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20 Abstract: We use a unique set of terrestrial experiments to demonstrate how soil 

management practises result in emergence of distinct associations between physical 

structure and biological functions. These associations have a significant effect on the flux, 

resilience and efficiency of nutrient delivery to plants (including water). Physical 

structure determining the air-water balance in soil as well as transport rates is influenced 

25 by nutrient and physical interventions. Contrasting emergent soil structures exert 

selective pressures upon the microbiome metagenome. These selective pressures are 

associated with the quality of organic carbon inputs, the prevalence of anaerobic 

microsites and delivery of nutrients to microorganisms attached to soil surfaces.  This 

variety results in distinctive gene assemblages characterising each state. The nature of 

30 the interactions provide evidence that soil behaves as an extended composite phenotype 

of the resident microbiome, responsive to the input and turnover of plant-derived organic 

carbon. We provide new evidence supporting the theory that soil-microbe systems are self-

organising states with organic carbon acting as a critical determining parameter. This 

perspective leads us to propose carbon flux, rather than soil organic carbon content as the 

35 critical factor in soil systems, and we present evidence to support this view.



Introduction
Soil – the basis of terrestrial life on Earth - continues to defy our comprehensive 

understanding despite the evident catastrophic consequences of mismanagement, such as 

40 the North American “Dust Bowl” of the 1930’s which was exacerbated by poor stewardship 

of agricultural soils [1].  Faced with the multiplicity of processes which constitute soil, 

scientific reductionism has led to studies which have advanced our knowledge of soil’s 

biological, chemical or physical components predominantly in isolation.  However, soil - 

in common with many biological phenomena - is more appropriately considered a 

45 hierarchical assemblage of interacting processes, stabilized and actively maintained at 

different timescales [2]: soil is processual and not comprehensible based on single-

discipline experimentation.  Tisdall and Oades’ pioneering conceptual model [3] linking 

microbial activity to soil structural development advanced the importance of interaction 

between biotic and abiotic phenomena in the process of generating soil structural 

50 complexity (topology and connectivity).  

Soil organic matter (SOM) is the fundamental causative agent generating 

structural complexity, as it acts to bind mineral particles and colloids together.  Plant and 

animal residues are processed by microbes before joining the SOM pool [4, 5]: this step is 

an important facet of both the Tisdall and Oades model, and its subsequent extension [6].  

55 SOM may take the form of microbial polysaccharidic and proteinaceous exudates as well 

as cell debris and is chemically structurally diverse [4]; in effect, SOM is a continuum of 

progressively more extensively oxidized compounds [7].  Much of this SOM is associated 

with pores of 30 - 100 μm diameter [8], scales comparable to the 12 - 13 μm distances 

observed in soil between microbial cells [9].    As a result, the effect of microbial processes 

60 - metabolism, extracellular degradation of compounds, polymer secretion and cell lysis - 

on soil structure is particularly evident at the scales < 50 μm responsible for regulating 



convective and diffusive flow rates, as well as the balance of air and water at any given 

matric potential [6].  These hierarchical processes exhibit characteristic properties of self-

organizing and emergent systems [10, 11].

65 Such experiential and theoretical approaches are formulating a new 

understanding of how microbial activity controls soil structure – in effect, how soil should 

be viewed as an expression of biological process.  They also provide evidence supporting a 

view of soil as a product of genes, manifest through the combined effects of multiple 

organism phenotypes: in essence, an extended composite phenotype (Phillips [12], after 

70 Dawkins [13]). The identifying features of this phenomenon are a strong influence of at 

least one organism upon the form or structure of a soil environment - termed a process-

form relationship; demonstrable synchrony between the activity of influencing organisms 

and form development; selective pressure arising from form development acting, in 

Dawkins’ strict sense upon alleles [13, 14] and in Phillips’ broader concept upon soil 

75 organisms [12]; which results in positive feedback where selective pressure favours alleles 

(or organisms) associated with the process-form state, manifest as the influence of 

microbial turnover of SOM upon soil structural development, discussed above.

There is compelling evidence implicating plant-derived organic carbon inputs in 

the soil extended composite phenotype [15, 16].  However, complete description of such a 

80 phenotype requires, in turn, a well-developed understanding of the consequences of 

evolving soil structure for the genetic manifestation of on-going microbial processes - such 

feedback is necessary for emergence of organisation, observable at the whole-system level 

in complex biological, chemical and physical systems.  Currently, few studies present 

comprehensive description of the influence of soil structure upon microbial processes, and 

85 those that do, typically address only the association of metabolically defined bacterial 

groups with soil aggregate or particle size, rather than soil structure per se (see Lensi et 

al.,  [17] and  Chotte et al.,  [18]).  The principal influence of soil structural complexity is 



predicted to be on diffusion processes dictating the microenvironments surrounding 

surface-associated cells [19].  Observation of anaerobic regions of soil aggregates 

90 associated with denitrification processes [20], and the influence of anaerobic microsites in 

ostensibly oxygen-rich soils upon microbial respiration and carbon compound oxidation 

rates [21] provide indirect evidence for such metabolic constraints arising from soil 

structure.     However, this view of soil as an extended composite phenotype requires two 

specific conditions to be met.  The first we term the Process-Form Condition, where the 

95 biological structures and functions that emerge from interactions between individual 

genotypes and their microenvironments should result in soil structural changes beyond 

the scale of individual cells.  The second we term the Allelic Response Condition, where 

the process-form interaction should be reflected in significant modification at the level of 

individual alleles in soil microbiomes (i.e., fundamental changes in gene abundance 

100 patterns and whole metabolic pathways) such that alleles that correspond with specific 

processes are preferentially selected for - extending beyond short-term quantitative 

changes in specific gene expression profiles.

In this paper, we integrate biological and physical data relating to dynamics of the 

soil system with mathematical modelling to explore these conditions. This approach is 

105 used to interpret results from a unique long-term field-experiment within the context of 

the proposed view of soil as an extended composite phenotype:  linking organic carbon 

inputs to soil with emergence of key soil structural properties; and describing the gene-

level microbiome responses to contrasting emergent soil structural complexity arising 

from long-term carbon input regimes. The experiment uses the Highfield Ley-Arable 

110 Experiment at Rothamsted Research, Harpenden, U.K.  

Results 

Process-form relationships in soil are expressed through fine-scale connected 

porosity.  We first investigated the influence of added organic carbon (Corg) on the 



development of soil structural complexity, testing the hypothesis that greater inputs of 

115 Corg to soil are associated with development of improved soil structure; assessed as the 

degree of connectedness between pores (connected porosity).  The bare fallowed soil used 

as a starting point for these experiments experienced a demonstrable decline in Corg [22] 

and microbial abundance [23] over forty-eight years of continuous management.  

Estimates of Corg are approximately 3 g-C kg−1 [24] and the soil has a significantly reduced 

120 total porosity compared to mixed grass sward soils [25].   To assess the influence of newly 

imposed managements, we followed structure development for a decade (2008 – 2018) in 

these degraded soils following conversion to either arable or mixed grass sward.  The 

resulting estimates of soil structure demonstrated clear differences in the development of 

connected porosity between soil managed continuously as bare fallow and the converted 

125 soils (Fig. 1). Testing treatment effects upon connected porosity (square-root transformed 

to stabilize variances) between 2012 – 2018 inclusive, by analysis of covariance employing 

time as a covariate, indicated no significant heterogeneity of slopes (F2,75= 0.537, p = 0.587) 

due to land management.  The resulting equal slopes model indicated a significant effect 

of management upon connected porosity development (F2,72= 26.2, p < 0.001).  Post hoc 

130 pair-wise comparisons indicated that connected porosity generated in grassland soil 

(meanadjusted, 0.079) was significantly greater than in either continuous bare fallow 

(meanadjusted, 0.010) or converted arable (meanadjusted, 0.025) soils (smallest difference, t = 

4.79, p < 0.001).  A significant difference between connected porosity generated in arable 

and bare fallow soils was also apparent (t = 2.30, p = 0.024).  No significant differences 

135 were detected when the complete 2008 - 2018 dataset was included, suggesting that 

significant differences only become apparent after a period of at least five years post 

conversion.  This represents prima facie evidence for an extended composite phenotype, 

since there is clear synchrony between the establishment and continued growth of plants 

and development of connected porosity, representing a process-form relationship.



