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Abstract
For over 200 years, fossils of bizarre extinct creatures have been described from the Ameri-

cas that have ranged from giant ground sloths to the ‘native’ South American ungulates,

groups of mammals that evolved in relative isolation on South America. Ground sloths

belong to the South American xenarthrans, a group with modern although morphologically

and ecologically very different representatives (anteaters, armadillos and sloths), which has

been proposed to be one of the four main eutherian clades. Recently, proteomics analyses

of bone collagen have recently been used to yield a molecular phylogeny for a range of

mammals including the unusual ‘Malagasy aardvark’ shown to be most closely related to

the afrotherian tenrecs, and the south American ungulates supporting their morphological

association with condylarths. However, proteomics results generate partial sequence infor-

mation that could impact upon the phylogenetic placement that has not been appropriately

tested. For comparison, this paper examines the phylogenetic potential of proteomics-

based sequencing through the analysis of collagen extracted from two extinct giant ground

sloths, Lestodon andMegatherium. The ground sloths were placed as sister taxa to extant

sloths, but with a closer relationship between Lestodon and the extant sloths than the basal

Megatherium. These results highlight that proteomics methods could yield plausible phylog-

enies that share similarities with other methods, but have the potential to be more useful in

fossils beyond the limits of ancient DNA survival.

Introduction
In the last few decades, the impressive South American megafauna has been the subject of an
increasing research effort [1]. Among its several appeals, its taxonomic composition is highly
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peculiar, with many giant xenarthrans across a range of localities. With only about 30 living,
rather small species (21 armadillos, four tree sloths and six anteaters; [2]), this monophyletic
group of placental mammals had an impressive richness throughout the South American
Cenozoic [2–5]. They reached North America during the Great American Biotic Interchange
(GABI; [6, 7]) and many of its species (especially those of large body size) went extinct near the
Pleistocene—Holocene border [8]. According to the latest classification, xenarthrans, one of
the four main placental clades, are the sister group of the remaining placentals, the Epitheria
[9], although that node has proved unstable in recent molecular phylogenies (e.g., associated
with Afrotheria to make up the Atlantogenata, [10]). Within the Xenarthra, with an origin of
around 105 Ma [11, 12], two groups are recognized [3, 5]; one of them, Cingulata, consisting of
the armadillos and their extinct relatives (glyptodonts and pampatheres) and the other, Pilosa,
including the anteaters (Vermilingua) and the sloths (Tardigrada [2]–but see discussions on
nomenclature in Fariña & Vizcaíno [13]).

While the cingulates, with their several modern species, have been the subject of molecular
systematics [14], sloths, being so poorly represented in modern faunas, have been mostly classi-
fied based on morphological characteristics [15], although molecular phylogenies including
extant sloths do exist and they are congruent with those based on morphological characters
[16–18]. Moreover, it should be noted that ancient DNA (aDNA) has been described for the
fur and faeces of the exceptionally well-preservedMylodon darwinii found mummified in
Última Esperanza, southern Chile [19] and Nothrotheriops shastensis in Gypsum Cave, USA
[20]. Molecular results are congruent with morphological phylogenies [15] that place the mod-
ern three-toed sloth Bradypus as the sister group of the remaining sloths and the two-toed
sloth Choloepus among the Megalonychidae. The Mylodontidae, the group that includes one of
the species analysed here, Lestodon armatus, split in the first subsequent dichotomy from the
Megatherioidea, which includes the other species dealt with in this paper,Megatherium
americanum.

Although aDNA gives interesting results in terms of phylogeny and systematics, some pro-
teins, another phylogenetically-informative class of biomolecules, especially collagen, are
promissory as well [21, 22]. They survive in fossils for lengths of time that are an order of mag-
nitude greater than for DNA [23] and have been investigated for the phylogenetic potential to
resolve the relationships of extinct taxa for decades [24, 25]. Recent developments in protein
sequence analysis enable complex mixtures of proteins (i.e., proteomes) to be routinely ana-
lysed using techniques of ‘soft-ionisation’mass spectrometry. This technology now allows us
the ability to obtain protein sequence information and infer evolutionary relationships from
long extinct organisms much deeper into the past than previously thought possible.

