
Delivering Honeypots as a Service

Jafar Haadi Jafarian
University of Colorado Denver
haadi.jafarian@ucdenver.edu

Amirreza Niakanlahiji
University of Illinois Springfield

aniak2@uis.edu

Abstract

The effect of honeypots in slowing down attacks
and collecting their signatures is well-known.
Despite their known effectiveness, these technologies
have remained underutilized, especially by small and
medium-sized enterprises, because internal hosting
and configuration of honeypots requires extensive
expertise and infrastructure, which is unjustifiably
expensive especially for small or medium-sized
enterprises. In this paper, we propose a novel
security approach that enables a security service
provider to offer honeypot-as-a-service (HaaS)
to customer enterprises. The HaaS service is
offered by a plug-and-play gateway and incorporates
a network of moving high-interaction honeypots
into unused address space of client enterprises.
These honeypots are configured tailored to the
mission and type of services offered by the
customer enterprise to blend in the surrounding
network for maximum believability while looking
vulnerable enough to engage potential attackers.
As a contribution, we formulate and solve the
problem of strategic configuration planning of a
group of honeypots for a given input network.
We also provide the necessary infrastructure and
mechanisms for realizing the model and offering it
to client enterprises without affecting their regular
operations. Using experimental and analytical
modeling, we evaluate our approach and show its
robustness against honeypot mapping attacks, and
its effectiveness in slowing down large-scale cyber
intrusion attacks on enterprise networks.

1. Introduction

Honeypots are invaluable for detection and
analysis of network attacks. In spite of their
proven advantages in attack deterrence, honeypots
have not been widely adopted by enterprises,
because deployment, configuration, maintenance,

and analysis of honeypots are expensive, thus
making their adoption financially unjustifiable.
Existing honeypot technologies suffer from a
cost-benefit paradox; cheap and scalable emulated
(low-interaction) honeypots are easily detectable
and thus not really effective against real attacks
[1], while stealthy real-machine (high-interaction)
honeypots are expensive to build and maintain [1],
and with careless maintenance, they may even make
the network more vulnerable [2].

This gives rise to our novel honeypot deployment
model, based on the “software as a service”
initiative, in which a third-party service provider
offers “honeypots as a service” (HaaS) to customers,
by populating their external and internal address
space with a group of high-fidelity, hard-to-detect,
and customer-tailored honeypots. This model
allows small- and medium-sized enterprises to
unleash the full potentials of honeypots in deterring
sophisticated cyber threats, without needing to
purchase expensive hardware and software and
hiring professionals for honeypot configuration,
analysis, and maintenance.

The technological and theoretical aspects of
developing honeypots as a service lead to new
research challenges. The first fundamental question
that we answer is how the HaaS provider can
incorporate honeypots in a customer network, in
a way that is scalable, flexible, secure and more
importantly non-intrusive to network operation and
sessions, as well as devices and protocols. In Section
3, we present necessary architectural components
and protocols for the realization of the HaaS model
with the aforementioned properties.

The second and more fundamental question
is defining criteria and techniques for effective
design and configuration of these honeypots. To
address this question, in Section 4, we first identify
three seminal criteria for designing an effective
deception plan. Then, we provide a scientific
foundation for realizing each of these criteria in

Proceedings of the 53rd Hawaii International Conference on System Sciences | 2020

Page 1835
URI: https://hdl.handle.net/10125/63966
978-0-9981331-3-3
(CC BY-NC-ND 4.0)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/326835462?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


the honeypot planning problem. We show that the
resulting planning problem is NP-complete. Thus,
we provide a modeling of the problem based on
Satisfiability Modulo Theories (SMT) [3]. The
model is then solved using off-the-shelf SMT solvers
(e.g., Microsoft Z3 [3]) to determine the optimal
honeypot network plan for a customer network.

To evaluate the model, we use two types of
evaluation methodologies, the result of which are
presented in Section 5. First, we implemented
the model in a tested and used a red-teaming
experiment with a group of security experts to
evaluate the accuracy and effectiveness of our
criteria and techniques in a small-scale testbed.
The subjects were asked to differentiate between
honeypots and real machines in different setups.
These experiments show that the honeypots
generated by our methodology were the least
recognizable in comparison with honeypots that
are either low-interaction, configured in isolation
(with no planning) and include some arbitrary
services that may not blend well in the surrounding
network, or suffer from poor (unrealistic) design,
configuration, or content. In the second stage, we
generalized the red-teaming results in an analytical
framework to quantify and show the effectiveness
of the HaaS model for slowing down large-scale
network attacks on enterprises with different sizes.

2. Related Work

Based on level of interaction, honeypots are
classified to low-interaction, and high-interaction.
While low-interaction honeypots are usually
implemented as a daemon (honeyd [1], dionaea [4])
that emulates behaviors of a real system,
high-interaction honeypots are usually implemented
as real machines, with full-fledged operating system
and applications. Low-interaction honeypots
require less computational resources, but their
limited implementation of protocols is easily
detectable by skilled attackers [5, 6]. In contrast,
while realistic nature of high-interaction honeypot
makes identifying them harder, (1) they are
susceptible to being taken over by attackers,
thus increasing the risk [2]; (2) their deployment
and maintenance is extremely costly in terms of
expertise and resources [1]; and (3) they are not
scalable, as each high-interaction honeypot can only
be one machine with a static configuration [1, 7].

