities detected); and a Youden index of 0 means the tool recorded the same result for a web application
with vulnerabilities and without vulnerabilities ² an invalid result. Eq. 3 shows the formula for calculat-
ing the Youden index.

 TP TNJ= + 1
TP+FN TN+FP

� (3)

Page 10 of 22

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

8

F I G U R E 3 OWASP WBE interpretation

3.5.5 Web application security scanner evaluation criteria (WASSEC)

WASSEC [81] is comprised of six evaluation criteria/metrics that can help developers assess WVS de-
tection capability. Table 3 presents the six WASSEC metrics.

T A B L E 3 WASSEC metrics

Metric Area of coverage

Protocol Support Get, post, cookie, header, secret, pname, custom, proxy, gzip, eflate, ssl.

Session Management Custom cookie, custom, header, logout, detection, exclude, log-out, exclude,
url, exclude, param.

Testing Sqli, bsqli, ssjsi, rxss, pxss, dxss, jsonh, lfi, rfi, cmdexec, upload, redirect, crlfi,
ldapi, xpaphi, mxi, ssi, formati, codei, xmli, eli, buffero, integero, codedisc,
backupf, padding, authb, prive, xxe, session, fixation, csrf, ados.

Parsing Xml, xmlatt, xmltag, json, netenc, amf, javaser, netser, wcf, wcf-bin, websock,
dwr, url file.

Authentication Basic, digest, ntlm, ntlmv2, kerberos, form, cert, captcha.

Crawling Manual crawl, html crawler, ajax crawler, flash crawler, applet crawler, silver-
light crawler, wsdl crawler, rest crawler, field autofill, smart autofill, anti csrf
support, viewstate support.

4 RESULTS

4.1 Detection rates

FLgXUe 4 SUeVeQWV WKe VcaQQeUV¶ WUXe-positive scores for the seven vulnerabilities in DVWA (BSQLi,
CMDExec, CSRF, RXSS, SXSS, FI, and SQLi). As can be seen from the figure, while all scanners de-
tected some CMDExec, RXSS, SXSS, and SQLi vulnerabilities, there was considerable variation in per-
formance. For the RXSS vulnerabilities, for example, OWASP ZAP discovered 19; Acunetix and
WebInspect detected five; Arachni detected four; Vega and AppScan detected three, and Skipfish and

Page 11 of 22

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

9

IronWasp detected one. (The remaining results can be obtained from Figure 4.) The variation in detec-
tion rates could be attributed to how individual scanners are developed for specific vulnerability classes,
with licensing also appearing to have an influence: The free edition of Acunetix, for example, was only
able to detect XSS vulnerabilities. Furthermore, the detection capabilities of the scanners also vary from
one web application to another.

F I G U R E 4 Vulnerability detection capability (true positive count) in DVWA

Figure 5 shows the true-positive scores for the nine vulnerabilities in WebGoat (DoS, CMDExec,

BF, XSS, CQ, BP, ACF, AF, and BSQLi,). Apart from IronWasp (which only detected two vulnerabili-
ties), all tools were able to detect multiple vulnerabilities. Although no tool was able to detect all
WebGoat vulnerabilities, the individual WVS performances are a clear indication that the tools were de-
veloped differently, leading to different strengths and weaknesses. The WebGoat vulnerabilities most
detected were XSS and SQLi. Overall, the results give an indication of the commonalities and comple-
mentary strengths among the WVSs.

F I G U R E 5 Vulnerability detection capability (true positive count) in WebGoat

4.2 Scanning time

We also evaluated the efficiency of the scanners based on the time required to complete the detection of
vulnerabilities in both DVWA and WebGoat. The processing time for each scanner was calculated in

Page 12 of 22

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

10

seconds. We recorded the time for each scanner in both DVWA and WebGoat and present the result in
Table 4. It can be seen from Table 4 that the running time for DVWA ranges from 30 to 360 seconds,
and WebGoat ranges from 30 to 900 seconds. The performance differences between the scanners could
be due to the URL injection points, with fewer injection points requiring less time than more points. Fur-
thermore, variations in individual tool detection speed (time) could also be attributed to the internal se-
curity components of the applications. For instance, ZAP took 360 seconds in DVWA, but only 60 sec-
onds in WebGoat. The scan profile of the tools for vulnerability detection could impact on the detection
time.

