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One Sentence Summary: Marine heatwaves alter ecosystem structure and functioning at 43 

global scales.  44 
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The global ocean has warmed significantly over the past century, with far-reaching 49 

implications for marine ecosystems1. Concurrent with long-term persistent warming, 50 

discrete periods of extreme regional ocean warming (marine heatwaves, ‘MHWs’) have 51 

increased in frequency2. Here we quantify trends and attributes of MHWs across all 52 

ocean basins and examine their biological impacts from species to ecosystems. Multiple 53 

regions within the Pacific, Atlantic and Indian Oceans are particularly vulnerable to 54 

MHW intensification, due to the co-existence of high levels of biodiversity, a prevalence 55 

of species found at their warm range edges, or concurrent non-climatic human impacts. 56 

The physical attributes of prominent MHWs varied considerably, but all had 57 

deleterious impacts across a range of biological processes and taxa, including critical 58 

foundation species (corals, seagrasses and kelps). MHWs, which will likely intensify 59 

with anthropogenic climate change3, are rapidly emerging as forceful agents of 60 

disturbance with the capacity to restructure entire ecosystems and disrupt the provision 61 

of ecological goods and services in coming decades. 62 

 63 

Anthropogenic climate change is driving the redistribution of species and reorganization of 64 

natural systems and represents a major threat to global biodiversity4,5. The biosphere has 65 

warmed significantly in recent decades with widespread implications for the integrity of 66 

ecosystems and the sustainability of the goods and services they provide6,7. In addition to the 67 

near ubiquitous long-term increases in temperature, the frequency of discrete extreme 68 

warming events (‘heatwaves’) has increased8,9 with projections indicating they will become 69 

more frequent, more intense and longer lasting throughout the 21st Century10. While extremes 70 

occur naturally within the climate system, there is growing confidence that the observed 71 

intensification of heatwaves is due to human activities11,12. The 21st Century has already 72 

experienced record-shattering atmospheric heatwaves8,13, such as the 2003 European 73 



heatwave, the Australian ‘Angry Summer’ of 2012-2013, and the European ‘Lucifer’ 74 

heatwave in 2017, with devastating consequences for human health, economies and the 75 

environment8.  76 

 77 

Discrete and prolonged extreme warming events occur in the ocean as well as the 78 

atmosphere. ‘Marine heatwaves’ (MHWs) are caused by a range of processes operating 79 

across different spatial and temporal scales, from localised air-sea heat flux to large-scale 80 

climate drivers, such as the El Niño Southern Oscillation14. Regional case studies have 81 

documented how MHWs can alter the structure and functioning of entire ecosystems by 82 

causing widespread mortality, species range shifts and community reconfiguration15-17. By 83 

impacting ecosystem goods and services, such as fisheries landings18,19 and biogeochemical 84 

processes20,21, MHWs can have major socioeconomic and political ramifications. Recent 85 

high-profile ocean warming events include the record-breaking 2011 ‘Ningaloo Niño’ (2010-86 

2011) off Western Australia22, the long-lasting ‘Blob’ (2013-2016) in the northeast Pacific23 87 

and El Niño-related extreme warming in 2016 that affected most of the Indo-Pacific24,25. 88 

These events have increased awareness of MHWs as an important climatic phenomenon 89 

affecting both physical and biological processes. Until recently, the lack of a common 90 

framework to define MHWs14 has hampered attempts to examine temporal trends or to 91 

compare physical attributes or biological impacts across different events, regions or taxa. 92 

However, by defining MHWs as periods when daily sea-surface temperatures (SSTs) exceed 93 

a local seasonal threshold (i.e. the 90th percentile of climatological SST observations) for at 94 

least 5 consecutive days14, Oliver et al.2 showed that the frequency and duration of MHWs 95 

have increased significantly over the past century across most of the global ocean. Here, we 96 

used the same MHW framework14 to examine observed trends in the annual number of MHW 97 

days and the implications for marine ecosystems globally. We incorporated existing data on 98 



marine taxon richness, the proportion of species found at their warm range edges and non-99 

climatic human impacts to identify regions of high vulnerability, where increased occurrences 100 

of MHWs overlap with areas of high biodiversity, temperature sensitivity or concurrent 101 

anthropogenic stressors. We also conducted a meta-analysis on the impacts of MHWs, by 102 

examining ecological responses to eight prominent MHW events that have been studied in 103 

sufficient detail for formal analysis. We examined 1049 ecological observations, recalculated 104 

to 182 independent effect sizes from 116 research papers that examined responses of 105 

organisms, populations and communities to MHWs. We also explored relationships between 106 

the occurrence of MHWs and the health of three globally-significant foundation species 107 