A line of work close to the HaaS model
are centralized honeypot architecture [8, 9] called
honeyfarm [8, 10, 11]. These honeypots are

centrally operated while each of them may virtually
belonging to different network domains.

Another class of work includes distributed
honeypot models with sensors distributed across
multiple networks to observe global trends [12,13].

Another class of work that has commonalities
with our proposed model focused on dynamic
honeypot solutions [14, 15]. A dynamic honeypot
passively [16] or actively [17] discover production
systems and network events, and based on that
information create or adapt honeypot systems.

3. HaaS Infrastructure

In this section, we describe the architecture,
components, and protocols of the HaaS model.

3.1. Architecture

The HaaS model aims to thwart attackers
by populating the unused address space with
honeypots. However, these honeypots are not
physically hosted on the customer’s network.
Rather, they are merely a redirection to unmodified
and full-fledged platforms/services that are hosted
in a cloud of machines which are controlled by the
HaaS provider. The architecture of the HaaS model
is depicted in Figure 1. The HaaS gateway, deployed
at in front of critical subnets (e.g., DMZ) of
customer networks, is responsible for (1) mutating
addresses and updating DNS replies issued by
the authoritative DNS, as well as (2) redirecting
designated flows to the HaaS provider network.
The gateway has two interfaces: the pcap/libnet

interface that performs packet capturing and
forwarding, and the tunneling interface that tunnels
designated packets to the HaaS provider network.
One mutation gateways must be located in front of
each subnet, including DMZ and internal subnets.
The DMZ HaaS gateway protected the network
against external attackers, while internal HaaS
gateways target internal threats.

On the provider’s side, honeypot cloud is, in
essence, a data center of high-end machines, each
hosting a multitude of virtual machines (VM). VPN
gateway is responsible for decapsulating incoming
tunneled packets and forwarding them to cloud
VMs, as well as encapsulation and forwarding
of response packets. In this architecture, the
production traffic is never routed to the HaaS
network. Moreover, the HaaS firewall ensures
that only traffic to/from the predetermined IP/port
pairs are permitted and any other packet is dropped.
This prohibits an attacker on the Internet or

Page 1836



even in the customer network (insider) to access
an unauthorized machine or service in the HaaS
network. Moreover, the firewall does not allow any
new flow (e.g., TCP SYN) from the HaaS provider
machines to the customer network to ensure that
if a HaaS network machine is compromised, it does
not pose any risk to the customer network. The
combination of tunneling and firewalling ensures
complete isolation of customer network from the
HaaS provider network, except for whitelisted
packets.

The HaaS model provider offers services
to customer networks based on a service-level
agreement (SLA). This SLA determines the traffic
rate and the bandwidth that is allocated to this
customer.

3.2. Communication Protocols

To protect honeypots from mapping attacks, the
HaaS model constantly randomizes or mutates IP
addresses of network hosts (both real ones and
honeypots) at regular intervals. In Section 4, we
provide a more detailed justification for why these
IP address mutations are central to achieving a
robust honeypot-based defense.

In order to keep address mutations transparent
to end-hosts, devices, and protocols, the HaaS
gateway keeps the actual IP addresses of real hosts
unchanged. When a user queries an authoritative
DNS for the IP address of a host, the DNS response
provides a temporary IP address instead of the
host’s real IP address to the querying resolver.
This temporary IP is randomly chosen from the
unused address space and temporarily assigned
to a host, and the assignments are updated at
regular intervals (e.g., every 5 min). The user
will communicate with this temporary IP as the
destination address. However, this temporary
destination IP is translated to the host’s real IP
address before packets are delivered to the host.
The opposite translation is done by the HaaS
gateway for source IP addresses in egress packets
from the host. The HaaS gateway performs these
translations for the whole duration of a flow to
ensure end-to-end reachability and session integrity.
Figure 2 provides a detailed description of how
legitimate communication with a host occurs in a
HaaS-protected network.

3.3. Proxy Honeypots

The HaaS gateway uses the IP/port translation
to generate proxy honeypots on designated IP

Figure 1. Architecture of the HaaS model

addresses. These proxy honeypots are generated by
redirection of incoming traffic to different virtual
machines in the HaaS provider’s cloud based on a
pre-planned table. For example, in Figure 3, while
from the attacker’s perspective, there exists a host
on address IPrand with ports 80 and 21 open, in
reality this is a proxy honeypot that is generated
by redirecting traffic destined to port 80 to one
honeypot VM, and traffic to port 21 to another VM.

4. HaaS Honeypot Network
Planning

In this section, we define and solve the problem
of effective, mission-oriented, and customer-tailored
honeypot network planning. To this aim, first, we
identify three criteria for effective honeypot-based
deception planning. Then, we discuss how each
of these criteria could be scientifically modeled.
Finally, we formally define and solve the planning
problem.