T A B L E 4 Observed running time of scanners

Scanners Scan duration
DVWA WebGoat

ZAP 360sec 60sec
Skipfish 120sec 120sec
Acunetix 122sec 120sec
Arachni 60sec 900sec
WebInspect 180sec 181sec
Vega 60sec 60sec
AppScan 62sec 70sec
Iron WASP 60sec 30 sec

4.3 Vulnerability severity

The vulnerabilities detected in DVWA and WebGoat were ranked according to their severity levels [82],
with high severity meaning the impact of the vulnerability is devastating; medium meaning that the im-
pact is dangerous; low meaning that the impact is minor; and informational severity having a negligible
impact. 146 vulnerabilities were found in DVWA, of which 28 were of high severity; 29 medium; 50
low; and 39 informational. Acunetix and AppScan found the highest number of high-severity vulnerabil-
ities in DVWA (10), followed by WebInspect (8). Not all open-source scanners found high-severity vul-
nerabilities, but this could be attributed to the licensing and profile settings of the tools. OWASP ZAP,
for example, detected 30 vulnerabilities in DVWA (five medium, 20 low, and five informational).

IronWasp, an open-source web application security tool, detected the least number of vulnerabilities.
109 vulnerabilities were found in WebGoat, of which 23 were of high severity; 26 medium; 23 low; and
37 informational. Acunetix, WebInspect, Vega, and AppScan found ten, seven, one, and five high-
severity vulnerabilities, respectively. The different severity ratings of vulnerabilities detected by the
scanners in DVWA and WebGoat could be ascribed to the internal security architecture of the two web
applications. The results also indicate that open-source scanners could not detect high-severity web vul-
nerabilities.

5 DISCUSSION

This section presents a detailed analysis and evaluation of the tools.

5.1 Precision and recall analysis of scanners

In this study, both precision and recall were measured in the range of 0-100%: An effective tool, with no
false negatives or false positives, would have a value of 100% for both precision and recall. Figures 6
and 7 show the SVS precision and recall values for DVWA and WebGoat, respectively.

Page 13 of 22

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

11

F I G U R E 6 Precision and recall for DVWA

F I G U R E 7 Precision and recall for WebGoat

While the figures show that all scanners achieved a 100% recall score, indicating their ability to de-
tect real vulnerabilities, there is considerable variation in their precision scores. This variation in preci-
sion could be aWWULbXWed WR eacK WRRO¶V XQLTXeQeVV LQ YXOQeUabLOLW\ deWecWLRQ. SNLSfLVK, fRU e[aPSOe, Kad a
precision score of 75% for both DVWA and WebGoat, but Acunetix scored 68% for DVWA and 64%
for WebGoat. ZAP, Arachni, and Vega all had precision scores of 56% with DVWA. These scores of
less than 100% reflect the scanners flagging as vulnerabilities some issues that were not actual vulnera-
bilities (false positives).

Page 14 of 22

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

12

Answer to RQ1: Detection capability of scanners
Both the open-source and commercial scanners were effective at detecting vulnerabilities in web

applications, with the main differences between the two groups being in the different levels of precision
(false positives). This finding suggests that stakeholders should consider assessing the tools based on the
lowest numbers of false positives. Some tools were very effective for a specific type of vulnerability:
While Acunetix, for example, was very effective at detecting reflected cross-site scripting (RXXS) vul-
nerabilities, OWASP ZAP was good at detecting command execution (CMDExec) vulnerabilities.

