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Abstract

Seeking a possible explanation for recent data indicating a space-time vari-

ation of the electron-to-proton mass ratio within the Milky Way, we consider a

phenomenological model where the effective fermion masses depend on the lo-

cal value of the Weyl tensor. We contrast the required values of the model’s free

parameters with bounds obtained from modern tests on the violation of the Weak

Equivalence Principle and we find that these quantities are incompatible. This re-

sult indicates that the variation of nucleon and electron masses through a coupling

with the Weyl tensor is not a viable model.
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1. Introduction

The search for space-time dependence of fundamental constants plays a fun-

damental role in the continuous efforts to put in firmer empirical grounds our

current physical theories and, at the same time, explore the possibilities of exotic

physics that might become manifest trough small deviations. The experimental

research can be grouped into astronomical and local methods. The latter ones in-

clude geophysical methods such as the natural nuclear reactor that operated about

1.8 × 109 years ago in Oklo, Gabon [18, 45, 26], the analysis of natural long-

lived β decays in geological minerals and meteorites [41] and laboratory measure-

ments such as comparisons of rates between clocks with different atomic numbers

[46, 2, 35, 8, 24, 44]. The astronomical methods are based mainly on the analy-

sis of high-redshift quasar absorption systems. Most of the reported data are, as

expected, consistent with null variation of fundamental constants. Nevertheless,

there are reports of intriguing results. For instance Webb et al [55] and Murphy et

al [38] have reported observations made with the Keck telescope which suggest a

smaller value of the fine structure constant (α) at high redshift as compared with

its local value. However, an independent analysis performed with VLT/UVES

data gave null results [50]. Furthermore, a recent analysis using VLT/UVES data

suggests also a variation in α but in the opposite sense, that is, α appears to be

larger in the past [54]. The discrepancy between Keck/HIRES and VLT/UVES is

yet to be resolved. In particular, the two studies rely on data from different tele-

scopes observing different hemispheres and it was pointed out that the Keck/Hires

and VLT/UVES observations can be made consistent in the case where the fine

structure constant is spatially varying [54].
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Focusing on a different quantity, observations of molecular hydrogen in quasar

absorption systems can be used to set constraints on the electron-to-proton mass

ratio µ ≡ me/mp at high redshift [29, 53, 34], while the present value of µ can be

constrained using comparisons of different transitions in atomic clocks [8, 24, 44].

Furthermore, the observed temperature isotropy of microwave background ra-

diation can be used to set bounds on the spatial variation of µ at extragalactic

scales [4]. Surprisingly, a recent analysis of ammonia spectra in the Milky Way

suggests a spatial variation of µ [36, 31, 32]. The study, comparing the spec-

tral lines of the ammonia inversion transition and rotational transitions of other

molecules with different sensitivities to the parameter µ, finds a statistically sig-

nificant velocity offset that when interpreted in terms of a variation in µ gives

∆µ/µ = (2.2 ± 0.7) × 10−8. This will be the focus of the present paper. If we

assume that the latter is not the result of some fluke and systematic experimental

error, and thus take the result quite seriously, we are naturally led to the follow-

ing question: What would be the simplest modification of our present physical

theories that might account for such phenomena? One of the simplest possibili-

ties one can think of is that the effective value of the coupling constants changes

with space-time location. In this sense we note that, within the context of theories

that are at the fundamental level background independent, the study of possible

space-time dependence of fundamental constants is often considered as equivalent

to the search for the existence of dynamical fields which couple to the gauge fields

and/or to ordinary matter in ways that mimic the ordinary coupling constants.

There have been several proposals along those lines with various different

motivations. Some of them arise from proposals for basic theories that arise

in the search for unification of the four fundamental laws of physics such as
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string-derived field theories [58, 33, 3, 19, 20, 21], related brane-world theories

[59, 60, 43, 12] and Kaluza-Klein theories [27, 30, 56, 25, 42]. There are also

phenomenological models where a scalar field φ couples to the Maxwell tensor

Fµν and are characterized by Lagrangian density terms such as −BF(φ)FµνFµν/4

[7, 6, 39, 57, 22] and/or to the matter fields Ψi (i labeling the field flavor) as

Bi(φ)Ψ̄iΨi [39, 28, 13, 5, 40, 57, 22]. If these terms were added to the standard

