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Using ζ-function regularization, we study the one-loop effective action of fundamental strings in
AdS5 × S5 dual to the latitude 1

4
-BPS Wilson loop in N ¼ 4 super-Yang-Mills theory. To avoid certain

ambiguities inherent to string theory on curved backgrounds we subtract the effective action of the
holographic 1

2
-BPS Wilson loop. We find agreement with the expected field theory result at first order in the

small latitude angle expansion but discrepancies at higher order.
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I. INTRODUCTION

One of the most powerful promises embodied by the
AdS=CFT correspondence is to broaden our perspective of
string theory beyond our limited understanding in flat
spacetimes. We expect that some of the main principles,
such as conformal invariance, retain its central place.
However, most of the computational technology available
for strings in flat spacetimes is inadequate in the more
general setup of strings in curved spaces.
Thus far many questions in AdS=CFT at the quantum

level have been dealt with on a case by case basis without a
general framework. With the advent of localization tech-
niques the panorama has changed radically as the exact
answer to many problems are now known. This opens the
possibility of testing different computational methods. The
study of quantum corrections in the case of Wilson loops is
particularly promising in the context of the AdS=CFT
correspondence because the expectation value of Wilson
loops is determined by string world-sheets [1,2] and

consequently pushes us to confront the underpinnings of
string perturbation theory more directly.
Some of the most studied examples at the quantum level

are the holographic duals of the 1
2
-BPS and 1

4
-BPS Wilson

loops in N ¼ 4 SYM. In the semiclassical approximation
the one-loop corrections are equivalent to computations of
determinants of certain Laplace-like operators in curved
spaces. Determinant of operators in curved space have a
long history in physics and also in mathematics as sources
of spectral information. There are, indeed, various compu-
tational methods that have already been applied in the
context of holographic Wilson loops. For example, the
expectation value of the holographic 1

2
-BPS Wilson loop

was originally computed using ζ-function techniques in [3]
and subsequently revisited using the Gelfand-Yaglom
approach in [4]. More recently the better-defined problem
of computing the difference of the effective actions of the
holographic 1

4
- and 1

2
-BPS strings has received particular

attention since supersymmetric localization provides a
precise answer. The first attempts were reported in [5,6].
These two groups used a Gelfand-Yaglom based method to
tackle the problem but did not find a match with the field
theory prediction. Ultimately, after a careful analysis, the
mismatch was traced back to a change in topology from the
disk to the cylinder and the use of a diffeomorphism-
invariant IR cutoff [7].
A more immediate motivation for developing ζ-function

regularization techniques stems from the fact that using
perturbative heat kernel techniques to the first nontrivial
order in the latitude angle, the authors of [8] found a match
between the gauge and gravity calculations for the
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expectation value of the 1
4
-BPS latitude Wilson loop. This

suggests that ζ-function might be the correct framework to
compute the one-loop determinants for the spectrum of
fluctuations of the string; it also attacks the problem
directly on the disk rather than mapping it to the cylinder
as done in [4–7]. The holographic dual to the 1

2
-BPSWilson

loop is a fundamental string with AdS2 worldsheet. For this
homogeneous space one can address its one-loop effective
action with results dating back to [9,10] as was done in
[3,11]. For the 1

4
-BPS, however, the space is no longer

homogeneous and new technology is required to evaluate
the determinants. In this manuscript we approach the
computation of one-loop determinants using recent results
of ζ-function regularization of Laplace-like operators in
conformally AdS2 spaces that are reported in a separate
publication [12]. There is a strong general motivation to
develop ζ-function regularization. Starting with the insight-
ful works of [13,14], ζ-function regularization methods
have shown to be highly reliable in various areas of
applications [15]; we hope that generalizing such methods
will find natural applications in several contexts.
We show that the ζ-function regularized answer matches

at leading order in the small latitude angle but receives
correction at higher order, leading to a mismatch with the
expected field theory answer.
The rest of the paper is organized as follows. In Sec. II

we briefly review some of the most salient features of the
semiclassical approach to holographic Wilson loops.
Section III presents a summary of the result of our
companion paper where we obtained explicit expressions
for determinants of general Laplace-like operators in
conformally AdS2 spacetimes. Section IV determines the
ratio of the latitude to the 1

2
-BPS holographic Wilson loops.