5.2 OWASP WBE

The OWASP WBE results interpretation guide (Section 3.5.3) provides a graphical representation of a
WRRO¶V effecWiveness, mapping its true positive against its false-positive rates, as shown in Figure 3. In our
experiments, as shown in Eqs. 4 and 5, we defined the total true-positive and total false-positive rates as
the total number across both DVWA and WebGoat (and are the total true and false-positive rates,
respectively; and are the true-positive and false-positive rates, respectively, for DVWA; and
and are the true-positive and false-positive rates, respectively, for WebGoat).

t d wTP =TP +TP (4)

t d wFP =FP +FP (5)

F I G U R E 8 OWASP WBE interpretation guide

Figure 8 presents the WBE results for the WVSs under study. As explained in Section 3.5.3, the
VcaQQeU¶V effecWLYeQeVV LV UeSUeVeQWed b\ LWV SRVLWLRQ. AccRUdLQg WR ZAP¶V SRVLWLRQ aW WKe WRS ULgKW cRrner,
WKe WRRO deWecWV aQd UeSRUWV WKaW ³eYeU\WKLQg LV YXOQeUabOe´ ² both true and false positive rates are high.
IURQWaVS¶V SRVLWLRQ cRUUeVSRQdV WR WKe ³QRWKLQg LV YXOQeUabOe´ caWegRU\ ² both true and false positive
rates are low. The performance of IronWasp could be attributed to it having been designed for a specific
type of vulnerability detection. The remaining scaQQeUV feOO LQWR WKe ³WRRO UeSRUWV QRWKLQg LV YXlQeUabOe´
caWegRU\, e[ceSW AUacKQL, ZKLcK ZaV cORVe WR WKe ³WRRO UeSRUWV YXOQeUabLOLW\ UaQdRPO\´ caWegory.

Page 15 of 22

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

13

Answer to RQ2: False-positive analysis of scanners
According to the experimental data, there was no single scanner that offered ideal detection for all

vulnerabilities. There were differences in the false-positive rates of vulnerabilities reported by both
open-source and commercial scanners, with the rates being relatively higher for open-source tools. This
performance difference could be attributed to most commercial scanners having automated scanners and
crawlers, which could be more efficient and effective than the manual configuration and intervention
necessary for open-source scanners. The generally high false-positive rates reflected an almost random
vulnerability detection.

5.3 Youden index

Figure 9 presents the Youden index (Section 3.5.4) of the scanners under study. IronWASP has the
highest Youden index (0.83), which indicates its effectiveness detecting known vulnerabilities, with lit-
tle or no false positives. The next highest scoring scanners were Skipfish, Appscan, Webinspect, and
Acunetix, with 0.45, 0.31, 0.23, and 0.21, respectively. The results also indicate that several open-source
scanners can function as effectively as some commercial web scanners. Thus, licensing alone should not
be used as a standard metric for estimating the effectiveness of a tool.

F I G U R E 9 Youden index results

5.4 Web application security scanner evaluation criteria (WASSEC)

Table 5 shows the WASSEC (Section 3.5.5) results for the scanners under test. The results in Table 5
indicate that Acunetix has the best protocol support, followed by Appscan and Skipfish. The differences
for session management, however, were much more marginal. Although there are differences in the per-
formance of the scanners, there are similarities in the area of crawling, authentication and testing. Figure
10 shows the average WASSEC results, according to which Acunetix has the best performance, fol-
lowed by Appscan, with scores of 0.81 and 0.65, respectively. However, the third and fourth-best per-
formers, open-source scanners Skipfish and ZAP ² with scores of 0.43 and 0.40, respectively ² are
also good performers.

Page 16 of 22

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

14

T A B L E 5 WASSEC results

Tools Metrics
Protocol
support

Session
management

Testing Parsing Authentication Crawling

ZAP 7 5 12 2 3 4
Skipfish 8 5 13 3 3 4
Acunetix 10 6 28 7 7 9
Arachni 6 5 12 2 3 3
WebInspect 7 6 4 0 7 1
Vega 6 5 10 2 3 3
AppScan 8 6 22 4 6 8
IronWASP 6 5 9 3 3 2

F I G U R E 1 0 Average WASSEC results

Answer to RQ3: Effectiveness of the scanners for vulnerability detection
The experimental results show that there is no single WVS that can effectively detect all vulnerabil-

ity classes. Although the results indicate that the commercial scanners Acunetix and Appscan may be the
most effective, the open-source scanners Skipfish and ZAP also performed well, outperforming other
commercial WVSs.