Once the honeypot network plan is created,
it is possible for an enterprise to host it
locally or to use VMs from other cloud-based
models like infrastructure as a service. However,
design, configuration, hosting, and maintenance of
high-fidelity honeypot machines requires expensive
infrastructure and human resources which may
not be affordable for a small- or medium-sized
enterprise. The HaaS provider, on the other hand,
can reduce these costs through unified management,
aggregation, and sharing of infrastructures and
resources among different customers, thus making
this solution affordable for smaller enterprises.
Moreover, by hosting a variety of different
operating systems, servers and applications inside
a consolidated and closely-monitored network, the
HaaS provider can create honeypot networks that

Page 1837



Figure 2. communication protocol for regular

access

Figure 3. Proxy honeypots: redirection of

designated flows to Honeycloud

have machines with very diverse designs and
configurations and very believable and high-fidelity
contents.

4.1. Criteria for Effective Deception

Investigating literature on designing effective
deceptive paradigms points to two important
properties for successful deception: (1) plausible
deception, by conforming deception to attackers’
expectations [18], and (2) appealing deception to
provide temptation for attackers to engage [19]. In
addition to these two, we show that (3) moving is
also necessary to defeat honeypot mapping attacks
[20].
Plausible Deception. Achieving a plausible
deception is tantamount to making honeypots
indistinguishable from production hosts in
the customer network. To achieve such
indistinguishability, a honeypot must have three
properties: (a) plausible in its compliance with
legacy protocols (high-interaction), (b) plausible
design (using expected platforms and services), and
(c) plausible configuration and content.
Appealing Deception. A honeypot or group
of honeypots are appealing when they provide
incentives for adversaries to interact with them.
To this aim, (1) they must offer a diverse range
of platform and services to engage attackers with
different capabilities and agendas, and (2) they
must include platforms and services that are
sufficiently vulnerable to provide incentives for
attackers to engage.
Moving Deception. Any deception scheme is
susceptible to being detected [21]. One of the
major limitations of existing honeypot paradigms is
that once a honeypot is detected, it loses its value
[1]. Mutating (randomizing over time) addresses
of hosts (honeypots and real) disallow adversaries
from mapping and blacklisting honeypots. Moving
is handled by the address mutation component
of the HaaS model, as discussed in Section 3.
In the next subsections, we define the other
two criteria of plausible and appealing honeypot
design and configuration, followed by a formulation

of the problem.

4.2. Plausible Honeypots

We identify three factors for building a plausible
honeypot: (1) high-interaction OS and services, (2)
plausible design (platforms and services), and (3)
plausible configuration and content.
High-interaction. High-interaction honeypots [2]
are usually implemented as real systems, consisting
of a full-fledged operating system and unmodified
services.
Plausible design. Honeypots must be designed
in a manner that is plausible in general, and
also in the context of its surrounding network.
Firstly, having (a) outdated services (e.g., Windows
XP), or abnormally vulnerable services would seem
suspicious to human attackers. This means
that every honeypot platform/service must be
individually plausible, irrespective of the customer
network. Plausible services are determined by
investigating the occurrence frequency of services
in a large number of diverse networks. Implausible
services should not be included in designing
honeypots.

Secondly, proxy honeypots must conform to the
posture of the enterprise network. To this aim, (b)
each honeypot must only include services that are
relevant to the mission and type of the network in
which they are deployed. Also, (c) every honeypot
must include a reasonable number of services. For
example, hosting too many services to a honeypot
could raise suspicion.
Plausible Configuration. After discovering the
configuration or fingerprint of a host, a skilled
attacker would interact with a honeypot service
in an attempt to compromise it. If the deployed
content on honeypot services are not believable,
both individually and with regard to the type and
mission of the surrounding network, it could raise
suspicion. Therefore, honeypot services must be
properly configured and populated with meaningful
and plausible data and content. On the other
hand, an FTP server with anonymous login enabled,
or a Web application filled with all types of

Page 1838



XSS and SQL injection vulnerabilities would look
suspicious to a skilled human attacker, especially in
comparison with the hardened real hosts.

4.3. Appealing Honeypots

As discussed in Section 4.1, appealing honeypots
must have diverse types of services and
applications and also include a sufficient number of
vulnerabilities to engage attackers.
High Diversity. Attackers use a multitude of
exploits, each targeting a vulnerability in a specific
service. Such exploits are only useful when one
of the targeted hosts is running the vulnerable
service for that exploit. Therefore, having a diverse
set of services in the network would increase the
probability that an attacker is engaged with a
honeypot.

The inverse Simpson index is a well-known
metric in ecology and economics to calculate
diversity when entities are classified into types.
The value of a diversity index increases both
when the number of types increases, and when
evenness increases. Both factors are important for
good deception; the number of services increases
the possibility that the attacker engages with
a honeypot, and evenness prohibits a honeypot
service to stand out, due to a low occurrence. Using
this metric, we ensure that the diversity of services
does not fall below an acceptable threshold.
High Vulnerability Level. Every honeypot must
be constructed in a way that lures adversaries
to engage with it. A honeypot that includes
a few hardened/secured services would seem too
hard to compromise, thus discouraging adversaries
from engaging. However, if the services are too
vulnerable, it may also raise suspicion and reveal
their decoy nature.

