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 The economic and manmade resources that sustain human wellbeing are not 

distributed evenly across the world, but are instead heavily concentrated in cities. 

Poor access to opportunities and services offered by urban centers (a function of 

distance, transport infrastructure, and the spatial distribution of cities) is a major 

barrier to improved livelihoods and overall development. Advancing accessibility 

worldwide underpins the equity agenda of “leaving no one behind” established by 

the United Nations’ Sustainable Development Goals (SDGs)1, bringing a renewed 

international focus on accurately measuring accessibility and using this metric to 

inform development policy design and implementation. The only previous attempt 

to reliably map accessibility worldwide occurred nearly a decade ago2, which 

predated the baseline for the SDGs and excluded the recent expansion in 

infrastructure networks, particularly within lower-resource settings. In parallel, 

new data sources provided by Open Street Map and Google now capture 

transportation networks with unprecedented detail and precision. By integrating ten 

global-scale surfaces that characterize factors affecting human movement rates and 



	

	

13,840 high-density urban centers within an established geospatial-modeling 

framework we develop and validate a map that quantifies travel time to cities for 

2015 at a spatial resolution of approximately 1x1 kilometer. Our results highlight 

disparities in accessibility relative to wealth as 50.9% of individuals living in low-

income settings (concentrated in sub-Saharan Africa) reside within an hour of a city 

compared to 90.7% of individuals in high-income settings. By further triangulating 

this map against socioeconomic datasets, we demonstrate how access to urban 

centers stratifies the economic, educational, and health status of humanity.  

 

 An axiom for the twenty-first century is that the world is becoming increasingly 

connected. While this is certainly true for electronic forms of communication, physical 

links between locations, and thus the time it takes to move between them, remain 

constrained by available infrastructure as well as physical and political impediments to 

travel. Eliminating disparities in accessibility is central to the United Nations’ Sustainable 

Development Goals (SDGs)1, which explicitly call for improved or universal access to 

key services, including education programs, health services, and banking and financial 

institutions. Cities are the epicenters of such activities3-6, and how easily people can reach 

urban areas directly affects whether crucial services can be obtained.  

 What constitutes “accessibility” is widely debated and precise definitions of this 

metric can be arbitrary. In this study, we operationalize accessibility in terms of travel 

time required to reach the nearest urban center, defined as a contiguous area with 1,500 

or more inhabitants per square kilometer or a majority of built-up land cover coincident 

with a population center of at least 50,000 inhabitants7. We define accessibility using 



	

	

travel time as it is readily interpretable, can be feasibly generated at global scales, and is 

known to be a predictive metric in research domains including conservation8, food 

security6, trade,9 and population health10,11. Furthermore, travel time better captures the 

opportunity cost of travel than Euclidean or network distance, and ultimately reflects the 

information humans use to inform transport decisions. The outcome of this research is a 

map that provides an actionable dataset supportive of many research and policy needs. To 

demonstrate the map’s utility for global and local decision-making, we provide 

exploratory analyses examining relationships between accessibility and national-level 

income as well as household-cluster-level economic prosperity, educational attainment, 

and healthcare utilization. 

 Our study responds to a heightened need for fine-grained quantification of 

accessibility worldwide. The only previous assessment of global accessibility2 was for the 

year 2000 and tremendous advances in data quality and availability have since occurred. 

By anchoring our global accessibility map to 2015 (i.e., the year of formal SDG 

adoption), we provide a baseline from which to track infrastructural improvements and 

urban expansion throughout the SDGs’ duration on the basis that accessibility is a 

precondition for many development targets. While our results are useful in a variety of 

contexts, their potential impact centers around a more unifying aim: catalyzing action to 

narrow gaps in opportunity by improving accessibility for remote populations and/or 

reducing disparities between populations with differing degrees of connectivity to cities. 

 To quantify travel time required to reach the nearest city via surface transport (air 

travel is not considered) we applied a similar methodology to that used in producing the 

foremost existing global accessibility map2 to updated and expanded input datasets for 



	

	

2015. These inputs consisted of gridded surfaces that quantify the geographic positions 

and salient attributes of roads, railways, rivers, water bodies, land cover types, 

topographic conditions (slope angle and elevation), and national borders. Roads are the 

primary driver of accessibility globally and also represent the most substantial advance 

from the previous accessibility mapping effort. Our roads dataset was created by merging 

Open Street Map (OSM) data with a distance-to-roads product derived from the Google 

roads database; these datasets were extracted in November 2016 and March 2016, 

respectively. The resulting roads dataset represents the first-ever, global-scale synthesis 

of these two data sources, and the unparalleled data quality of this dataset led to a 4.8-

fold increase in road pixels relative to the dataset used for the previous accessibility 

map2. While roads built since 2000 contributed to this heightened data volume, the 

primary driver of this increase was the inclusion of minor roads (e.g., unpaved rural roads 

and exurban residential streets). The OSM database also provided the information 

necessary for assigning country- and road-type-specific speed data to road pixels. The 

Google roads data provided information critical for maintaining connectivity in areas 

where OSM coverage was sparse and/or fragmented due to its piecemeal data collection 

approach. All input datasets were combined to create a global “friction surface” at a 

resolution of approximately 1x1 kilometer at the equator (i.e., 30 arc-second resolution), 

effectively enumerating the generalized rates at which humans can move through each 

pixel of the world’s surface.  