6 THREATS TO VALIDITY

A threat to internal validity relates to the number of vulnerabilities used in the experimental analysis, i.e.,
the total vulnerabilities in DVWA and WebGoat. To mitigate this threat, we estimated the total number
of vulnerabilities by the aggregation of each scanner's true-positive to form a true representation for our
experiment. There were challenges configuring the tools due to their functionalities not being compati-
ble with the Java platform (new version) employed in this study. We used several versions with limited
functionality to validate the effectiveness of the tools: This can affect the vulnerability detection rate
compared to the tools with the full versions. A threat to external validity relates to the generalizability of
our results because we used vulnerability data from only two vulnerable web applications to verify the
efficiency of the eight WVSs studied. Our future work will address this threat by examining other vul-
nerabilities and implementation tools.

7 CONCLUSION AND FUTURE DIRECTIONS

This paper has reported on a comparative study of the vulnerability detection capabilities of eight web
vulnerability scanners (WVSs) using two vulnerable web applications (Damn vulnerable web
application (DVWA) and WebGoat). Of the eight WVSs studied, three were commercial scanners

Page 17 of 22

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

15

(Acunetix, HP Webinspect, and IBM Appscan), and five were open-source scanners (OWASP ZAP,
SNLS¿VK, AUacKQL, Vega, aQd IURQWASP). TKeLU SeUfRUPaQce ZaV e[aPLQed XVLQg fLYe PeWULcV:
precision; recall; Youden index; OWASP web benchmark evaluation (WBE); and the web application
security scanner evaluation criteria (WASSEC). The experimental results show that the commercial
scanners were effective at detecting security vulnerabilities, but that there were also open-source
scanners (ZAP and Skipfish) that were equally efficient at detecting some vulnerabilities (including
command execution, cross-site scripting, and SQL injection). Based on the experimental analysis, we
recommend improving the vulnerability detection capabilities of the commercial and open-source
scanners, to enhance code coverage and detection rates, and to reduce false positives. The development
of WVSs should be standardized, to improve the systems, and promote the production of high-quality
tools. Reports generated by scanners should not be difficult for users to interpret and understand (such as
the HTML and XML reports provided by ZAP). In our future work, we will extend this study to include
more state-of-the-art tools, and to examine performance with different vulnerable web applications.

ACKNOWLEDGEMENT

The authors would like to thank anonymous reviewers for their comments on earlier versions of this pa-
per.

REFERENCES

[1] C. Möckel and A. E. Abdallah, "Threat modeling approaches and tools for securing architectural

designs of an e-banking application," in Proceeding of the Sixth International Conference on
Information Assurance and Security, 2010, pp. 149-154.

[2] L. F. Herrera-Quintero, J. C. Vega-Alfonso, K. B. A. Banse, and E. C. Zambrano, "Smart ITS
sensor for the transportation planning based on IoT approaches using serverless and
microservices architecture," IEEE Intelligent Transportation Systems Magazine, vol. 10, pp. 17-
27, 2018.

[3] H. Li, W. Wei, and R. Fan, "Deep learning-based QoS prediction for manufacturing cloud
service," in Proceeding of the Chinese Control Conference (CCC), 2019, pp. 2719-2724.

[4] A. Wibowo, G. Aryotejo, and M. Mufadhol, "Accelerated mobile pages from Javascript as
accelerator tool for web service on E-commerce in the E-business," International Journal of
Electrical & Computer Engineering vol. 8, pp. 2088-8708, 2018.

[5] K. Kasemsap, "Exploring the role of web-based learning in global education," in Revolutionizing
Education through Web-Based Instruction, ed: IGI Global, 2016, pp. 202-224.

[6] M. Awad, M. Ali, M. Takruri, and S. Ismail, "Security vulnerabilities related to web-based data,"
Telkomnika, vol. 17, pp. 852-856, 2019.

