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Abstract Dynamic Spectrum Access/Cognitive Radio
systems access the channel in an opportunistic, non-
interfering manner with the primary network. These
systems utilize spectrum sensing techniques to sense
the occupancy of the primary user. In this paper, an
artificial neural network based hybrid spectrum sens-
ing technique is proposed, which considers sensing as
a binary classification problem to detect whether the
primary user is idle or busy. The proposed scheme uti-
lizes energy detection and likelihood ratio test statistic
as features to train the neural network. Moreover, we
demonstrate the impact of hyperparameter tuning and
carry out the detailed study of it, yielding a combina-
tion of best-suited hyperparameters. The performance
of the proposed sensing scheme is validated on primary
signals of various real world radio technologies acquired
with an empirical testbed setup. We conclude that the
best performing configuration results in an increase of
approximately 63% in detection performance compared
to classical energy detection and improved energy de-
tection sensing schemes when averaged over all the ra-
dio technologies considered in this work.

Keywords Artificial neural network, Hyperparameter
tuning, Cognitive radio, Spectrum sensing.

Dhaval K. Patel, Brijesh Soni
School of Engineering and Applied Science, Ahmedabad Univer-
sity, India. E-mail: {dhaval.patel, brijesh.soni}@ahduni.edu.in

Miguel López-Benítez, Ángel F. García-Fernández
Department of Electrical Engineering and Electronics, Univer-
sity of Liverpool, UK and ARIES Research Centre, Anto-
nio de Nebrija University, Madrid, Spain. E-mail: {M.Lopez-
Benitez,Angel.Garcia-Fernandez}@liverpool.ac.uk

1 Introduction

1.1 Background

With the expeditious advancement of wireless commu-
nication technologies and the advent of 5G massive mul-
tiple input multiple output (MIMO) systems, spectrum
resources are becoming highly scarce [1]. As per the
spectrum occupancy campaign in 2016, the overall us-
age of spectrum ranges from 7% to 34%, which demon-
strates significant under-utilization of the spectrum re-
sources [2]. Evidently, the conventional fixed spectrum
allocation policy is not optimal. Hence, the spectrum
allocation needs to be dynamic for efficient usage and
opportunistic access of the spectrum band. Dynamic
Spectrum Access/Cognitive Radio (DSA/CR) is envis-
aged as a promising solution to alleviate this existing
conflict between increasing spectrum demand and spec-
trum under-utilization [3].

DSA/CR systems aims at increasing the efficiency
of spectrum usage by allowing unlicensed or secondary
users (SUs) to opportunistically access licensed spec-
trum bands temporarily unused by the licensed or pri-
mary users (PUs) in a non-interfering manner [4]. More
specifically, CR exploits the parts of radio spectrum
that are not occupied at some specific time instances in
some specific locations and moves its operation to these
parts called spectrum holes or white spaces for oppor-
tunistic access [5]. In order to opportunistically access
a licensed spectrum band in a non-interfering manner,
it is extremely important for DSA/CR systems to have
the knowledge of PUs spectrum activity. Consequently,
a number of different spectrum sensing schemes have
been proposed in the literature [6]. Each sensing scheme
provides a different trade-off between required sensing

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/326512678?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Dhaval K. Patel, Miguel López-Benítez, Brijesh Soni, Ángel F. García-Fernández

time as well as computational and memory complexi-
ties.