We conclude in Sec. V.

II. LATITUDE WILSON LOOPS

In order to make this paper somehow self-contained we
briefly review some of the most salient features of the
holographic Wilson loops we discuss. This subject has been
the center of a lot of investigation recently and we refer the
reader to the works [5,6] for omitted details.
The 1

4
-BPS latitude Wilson loop [in the fundamental

representation of SUðNÞ] is defined as [16,17]

WðCÞ ¼ 1

N
TrP exp

I
C
dsðiAμ _xμ þ j_xjΦInIðsÞÞ; ð1Þ

where P denotes path ordering along the loop and C labels
a curve parametrized as

xμðsÞ¼ ðcoss;sins;0;0Þ;
nIðsÞ¼ ðsinθ0 coss;sinθ0 sins;cosθ0;0;0;0Þ; s∈ ð0;2πÞ

ð2Þ

For θ0 ¼ 0, this operator was shown to preserve half of the
supersymmetries and its expectation value was evaluated
exactly, under certain conjectures [Gaussian], by [18] and
[19]. The definitive proof was provided by Pestun via the
by now thoroughly exploited supersymmetric localization
technique [20]. The answer, exact in the gauge group rank
N and the t’ Hooft coupling λ, is

hWicircle ¼
1

N
L1
N−1

�
−

λ

4N

�
eλ=8N: ð3Þ

More generally, for arbitrary values of θ0, the vacuum
expectation value of this operator is conjectured to be given
by a simple rescaling of the ’t Hooft coupling λ → λ0 ¼
λ cos2 θ0 in the above exact expression [16,17,21].
The dual 1

2
-BPS string has an AdS2 ⊂ AdS5 worldsheet

with disk topology,

ds2 ¼ dρ2 þ sinh2ρdτ2; ρ ≥ 0; τ ∼ τ þ 2π: ð4Þ

On the other hand, the 1
4
-BPS string worldsheet forms a cap

through the north pole of S2 ⊂ S5 and the induced geometry
is asymptotic to AdS2,

ds2M ¼ MðρÞds2; MðρÞ ¼ 1þ sin2θðρÞ
sinh2ρ

;

sin θðρÞ ¼ sinh ρ sin θ0
cosh ρþ cos θ0

; ð5Þ

where 0 ≤ θ0 ≤ π
2
is the latitude angle. The 1

2
-BPS solution

corresponds to θ0 ¼ 0. The string action can be evaluated
on-shell on this classical solution. The result, after an
appropriate renormalization, is [16]

Sð0Þ ¼ −
ffiffiffi
λ

p
cos θ0: ð6Þ

Since hWi ≃ exp ð−Sð0ÞÞ ¼ exp ð ffiffiffi
λ

p
cos θ0Þ, we recover, at

the leading classical level, the expectation (7) from field
theory.
Comparing the one-loop effective actions of the 1

4
and 1

2
-

BPS strings, as discussed in [5,6], and anticipated in [4]
leads to a better defined string theory problem since both
dual strings have world-sheets with disk topology. The
general expectation is that the issues related to ghost zero
modes and other aspects of string perturbation theory on
curved spacetimes might cancel upon considering the
difference of effective actions. The exact field theory
answer at large λ is

hWilatitude
hWicircle

≃ exp
� ffiffiffi

λ
p

ðcosθ0−1Þ−3

2
ln cosθ0þ…

�
: ð7Þ

The leading order term in the large λ expansion was
matched against a particular string worldsheet identified
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in [16]. In recent years, there has been a strong effort in
computing the −ð3=2Þ ln cos θ0 term from the string theory
one-loop effective action [5–8]. In this manuscript we
approach this question using ζ-function regularization.
At the semiclassical level, the fluctuations of the funda-

mental string dual to the 1
4
-BPS Wilson loop were thor-

oughly studied in [5,6]. The spectrum involves the
operators

O1ðθ0Þ ¼M−1ð−gμν∇μ∇ν þ 2Þ;
O2ðθ0Þ ¼M−1ð−gμν∇μ∇ν þV2Þ;