[7] D. Sagar, S. Kukreja, J. Brahma, S. Tyagi, and P. Jain, "Studying open source vulnerability
scanners for vulnerabilities in web applications," Institute of Integrative Omics and Applied
Biotechnology Journal, vol. 9, pp. 43-49, 2018.

[8] Z. Su and G. Wassermann, "The essence of command injection attacks in web applications,"
ACM Sigplan Notices, vol. 41, pp. 372-382, 2006.

[9] P. Luo, D. Zou, Y. Du, H. Jin, C. Liu, and J. Shen, "Static detection of real-world buffer
overflow induced by loop," Computers & Security, vol. 89, pp.1-12, 2019.

[10] Z. Jin, Y. Chen, T. Liu, K. Li, Z. Wang, and J. Zheng, "A novel and fine-grained heap
randomization allocation strategy for effectively alleviating heap buffer overflow
Vulnerabilities," in Proceedings of the 4th International Conference on Mathematics and
Artificial Intelligence, 2019, pp. 115-122.

Page 18 of 22

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

16

[11] L. Miller and C. Pelsser, "A taxonomy of attacks using BGP blackholing," in European
Symposium on Research in Computer Security, 2019, pp. 107-127.

[12] S. S. Alqahtani, "Automated extraction of security concerns from bug reports," in Proceedings of
the 17th International Conference on Privacy, Security and Trust (PST), 2019, pp. 1-3.

[13] Q. Hu, B. Du, K. Markantonakis, and G. P. Hancke, "A session hijacking attack against a device-
assisted physical-layer key agreement," IEEE Transactions on Industrial Informatics, vol. 16, pp.
691-702, 2019.

[14] P. Baral, "Web application scanners: a review of related articles [Essay]," IEEE Potentials, vol.
30, pp. 10-14, 2011.

[15] N. Antunes and M. Vieira, "Benchmarking vulnerability detection tools for web services," in
IEEE International Conference on Web Services, 2010, pp. 203-210.

[16] O. R. Laponina and S. A. Malakhovsky, "Using the ZAP vulnerability scanner to test web
applications," International Journal of Open Information Technologies, vol. 5, pp. 18-26, 2017.

[17] I. Mantra, M. S. Hartawan, H. Saragih, and A. A. Rahman, "Web vulnerability assessment and
maturity model analysis on indonesia higher education," Procedia Computer Science, vol. 161,
pp. 1165-1172, 2019.

[18] S. Idrissi, N. Berbiche, F. Guerouate, and M. Shibi, "Performance evaluation of web application
security scanners for prevention and protection against vulnerabilities," International Journal of
Applied Engineering Research, vol. 12, pp. 11068-11076, 2017.

[19] F. R. Muñoz, E. A. A. Vega, and L. J. G. Villalba, "Analyzing the traffic of penetration testing
tools with an IDS," The Journal of Supercomputing, vol. 74, pp. 6454-6469, 2018.

[20] J. Fonseca, M. Vieira, and H. Madeira, "Testing and comparing web vulnerability scanning tools
for SQL injection and XSS attacks," in Proceedings of the 13th Pacific Rim International
Symposium on Dependable Computing (PRDC 2007), 2007, pp. 365-372.

[21] K. McQuade, "Open source web vulnerability scanners: the cost effective choice," in
Proceedings of the Conference for Information Systems Applied Research ISSN, 2014, pp. 1508-
1516.

[22] L. K. Seng, N. Ithnin, and S. Z. M. Shaid, "Automating penetration testing within an ambiguous
testing environment," International Journal of Innovative Computing, vol. 8, pp.180-191, 2018.

[23] P. E. Black and E. Fong, "Proceedings of defining the state of the art in software security tools
workshop," NIST Special Publication, vol. 500, pp. 264-273, 2005.

[24] N. Antunes and M. Vieira, "Detecting SQL injection vulnerabilities in web services," in
Proceedings of the Fourth Symposium on Dependable Computing 2009, pp. 17-24.