4.4. Problem Formulation

Generation of honeypots with customer-tailored,
plausible and appealing configurations is a planning
problem that must be solved by the HaaS
provider. This planning determines the number
and configuration of honeypots that are provided
to the customer network. The problem is defined as
follows: : given (1) goals of the model (designing
plausible and appealing honeypots), (2) number
of available (unused) addresses, (3) configuration
of the customer network,and (4) the agreed-upon
service-level agreement (SLA), how many proxy
honeypots and with what configurations must be
allocated to the customer’s network.

This problem is a generalization of the
unbounded knapsack problem, where each service
type has a value (based on its vulnerability level
and diversity) and weight (expected attack rate),
and the SLA traffic rate defines the maximum
total weight. The knapsack optimization problem
is NP-complete. Therefore, to solve this planning
problem, we first reduce it to a satisfiability problem
by formulating it using satisfiability modulo theories
(SMT) logic [3]. Then, we use an off-the-shelf
SMT solver (Microsoft Z3) to solve the NP-complete
problem.

Suppose m denotes the number of available
and routable addresses in the address space of the
customer network, and n denotes the number of
production hosts in this address space; therefore,
m − n remaining addresses could be used for
honeypots.

Physical network services in the HaaS provider
cloud are categorized into classes {S1, . . .}. Each
Sj represents a set of services of the same class;
either implementing the same protocol or offering
the same functionality (e.g., FTP server, Web
server, operating system, etc.). Network services
are associated with a default port; e.g., port 80 for
Web services, 21 for FTP Servers, etc.For example,
S1 denotes the set of operating systems; that is,
S1 denotes the set of candidate OSs that could be
observed on any honeypot in the customer network.
In our formalization, variable P i,j denotes the decoy
service of class Sj that is assigned to ith decoy host.
These variables are assigned by the SMT solver.
P i,j = φ denotes that no service is assigned.

The formal definition of the problem is as
follows: determine a satisfiable assignment to
variables of the form P i,j for every production host
and proxy honeypot, such that the given constraints
are satisfied. Eq. 11 to 10 show the formulation of
this problem using Satisfiability Modulo Theories
(SMT) logic. Next, we provide a quick explanation
of how this formulation captures and models the
aforementioned criteria and constraints.

Maximum number of honeypots: The total
number of production hosts and honeypots cannot
exceed the number of available addresses, m. Eq.
1 defines variable Li to denote whether a decoy
machine is assigned to ith unused IP address. Based
on this equation, Li is true (or 1) if and only if at
least one decoy service is assigned to it. Eq. 2
denotes the constraint that the number of decoy
machines must be equal to m− n.

Plausible Design: Designing plausible
honeypots is the core objective of this planning.

Page 1839



Eq. 3 denotes that every decoy machine must
have an operating system. Eq. 4 ensures that
the number of services assigned to each decoy
machine does not fall below or exceed the lower
and upper bounds lmin and lmax, respectively.
Eq. 5 represents a set of constraints that denote
the set of inconsistent services that must not be
simultaneously assigned to the same decoy machine.
This equation constrains assignment of services of
a type Sk on a honeypot depending on the service
of type Sj that is assigned to it. For example, if for
a decoy machine, P i,1 = Linux, then P i,80 6= IIS,
because IIS is a Windows service.

Appealing Design: The honeypot design is
appealing when it includes a diverse set of services
for engaging different types of attackers with
different techniques or agenda and sufficiently high
vulnerability to provide an incentive for attackers to
engage. For every service r (e.g., Windows, Linux,
IIS), Eq. 6 sets Qr to the number of occurrences of
r in all honeypots over the total number of services
in all honeypots. Thus, Qr denotes the occurrence
ratio of service r. Then, Eq. 7 calculates Simpson
index and puts a lower bound threshold, denoted
as Φ, on it to ensure that the overall set of services
assigned to all honeypots is highly diverse.

To ensure sufficiently high - but not
unrealistically high - vulnerability, we assume
the input value γr denotes the vulnerability score
of service r, which is calculated based on the Lai
and Hsia’s model [22]. Eq. 8 sets variable Γi,j to
the vulnerability score of the service assigned to it.
Then, Eq. 9 determines the average vulnerability
score of a decoy machine i. This is denoted as
Γi. Finally, Eq. 10 ensures that the expected
vulnerability score of each decoy machine is within
the acceptable bounds denoted by [γmin, γmax].

Compliance with service-level agreement:
The expected traffic rate between customer and
provider networks must respect SLA. To model this,
the HaaS provider assigns an expected flow rate
for each service class Sj , which is denoted as δj .
Given the agreed-upon aggregate traffic threshold,
denoted as ∆ and expected flow rates for each
service (δj), Eq. 11 ensures that the aggregate
expected rate to the HaaS network remains close
to the threshold, ∆.