O3�ðθ0Þ ¼M−1ð−gμνDμDν þ V3Þ; Dμ ¼ ∇μ � iAμ;

O�ðθ0Þ ¼M−1
2

�
−i
�
Dþ 1

4
∂ lnM

�
− iΓ01ð1þVÞ �W

�
;

Dμ ¼ ∇μ �
i
2
Aμ; ð8Þ

with gμν and ∇μ evaluated for the AdS2 metric (4), Aρ ¼ 0,
Aτ ¼ A and

V2ðρÞ ¼ −
2sin2θðρÞ
sinh2ρ

; V3ðρÞ ¼ −
∂ρAðρÞ
sinh ρ

;

VðρÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
MðρÞp − 1; WðρÞ ¼ sin2θðρÞffiffiffiffiffiffiffiffiffiffiffi

MðρÞp
sinh2ρ

;

AðρÞ ¼ 1 −
1þ cosh ρ cos θðρÞ
cosh ρþ cos θðρÞ : ð9Þ

The difference in 1-loop effective actions with the 1
2
-BPS

string is then

e−ΔΓ
1-loop
effectiveðθ0Þ

¼

2
64

�
detOþðθ0Þ
detOþð0Þ

�
4
�
detO−ðθ0Þ
detO−ð0Þ

�
4

�
detO1ðθ0Þ
detO1ð0Þ

�
3
�
detO2ðθ0Þ
detO2ð0Þ

�
3
�
detO3þðθ0Þ
detO3þð0Þ

�
1
�
detO3−ðθ0Þ
detO3−ð0Þ

�
1

3
75

1
2

:

ð10Þ

The powers in the fermionic determinants reflect the
Majorana nature of the spinors in Lorentzian signature.
The main difficulty in evaluating the above determinants

is that the space is not homogeneous as is the case for
θ0 ¼ 0 where the results of [9,10] are readily applied.
A perturbative approach, valid for small values of θ0, was
taken in [8] leading to the following evaluation of the one-
loop effective action

ΔΓ1-loop
effectiveðθ0Þ ¼ −

3

4
θ20 þOðθ40Þ; ð11Þ

which coincides, to this order, with the expected field
theory answer ΔΓ1-loop

effectiveðθ0Þ ¼ 3
2
ln cos θ0 as follows from

Eq. (7). We will reproduce the perturbative result in this
manuscript and consider the more general problem at
arbitrary θ0.

III. ZETA-FUNCTION REGULARIZATION
ON AdS2

In this section we recall a number of results for
determinants of Laplace- and Dirac-like operators in
AdS2 that appear in a companion paper [12] to which
we refer the reader for the full derivation. The method
applies to operators defined on the AdS2 geometry (4) and
in the presence of external fields. Concretely, we consider
general operators of the form:

Ō ¼ −gμνDμDν þm2 þ V; ðbosonsÞ ð12Þ

Ō¼−iðDþ∂ΩÞ− iΓ01ðmþVÞþW; ðfermionsÞ ð13Þ

with Dμ ¼ ∇μ − iqAμ. Under the assumption of circular
symmetry, these operators can be expanded into their
Fourier components