[25] Y. Makino and V. Klyuev, "Evaluation of web vulnerability scanners," in Proceedings of the
IEEE 8th International Conference on Intelligent Data Acquisition and Advanced Computing
Systems: Technology and Applications (IDAACS), 2015, pp. 399-402.

[26] M. Parvez, P. Zavarsky, and N. Khoury, "Analysis of effectiveness of black-box web application
scanners in detection of stored SQL injection and stored XSS vulnerabilities," in Proceedings of
the 10th International Conference on Internet Technology and Secured Transactions (ICITST),
2015, pp. 186-191.

[27] L. Suto, "Analyzing the accuracy and time costs of web application security scanners,"
Application Security Consultant, February 2010.

[28] N. Antunes and M. Vieira, "Designing vulnerability testing tools for web services: approach,
components, and tools," International Journal of Information Security, vol. 16, pp. 435-457,
2017.

[29] S. Tyagi and K. Kumar, "Evaluation of static web vulnerability analysis tools," in Proceedings of
the Fifth International Conference on Parallel, Distributed and Grid Computing (PDGC), 2018,
pp. 1-6.

[30] Y. Liu, Z. Wang, and S. Tian, "Security against network attacks on web application system," in
Proceedings of the China Cyber Security Annual Conference, 2018, pp. 145-152.

Page 19 of 22

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

17

[31] F. A. Saeed, "Using wassec to evaluate commercial web application security scanners,"
International Journal of Soft Computing and Engineering (IJSCE), vol. 4, pp. 177-181, 2014.

[32] R. Mohammed, "Assessment of web scanner tools," International Journal of Computer
Applications, vol. 5, pp.1-4, 2016.

[33] I. M. Babincev and D. V. VuOeWLü, "Web aSSOLcaWLRQ VecXULW\ aQaO\VLV XVLQg WKe NaOL LLQX[
operating system," VRjQRWehQiþki GOasnik, vol. 64, pp. 513-531, 2016.

[34] N. Suteva, D. Zlatkovski, and A. Mileva, "Evaluation and testing of several free/open source web
vulnerability scanners," Proceedings of the 10th Conference for Informatics and Information
Technology (CIIT 2013), 2013, pp. 221-224.

[35] B. Mburano and W. Si, "Evaluation of web vulnerability scanners based on OWASP
benchmark," in Proceedings of the 26th International Conference on Systems Engineering
(ICSEng), 2018, pp. 1-6.

[36] M. Rennhard, D. Esposito, L. Ruf, and A. Wagner, "Improving the effectiveness of web
application vulnerability scanning," International Journal on Advances in Internet Technology,
vol. 12, pp. 12-27, 2019.

[37] H. S. Abdullah, "Evaluation of open source web application vulnerability scanners," Academic
Journal of Nawroz University, vol. 9, pp. 47-52, 2020.

[38] "The Open Web Application Security Project (OWASP)", https://owasp.org/, Accessed on
March 15, 2017

[39] M. Sridevi and K. Sunitha, "A hybrid framework for secure web applications," in International
Conference on Intelligent Computing and Communication Technologies, 2019, pp. 140-151.

[40] C. J. Van Rijsbergen, "A non-classical logic for information retrieval," The Computer Journal,
vol. 29, pp. 481-485, 1986.

[41] E. Fong and V. Okun, "Web application scanners: definitions and functions," in Proceeding of
the 40th Annual Hawaii International Conference on System Sciences (HICSS'07), 2007, pp.
280b-280b.

[42] L. D. Paulson, "Building rich web applications with Ajax," Computer, vol. 38, pp. 14-17, 2005.
[43] S. Patil, N. Marathe, and P. Padiya, "Design of efficient web vulnerability scanner," in

International Conference on Inventive Computation Technologies (ICICT), 2016, pp. 1-6.
[44] S. Kals, E. Kirda, C. Kruegel, and N. Jovanovic, "Secubat: a web vulnerability scanner," in

Proceedings of the 15th International Conference on World Wide Web, 2006, pp. 247-256.
[45] S. M. Srinivasan and R. S. Sangwan, "Web app security: A comparison and categorization of

testing frameworks," IEEE Software, vol. 34, pp. 99-102, 2017.
[46] R. Zabicki and S. R. Ellis, "Penetration testing," in Computer and Information Security

Handbook, ed: Elsevier, 2017, pp. 1031-1038.
[47] E. Fong, R. Gaucher, V. Okun, P. E. Black, and E. Dalci, "Building a test suite for web

application scanners," in Proceedings of the 41st Annual Hawaii International Conference on
System Sciences (HICSS 2008), 2008, pp. 478-478.