 The geographic dataset representing cities was the Global Human Settlement grid 

of high-density land cover (GHS-HDC)7. This dataset consisted of 13,840 urban areas, an 

increase of 62.6% from the city points dataset used for the circa 2000 map2. We applied a 



	

	

least-cost-path algorithm12 to the friction surface and the center points of pixels defined 

as urban areas within the GHS-HDC, which ultimately produced a global accessibility 

map enumerating travel time to the closest city for each pixel between 60° south and 85° 

north latitude (figure 1). We generated the friction surface and most of the accessibility 

map using the Google Earth Engine platform13, and by freely distributing our data and 

code our design supports the construction of bespoke accessibility maps targeted at 

specific policy or programmatic priorities and interests (e.g., travel time to healthcare 

facilities, schools, employment centers, or markets). As with any global mapping effort, 

however, this study is subject to limitations that we detail within the methods section. 

 Our accessibility map illustrates broad patterns of accessibility globally, capturing 

both the asymmetric distribution of cities and vast inequalities in infrastructural 

development. Highly accessible areas include those with abundant transportation 

infrastructure and/or many spatially disaggregated cities, suggesting that accessibility to 

cities can be increased via improvements in infrastructure as well as polycentric urban 

development. Further exploration of accessibility relative to gridded population 

datasets14-17 shows that 80.7% of people (5.88 billion individuals) reside within 60 

minutes of cities, but accessibility is not equally distributed across the development 

spectrum. This disparity is evident when comparing accessibility for populations 

subdivided by World Bank classifications for income group and geographic region18 

(figure 2), as 90.7% of people in high-income countries (concentrated in Europe and 

North America) live within one hour of a city compared to 50.9% of people in low-

income countries (concentrated in sub-Saharan Africa). The relationship between national 

wealth and population accessibility is more ambiguous for upper- and lower-middle 



	

	

income countries due to the high population and large number of spatially diffuse urban 

centers found in northern India. This finding exemplifies differences in accessibility that 

can readily be discerned from our map because it was produced using a globally 

consistent (and thus comparable) methodology. While global summaries are informative, 

the accessibility map also supports fine-grained summarization and analysis (extended 

figures 1-3, supplementary information). Our map also provides a means for more 

nuanced characterizations of accessibility within rural populations than those based upon 

commonly-used datasets such as binary classifications of urban vs. rural land cover19 or 

national estimates of urban population percentages20 (extended figure 4). As such our 

map can be used to highlight major development gaps between predominantly urban and 

rural populations and/or provide a means of enumerating accessibility within rural 

populations along a continuum. 

To analyze subnational relationships between accessibility and socioeconomic, 

educational, and health measures we utilized data collected by the Demographic and 

Health Surveys (DHS) program between 2000 and 2015. Our DHS database consisted of 

66,768 household clusters, from 122 unique surveys spanning 52 countries, which were 

aggregated from nearly 1.77 million surveyed households. While DHS surveys primarily 

cover low- to middle-income countries (LMICs), and thus do not fully represent all 

socioeconomic contexts, our results illustrate reciprocal relationships between 

accessibility and key metrics of human wellbeing in many geographic, political, and 

economic settings. We found a clear association between higher household wealth and 

greater accessibility to population centers (figure 3a). Similar patterns emerged for 

measures of educational attainment (figure 3b) and treatment of fever among children 



	

	

under five (figure 3c). While exceptions occurred (e.g., there were wealthy household 

clusters far from cities and vice-versa), and the selected metrics were strongly collinear, 

the association between accessibility to cities and indicators of human wellbeing in 

LMICs was unequivocal.  

The 2015 global accessibility map provides an unprecedented level of detail while 

also characterizing spatial heterogeneity in accessibility at a range of spatial scales. Our 

map is likely to serve as a critical input for future geospatial modeling endeavors, 

including those that highlight positive aspects of low accessibility, such as the protective 

effect remoteness provides to wilderness areas21,22, or reinforce the need for strategic road 

building that avoids unnecessary environmental damage23,24. We illustrate such utility 

through a cursory case study relating accessibility with forest loss between 2000 and 

2015 (extended figures 1-3) based upon the Global Forest Change dataset25. This 

exemplar shows the potential of our map for contributing to natural science research, 

conservation efforts, and formulation of environmental policy.  