Ōl ¼ −
1

sinh ρ
∂ρðsinh ρ∂ρÞ þ

ðl − qAÞ2
sinh2ρ

þm2 þ V;

l ∈ Z; ðbosonsÞ ð14Þ

Ōl¼−iΓ1

�
∂ρþ

1

2
cothρþ∂ρΩ

�
þΓ0

ðl−qAÞ
sinhρ

− iΓ01ðmþVÞþW; l∈Zþ1

2
; ðfermionsÞ ð15Þ

where we have set Aρ ¼ 0 and Aτ ¼ AðρÞ, as well as
V ¼ VðρÞ, W ¼ WðρÞ and Ω ¼ ΩðρÞ. Appropriate regu-
larity conditions at the origin and fall-off conditions at
infinity are required for the background fields (see [12] for
further details).
The ratio of determinants between the operators

(12)–(13) and their free counterparts, obtained by
setting A ¼ Ω ¼ V ¼ W ¼ 0, is defined using ζ-function
regularization

ln
det Ō

det Ōfree ≡ −ζ̂Ō
0ð0Þ − lnðμ2Þζ̂Ōð0Þ;

ζ̂ŌðsÞ≡ ζŌðsÞ − ζfreeðsÞ; ð16Þ

where μ is the renormalization parameter. Extending
previous results [22] it was found in [12] that these ratios
are given by simple expressions. The result for bosons
reads
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ln
det Ō

det Ōfree

¼ ln
det Ō0

det Ōfree
0

þ
X∞
l¼1

�
ln

det Ōl

det Ōfree
l

þ ln
det Ō−l

det Ōfree
−l

þ 2

l
ζ̂Ōð0Þ

�

− 2

�
γþ ln

μ

2

�
ζ̂Ōð0Þ

þ
Z

∞

0

dρ sinhρ lnðsinhρÞV − q2
Z

∞

0

dρ
A2

sinhρ
; ð17Þ

ζ̂Ōð0Þ ¼ −
1

2

Z
∞

0

dρ sinh ρV; ð18Þ

whereas for fermions we have

ln
detŌ

detŌfree¼
X∞
l¼1

2

�
ln

detŌl

detŌfree
l

þ ln
detŌ−l

detŌfree
−l

þ 2

lþ 1
2

ζ̂Ōð0Þ
�

−2

�
γþ ln

μ

2

�
ζ̂Ōð0Þ

þ
Z

∞

0

dρsinhρ lnðsinhρÞððmþVÞ2−W2−m2Þ

−q2
Z

∞

0

dρ
A2

sinhρ
−
Z

∞

0

dρsinhρW2; ð19Þ

ζ̂Ōð0Þ¼−
1

2

Z
∞

0

dρsinhρððmþVÞ2−W2−m2Þ; ð20Þ

with γ ≈ 0.57721, the Euler-Mascheroni constant. In turn,
the ratio for Fourier modes is computed as

det Ōl

det Ōfree
l

¼

8>><
>>:

ψ lð∞Þ
ψ free
l ð∞Þ ; ðbosonsÞ
ψ ðiÞ
l ð∞Þ

ψ ðiÞfree
l ð∞Þ e

Ωð∞Þ−Ωð0Þ; ðfermionsÞ
ð21Þ

where ψ lðρÞ is the solution to the homogeneous equation
that is regular at ρ ¼ 0,

Ōlψ l ¼ 0; ψ lðρÞ →
ρ→0

�
ρjlj; ðbosonsÞ
ρjlj−1

2; ðfermionsÞ:
ð22Þ

For fermions ψ ðiÞ
l ðρÞ is one (either) of the two components

of the regular spinor solution to the first order homo-
geneous equation. The overall normalization of ψ l in (21) is
not important as long as the leading coefficient of the small
ρ expansion matches that of the free solution1 ψ free

l .