Although the biomineralised tissue that is bone contains thousands of different proteins
[26], most of these do not survive long periods of time within a burial environment, where a
general qualitative decrease in proteome complexity with increasing chronological age has
been observed [27]. However, the dominant protein of bone, type 1 collagen, has been demon-
strated to survive much longer than other non-collagenous proteins [27, 28] and also, more
importantly, in specimens that no longer yield aDNA [28]. Recent analyses unambiguously
reporting the survival of collagen within Pliocene sub-fossil material ~3.5 Ma [29] demonstrate
its potential for a wide range of extinct taxa. Although the use of ancient collagen to infer phy-
logenetic relationships of extinct taxa has been practised for several decades [22, 24], it is only
relatively recently that collagen sequence information has been acquired using proteomics
techniques. Although proteomics has the advantage that it can retrieve sequence information
from complex mixtures of proteins and peptides [30, 31], because of its probability-matching
nature, it is prone to false positive matches and potentially non-random sequence acquisition.
Thus the sometimes highly-partial nature of the acquired sequences, which have recently been
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used to identify the ‘malagasy aardvark’ as a type of giant tenrec [22], and confirmation that
the South American endemic ungulates derive from condylarths [32] needs further validation
in light of new sequence information from other taxonomic groups.

The aims of this research are to evaluate the phylogenetic integrity of collagen sequencing
by proteomics where sequence information of closely-related taxa is limited. Given that the
xenarthrans remain the poorest studied of the four major mammalian groups, here we present
results of the speciesMegatherium americanum, known since the last years of the 18th century
[33], and Lestodon armatus, described in the mid-19th century [34].

Materials and Methods
All permits were obtained to recover archaeological/palaeontological material where required.
Protein extraction from two specimens of Lestodon (specimen numbers 474 and 975A; reposi-
tory: held in the Colección del Arroyo del Vizcaíno, Sauce, Departamento de Canelones, Uru-
guay, no permits were required for the described study under Uruguayan law) from the Arroyo
del Vizcaíno site, ca. 30 Ka; [35]) and two specimens ofMegatherium (one ungual phalange
from Penas de las Trampas 1.1, Argentina, ca 12.5 Ka [36] specimen code PVL 6786–1 held in
the Colección Paleontología Vertebrados Lillo, Facultad de Ciencias Naturales e Instituto
Miguel Lillo—Universidad Nacional de Tucumán, Miguel Lillo 205. (4000) San Miguel de
Tucumán, Argentina under permits issued by the Dirección Provincial de Antropología-Secre-
taría de Estado de Catamarca, Argentina Resolución N° 098/11, and one from Las Chacras, Rio
Negro, Argentina, ca Late Pleistocene; MAPB# 3965, a museum specimen at the Museo
Arqueológico y Paleontológico de Bariloche, Río Negro, Argentina, dated to ca. 18 Ka) was car-
ried out following methods described by Wadsworth & Buckley [27]. In brief, ~30–50 mg bone
powder was decalcified with 0.6 M hydrochloric acid (HCl) for ~18 hours, and centrifuged
(14,000 rpm) for 5 min. The supernatant was then frozen whilst the acid-insoluble residue was
gelatinised with 6 M Guanidine hydrochloride/5 mM Tris-HCl for a further 18 hours. The frac-
tion of acid-soluble proteins (predominantly collagen) was then applied to a 10 kDa ultrafilter
(Vivaspin, UK) and centrifuged, which was repeated with the centrifuged supernatant from the
acid-insoluble residue extraction. After the solubilised proteins had passed through the filter,
two volumes of 50 mM ammonium bicarbonate (ABC) were also passed through. A further
200 μL ABC was added to the filter, mixed and recovered, which was then incubated with
10 μL 100 mM dithiothreitol (in 50 mM ABC) for 10 min at 60°C. 40 μL of iodoacetamide was
added to each sample and then stored in the dark at room temperature for 45 min followed by
the addition of a further 10 μL 100 mM dithiothreitol. The sample was then digested overnight
with 2 μg sequencing grade trypsin (Promega, UK) at 37°C and subsequently cleaned using
C18 ziptips following manufacturer’s procotol (Varian OMIX, UK), dried down and resus-
pended with 10 μL 0.1% trifluoroacetic acid. 1 μL of each sample was then spotted onto a Bru-
ker 384 well Matrix Assisted Laser Desorption Ionization (MALDI) target plate and co-
crystalised with 1 μL alpha-cyano hydroxycinnamic acid prior to MALDI analysis. MALDI
spectra were acquired on a Bruker Ultraflex II with a Time of Flight (ToF) mass analyser, over
anm/z range of 700–3700 using 1000 laser acquisitions.