Spectrum sensing schemes can be broadly divided
into two categories, namely parametric and non-para-
metric. Parametric sensing schemes require the DSA/CR
system to have apriori information of the PU. Many
spectrum sensing techniques, including matched filter
detection, adaptive spectrum sensing and cyclostation-
ary based sensing, have been elucidated in [7], [8]. On
the contrary, non-parametric sensing schemes do not re-
quire any a priori information, which is usually the case
in real-life scenarios. The channel state (busy/idle) is
often uncertain and not known, hence, non-parametric
schemes are preferred. One of the most simple and widely
popular non-parametric sensing schemes is energy de-
tection [9], [10], which compares the received signal en-
ergy with a predefined threshold and determines the
state of the PU, either busy or idle. The implementation
of energy detection is straightforward, but it is sensitive
to signal and noise uncertainty [11], [12]. In other words,
energy detection fails to perform in cases of highly vari-
able signal power and/or noise power, thereby dramat-
ically degrading the overall sensing performance. As an
alternative, a new class of algorithms based on Goodness-
of-Fit (GoF) tests has been proposed in the literature
such as Anderson-Darling (AD) test [13], Ordered Statis-
tics (OS) test [14], Kolmogorov-Smirnov (KS) test [15],
[16], Likelihood Ratio Statistics (LRS) test [17], [18]
and Improved Likelihood ratio statistic based test in
our recent work [19]. Sensing schemes based on GoF
test yield a reasonably better performance than other
algorithms in low signal to noise ratio (SNR) conditions.

1.2 Related Works

In recent past, researchers from industry and academia
have resorted to the use of machine learning and deep
learning algorithm for various fields including computer
vision, natural language processing, medical science and
wireless networks among many others [20]. Owing to the
excellent learning ability using data driven approach
and with theirapid advancement in the learning based
signal processing techniques [21], machineilearning and
deep learning algorithmsihave gained wide attention from
industry and academia in theicontext of future wire-
lessinetworks [20,22–24]. The key advantage of CR net-
work is its cognitive ability, i.e., learning by itself from
the radio environment. This is analogous to the machine
learning/deep learning framework. In similar lines, au-
thors in the recent work [25] proposed a spectrum intel-
ligent radio which hierarchically performs perception,
understanding and reasoning. Thus, these frameworks
have been applied to CR networks as well [26–29].

There are many works in the literature that have ap-
plied machine learning approach for spectrum sensing
in CR networks. For instance, support vector machine
(SVM) classifier based spectrum sensing and real-time
detection was proposed in [30]. Also, the SVM - Radial
Basis Function (RBF) based signal classification and
spectrum occupancy was carried out in [31]. The Naive
Bayesian classifier (NBC) based multi-class classifica-
tion for spectrum sensing was proposed in [32], while
the authors in [33] proposed the random forest classi-
fier based approach to decrease the interference of the
unlicensed user to the licensed users in CR network,
thus improving the network throughput dramatically.
The authors in [34] studied the unsupervised learning
approach for signal classification using various statisti-
cal features as training parameters. The similar unsu-
pervised learning approach namely, k-means clustering,
was applied for cooperative spectrum sensing in [35].
Furthermore, the work in [36] proposed the four ma-
chine learning classifiers: K-nearest neighbor (KNN),
SVM, NBC, and Decision Tree in classifying the state
of PUs in cooperative spectrum sensing.

Moreover, many works have also reported the shal-
low and deep multilayer perceptron network aided spec-
trum sensing techniques. For instance, authors in [37]
proposed a sensing scheme that uses the energy and
cyclostationary features to train the neural network for
spectrum sensing. In our previous work [38], we used
energy and Zhang statistics as a training features for
the ANN. Furthermore, the ANN based multi-slot spec-
trum prediction and an adaptive mode selection in full
duplex CR network was proposed in [39]. The compre-
hensive study of machine learning based spectrum sens-
ing in CR can be found in the recent work [40].

In addition, recently there are few works that have
applied deep learning for spectrum sensing. For instance,
spectrum sensing using convolutional neural network
(CNN) was proposed in [41–43] and CNN for coopera-
tive spectrum sensing in [44]. Moreover, various other
deep learning architectures have also been recently im-
plemented for spectrum sensing like stacked autoen-
coder based sensing in [45], variational autoencoder ap-
proach aided unsupervised deep learning for spectrum
sensing in [46], spectrum prediction based on Taguchi
method in deep learning with long short term memory
(LSTM) was carried out in [47]. Moreover, our recent
work in [48] focused on LSTM based spectrum sensing
scheme, while the work in [49] focused on utilising the
PU activity statistics alongwith the LSTM based sens-
ing prediction to improve the detection performance.
The summary of the related works is provided in Table
1.
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Table 1: Summary of the related works