140 To test the potential role of Corg in the observed relationship, we compared 

connected porosity development with soil Corg inputs. We modelled changes in Corg content 

(see Materials and Methods for details) in bare fallow soil from inception of the 

experiment in 1949 up to the year of conversion in 2007.  From 2008, Corg changes were 

modelled for each year, based upon continued bare fallow management or management 

145 as either winter wheat based arable or mixed grass sward.  Continuously managed arable 

and grassland soils were also modelled in the same manner but using their respective 

starting dates.  The extremes of the cumulative Corg input–connected porosity relationship 

(Fig. 2) are derived from consistently managed soils; bare fallow being associated with the 

lowest net Corg input and connected porosity, and arable and grassland soils being 

150 associated with the second highest and highest Corg input and connected porosity, 

respectively.  Modelled Corg inputs and measured connected porosity for soils converted to 

both arable and grassland for each of the ten years between 2008 and 2018 is distributed 

between the consistently managed bare fallow and arable soils data.   We assumed that 

Corg in soils managed as grassland since 1838 represented the maximum which could be 

155 stored; this and the Akaike information criterion was used to guide selection of a 

sigmoidal function.   There was a clear non-linear relationship between Corg inputs to soil 

and connected porosity, with all converted and continuously managed soils following the 

same trend (Fig. 2).  This establishes that process-form relationships can be explained in 

terms associated with biotic Corg inputs and turnover in soil.

160 Contrasting long-term soil management results in different process-form 

states. Although the converted soils provided compelling evidence for structural 

development contemporaneous with the establishment and development of plant 

populations (albeit that arable soils are subject to external processes such as tillage and 

fertilization), the relatively short time span did not allow comparison of maximal 

165 differences in structural development, or evaluation of the potential for any resulting 



selective pressures to influence the representation of specific genes within the soils.  Soils 

which had been under continuous management,  at the time of sampling, as bare fallow 

for fifty-two years, arable for sixty-two years and mixed grass swards for over two hundred 

years presented an opportunity to test the hypothesis that established process-form 

170 relationships result in selection of organisms or genes, the fitness of which is suited to 

each particular soil biotope.

We have already determined that the continuously managed grassland and arable 

soils have significantly greater total porosity, a wider range of pore sizes and greater pore 

connectivity than continuously managed bare fallow soil [25].  Here we extend these 

175 findings, generating detailed information concerning pore topology and connectivity since 

they exert a strong influence upon diffusive flow in porous materials [26], and modelling 

the effect of the observed pore networks upon diffusion processes within the soils.    Euler 

connectivity functions [χ(d)/V, see Methods section for calculation] for each soil are shown 

in Supplementary Fig. 1. For connected pores χ(d)/V < 0, the value is positive for 

180 unconnected pores.  χ(d)/V = 0 represents a critical threshold diameter (dcrit) describing 

the maximum pore throat size of connected pores controlling hydraulic conductivity [27].  

Mean estimates (± standard error) of dcrit were 9.7 ± 0.37 µm for grassland soils, 7.2 ± 0.26 

µm for arable soils, and 3.1 ± 0.76 µm for bare fallowed soils.  There was a significant 

effect of soil management upon dcrit (F2,6 = 42.3, p < 0.001) and each mean was significantly 

185 different from all others (smallest difference, grassland versus arable, Q = 4.99, p = 0.029).    

Topology-related parameters derived from X-ray computed tomography of aggregates 

(Table I) showed a consistent trend of greater parameter estimates in grassland soils than 

degraded bare fallow soils.  We chose porosity and dcrit as measures of pore topology since 

their implications are readily defined and they are of direct relevance to cells within the 

190 soil matrix because of their influence upon advective and diffusional processes.  Porosity 

measurements (Table I) from X-ray CT were used to derive diffusion coefficients for 



solutes within saturated soil aggregates, relative to unconstrained solute diffusion in 

water (D/D0, see Materials and Methods for details).  For grassland soils, mean D/D0 was 

determined at 0.399 ± 0.014, 0.285 ± 0.009 for arable and 0.161 ± 0.001 for bare fallow.  

195 These estimates were significantly different (F2,70 = 106.4, p < 0.001).  Normalised 

diffusion coefficients for each treatment were all significantly different from each other (p 

< 0.001 for all comparisons). 

Direct measurement of pore network topology and modelling of the consequences 

for diffusion demonstrate that different long-term soil management results in 

200 quantitatively different process-form states.  We also used estimates of pore network 

topology to model the hydrodynamic behaviour of the pore networks under saturated 

conditions, estimating hydraulic conductivity as a function of connected porosity. This 

measures the dynamical state of the pore space and the maximum potential flow rate at 

which resources can move through the networks – effectively the capacity for flux within 

205 the soil pore space.  Fig. 3 shows the combined effects of soil Corg and connected porosity 

upon the predicted hydraulic conductivity of soils.  Combined direct measurements and 

modelling indicate a power law relationship between connected porosity and conductivity 

and that Corg is associated with these changes.  Regions of this relationship correspond to 

the process-form states of continuously managed bare fallow, arable and grassland soils.   

210 The fraction of anoxic volume characterising each process-form state was estimated using 

a multi-phase lattice-Boltzmann approach [28, 29], described in detail in the Materials 

and Methods section. The results (Fig. 4) indicate that the predicted anoxic fraction is 

significantly lower in grassland soil, compared with arable and bare fallowed soils, the 

latter is predicted to have the highest fraction of anoxic volume at all matric potentials 

215 (moisture contents). 

Microorganisms in each land management-associated process-form state are likely 

to experience markedly different hydraulic environments, particularly in degraded bare 



fallow soils where reduced delivery of dissolved nutrients and O2 is predicted compared to 

grassland soils.  This is a direct result of constraints placed upon diffusive flow by reduced 

220 connected porosity and dcrit resulting from different biotic Corg inputs and turnover.  These 

constraints are likely to exert significant selective pressures in soil microbiomes which 

should be reflected in changes in the assemblages of organisms or alleles in the different 

process-form states. To test this hypothesis, we generated shotgun metagenome sequence 

datasets from nucleic acids extracted directly from the different soils.  These were 

225 analysed to determine whether any observed differences in phylogenetic community 

assemblages or in gene abundance were directly attributable to the differences in porosity 

or dcrit described above.    

Process-form states in soil do not exert selective pressure at the organismal 

level.  Chao-1 lower bound estimates of Prokaryote OTU richness (SChao1) for each land 

230 management ranged from 562 – 578 (mean, 570) for grassland, 530 - 547 (mean, 540) for 

arable, and 482 - 542 (mean, 513) for bare fallow soils. There was a significant effect of 

soil treatment upon SChao1 (F2,6 = 7.6, p = 0.023), the difference between grassland and bare 

fallow mean richness was significant (Q = 5.49, p = 0.019). There was no significant 

difference between arable and grassland or arable and bare fallowed soils.     Grassland 

235 soils also exhibited the largest Fungal OTU richness, range 35 – 44 (mean, 39) compared 

to either arable (range, 19 – 27, mean 24) or bare fallowed (range 17 – 27, mean 23) soils.  