Lagrangian densities, it is quite clear that, in the first case, it would result in some-

thing like an effective fine structure constant 1/e2
e f f ective = 1/e2 + BF(φ) while in

the second case the effective masses of the elementary particles would be given by

me f f
i = mi + Bi(φ). Then, if the field took space-time dependent values, a feature

that often requires the new field to be quite light so its value is not too rigidly tied

to the minima of any self-interaction potential, then the effective fine structure

constant and/or effective masses might look space-time dependent. This part of

the story is quite clear, however, one can not focus on just this aspect of the theory

when considering it. In fact, it is often the case that the most important bounds

on the theory do not arise from the direct search for this dependence but from the

effects of the direct exchange of quanta of this putative field would have on the

behavior of ordinary matter. The fact that the scalar field must be light, as we

have just described, indicates that this quanta exchange would not be drastically

suppressed by a large mass in its propagator [52]. This generically leads to mod-

ification of the free fall and very often to signals that would mimic violations of

the weak equivalence principle (WEP).

In fact, the connection between the theories involving spacetime dependence

of coupling constants and the WEP was recognized already in the 1960s by Dicke

[23] (see page 163). More recently, Damour [17] noted the extreme difficulty
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in mimicking the behavior of the mass of an object with any coupling that is

not the gravitational one. This means that if the modified theory is required to be

covariant, then the only possibility to ensure an exact compliance with the WEP is

essentially to restrict the new fields to couple to matter in the same way as gravity,

and this is impossible if we want the effective coupling constants to be scalar

functions of some new fields. Consequently, one finds that the two issues are

generically considered simultaneously in attempts to deal with possible variations

of fundamental constants [19, 20, 21, 7, 3, 42, 48, 5, 39, 57, 22]. Thus, it is clear

that we must face this connection in any attempt to deal with the problem at hand,

and that in so doing we must consider the most modern and stringent bounds that

are currently available on the possible violations of the WEP.

The basic idea of this manuscript is that rather than considering new fields

which play the role of modifying the effective value of the fundamental constants,

we can introduce non-standard aspects of well known fields in order to play that

role. The long range fields in nature are the electromagnetic and gravitational

ones. The use of the former in the desired context does not seem as a promising

possibility because, for one it is very well understood and tested over very wide

class of regimes, even at the quantum level (i.e., QED), and its enormous strength

implies that any small modification would have very noticeable effects. The latter,

on the other hand, is still far from being well understood (particularly its quantum

aspects), and secondly, it seems conceivable that an exotic type of its coupling

to matter might exist without having been detected so far. Considerations along

these lines have led to proposals where the curvature of space-time might affect the

propagation of matter fields in rather unusual ways [16], which might be viewed

as violating of the strict letter of the equivalence principle without destroying
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overall general covariance2. In this manuscript we will explore this issue and show

that, despite this early optimistic assessment, the value of the model’s parameters

needed to explain the observed variation of µ in the Milky Way can be ruled out

by the bounds on those parameters emerging from experimental tests of the WEP.

The paper is organized as follows. In section 2 we discuss the astronomical

data that suggest a variation of µ in the Milky Way. In Section 3 we describe a

general theoretical model with an “exotic” coupling between matter and gravi-

tation; in section 3.1 we present a subclass of models where gauge invariance is

preserved. Section 4 is devoted to determine the value of a combination of the free

parameters for the models presented in section 3 as implied by the astronomical

data discussed in section 2. In section 5 we obtain bounds on another combination

of the free parameters of the models using the latest tests of the WEP. We end with

a brief discussion and some conclusive remarks in section 6.

2. Data discussion

Astronomical spectroscopy can probe physical constants which describe atomic

and molecular discrete spectra. It is the case of the electron-to-proton mass ratio µ.

Recently, Levshakov et al [31, 32] reported new bounds on µ obtained through the

ammonia method. Previous bounds with the same method were obtained by Mo-

laro et al [36]. The method consists in comparing the observed frequency of the

NH3 inversion transition with a suitable rotational frequency of another molecule

arising co-spatially with ammonia. In particular, the authors used precise molec-

ular lines observed in Milky Way cold dark clouds to compare the apparent radial

2The proposals are motivated by searches for possible granular structure of space-time which

might conflict with the ultra-locality that is implicitly assumed in the latter principle.
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velocity for the NH3 inversion transition, Vinv, with the apparent radial velocity,

Vrot, for rotational transitions in HC3N and N2H+ arising from the same molecular

cloud. The method provides a relation between the shift radial velocity and the

relative variation of µ:

∆µ

µ
= 0.289

Vrot − Vinv

c
≡ 0.289

∆V
c
. (1)

In the first report [32], three radio telescopes were used to obtain the data: 32-

m Medicina, 100-m Effelsberg and 45-m Nobeyama. The authors found several

problems in treating the data: i) not all the molecular profiles can be described ad-

equately with a single component Gaussian model and ii) molecular cores are not

ideal spheres and being observed at higher angular resolutions exhibit frequently

complex substructures. The line profiles may be asymmetric due to non-thermal

bulk motions. Therefore the authors selected 23 pair molecular lines from the ini-

tially 55 molecular pairs observed. The weighed mean and errors as well as the

robust M-estimate of the mean reported for the 23 data, for 100-m Effelsberg and

45-m Nobeyama data sets are shown in table 1. In order to check if the weighed

mean is a representative value of the mean value of each data set of table 1 we have

calculated χ2 =
∑

i pi(xi − xW)2/
∑

j p j (xW is the weighed mean, pi = 1/σ2
i and σi

refers to the 1σ error reported in Levshakov et al [32]) and compared it with the

expected value of χ2 for a Gaussian distribution. In all cases the obtained value

of χ2 is large compared with the expected value of χ2 for a normal (Gaussian)

distribution. Therefore, the distribution of the data does not seem to be normal

(or Gaussian). The authors of Levshakov et al [32] have also calculated the robust

M-estimate of the mean. From table 1 it follows that there is a significant differ-

ence between the Nobeyama weighed mean and robust M-estimator, while for the

complete data set and Effelsberg data set both estimators are consistent. On the
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other hand, although there is a good agreement between the robust M-estimate of

the three data sets, the Nobeyama data set has a larger systematic error due to the

lower accuracy at the rest frequencies of the N+2 H transition. Furthermore, from

the 23 sources of the complete data set, 2 are in common for the 3 telescopes,

and 3 are in common for Effelsberg and Nobeyama. Levshakov et al [32] treated

them as independent observations because the data was obtained with different

instruments, so such data points have different systematic errors; however, these

are not independent as measurements of the physical quantity.

In a recent paper, the authors map four molecular cores selected from their

previous sample in order to estimate systematic effects in the velocity offset and

to check the reproducibility of the velocity offset on the year-to-year time base

[31]. Observations were performed with the 100-m Effelsberg telescope. In two

cores the velocity offset can be explained by the observed kinematic structure. In

the other two cores, they obtain a statistically significant positive velocity offset

which is shown in table 1. The differences between densities in clouds are not

significant, thus the Effelsberg robust M-estimate reported in Levshakov et al [32]

is statistically more significant than the value reported in Levshakov et al [31]. We

will consider the value of the Effelsberg robust M-estimate reported in Levshakov

et al [32] as the final value of the velocity offset between rotational and inversion

transitions. However, it should be noted that taking the other values reported in

the paper or taking the value reported in Levshakov et al [31] will not produce a

significant change in the conclusions of the theoretical models we are testing in

this paper.
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Table 1: Results for the relative radial velocity for all the data, only data obtained with Effelsberg

radio telescope and only data obtained with Nobeyama radio telescope [32]. Entry name Effelsberg

(2) refers to results reported in Levshakov et al [31]. 〈∆W〉W refers to the weighed mean and

corresponding error, 〈∆V〉M refers to the robust M-estimate of the mean. All velocities are in units

of m/s.

Data 〈∆V〉W 〈∆V〉M

all 20.7 ± 3 21.5 ± 2.8

Effelsberg 23.0 ± 3.1 23.2 ± 3.8

Nobeyama 14.0 ± 7.2 22.9 ± 4.2

Effelsberg (2) 26.9 ± 4.2

3. The Weyl Model

The basic idea of the Weyl models involves considering the effect described

in the previous section as due to a non-minimal and rather exotic coupling of the

matter fields with gravity through the Weyl tensor. At first sight this may seem

as an unnatural proposal as gravity is usually neglected in these regimes and, fur-

thermore, one generally does not feel that there might be a fundamental reason

to couple gravity with matter fields in exotic ways. However, in contrast to other

models [28, 13, 37, 40], in this scheme there is no need to invoke new unob-

served dynamical fields, or non-dynamical fields that break Poincaré invariance,

or other such problems, which in our opinion are ruled out by the analysis of its

consequences on virtual particles [14, 15]. Moreover, as described in Corichi and

Sudarsky [16], Bonder and Sudarsky [9, 10, 11], the generic view we adopt in

9



considering these sort of models is that gravity as “the curvature of a manifold”

is only an effective description of more fundamental degrees of freedom (from an

unknown quantum theory), and thus, the unnaturalness of the coupling terms is

tied to the need to use a metric description rather than the still unknown language

of the quantum gravity theory.