Ref. Brief Description ML/DL
framework

Classification
/Prediction

Performance
metric

Input to the
ML/DL framework

Empirical
Test-bed
setup

Impact of
hyper-

parameter
Tuning

[30] Support Vector Machine based spectrum sensing ML (SVM) Classification
Detection
probability

Energy detection
based

binary value
× ×

[31]
Support Vector Machine - Radial basis function based
spectrum sensing and spectrum occupancy ML (SVM) Classification

Classification
accuracy

Power values
(in dBm) X ×

[32]
Naive Bayesian based multi-class classification for OFDM
systems ML (Naive Bayes) Classification

Detection
probability �1 and �2 × ×

[33]
Random forest based algorithm to decrease the interference
of the unlicensed user in CR network ML (Random forest) Classification

Detection
probability
and accuracy

Energy statistics × ×

[34]
Robust unsupervised sensing scheme and developed
countermeasures to the class manipulation attacks. ML (K-means) Classification

Misclassifi-
cation rate

time series
autocorrelation
and higher

moments of the
data

× ×

[35] K-means clustering aided cooperative spectrum sensing ML (K-means) Classification
Detection
probability

Energy statistics
and

no. of clusters
× ×

[36] Analysis of ML classifiers in cooperative spectrum sensing
ML (KNN, SVM,

NBC, and
Decision Tree)

Classification
Throughput

and
arrival rate

Energy statistics × ×

[37]
Cyclostationary feature detection aided ANN based
spectrum sensing ML (ANN) Classification

Detection
probability

Cyclostationary
feature × ×

[38] ANN based spectrum sensing using ED and LRS as features ML (ANN) Classification
Detection
probability

Energy and
Zhang Statistic X ×

[39]
ANN based multi-slot spectrum prediction and an adaptive
mode selection in full duplex CR network ML (ANN) Prediction

Prediction error
probability and
Throughput

Energy detection
based

binary value
× ×

[41]
DNN featured likelihood ratio test aided CNN based
spectrum sensing DL (CNN) Classification

Detection
probability Covariance matrix × ×

[42] Covariance matrix aware CNN based spectrum sensing DL (CNN) Classification
Detection
probability Covariance matrix × ×

[43] Primary user activity pattern aware spectrum sensing DL (CNN) Classification
Detection
probability Covariance matrix × ×

[44] CNN based co-operative spectrum sensing scheme DL (CNN) Classification
Detection
probability

Matrix containing
individual SU
sensing results

× ×

[45]
Stacked Autoencoder based spectrum sensing for OFDM
signals DL (SAE) Classification

Detection
probability Raw signal data × ×

[46]
Variational autoencoder approach aided unsupervised
deep learning for spectrum sensing DL (VAE) Classification

Detection
probability Raw signal data × ×

[47]
Spectrum prediction based on Taguchi method in deep
learning with long short term memory DL (LSTM) Prediction

Classification
accuracy

and MMSE
Raw signal data X X

[48] Long Short Term Memory aided spectrum sensing. DL (LSTM) Classification Detection
probability

Raw signal data X ×

[49]
Long Short Term Memory aided spectrum sensing using
primary channel activity statistics

ML (ANN) and
DL (LSTM)

Classification and
Prediction

Raw signal data +
extracted PU statistics X ×

Our work Hyper-parameter tuning based ANN based spectrum sensing ML (ANN) Classification
Detection
probability

Energy and
Zhang Statistic X X

1.3 Motivation and Contributions of this work

The design of accurate and robust machine learning/
deep learning algorithms relies on the hyperparameters
used. The tuning of the hyperparameters plays a vi-
tal role on the performance of machine learning and
deep learning algorithms [50]. Selecting the hyperpa-
rameters without adequate tuning may result in an over
optimistic performance or poor performance of the de-
signed algorithms. Although the work in [47] has pro-
posed the Taguchi method based hyperparameter tun-
ing in LSTM, the performance metric evaluated was
classification accuracy. On the contrary, this work con-
siders the detection probability as a key performance
metric and have demonstrated the effect of SNR for
different values of false alarm probability. These perfor-
mance metrics are the key players while dealing with
the design and dimensioning of CR networks. In this
work, we carry out the detailed analysis and impact of
tuning various hyperparameters on the spectrum sens-

ing performance, which is not yet explicitly reported in
literature.