While results from our exploratory analyses do not causally link accessibility with 

metrics of development (e.g., they cannot be used to determine whether places are more 

affluent due to greater accessibility or vice-versa), they nevertheless illustrate the 

relationship between travel time and socioeconomic outcomes encompassed within the 

SDGs. Many view reducing inequalities in accessibility to the services, institutions, and 

economic opportunities offered by cities as a vital pathway to sustainable development 

and improved livelihoods for all populations. Our analysis supports this perspective and 

future studies should track and evaluate the multifaceted effects that result from improved 

accessibility.  



	

	

 

Data availability statement 

The accessibility map is available for visualization and/or download at 

http://roadlessforest.eu/map.html and http://www.map.ox.ac.uk/accessibility_to_cities/.  
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Figure 1: Global map of travel time to cities for 2015. The accessibility map has a 

spatial resolution of approximately 1x1 kilometer, spans 60° south to 85° north 

latitude, and enumerates travel time to the city with the shortest associated journey. 

 

Figure 2: Global disparities in accessibility. Travel time of global populations 

grouped by World Bank (a) income categories and (b) regions. Graphed lines depict 

population aggregated in ten-minute increments and then divided by the total 

population of each group. The inset charts show the percentage of the global 

population within each group. 
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Figure 3: Relating accessibility with human wellbeing. Log-scale violin plots show 

travel times (plus one minute) for household clusters for metrics of (a) wealth 

(n=47,761), (b) educational attainment (n=59,686), and (c) healthcare utilization 

(n=39,014). The overlaid boxplot hinges and color-coding indicate the data quartiles, 

whiskers extend to the range of the data, violin shapes depict the data distributions, 

and median and confidence intervals (CI) are displayed at the boxplot centers. 

 

Methods  

 To model the time required for individuals to reach their most accessible city we 

first quantified the speed at which humans move through the landscape. For this we built 

upon previous work that integrated a number of infrastructural, political, and 

environmental datasets within a GIS-based model2. The principle underlying this work 

was that all areas on Earth, represented here as pixels within a 2-D grid, had a cost (i.e., 

time) associated with moving through them that we quantified as a movement speed 

within a cost or “friction” surface. We then applied a least-cost-path algorithm12 to the 

friction surface in relation to a set of high-density urban points. The algorithm calculated 

pixel-level travel times for the optimal path between each pixel and its nearest (i.e., 

shortest journey time) city. From this work we ultimately produced two products: (a) an 

accessibility map showing travel time to urban centers, as cities are proxies for access to 

many goods and services that affect human wellbeing; and (b) a friction surface that 

underpins the accessibility map and enables the creation of custom accessibility maps 

from other point datasets of interest.  

 



	

	

Accessibility mapping methodology 

 The datasets we used to construct the friction surface characterize the spatial 

locations and properties of roads, railroads, rivers, bodies of water, topographic 

conditions (elevation and slope angle), land cover, and national borders. The datasets 

were converted into aligning grids with a 30 arc-second resolution, with the pixel values 

representing speeds of movement. The layers were then combined following the approach 

defined within an earlier accessibility mapping project2 such that the fastest mode of 

transport took precedence. The lone exception to this logic was national borders, for 

which a crossing-time penalty was superimposed with priority over all other layers. The 

borders dataset was created from a UN global administrative units layer (GAUL) such 

that each border segment had a unique numerical identifier. This approach supports 

setting border-specific crossing times via a lookup table, however usable data do not 

presently exist for universally defining this parameter. As such, we used a static, one-

hour crossing-time penalty for all borders other than those within the Schengen and the 

UK-Ireland common security zones. Note that for readability the travel speeds for other 

input layers are provided in km/h, but the actual units within the friction surface raster are 

minutes required to travel one meter. 

 With the exception of the rivers input, each of the datasets we used in this project 

and the methods we used to pre-process the data have improved considerably relative to 

those of the circa 2000 accessibility map that was produced in 20082. Two roads datasets 

were combined for this research. The first road input layer consisted of vector data 

extracted from the Open Street Map (OSM) database, which was created by a user 

community dedicated to producing open-source, geocoded datasets of infrastructural 



	

	

resources. The OSM dataset was converted into a grid matching the geographic 

resolution and extent of the eventual friction surface. In cases where vector features of 

more than one road type were present within a single pixel, the road type with the highest 

associated travel speed took precedence. This rasterization procedure resulted in an 

integer grid where pixel values corresponded to a single road type that was subsequently 

linked to a speed via a lookup table, which we also derived from the OSM database. The 

lookup table contains the country-specific mean travel speeds associated with each 

available road type, as derived from attributes linked to individual roads by the OSM user 

community. We utilized this lookup table approach rather than direct assignment of road 

speeds because such speed-of-travel information was infrequently assigned to road 

vectors within the OSM database. This limitation also necessitated the creation of a 

global default lookup table, which we created using mean values for each road type from 

all countries. We applied values from the default table in cases where a country had no 

speed limit records for one or more road types found within it.  