The task is to find a way in which gravity and matter could interact in a phe-

nomenological level causing the described change in the matter’s observed mass.

We study fermionic matter fields Ψi where i labels the field’s flavor. The usual

mass term in this case is miΨ̄iΨi, therefore, in order to explain the observations

we need to replace mi by some scalar depending on the gravitational environment.

This should be implemented by

mi → mi

[

1 + ξi f
( R
Λ2

)]

, (2)

where ξi are small phenomenological parameters which may be different for each

flavor, f is a function of the curvature tensor and Λ is an energy scale. The first

scalar function that comes to mind is the Ricci scalar R. However, the Ricci tensor

at a space-time point x, and thus the Ricci scalar, is completely determined by

the matter at the same point x, which implies that coupling Ψi(x) with R(x) is a

self-coupling that, for phenomenological purposes, is not interesting. Thus, we

should build f with what is left when removing from the Riemann tensor the part

determined by the Ricci tensor: The Weyl tensor, Wabcd. It is trivial to note that

it is not possible to construct a Lorentz scalar out of one power of Wabcd, thus,

the simplest scalar one can write is f = WabcdWabcd

Λ4 ≡ W2

Λ4 . Note that Λ4 has (mass)

dimensions 4 (~ and c are taken to be 1) and thus ξi are dimensionless parameters.
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3.1. Gauge invariance and the Weyl proposal

We might be concerned that if the coupling to different fermion flavors are

completely arbitrary, the new proposal conflicts with gauge invariance destroying

the renormalizability of the theory. However, the fact that this modification is

assumed to be tied to gravitational sector itself, known to be non-renormalizable3,

places these concerns in the proper perspective. In addition, a simple restriction

can remove this issue altogether: The quantity that we need to vary with location

is the ratio of electron and proton masses µ, and the two quantities have a rather

different origin; one arising mainly a from the strong interaction of the quark and

gluon constituents, while the other is due to the Yukawa term and the vacuum

expectation value of the Higgs field. We can construct a rather simple theory with

the required features by focusing on this difference. Namely, we assume that the

exotic coupling to Weyl tensor enters into the theory only in the fermionic Yukawa

terms as

LYukawa =
∑

a,b

Γab(W2)ψ̄R
aΦΨ

L
b + h.c. (3)

where the sum is over the standard SU(2) left handed fermion field doublets ΨL
b

and right handed fermion filed singlets ψR
b of the electroweak theory, Φ is the

standard doublet Higgs doublet field, and Γab(W2) are the Yukawa coefficients

which are now considered to depend on the local value of the magnitude of Weyl

tensor. Considering the lowest order of a Taylor expansion we can write Γab(W2) =

(1 + ξ(ab)W2/Λ4)Γab(0), where the parameters ξab characterize the leading order

corrections and, in general, depend on the flavor indices a and b. As we only

3Nowadays this is simply taken as indication that a theory must be considered as an effective

theory.
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focus on the first generation and the quark sector is, in any event, quite different

phenomenologically from the lepton sector due to the connection with the strong

(or color) force, we ignore that possible dependence and simply write ξ. It is thus

clear that as the Higgs field acquires a vacuum expectation value, the resulting

fermionic mass matrices are multiplied by the factor 1 + ξW2/Λ4 and thus the

lepton and quark masses appear in the effective Lagrangian as multiplied by that

factor.

It is then evident that, as long as gravitation is considered as a fixed back-

ground and one does not attempt to introduce radiative corrections involving gravi-

tons, the theory preserves the same renormalizability properties as the standard

model. Of course, when attempting to include radiative corrections involving

gravitons, the theory will encounter the usual problems facing the quantization of

gravitation. On the other hand, the mass of any lepton appears in the low energy

theory as

ml → ml

(

1 +
ξ

Λ4 W2
)

, (4)

while in the case of hadrons only the valence quark mass, which represents a

rather small part of the total hadron mass, suffers such modification, thus we can

expect that the change in the total hadron mass is much smaller, i.e.,

mh → mh

(

1 + ah
ξ

Λ4 W2
)

, (5)

where the parameter ah is of order 10−3 (the valence quark proportion of the

hadronic masses). In other words, we can take the electron’s ξe parameter to

be identical to the fundamental parameter ξ, while the parameter corresponding

to the proton ξp is given by apξ where ap is of order 10−3. The model described

in this subsection is less general than the case where the proton and electron cou-

pling to the Weyl tensor are not related. In the following sections we consider the
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theoretical predictions of both models and compare it with astronomical and ex-

perimental data. We call model I to the model where the couplings of leptons and

quarks are not related and model II to the case where the exotic coupling enters

only in the Yukawa terms.