[48] O. Hamed and N. Kafri, "Performance prediction of web based application architectures case
study: .NET vs. Java EE," International Journal of Web Applications, vol. 1, pp. 146-156, 2009.

[49] M. Salas and E. Martins, "Security testing methodology for vulnerabilities detection of xss in
web services and ws-security," Electronic Notes in Theoretical Computer Science, vol. 302, pp.
133-154, 2014.

[50] H. Le and P. Loh, "Unified approach to vulnerability analysis of web applications," in
Proceedings of AIP Conference, 2008, pp. 155-159.

[51] H. Booth, D. Rike, and G. Witte, "The national vulnerability database (NVD): Overview,"
National Institute of Standards and Technology, pp. 25-35, 2013.

[52] P. K. Kudjo, J. Chen, S. Mensah, and R. Amankwah, "Predicting vulnerable software
components via bellwethers," in Communications in Computer and Information Science, 2018,
pp. 389-407.

Page 20 of 22

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

18

[53] A. Tripathi and U. K. Singh, "On prioritization of vulnerability categories based on CVSS
scores," in Proceedings of the 6th International Conference on Computer Sciences and
Convergence Information Technology (ICCIT), 2011, pp. 692-697.

[54] J. A. Wang and M. Guo, "Vulnerability categorization using Bayesian networks," in Proceedings
of the Sixth Annual Workshop on Cyber Security and Information Intelligence Research, 2010,
pp. 1-4.

[55] P. K. Kudjo, J. Chen, M. Zhou, S. Mensah, and R. Huang, "Improving the accuracy of
vulnerability report classification using term frequency-inverse gravity moment," in Proceedings
of the 19th IEEE International Conference on Software Quality, Reliability and Security (QRS),
2019, pp. 248-259.

[56] M. Vieira, N. Antunes, and H. Madeira, "Using web security scanners to detect vulnerabilities in
web services," in Proceedings of IEEE/IFIP International Conference on Dependable Systems &
Networks, 2009. DSN'09, 2009, pp. 566-571.

[57] M. Alsaleh, N. Alomar, M. Alshreef, A. Alarifi, and A. Al-Salman, "Performance-based
comparative assessment of open source web vulnerability scanners," Security and
Communication Networks, vol. 2017, pp. 1-14, 2017.

[58] D. H. Woo and H. Lee, "Analyzing performance vulnerability due to resource denial of service
attack on chip multiprocessors," in Workshop on Chip Multiprocessor Memory Systems and
Interconnects, 2007, pp. 1-8.

[59] W. Du and A. P. Mathur, "Vulnerability testing of software system using fault injection," Purdue
University, West Lafayette, Indiana, Technique Report. pp. 98-02, 1998.

[60] E. Haugh and M. Bishop, "Testing C programs for buffer overflow vulnerabilities," in NDSS,
2003.

[61] S. Whalen, M. Bishop, and S. Engle, "Protocol vulnerability analysis," Department of Computer
Science, University of California, Davis, USA, Technical Report CSE-2005-04, 2005.

[62] S. Calzavara, M. Conti, R. Focardi, A. Rabitti, and G. Tolomei, "Mitch: a machine learning
approach to the black-box detection of CSRF vulnerabilities," in Proceedings of IEEE European
Symposium on Security and Privacy (EuroS&P), 2019, pp. 528-543.

[63] A. B. Ibrahim and S. Kant, "Penetration testing using SQL injection to recognize the vulnerable
point on web pages," International Journal of Applied Engineering Research, vol. 13, pp. 5935-
5942, 2018.