 The second, equally important source of road data was the Google distance to 

roads surface. This Google dataset was also global in extent, though China and the 

Korean Peninsula were omitted due to data distribution limitations. To combine the two 

roads datasets the Google distance to roads raster was first restricted to include only 

pixels with values of 500 meters or less, thereby approximating the 1x1 km rasterization 

of the OSM road vectors. Unlike the OSM data the resulting Google roads raster lacked 

road type information. As such the OSM road type designation took precedence if both 

layers contained road information for a single pixel. Where only Google road data were 

available the pixels were given the default integer value corresponding to the generic 



	

	

“road” class from OSM. When creating the friction surface, all pixels from the combined 

roads raster were assigned the road travel speeds from the OSM-based lookup tables. For 

the lookup procedure we also utilized a grid of administrative units to determine each 

pixel’s country association. 

 The railroad input layer was also created from the rasterized OSM surface. Unlike 

the OSM roads data, however, the railroads were not differentiated by type within OSM 

and thus consisted of a single class with a uniform movement speed. The railroad speed 

used in this project was 24.3 km/h, which was the mean value assigned to railroad vectors 

extracted from the OSM database.  

 Three datasets were used to account for travel time by water within the friction 

surface. River travel time was added via a global set of navigable rivers rasterized from 

the CIA World Data Bank II vector rivers dataset26, which was the only holdover input 

variable from the circa 2000 accessibility mapping endeavor2. Other options available for 

characterizing major rivers were explored, most notably the HydroSHEDS27 river 

network and Vector Map Level 0 (VMAP0)28 datasets, but we ultimately concluded that 

reusing the original data was warranted as neither of the alternatives was discernibly 

superior given their associated limitations and lack of detail on which rivers were 

navigable. For inland water bodies we utilized a newly created global surface water 

occurrence dataset29, which we first aggregated from its native 30-meter resolution to 

create a layer that enumerated the fraction of each pixel’s area that was covered by water 

at the resolution of the friction surface. In this procedure, all 30-meter pixels within the 

resulting fractional surface water dataset that were classified as water at least 80% of the 

time were considered permanent water, as 80% was the lowest occurrence value we 



	

	

observed within ocean pixels when screening the data. The resulting fractional surface 

water layer was then converted into a binary surface whereby only pixels that were 

completely covered by permanent water were codified as a body of water amenable to be 

crossed via boat. The final dataset relating to water was a land-sea mask, which was used 

to identify ocean pixels. The movement speeds assigned to the water types within the 

friction surface were 10 km/h for rivers and lakes and 19 km/h for oceans. The value for 

rivers was based on inland travel speeds reported in the UK, Ireland, and Australia30. The 

ocean value was the average speed gleaned from over 142 million observations of 

oceangoing passenger ships collected from the	Automatic Identification System (AIS) 

and the Voluntary Observing Ship (VOS) program30. 

 For all pixels not covered by any of the water, road, or railroad datasets, we 

derived a baseline speed of movement overland (i.e., on-foot) using the MODIS 

MCD12Q1 land cover product31 whereby we assigned each land cover type a travel speed 

from a lookup table. The lookup table was created by summarizing results from an online 

survey designed to crowd-source estimates of how long it takes individuals to traverse 

each cover type. The survey consisted of representative photos and global maps of each 

land cover type. Respondents were asked to estimate the amount of time it would take 

them to travel one kilometer (or one mile) on foot through each land cover type. The 

survey received 407 complete responses and, after standardizing the distance units, the 

median values for the fifteen land cover classes within the survey (in units of km/h) were 

as follows: Evergreen Needleleaf Forest = 3.24, Evergreen Broadleaf Forest = 1.62, 

Deciduous Needleleaf Forest = 3.24, Deciduous Broadleaf Forest = 4.00, Mixed Forest = 

3.24, Closed Shrublands = 3.00, Open Shrublands = 4.20, Woody Savannas = 4.86, 



	

	