This paper focuses on the selection and tuning of
hyperparameters: 1) optimization algorithms, 2) activa-
tion functions, and 3) learning rate. Firstly, optimiza-
tion algorithms such as Adams [51], Nesterov [52] and
Ada Boost [53] have been used to update the weights
of the neural network such that the loss function of
the ANN is minimized. Secondly, activation functions
like sigmoid, hyperbolic tangent (tanh) and rectified lin-
ear unit (ReLU) have been considered and their perfor-
mance on the captured data has been studied. Thirdly,
the learning rate of the ANN is a key parameter, which
is decided upon the possibility and latency of conver-
gence of forward and backward propagation algorithms.
In order to validate the results of the proposed scheme,
we evaluate it on various real-world primary signals cap-
tured with an experimental test-bed setup. In addition,
we compare the proposed approach with the classical
energy detection (CED) commonly used in the liter-
ature and the improved energy detection (IED) algo-
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rithm proposed in [54] and also with NBC based sens-
ing in [32]. The simulation results demonstrate that the
tuning of hyperparameter significantly impacts the per-
formance of the proposed sensing scheme.

The main contributions of this work can be outlined
as follows:

1. We thoroughly analyse and study the selection of
hyperparameters in an ANN for CR network to ob-
tain a better classification accuracy of the ANN,
resulting in a higher detection performance at low
SNR regime.

2. A comprehensive study of the impact of lower and
higher SNR regime on the performance of ANN is
carried out. Experimental results demonstrate the
superior performance of ANN as compared to ex-
isting CED and IED algorithms across lower and
higher SNR regimes.

3. The tuned hyperparameters of ANN like activation
function, optimization algorithms and learning rate
are validated based on empirical data-sets of vari-
ous radio technologies. Further, the impact of the
number of epochs for which the neural network is
trained on the loss function for different optimizers
is studied.
Experimental results prove that by finding the op-
timal hyperparameters, the proposed ANN frame-
work for spectrum sensing outperforms CED and
IED algorithms.

1.4 Paper Organization

The rest of this paper is organized as follows. Section
2 describes the system model and formulates the prob-
lem. Section 3 elucidates the proposed hyperparameter
tuning aided ANN spectrum sensing scheme. Further,
Section 4 discusses the empirical setup and data captur-
ing process employed in this work. Section 5 describes
the experimental results. Finally, the conclusions are
drawn in Section 6.

2 System Model and Problem Formulation

2.1 Cognitive Radio Network and Signal Model

In this work the spectrum sensing performance is eval-
uated considering a link level scenario with a single
channel, which is the usual approach widely adopted in
the literature for the performance evaluation of spec-
trum sensing methods (see [55] and references therein).
The multi-channel scenario is relevant from a network
level point of view, however as far as spectrum sens-
ing is concerned, this scenario can simply be seen as

an extension of the single channel scenario where each
channel, even though is physically different in terms of
carrier frequency, is statistically equivalent. Notice that
the consideration of multiple channel scenario leads to
the introduction of other problems that are beyond the
scope of this work (e.g., MAC scheduling of the channels
to be sensed), but in general does not affect the per-
channel performance of the evaluated spectrum sensing
methods in this paper.