There was again a significant treatment effect upon SChao1 (F2,6 = 11.8, p = 0.008) and pair-

wise comparison indicated grassland was significantly more rich in fungal OTUs than 

either arable or bare fallowed soils (smallest difference, Q = 5.68, p = 0.017), but there 

240 was no difference between arable and bare fallowed soils.  Weighted UniFrac distance-

based comparison of β-diversity (Fig. 5) indicated significant effects of soil management 

upon both prokaryotic (PERMANOVA, pseudo-F2,6 = 15.5, pperm <0.0001) and fungal 

(pseudo-F2,6 = 19.0, pperm = 0.0032) community structures.  Prokaryote communities were 



significantly different between all three treatments (smallest difference, pseudo-t = 2.9, 

245 pMC < 0.0001) but fungal communities in arable and bare fallowed soils did not differ 

(pseudo-t = 1.7, pMC = 0.111); both were significantly different from the grassland 

community (smallest difference, pseudo-t = 5.0, pMC = 0.0015).  Inspection of individual 

fungal OTU abundance indicated that this was due to several OTUs, including 

Rhizophagus irregularis (formerly Glomus intraradices) and other Glomeromycetes, 

250 Agaricomycetidae, Onygenales, Eurotiomycetidae, Aspergillaceae and Atheliaceae, being 

abundant in grassland soils but not detected in either arable or bare fallowed soils: 

arbuscular mycorrhizal R. irregularis, for example, had a mean abundance in grassland 

soils of 3.5 x 105, but was not detected in the other soils.  This large, qualitative, difference 

between the soils is consistent with the effect of soil tillage [30, 31] upon fungal 

255 communities and cannot be interpreted as a response to selective pressures arising from 

different process-form states.  Since prokaryotes appeared to be less sensitive to the 

effects of tillage than fungi, the effects of soil management upon prokaryotic communities 

were studied in detail.

Random Forest machine learning classification of biomarkers (Fig. 6A) indicated 

260 prokaryotic communities in grassland soils were characterized by Rhizobiaceae including 

Bradyrhizobium spp. and Rhizobium leguminosarum as well as the planctomycete 

Blastopirellula.  At the other extreme, taxa characteristic of degraded, low input bare 

fallow soils were Gemmatimonas spp., an organism related to the aromatic compound 

degrader Methylibium and the actinomycete Sporichthya.  The influence of nitrogenous 

265 fertilization was evident in the organisms identified as characteristic of arable soils; 

nitrite-oxidizing Nitrospira spp. were particularly characteristic of these soils together 

with the denitrifying Rhodanobacter and Dokdonella koreensis [32].

16S rRNA gene-conditional phylogenetic diversity based upon placement of exact 

sequence variants for each treatment was compared using Kantorovich-Rubinstein (KR) 



270 distance metrics. PERMANOVA identified a significant effect of treatment (pseudo-F2,6 = 

17.9, pperm< 0.0001) and all post hoc comparisons were significantly different (smallest 

difference: bare fallow vs. arable, pseudo-t = 3.2, pMC = 0.0018) consistent with the 

weighted UniFrac approach described above. Principal coordinates analysis (PCoA) was 

used to present an unconstrained view of differences in 16S rRNA gene-conditional 

275 microbiome assemblages (Supplementary Figure 2) using KR distance.   The first two 

principal coordinates separated treatments clearly, the ordination accounting for 89% of 

total variation across the two axes.   Distance-based linear modelling (distLM) was used 

to describe the relationship between the 16S rRNA gene-conditional phylogenetic 

community structure (using KR distance) and edaphic variables shown in Table II.  All 

280 combinations of variables were considered: the most parsimonious model, identified using 

Bayesian information criterion (BIC), was a combination of the chemical factors pH, soil 

Corg, soil organic nitrogen (%N) and NaOH-EDTA extractable phosphorus (Pext). Distance-

based redundancy analysis (dbRDA) indicated the model accounted for 84% of total 

variation on the two axes (Figure 6B).  Separation of treatments on dbRDA axis 1  was 

285 associated most highly with Pext (r = -0.81; marginal test, pseudo-F = 7.4, pperm = 0.013) 

and Corg (r = -0.53; marginal test, pseudo-F = 12.2, pperm = 0.0035), both greatest in 

grassland soils and least in bare fallowed soils.  The second axis was most highly 

associated with Corg (r = -0.88) and %N (r = 0.41; marginal test, pseudo-F = 11.3, pperm = 

0.004).  Using these four chemical parameters to model the distribution, addition of 

290 neither porosity (sequential test, pseudo-F = 0.7, pperm = 0.565) nor dcrit (sequential test, 

pseudo-F = 0.5, pperm = 0.691) accounted for a significant amount of additional variation.

Although there are clear qualitative and phylogenetic differences between 

prokaryote assemblages associated with each soil, distLM suggests that these differences 

are adequately described by chemical edaphic parameters.  They are therefore unlikely to 

295 be due to selective pressure arising from the respective process-form states directly.  



Instead, assemblage differences are likely to reflect organism traits: for example, 

Gemmatimonadetes are common in soil and show adaptation to low soil moisture [33], so 

identification of Gemmatimonas as characteristic of bare fallow soil is likely to reflect the 

fact that direct isolation experienced by these soils renders them much drier than the 

300 other soils; nitrogenous fertilization of arable soils is reflected by the organisms identified 

as characteristic of these soils to be either nitrite-oxidisers or denitrifiers;  and while 

identification of  Rhizobiaceae as characteristic of the mixed swards of grassland soils 

suggests association with legumes – and therefore possibly responsive to selection 

pressure exerted by the plant population, Bradyrhizobium spp. in these soils lack genes 

305 and gene clusters for symbiosis and nitrogen fixation [34].   

Process-form states in soil exert selective pressure at the level of alleles. A total 

of 1,197 KEGG orthologs were identified as having significantly different abundance 

between the soils (presented in detail in the Supplementary Fig. 3 - 7).  We adopted a 

similar approach to analysing the effects of soil management upon microbiome genetic 

310 variation, determined by binning reads to KEGG orthologs, as for the effect upon 

community assemblage described above. Multivariate ortholog analysis was based on 

Hellinger distance, calculated from square root-transformed ortholog abundance.  

PERMANOVA identified a significant effect of land use upon ortholog assemblage 

(pseudo-F2,6 = 26.8, pperm<0.0001) and all post hoc comparisons were significant (smallest 

315 difference: arable vs. bare fallow, pseudo-t = 3.6, pMC = 0.0006).  PCoA separated each land 

use, the first two axes accounting for 91% of total variation (Supplementary Fig. 8). The 

most parsimonious model identified by distLM and BIC included a combination of both 

chemical and physical edaphic variables; namely pH, Corg, %N, porosity and dcrit.  dbRDA 

(Fig. 7) showed clear separation between the treatments on dbRDA axis 1.  The edaphic 

320 variables associated most highly with this axis were both physical parameters; porosity 

(r = -0.87; marginal test, pseudo-F = 24.7, pperm = 0.0009) and dcrit (r = -0.36; marginal test, 



pseudo-F = 15.2, pperm = 0.0019).  Both variables were greatest in grassland soil and least 

in bare fallowed soil.  The treatments showed little separation on the second axis.  Edaphic 

variables associated most highly with this second axis were chemical, Corg  (r = -0.88; 

325 marginal test, pseudo-F = 17.3, pperm = 0.0002), %N (r = 0.47; marginal test, pseudo-F = 

0.42, pperm = 0.633) and pH (r = 0.41; marginal test, pseudo-F = 13.9, pperm = 0.0038). Using 

these edaphic parameters to model the distribution, addition of Pext (sequential test, 

pseudo-F = 0.97, pperm = 0.484) did not account for a significant amount of additional 

variation.  