(coral, seagrass and kelp) from three independent time series that were collected at sufficient 108 

spatiotemporal resolutions to explicitly link ecological responses to MHWs. Finally, we 109 

reviewed the literature on MHWs for evidence of impacts of these events on goods and 110 

services to human society. 111 

 112 

The total number of MHW days per year, based on five quasi-global SST datasets, has 113 

increased globally throughout the 20th and early 21st Century (Fig. 1A). As a global average, 114 

there are over 50% more MHW days per year in the latter part of the instrumental record 115 

(1987-2016) compared to the earlier part (1925-1954)2, with most regions experiencing 116 

increases in the number of MHW days (Fig 1B). Global patterns of marine taxon richness 117 

(Fig. 1C) overlaid with trends in annual MHW days reveal regions where increased MHW 118 

occurrences can influence biologically diverse regions, in particular, southern Australia, the 119 

Caribbean Sea, and the coastline bounding the mid-eastern Pacific (Fig 1D). Given that warm 120 

range edge populations are likely to be the most impacted by MHWs (as thermal tolerances 121 

are exceeded during anomalously high temperatures), regions which support a high 122 

proportion of species found near their warm range edge will be particularly vulnerable to 123 



increased MHW activity (Fig 1E).  Several regions were identified as having experienced 124 

marked increases in MHW days and also supporting a high proportion of species found near 125 

their warm range edges (Fig 1F), with marine ecosystems in the southwest Pacific and the 126 

mid-west Atlantic particularly at risk. Furthermore, regions where rapid increases in the 127 

annual number of MHW days overlap with existing high-intensity non-climate human 128 

stressors (Fig 1G) include the central west Atlantic, the northeast Atlantic and the northwest 129 

Pacific (Fig. 1H). Here, existing regional pressures, including overfishing and pollution, have 130 

the potential to exacerbate MHW impacts, and vice versa.   131 

 132 

Examination of eight prominent (and sufficiently studied) MHWs showed they varied greatly 133 

with respect to spatial extent (by a factor of >15, Fig. 2A, Fig. S1), duration (10 to 380 days) 134 

and maximum intensity (3.5 to 9.5°C above climatological SST) (Fig. 2A). It should be noted 135 

that several MHWs were primarily driven by large-scale El Niño events which, by their 136 

nature, affected ocean climate at large spatial scales. Here, the largest contiguous MHW 137 

associated with each ENSO event was identified and characterised with MHW metrics. Our 138 

meta-analysis of ecological impacts (based on Hedges g effect sizes to account for bias 139 

associated with small sample sizes26) detected an overall negative effect of MHWs on biota 140 

across research papers, events, taxa, and response variables (E = -0.93; 95 CI = 0.22; Q = 141 

6303, df = 181; pheterogeneity < 0.001, I2 = 97.13). All eight MHWs were associated with 142 

negative ecological impacts although the mean negative effect sizes were not significantly 143 

different from zero for the two events with lowest sample sizes (Fig. 2B). There was no clear 144 

relationship between the severity of the MHW (derived from normalized MHW intensity and 145 

duration) and their observed impacts (Fig. 2B). All taxonomic groups, with the exception of 146 

fishes and mobile invertebrates, responded negatively to MHWs with birds and corals being 147 

most adversely affected (Fig. 2C). The positive fish response was, in part, driven by new 148 



incursions of tropical species into impacted temperate regions16. Corals were directly affected 149 

by these MHWs, as extreme absolute temperatures resulted in widespread bleaching and 150 

mortality27,28, whereas birds were indirectly impacted through changes in prey availability29. 151 

Birds and corals are also particularly sensitive to longer term increases in sea temperature 152 

associated with ocean warming30. Overall, our analyses suggest that sessile taxa were more 153 

impacted by MHWs than mobile and planktonic taxa (Fig. 2C), perhaps because mobile taxa 154 

generally have higher thermal tolerances than less active or sessile taxa31 and highly mobile 155 

species can quickly migrate in response to rapidly changing conditions16. All ecological 156 

response variables were negatively affected by MHWs, although growth and primary 157 

production were not significantly different from zero (Fig. 2D). Negative impacts were 158 

greatest for coral bleaching, survival, and reproduction (Fig. 2D), a pattern consistent with 159 

effects of warming in manipulative experiments32. 160 

 161 

To examine links between MHWs and ecological responses, we conducted additional 162 

analysis at the species level to test the prediction that populations found towards the warm-163 

water limit (i.e. equatorward range edge) of a species’ distribution would be more negatively 164 

impacted by MHWs than other populations. From the database described above, we extracted 165 

all species level observations (645 observations from 302 species) and for each population we 166 

classified their relative position within the species range by expressing the local average SST 167 

as a proportion of the difference between the 10th and 90th percentile temperatures 168 

experienced through the species geographical range. Critically, the most negative responses 169 

to MHWs were seen in populations found towards their warm range edge (Fig. 2E), implying 170 

that extreme temperatures exceeded thermal thresholds with adverse effects. Across all 171 

species-level observations, there was a negative relationship between any given population’s 172 

location within the species’ range and the direction and magnitude of the MHW effect (Fig. 173 