A typical architecture of neural networks with one
hidden layer and single output is shown in Fig. 1. We as-
sume that a SU detect only a single PU channel activity
signal in a CR network using the subsequently proposed
spectrum sensing algorithm. Here, the SU is required to
sense the PU’s channel periodically to determine if the
channel is idle or busy. We consider a sequence of mea-
surements of captured signals H1, H2, . . . , H8 , . . . , H: , . . . , H 
where 8 is any arbitrary timestamp, : is the current
timestamp,  is the last timestamp. Each of these mea-
surements is modelled as:

H8 =

{
=8 , �8,0 (PU is absent),

ℎG8 + =8 , �8,1 (PU is present), (1)

where ℎ denotes the channel response coefficient be-
tween PU and SU, G8 denotes the transmitted signal at
8Cℎ timestamp, =8 denotes the noise at 8Cℎ timestamp
modelled as additive white Gaussian noise (AWGN)
with zero mean and variance f2. Also, hypothesis �8,0
represents that the PU is absent and spectrum oppor-
tunity is available for SU at 8Cℎ timestamp whereas
hypothesis �8,1 represents that the PU is present and
spectrum opportunity is unavailable for SU at 8Cℎ times-
tamp. Based on the captured observations H1, H2, . . . ,
H8,. . . , H: , . . . , H , the prime objective is to predict
whether the channel will be idle or busy in the next
i.e. (: + 1)Cℎ timestamp. Mathematically, the aim is to
calculate the following conditional probability:

%A (�:+1, 9 |H1, H2, . . . , H: ), (2)

where 9 ∈ {0,1}. Note that 9 = 0 indicates the null hy-
pothesis while 9 = 1 indicates the alternate hypothesis.

There are numerous mathematical models in order
to estimate or calculate this probability. However, an
ANN based approach has been undertaken in this work
considering the unique ability to fit complex non-linear
functions. Further, we extract four features of the re-
ceived signal as described in Section 3, represented as
-: , to be provided as inputs to the ANN. Therefore,
the neural network is used to learn the mapping of:

%A (�:+1, 9 |-: ), 9 ∈ {0, 1} (3)
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Fig. 1: Architecture of ANN with Input, Hidden and Output lay-
ers. The bottom part shows the corresponding weights and biases
followed by the activation function.

2.2 Preliminaries of ANN Cost Function formulation

In order to invoke a probabilistic framework, we need to
map the output of the ANN between 0 and 1. To pro-
duce an output between 0 and 1, we use certain mathe-
matical functions that map the input features - within
the desired interval. To this end, ∀0 ∈ R, we consider
the sigmoid function, which is defined as follows [50]:

5 (0) = 1

1 + 4−0 (4)

Let Ĥ8 represent the predicted received signal status
(idle/busy). We consider Ĥ8 = 1 to be the decision if the
output of the considered ANN is greater than 0.5, oth-
erwise Ĥ8 = 0. The output of the ANN with no hidden
layers is as follows:

Ĥ8 = 5

(∑
=

F=-

)
, (5)

where F= is the weight associated with =Cℎ neuron of
total # neurons and - is its input feature vector. There-
fore, the predicted sigmoid output is interpreted as:

Ĥ8 = %A (�8,1 |-), and (6)

1 − Ĥ8 = %A (�8,0 |-). (7)

Since the target output is binary, it is reasonable to
model the randomness as Bernoulli trials. For 9 ∈ {0, 1},

%A (�8, 9 |-, F) = Ĥ8�8, 9 (1 − Ĥ8)1−�8, 9 (8)

Solving (8) further, we take the natural logarithm
on both sides of the equation to simplify the analysis
and additionally, the min/max of the log likelihood is
the same as the min/max of the likelihood,

ln(%A (�8, 9 |-, F)) = �8, 9 ln( Ĥ8) + (1 − �8, 9 ) ln(1 − Ĥ8) (9)

In order to maximize this probability, we need to
maximize the log likelihood. This can be easily done by
converting it to a minimization problem by multiplying
the log likelihood with a negative sign. Hence, we ob-
tain the cost function � (F) for a single layered neural
network at 8Cℎ timestamp with " samples of training
data, which is as follows:

� (F) = −
( 1

"

) "∑
<=1

�8, 9 (<) ln( Ĥ8 (<) )

+ (1 − �8, 9 (<) ) ln(1 − Ĥ8 (<) )
(10)

Furthermore, the cost function can be simply ex-
tended to !-layered neural network as follows:

� (F) = −
( 1

"

) "∑
<=1

!∑
;=1

�8, 9 (;,<) ln( Ĥ8 (;,<) )

+ (1 − �8, 9 (;,<) ) ln(1 − Ĥ8 (;,<) )
(11)

Hence, our objective is to find the weights of the
ANN in such a way that � (F) is minimized, and in
order to optimize these weights, various algorithms like
stochastic gradient descent, adam optimizer and among
others can be used as discussed in the subsequent sec-
tions.