330 This analysis presents clear evidence for a large and direct influence of process-

form state upon gene assemblages. The topological parameters shown to be so influential 

upon gene distributions are both fundamental properties of pore networks which we have 

shown to be sensitive to biotic Corg inputs and turnover in soil (Fig. 2 and 3). We have also 

demonstrated that they exert a dominant influence upon hydrodynamic conductance of 

335 the pore network and the potential for anaerobic sites across a range of soil matric 

potential (Fig. 3 and 4).  However, the analysis cannot demonstrate preferential selection 

of genes dependent upon their fitness within each process-form state.  To test whether the 

differences in gene abundance could be due to selection pressures arising from different 

plant inputs and emergent soil structural properties, we characterised the genes shown 

340 to be sensitive to the different land managements.   Consideration of changes in individual 

gene abundance indicated clear shifts in both cellular behaviour and metabolic potential 

(Fig. 8).  For cell behaviour, there were a number of genes associated with protein 

secretion, among them  impB, impD, impE and vgrB associated with bacterial type VI 

protein secretion systems, hylB and hylD associated with type I protein secretion systems 

345 and the autotransporter gene misL associated with pathogenicity: all typify bacterial-

bacterial and bacterial-Eukaryotic interactions and were more abundant in grassland 

soils. Genes associated with type II protein secretion systems (T2SS) were more abundant 



in arable and bare fallow soils, suggesting a greater reliance upon exoenzymes in these 

soils.  Consistent with this latter observation, several genes coding for exoenzymes were 

350 more abundant in these soils, including abnA (glucosyl hydrolase [GH] family 43 endo-

arabinanase), chiE (GH family 18 chitinase) and chiF and chiG (both GH family 19 

chitinases) associated with carbohydrate metabolism, and dmsA and dmsB (dimethyl 

sulfoxide reductase) associated with sulfur metabolism.  Genes coding for chemotaxis and 

twitching motility were also more abundant in arable, and particularly bare fallowed soils 

355 compared to grassland soil.  

The increase in abundance of dmsAB was also part of a general trend of an increase 

in genes associated with dissimilatory anaerobic metabolism of N and S in arable and 

bare fallowed soils combined with reductions in genes associated with assimilatory 

pathways. Nitrification-associated genes were most abundant in arable soils, and genes 

360 associated with dissimilatory reduction of nitrate and sulfate most abundant in bare 

fallowed soils.  There was also an increase in genes associated with anaerobic degradation 

of aromatic compounds in arable and bare fallowed soil.  Transport pathways also differed 

between treatments with genes associated with ATP-binding cassette (ABC) transporter 

pathways of glycerol and urea being most abundant in grassland soil and least abundant 

365 in bare fallowed soil while genes associated with the ABC transport pathway for 

glutathione and the N-acetylglucosamine phosphotransferase pathway exhibited the 

opposite trend.  

These genetic shifts were related to nutrient status and, saliently, changes in soil 

structure (in this case pore topology) controlling gaseous and nutrient diffusion.   They 

370 present direct evidence for genetic selection of genes and pathways based upon fitness 

under the different process-form states.  The increase in genes associated with less 

efficient anaerobic processes in arable and bare fallowed soil can be considered a response 

to reduced diffusion of O2 in these progressively more poorly connected pore networks. 



Other responses, such as the increase in gene abundance for chemotaxis and protein 

375 secretion, may also be responses to reduced diffusion of soluble nutrients, and hence a 

requirement to search out nutrients, or avoidance of anaerobic niches within the soil.  

Microbial community structure is often considered as a balance of cooperative behaviours 

between individuals, mediated by “public goods” or soluble nutrients arising from leaky 

processes (nutrients which are lost through the outer membrane or released by cell lysis) 

380 or the activity of exoenzymes [35, 36].  Producers of public goods support populations of 

“cheaters” which exploit goods without contributing to them. In well-mixed systems, 

cheaters maintain a competitive advantage over producers, but this advantage is lost in 

structured environments where diffusive constraints are manifest [37].  In this context, 

the increase of T2SS and arabinanase and chitinase exoenzyme genes in arable and bare 

385 fallowed soils may be a response to both qualitative changes to organic inputs, and 

reduced delivery of soluble nutrients by advective flow and diffusion to cheaters, and thus 

an increase in abundance of producer organisms.  Additionally, the reduced diffusive 

processes predicted for arable and particularly bare fallowed soil may result in an 

increased efficiency of exoenzymes since reduced diffusion allows for a greater 

390 accumulation of product near producer organisms [38].  Thus, production of exoenzymes, 

and cell motility as a searching or avoidance behaviour provide adaptations in response 

to spatially constrained circumstances arising from reduced pore connectivity as a result 

of reduced Corg inputs in arable and bare fallowed soils.

Discussion
395 We have presented data consistent with the conditions that should be met if soil is an 

extended composite microbial phenotype: the emergent physical states are organised at 

several orders of magnitude above the scale of individual microbes; different physical 

states are associated with different genetic states at the level of individual alleles rather 

than organisms. The data also demonstrates that both physical and biotic states of the 



400 system can be manipulated by nutritional interventions, particularly relating to the flux 

of energy through the system.

The data do not prove the associations are causal, however comparison with 

simpler systems that are amenable to deeper theoretical analysis and direct manipulation 

provides additional evidence of a causal feedback between allelic abundance, process and 

405 form. Specifically, the soil-microbe system exhibits behaviour seen in physical systems 

that display spontaneous (and endogenously driven) emergence of large-scale self-

organisation as a result of such feedback. In a subset of such systems, there is a critical 

point at which the state of the system changes discontinuously (a phase transition) with 

continuous change in one of the system parameters. The rate of change of the system with 

410 respect to that parameter is characterised by a power law close to the phase transition, 

reflecting the emergence of coherence across a wide range of scales (often referred to as 

fractal scaling). In Fig. 3 we observe such behaviour between connected porosity and 

hydraulic conductivity. The state of the soil system changes from one with a disconnected 

pore space to one with a connected pore space where Corg (energy) flux is a critical 

415 parameter. There is a power law relation between conductivity and porosity, consistent 

with the emergence of large-scale spatial coherence in soil structure at a critical value of 

Corg flux. In this sense, soil displays many of the properties of self-organising systems [39]. 

Results presented here provide further evidence for a causal feedback between allelic 

abundance, process and form.  We have previously posited a mechanism for this in soil 

420 and shown how soils with and without plants are capable of spontaneously generating 

emergent structures at important scales [6] compared with sterile soils, which do not. This 

interpretation predicts that soils which are more self-organising will be more 

metabolically active in any given situation than a soil where the interaction between 

biological process and form is weak or non-existent. We see that, after a minimum of fifty-



425 two years, each soil in our study is a different expression of its multiple biotic components; 

a phenomenon termed an extended composite phenotype [12].  

With plants present, such as land managed as long-term mixed grass sward, the 

extended composite phenotype has an increased capacity to store water and soluble 

nutrients, a property which may confer a degree of resilience to the soil-plant-microbe 

430 system during periods of low rainfall or nutritional inputs.  Independent analysis of these 

same soils has demonstrated greater water storage capacity in the grassland soils [40].  

In addition, the more extensive and more connected pore network selects for assimilatory, 

and against dissimilatory, processes by permitting greater flux of O2 through the system: 

it thus improves the efficiency of metabolic processes and Corg conversion into biomass and 

435 nutrients while reducing potential losses of plant nutrients arising from leaching or 

emission to the atmosphere.  Thus, the extended phenotype interacts with plants to 

increase the flux, resilience and efficiency of nutrient transport to plants (including 

water).