4. Estimates on the Weyl model parameters from electron-to-proton mass

ratio

In a model where the interaction between gravity and matter at a phenomeno-

logical level is such as described in section 3, the low energy limit of the interac-

tion Lagrangian density can be written as

Lint =
ξe

M4
P

meW2ψ̄eψe +
ξp

M4
P

mpW2ψ̄pψp +
ξn

M4
P

mnW2ψ̄nψn, (6)

where subscripts e, p, n respectively refer to electrons, protons and neutrons and

we set Λ equal to the Planck scale MP = 1.22 × 1019 GeV. Thus, the effective

masses of the particles can be expressed as me f f
i = mi

(

1 + ξi
M4

P
W2

)

. Note that

we have restored in the notation ξi the possible dependence of the parameter on

the particle type. The point being, as discussed in the previous section, that even

if ξ had a single value throughout the first generation of quarks and leptons, the

composite nature of the hadrons, as well as the gluon contribution to the mass

of these particles, would make the effective value quite different from that corre-

sponding to electrons. The difference between neutrons and protons can similarly

be expected to arise as a result of the electromagnetic differences between them.

According to the model we are proposing, the observable quantity is

µe f f ≡
me f f

e

me f f
p
=

me

mp





















1 + ξe
M4

P
W2

1 + ξp

M4
P
W2





















≃
me

mp

(

1 + α
W2

M4
P

)

, (7)
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where in the last step we use the fact that ξi/M4
P are small and we define α ≡ ξe−ξp

for model I and α ≡ (1 − ah)ξ for model II. Thus, the observed electron-to-proton

mass ratio value in cold molecular clouds respect to the same value at Earth is

µ
e f f
cl − µ

e f f
⊕

µ
e f f
⊕

≃
α

M4
P

(W2
cl −W2

⊕), (8)

where the subscripts cl and ⊕ stand respectively for the interstellar clouds and the

Earth.

In order to compute the Weyl tensor both, in the cloud and at the laboratory,

we consider a sphere of constant density ρ and radius R, surrounded by vacuum.

Outside the sphere, namely at a distance r ≥ R from its center, we get W2 = 48G2M2

r6

where G is Newton’s constant and M ≡ 4πρR3/3 is the mass of the sphere. Due to

the dependence of W2 on r we realize that we have to be careful while considering

the contributions to W2. For example, contributions from massive bodies near to

the laboratory such as a wall may be greater than the contribution of the entire

Earth. Therefore, we also consider the contribution of the Earth and from walls

of 4 m height, 4 m width and 0.5 m depth made of cement and iron located 0.1 m

from the experiment. The results of the calculations show that the contribution to

W2 of an iron wall located very close to the experiment (W2
I = 1.8 × 10−44m−4)

is greater than the effect of the Earth (W2
⊕ = 1.4 × 10−44m−4) or a cement wall

(W2
C = 1.4× 10−44m−4) . Given that we have not the exact details of the laboratory

where the rest wavelengths are measured and since we are dealing with a positive

detection of ∆µe f f , we consider the iron wall to estimate a lower bound on α.

On the other hand, the contribution of the entire Earth can not be neglected and

therefore we consider this contribution to obtain an upper bound on α. Even

though the wall is not a sphere, in the regime we are working on it is possible

to use the approximation of linearized gravity where the superposition principle
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is valid. Thus, the contribution of the wall can be regarded as the sum of the

contribution of a great number of spheres. We estimate that differences with the

exact calculation may be at most of order 10.