Savannas = 4.86, Grasslands = 4.86, Permanent Wetlands = 2.00, Croplands = 2.50, 

Cropland/Natural Vegetation = 3.24, Snow and Ice = 1.62, and Barren or Sparsely 

Vegetated = 3.00. The two land cover classes we excluded from the survey were (a) 

urban and built-up, which was given a speed of 5 km/h, but this value is virtually never 

needed due to the higher speed (and thus precedence) of the roads datasets that dominate 

urban landscapes at 1x1 kilometer resolution, and (b) open water, which was given a 

speed of 1 km/h. The speed for the open water pixels was assigned using the rationale 

that if these pixels were not considered inland water within the water bodies layer (and 

would thus have received the inland water speed associated with boat travel) they were 

likely more akin to permanent wetland pixels that had a very high subpixel fraction of 

water to circumnavigate on foot. As such, all pixels that were classified as open water in 

the land cover layer but not as permanent water in the water bodies layer were given a 

speed half as fast as the crowd-sourced median speed for permanent wetlands of 2 km/h. 

 The land cover-dependent travel speeds were then adjusted to take into account 

the effect of topographic properties. Topographic datasets used in this analysis were 

produced from the Global Multi-resolution Terrain Elevation Dataset 2010 

(GMTED2010), a derivative of the Shuttle Radar Topography Mission data produced by 

USGS32. The adjustment we applied to elevation accounts for decreasing atmospheric 

density (and thus available oxygen) with altitude, which closely parallels the drop in 

maximal oxygen consumption (i.e., VO2 max, a measure of optimum heart and lung 

function) and thus decreased the predicted travel speed as a function of altitude33. 

Equation 1, based on the standard atmosphere calculation, shows the adjustment factor 

we associated with elevation (in meters). We treated slope angle (in degrees) similarly, as 



	

	

steep terrain slows humans’ ability to traverse it on foot. For the slope adjustment we 

utilized Tobler’s Hiking Function34 as shown in Equations 2 and 3, with Tobler’s speed 

capped at a maximum speed of five km/h and then divided by five to convert it into a 

fraction of maximum travel speed. The elevation and slope adjustment factors were 

subsequently multiplied by the land cover-dependent travel speeds, thus lowering the 

speed of travel on foot and increasing the time required to traverse each associated pixel 

within the friction surface. 

EQ1: Elevation adjustment factor = 1.016e(-0.0001072 * elevation)  

EQ2: Tobler's walking speed = 6e(-3.5|((TAN(0.01745 * slope angle)+ 0.05))|) 

EQ3: Slope adjustment factor = Tobler's walking speed / 5.0 

 

 The final input for the accessibility map was the dataset of urban land cover, 

which was created using a layer from the Global Human Settlement (GHS) project7. This 

dataset was produced using a combination of satellite imagery and census data to map the 

spatial distribution of urban areas across the globe. To be consistent with data used in 

past accessibility mapping research2 we selected the “high-density centers” variant of the 

GHS dataset, which is defined as “contiguous cells with a density of at least 1,500 

inhabitants per km2 or a density of built-up greater than 50% and a minimum of 50k 

inhabitants”. The dataset contained a total of 13,840 unique urban areas and, unlike the 

circa 2000 accessibility map in which cities were represented as single geographic points, 

cities extracted from the GHS consisted of a cluster of pixels, thus effectively 

representing urban areas as polygons. The switch from single-point to multiple-pixel 

representations of cities was operationalized by extracting each urban pixel’s center 



	

	

coordinates and then applying the least-cost-path algorithm to only points on edges of 

urban areas. Over 400,000 high-density urban points were processed in this manner, not 

including points from the urban interiors, which were ignored to reduce redundant 

processing and later masked to have travel times of zero in the resulting accessibility 

map.  

  The friction surface was created entirely within Google Earth Engine, which was 

also used to create the majority of the accessibility surface. In contrast to the process used 

to create the friction surface, deriving the accessibility map was very computationally 

intensive and required a more complex processing chain. Within Earth Engine 

accessibility surfaces were generated using the cumulativeCost function35, a least-cost-

path function that was an experimental tool implemented specifically for this project but 

is now freely available within Earth Engine. By harnessing the computational power of 

the Google cloud-computing system the cumulativeCost function shortened the 

production time of the global accessibility surface from several months (when relying on 

local computing resources alone) to approximately two weeks. Despite reducing the 

production time substantially, the cumulativeCost function was still an evolving tool that 

was not yet capable of producing the global accessibility map in a single run or reliably 

producing output for latitudes above 60° if the friction surface was in geographic 

coordinates (i.e., units of degrees latitude and longitude). As such, we created the global 

accessibility map by mosaicking a set of 31 tiles, 24 of which encapsulated the most 

computationally demanding areas and were generated within Earth Engine, and seven of 

which we created outside Earth Engine. The limitations of the least-cost-path function 

within Earth Engine at high latitudes were due to the nature of processing raster data 