The finding that soil under grassland management has significantly higher 

440 capacity, efficiency and resilience compared with arable or bare fallowed management is 

associated with greater Corg inputs and turnover. Furthermore, the rate of recovery of 

degraded soil is also linked to stocks and flows of Corg (Fig. 1). Our experiments cannot 

distinguish between Corg flux or storage as the dominant mechanism supporting improved 

soil function. However, interpreting results in terms of soil remodelling through self-

445 organizing processes, we predict that the biophysical state of soil and rate of change of 

that state will both be related to cumulative metabolic activity.  Our data are consistent 

with recovery rate being limited by cumulative soil metabolism: soil Corg content acts as a 

diagnostic for this. This raises the important questions of what limits soil metabolism and 

incorporation of Corg in soil [41], and how it can be manipulated in each context to 

450 maximise the rate of soil recovery. We know both anaerobic niches and physical 



dislocation of microbes from resources result from low pore connectivity, and both 

significantly limit microbial metabolism. We also know soil recovery is associated with 

more voluminous and better-connected pore space and significantly lower levels of 

anaerobic respiration. We speculate that the rate-limiting factor in recovery of degraded 

455 soil is the process of microbially-mediated micro-structure remodelling, and that this is 

soil texture dependent [25]. Sandy-textured soil would be less able to recover compared to 

soils with higher fractions of silt and clay, where remodelling fine-scale structure is 

inherently more feasible due to a greater proportion of “raw materials” to enable such 

fine-scale architecture to be manifest. It is also likely to be dependent on the quality and 

460 quantity of organic inputs to soil, especially in relation to the latent energy contained in 

them. This is apparent in our data, though we are not able to distinguish between the 

relative importance of each.

Tillage is known to contribute to decreases in soil Corg, and the most effective 

recovery rate and highest metabolizing end-state in our data was achieved with 

465 management under grassland without tillage. Tillage has the effect of significantly 

changing the distribution of microenvironments in soil through increased aeration and 

exposure of previously physically protected prey organisms and soil Corg. This results in 

the immediate release of physical and chemical constraints on metabolism and therefore 

to loss of soil Corg. More importantly, rearrangement of microenvironments - i.e. within 

470 and between soil macro- and micro-aggregates - will have the effect of “re-setting” 

microbial remodelling of soil microarchitecture, slowing down establishment of connected 

pore space and longer-term cumulative metabolism. 

This new interpretation of the role of nutritional and physical management of soil 

is a step towards a more general theory of soil. Such a theory is needed as a framework 

475 upon which to synthesize data and knowledge on biological, chemical and physical 

properties of soil that are typically studied in isolation. Theory leading to quantitative 



prediction is also essential in seeking synergistic interventions that recognise the 

interplay between capacity, efficiency and resilience of soil, and to avoid the unintended 

consequences of land management that are directing us towards systemic collapse of 

480 productive land and an amenable climate.

Methods
Soils – We analysed soil from plots of the Rothamsted Highfield Ley-Arable field 

experiment (00:21:48 °W, 51:48:18 °N) set on soil that has been under permanent grass 

since at least 1838. The soil is a silty clay loam (25% clay: 62% silt: 13% sand) (Chromic 

485 Luvisol according to FAO criteria).  In 2007, plots of severely degraded soil managed as 

bare fallow by regular tillage to remove any plants since 1952, were converted to arable 

and grassland managements. Arable soil was placed under continuous wheat rotation 

(winter wheat, Triticum aestivum L., currently cv. “Hereward” seed coated with Redigo 

Deter combination insecticide/fungicide treatment, Bayer CropScience) receiving 

490 ammonium nitrate fertilization to provide approximately 220 kg-N ha-1 annum-1, and 

additional 250 kg-K ha-1 and 65 kg-P ha-1 every three years, and grassland plots were 

maintained as a managed sward of mixed grasses and forbs.  Plots were sampled 

annually, and soil was air-dried and sieved (< 2 mm) before being archived. To follow the 

development of soil structure in these soils, soil aggregates from continuous bare fallow 

495 (bare fallow), bare fallow converted into arable (arable) and bare fallow converted to 

grassland (grassland) were selected for the years 2008, 2010, 2012, 2015 and 2018.   In 

addition, we also sampled plots which had been managed consistently as bare fallow for 

fifty-two years, arable for sixty-two years or mixed grass swards since 1838.  Physical and 

biological data has already been reported for these consistently managed soils (Table I).   

500 Over these periods, the bare fallowed soils have become depleted in more labile organic 

carbon and enriched in persistent organic carbon [42] and soil organic carbon has been 

reduced to a greater extent than in arable soil.  There has also been an observable 



progressive shift, from grassland to arable and bare fallowed soil, in the distribution of 

organic carbon between different pools in the three soil managements, particularly a 

505 relative decline in discrete organic particles independent of stable soil aggregates, and a 

corresponding increase in the proportion of organic particles encapsulated in stable 

aggregates [23].  Confirmation of this apparent shift in soil structure has been provided 

by high-resolution X-ray Computed Tomography [25].  

X-ray Computed Tomography and Image Analysis – We generated X-ray 

510 Computed Tomography (CT) images at 1.5 µm resolution and scales relevant to microbes 

(100-102 µm), requiring imaging of 0.7 – 2.0 mm diameter soil aggregates (described in 

detail in the Supplementary Materials.    The connectivity of pores within networks was 

assessed from binary images derived from X-ray CT using Minkowski functions [27], basic 

geometric measures defined for binary structures. Aggregates were selected at random 

515 from soil collected from each plot of the Highfield experiment.  Each was scanned using a 

Phoenix Nanotom system (GE Measurement and Control solution, Wunstorf, Germany) 

operated at 90 kV, a current of 65 µA and at a voxel resolution of 1.5 µm. Initial image 

analysis was performed using Image-J.  Images were threshold-adjusted using the bin bi-

level threshold approach of Vogel et al. [27] using QuantIm version 4.01 

520 (http://www.quantim.ufz.de/).  Porosity and mean pore neck size were estimated directly 

from the threshold-adjusted binary images and Minkowski functions including Euler 

number - χ(d), pore size distribution, pore connectivity and surface area density were 

determined according to Vogel et al. [27]. χ(d) is a well-defined characteristic related to 

pore space topology and shown to be critical to hydraulic properties [43]. In three 

525 dimensions, χ(d) is defined as the number of isolated pores (of diameter, d) minus the 

number of redundant connections within the pore space, plus the number of enclosed 

pores [44].  Using this approach, we estimated Euler number density - χ(d)/V, where V 



represents the image volume - of the pore network of aggregates from each continuously 

managed Highfield soil. 

530 Calculation of Diffusion in Soil Pore Networks.  The hierarchical soil structures 

revealed in X-ray CT images indicate that gaseous O2 in the atmosphere moves into soil 

primarily through its inter-aggregate pores and is then dissolved in water prior to moving 

into the aggregates largely by molecular diffusion. Since gaseous O2 diffuses up to 103-fold 

more quickly than O2 dissolved in water, microbial community activity is thus constrained 

535 mainly by O2 diffusion within aggregates. The ability of aggregates to conduct dissolved 

O2 and other soluble substrates depends on the intra-aggregate pore geometry, and we 

quantified it with effective diffusion coefficients calculated directly by mimicking solute 

movement through the pore geometry using numerical simulations. The movement of 

solutes, including O2 and substrates, within the pore geometry is assumed to be diffusion 

540 dominated. For the images illustrated in Supplementary Fig. 9, the temporal change in 

solute concentration inside any pore voxel can be calculated using the finite volume 

approach, as follows: 
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where c is concentration, q is diffusive flux, D is molecular diffusion of the solute in liquid 

545 water, superscripts t and t+δt represent time, δt is a time increment, subscript o 

represents the pore voxel being calculated, and subscripts w, e, s, n, u and d represents 

the face-to-face neighbours of voxel o on the west, east, south, north, top and bottom sides 



respectively.  Applying Eq. (1) to all pore voxels leads to linear systems which was solved 

by the bi-conjugate gradient stabilized method [45]. 

550 Calculation of Diffusion Coefficients – To calculate the effective diffusion coefficient 

of each aggregate, we applied a constant concentration C1 on the top and a constant 

concentration Co on the bottom of the image, and then simulated solute diffusion to steady 

state. The diffusive flux in the three directions in each pore voxel was calculated by Eq. 

