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ABSTRACT
Potentially habitable planets within the habitable zone of M-dwarfs are affected by
tidal interaction. We studied the tidal evolution in GJ 667C using a numerical code
we call TIDEV. We reviewed the problem of the dynamical evolution focusing on the
effects that a rheological treatment, different compositions and the inclusion of orbital
perturbations, have on the spin-down time and the probability to be trapped in a
low spin-orbit resonance. Composition have a noticiable effect on the spin-down time,
changing, in some cases, by almost a factor of 2 with respect to the value estimated
for a reference Earth-like model. We calculated the time to reach a low resonance
value (3:2) for the configuration of 6 planets. Capture probabilities are affected when
assuming different compositions and eccentricities variations. We chose planets b and
c to evaluate the probabilities of capture in resonances below 5:2 for two compositions:
Earth-like and Waterworld planets. We found that perturbations, although having
a secular effect on eccentricities, have a low impact on capture probabilities and
nothing on spin-down times. The implications of the eccentricity variations and actual
habitability of the GJ 667C system are discussed.

Key words: Planet-star interactions - Planets and satellites: dynamical evolution,
individual: GJ 667C.

1 INTRODUCTION

Finding a habitable Earth-like planet has become the holy
grail of exoplanetary research. Planetary habitability is a
complex property constrained by factors ranging from stel-
lar insolation and the characteristics of planetary atmo-
sphere to interior structure, magnetic field strength and rate
and direction of planetary rotation (Lammer et al. 2010).

The evaluation of a few of these factors on true exo-
planets is relatively straight forward (e.g. stellar insolation
or planetary gravity), but others (e.g. planetary magnetic
fields and rotation), remain elusive and are still a matter
of investigation (Zuluaga & Cuartas 2012; Zuluaga et al.
2013).

In the case of low mass stars (M-dwarfs or dMs), the
Habitable Zone (HZ) is close to the star. Under this condi-
tion, tidal interactions can be modeled to estimate the final
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rotational state of nearby planets. From there, it is possi-
ble to constrain other properties that depend on rotation,
which could affect habitability, like intrinsic magnetic fields
(Zuluaga & Cuartas 2012; Zuluaga et al. 2013).

Spin-orbit evolution of Earth-like exoplanets and super-
Earths, like planets in the GJ 667C system, have been a
matter of research in the last couple of years (Heller et al.
2011; Rodŕıguez et al. 2012; Callegari & Rodŕıguez 2013;
Anglada-Escudé et al. 2013). Most of these approaches have
used a traditional tidal formalism where torques are fre-
quency independent, neglecting the complexity of plane-
tary rheology (Correia et al. 2008; Ferraz-Mello et al. 2008;
Leconte et al. 2010).

The dependence on the rheology remains an open dis-
cussion. Recently, Ferraz-Mello (2013) and Correia et al.
(2014) reviewed the problem of the tidal torque; they found
that for rocky bodies, independent of the eccentricity, the
stationary rotation is close to the resonance. The second
work by Correia et al. (2014) assumes a Maxwell’s classic
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viscoelastic rheology to calculate the body deformation and
applies their model to already discovered super-Earths. For
this kind of planets, they found that the rotation stops tem-
porarily in synchronous resonances during the spin-orbit
evolution. Eventually, these stationary stages are crossed
as long as the eccentricity decreases. They suggest that in
the presence of other planets in the system, high order res-
onances could remain during all the planetary evolution.
They conclude that close-in Earth-like planets could be cap-
tured in non-synchronous spin-orbit resonances.

On the other hand, another approach to the prob-
lem was developed and applied successfully by Efroimsky,
Makarov & Williams in their works (Efroimsky & Williams
2009; Makarov & Efroimsky 2013; Efroimsky 2012; Makarov
2012; Williams & Efroimsky 2012; Makarov & Berghea
2014; Makarov 2015). This model, based on the seed work by
Darwin (1879) and developed later by Kaula (1964), treats
realistically the dependency on rheology, and hence, on fre-
quency of the tidal torque.

In this work we applied the Efroimsky-Makarov-
Williams treatment (hereafter EMW) included numerically
in a package developed by ourselves that we call Tidal Evo-
lution Package - TIDEV, to analize the tidal interactions
and spin-orbit evolution in the GJ 667C planetary sys-
tem. Although Makarov & Berghea (2014) recently applied
the same formalism to study this planetary system, their
approach neglected the possible existence of other plan-
ets around GJ 667C, announced by Anglada-Escudé et al.
(2013). We analyzed three possible configurations for the
planetary system, including the possible configuration of
2 and 3 planets, recently announced by Feroz & Hobson
(2014). For our study purposes, we used the main physical
and orbital parameters of the system that has been updated
by Anglada-Escudé et al. (2013) (see Table 1).

Regarding numerical codes devoted to the evolution of
tides in compact planetary systems, the recent work of Bol-
mont et al. (2015) proposes a tool based on the well-known
code Mercury, to which they have added the equations of
tidal torque and other aspects as the relativistic effects and
the deformation of the bodies. They have named their code
Mercury-T. This work includes a classic treatment of the
tidal evolution problem using a model of constant delay
(constant lag) without averaged equations, which allows
them to calculate the crossings through resonances and the
probabilities of tidal locking. Nevertheless, they do not in-
clude the gravitational interaction between other possible
members of the system. In Section 4, we do a more detailed
comparison with our own code of tidal evolution.

Our aim in this work is to study the impact that plan-
etary composition could have on the tidal evolution of a
multiplanetary system and its final rotational state, regard-
less of the number of members of the system. In the case of
GJ 667C, being a dynamically-packed system, the effect of
orbital perturbations could also be important when study-
ing the tidal interaction and its evolution. Here, we present
and apply the EMW approach and include the effect of
secular perturbations in the integration of tidal evolution
equations using TIDEV, that includes the tidal equations
proposed mainly in the works by Efroimsky & Williams
(2009), Efroimsky (2012), Makarov & Efroimsky (2013) and
Efroimsky & Makarov (2013).

This paper is organized as follows: Section 2 describes

the main properties of the GJ 667C system including a com-
plete analysis of the secular evolution of three different con-
figurations: 2, 3 and 6 planets. In section 3 we describe
the basic theory and formalism of tidal torque proposed by
EMW. Section 4 explains our theoretical model, our numer-
ical experiments and the analysis of the effect of the other
members of the planetary system over the dynamical evo-
lution of planets b and c. Section 5 shows our main results.
Finally, in Section 6 we discuss the results and talk about
the actual habitability of GJ 667C.

2 THE GJ 667C SYSTEM

GJ 667C is a M1.5V, 0.33 M� member of a triple stellar
system, located at 6.8 pc from the Earth in the direction of
Scorpius. The star is in a wide orbit ∼ 230 AU away from
the center of mass of two close packed companions, GJ 667A
and GJ 667B (Anglada-Escudé et al. 2013). Spectroscopic
studies suggest that the main binary members (AB) are
main sequence stars with an estimated age larger than 2
Gyr (Cayrel de Strobel 1981). Independently, the present-
day measured rotational period of GJ 667C (∼ 100 days)
and its signals of chromospheric activity points out to an
age ∼8 Gyr (Anglada-Escudé et al. 2013).