Samples were also analysed by LC—MS/MS using an UltiMate1 3000 Rapid Separation
LC (RSLC, Dionex Corporation, Sunnyvale, CA) coupled to an Orbitrap Elite (Thermo Fisher
Scientific, Waltham, MA) mass spectrometer (120 k resolution, Full Scan, Positive mode, nor-
mal mass range 350–1500). Peptides in the sample were separated on a 75 mm × 250 μm i.d.
1.7 μM Ethylene Bridged Hybrid (BEH) C18 analytical column (Waters, UK) using a gradient
from 92% A (0.1% formic acid in water) and 8% B (0.1% formic acid in acetonitrile) to 33% B
in 44 min at a flow rate of 300 nL min−1. Peptides were then automatically selected for
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fragmentation by data-dependent analysis; 6 MS/MS scans (Velos ion trap, product ion scans,
rapid scan rate, Centroid data; scan event: 500 count minimum signal threshold, top 6) were
acquired per cycle, dynamic exclusion was employed, and 1 repeat scan (2 MS/MS scans total)
was acquired in a 30 s repeat duration with that precursor being excluded for the subsequent
30 s (activation: CID, 2+ default charge state, 2m/z isolation width, 35 eV normalised collision
energy, 0.25 Activation Q, 10.0 ms Activation time). Peptide spectra obtained via LC—MS/
MS were searched against the SwissProt database using the Mascot search engine (v. 2.2.0.6;
Matrix Science, London, UK). Error tolerant searches included the fixed carbamidomethyl
modification of cysteine (+57.02 Da) and the variable modifications for oxidation of lysine
and proline residues (all +15.99 Da) to account for PTMs (the oxidation of lysine and proline
being equivalent to hydroxylation commonly observed in collagen, the dominant protein in
bone), whereas decoy searches were run with the additional variable modifications allowing
for the oxidation of methionine and deamidation of asparagine and glutamine (+0.98 Da) to
allow for diagenetic alterations. Enzyme specificity was limited to trypsin (trypsin/P) with one
(error tolerant) or two (decoy) missed cleavages allowed, mass tolerances were set at 5 ppm
for the precursor ions and 0.5 Da for the fragment ions; all spectra were considered as having
either 2+ or 3+ precursors. Highest matching peptide scores for homologous sequences were
then manually inspected for quality, and the most appropriate added to a custom sequence
database for subsequent further Error Tolerant and decoy Mascot searches. Initial sequences
were obtained via Mascot searches against the other 44 mammalian sequences obtained from
the Ensembl databases and the UCSC genome browser as well as the COL1A2 sequence (81%
complete) for two-toed sloth (Choloepus) and supported by the use of ‘mammal’ sequences
whereby variable amino acid loci, across all sequences, were replaced with an X (a similar
method to the Error Tolerant search mentioned above but that allow for more variable post-
translational modifications).