5. Evaluation

In this section, we present our results on evaluating
effectiveness of honeypots that are designed by the
HaaS model.

[Maximizing Number of Honeypots]

Li ↔ (
∨
j

(P i,j 6= ∅)) (1)

∑
i

Li = (m− n) (2)

[Plausible Design]

Li ↔ (P i,1 6= ∅) (3)

lmin ≤

(
∑
j

(P i,j 6= ∅)

 ≤ lmax (4)

(Pi,j = p)→ (Pi,k 6= q) (5)

[Appealing Design]

[Service Diversity]

Qr =

∑
i,j(P i,j = r)∑
i,j(P i,j 6= ∅)

(6)

(S =
∑
i

Q2
i ) ≥ Φ (7)

[High Vulnerability]

(P i,j = r)→ (Γi,j = γr) (8)

Γi = (
∑
j

Γi,j)/(
∑
j

(P i,j 6= ∅)) (9)

γmin ≤ Γi ≤ γmax (10)

[SLA Compliance]

∆− ε ≤

∑
i,j

δj · (P i,j 6= ∅)

 ≤ ∆ + ε (11)

5.1. PoC Implementation

We deployed a proof-of-concept (POC)
implementation of the model in a testbed network.
VLAN settings on switch was used to divide the
network into three logical parts: (1) customer
network, (2) HaaS network, and (3) user network.
The HaaS gateway has three interfaces, each
configured for one of the networks. HaaS gateway
is implemented on a Debian platform and has three
main components: farp daemon, iptables, and
a Planner script. The gateway manages all the
traffic between the external network and customer
and honeypot cloud networks. A farpd daemon on
the gateway enables the gateway to receive all the
traffic, destined to customer and HaaS networks.
The gateway acts as 1 : 1 NAT server, which is
implemented by adding DNAT and SNAT rules to
iptables. These DNAT and SNAT rules are inserted

Page 1840



by Planner. The planner is, in fact, a bash script
which is executed periodically using a cronjob

daemon. In each run, the planner script performs
two specific operations. Firstly, it determines a
new address mapping for all production hosts and
honeypots. Secondly, it flushes all rules in nat

table, and insert the new NATing rules into it
based on the new mapping.

5.2. Effectiveness

We conducted our evaluation of the effectiveness
of the HaaS model planning in two phases: first,
we performed a small-scale evaluation with subject
matter experts; and then, we generalized the results
from the first stage in an analytical framework to
evaluate the HaaS model effectiveness for large-scale
scenarios.
Small-Scale Evaluation with Human
Subjects. Using our Proof-of-concept
implementation, we created a network with a
class C address space, consisting of following host
types.

• Real: 20 VMs were designated as real hosts.

• Low-interaction: 5 low-interaction virtual
honeypots. These honeypots were created using
honeyd [1].

• Poorly-designed: 5 high-interaction honeypots
with implausible (unbelievable) platforms and
services; these honeypots included services
that were either outdated (Windows XP),
too vulnerable (an unpatchedPrint Spooler

service), or too different (Plex Media Server)
in the context of the network.

• Misconfigured: 5 proxy honeypots that were
designed using our planner, but services had
weak configurations (FTP server that allows
anonymous users), and dummy data (Web app
included only a few HTML files or FTP server
that hosted text files with dummy contents).

• HaaS: 5 proxy honeypots that were designed
using our planner, and configured properly.
These proxy honeypots were generated as
redirection to 3 VMs that included services
from several classes, including FTP servers,
SSH servers, sharing services (SMB), Web
Servers, DNS servers, and mail servers, hosted
on different versions of Windows and Linux

operating systems.

Six security experts with similar hands-on
experience in penetration testing were recruited to

this aim. Participants were asked to determine
for each of the 40 hosts in the address space
if each one is real or honeypot. The
participants could use any tools or script to
probe machines in order to determine whether the
machine is real or emulated; whether the machine
OS and remotely-accessible services have versions
and vulnerability levels that are believable (e.g.,
not outdated); whether applications (e.g., Web
app) and their configuration (e.g., SSH credentials)
look real (not too vulnerable); and also whether
accessible applications’ contents look realistic.

In addition, for each host participants
announced the amount of time they spent on
reaching their decision, in addition to justifying
their choices. The number and distribution of real
and different honeypot types were not disclosed to
participants.

Figure 4 shows the number of honeypots from
each type that were correctly distinguished by
participants for different honeypot configuration
scenarios. For each scenario, the figure shows the
minimum and the maximum number of detected
honeypots among all experts as well as the averages
and median of reported times. Accordingly, Figure
5 shows the times that participants announced
to have spent on distinguishing each honeypot
type (whether correctly or incorrectly); and finally
Figure 6 shows the probabilities of missing a
honeypot for each scenario.