1.  Taking the vertical direction as the z direction for the image, the effective diffusion 

555 coefficient of the image was calculated as follows: 
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where Deff is the effective diffusion coefficient, N is the total number of pore voxels in the 

simulated images, ( )z iq x is the vertical diffusive flux in pore voxel centred at location xi, 

560 Lz is the height of the image as shown in Supplementary Fig. 9. To address the impact of 

change in pore geometry due to management on the ability of the aggregate to diffuse 

solute, in result analysis we normalized the effective diffusion coefficient Deff of all solutes 

by their associated molecular diffusion coefficient in non-constrained water, D.   

Modelling of Oxygen Diffusion and Anoxia - The impact of soil structure on O2 

565 diffusion and its subsequent consumption by microbes under various saturations was 

studied using pore-scale simulations. We first calculated the spatial distribution and 

connectedness of different pores and then determined water distributions in pores under 

different matric potentials (ψm). We assumed the soil was initially saturated and then 

applied a negative pressure p at the bottom to drain water. We assumed the soil was 

570 essentially hydrophilic in that only pores whose associated capillary pressure pc, 

calculated by  with σ being water-air surface tension, is less than p and that /cp r= σ



they form clusters which stretch from the top to the bottom of the structure can be 

drained. Supplementary Fig. 10A shows an example illustrating water distribution in the 

structure calculated using the method described above when the saturation is 55%. 

575 Once the water distribution was determined for a given ψm, we treated the water-air 

interfaces inside the structure as a boundary at which gaseous O2 dissolves and then 

moves toward the solid-water interface to be reduced by microbial reactions. The partial 

pressure of gaseous O2 in the simulated structure was assumed to be constant. Movement 

of dissolved O2 in the liquid water was simulated using the following diffusion-reaction 

580 equation: 

(3)
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where c is concentration of the dissolved O2, D is molecular diffusion coefficient of O2 in 

water, Γaw is the air-water interface, s is microbial consumption, cs is the saturated 

dissolved O2 concentration at the water-air interface calculated from Henry’s law,

585  in which H is the Henry constant and po is the partial pressure of the gaseous /s oc p H=

O2 inside the structure. Microbial consumption was assumed to occur in water-filled 

voxels adjacent to the water-solid wall and described by the following Monod kinetic 

equation:  

(4)
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590 where mc is microbial biomass, k0 is kinetic parameter, [C] is the concentration of 

dissolved carbon.  Since we are interested in impact of soil structure on development of 

anaerobic sites, we simulated O2 diffusion and reduction to steady state. In all 

simulations, we normalized Eqs. (3) and (4) as follows
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595 where , ,  and  in which L is the side 0' /t t T= 2
0' /D DT L= ' / sc c c= [ ] ( )0 0' / [ ]c ck m k T C k C= +

length of the voxels and T0 is a characteristic chosen to make  in our simulations.  ' 1D =

The above equation was solved by a finite volume method with each water-filled voxel 

being the element used to calculate the mass balance. In all simulations, water was 

assumed be initially free of O2 and we simulated the system to steady state. As the 

600 development of anaerobic areas was a balance between the ability of soil to diffuse 

dissolved O2 and the microbial consumption rate, to elucidate that the relative 

anaerobicity of soils under the same ψm is the consequence of their structures and does 

not change with microbial reactive rate, we simulated two scenarios: a fast microbial 

decomposition (kʹ= 1x10-2) and a slow microbial decomposition (kʹ= 1x10-4). For each 

605 scenario, once the system was deemed to have reached a steady state, we sampled sites 

where concentration of dimension-less dissolved O2 was less than 20% assuming them be 

at anaerobic condition [46].   Supplementary Fig. 10B shows an illustrative example of the 

location of anaerobic areas simulated by the above method in which soil particles were 

made transparent.  We repeated the procedure to achieve different water distributions 

610 calculated by varying ψm and then calculated the proportional change in the volumetric 

anaerobic sites with the ψm for both the fast and slow microbial reactions. The results are 

shown in Fig. 4 for soil samples taken from all treatments.          

Modelling of organic carbon dynamics in soil - We used RothC-26.3 [47] to model 

the turnover of soil Corg in the experimental soils, accounting for the effects of soil type, 

615 plant cover and historical temperature and moisture content on organic carbon turnover 



processes. We used the same inputs of Corg to the soil as those used by Johnston et al. [48].  

To obtain the starting soil Corg of 63.6 Mg-C ha-1, input to the soil from plant debris, roots, 

and root exudates was 2.7 Mg-C ha-1, with inert organic matter (IOM) being 3.0 Mg-C ha-1. 

The incoming Corg from plant residues were assumed to have decomposable plant material 

620 (DPM) and resistant plant material (RPM) in the proportion 0.59 and 0.41, respectively; 

these are the default proportions for arable cropping and managed grassland.  For the 

first 12 years after the experiment started, grass was grazed by sheep before management 

changed to a grass/clover sward, harvested once or twice a year for conservation. To reflect 

this, the modelled grass management received inputs of 5 Mg-C ha-1 annum-1 between 

625 1949 and 1960, or 4 Mg-C ha-1 annum-1 between 1961 and 2016.  Arable management 

received a carbon input of 1.4 Mg-C ha-1 annum-1 and bare fallow management received 

no inputs of carbon to the soil.

DNA Extraction and Metagenome Sequencing - Soil was collected from triplicate 

plots for each management to a depth of 10 cm using a 3-cm diameter corer. The top 2-cm 

630 of soil containing root mats and other plant detritus was discarded.  Ten cores per plot 

were pooled and thoroughly mixed whilst sieving through a 2-mm mesh; samples were 

then frozen at -80 °C.  All implements were cleaned with 70% ethanol between 

sampling/sieving soil from each plot.  Soil community DNA was extracted from a 

minimum of 2 g soil using the MoBio PowerSoil DNA isolation kit (Mo Bio Laboratories, 

635 Inc. Carlsbad, CA) with three replicates for each soil treatment.  When necessary, extracts 

from individual replicates were pooled to provide sufficient material for sequencing. 10 µg 

of high-quality DNA was provided for sequencing for each of the nine continuous 

management plots.  Shotgun metagenomic sequencing of DNA was provided by Illumina 

(Great Abington, UK) using a HiSeq 2000 sequencing platform, generating 150-base, 

640 paired-end reads.  The generated sequences were limited to a minimum quality score of 

25 and a minimum read length of 70-bases using Trimmomatic [49].  After filtering to 



remove substandard sequences, the average metagenome size for each soil was 4.96x108 

reads for grassland, 2.86x108 for arable and 2.88x108 for bare fallow soils.  Since 

differences in library sizes were less than 10-fold, we did not employ rarefaction before 

645 comparing the datasets [50].  

Bioinformatical Analysis of Metagenome Sequences - To assess general abundance of taxa 

and genes in metagenomes, we mapped individual metagenomic sequences to the RefSeq 

non-redundant (NR) protein database held at NCBI (downloaded August 22nd, 2018) using 

DIAMOND version 0.8.27 [51] in BLASTX mode using a bitscore cut-off of 55. For each 

650 sequence, only the match with the highest bitscore was considered. Sequences not 

matching the NR database were considered currently unclassified.   MEGAN Ultimate 

version 6.10.2 [52] was used to associate metagenome sequences with both taxa and Kyoto 

Encyclopaedia of Genes and Genomes (KEGG) functional orthologs and modules [53].  For 

taxa, MEGAN was used to establish Prokaryotic and Fungal community assemblages and 

655 calculate weighted UniFrac distances [54] between assemblages associated with each 

from each land management.    To identify the most diagnostic microorganisms 

characterising communities of each soil, we used supervised Random Forests (RF), a 

classification algorithm approach based upon a collection of unpruned decision trees [55], 

each built using a bootstrap sample of training data using a randomly selected subset of 

660 OTUs. The RF classifier was built by growing 5,000 classification trees.  The prediction 

performance and confusion matrices were determined using out-of-bag cross-validation. 