The GJ 667 system has recently been a cause of de-
bate because of the actual number of planets orbiting the
C star. Lately, It has been shown that this planetary sys-
tem has at least two planets, one of them (planet c) within
the HZ (Anglada-Escudé et al. 2012, 2013; Feroz & Hob-
son 2014). The configuration proposed by Anglada-Escudé
et al. (2013) is 6 planets closely packed in orbits with semi-
major axes between 0.05 and 0.5 AU. Table 1 summarizes
the basic physical and orbital properties of the system as re-
ported by Anglada-Escudé et al. (2013). In their work, they
propose the possible existence of a seventh planet with an
orbit among the already announced members. The observed
mass of the planets, between 1.94-5.94 M⊕, locate them in
the mass range of super-Earths. However, and according
to Kepler’s most recent results, there is a significant chance
that at least the more massive members of the system could
actually be mini Neptunes, volatile rich planets (Benneke &
Seager 2013). Planetary formation theories suggest that this
kind of planets could be water rich and hence, if solid, true
Waterworlds (Kaltenegger et al. 2013).

On the other hand, a more recent work by Feroz & Hob-
son (2014) proposed a more simple configuration including
only two planets, both confirmed using a bayesian analysis
of the radial velocity observations. In the same work they
propose the possibility of a third signal (another planet)
with a period of 91 d. We include this possibility as a true
planet.

For our purpose, the three possible configurations are
suitable to be anlyzed dynamically. Our aim is to under-
stand the spin-orbit evolution of a closely packed planetary
system, regardless of the existing number of planets. We
have a special interest on the GJ 667C system due to the
potential habitability of planet c.

The inclusion of secular perturbations in the integra-
tion of tidal evolution was introduced by Lagrange and
Laplace in the XVIII century. This technique has been
widely used to study the stability of the Solar System (e.g.,
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Table 1. Astrocentric orbital elements and bulk properties for the configuration of 6 planets in GJ 667C System used in this work.

The main values for period, semimajor axe and mass are adopted from Anglada-Escudé et al. (2013). Values for mean, min and max

excentricities are results from our model of the dynamical evolution of the system. Radius, in the last column, is estimated by using an
interior structure model assuming two extreme compositions: an Earth-like and a Waterworld-like planet. For composition parameters

see Table 2.

Planet P (d) a(AU) e emin emax ω M0 Msini(M⊕) R(R⊕)

b 7.2006 0.05043 0.08118 0.04152 0.11711 4.97 209.18 5.94 1.6 - 1.9

c 28.1231 0.12507 0.02248 0.00006 0.04806 101.38 154.86 3.86 1.4 - 1.6
f 39.0817 0.15575 0.04220 0.00023 0.07449 77.73 339.39 1.94 1.2 - 1.3

e 62.2657 0.21246 0.02297 0.00002 0.04809 317.43 11.32 2.68 1.3 - 1.4

d 92.0926 0.27580 0.04244 0.00016 0.08145 126.05 243.43 5.21 1.6 - 1.8
g 251.519 0.53888 0.10533 0.09696 0.11349 339.48 196.53 4.41 1.5 - 1.7

Laskar 1988). The combination of the orbital forcing with
tidal effects was also explored in the specific cases of Venus
and Mercury by Correia & Laskar 2001, 2004 respectively.
This method was also applied to exoplanets, first analyti-
cally by Wu & Goldreich (2002), Mardling (2007), Batygin
et al. (2009), Laskar et al. (2012), and after by performing
numerical simulations in Correia et al. (2010) and Bonfils
et al. (2013).

In order to study the detailed evolution of the orbital
parameters, we have performed numerical simulations of
the system for three possible configurations, spanning a to-
tal time of 50,000 years. In all cases, we will assume that
the inclination of the planetary system, with respect to us,
is ∼ 90o; hence, the observed minimum masses are also
the actual planetary masses. In addition, we are using the
barycentric coordinates of the system. Figure 1 shows the
evolution of eccentricities in one of our simulations for the
three configurations. These results show that the dynamic of
the system is essentially governed by secular perturbations,
i.e. the semi-major axes and eccentricities remain varying
between a small range of values throughout all the evolution
of the orbits.

However, in the case of 6 planets, 4 of them appear
strongly correlated by pairs, d and f , and c and e. This is
evident in the ranges of eccentricities and the average value
e showed in Table 1.

The 6-planets configuration, is so dynamically packed
that orbital eccentricities oscillate, in some cases, within
almost one order of magnitude (see Table 1). Planets b and
g are the most eccentric, with upper eb = 0.11711 and eg =
0.11349 respectively. Planets like b and d perform the largest
eccentricity excursions, eb ≈ 0.04152 − 0.11711 and ed ≈
0.00016− 0.08145.

In order to introduce the effect of secular perturbations
in the tidal evolution equations (see Section 3), we need
to estimate the derivative of the eccentricity (de/dt)pert at
any time for each planetary component. For that purpose,
we first calculated the Lomb-Scargle periodogram of the
numerical eccentricities for the chosen configurations of the
system with: 2, 3 and 6 planets, and identified the periods
with the largest power (Lomb 1976; Zechmeister & Kürster
2009) for the 6-planets configuration. Our results, in this
case, are in good agreement with the analytical approach
made by Anglada-Escudé et al. 2013.

Using the principal modes, we reconstructed analyti-
cally the eccentricity and its derivative. Figure 1 also dis-
plays the evolution of eccentricity and its derivative as re-

constructed analytically with this procedure for the three
configurations.

The analysis of the spectral density, realised by means
of Lomb-Scargle’s periodograms, indicate that the fluctu-
ations in the eccentricity are periodic and are dominated
only by a main mode. On the basis of the parameters in
table 6 in Anglada-Escudé et al. (2013), and using the same
symplectic integration package (HNBody), and equal pa-
rameters for the simulation, we performed the numerical
integration of the system to obtain the instantaneous value
of the eccentricity of each planet. After a Fourier decompo-
sition, we found an analytical expression that will be used
later on the tidal evolution package.

3 TIDAL EVOLUTION

Rotational properties of planets and moons (axial tilt and
period of rotation) are affected by their tidal interaction
with other bodies. In general, these interactions produce a
net torque T that modifies the rotational properties and
determines their final equilibrium values. In this work, we
assume that the obliquity of the planets in the system is
zero. This assumption is not true, because the tilt evolution
(tilt erosion) is simultaneous to the spin-orbit evolution. We
leave aside this process, but a tilt erosion model is needed
for this system.