Note that on average, each participant correctly
identified low-interaction honeypots in an average
time of 6 minutes for each honeypot, with a
mean miss probability of 0.07. For poorly-designed
type, note that on average almost 3 out of
5 honeypots were distinguished correctly by
participants, resulting in a miss probability of 0.21.
Also, probing time increased to 33 minutes, because
participants needed more probes and fingerprinting
in order to make their decisions. For most correct
identifications, participants’ justified their choice by
marking services that they found unexpected, either
because they included platforms/services that were
too outdated, too vulnerable, or “unrealistic” to be
executed by a production host.

For misconfigured type, on average slightly
less than 2 hosts were correctly identified by
participants, resulting in a miss probability
of 0.56, and probing time of 43 minutes.
Based on participants’ reports, correct cases
were identified by distinguishing (1) meaningless
and dummy contents and (2) unrealistically-weak
configurations.

Page 1841



low poorly-designed misconfigured HaaS
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

n
u
m

b
e
r 

o
f 
d
e
te

c
te

d
 h

o
n
e
y
p
o
ts

max

mean

median

min

Figure 4. No. of distinguished

honeypot based on type

low poorly-designedmisconfigured HaaS
0

10

20

30

40

50

60

70

ti
m

e
 t
o
 d

is
ti
n
g
u
is

h
 a

 h
o
n
e
y
p
o
t 
(m

in
)

max

mean

median

min

Figure 5. Time to distinguish

honeypots based on type

low poorly-designedmisconfigured HaaS
0

0.2

0.4

0.6

0.8

1

p
ro

b
a
b
ili

ty
 o

f 
m

is
s
in

g
 a

 h
o
n
e
y
p
o
t

max

mean

median

min

Figure 6. Prob. of missing a

honeypot based on type

20 40 60 80 100
no. of honeypots

0

20

40

60

80

100

120

140

160

d
e
te

rr
e
n
c
e
 t
im

e
 (

h
o
u
r)

max

mean

median

min

Figure 7. Deterrence in attack

completion time

100 200 400 600 800 1000
0

2

4

6

8

10

12

14

16

18
x 10

4

no. of honeypots

h
o

s
ti
n

g
, 

m
a

in
te

n
a

n
c
e

, 
a

n
d

 c
o

n
fi
g

. 
c
o

s
t 

($
)

 

 

insourcing

centralized outsourcing

HaaS outsourcing

Figure 8. Expected cost for various

honeypot deployment models

256 512 1024 2048 256 512 1024
0

100

200

300

400

500

No. of available addresses (m)

ti
m

e
 (

m
in

)

 

 

n = 20, ∆ = 1.0, p = 20
n = 50, ∆ = 1.0, p = 20
n = 50, ∆ = 1.0, p = 50
n = 50, ∆ = 2.0, p = 20

Figure 9. Planning overhead for

various scenarios

For the HaaS type, the results were promising.
Participants, on average, identified less than 1
honeypot correctly, resulting in a miss probability
of 0.75. Probing, on average, required 57
minutes, which was higher than all other cases.
This significant miss probability proves that our
honeypots are indeed effective in providing a
deception that is plausible even to elite attackers.

Large-Scale Evaluation using Simulation.
Building on these experimental results with human
subjects, we used simulation to understand the
effect of our model on prolonging network attacks.
We simulated the following well-known network
scanning threat model: assume a network is
populated with 20 real hosts, and h honeypots of
different types. An attacker is stealthily attempting
to compromise network hosts in the address space.
To this aim, they (1) first attempts to distinguish
honeypots from real hosts and blacklist them, and
(2) then attempts to compromise those hosts they
identified as real.

Assuming the experimental miss probability,
and assuming an attacking time of 60 minutes to
compromise a real host, we simulated the time that
a skilled attacker would need in order to attack
all real hosts in the network. This deterrence
emanates from the fact that the attacker would
not be able to distinguish a HaaS honeypot from
a real system, thus squandering their time on
attacking them. Figure 7 shows how long such

attacker is deterred in scenarios with different
honeypot types and numbers. Firstly, note that
for a network with 20 production hosts, deploying
20 low-interaction honeypots would only deter a
skilled attacker for 4 extra hours. Even deploying
100 such honeypots do not slow down the attack
more than 18 hours. In reality, we expect this
time to be much lower, because emulated services
on low-interaction honeypots are very limited in
number and type, and as the attacker’s experience
increases, identifying low-interaction honeypots
becomes very straightforward.