The Mascot results from the MS/MS queries for the specimens that produced collagen
PMFs were filtered to only include peptide matches greater than the highest false positive score
for that individual analysis (S1 File Sheets A-F); only peptide matches found in both specimens
for each extinct species were used for the sequence analyses. These sequences were then
ordered by position and manually aligned in BioEdit Sequence Alignment Editor v.7.1.3.0 with
X representing unknown/unmatched amino acid residues (? when at an indel site in sequences
from other taxa); where isobaric residues such as isoleucine and leucine were present at the
same site, the most abundant was used throughout due to the inability of the presented tech-
nique to distinguish between them (S2 File). MS/MS spectra for new unique peptides are pre-
sented in the supplementary material (Figures B-P in S3 File). Phylogenetic analyses of the
concatenated collagen alpha 1 and alpha 2 sequences (via an R residue; yielding a total length
of 2098 amino acid residues) were then carried out using the PhyML plugin [37] for Geneious
version 7.1.2 with 44 other mammalian type 1 collagen sequences (concatenated chains)
obtained from the Ensembl databases and the UCSC genome browser. The JTT + I + G model
was used, identified as most appropriate by PartitionFinderProtein v1.1.1 [38]. Trees were
rooted to the duck-billed platypus (Ornithorhynchus) as a prototherian out-group. 10,000
bootstraps were carried out to estimate support with NNI branch swapping. Bayesian analyses
were also carried out using the MrBayes 3.2.2 [39] with 3,000,000 MCMC generations, discard-
ing the first 25% as burn-in, estimated invariable gamma distribution (4 categories), 4 chains
(3 heated, 1 cold) with unconstrained branch lengths and also rooted to the duck-billed platy-
pus (Ornithorhynchus). For analyses including only alpha 2 (I) sequences, the Choloepus
sequence.
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Results
MALDI mass spectrometric fingerprints of the extractedMegatherium and Lestodon bone col-
lagen (Fig 1) were evaluated primarily for qualitative purposes to confirm the extraction and
subsequent enzymatic digestion of protein from the sub-fossil material, but peak differences
were also studied for potential variations that could aid the subsequent in-depth proteome
analysis. Close inspection of the fingerprints (Fig 1) indicate numerous potentially homologous
differences (Table 1), each likely to possess one or more amino acid substitutions. The number
of shared MALDI peaks was substantially greater between the two extant sloths than between
any other pair of taxa (Table 1). By comparison there are more amino acid substitutions in the
recovered proteomic data between the two extinct ground sloths identified from the LC-MS/
MS data (Table 1; S1 File). However, it should be noted that sequence coverage can be highly
variable between analyses of different species, ranging from 56% to 77% when only peptide
matches above the highest scoring false positive match are used (Table 2).

Although there is currently no available COL1A1 sequence for any extant sloth, there is a
partial COL1A2 two-toed sloth (Choloepus hoffmanni) sequence. When the sequence dataset is
cropped to the COL1A2 sequence only and the LC-MS/MS analysis of the three-toed sloth
(Bradypus variegates) added, the Bradypus is consistently placed sister to Choloepus, with Les-
todon and thenMegatherium forming a grade, and the remainder of the tree still consistent
with expected phylogeny for all extant taxa with strong order-level support in most cases, but
weak support at the super-order level. In terms of the stability of the xenarthran group on the
whole, in the Maximum Likelihood analyses Xenarthra is consistently placed as sister to Bor-
eoeutheria (Laurasiatheria + Euarchontoglires) with Afrotheria as the basal group (Fig 2) even
when all other xenarthran sequence information from extant taxa (Dasypus and Choloepus) are
not used (S1 File).

Discussion
Both the comparison of the MALDI fingerprints and, to a lesser extent, the proteomics-based
sequencing indicate that the type 1 collagen is noticeably more different between with the Foli-
vora (sloth) suborder than initially anticipated given their estimated divergence times. By com-
parison to the Proboscidea, within which we only typically see one or two differences between
families (Elephantidae—Mammutidae; [40]) that diverged ~20 Ma, the xenarthran mylodon-
tids and megalonychids are known as well-established groups in South America since Desea-
dan times (late Oligocene, 28–24 Ma; [41, 42]; and megatherioids since the Santacruzian (early
—middle Miocene, 19–16 Ma; [42]). With regards to the two extinct sloths in this study,
although we observed numerous points of likely amino acid variation through analysis of the
collagen-dominant MALDI fingerprints, we only confirmed the variation of fifteen of these
through LC-based sequencing, which reduced to only five substitutions using results from
duplicate specimens. Although one amino acid substitution could be responsible for multiple
observed peak differences in MALDI, due to the presence of both missed cleavages as well as
post-translational modifications, this is indicative of the bias against discovering sequence vari-
ation in more distantly related taxa. This is particularly clear in the example of the inability to
confirm all of the sequences of peptides described previously as peptide biomarkers (e.g.,
marker F in [43]) inMegatherium, and subsequent identification of the homologous peptide in
Lestodon, identical to that of the extant taxa. This discrepancy of missing peptide sequence
information specific to particular regions of the molecular may impact upon phylogenetic
inferences from proteomics-derived sequence data to an extent that has not yet been explored.