The percent mean decrease in accuracy of the importance matrix was used to select taxa 

that were most predictive of each microbiome assemblage.  RF was employed as 

implemented in MicrobiomeAnalyst [56].      In addition, bacterial communities were also 

665 compared based upon the abundance and phylogenetic relatedness of metagenome reads 

homologous to the bacterial 16S rRNA gene.  A 16S rRNA profile hidden Markov model 

(pHMM) was generated based upon an alignment of the set of 4,528 reference sequences 



associated with paprica [57], built December 2017.  Metagenome reads with homology to 

the 16S rRNA pHMM were identified using hmmsearch [58] with a 1x10-5 Expect-value 

670 (E) cut-off and assigned to branches of fixed maximum likelihood 16S rRNA phylogenetic 

tree using a phylogenetic placement algorithm, pplacer version 1.1alpha10 [59]. To assess 

16S rRNA gene-based β-diversity in the different soils, Kantorovich-Rubinstein (KR) 

phylogenetic distance metrics [60] were calculated from phylogenetic placements of 

metagenome reads using the guppy kr binary (part of the pplacer suite), treating each 

675 query as a point mass concentrated on the highest-weight placement.   The advantage of 

the KR distance metric is that it compares gene assemblage distributions on a 

phylogenetic tree (of 16S rRNA or other genes), in units of nucleotide substitutions per 

site, and is therefore a biologically meaningful approach to comparing communities. 

From all of the reads binned to a KEGG orthologous group, we selected those 

680 associated with carbohydrate metabolism (ko09101) (including glycolysis/gluconeogenesis 

(ko00010), citrate cycle (ko00020), pentose phosphate pathway (ko00030), pentose and 

glucuronate interconversions (ko00040), fructose and mannose metabolism (ko00051), 

galactose metabolism (ko00052), ascorbate and aldarate metabolism (ko00053), starch 

and sucrose metabolism (ko00500), amino sugar and nucleotide sugar metabolism 

685 (ko00520), pyruvate metabolism (ko00620), glyoxylate and dicarboxylate metabolism 

(ko00630), propanoate metabolism (ko00640), butanoate metabolism (ko00650), C5-

branched dibasic acid metabolism (ko00660), inositol phosphate metabolism (ko00562)), 

methane metabolism (ko00680), carbon fixation pathways in prokaryotes (ko00720), 

nitrogen metabolism (ko00910), sulfur metabolism (ko00920), xenobiotics biodegradation 

690 and metabolism (ko09111) (including benzoate degradation (ko00362), aminobenzoate 

degradation (ko00627), fluorobenzoate degradation (ko00364), chloroalkane and 

chloroalkene degradation (ko00625), chlorocyclohexane and chlorobenzene degradation 

(ko00361), toluene degradation (ko00623), xylene degradation (ko00622), nitrotoluene 



degradation (ko00633), ethylbenzene degradation (ko00642), styrene degradation 

695 (ko00643), atrazine degradation (ko00791), caprolactam degradation (ko00930), dioxin 

degradation (ko00621), naphthalene degradation (ko00626), polycyclic aromatic 

hydrocarbon degradation (ko00624), furfural degradation (ko00365), steroid degradation 

(ko00984), metabolism of xenobiotics by cytochrome P450 (ko00980) and drug metabolism 

– other enzymes (ko00983)), enzyme families (ko09112), membrane transport (ko09131) 

700 (including transporters (ko02000), ABC transporters (ko02010), phosphotransferase 

systems (ko02060), bacterial secretion systems (ko03070) and secretion systems 

(ko02044)), two-component systems (ko02020 and 02022), biofilm formation – Vibrio 

cholerae (ko05111), - Pseudomonas aeruginosa (ko02025), - Escherichia coli (ko02026), 

bacterial chemotaxis (ko02030), bacterial motility proteins (ko02035), and flagellar 

705 assembly (ko02040) for detailed study of abundance differences between the soils.  Where 

necessary, KEGG orthologs were associated with higher-order functions by mapping to 

the KEGG BRITE functional hierarchy classification.   In total, 8,857 KEGG functional 

orthologs were identified.   To identify genes for which a significant difference in 

abundance between the treatments was observed we used DESeq2 [61] which employs a 

710 negative binomial generalized linear model to generate maximum-likelihood estimates for 

the log2-fold change between conditions associated with each gene.  Bayesian shrinkage, 

based upon a zero-centred normal distribution as a prior, reduces the log2-fold change 

towards zero for genes with low mean counts or a high dispersion in their count 

distribution.  The resulting shrunken fold-changes are used in tests of significance using 

715 Wald’s test.  DESeq2 has been shown to be particularly sensitive to differences in gene 

abundance on small datasets [50] such as those in this study.  Before analysis, 3,930 low 

abundance genes were removed (minimum mean count of 20) as well as 986 genes with 

the lowest coefficients of variation.  Differential abundance of the remaining 3,940 genes 

was tested for significance employing α=0.05 and a Benjamini-Hochberg false discovery 



720 rate (q) of 0.1 to control type I error rate in the face of multiple comparisons. DESeq2 was 

employed as implemented in MicrobiomeAnalyst.

Statistical Analysis - One-factor analysis of variance was employed to test the effect 

of soil treatment upon dcrit and modelled diffusion coefficients arising from X-ray CT, and 

phylogenetic diversity estimates of α-diversity arising from metagenomic analysis.  Where 

725 a significant treatment effect was observed, post hoc pairwise comparisons were 

performed using Tukey’s HSD test (Q) employing the Copenhaver & Holland multiple 

comparisons procedure.   These tests were performed in PAST version 3.25 [62].  One-

factor analysis of covariance (ANCOVA) was used to test for treatment effects upon the 

formation of connected porosity in degraded soil following conversion to either arable or 

730 grassland, using time post conversion as the covariate.  The assumption of homogeneity 

of slopes was tested first, before ANCOVA was used to test for treatment effects using an 

equal slopes model. Post hoc Holm-Šidák multiple pair-wise comparisons were used to 

establish whether differences in adjusted mean connected porosity between treatments 

were significant.  ANCOVA was performed in SigmaPlot for Windows version 14.0 (Systat 

735 Software Inc., San Jose, CA).

For metagenome-associated multivariate data, we first compared prokaryotic and 

fungal communities by calculating unrooted phylogenetic Neighbour-Nets [63] using 

weighted UniFrac distances and compared the 16S rRNA-conditional bacterial 

assemblages using KR distances.  KR distance-based analyses were performed after 

740 testing for heteroscedasticity using the PERMDISP test [64].  Hypothesis testing was 

based upon permutational multivariate analysis of variance [65] (PERMANOVA) and post 

hoc pair-wise tests.  Differences between treatment were visualized using Principal 

Coordinates Analysis using KR distance. To identify associations between chemical and 

physical edaphic factors and any treatment effects, distance-based linear modelling [66] 

745 was used to identify the best combination of edaphic factors to model the multivariate 



data; the resulting model was visualized using distance-based redundancy analysis. All 

multivariate tests were performed in PRIMER PERMANOVA+ version 7.0.13 (PRIMER-

e, Auckland, New Zealand) and probabilities were based upon 99,999 permutations 

(denoted pperm). For post hoc pair-wise comparisons, since the number of observations was 

750 insufficient to allow a reasonable number of permutations, Monte Carlo probabilities 

(denoted pMC) were calculated based upon an asymptotic permutation distribution [67].    
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970 Figure 1. Grassland soils generate connected pore space more rapidly than 
arable soils.  Degraded soil (managed as bare fallow since 1959) developed greater 
connected micro-porosity following conversion in 2007 to grassland than bare fallow soil 
converted to arable.  The mean and standard error of the mean of connected porosity 
measured in soil aggregates collected from soil managed continuously as bare fallow 

975 (brown), soil converted to arable management (dark yellow) and soil converted to 
grassland (green) over the ten years following conversion are shown.  The dotted line 
marks the mean connected porosity of continuously managed bare fallow soil over the 
entire ten-year period.