2F). This indicates that populations residing near the warm limit of a given species range are 174 

particularly vulnerable to warming events and range contractions are likely to occur in 175 

response to more frequent MHWs. Indeed, recent observations have shown that equatorward 176 

range edges of both plant and animal species have retracted poleward by >100 km following 177 

severe MHW events17,33,34. 178 

 179 

An examination of long-term time series on the health of three globally important foundation 180 

taxa showed that increased annual number of MHW days was correlated with (i) increased 181 

coral bleaching, (ii) decreased seagrass density and (iii) decreased kelp biomass (Fig. 3). 182 

Even though environmental variables such as storms, nutrients and light are known to 183 

strongly influence the health of these critical habitat-formers35, the annual number of MHW 184 

days alone was strongly and significantly correlated with observed ecological performance 185 

and, crucially, had consistently stronger correlative relationships than more frequently used 186 

measures of ocean temperature (i.e. mean and maximum SST, see Table S1). An increased 187 

number of MHW days was significantly correlated to decreased ecological health of 188 

populations of all three foundation taxa, indicating the importance of discrete extreme ocean 189 

warming events in driving ecosystem structure16,36.  190 

 191 

A wide range of ecological goods and services derived from marine ecosystems have been 192 

severely impacted by recent MHWs (Table 1). For example, the 2011 Ningaloo Niño caused 193 

widespread loss of biogenic habitat, depleted biodiversity, disruption to nutrient cycles and 194 

shifts in the abundance and distribution of commercial fisheries species off Western Australia 195 

(Table 1). Similarly, recent MHWs in the Mediterranean Sea have been linked to local 196 

extinctions, decreased rates of natural carbon sequestration, loss of critical habitat and 197 

diminished socioeconomic value (Table 1). These services have substantial societal benefit, 198 



with hundreds of millions of people benefitting from coastal marine ecosystems37,38. As such, 199 

managing and mitigating the deleterious effects of MHWs on the provision of ecosystem 200 

services is a major challenge for coastal societies.  201 

 202 

Globally, MHWs are becoming more frequent and prolonged, and record-breaking events 203 

have been observed in most ocean basins in the past decade2. To date, the main focus of 204 

ecological research has been on trends in mean climate variables, yet discrete extreme events 205 

are emerging as pivotal in shaping ecosystems, by driving sudden and dramatic shifts in 206 

ecological structure and functioning. Given the confidence in projections of intensifying 207 

extreme warming events with anthropogenic climate change8,39, marine conservation and 208 

management approaches must consider MHWs and other extreme climatic events if they are 209 

to maintain and conserve the integrity of highly valuable marine ecosystems over the coming 210 

decades.  211 

 212 
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 218 

Fig. 1. Global patterns of MHW intensification, marine biodiversity, proportions of species found at their warm 219 

range edge and concurrent human impacts. a,b, Globally averaged time-series of the annual number of MHW 220 

days and trends in the annual number of MHW days (between 1925-1954 and 1987-2016) across the global 221 

ocean. c,e,g, Existing data on marine biodiversity (c), the proportion of species within the local species pool 222 

found near their warm range edge (e), and non-climatic human stressors (g) were combined with MHW 223 

intensification data. d,f,h, The resultant bivariate maps identify regions of high diversity value that may be 224 

impacted by MHWs (d), high thermal sensitivity of species which may have been particularly vulnerable to 225 

increased MHWs (f) and high levels of non-climatic human stressors where MHW intensification has impacted 226 

concurrently upon marine ecosystems (h).   227 

 228 

 229 

 230 
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 234 
 235 

 236 
Fig. 2. Ecological impacts of MHWs as determined by a meta-analysis of responses to eight prominent MHW 237 

events.  a,b, The attributes of the eight MHW events used in the meta-analysis (a) and the overall effect of each 238 