	

	

stored in geographic coordinates because distances at high latitudes span far more 

degrees of longitude (and thus more pixels) than comparable distances at low latitudes. In 

order to parallelize computations efficiently the Earth Engine cumulativeCost function 

required specification of a maximum search distance from the source points (i.e. high-

density urban land cover pixel centers), which we set to 1500km for most of the globe but 

reduced to 1000 km in areas from 50° to 55° latitude due to the afore-mentioned 

processing limitations at high latitudes. For latitudes above 50° we calculated 

accessibility tiles using the gDistance package in R36, thus ensuring an overlapping area 

of five-degrees latitude and providing data with which to compare the output maps from 

the differing sources (pixel values in these areas proved to be virtually identical). We also 

calculated accessibility times locally for very remote islands at lower latitudes that were 

beyond the 1500km search distance threshold from their closest cities. Lastly, the 

cumulativeCost function in Earth Engine could not account for wrapping at +/- 180° 

longitude, so we created an alternative version of the friction surface centered at this 

longitude and reprocessed approximately one fifth of the globe outside of Earth Engine to 

ensure that any pixels that had their closest cities on the opposite side of this “edge” were 

ascribed accurate travel times. We then mosaicked all of the tiles together by selecting 

the minimum travel times for all pixels that fell within overlapping portions of multiple 

tiles. The result of this mosaicking operation is the global accessibility map shown in 

Figure 1. 

 

Model validation 

 The approach we adopted for validating the accessibility map was to compare the 



	

	

travel times extracted derived using least-cost-path calculations based on the friction 

surface with corresponding estimates derived using the driving directions application 

within Google Maps (i.e., comparison to travel time estimates derived using a network 

distance algorithm). The data source we used for validation consisted of settlement points 

from the Global Rural-Urban Mapping Project (GRUMP)19. Point pairs linking small 

settlements (i.e., those with populations under 50,000 inhabitants) with their nearest city 

(i.e., settlements with populations over 50,000 inhabitants) were processed using the 

friction surface approach to produce travel times akin to those within the accessibility 

map. After receiving special permission to automate the process of querying the Google 

driving directions application programming interface (API), we acquired validation travel 

times for each of the point pairs. A total of 53,091 validation point-pairs were available 

after removing all coordinate pairs the API could not match. This approach limited the 

validation to places that fell along road networks, which precluded an assessment of the 

map’s accuracy in the most remote areas on Earth. However, the applied validation 

approach does thoroughly validate the map with respect to human populations as (a) most 

of the world’s people live in close proximity to a road of some variety, and (b) named 

points along road networks that we tested were indicative, from an accessibility 

perspective, of other points near roads at unnamed locations.  

 The validation results were encouraging, with an R2 of 0.66 and a mean absolute 

error (i.e., the average difference between the travel times regardless of sign) of 20.7 

minutes. The distribution of the differences between the travel times also matched our 

expectations as 86.5% of the point pairs had lower travel time estimates from the friction 

surface approach compared to the values derived from the Google API. We attributed this 



	

	

unequal distribution to the presence of roads within the OSM dataset that were not 

present within the Google data and were thus unknown to the Google API when it 

calculated travel time via the Google road network. Another factor that helped explain the 

preponderance of lower travel times to cities derived using the friction surface was that it 

incorporated other forms of travel (e.g., by water). This factor was particularly important 

for explaining point pairs with very large travel time disparities. Additional reasons why 

the friction surface approach tended to produce lower travel times relative to the Google 

API include (a) the abstraction of vector roads within raster space, which effectively 

shortened some roads by reducing their sinuosity; (b) the speed limit look-up table which 

assigned speeds to roads that may be unrealistically high (e.g., if road conditions are 

poor); and (c) the friction surface approach assumed constant and optimal travel speeds, 

unlike the Google API that incorporated temporally varying delays related to traffic 

density (e.g., rush-hour delays). 

 The geographic distribution of the 13.5% of point pairs where the travel times 

estimated via the Google API were shorter than the corresponding times from the friction 

surface approach was heavily concentrated in China. This is noteworthy as the Google 

roads dataset we utilized to create the friction surface lacked road data for China. As 

such, this finding suggests that there were roads in China that the Google API utilized to 

estimate travel times that were unaccounted for within the friction surface (i.e., not 

present within OSM). Because both the under- and over-estimates were partially 

attributable to incomplete road network data from either OSM or Google, using a 

combination of these road data sources to produce the accessibility map represents a 

major strength of this research.  