For the 1
4
-BPS strings we are interested in, the operators

do not precisely take the form (12) or (13), but rather they
are conformally related to them

O ¼ M−1Ō; ðbosonsÞ ð23Þ

O ¼ M−1
2Ō: ðfermionsÞ ð24Þ

This can be understood as the effect of a Weyl rescaling of
the metric by a function MðρÞ, which we assume to be
smooth everywhere with MðρÞ → 1 for ρ → ∞. Happily,
the determinants of O and Ō are related by an anomaly
calculation (cf. Appendix A of [3]). Indeed,2

ln

�
detO

det Ōfree

�
¼ ln

�
det Ō

det Ōfree

�
þ 1

4π

Z
d2σ

ffiffiffi
g

p

× lnM

�
m2 þV −

1

6
Rþ 1

12
∇2 lnM

	
ð25Þ

for bosons, while for fermions the result is

ln

�
detO

detŌfree

�
¼ ln

�
detŌ

detŌfree

�
þ 1

4π

Z
d2σ

ffiffiffi
g

p

×lnM
�
ðmþVÞ2−W2þ 1

12
R−

1

24
∇2 lnM

	
:

ð26Þ

IV. ONE-LOOP EFFECTIVE ACTION

In this section we apply the general results quoted in the
previous section to the holographic description of the 1

4
-BPS

latitudeWilson loops inN ¼4 SYM [17].We refer the reader
to the extensive literature for details; in particular to [5–8].
Before plunging into the calculation of each individual

ratio in (10), it is useful to combine the full spectrum of
operators and gain some insight into the cancellations that
occur in the one-loop effective action. Recall that, accord-
ing to the discussion in Sec. III [see Eqs. (25) and (26)], the
computation of each determinant is divided into two parts:
an anomaly due to the Weyl transformation that maps
the induced geometry (5) to AdS2, and the ratio for the
corresponding rescaled operators. Notice that for the
operators (8),

Oðθ0 ¼ 0Þ ¼ Ōðθ0 ¼ 0Þ ¼ Ōfree: ð27Þ

Let us focus on the Weyl anomaly first. One can check
that the potential and mass terms for the 1

4
-BPS operators (8)

satisfy

1This is analogous to the usual conditions ψð0Þ ¼ 0, ψ 0ð0Þ ¼ 1
imposed on the homogeneous solutions in the application of the
Gelfand-Yaglom method to 1d determinants with Dirichlet
boundary condition at the origin. In two and higher dimensions,
the centrifugal barrier imposes the regular solution to vanish as a
power law depending on the angular momentum, therefore
generically ψ 0ð0Þ ¼ 0.

2Boundary terms involving the extrinsic curvature and the
normal derivative of the conformal factor do not contribute in the
present case (see [12] for details).
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8 × ðð1þ VÞ2 −W2Þ − 3 × 2 − 3 × V2 − 2 × V3

¼ −Rþ∇2 lnM; ð28Þ

a relation which is in fact a general feature of the gauge-
fixed Nambu-Goto string, where the right-hand side is
recognized as the curvature of the induced metric,
R½Mg� ¼ M−1ðR½g� −∇2 lnMÞ. The contribution from
the curvature and conform0al factor terms in (25)–(26) is

�
8 ×

�
1

12

�
− 8 ×

�
−
1

6

��
R

þ∇2 lnM

�
8 ×

�
−

1

24

�
− 8 ×

�
1

12

��

¼ 2R −∇2 lnM: ð29Þ

We then find that the modification to the ratio of determi-
nants due to the rescaling of the metric is3

anomaly∶
1

4π

Z
d2σ

ffiffiffi
g

p
R lnM

¼ −
�
θ0 sin θ0 þ 4cos2

θ0
2
ln cos

θ0
2

�
: ð30Þ

Unlike the case where one maps the induced worldsheet
metric to flat space [7], the anomaly is nonvanishing.4 This
is an effect of the curvature of AdS2 and is perfectly
compatible with the conformal invariance of the string
action [3] (see also Appendix B of [23]).
We now move on to the computation of the determinants

on AdS2 using (17) and (19), starting with the total zeta-
function at the origin