MHW event across all ecological responses (b). c,d, The effect of MHWs on major taxonomic groups (c) and 239 

types of ecological responses (d). The number of independent observations for each category are shown in 240 

parentheses and values represent mean (±95% CI) effect sizes (Hedges g, to account for bias associated with 241 

small sample sizes).  e,f, Populations located towards the warm-water limit of species’ distributions tended to 242 

respond more negatively to MHWs (e) with effect sizes (Hedges g, ±95% CI) generally becoming more negative 243 

for warmer equatorward range-edge populations (f). Plots are based on responses of 685 species-level 244 

observations; bold symbols in (f) indicate means for each major taxonomic group and faded symbols show 245 

individual studies (Te temperature at effect location, T10, T90, 10% and 90% species range temperatures). 246 

Horizontal (e) and vertical dashed lines (f) delineate the lower and upper quartiles of species’ thermal ranges.        247 
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 252 
 253 
Fig. 3. Impacts of MHWs on foundation species.  a,b, Severe MHWs, such as those associated with the extreme 254 

El Niño events of 1997/98 and 2015/16, have caused widespread bleaching and mortality of reef building corals 255 

(a). Analysis of annual coral bleaching records from the Caribbean Sea/Gulf of Mexico region (1983-2010, data 256 

from NOAA Coral Reef Watch) showed that the number of MHW days per year was positively correlated with 257 

the frequency of coral bleaching observations (b). c,d, Seagrass meadows yield critical ecosystem services, 258 

including carbon sequestration and biogenic habitat provision, yet recent MHWs have impacted seagrass 259 

populations in several regions (c). Monitoring data from independent sites in Cockburn Sound, Western 260 

Australia (2003-2014, data provided by Cockburn Sound Management Council) indicated that the number of 261 

MHW days recorded in the previous year was negatively correlated with seagrass (Posidonia sinuosa) shoot 262 

density (d). e,f, Kelp forests represent critical habitats along temperate coastlines but extreme temperatures 263 

experienced during MHWs can cause widespread mortality and deforestation (e). Satellite-derived estimates of 264 

giant kelp (Macrocystis pyrifera) biomass along the coastline of California/Baja California (1984-2011, data 265 

from Santa Barbara Coastal Long-term Ecological Research program) showed that kelp biomass was negatively 266 

correlated with the number of MHW days recorded during the previous year (f).        267 

 268 
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 272 
Table 1. Impacts of MHWs on services provided by marine ecosystems (definitions of ecosystem services 273 

adapted from The Economics of Ecosystems and Biodiversity, TEEB, developed by UNEP). Evidence of 274 

impacts was collated from specific MHWs: (a) 1982/83 El Niño event, (b) 1997/98 El Niño event, (c) 1999 275 

Mediterranean MHW, (d) 2003 Mediterranean MHW, (e) 2011 Western Australian MHW, (f) 2012 Northwest 276 

Atlantic MHW, (g) the 2013-2016 Northeast Pacific ‘Blob’, and (h) the 2015/2016 El Niño event in northern 277 

Australia.  278 
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Methods 424 

1. Definition of MHWs and analysis of multi-decadal trends  425 

Marine heatwaves (MHWs) were identified from observational sea surface temperature (SST) 426 

time series using the definition proposed by Hobday et al.14, whereby a MHW is defined as a 427 

“discrete prolonged anomalously warm water event at a particular location” with each of those 428 

terms (anomalously warm, prolonged, discrete) quantitatively defined and justified for the 429 

marine context. Specifically, “discrete” implies the MHW is an identifiable event with clear start 430 

and end dates, “prolonged” means it has a duration of at least five days, and “anomalously 431 

warm” means the temperature is above a climatological threshold (in this case the seasonally-432 

varying 90th percentile). The climatological mean and threshold were calculated over a base 433 

period of 1983-2012. For each day-of-year, a pool of days across all years in the climatology 434 

period and within an 11-day window was taken as a sample, from which the mean and 90th 435 

percentile threshold were calculated. The climatological mean and threshold were then further 436 

smoothed using a 30-day running window. When two successive events occur with a break of 437 

two days or less, this was deemed to represent a single continuous event. The code used to 438 

identify MHWs and calculate key MHW metrics following this definition is freely available and 439 

has been implemented in Python (https://github.com/ecjoliver/marineHeatWaves) and R 440 

(https://robwschlegel.github.io/heatwaveR). MHWs detected using this definition were then 441 

characterized by a set of metrics, including duration and intensity (i.e. the maximum daily 442 

temperature above the seasonal climatology during the event). We then examined an annual time 443 

series of “total MHW days”, which is the sum of days categorized as MHWs in any given year.  444 



Global time series and regional trends in total MHW days were derived using a combination of 445 

satellite-based, remotely-sensed SSTs and in situ-based seawater temperatures. First, total MHW 446 

days were calculated globally over 1982-2015 at 1/4° resolution from the National Oceanic and 447 