[64] M. M. Hassan, T. Bhuyian, M. K. Sohel, M. H. Sharif, and S. Biswas, "SAISAN: An automated
local file inclusion vulnerability detection model," International Journal of Engineering &
Technology, vol. 7, pp.4-8, 2018.

[65] P. Sharma, R. Johari, and S. Sarma, "Integrated approach to prevent SQL injection attack and
reflected cross site scripting attack," International Journal of System Assurance Engineering and
Management, vol. 3, pp. 343-351, 2012.

[66] G. Deepa and P. S. Thilagam, "Securing web applications from injection and logic vulnerabilities:
Approaches and challenges," Information and Software Technology, vol. 74, pp. 160-180, 2016.

[67] G. Deepa, P. S. Thilagam, A. Praseed, and A. R. Pais, "DetLogic: A black-box approach for
detecting logic vulnerabilities in web applications," Journal of Network and Computer
Applications, vol. 109, pp. 89-109, 2018.

[68] W. A. S. Consortium, "WASC threat classification," Release, Web Application Security
Consortium, 2010, pp. 1-8.

[69] N. A. Aziz, S. N. Z. Shamsuddin, and N. A. Hassan, "Inculcating Secure Coding for beginners,"
in Proceedings of the International Conference on Informatics and Computing (ICIC), , 2016, pp.
164-168.

[70] C. Joshi and U. K. Singh, "Security testing and assessment of vulnerability scanners in quest of
current information security landscape," International Journal of Computer Applications, vol.
145, pp. 1-7, 2016.

Page 21 of 22

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

19

[71] S. Gupta and L. Sharma, "Analysis and assessment of web application security testing tools," in
Proceedings of the 5th National Conference, 2011, pp. 1-2.

[72] A. Dessiatnikoff, R. Akrout, E. Alata, M. Kaâniche, and V. Nicomette, "A clustering approach
for web vulnerabilities detection," in Proceedings of the 17th IEEE Pacific Rim International
Symposium on Dependable Computing (PRDC 2011), 2011, pp. 194-203.

[73] S. Chen, "The web application vulnerability scanners benchmark," Denim Group, 2014.
[74] F. A. Saeed and E. A. Elgabar, "Assessment of open source web application security scanners,"

Journal of Theoretical and Applied Information Technology, vol. 61, pp. 281-287, 2014.
[75] M. U. J. DAR, J. L. Shah, and G. I. A. Khanday, "Web abuse using cross site scripting (XSS)

Attacks," Journal of Artificial Intelligence Research & Advances, vol. 6, pp. 69-75, 2019.
[76] Y.-H. Tung, S.-S. Tseng, J.-F. Shih, and H.-L. Shan, "A cost-effective approach to evaluating

security vulnerability scanner," in Proceedings of the 15th Asia-Pacific Symposium on Network
Operations and Management (APNOMS 2013), 2013, pp. 1-3.

[77] Y. Fang, Y. Li, L. Liu, and C. Huang, "DeepXSS: Cross site scripting detection based on deep
learning," in International Conference on Computing and Artificial Intelligence, 2018, pp. 47-51.

[78] "OWASP Benchmark Project" https://www.owasp.org/index.php/Benchmark, Accessed June 2,
2016.

[79] Y.-H. Tung, S.-S. Tseng, J.-F. Shih, and H.-L. Shan, "W-VST: A Testbed for Evaluating Web
Vulnerability Scanner," in Proceeding of the 14th International Conference on Quality Software,
2014, pp. 228-233.

[80] W. J. Youden, "Index for rating diagnostic tests," Cancer, vol. 3, pp. 32-35, 1950.
[81] W. A. S. Consortium, "Web application security scanner evaluation criteria," Version, vol. 1, pp.

1-26, 2009.
[82] P. Saripalli and B. Walters, "Quirc: A quantitative impact and risk assessment framework for

cloud security," in Proceedings of the 3rd IEEE International Conference on Cloud Computing
(CLOUD), 2010 on, 2010, pp. 280-288.

Page 22 of 22

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