We calculated the instantaneous rotational rate Ω =
θ̇, if the net torque resulting from the tidal interaction is
known, by solving the equation (see Danby 1962):

dΩ

dt
=
T
C
, (1)

Where C is the moment of inertia around the shortest
axis of what will be in general a triaxial body. C can be (in
general) written as:

C = CMpR
2 (2)

The net torque on a rotating body experiencing tidal
interaction with a perturber, has in general two contribu-
tions: 1) the triaxial torque that results when the planet
has a triaxial shape and, 2) the tidal torque arising di-
rectly from the strength on the bulge rose by the perturber.

c© 2002 RAS, MNRAS 000, 1–??
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Figure 1. Evolution of eccentricity for GJ 667C system. Three

different configurations are showing: 2, 3 and 6 planets. The
colored curves corresponds to the evolution of eccentricity ob-

tained by numerical integration for each planet. The inner curve

in black, inside each colored curve, corresponds to the eccentric-
ity evolution reconstructed semi-analytically for each planet.

3.1 The Triaxial Torque

Triaxiality is mainly due to the inhomogeneous distribution
of mass in a rotating body, as well as the presence of geolog-
ical features over the surface. These induce a triaxial shape
in the bodies.

Triaxiality is measured in terms of the three principal
moments of inertia A,B and C where A < B < C and C is
in general given by Eq. (2). The triaxial torque depends on
the level of triaxiality as measured by the difference B −A
and it is given in terms of the angle between the sideral
direction of the bulge θ and the true anomaly ν, ψ = θ− ν.
The classic mechanics expression for this torque could be
found in Danby (1962) and Goldreich & Peale (1966),

Ttri =
3

2
(B −A)

GM

r3
sin 2ψ

≈ −3

2
(B −A)n2 a

3

r3
sin 2(θ − ν),

(3)

Here r is the instantaneous distance between the cen-
tres of the two bodies.

3.2 The Tidal Torque

In the simplest case of a body with radius R, interacting
with a tide-rising perturber of mass M located at an aver-
age distance a, the tidal torque is given by the MacDonald
(MD) formula (MacDonald 1964; Goldreich 1966; Murray
& Dermott 1999):

Ttid =
3

2
GM2R

5

a6
k2 sin 2|εg|Sgn(εg), (4)

where εg ≡ (ν̇−θ̇)∆t is the instantaneous geometric lag,
i.e. the angle between the direction of the most elongated
part of the planet and the line joining the center of the
bodies (see figure 4 in Makarov et al. 2012) and ∆t is a
constant time lag. Here ν is the orbital true anomaly of the
perturber and θ is the sideral angle of the planet measured
with respect to the line of apsides.

We observe how the tidal torque strongly depends on
the average distance between the bodies Ttid ∼ 1

a6
. For close

planets, such as those found around GJ 667C, this effect is
proven able to erode any initial rotation period and bring
the planet to a low spin-orbit resonance. The timescale for
such spin-down from an initial rotation rate Ωo, will be
given by the expression from Gladman et al. (1996):

tlock =
ΩoC

τtid
=

2ΩoCa
6Q

3GM2R5k2
, (5)

where Q is called the quality factor, which is a specific
energy dissipation function. For a rapidly rotating planet
Q ≈ 1/ sin 2|εg| (Murray & Dermott 1999).

In a more general case, the tidal torque is obtained from
a Fourier expansion of the tide-rising potential that was first
developed by Darwin (1879), and more recently updated by
Kaula (1964). We called this formalism the Darwin-Kaula
(DK) expansion. The Fourier modes, over which this expan-
sion is carried out, are called the tidal modes (Efroimsky &
Makarov 2013),

c© 2002 RAS, MNRAS 000, 1–??
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ωlmpq ≈ (l − 2p+ q)n−mθ̇, (6)

where lmpq are the integers of the Fourier expansion.
Here l and m are the degree and order of the expansion re-
spectively, θ̇ is the instantaneous rotation rate of the body
and n is the average orbital angular velocity or the mean
motion. The DK expansion of the potential provides a rig-
orous expression for the tidal torque (see equations (109)
to (111) in Efroimsky 2012). The resulting expression has
two main components: an oscillating component that it is
averaged out over an orbit, and a secular component whose
average is given by Equation (13) in Makarov & Efroimsky
2013,

〈Ttid〉 = 2GM2
∞∑
l=2

R2l+1

a2l+2

l∑
m=0

(l −m)!

(l +m)!
m ×

l∑
p=0

F 2
lmp(i)

∞∑
q=−∞

G2
lpq(e)kl sin εl.

(7)

Here Flmp(i) and Glpq(e) are known as the inclination
and eccentricity functions respectively (Kaula 1961). The
most important feature of the DK formula for the tidal
torque, in contrast to the MD formula in Eq. (4), is the
general dependence on frequency of the love number kl,
the phase lag εl = ωlmpq∆tl(ωlmpq) and the positive def-
inite time lag ∆tl(ωlmpq). This dependence on frequency is
key when treating realistically the rheological properties of
planets and moons.

If the bodies are not too close (R/a << 1), eccentricity
does not exceed e ∼ 0.3 and we assume a small obliquity
i ≈ 0, then we can truncate the DK torque in Eq. (7),
leaving only the term l = 2, and q = −7, ·, 7. This gives us
an approximate expression that we will hereafter call the
EMW formula,

〈Ttid〉 =
3

2
GM2R

5

a6
×

7∑
q=−7

G2
20q(e)k2(ωq) sin |ε2(ωq)|Sgn(ωq) +

O(e8ε) +O(i2ε)

(8)

Here we have written ωq = ω220q. The Kaula functions
G20q are power series of eccentricity related to Hansen’s
coefficients given by Giacaglia (1976) via

G20q = X−3,2
2+q . (9)

In order to calculate the tidal torque using the EMW
formula, we first need to obtain the explicit dependence
on frequency of the second degree Love number k2 and the
respective phase lag ε2. A rigorous treatment of the problem
has been developed in Efroimsky (2012) who studied the
response of a viscoelastic near-spherical body to tidal stress.
The result of this careful analysis provide us with the value
of the k2 as a function of planetary bulk properties,

k2 =
3

2

1

(1 + 57µ/8πGρ2R2)
, (10)

where µ is the rigidity and ρ the planetary average
density. On the other hand, the tidal-mode-dependent phase
lag ε2 is given by,

k2(ωq) sin ε2(ωq) = −3

2

A2I
(R+A2)2 + I2 Sgn(ωq), (11)

where R and I are dimensionless real and imaginary
parts of the complex compliance and A2 is a coefficient
which depends on rigidity, radius and mass of the body
(see Apenddix B in Makarov & Efroimsky 2013):

R = 1 + (XqτA)−α cos
(απ

2

)
Γ(α+ 1), (12)

I = −(XqτM )−1 − (XqτA)−α sin
(απ

2

)
Γ(α+ 1), (13)

Here Xq = |ωq| ≈ |(2+q)n−2θ̇| are the so called forcing
frequencies. α is a dimensionless parameter (the Andrade’s
exponent) that depends on the rheological properties of the
material that makes up the planet. For materials ranging
from ice to most minerals α = 0.14 − 0.4. τA and τM are
known as the inelastic Andrade’s time and the viscoelastic
Maxwell’s time respectively. These timescales characterise
the inelastic and viscoelastic properties of the planetary
mantle, and its response to tidal effects in different range
of frequencies (Andrade at high frequencies and Maxwell at
low frequencies respectively).