Previous studies on the phylogenetic relationships of sloths showed a clear distinction
between the two extant families (Megalonychidae and Bradypodidae) well supported by both
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morphological and molecular differences. In particular, Sarich [44] found considerable evolu-
tionary distance between the albumins of the two genera. Previous aDNA studies on extinct
sloths [19, 45] indicated a relationship between, on the one hand,Mylodon darwinii (Mylodon-
tidae) and Choloepus (Megalonychidae), and, on the other, between Nothrotheriops shastensis
(Megatheriidae) and Bradypus spp. (Bradypodidae). However, this assumption was questioned
by more recent studies [46]. The inclusion of Mylodontidae as the sister taxon of Megalonychi-
dae does not support the monophyly of Megatherioidea (including the megatheriids,
nothrotheriids and megalonychids) as in the widely accepted phylogenetic reconstruction pro-
posals by Gaudin [47] based on craniodental morphological traits. Although in that paper the
grouping of Mylodontidae and Megalonychidae is not supported, most of the molecular phylo-
genetic reconstructions show an allied relation ofMylodon and Choloepus [19, 45, 46, 48], even
with the inclusion of other Megatherioidea as Nothrotheriops [20]. Moreover, Gaudin [47]
states that the hypothesis of a close relation of Choloepus with mylodontids cannot be statisti-
cally rejected and that the position of Choloepus within megalonychids could not unambigu-
ously be resolved. More recently, an aDNA phylogeny by Clack et al. [49] placed Choloepus
close toMylodon, with Bradypus occupying a derived position among megalonychids and
Nothrotheriops occupying a basal position as the sister group of all the mentioned sloths. Our
study shows a relationship between the extant and extinct sloths not previously proposed by
molecular or morphological phylogenies, since both extant sloths appear as sister taxa with Les-
todon (Mylodontidae) andMegatherium (Megatheriidae) forming a successive grade. As noted
before, a basal position of Megatheriidae (Nothrotheriops) is reported by Clack et al. [49] but

Fig 1. MALDI-ToFmass spectra of collagen extracted from Lestodon andMegatherium digested with
trypsin. *Note the clearly observable difference in deamidation as a marker for protein ageing due to
the presence of a glutamine residue in this peptide.

doi:10.1371/journal.pone.0139611.g001

Table 1. Number of amino acid variations detected through LC-basedmethods compared with number of most intense 100 peaks shared in
MALDI fingerprints (numbers in brackets indicate observations confirmed in both fossil replicates for each species).

Taxa Choloepus (MALDI) Bradypus(MALDI) Lestodon (MALDI) Megatherium (MALDI)

Choloepus (ESI) 72 42 43

Bradypus (ESI) 0 47 43

Lestodon (ESI) 11(9) 9(8) 46

Megatherium (ESI) 16(9) 13(9) 15(5)

doi:10.1371/journal.pone.0139611.t001
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the Mylodontidae groups with Choloepus, as most aDNA phylogenies. The discrepancies
between the collagen, aDNA and morphological phylogenies could be due to the incomplete-
ness of the collagen data, as alluded to earlier. One of the limitations of proteomics-based
approaches to phylogenetic reconstruction that needs to be addressed is deciding on an appro-
priate level of confidence—in this case we have chosen to rely on a peptide score equivalent to
the highest false positive match in order to accommodate for differences in the quality of each
analysis; this approach is likely to unnecessarily reduce sequence coverage, but comparison of
the phylogenies recovered here (e.g., Fig 3A and 3B) imply that the variation in percentage
sequence coverage alone in this study is not an issue. Also, the fact that the MALDI fingerprints
also show greater similarity between the two extant taxa implies that perhaps it is more likely
related to the more limited source information of the collagen-based approach in relation to
the other methods. In regard to the phylogenetic relationships of the fossil sloths, belonging to
Mylodontidae and Megatheriidae, it should be noted that the absence of northotheriids in our