ζ̂totð0Þ ¼ 3ζ̂Ō1
ð0Þ þ 3ζ̂Ō2

ð0Þ þ ζ̂Ō3þð0Þ þ ζ̂Ō3−
ð0Þ

− 4ζ̂Ōþð0Þ − 4ζ̂Ō−
ð0Þ: ð31Þ

This quantity determines the dependence of the one-loop
effective action on the renormalization scale. Equations (18)
and (20) show a slightly different combination of potentials
than in (28), namely,

8 × ðð1þ VÞ2 −W2 − 1Þ − 3 × V2 − 2 × V3 ¼ ∇2 lnM;

ð32Þ

which by itself does not vanish.When integrated, however, it
does,

Z
∞

0

dρ sinh ρ∇2 lnM ¼ sinh ρ∂ρ lnM






∞

0

¼ 0

⇒ ζ̂totð0Þ ¼ 0: ð33Þ

As a consequence, no ambiguity related to the choice of
renormalization scale, μ, affects the effective action. The
above cancellation also means that the Fourier sum of the
combined bosons and fermions one-dimensional radial
determinants does not need regularization,5 in accordance
with the calculations of [5,6].
A related quantity involving the same combination of

potentials as ζ̂totð0Þ is the sum of lnðsinh ρÞ integrals in (17)
and (19), which when added to the Weyl anomaly gives

anomalyþ ln sinh ρ∶Z
∞

0

dρ sinh ρ

�
1

2
R lnM þ ln ðsinh ρÞ∇2 lnM

�

¼ −2 ln cos
θ0
2
: ð34Þ

As we will see, this terms cancels the reminder that was
found in [5,6]. We can also keep track of the contribution
coming from the gauge field, easily seen to vanish:

A2∶ 1× ð1Þ2 þ 1× ð−1Þ2 − 4×

�
1

2

�
2

− 4×

�
−
1

2

�
2

¼ 0:

ð35Þ

In contrast, the last term in (19) involving the fermionic
potential gives

W2∶ −8×
Z

∞

0

dρsinhρW2¼4θ0 sinθ0−16sin2
θ0
2
: ð36Þ

Ultimately, this expression accounts for the mismatch with
the gauge theory prediction (7).
Finally, one can check that the radial determinants at

fixed Fourier mode coincide with those presented in [5,6].
Therefore,

X
l

ln
det Ōl

det Ōfree
l

∶−3 ln cos θ0 þ 2 ln cos
θ0
2
: ð37Þ

In hindsight this was to be expected since the calculation
involves solving a set of homogeneous equations in AdS
which translate into those of [5,6] after an appropriate Weyl

3The attentive reader may notice an unexpected nontrigono-
metric (linear) dependence θ0 in (30). This comes about because
the primitive involves inverse trigonometric functions which
when evaluated at the endpoints and for θ0 ∈ ð0; π

2
Þ simplify to

the above expression.
4In that case the conformal factor is MðρÞ sinh2 ρ. This

becomes singular as ρ → ∞, which forces the introduction of a
large cut-off to regulate the divergences. Consequently, boundary
terms must be added. These cancel, as does the bulk contribution
since R ¼ 0.

5Each term in (31) is responsible for subtracting the divergence
in the sum over Fourier modes in each individual determinant
[see (17) and (19)].
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transformation of the metric and properly adjusting the
potentials and connection terms. The difference in the
present case is that instead of imposing a sharp Dirichlet
boundary condition at small but finite value of ρ as in [5,6],
here we only require regularity of the solutions at the center
of the disk. Nevertheless, the answer is the same.
Putting all the above results together, the final expression

for the difference in the one-loop effective actions of the 1
4

and 1
2
-BPS strings is

ΔΓ1-loop
effectiveðθ0Þ ¼

3

2
ln cos θ0 þ 2

�
4sin2

θ0
2
− θ0 sin θ0

�

¼ −
3

4
θ20 þOðθ40Þ: ð38Þ

As indicated above, when taking the small θ0 limit,
our holographic answer coincides with the field theory
prediction (7), just as in the perturbative ζ-function
computation of [8].
Let us briefly comment on this result. Recall that the

works of [5,6] computed the effective action by looking
only at the sum of the radial determinants, finding the
reminder ln cos θ0