Atmospheric Administration (NOAA) Optimum Interpolation (OI) SST V2 high resolution data. 448 

Then, proxies for total MHW days globally over 1900-2016 were developed based on five 449 

monthly gridded SST datasets (HadISST v1.1, ERSST v5, COBE 2, CERA-20C and SODA 450 

si.3). A final proxy time series was calculated by averaging across the five datasets. The five 451 

monthly data sets were used since no global daily SST observations are available prior to 1982. 452 

From these proxy time-series we calculated (i) the difference in mean MHW days over the 1987-453 

2016 and 1925-1954 periods and (ii) a globally-averaged times series of total MHW days. 454 

Further details on this method and resulting proxy data can be found in Oliver et al.2.  Note that 455 

these calculations use the same climatology period as above, 1983-2012. 456 

2. Global patterns of MHW intensification and overlaps with known hotspots of marine 457 

biodiversity, temperature-sensitive populations and non-climatic human stressors 458 

We combined regional trends in MHW days with pre-existing data on marine biodiversity, the 459 

proportion of species found near their warm range edges, and non-climatic human stressors to 460 

predict where MHW intensification may be a particular threat to biodiversity hotspots or 461 

temperature-sensitive communities, or be exacerbated by concurrent stressors. Biodiversity 462 

hotspots were determined using published marine taxon richness data51, which were accumulated 463 

from projected species distributions from the Aquamaps project52. Patterns in taxon richness 464 

(Fig. 1C) showed characteristically high levels in coastal areas and in tropical regions. We also 465 

calculated the proportion of species in the local species pool that were near their warm range 466 

edge to determine locations where MHWs might be more likely to have a strong negative effect 467 



(as shown in Fig. 2F). We used 16,582 species global distribution maps from the Aquamaps 468 

project52, previously used to assess likely patterns of biodiversity change51, to represent global 469 

marine biodiversity. For each 1° latitude/longitude grid cell we counted the number of species 470 

present for which sea surface temperature, derived as the 1960-2009 average annual temperature 471 

from the Hadley Centre HadISST v1.1 dataset, exceeded the 90th percentile temperature of their 472 

geographical range, and divided this by the total number of species present. Aside from some 473 

artifacts where species geographical limits coincide with FAO (Food and Agriculture 474 

Organization of the United Nations) region boundaries, a feature prevalent in other studies using 475 

these datasets53, the resulting map (Fig. 1E) showed areas with higher proportions of species at 476 

their warm range edges. Major concentrations (proportions >0.1 of all species) of warm-edge 477 

species were seen in the Eastern Mediterranean, the southern Red Sea, the Caribbean Sea, the 478 

Mexican part of the North Pacific and a large part of the tropical west Pacific.  Locally higher 479 

proportions of warm-edge species were also seen along coastlines of Europe, western USA and 480 

Canada, North Africa and in the Yellow Sea. 481 

Information on stressors were obtained from supplementary online resources provided by 482 

Halpern et al.54. We additively combined multiple impact layers (demersal destructive fishing, 483 

demersal non-destructive high bycatch, demersal non-destructive low bycatch, ocean 484 

acidification, ocean pollution, pelagic high bycatch, pelagic low bycatch, shipping and UV) into 485 

a single cumulative impacts layer (Fig. 1E). Fishing intensity layers were obtained by 486 

apportioning reported catches in FAO areas by modelled productivity data for latitude/longitude 487 

cells. Shipping impacts were derived from a 12-month (2003-2004) global ship observing 488 

scheme, and the same data was used with ports data to give a measure of ocean pollution. 489 

Surface UV information was obtained from the GSFC TOMS EP/TOMS satellite program at 490 



NASA. Ocean acidification data came from globally modelled aragonite saturation state. Details 491 

of the quantification of these layers are given in Halpern et al.54,55. Layers that included ocean 492 

warming variables were specifically excluded due to likely co-variance (to varying extents) with 493 

MHW metrics.  The cumulative impacts layer was then re-projected and resampled onto the 494 

same 1×1 grid as for trends in total MHW days and biodiversity data. Maps of the 495 

combinations of medium to high trends in total MHW days and medium to high values of taxon 496 

richness (Fig. 1C) or cumulative impacts (Fig. 1E) were created by splitting the data into classes 497 

based on the percentiles of the distribution of each variable (0-50% low, 50-90% medium, >90% 498 

high). Combined MHW trend/richness and MHW trend/impact layers were assigned to 499 

categories according to the classes of each contributing layer. While spatial bias due to 500 

variability in sampling effort may influence, to some degree, global-scale datasets on physical 501 

and biological variables, the datasets used in the current study have near-complete global 502 

coverage and represent the best approximations available for temperature56, species richness and 503 

distributions57 and human stressors54.   504 

3. Meta-analysis of ecological responses to MHWs 505 

Dependent and independent variables, literature searches and hypothesis 506 

The meta-analysis followed PRISMA (Preferred Reporting Items for Systematic Reviews and 507 