	

	

 

Description of map limitations 

 Virtually all research projects that generate modeled data at global scales rely 

upon assumptions, generalizations, and the use of best-available (even if suboptimal) 

datasets. An important example of this for our work is that the time it takes an individual 

to move through the landscape is mediated by far more factors than just infrastructure or 

landscape properties. Wealth, in particular, is a likely determinant of whether someone 

travels on foot rather than taking a vehicle and thus substantially affects accessibility on 

the level of the individual. As such, users are cautioned from assuming our travel time 

estimates are universally applicable. It should also be noted, however, that because the 

accessibility mapping system was developed within Earth Engine, alternative variants of 

the accessibility map (e.g., a walking only travel time map) can readily be created. 

 Another caveat relates to transport via rail and water, and specifically how the 

least-cost-path algorithm is able to freely transition from these networks to roads or vice-

versa when, in reality, switching modes of transport typically requires a station or port. In 

our friction surface this reality is not reflected and thus the least-cost-path algorithm will 

occasionally utilize water and rail pixels unrealistically. Railroads are also problematic 

because there is insufficient data within OSM to differentiate railroads by type and thus 

all railroads are assigned a relatively slow speed. As such, high-speed train travel is 

effectively absent from our map, although that point is largely moot when mapping 

accessibility to the nearest city as high-speed trains typically link large cities together 

(i.e., to utilize such a network an individual is likely already within a city of 50,000 or 

more people) and are therefore similar to air travel within this context.  



	

	

 Including slope angle as an input layer also presents challenges because the level 

of detail inherent to topographic datasets depends on the spatial resolution of the 

elevation data used to generate such metrics. For example, data at a 1x1 kilometer 

resolution can only reflect the slope angle at that resolution, likely missing large changes 

in topographic relief (and thus slope angle) at finer resolutions. A related caveat is the 

isotropic handling of slope angle such that it will always slow down movement regardless 

of whether the least-cost-path is oriented uphill or downhill. The net result of these 

caveats is that the friction and accessibility surfaces are less reliable for off-road areas, 

and particularly in mountainous regions. It should also be noted that erroneous data 

within the global topographic dataset resulted in unrealistically high travel time estimates 

for a small cluster of pixels (i.e., less than 50) in western Colombia. 

 Another known limitation of the accessibility map is that it ignores geopolitical 

conflicts, such as those currently occurring in Syria, where degraded infrastructure and 

other impediments to movement will greatly impact travel times. The relative ease with 

which a new friction surface can be generated using our methodology, however, would 

allow us to create new a friction surface and accessibility map that took	degraded	

infrastructure	into	account	and	thus	identifies	areas	affected	by	the	reduced	access	

to	resources.			Likewise, national borders are particularly challenging to incorporate into 

the accessibility map because many borders are contested and/or unrecognized by the UN 

(e.g., the border between Northern Cyprus and Cyprus) and thus not accounted for within 

the friction surface. A related challenge is borders that are effectively impermeable 

barriers to travel for most people (e.g., the border between North and South Korea). As 

previously stated, there are simply no reliable data that quantify how long it takes to cross 



	

	

most land borders, much less the contested ones, and thus we applied a universal value 

that reflects the fact that most borders slow movement, particularly at road crossings, 

while avoiding any baseless assumptions. These factors highlight the need for better 

global data on border permeability and crossing times, particularly in light of ongoing 

policy changes related to transnational migrant flows. 

 Seasonal changes also present a major challenge when characterizing 

accessibility, particularly when they pertain to areas periodically inundated by water or 

covered by deep snow in which movement may be precluded for portions of the year 

and/or people may change their mode of transport (and thus their movement speed). 

Likewise, rare events such as floods and earthquakes can sever transportation links like 

roads and bridges, thereby dramatically changing spatial accessibility patterns. Because 

the accessibility map was produced largely in Earth Engine, such modifications to 

transportation networks can be addressed by rapidly remaking the friction surface to 

reflect the changed reality on the ground. There are several crowd-sourced examples 

demonstrating how quickly such information can be collected and made available for 

analysis (e.g., https://www.hotosm.org/mapping_in_activations). A more common 

issue of temporal variability in accessibility pertains to public forms of transportation, 

which typically operate on schedules that produce delays in travel time as individuals 

wait for buses, trains, or ferries. Similarly, traffic congestion will slow travel times both 

predictably (e.g., at rush hour or due to construction) and unpredictably (e.g., due to 

traffic accidents). As such, our accessibility should not be viewed as applicable at every 

moment, but rather a general estimate of accessibility during nominal traveling hours and 

in the absence of adverse conditions.  