Secondly, deploying 20 effective honeypots can
slow down attack up to 32 hours. In contrast,
this number increases to 159 hours for 100 effective
honeypots. This 5-times increase is linear with the
5-times increase in the number of honeypots. This
suggests that the increase in attack’s completion
time is linear to the number of honeypots. However,
there is an upper limit on the number of honeypots
that could be deployed in any given subnet, which
is determined by the number of available (unused)
IP addresses in the address ranges assigned and
routed to that subnet. Given the limited availability
of addresses in IPv4 address family, this upper
bound could limit the applicability of the HaaS
model. While the number of available addresses
is considered as an input to the HaaS planning
formulation, more investigation is required to
understand the effect of this on achieving desired

Page 1842



10 20 30 40 50 60 70 80 90 100
flow number

0

0.5

1

1.5

2

2.5

3

3.5

la
te

n
c
y
 (

s
e
c
)

local ICMP
redirected ICMP
local HTTP, simple
redirected HTTP, simple
local HTTP, complex
redirected HTTP, complex

Figure 10. Comparing RTT for

local and redirected flows

0 2 4 6 8 10
0

50

100

150

200

250

300

traffic rate to HaaS provider (Mbps)

e
x
p

e
c
te

d
 m

a
x
im

u
m

 t
h

ro
u

g
h

p
u

t 
(M

b
p

s
)

 

 

44.210 Mbps (T3)

100 Mbps

200 Mbps

300 Mbps

Figure 11. Network throughput for

various traffic rates

10 20 30 40 50 60
0

20

40

60

80

100

120

time (min)

n
o

. 
o

f 
D

N
S

 q
u

e
ri
e

s

 

 

Tm = 5 m

Tm = 15 m

Tm = 30 m

Figure 12. No. of DNS queries for

various mutation intervals

effectiveness in scenarios with a very limited number
of available addresses.

5.3. Overhead

In this section, we evaluate the primary overheads
of the HaaS model.
Deployment Cost. Deploying effective honeypots
incurs high cost in terms of hosting, design,
and maintenance. Figure 8 provides an average
estimation of deployment costs for three models: (1)
insourcing honeypot deployment inside a customer’s
network; (2) outsourcing honeypots to a centralized
provider but without proxy honeypots, honeyfarm
[9], and (3) outsourcing to a HaaS provider. The
following assumptions are made for deriving these
estimations: 1000$ per each hardware machine, a
yearly cost of 1000$ for maintaining each machine,
where each machine has the capability of hosting
10 VMs, and each service are shared only with 5
customers, and each honeypot includes 4 services
on average. Compared to the insourcing model,
both centralized deployment and the HaaS model
are more affordable. However, since the HaaS model
shares honeypot services among customer networks,
the overall cost of deployment is considerably less
than the centralized model.
Planning Overhead. We use the Z3 SMT
solver [3] on a Quad Core processor (3.3GHz, 8M

cache) and 16GB DDR3 RAM. Figure 9 shows the
required time for solving the SMT instance, given
various settings and network sizes. For all tested
scenarios, unless stated otherwise, the model is
solved for a network with n = 20 hosts, p = 20
ports, and ∆ = 1 Mbps admissible traffic rate to the
HaaS provider network. Firstly, note the running
time is still affordable even for fairly large network
sizes, especially since the SMT instance is only
solved once. Secondly, note that the running time
is exponential with regard to the address space size,
m. Also, the number of considered service classes
(p) has a significant effect on running time. This

is because the running time of the SMT instance
largely depends on the number of variables, which
in our model is of order θ(m · p). The number
of production hosts (n) has a negligible effect on
running time.

Latency and Throughput. Figure 10 shows the
round-trip time (RTT) of ICMP and TCP flows for
both local (customer) and remote (HaaS provider)
networks. This RTT includes propagation, queuing,
processing and other delays at routers and end
hosts. Simple TCP flows are basically HTTP
requests to retrieve a simple HTML file from a
Apache Web server. In contrast, complex TCP
flows denote HTTP requests to a database-backed
PHP application that requires non-trivial processing.
As shown in the Figure, RTT of flows that are
redirected to the HaaS provider network is slightly
higher than that of local flows. This difference
becomes less noticeable for HTTP flows. To
disallow latency analysis to differentiate proxy
honeypots from real hosts, HaaS gateway will
include a latency emulator module which buffers
outgoing packets of randomly chosen flows (in
our example, ≤ 20%) for a short period of
time (in our example, between 100 − 200 msec).
Assuming an average latency of 150 msec for 20%
of production flows, Figure 11 shows the expected
maximum throughput that is achieved for networks
with various bandwidths and traffic rates to HaaS
provider network.

DNS Overhead. When the address of a
host is mutated, the new IP address must be
reflected in DNS responses that are issued by
the authoritative DNS of that host. Since TTL
values of DNS queries are small, the authoritative
DNS has to handle more DNS queries. Using
our PoC testbed, we measured the DNS overhead
for mutation intervals of 5, 15, and 30 minutes.
Figure 12 shows the number of queries destined
to the authoritative DNS of a HaaS-protected
network with 20 externally-reachable server and

Page 1843



1, 000 clients. The average inter-arrival time for
the requests made by each client is 5 seconds. In
the Figure, note that higher mutation rates result
in a higher number of DNS queries. This clearly
represents the trade-off between the benefit that is
achieved as a result of faster mutations, and the cost
of handling a larger number of DNS queries.

6. Conclusion

In this paper, we presented honeypot-as-a-service
(HaaS) model, a proactive security paradigm which
aims to make honeypots both effective against
skilled attackers, and affordable by enterprises. To
this aim, we defined and formulated the problem
of designing and configuring effective honeypots,
and offered architecture, communication protocols
and implementation guidelines for realizing the
HaaS model. Our evaluation shows that honeypots
generated by HaaS honeypots were misidentified as
real production hosts with a likelihood of almost
80%; and for some investigated scenarios our model
results in prolonging attacks for up to 160 hours.