Meta-Analyses) guidelines, which provide an evidence-based minimum set of requirements for 508 

conducting and reporting meta-analyses (Fig. S2). We searched for peer reviewed studies that 509 

compared six types of biological ‘performance response’ (survival, abundance, growth, 510 

reproduction, primary production or coral bleaching) that reported data variation, before and 511 

after any of eight well-described periods of extreme warming (El Niño related events in 1982/83, 512 

1986/87, 1991/92 and 1997/98, the Mediterranean MHWs of 1999, 2003 and 2006, and the 2011 513 



MHW in Western Australia). Relevant studies were identified from two literature searches. First, 514 

we conducted a standardized Web of Science search, with search terms related to climate change, 515 

heat waves, marine systems, and the eight MHWs mentioned above. We used the following 516 

specific search string: (‘TS=((marine AND ("heat wave" OR heatwave)) OR El Niño OR La 517 

Niña OR ENSO OR (marine AND warming))’), identifying 29,395 potentially relevant papers. 518 

We read all abstracts from these papers and then obtained the full manuscripts of the papers that 519 

in their title, abstract, or keywords, indicated that relevant data could be collected (= 517 papers). 520 

We read all these papers in detail to identify 116 papers that fulfilled our data criteria. For each 521 

of the identified publications we extracted all reported mean performance response, data 522 

dispersion and sample sizes, from text, tables and figures with Plot Digitizer 523 

(http://plotdigitizer.sourceforge.net/). Impact studies were widely distributed across the global 524 

ocean; impact studies relating to ENSO-associated MHWs were spread across the Pacific and 525 

Indian Oceans whereas impact studies relating to Mediterranean and Australian MHWs were 526 

conducted across a smaller area (Fig. S3). Our fundamental hypothesis was that MHWs 527 

generally had negative effects on ecological performance across studies, bioregions, events, 528 

response types and organisms. We also tested (see next section for method) if the magnitude of 529 

effects varied between heatwave events (eight MHW events), performance responses (6 types 530 

listed above) and impacted taxa (grouped into mammals, birds, fishes, mobile invertebrates, non-531 

coral sessile invertebrates, corals, macroalgae, seagrasses and plankton, which included 532 

phytoplankton, zooplankton and open ocean microbes). For the MHW test, we hypothesized that 533 

the intensity of an event would correlate with the magnitude of effect size. For the biological 534 

response test, we hypothesized that coral bleaching and reproduction would be most affected by 535 

MHWs, the former because corals are known to be sensitive to elevated temperatures and the 536 
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latter because reproduction is typically more sensitive to stress than growth, abundance and 537 

survival. Finally, for the test across taxa we hypothesized that mobile organisms and 538 

seagrasses/corals would exhibit the largest effect sizes because mobile organisms can respond 539 

rapidly (e.g. local heat-stressed species can emigrate and warm-tolerant species from adjacent 540 

region can immigrate) and seagrasses/corals are generally sensitive to elevated temperatures.  541 

Effect sizes, data pooling, dealing with outliers and autocorrelation and statistical tests 542 

We analyzed impacts of MHWs on events, taxa and performance with Hedges g effect size, 543 

corrected for small sample sizes. Hedges’ g was calculated as (MHWAfter –  MHWBefore)/S)J, 544 

where S is the pooled standard deviation and J is a factor that corrects for bias associated with 545 

small sample sizes26,58. ‘MHWbefore' and ‘MHWafter' represent the mean performance response 546 

reported by the study before and after the period of extreme warming, respectively. These relied 547 

on the authors’ designations of the timing of the MHW. When the mean performance response 548 

before the MHW event were reported for multiple time points, an average was taken to obtain 549 

'MHWbefore'. In these cases, the associated variance of the time points was also pooled for use in 550 

S. In this analysis, negative and positive effects reflect inhibition and facilitation of organismal 551 

performance, respectively. Analyses were weighted by the sum of the inverse variance in each 552 

study and the variance pooled across studies and therefore give greater weight to those studies 553 

with higher replication and lower data dispersion. We used random-effect models, thereby 554 

assuming that summary statistics have both sampling error and a true random component of 555 

variation in effect sizes between studies26,58. Most publications reported multiple auto-correlated 556 

effects, for example when a study reported effects of a MHW on many different coral species. 557 