	

	

 

Exploratory analysis methodology – wealth, education, and healthcare utilization 

The variables selected from the Demographic and Health Survey (DHS) Program 

database for exploratory analysis consisted of household cluster measures for the mode 

wealth index for heads of household, the mode educational attainment for heads of 

household, and the percentage of children receiving treatment for a fever (i.e., healthcare 

utilization). The wealth and education variables were aggregated directly from questions 

asked within the surveys and, due to the categorical nature of these metrics, we selected 

the mode head of household values for analysis. The healthcare utilization metric, in 

contrast, was aggregated from individual-level data to provide cluster-level counts for 

both the numerator and denominator of the fever-treated fractions. For fever treatment 

this constitutes, respectively, the number of children (under five years of age) in each 

household cluster who received treatment for their fever divided by the total number of 

children within that household cluster who had a fever in the past two weeks. Summaries 

of the DHS metrics relative to accessibility were depicted using violin plots (figure 3), 

which show the distribution and number of household clusters via the violin shape and 

area, respectively. To show the full data range these metrics were plotted using a 

logarithmic scale, which necessitated adding one minute to each survey cluster to plot 

those with travel times of zero. The added minute is reflected in Figure 3, including the 

reported median and confidence interval values, the latter of which (derived following 

equation 437) are quite narrow as a result of the large sample sizes. 

 

EQ4: Confidence intervals = median ± 1.58(interquartile range / n0.5) 



	

	

 

Exploratory analysis methodology – forest loss 

 Despite potential beneficial aspects of short travel times to cities for humans, 

higher accessibility has an associated environmental cost due to the relative ease with 

which humans can extract natural resources in places closer to population centers. This 

relationship is observable when comparing a global dataset of changes in forest density 

from 2000 to 201525 with travel time to cities. The initial step in this analysis was to 

aggregate the data for (a) forest coverage in 2000 and (b) forest loss from 2000 to 2015 

from their native 30-meter resolutions to match the 30-arc second resolution of the 

accessibility surface. This process resulted in two grids quantifying the fraction of each 

pixel that (a) contained forest in 2000 and (b) experienced forest loss by 2015. By 

multiplying these layers by a grid of area per pixel (to convert the results to km2), binning 

(in ten minute increments) the pixels in both resulting layers according to their 

intersection with the accessibility map, and then dividing (a) the binned totals for area 

forest that experienced loss by (b) the binned totals for area of forest in 2000, we 

obtained the summarized proportion of the original forest that experienced any level of 

loss for each travel time interval. The summarized results were then subdivided by 

country. Brazil and Indonesia were selected to illustrate the relationship between 

accessibility and forest loss using a combination of visual juxtaposition (extended figures 

1-2) and a comparison of summarizations of the national population, land area, and forest 

loss relative to accessibility (extended figure 3). Our results indicate that forest loss tends 

to peak between 1 and 5 hours from cities, or just beyond the relatively stable forest 

matrix associated with urban and suburban landscapes. This suggests that very close 



	

	

proximity to urban areas has a protective effect for forests, but a more nuanced 

assessment is that such areas were likely to have been heavily exploited prior to the year 

2000 (i.e., they had little readily harvestable forest remaining in 2000) and thus do not 

show major forest losses since the turn of the century. Geographic differences in both the 

magnitude and shape of the curves, however, reflect the importance of local context when 

interpreting results. Subnational patterns of forest loss also follow predictable patterns in 

both Brazil and Indonesia, with the least accessible forests showing the least amount of 

density loss.  

 

Code availability statement 

 The core code used to create the accessibility map is available for download from 

the Malaria Atlas Project website (http://www.map.ox.ac.uk/accessibility_to_cities/).  
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Extended Figure 1: Accessibility and forest loss in Brazil. Maps of (a) travel time to 

urban centers and (b) forest loss from 2000 to 2015. Forest loss is defined as the 



	

	

fraction of land area identified as forest in 2000 that experienced any loss in forest 

density (i.e., not necessarily total removal) by 2015. 

 

Extended Figure 2: Accessibility and forest loss in Indonesia. Maps of (a) travel time 

to urban centers and (b) forest loss from 2000 to 2015. Forest loss is defined as the 

fraction of land area identified as forest in 2000 that experienced any loss in forest 

density (i.e., not necessarily total removal) by 2015. 



	

	

 

Extended Figure 3: Forest loss relative to accessibility. Bar charts for (a) Brazil and 

(b) Indonesia summarizing the distribution of the population and land area by 

accessibility category. Graphed lines (c) show the percentage of area that 



	

	

experienced any loss in forest density since 2000 for each country and the global 

average. 

 

Extended Figure 4: Travel time relative to percent urban population. Mean national 

accessibility for countries with populations over ten million relative to the 

percentage of urban population as estimated by the UN, color-coded by World Bank 

income category.  