Our numerical experiments have shown that the as-
sumption for simplicity τA = τM does not significantly
change the results integrating the tidal evolution, as well
as the possibility of being trapped in a given resonance.

3.3 Tidal Energy Dissipation

Tidal interaction does not only modify the rotation of the
planet. The work done by tidal forces is dissipated as heat
inside the deformed bodies and, as a consequence, the or-
bital energy and angular momentum of the planet change
in time. The body acts like a harmonic oscillator dissipating
energy during each cycle.

The work done by the drag force, over a displacement
during a given interval of time, results in a rotational energy
dissipation during each cycle. If the only torque acting on
the body is the tidal torque, the thermal energy released as
heat is virtually equal to the work done by the tide. There-
fore, the dissipated energy will be proportional to the phase
lag (Ferraz-Mello et al. 2008) and tide frequency (Efroim-
sky 2012). Although we have included a triaxial torque, this
force do not produce any net dissipated energy. The power
dissipated will be simply given by,

dE

dt
= −

7∑
q=−7

Ttid,qωq (14)

Where Ttid,q is each of the terms in the sum defining
the average tidal torque in Eq. (8). The torque produces a
change in the orbital energy of the planet,

E = −GMpM

2a
. (15)

c© 2002 RAS, MNRAS 000, 1–??
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Table 2. Notes: (1) Values are different for each planet and appear in Table 1. (2) Values depend on specific numerical experiments.

Symbol Units Earth-like Waterworld References

Planetary Bulk

Planetary Mass Mp kg (1) (1) Anglada-Escudé et al. (2013)
Planetary Radius Rp km (1) (1) Zuluaga et al. (2013)

Ice mass fraction IMF – 0% 50% This work

Mantle mass fraction MMF – 70% 20% This work
Core mass fraction CMF – 30% 30% This work

Triaxiality (B −A)/C – 5 × 10−5 < 10−7 This work

Rheology

Andrade exponent α – 0.3 0.14 Efroimsky & Lainey (2007)

Bulk Viscosity η Pa s 1020 1018 Zuluaga et al. (2013)

Rigidity µ Pa 8 × 1010 8 × 109 Moore & Schubert (2003)
Maxwell time τM ≡ η/µ yr 40 4 This work

Star and Orbit

Mass of the star M? M� 0.33 0.33 Anglada-Escudé et al. (2013)

Initial eccentricity eo – (1) (1) Anglada-Escudé et al. (2013)
Initial semi-major axis ao AU (1) (1) Anglada-Escudé et al. (2013)

Initial true anomaly/sideral angle θo – (2) (2) Makarov et al. (2012)

and therefore it implies a variation in the semi-major
axis given by,

da

dt
=

2a2

GMpM

dE

dt
(16)

In a similar way the average tidal torque produces a
change in the orbital angular momentum of the planet,

L = Mp

√
GMa(1− e2), (17)

Differentiating and taking into account that dL/dt =
−(〈Ttid〉+ Ttri) we found an expression for the rate of vari-
ation of the eccentricity (see eq. 18).

4 THE MODEL

As we have just shown, the rate of rotation and orbital prop-
erties of a planet are modified by the tidal interaction with
its host star. The intensity of this interaction, quantified by
the tidal and triaxial torques, depends on a set of bulk, inte-
rior structure and rheological properties of the planet. The
mass of the central star and the initial orbital parameters
are also required. In Table 2 we summarize the set of input
parameters that are necessary to estimate the net torque on
the planets in the GJ 667C system.

Planetary composition and water cycle models sug-
gest that planets in GJ 667C could be volatile-rich bodies
(Schaefer & Sasselov 2015). In order to study the depen-
dence of the spin-orbit evolution on composition, we as-
sumed two different sets of input parameters (columns 4
and 5 in Table 2). The first set (column 4), hereafter the
reference model, corresponds to planets with an Earth-like
(El) composition, i.e. composed by a silicate mantle and
a metallic core with almost no water content. The second
set of parameters (column 5) are chosen to match the bulk
and rheological properties of planets containing a significant
fraction of water, i.e. Waterworlds (Ww).

Here, we are using the idea of Ocean planets, as was
proposed originally by Kuchner (2003) and described care-
fully later on by Léger et al. (2004) and Adams et al. (2008).

This description considers planets with more than 25% of
mass made by water. The internal structure of this kind
of planets is not well known, but the models propose solid
cores made by iron-rock, deep layers made by different wa-
ter ice phases, and massive liquid water oceans.

As the bulk structural properties of this Ww are un-
known, we consider that this iron-rocky-ices-water (solid-
liquid) planets must have an internal structure similar to
Ganymede (Vance et al. 2014). Makarov (2015) called this
kind of bodies semiliquid, planets with massive surface
oceans and rigid cores that possess a very low but nonzero
triaxiality. In our case, we ran numerical experiments using
a low triaxiality torque for Ww.

To follow the spin-orbit evolution, we need to solve the
following set of coupled, first order, non-linear differential
equations:

dθ

dt
= Ω

dΩ

dt
= [〈Ttid〉(a, e,Ω) + Ttri(a, e, θ, t)]/C

da

dt
= − 2a2

GMpM

7∑
q=−7

Ttid,q(a, e,Ω)ωq

de

dt
=
(
〈Ttid〉+ Ttri

)(a(1− e2)

GM

)1/2 1

eaMp
+

ȧ

2ea
(1− e2)

(18)

It should be noted that these equations only take into
consideration the tides on the planet. The tides risen by the
planet on the star are neglected.

With initial conditions θ(0) = θo, Ω(0) = Ωo, a(0) = ao
and e(0) = eo. The previous set of equations do not take
into account the effect that secular perturbations of other
planets in the system have on the spin-orbit evolution.

4.1 Numerical Experiments Using TIDEV

In all our numerical experiments on the spin-orbit evolu-
tion, we use a script written in C++ language that we
named TIDEV. The script is available for public users in
https://github.com/facom/tidev.
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TIDEV is a general framework developed to calculate
the evolution of rotation for tidally interacting bodies using
the formalism proposed by EMW. Our numerical tool per-
forms the integration of the set of equations (18). It com-
putes the rotational and dynamical evolution of a planet
under tidal and triaxial torques. TIDEV also takes into ac-
count the perturbative effects due to the presence of the
other planets in the system, especially the secular variations
of the eccentricity.

The input parameters are divided in those related with
the bulk composition and rheology of the planet and those
related with the initial orbital configuration of the system.

Typical bulk parameters are the mass and radius of
the planet (and those of the other planets involved in the
integration), the size and mass of the host star, the Maxwell
time and Andrade’s parameter (see Table 2).