Within-study effects are typically not statistically independent from each other and will conflate 558 

analyses, for example by artificially increasing degrees of freedom. We reduced within-study 559 



autocorrelation by averaging 1049 non-independent Hedges g values (extracted from 116 560 

identified research papers) to 182 values, each being characterized by a unique combination of a 561 

MHW, impacted taxa and performance response per research paper. Thus, prior to formal meta-562 

analyses, within-study effects were averaged across multiple species and across nested designs 563 

(e.g., across different sites within a study or different depth levels). We acknowledge that our 564 

approach to aggregate auto-correlated within-study effect sizes, albeit being the most common 565 

way to do this 59, may be suboptimal, compared to advanced modelling techniques59. However, 566 

many papers reported different types and nested layers of non-independent data within a single 567 

paper, requiring overly complex combinations and levels of aggregation models (compared to 568 

aggregating data with a mean), prior to the meta-analysis. Finally, we calculated mean effect 569 

sizes (E), 95% confidence intervals (CI), heterogeneity (Q), and the proportion of real observed 570 

dispersion (I2) based on weighted random effect models in OpenMEE58. Mean effect sizes were 571 

considered to be significantly different from zero or another effect if their 95% CIs did not 572 

overlap with zero or each other, respectively60-63. Effect sizes generated from a single study were 573 

excluded from plots (these were: a single mean effect size of -4.21 for the 1972 ENSO event, and 574 

a single effect size of 1.183 for ‘reptiles’ in the taxon-specific analysis).  575 

Publication bias 576 

Our meta-analyses may be influenced by publication bias if we overlooked studies documenting 577 

strong positive effects, or if studies finding non-significant effects are not published26,64,65. We 578 

believe that the first type of publication bias is unlikely because we have worked intensively with 579 

MHW through primary research and by writing book chapters and reviews. We explored 580 

possible publication bias in different ways. We examined funnel plot asymmetry using the 581 

trimfill method and regression tests, and calculated the fail-safe number using the Rosenberg 582 



method that estimates the number of studies averaging null results that should be added to reduce 583 

the significance level (p-value) of the average effect size (based on a fixed-effects model) to 584 

alpha = 0.0564,65. These tests suggest that publication bias has limited effects and that our results 585 

are generally robust.  Although the funnel plot was highly asymmetric (Fig. S4), as shown by a 586 

significant regression test (t = -3.598, p = 0.0004), adjusting this possible bias using the trimfill 587 

method had no effects on our general conclusion, because the mean effect size remained 588 

significantly negative (-0.05, with 95% confidence intervals -0.08 to -0.02, p < 0.01). In addition, 589 

Rosenberg’s fail safe number was 11,318, i.e., much larger than 5n +10, where n is the number 590 

of original studies included in our analyses. Thus, publication bias is unlikely to affect our results 591 

and did not change our main finding that MHWs generally had negative effects on marine 592 

organisms. 593 

Effect of population location within the distributional range on responses to MHWs 594 

We also tested the hypothesis that populations found towards the warm-water limit (i.e. 595 

equatorward range edge) of a species’ distribution will respond more negatively to MHWs. To 596 

do this, we first extracted all observations from the database that were recorded at the species-597 

level (302 species and 645 observations). Global species distributions were produced using 598 

presence-only Maxent models for each species for which sufficient observations were available, 599 

and using default parameters for a random seed, convergence threshold, maximum number of 600 

iterations, maximum background points and the regularization parameter53 (using Maxent 601 

version 3.3.3k). Observations of species presence from iOBIS were gridded such that 1-degree 602 

grid cells with observations were set as present.  These observations were then modelled as a 603 

function of the following environmental predictors: (1) average annual temperatures from the 604 

HadISST v1.1; (2) the logarithm of distance to the nearest coastline; (3) ocean depth from the 605 



GEBCO marine atlas; and (4) FAO major fishing areas 606 

(http://www.fao.org/fishery/area/search/en). Global maps of predicted presence were produced 607 

using a threshold probability of 0.4. Presence maps were used to extract average annual SST 608 

values from Hadley Centre HadISST v1.1 1-degree dataset long-term climatology average 1960-609 

2009.  Quantiles (0, 0.1, 0.25, 0.5, 0.75, 0.9 and 1.0) of the population of temperatures in 610 

occupied grid squares were used to define the thermal niche of the species (weighted by the 611 

relative area of grid cells given by the cosine of the latitude). The frequency distribution of these 612 

species-specific distributions were then described using percentiles, and, for this analysis, the 613 

10th and 90th percentiles were taken as measures of the warm and cold ends of the thermal range, 614 

respectively. Each location of a reported MHW effect was then used to extract the local average 615 