Figure 2. Soil process-form relationships reflect biotic organic carbon inputs 
980 and turnover. The connected pore space in degraded soils converted after 48 years of 

bare fallow management to either arable or grassland increases in association with the 
net input of organic carbon (Corg). Soils managed continuously as either arable (67 years) 
or grassland (>200 years) which have each accumulated over 100 Mg ha-1 of Corg over their 
history follow this trend.  The relationship is described by an asymptotic function; the 

985 resulting fit (solid line) is shown, together with the upper and lower 95% confidence 
intervals of the fit (dotted lines). R2 = 0.85.

Figure 3. Contrasting long-term soil management results in quantitatively 
different process-form states.  Soils are described by a combination of the connectivity 
of pore space, established from X-ray CT (connected porosity) and modelled hydraulic 



990 conductivity - a measure of capacity, representing the maximum potential movement of 
resources through pore networks to organisms.  Grassland soils (green data points) are 
characterized as having high pore connectivity and hydraulic conductivity and are 
associated with the greatest stocks of Corg.  In contrast, degraded bare fallow soils (brown 
data points) are associated with extremely limited connected porosity and hydraulic 

995 conductivity and the lowest stocks of Corg. Arable soil (dark yellow) is intermediate 
between these two extremes. Data point size is proportional to Corg (Mg ha-1) in each soil, 
the extremes of which are shown in the key.

Figure 4. Process-form states control anoxia within soil. Low-Corg, low-connected 
porosity soil contains much larger volumes of anoxic microsites than high-Corg, high-

1000 connected porosity soil.  Across a range of matric potential (ψm), the predicted volume of 
anoxic sites is consistently larger in degraded bare fallowed soil than arable or grassland.  
At field capacity (θfc), approximately 30% of degraded soil is anoxic, falling to 5% in 
grassland soil.  At 21 kPa degraded soil is completely anoxic while the volume remains 
between 4-5% in grassland soil.  In arable soil 10% of the soil volume is predicted to be 

1005 anoxic at θfc – double that in grassland.

Figure 5. Grassland, arable and bare fallowed soils microbial community β-
diversity. Neighbour-Net networks of prokaryotic and fungal community profiles from 
the three soil managements based on weighted UniFrac distance.  Prokaryotic community 
assemblages were significantly phylogenetically different between all three 

1010 managements; for fungi there was no difference between arable and bare fallow soil 
assemblages, which were both significantly different from grassland assemblages.

Figure 6. Taxonomy-based community responses to land management. A – 
Predictive modelling using a supervised Random Forest algorithm identified the fifteen 
OTUs that were most discriminatory between the different soils, based upon the mean 

1015 decrease in model accuracy of a leave-one-out cross-validation procedure. B – 
Management-conditional distance-based redundancy analysis (dbRDA) of chemical and 
physical edaphic factors and 16S rRNA gene-based phylogenetic assessment of 
microbiomes associated with the Highfield Ley-Arable experiment using Kantorovich-
Rubinstein phylogenetic distances calculated from placement of homologous metagenome 

1020 reads on the 16S rRNA gene reference phylogenetic tree.  Data points represent individual 
replicate plots of grassland (green), arable (yellow) and bare fallow (brown) soils.  
Environmental factors (pH, NaOH-EDTA extractable P [Pext], Corg  and % organic N [%N]) 
were determined by distance-based linear modelling as the most parsimonious 
combination of variables to model the multivariate data and are represented as vectors, 

1025 increasing in the direction of the vector: vector length indicates the degree of partial 
correlation of each environmental variable with the dbRDA axes. The circle has an 
arbitrary origin and radius of r = 1.  dbRDA axis 1 accounted for 83.95% of variation 
accounted for by the model (74.71% of total variation) and dbRDA axis 2 accounted for 
9.96% of variation accounted for by the model (8.87% of total variation). R² = 0.8899 The 

1030 corresponding unconstrained PCoA ordination is shown in Supplementary Fig. 2. See text 
for a detailed description of the analysis.

Figure 7. Function-based community responses to process-form states. 
Management-conditional dbRDA of chemical and physical edaphic factors and function-
based assessment of genes associated with the Highfield Ley-Arable experiment. Square 

1035 root transformed KEGG ortholog abundances were used to calculate Hellinger distances 
between the nine samples.   Data points represent individual replicate plots of grassland 
(green), arable (yellow) and bare fallow (brown) soils.  Environmental factors (pH, Corg, % 



organic N [%N], porosity and dcrit) were selected by distLM as the most parsimonious 
combination of variables to model the multivariate data and are represented as vectors, 

1040 increasing in the direction of the vector: vector length indicates the degree of partial 
correlation of each environmental variable with the dbRDA axes. The circle has an 
arbitrary origin and radius of r = 1.  dbRDA axis 1 accounted for 88.40% of variation 
accounted for by the model (83.21% of total variation) and dbRDA axis 2 accounted for 
7.17% of variation accounted for by the model (6.75% of total variation). R² = 0.9414. The 

1045 corresponding PCoA ordination is shown in Supplementary Fig. 8. See text for a detailed 
description of the analysis.

Figure 8. Schematic representation of the relative abundance of genes for which 
significant differences between the process-form states was determined.  The 
central column indicates the general trend in relative abundance for genes grouped 

1050 according to specific functions, grassland gene abundance is represented as green points, 
arable gene abundance as yellow points and bare fallow gene abundance as brown points: 
each specific function is described in the left-hand column; specific functions are organized 
into higher-level KEGG ontologies, shown in the right-hand column.  Absolute 
abundances for each gene and associated significance (p) and positive false discovery rate 

1055 (q) of the difference in abundance between the three treatments are shown in 
Supplementary Fig. 3 - 7.



Porosity 
/ %

Permeability 
/ mm2

Connectivity 
/ µm-3

Pore 
Surface 
Density / 
µm2 µm-3

dcrit / 
µm

Pore 
Neck 

Size / µm

Grassland 
(n = 14)

31.1 ± 1.18 1.13 ± 0.310 -0.206 ± 0.025 0.088 ± 
0.003

9.74 ± 
0.37

11.19 ± 
0.34

Arable (n 
= 14)

23.4 ± 1.22 0.62 ± 0.154 -0.236 ± 0.033 0.092 ± 
0.004

7.17 ± 
0.26

8.79 ± 0.48

Bare 
Fallow (n 

= 9)

15.0 ± 2.21 0.55 ± 0.339 -0.018 ± 0.080 0.059 ± 
0.010

3.10 ± 
0.76

4.72 ± 0.95

1060

Table I. Topology-related parameters derived from binary images generated 
from X-ray computed tomography of aggregates from Highfield soils.  The mean 
and standard error of each parameter is shown.

1065

pH (H2O)a /
-log(g[H+]L-1)

Organic 
Carbona / 
mg g-1 soil

Total 
Nitrogena / 
µg g-1 soil

NaOH-EDTA 
extractable 

Phosphorusb / 
µg g-1 soil

Grassland 6.2 ± 0.13 3.72 ± 0.44 340 ± 39.0 661.7 ± 31.3

Arable 5.8 ± 0.11 1.85 ± 0.06 190 ± 5.08 517.0 ± 12.6

Bare 
Fallow

5.3 ± 0.19 1.07 ± 0.10 110 ± 6.71 235.0 ± 3.8

Table II. Summary of chemical data of Highfield Ley-Arable experiment soils. 
The mean and standard error of the mean are shown (n = 3). aGregory et al. [22], bNeal 

1070 et al. [68].