To give the initial orbital configuration, we need to have
an initial set of orbital elements (see Table 1). The two
initial conditions needed for each integration are the sidereal
angle of the tidal bulge (θ) and the initial rate of rotation Ω.
This later value is given as a function of the mean motion n
and depends on the resonance under study; for example, if
we need to run a simulation in the vicinity of 3:2 resonance,
the initial rotational velocity reads θ̇0 = 1.51n.

For the computation of the locking time, we have
adopted the assumption that the initial period of rotation
is 24 hours. Then, the value of Ω0 for this case is just
Ω0 = (2π/86400) s−1.

For our purposes, the most important value returned
by TIDEV is the time evolution of the rate of rotation of
the planet, which enables us to estimate the capture prob-
abilities in each resonance considered in this work.

As usual in any scheme of numerical integration, de-
termining a sufficiently good time step is crucial for the
success of the integration. With a gross value of the time
step (for example, if it is comparable with the orbital pe-
riod), we can lose important information about the rotation
history of the planet. On the other hand, a short time step
increases dramatically the computation time and also the
machine precision becomes a concern. As a general rule in
our integrations, we need to use a time-step not greater than
a fraction of a terrestrial day. In spite of this, even with this
selection of the time step, the integrations are expensive in
a computational sense.

A new numerical tool was developed and presented by
Bolmont et al. (2015). Their model is based on the classic
programme Mercury for N-bodies, and has been extended to
include the effects of the tidal torque, the deforming effect
of the rotation and the relativistic effects produced by the
nearness of the planet to its star.

The tidal model used by Bolmont et al. (2015) is the
classic model of constant lag by Hut (1981). Though the
model does not define explicitly the tidal torque, it is ex-
pressed in terms of momentum (see equation (5) in Bolmont
et al. (2015)). Unlike our model, theirs lack of the possible
effects that would have a change in the bulk composition
of the planets, and therefore, their model does not include
changes in the rheology. Also, it does not include calcula-
tions of the possible effects caused by other planetary mem-
bers in the system, this is, additional gravitational distur-
bances.

On the other hand, their model calculates, like ours,

the time scale that a planet takes to be tidally locked as
well as the periods of rotation reached at the end of the
spin-orbit evolution.

The main disadvantage in the work of Bolmont et al.
(2015) is the frequency-independent tidal model. Their ap-
proach introduce the rotational evolution separated from
the tidal forces, the deformation and the relativistic ef-
fect, which is not ideal from our point of view. In our case,
the calculation of gravitational interactions between plan-
ets was done previously, then we included in the rotational
evolution integration.

In order to make a simple quantitative comparisson be-
tween Bolmont’s model and our model, we made the same
computations for Kepler-62 b with the parameters given in
table (7) of Bolmont et al. (2015) for the semimajor axis and
eccentricity. Regarding the bulk properties of the planet,
we assume a mass 5% higher than the nominal value as ex-
plained in their work (i.e. equal to 2.72 M⊕) and a radius
of 1.31 R⊕. The rheological parameters were taken equal
to those of an El planet, listed in Table 2 of this work. We
computed the capture probabilities around 3:2 and 1:1 res-
onances and obtained a capture probability of 41.45% in 3:2
resonances yielding a 58.55% probability of being captured
in the synchronous resonance. These results support the
idea (only for planet Kepler-62 b) presented in Bolmont’s
work that the three inner planets of the systems are slow
rotators with rotation periods grater than 100 hrs. Simi-
larly, our results for the locking time are in the same order
of that from Bolmont (103 yr). We need to clarify that in
these simulations we did not take into account the evolution
of the obliquity, only that of the rotational period.

Turning to our model, there are two interesting quanti-
ties to compute for each planet: (1) the spin-down time,
tlock, i.e. the time required for an almost complete erosion
of any initial rotation rate Ωo until it reaches a resonant
state where the rotational angular velocity is close to the
orbital angular velocity; (2) the capture probability Pc,
i.e. the fraction of times the planet is trapped in a given
spin-orbit isolated resonance where rotation and orbital an-
gular velocities become commensurable, Ω/n ≈ (2 + q)/2
with q = 0, 1, 2·. As a side note, the 1/2 spin-orbit reso-
nance (q = −1) is also possible under certain conditions, if
the planet evolves from an initial retrograde spin.

We calculate the spin-down times integrating the set
of Equations (18) in a coarse grained time grid. We have
verified that semi-major axis and eccentricities are not sig-
nificantly modified by tidal interaction in this particular
system. Therefore, only the first two equations should be
solved. If we assume a relatively large value for Ωo, i.e.
Ωo = 7.3 × 10−5 s−1, the tidal and triaxial torques are
small and hence, we can assume, for a given range of time,
an average constant tidal torque.

Table 3 shows the spin-down time for a 6 planets con-
figuration and its dependence on the set of planetary prop-
erties we assumed (El or Ww planets). For each planet we
have also calculated the tlock using the classical MacDon-
ald’s parameters (see Equation 5).
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Figure 2. Left panel: spin down times for El (continuos line) and Ww (doted line) planets. Right panel: Spin-down time comparison

between the numerical integration using EMW and MD models.

Figure 3. Probabilities to reach 3:2 resonance for Planet b, Earth-like (left panel) and Waterworld (right panel).

5 RESULTS

Our main results are related with the probability to reach
low resonances and its dependence on composition, changes
on eccentricity and interactions with the other bodies in the
system.

First, we analyse the influence of the secular changes in
the orbital elements, i.e. changes in eccentricity and semi-
major axes (see Section 2). On the other hand, we developed
numerical experiments to determine the dependence of the
model on fictitious eccentricity changes.

5.1 Capture Probabilities

It is known that the probability of capture depends on the
eccentricity and other quantities as the quality factor. We
have calculated the capture probability of different spin-
orbit resonances. For that purpose we use the brute force
method used previously by Correia & Laskar (2004) and
Makarov et al. (2012), that for the sake of completeness we

will explain here. We start with an initial condition Ω(0)
close to the studied isolated resonance, i.e. Ω(0)/n = (2 +
η)/2 + ε.

Around the isolated resonance, the tidal torque be-
comes minimum and, as a consequence, the system tends
to preserve this idealised state. However, as the planet nat-
urally crosses the resonance, its angular velocity starts to
oscillate around the resonant frequency (librations). Ac-
cording to the initial value assumed for θ, the sideral angle
formed between the bulge axis and the star, the chances the
planet has to traverse this resonance and emerge without
being trapped is different.

This is exactly what makes this process stochastic in
nature. The number of times the planet is trapped in a given
resonance defines the probability of that resonance. We did
40 runs for each initial sidereal angle, for each planet and for
two different compositions each time. The same was made to
include the interactions with other planets for two different
configurations of the system: 3 and 6 planets.

In Table 4, we show the results of the calculated proba-
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Figure 4. Earth-like planets b (left) and c (right) arriving and passing 3:2 resonance for different eccentricities.