SST from the same SST climatology. Range location was then expressed as the local temperature 616 

less the 10th percentile of temperature, divided by the difference between the 10th and 90th 617 

percentiles of estimated species range temperatures. A range location value of zero or less was 618 

therefore at the cold end of the distribution range (<=10th percentile), while values of 1 or more 619 

would be at the warm end of the range (>=90th percentile). This process resulted in estimated 620 

range locations for 347 observations from 280 species within the ecological dataset.  621 

 622 

The effect of range location on the size and direction of response to MHWs was assessed 623 

statistically using a linear model of Hedges’ g versus range location weighted by the inverse 624 

variance of each Hedges’ g value. Range location had a significant influence on responses, 625 

becoming more negative toward the warm edge of the species range (Fig. 2F; F1,345 = 11.98, 626 

P<0.001). Differences among taxonomic groups followed the average range location within 627 

those groups. The average negative effect of MHWs on corals was associated with the average 628 
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reported effect location being at the 90th percentile of the coral species’ temperature distribution. 629 

Those taxonomic groups reporting less negative effects were generally toward the middle of the 630 

distribution range, while those groups at the cold end of the species temperature range showed a 631 

positive effect (Fig 2F; F1,7 = 10.33, P =0.015). 632 

4. Analysis of habitat-forming species responses to MHWs 633 

High-resolution time series on coral bleaching, seagrass density and kelp biomass were obtained 634 

from the Caribbean Sea, Western Australia and California, respectively (Fig. S5). Quality-635 

controlled coral bleaching observations for the Caribbean Sea/Gulf of Mexico region 636 

(northernmost limit: 30.0°N, southernmost limit: 10.2°N, western limit: 97.5°W, eastern limit: 637 

59.6°W) were obtained (at 11 km resolution) from NOAA’s Coral Reef Watch program 638 

(http://coralreefwatch.noaa.gov/satellite/index.php). Observations were first filtered by month 639 

(July-October inclusive) and then summed for each year (1983-2010). Links between MHWs 640 

and seagrass density were examined with long-term monitoring data from Cockburn Sound, 641 

Western Australia, which is collected and managed by the Cockburn Sound Management 642 

Council (Western Australian Government). The density of seagrass shoots was examined at 2 643 

long-term sites (Garden Island and Warnbro Sound), where high-resolution data have been 644 

collected using SCUBA at depths of 2-7 m since 2003 (all surveys were conducted in late 645 

Austral summer of each year). Data were averaged across transects and depths before generating 646 

an annual mean value for the Cockburn Sound region (average of 2 sites). Annual estimates for 647 

giant kelp, Macrocystis pyrifera, biomass were generated from the satellite-derived dataset  648 

produced by Cavanaugh et al.66 as part of the Santa Barbara Coastal Long-term Ecological 649 

Research (SBC-LTER) program (http://sbc.lternet.edu//index.html). Estimates of the biomass of 650 

the kelp canopy (i.e. floating fronds) were derived from LANDSAT 5 Thematic Mapper satellite 651 

http://coralreefwatch.noaa.gov/satellite/index.php
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imagery. Biomass data (wet weight, kg) were generated for individual 30 x 30 m pixels in the 652 

coastal areas adjacent to California and Baja California. Estimates of kelp canopy biomass were 653 

derived from the relationship between satellite surface reflectance and empirical measurements 654 

of kelp canopy biomass at long-term monitoring sites sampled using SCUBA. The extensive 655 

dataset was first filtered to remove uninformative values influenced by cloud cover and then by 656 

latitude (27.00-32.99°N) and time of year (only summer months, June-September inclusive). 657 

Average kelp biomass per year was then calculated from between 66,530 and 354,181 individual 658 

observations. The total number of MHW days observed for corresponding years and regions for 659 

each of the three separate datasets was then calculated, and correlations between MHWs and 660 

ecological response variables explored with Pearson’s correlation coefficient.  661 

 662 

Data availability: Daily 0.25° resolution NOAA OISST V2 data are provided by the 663 

NOAA/OAR/ESRLPSD, Boulder, Colorado, USA, at http://www.esrl.noaa.gov/psd/. Data on 664 

human impacts and marine biodiversity are available from NCEAS 665 

(https://www.nceas.ucsb.edu/globalmarine) and Aquamaps (www.aquamaps.org), respectively. 666 

Coral bleaching records were extracted from the NOAA Reef Watch program 667 

(https://coralreefwatch.noaa.gov), giant kelp biomass data were sourced from the Santa Barbara 668 

Coastal Long-term Ecological Research (SBC-LTER) program 669 

(http://sbc.lternet.edu//index.html). Additional data are available from the corresponding author 670 

upon request.   671 
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