References

[1] Niels Provos et al. A virtual honeypot framework.
In USENIX Security Symposium, volume 173,
2004.

[2] Xuxian Jiang and Xinyuan Wang. out-of-the-box
monitoring of vm-based high-interaction
honeypots. In Recent Advances in Intrusion
Detection, pages 198–218. Springer, 2007.

[3] Microsoft. Z3: An Efficient Theorem Prover,
2012. http://research.microsoft.com/en-us/
um/redmond/projects/z3/.

[4] Tomas Sochor and Matej Zuzcak. Study of internet
threats and attack methods using honeypots and
honeynets. In Computer Networks, pages 118–127.
Springer, 2014.

[5] Xinwen Fu, Wei Yu, Dan Cheng, Xuejun Tan,
Kevin Streff, and Steve Graham. On recognizing
virtual honeypots and countermeasures. In
Dependable, Autonomic and Secure Computing,
2nd IEEE International Symposium on, pages
211–218. IEEE, 2006.

[6] Xinyuan Zhang and Lianqing Zheng. Delude
remote operating system (os) scan by honeyd.
In Computer Science and Engineering, 2009.
WCSE’09. Second International Workshop on,
volume 2, pages 503–506. IEEE, 2009.

[7] Kyi Lin Lin Kyaw. Hybrid honeypot system
for network security. International Journal of
Computer, Electrical, Automation, Control and
Information Engineering, 2(12):4085–4089, 2008.

[8] Lance Spitzner. Honeypot farms, 2003.

[9] Xuxian Jiang, Dongyan Xu, and Yi-Min Wang.
Collapsar: A VM-based honeyfarm and reverse
honeyfarm architecture for network attack capture

and detention. Journal of Parallel and Distributed
Computing, 66(9):1165–1180, 2006.

[10] Pragya Jain and Anjali Sardana. Defending
against internet worms using honeyfarm.
In Proceedings of the CUBE International
Information Technology Conference, pages
795–800. ACM, 2012.

[11] Pragya Jain and Anjali Sardana. A hybrid
honeyfarm based technique for defense against
worm attacks. In 2011 World Congress on
Information and Communication Technologies,
pages 1084–1089. IEEE, 2011.

[12] F Pouget, M Dacier, VH Pham, et al. On the
advantages of deploying a large scale distributed
honeypot platform. In proceedings of the e-crime
and computer evidence conference, 2005.

[13] Jakub Safarik, MIroslav Voznak, Filip Rezac, Pavol
Partila, and Karel Tomala. Automatic analysis
of attack data from distributed honeypot network.
In Mobile Multimedia/Image Processing, Security,
and Applications 2013, volume 8755, page 875512.
International Society for Optics and Photonics,
2013.

[14] Rahmat Budiarto, Azman Samsudin, Chuah Wee
Heong, and Salah Noori. Honeypots: why we
need a dynamics honeypots? In Information and
Communication Technologies: From Theory
to Applications, 2004. Proceedings. 2004
International Conference on, pages 565–566.
IEEE, 2004.

[15] Daniel Fraunholz, Marc Zimmermann, and Hans D
Schotten. An adaptive honeypot configuration,
deployment and maintenance strategy. In 2017
19th International Conference on Advanced
Communication Technology (ICACT), pages
53–57. IEEE, 2017.

[16] Iyad Kuwatly, Malek Sraj, Zaid Al Masri, and
Hassan Artail. A dynamic honeypot design for
intrusion detection. In Pervasive Services, 2004.
ICPS 2004. IEEE/ACS International Conference
on, pages 95–104. IEEE, 2004.

[17] Christopher Hecker, Kara L Nance, and Brian
Hay. Dynamic honeypot construction. In
10th Colloquium for Information Systems Security
Education, University of Maryland, USA. Citeseer,
2006.

[18] Fiorella De Rosis, Valeria Carofiglio, Giuseppe
Grassano, and Cristiano Castelfranchi. Can
computers deliberately deceive? Computational
Intelligence, 19(3):235–263, 2003.

[19] Neil C Rowe. A model of deception during
cyber-attacks on information systems. In
Multi-Agent Security and Survivability, 2004 IEEE
First Symposium on, pages 21–30. IEEE, 2004.

[20] Vinod Yegneswaran and Chris Alfeld.
Camouflaging honeynets. In In Proceedings
of IEEE Global Internet Symposium, 2007.

[21] Neil C Rowe. Counterplanning deceptions
to foil cyber-attack plans. In Information
Assurance Workshop, 2003. IEEE Systems, Man
and Cybernetics Society, pages 203–210. IEEE,
2003.

[22] Yeu-Pong Lai and Po-Lun Hsia. Using the
vulnerability information of computer systems
to improve the network security. Computer
Communications, 30(9):2032–2047, 2007.

Page 1844