2
in (37). Recently, it was argued in [7]

that this term is corrected for if a diffeomorphism-invariant
regulator is used in the calculation, producing a match
between the string theory calculation and the gauge theory
prediction. In contrast, the ζ-function formalism is auto-
matically diffeomorphism-invariant, and we see that this
reminder disappears due to the combination (34). Alas,
there is an extra contribution coming from the fermionic
potential W2 that yields a mismatch with the gauge theory
calculation. At the moment we dare not speculate about the
origin of this term.
For completeness, we present the results for each indi-

vidual determinant in the spectrum. Taking into account (27)

ln

�
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�
¼ θ0 sin θ0 þ

1

2
sin2
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2

þ
�
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3
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�
ln

�
cos
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2

�
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12
θ20 þOðθ40Þ; ð39Þ
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�
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9

2
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2
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3
þ 2 cos θ0

�
ln

�
cos
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2
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− 2 ln ðΓðcos θ0ÞÞ − ln ðcos θ0Þ
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1

12
− γ

�
θ20 þOðθ40Þ; ð40Þ

ln

�
detO3�ðθ0Þ
detO3�ð0Þ

�
¼ 1

2
sin2

θ0
2
þ
�
7

3
þ 2 cosθ0

�
ln

�
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θ0
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�
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6
− γ
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11

12
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�
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Our results match the perturbative heat kernel calculation
of [8]. Notice that the first ratio is entirely an effect of the
Weyl anomaly, since the rescaled operators for the 1

4
-BPS and

the 1
2
-BPS solutions coincide. Actually, we have checked that

all the ratios for the rescaled operators, without including the
anomaly, also match with the perturbative method for a fixed
AdS2 metric. It would be interesting to extend the perturba-
tive heat kernel results of [8] to the next order in θ0.

V. CONCLUSIONS

In this manuscript we have computed the difference of
one-loop effective actions of the 1

4
- and 1

2
-BPS strings using

ζ-function regularization. We were encouraged and moti-
vated by a previous perturbative heat kernel computation
reporting agreement with the field theory prediction at the
first nontrivial order in the latitude angle θ0 [8]. It is worth
highlighting that we tackled the computation directly on the
hyperbolic disk rather than mapping the problem to a
cylinder, as has been traditionally done [4–7]. Along these
lines, it would be an elucidating step to adapt our results to
compute the ζ-function for circularly symmetric operators
defined on the flat cylinder geometry. This would shed
some light on the role of the diffeomorpism-invariant
regulator advocated in [7]. We hope to pursue these
directions in the near future.
Alas, our complete computation shows that at higher

order in θ0 the agreement is lost. We are thus, left facing a
puzzle. Armed with the supersymmetric localization
answer we can indulge in a form of answer analysis. As
stated before, the remainder of previous calculations does
not appear in our approach since ζ-function regularization
is explicitly diffeormorphism invariant. One identifiable
culprit for the discrepancy we now faced is the term
proportional to W2 in the expression for the fermions.
We suspect that ultimately some aspects of chiral symmetry
might be at play, as suggested in [24] in a different context.
Another potential problem underlying our discrepancy
could be supersymmetry. We do not see how to move
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forward in this direction at the moment but find it quit
plausible to be the cause of the discrepancy.
Our manuscript is a push in understanding the role of

technical methods needed to tackle precision computations
in holography and we are certain that its application will go
beyond the one presented here. We hope to return, e.g., to a
similar computation in the context of the Aharony-
Bergman-Jafferis-Maldacena duality. It is also plausible
that the methods systematically developed in our
companion paper [12] and used explicitly here, will find
use in other problems possibly related to one-loop super-
gravity computations in the context of corrections to the
black hole entropy.
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