Table 3. Spin-down times in years for all planets in the GJ

667C system. Times were calculated using both, EMW and MD

methods. For EMW calculations, we computed the value of the
Love number k2 using eq. (10) and calculated an effective Qe for

each tlock. For MD calculations, we used k2 and Q values from

literature: Henning et al. 2009 for Earth-like planets and Barnes
et al. 2012 for Waterworlds.

tlock (yr) k2 Qe

Earth-like - EMW

b 2.16 × 104 1.05 173.55

c 5.34 × 106 0.92 174.47
f 1.69 × 107 0.68 125.47

e 1.16 × 108 0.79 146.25

d 7.25 × 108 1.01 214.90
g 3.42 × 1010 0.96 178.33

Earth-like - MD

b 2.17 × 104 0.3 50

c 4.67 × 106 0.3 50
f 1.53 × 107 0.3 50

e 1.04 × 108 0.3 50

d 5.68 × 108 0.3 50
g 3.06 × 1010 0.3 50

Waterworld - EMW

b 1.53 × 104 1.39 343.55
c 3.82 × 106 1.34 243.35

f 1.01 × 107 1.31 166.67

e 7.96 × 107 1.34 211.06
d 5.12 × 108 1.39 301.23

g 2.42 × 1010 1.37 251.96

Waterworld - MD

b 1.75 × 104 0.5 100

c 4.15 × 106 0.5 100

f 1.58 × 107 0.5 100
e 1.01 × 108 0.5 100
d 4.72 × 108 0.5 100

g 2.64 × 1010 0.5 100

bilities of capture in three isolated resonances (5:2, 2:1, 3:2),
for planets b and c. The table shows the results of including
the tidal interactions between the planet and the host star
and the gravitational interaction of that planet with other
bodies in the system, in this case, including a configuration
of 3 and 6 planets.

Table 4. Probability of capture for planets b and c, for Earth-

like (El) and Waterworld (Ww) composition for three different

configurations: 1) Star-planet, 2) Star-planet + 2 more planets
(including perturbations), and 3) Star-planet + 5 more planets.

The eccentricity used for El planets is e (see Table 1).

e 3:2 2:1 5:2

Star - planet

El b 0,08 47,5% 10,2% 0,0%

El c 0,02 10,0% 0,0% 0,0%

Ww b 0,08 0,0% 0,0% 0,0%

Ww c 0,02 0,0% 0,0% 0,0%

Star - 3 planets

El b 0,08 41,0% 15,0% 0,0%

El c 0,02 0,0% 0,0% 0,0%

Star - 6 planets

El b 0,08 41,0% 15,4% 0,0%
El c 0,02 0,0% 0,0% 0,0%

For planet b (the closest planet), the dependence of
resonance capture on bulk composition is clear, when you
change from El to Ww composition, the probability of cap-
ture down to zero for any resonance higher than 1:1. For
an El composition, this planet reaches the 3:2 resonance in
47.5% of the cases in a period of time less than 22 Kyr.

When other planets are included, the probability varies
from 47.5% to only 41% for resonance 3:2, but for resonance
2:1 the probability increases from 10.2% to 15.0%. These
changes are caused by the periodic variations in eccentricity
when other bodies are added to the system.

In the case of planet c, for El composition the planet
ends 10.0% of the cases in a resonance 3:2, in a time less
than 5.5 million years.

For the Ww case, and for both planets, b and c, the
probability of capture in any resonance is 0.0% for low ec-
centricities.

Considering that the actual composition of the planets
remains unknown, these numerical experiments just address
us to an idea about the behaviour of the real planets. How-
ever, the rheology of the planet provides us with information
about the tendency of planets with different viscoelastic be-
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Figure 5. El planet c perturbed gravitationally by all the other

members of the system (6 planets configuration) compared with

a non perturbed (tidal only) Star-planet configuration.

haviour to becoming trapped in a specific resonance. At first
sight, planets with low average density tend to cross reso-
nances like 2:1 or 3:2 and get the 1:1 resonance directly.

On the other hand, although the triaxiality of the body
produces a measurable torque, after analysing the dynamic
evolution of the system and obtaining the calculations of
probability for a 3:2 resonance with the EL planet c, we
can assure that the contribution of the triaxial torque to
the secular evolution of eccentricity, is negligible. In Figure
7 we can see planet c arriving to the resonance 3:2 in both
cases, with and without considering the triaxial torque. The
probabilities of capture are not modified if we includes the
triaxial torque.

In the case of Waterworlds, we developed numerical
experiments within a range of low triaxialities (< 10−7),
even zero in some cases, and we found that for this kind
of planets the probability of capture in any resonace higher
than 1:1 is zero for low eccentricities (see table 4).

When you have low values of the triaxiality, capture
in a given resonance is achieved for smaller values of the
eccentricity (see fig 8 in Makarov 2012). In other words,
some resonance of low order is more likely to occur if the
traxiality tends to zero, which has been verified with our
calculations.

5.2 Changes on the Eccentricity

The effects of the eccentricity variation produced by the
gravitational interaction between the planets have been in-
troduced in the rotational evolution, entered through an an-
alytical expression obtained from a Fourier transformation
of the eccentricities, obtained in turn through a numerical
integration (see Section 2). It is important to note that the
time in which the eccentricities evolve is much larger than
the orbital and rotation rates of the planets.

Therefore, to evaluate the impact of the eccentricity
on the capture probabilities, first we took three represen-
tative values of eccentricity for each planet: emin, e, emax
(see Table 1), and studied the evolution of the rotational
rate of various spin-orbit resonances. We found that in any

Figure 6. Resonance depending on an equilibrium eccentricity

for both compositions in the case of planet c.

case the final captured probabilities were not altered. We in-
clude calculations made with other values of the eccentricity
obtained by Anglada-Escudé et al. (2013) and Makarov &
Berghea (2014) also (see Figure 4).

A particularly interesting dynamical scenario arises
when mean tidal torque vanishes. This situation leads to
a state of dynamical equilibrium where the disturbed body
spins with constant angular velocity (Makarov 2012).

Depending on the form of the torque, we can infer the
values of eccentricity for which it vanishes giving a fixed
value of θ̇. The first model is the Constant Time Lag (MD
model) which sets the values of the time delay ∆t as in-
dependent of the tidal mode frequency. In this model, the
mean tidal torque involves the following terms (Hut 1981;
Makarov & Efroimsky 2013):

< τtid >∝

[
1 + 5

2
e2 + 45

8
e4 + 5

16
e6

(1− e2)6
− θ̇

n

1 + 3e2 + 3
8
e4

(1− e2)9/2

]
(19)

By setting < τtid >= 0 we obtained the following ap-
proximate expression for the angular velocity as a function
of the eccentricity and the mean motion taken as a constant

θ̇ = n

[
1 + 6e2 +

3

8
e4 +

173

8
e6 +O(e8)

]
(20)

which can be solved for the eccentricity for a given res-
onant or non-resonant value of θ̇/n. This root is called the
equilibrium eccentricity. The behaviour of this eccentricity
is depicted by the blue rising curve in Figure 6. The region
above the blue line corresponds to positive values of the
mean torque; therefore, in this zone the torque accelerates
the rotational motion of the body. Below the blue line, the
torque is negative and it contributes to despin the body. In
this figure we can see the intrinsically stable behaviour of
the equilibrium states in the sense that any horizontal per-
turbation made on a point of the curve (increasing or de-
creasing the rotational velocity) is counteracted by a torque
which tends to return the motion to the original state as de-
picted by the direction of the black arrows.
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Figure 7. Earth-like planet c eccentricity evolution, including

both, tidal and triaxial torques.