Table 2. Proteomics information relating to the quality of the Mascot search results, including the False Decoy Rate (FDR), highest scoring false
positive peptide (HFPS), the total protein score for sloth collagen, the number of peptidematches used for this score, the number of unique
sequences and the percentage coverage.

Sample Location FDR HFPS Score Matches Sequences % Cov.

Choloepus Modern 1.99 38 20144 537 110 72

Bradypus Modern 1.77 29 21166 669 136 77

Lestodon (474) Arroyo del Vizcaíno 1.97 27 31482 1198 114 70

Lestodon (975a) Arroyo del Vizcaíno 2.17 43 18467 462 81 57

Megatherium (PdlT) Penas de las Trampas 1.1 1.22 39 12368 310 90 56

Megatherium (LC) Las Chacras, Rio Negro 3.05 25 52195 1853 151 76

doi:10.1371/journal.pone.0139611.t002

Fig 2. Maximum Likelihood analysis of the concatenated COL1A1 and COL1A2 sequences of
eutherian mammals including the proposed consensus sequences of the two extinct ground sloths
Lestodon andMegatherium.

doi:10.1371/journal.pone.0139611.g002
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analysis leaves uncertain the possible placement of this taxon, which has been closely associated
to Megatheriidae in most morphological studies [47, 50].

In conclusion, given that the resulting topologies of these extinct xenarthran taxa remain
consistent, with or without the inclusion of any other xenarthran sequence, the analysis of col-
lagen using proteomics techniques clearly has potential to resolve many currently ambiguous
relationships in palaeontology that are currently dominated by morphological analyses.
Although collagen sequence phylogenies will not yield as great a phylogenetic resolution as
DNA-based analyses, they have the potential to produce results that are to some extent congru-
ent and that can be applied to vertebrates that went extinct much earlier (e.g., millions of years
in ideal conditions) than can be currently achieved with the DNA-based methods. However,
the minor disagreement with aDNA and morphological methods at the higher taxonomic level
could imply that a wider range of proteins [51] should be investigated to further improve the
potential of proteomics applications to palaeontology and the evolution of vertebrate life.

Supporting Information
S1 File. Excel files of peptide matches for each sample: modern Bradypus (Sheet A), modern
Choloepus (Sheet B), extinct Lestodon from Arroyo del Vizcaíno #474 (Sheet C), extinct Lesto-
don from Arroyo del Vizcaíno #474 (Sheet D), extinctMegatherium Penas de las Trampas
(Sheet E), and extinctMegatherium from Las Chacras (Sheet F). Raw data can be accessed on
http://www.peptideatlas.org/PASS/PASS00753.
(XLSX)

S2 File. Concatenated COL1A1 and COL1A2 sequences, and additional COL1A2 sloth
sequences.
(DOCX)

S3 File. Supplementary figures (Figures A-P) including additional Maximum Likelihood phyloge-
netic tree (Figure A) and tandemmass spectra for new unique peptide sequences (Figures B-P).
(ZIP)

Fig 3. Phylogenetic analyses of COL1A2 sequences of eutherianmammals including the extinct
South American native ungulates and two extinct ground sloths Lestodon andMegatherium in
comparison to extant slothsBradypus andCholoepus showing (A) Maximum Likelihood analysis of
consensus peptide matches observed in the PMF, (B) Maximum Likelihood of peptidematches
observed in the PMF from either specimen, (C) Maximum Likelihood of the alpha 2 (I) sequences only,
using the EnsemblCholoepus sequence and (D) Bayes analysis of consensus peptide matches
observed in the PMF.

doi:10.1371/journal.pone.0139611.g003
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