We model the interstellar clouds as spheres with constant density ρ and radios

R. In order to calculate W2 we use the inner Schwarzschild solution, which leads

to W2
cl =

46π4r4ρ4G4(3−8πR2ρG)2

3(3−8πr2ρG)2(3−2πρG(3r2+R2))2 . Taking for the clouds a mean density ρcl =

1.5 × 1027 m−4, a mean radius Rcl = 0.052 Pc [36] and at r = R/2 we obtain

W2
cl ≃ 1.5 × 10−178 m−4.(We also calculated the value of W2

cl for r = 0 and r = R

and the results do not differ significantly from the case r = R/2). Taking the value

of Effelsberg robust mean discussed in section 2 we get

1.22 × 1036m4 ≤
|α|

M4
P
≤ 1.57 × 1036m4 (9)

On the other hand, if we consider the model described in section 3.1, where hadron

masses suffer much smaller modifications than lepton masses, in order for the

model to explain the observations described in section 2 the following condition

must be fulfilled:

1.22 × 1036m4 ≤
|ξ|

M4
P
≤ 1.57 × 1036m4 (10)

The next section is dedicated to study if the relations (9) and (10) are compatible

tests of the WEP.

5. Bounds from Eötvos type experiments

The gravitational potential of an object composed of N atoms with atomic

number Z and baryon number B can be written by taking into account that the
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effective masses are modified in this model according to equation (6):

V = NZ
ξe

M4
P

meW2 + NZ
ξp

M4
P

mpW2 + N(B − Z)
ξn

M4
P

mnW2

= N
α′

M4
P

W2mp, (11)

where

α′ = Z
(

ξe
me

mp
+ ξp − ξn

mn

mp

)

+ Bξn
mn

mp
. (12)

The force acting on a freely falling body of mass Mb can be obtained from ~F =

−~∇V , thus, the respective acceleration is ~a = −Nα′mp~∇W2

M4
P Mb

. The differential accel-

eration of two bodies with different composition but the same number of atoms

N is ∆~a = −
~∇W2 mp(δ1 α

′
1+δ2α

′
2)

M4
P

, where we assume that the mass of the body can be

expressed as Nm with m the atomic mass of each body and we define

α′1 ≡ ξe
me

mp
+ ξp − ξn

mn

mp
, α′2 ≡ ξn

mn

mp
, (13)

and also δ1 ≡ (Z1/m1) − (Z2/m2) and δ2 ≡ (B1/m1) − (B2/m2), the subscripts indi-

cating which object we are considering. On the other hand, if hadron masses suffer

smaller modifications as suggested in section 3.1, the prediction of the violation

of WEP can be written in terms of a single parameter ξ: α′1 ≡ 10−3ξ, α′2 ≡ 10−3ξ.

Limits on violations of the WEP come from Eötvos-Roll-Krotkov-Dicke and

Braginsky-Pannov measurements of the differential acceleration of test bodies.

The most stringent limits are obtained from measurements of differential accel-

eration towards the Sun. However, since the force resulting from Weyl models

is a short range force, the relevant bounds to test such models are provided by

measurements towards the Earth. In this kind of experiments a continuously ro-

tating torsion balance instrument is used to measure the acceleration difference

of test bodies with different composition. In table 2, we summarize the current
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bounds considered in this paper as well as the composition of the test bodies in

each case. All bounds were obtained from an experiment made at the Univer-

sity of Washington Nuclear Physics Laboratory. The authors of the experiment

mention two sources for the relevant signals and in our case these would be the

sources for ~∇W2, a hillside of 26 m located closed to the laboratory (we estimate

1 m) and a layer of cement blocks added to the wall of the laboratory [1]. Here we

model these sources simply as spherical masses at a given distance. Barring some

fortuitous cancellation among the various contributions in the laboratory due to

their detailed location and geometry, these simplification cannot amount to more

than a change by a geometrical factor of order one, which we ignore. Moreover,

the expression for
∣

∣

∣

∣

~∇W2
∣

∣

∣

∣

reads
∣

∣

∣

∣

~∇W2
∣

∣

∣

∣

= 288
r7

(

4
3πGρR3

)2
, and therefore the con-

tribution from the hillside and cement layer can be estimated to be, respectively,
∣

∣

∣

∣

~∇W2
H

∣

∣

∣

∣

= 7.9 × 10−45m−5, and
∣

∣

∣

∣

~∇W2
L

∣

∣

∣

∣

= 2.9 × 10−45m−5. Since both contribution

are of the same order, we continue our analysis considering only the contribution

of the hillside. In order to estimate the value of α′1 and α′2, we perform a least

square minimization using the calculated expression for the acceleration and the

data from table 2. We obtain for model I:

α′1

M4
P
= (3.5 ± 7.8) × 1013 m4, (14)

α′2

M4
P
= (−0.7 ± 2) × 1015 m4. (15)

Moreover, using the data from table 2 we get for the model II:

ξ

M4
P
= (1.7 ± 6) × 1016m4. (16)

The contribution of other massive sources such as other hills close to the labora-

tory would give lower values of
∣

∣

∣

∣

~∇W2
∣

∣

∣

∣

resulting in higher values for ξ. However,
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we cannot ignore the hill of 26 m and the layer of cement mentioned by Adel-

berger et al [1] and therefore the limit on ξ is not a lower bound in the sense that

it has been discussed in section 4 for the astronomical data.

Table 2: Bounds on the equivalence principle considered in this paper.(B/m)i and M(g) refer to

the baryon number and total mass of the test bodies

∆a (m−1) Z1 Z2 (B/m)1 (B/m)2 M(g) Reference

(2.5 ± 7.23) × 10−31 4 13 0.998648 1.000684 10 [51]

(5.3 ± 6.45) × 10−31 4 29 0.998648 1.001117 10 [51]

(0.67 ± 3.45) × 10−32 4 22 0.99868 1.001077 4.8 [47]

(2.3 ± 2.3) × 10−30 4 13 0.998648 1.000684 10 [1]

(0.9 ± 1.89) × 10−30 4 29 0.998648 1.001117 10 [1]

(1.11 ± 3.11) × 10−32 29 82 1.0011166 1.0001694 10 [49]

6. Discussion and Conclusions

We have considered a model where a non-minimal coupling of Weyl tensor

to matter would result in an effective mass for fermionic fields which would be

space-time dependent. The model might be considered as a possible explanation

for the recent reported observations of a space-time variation of the electron-to-

proton mass ratio in [36, 31, 32]. We have developed the model in some detail and

extracted the range of values for a combination of the parameters which would be

necessary to account for the “exotic” observation. We have also considered the
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constrains on the model that arise from consideration of precision tests of the

WEP and used some of the most modern relevant data to contrast the two results.

In section 4 we analyzed the variation of the effective electron-to-proton mass

ratio between the environments corresponding to the Earth’s surface and a molecu-

lar cloud and showed that consistency with the reported data requires α = ξe−ξp ∼

1036 m4 M4
P. On the other hand, the result of the statistical analysis performed in

section 5 with bounds on the WEP constrain the value of α′1 = ξeme/mp + ξp −

ξnmn/mp to be of order 1013 m4 M4
P. Here one might be inclined to note that the

two situations are sensitive to slightly different combination of the fundamental

parameters, and is thus conceivable that α might be as large as required to account

for the astronomical observations while α′1 is as small as needed to conform with

the laboratory bounds. We view such possibility as very unlikely as it would imply

that the particular choice of materials compared in the the laboratory tests were

coincidentally those for which the signal resulting from the generic couplings hap-

pened to cancel out almost exactly (at the level of one part in 1017). Moreover, as

similar tests with slightly lower precision do exist for other materials, taking this

line of reasoning would only lead to a reduction by at most a couple of orders of

magnitude in the constraint, something which would still be sufficient to rule the

model out.

If we consider the model described in subsection 3.1, consistency with the

astronomical data requires |ξ| ∼ 1036 m4 M4
P whereas the result of the statistical

analysis performed in section 5 with bounds on the WEP constrain the value of

ξ to be of order 1016 m4 M4
P. We thus have found that barring some miraculous

cancellation or some unnatural fine tuning of the experimental conditions and/or

of the model, the two sets are incompatible, and that a model where the variation
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of the electron, proton and neutron effective mass is driven by the scalar magni-

tude of the Weyl tensor can not account for the experimental constraints and the

observational data and should be also ruled out.

If the observations of [36, 31, 32] were to be further confirmed and the ev-

idence for a change in the value of the electron-to-proton mass ratio became in-

controvertible, one would need some different sort of explanation, however, due to

the connection between space-time dependency of parameters and the couplings

of ordinary matter with dynamical fields, which appears inherent of background

independent theories, it seems very unlikely that one might find a model where the

bounds imposed by tests of the WEP would not be of great relevance and impact.

Nonetheless, we should stress our belief that this kind of models should be further

explored, not only as potential explanatory grounds for atypical observations, but

also as leading to robust constraints on the possible nontrivial couplings of matter

and gravitation.
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