We proceeded in the same way with the EMW form
of the tidal torque in order to explore the concept of equi-
librium eccentricity in this model. We solved Equation (8)
for the eccentricity contained inside the G20q functions for a
set of resonant and non-resonant values of θ̇/n ranging from
1:1 to 5:2. As we can see from the red and green curves in
Figure 6, the behaviour of equilibrium eccentricity is com-
pletely different in this case. Perturbing any arbitrary but
non-resonant point of the curve, leads to torques which act
in the same direction of the perturbation in contrast to the
MD case. Therefore, the equilibrium of points outside any
resonance is unstable by nature in this formalism. On the
other hand, when we disturb a resonant point (the central
point along the nearly vertical lines), two torques emerge
in opposite direction to the perturbation counteracting its
effect. From this discussion, in the MD model any possible
θ̇/n represents a state of stable equilibrium, but with the
EMW torque, only resonant values are stable, if are coupled
with the appropriate value of eccentricity. In both, the MD
and in the EMW torque, we only have one eccentricity value
for which the average torque is zero, but this does not mean
that it is stable in the last case (see Section 3 in Makarov
& Efroimsky (2013)).

In an empirical sense, we can make general conclusions
about the final spin state of a body from the equilibrium ec-
centricity in Figure 6. In fact, if we introduce a fictitious per-
turbation that covers a range of eccentricities wide enough
to contain one of the resonant and stable values of the an-
gular velocity, the probability of capture in that resonance
is no longer zero no matter how high the resonance is. We
made an experiment with planet c introducing a fictitious
sinusoidal perturbation with an amplitude of 0.4. We found
that the most probable resonance is 3:2 with a probability
of 85%. But interestingly, the next most probable resonance
was 2:1 with the remaining 15% of the probability. This
experiment confirms our suspicion that providing a wide
perturbation to the eccentricity, there could be capture in
high order resonances. This idea was discussed previously
in classic works as Goldreich & Peale (1966).

5.3 Semi-analytical Probability

Another semi-analytical method to get a probability of cap-
ture, is considering the librations around the resonance as
proposed by Goldreich (1966) and Goldreich & Peale (1968).
In this method, the capture depends on the change of the
kinetic energy at the end of the libration and its relation
with the total energy dissipation in a complete cycle.

The semi-analytical formula for the probability derived
by Goldreich (1966) adapted to the DK torque gives:

Pcapt =
2

1 + 2πV/
∫ π
−πW (γ̇)dγ

(21)

where

V = K
∑
q 6=q′

G2
220qk2((q − q′)n) sin |ε2((q − q′)n)|Sgn(q − q′)

(22)
and

W (γ̇) = −KG2
220q′k2(γ̇) sin |ε2(γ̇)|Sgn(γ̇) (23)

being K a positive constant which does not play a role
in the computation of capture probability. Numerical inte-
gration of this equation for different values of eccentricity
gives us insight on the strong dependence of both quanti-
ties. In fact, for planet b, we found that the capture in 3:2
resonance is guaranteed for eccentricities equal or greater
than 0.15. On the other hand, the probability of capture in
2:1 is almost 23% for that same eccentricity (e = 0.15), then
the capture in this resonance is also possible (see Figure 9).

To evaluate this integral, we must consider the follow-
ing separatrix equation which relates the parameters γ̇ and
γ, which define the phase space trajectory near a given res-
onance.

γ̇ = 2n

[
3

(B −A)

C
G20q′(e)

]1/2
cos

γ

2
(24)

We performed a series of experiments with El plan-
ets b and c to compare both methods: the brute force
and the semi-analytical one. For planet b, with the former
method, we obtained a capture probability of 47.5% in the
3:2 resonance and, with the semi-analytical method, we ob-
tained for the same planet and resonance a probability of
∼ 50.0%, which represents a reasonably good agreement be-
tween both methods (see Figure 9). The same comparison
was performed with planet c and we got 10.0% and ∼ 6.0%
of capture probability in 3:2 resonance with the two meth-
ods respectively.

This semi-analytical method was also applied to the
Ww versions of planets b and c, but the results in this
case were quite different from those obtained by brute force.
However, we do not believe the semi-analytical formula can
be used in this case because it depends strongly on the be-
haviour of (B−A)/C. In fact, the separatrix equation only
takes into account the triaxial torque, but not the tidal
torque. The effects of the last one are estimated by the
energy dissipation calculated using the phase space trajec-
tory which is determined by (B − A)/C. Since Ww plan-
ets do not have a permanent triaxiality, equations (21) and
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Figure 8. Tidal energy dissipated by El and Ww planets b and

c.

(24) are inappropriate for computation of the isolated reso-
nance capture probability (Makarov, personal communica-
tion). Then, the comparison between two methods carried
out in this work is limited to El planets.

5.4 Energy Dissipation

We used the results for the tidal energy dissipation to com-
pare the times of locking for the two different compositions.
In Figure 8 we show how El planets take more time to dis-
sipate the tidal energy and finally reach the resonance.

But according to the classical expression (see eq. (5)),
this time is directly proportional to the quality factor Q.
Why do Ww, that have a greater Q, take less time to reach
the resonance? We deduced that in this case the size of the
planet has more effect over the spin-down time than the
quality factor.

As we can see in Table 3, the effective quality factor
for Ww are 2 times greater than the El planets. The spin-
down times for these planets should also be 2 times greater.
On the other hand, tlock ∼ R−5, according to this, bigger
planets take less time to reach a final low resonance. They
dissipate tidal energy rapidly compared to small planets,
even when having a greater Q.

As a result, the dissipation of tidal energy is related to
the planetary composition and its rheology. According to
our results, water-rich planets achieve the low resonance or
the total tidally locked state, far less than rocky planets.

6 DISCUSSION AND CONCLUSIONS

We have produced an updated dynamical study of the
GJ667C planetary system. We have verified that the spin-
orbit evolution of the planets is exclusively secular. This
result agrees with that of Anglada-Escudé et al. (2013). In
our tidal model, we also computed the energy dissipated by
tidal friction and the possible associated variation of the or-
bital elements. However, we found that the semi-major axis
and eccentricities are not significantly modified by tidal in-
teractions in this particular system.

Figure 9. Probability of an isolated resonance capture depend-

ing on the eccentricity for an El planet b. We use the expression

of probability by Goldreich (1966).

We have calculated the spin-down times until it reaches
a low resonance for a 6-planet configuration. For this specific
configuration and for the reported age of the syetem, we
found that the equilibrium spin-rotation has probably been
achieved for planets b, c, e and f in a low resonance. Planet
g is probably rotating close to its original rate, in the case
of planet d it may not have achieved any final spin-orbit
resonance, this depending on the actual age of the system.

We calculated the capture probabilities of isolated res-
onances using three different configurations of gravitational
perturbations in the planetary system: star-planet, star-
three planets and star-six planets. In agreement to the work
by Anglada-Escudé et al. (2013), we used a 6 compact plan-
etary system. On the other hand, and taking into account
the work by Feroz & Hobson (2014), we used two other
configurations including 2 and 3 planets.

6.1 Perturbations of Others Planets

We computed the secular evolution of the system with 2, 3
and 6 planet configurations. If we consider the probable age
of the system ∼8 Gyr, the absence of a substantial variation
on the semi-major axis is a clear evidence of the system
stability.

The eccentricities of the planets suffer mainly secular
variations. Planets b and d experience the largest eccentric-
ity changes (see Section 2). In the case of a 6-planets con-
figuration, some of them show strong correlations by pairs,
d and f , and c and e. The presence of other planets pro-
duces an eccentricity variation around an average value (see
Table 1) that results in a main frecuency for all the planets
around 17000 yr.

We calculated the probability of resonance for El plan-
ets b and c including the perturbations of the other planets.
We included planet d in a 3-planets configuration, and e,
f and g in a 6-planets configuration. The results, shown in
Table 4, let us conclude that the secular perturbations of
other planets did not change the final resonance state.

The results of the numerical experiments, including the
tidal perturbation caused by the other planets, showed us
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that even being a close-packed system, the gravitational ef-
fect of other members did not cause any change in the final
resonance and the probability of capture is practically the
same. Only in the first case, when we go from a 1 to a 3-
planets configuration, the probability changes for the 3:2
and 2:1 resonance. In the other case, when we went to the
6-planets configuration the probability did not change at
all.

The presence of more planets only shows a little ef-
fect on the oscillation around the resonance at the end of
the spin-orbit evolution, just before reaching the final reso-
nance, especially for El planet c (see Figure 5).

After analysing the dynamical evolution of 2, 3 and
6 planets (see Section 2), we conclude that this particular
system have a secular evolution. There are no variations on
the semi-major axis caused by the other planets. Variations
on eccentricity are also mainly secular.

We conclude that the gravitational influence of other
planets is negligible for the spin-down times and for the
probabilities of capture in low resonances.

In respect to the stellar system, it is a triple-star sys-
tem, where the main pair of the system GJ 667A and GJ
667B are 0.73 and 0.69 M� respectively. The pair is sepa-
rated by 12.6 au between them and 230 au from GJ 667C.

With the purpose of figuring out the actual influence of
the binary pair over the dynamical evolution of the system
around star C, we developed numerical experiments includ-
ing AB stars and the C star with planet c. The star-planet
system orbits the center of mass of the binary. We let the
system evolve during a period higher than the orbital period
of the C star.

Although pair AB, the orbit of star C and the orbit of
planet c around this one, did not suffer any changes at all.
Even when the system C-c is close to the periapsis of the
orbit, ∼ 180AU , the orbit of the planet did not suffer any
changes in its evolution.

It should be noted that the orbital periods of the plan-
ets around star C are a lot less than the period of the star
around the binary. The period of the C-star is in the order
of centuries. On the other hand, the period of the binary
is 42.15 years, far from the main frequency of the secular
variations of the eccentricity, that is close to 17 years.

6.2 Capture Probabilities in low Resonances

The most stable resonance is 3:2 for an El composition. This
is an interesting result if we think about the distribution of
heat around the surface of the planet. There are recent stud-
ies dedicated to the investigation of the photosynthetic po-
tential of planets in 3:2 spin-orbit resonances (Brown et al.
2014). The probability of reaching a 3:2 resonance, in most
cases, appears to be significant.

Composition has an effect on the capture probabilities,
decreasing the probability for resonances 2:1 and 3:2 to zero
for a Ww composition. Although, this looks contradicts the
classical idea, due to the dissipation of energy, our results
show that Ww planets dissipated tidal heat faster than the
El planets. The result of the spin-down time can be ex-
plained by the larger size of the water-rich planet.

6.3 Habitability of GJ 667C

Previous works propose the possible location of three plan-
ets (c, f and e) or maybe four (d) inside the HZ (Anglada-
Escudé et al. 2013). They suggested that planet d could be
a water-rich world, making it more habitable. Taking into
account the average mass of the planets and the packed con-
figuration of the system, they proposed the formation place
beyond the snow-line and a consequent migration to their
current positions close to the star. This makes the plan-
ets in GJ 667C volatile-rich planets containing substantial
amounts of water.

On the other hand, Makarov & Berghea (2014) dis-
missed the possible habitability of planet c based on their
results of the spin-orbit evolution and the tidal heating of
the interior, which makes this planet more similar to Mer-
cury than Earth. Based on our own results, we can state
the following about the habitability in GJ 667C.

6.3.1 Planet b

This planet is obviously beyond the inner limit of the HZ,
this makes it not habitable at all. The final rotation period
reached, 4.8 days. This period places this super-Earth in
a slow rotators category according to the classification of
Zuluaga & Cuartas (2012). Its mass of 5.94 M⊕ is unfau-
vorable when thinking about the possible generation of a
protective magnetic field (Zuluaga et al. 2013).

6.3.2 Planet c

Its distance to the star places it inside the HZ. With a final
rotation period of 18.75 days and a mass of 3.86 M⊕, this
super-Earth is classified as a very slow rotator (Zuluaga &
Cuartas 2012). This means that if planet c had an active
magnetic field, the dynamo would be shut down by now.
The absence of a protective magnetic field directly leads
to an irreversible volatile loss. If at any point in the past,
planet c had water on its surface, it no longer exists. This
implies that planet c is no longer a habitable planet, even
if it was in the distant past.

If we think about the 6-planets configuration, where
most of the planets in GJ 667C finally reach a low resonance,
even those inside the HZ, they will bear the aggressive ac-
tivity of their host star during extended periods of time on
their diurnal hemispheres. Their atmospheres (if they have
any) would be eroded, causing the loss of volatiles, like wa-
ter, in a time shorter than necessary for life’s chemistry to
take place.

Finally, as a sideline conclusion, the difference between
the capture probabilities, giveb by composition, could be
useful in a future as a tool to recognize the actual compo-
sition of low mass exoplanets orbiting M-dwarfs, provided
that its rotation is feasible to be measured. Earth-like plan-
ets seem more probable to be in a 3:2 resonance than Water-
rich planets.

c© 2002 RAS, MNRAS 000, 1–??
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