3 Proposed hyperparameter tuning aided ANN
based spectrum sensing scheme

The most important characteristic of neural networks
is that they are remarkable at learning non-linear func-
tional mapping between input and output and as a re-
sult they can adapt to the non-linear characteristics
of PU’s signals. The proposed sensing scheme utilizes
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Fig. 2: The flowchart of the feature extraction process and obtaining final training dataset for the proposed scheme. The extracted
features are Energy and Zhang statistics of the signal along with that of the AWGN noise.

a back propagation neural network (BPNN). The pur-
pose of our proposed scheme is to determine/classify
whether the PU channel is busy or idle. In this paper,
we use a supervised learning setting, where the classi-
fier is trained with features and corresponding labels.
The ANN primarily incorporates classical energy detec-
tion and likelihood ratio statistics as its features. The
labels in this classifier are 0 and 1 for the cases when
the channel is idle and busy respectively. Denoting the
discrete version of the received signal as H8, the energy
value � is given as:

� =

#∑
8=1

|H8 |2 (12)

Similarly, the Zhang statistic /2 is given as:

/2 =

#∑
8=1

[
log

{
�0 (H8)−1 − 1(

# − 1
2

)
/
(
8 − 3

4

)
− 1

}]2
, (13)

where # is the sample size and �0 (H) is the known cu-
mulative distribution function (CDF) of noise.

The first step is to collect a data using an empir-
ical setup as elucidated in Section 4. Thereafter, we
extract four key features from the captured data. The
first feature is the energy of the signal, denoted as G1 (;),
where ; denotes the ;Cℎ training sample. The second fea-
ture is the energy value of the previous sensing event,
denoted as G2 (;). We consider this feature addition-
ally in order to avoid a steep decrease in energy values
caused due to small errors by empirical setup leading to
miss-classification. Similarly, the third and fourth fea-
tures are the Zhang statistics of the current and previ-
ous sensing events denoted by G3 (;) and G4 (;) respec-
tively. Hence, the training vector, - can be denoted

as: - = [G1 (;); G2 (;); G3 (;); G4 (;)]. Likewise, the labels
for the ;Cℎ training sample are denoted by . = [�(;)].
Here, ; is the index number of the feature vector, dif-
ferent from : which is the raw index number. Here, we
use various optimization techniques for ANN in sensing
with different hyperparameters, which eventually can
be used to improve the performance in terms of detec-
tion probability at low SNR conditions as well.

Once all the models with different hyperparameters
are trained, the algorithm moves into the validation
mode. Validation is an important step in terms of ma-
chine learning, since there may be a case where the
classifier remembers all the features from the training
data-set and is able to perform exceptionally on train-
ing data-set, but then fails when deployed practically
and exposed to real-life systems. A patent reason for
such cases is that the ANN has remembered the train-
ing data and has not learned or understood it [50]. This
issue is known as overfitting of data. To avoid this prob-
lem, data-sets are usually divided into three different
sets: training, validation and testing.

Validation data-set uses all the models that were
trained using training data-set to evaluate the perfor-
mance of the algorithm. Also, an indicator function is
used to check how many times the classifier wrongly
predicts the labels. Further, the model which yields the
lowest value of the indicator function is chosen. The
classifier that satisfies the above condition is passed to
the testing phase. Upon reception of the signal, the fea-
ture set is calculated and provided as input to the neu-
ral network, which then decides the state of the PU
channel (idle/busy).
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Algorithm 1 The proposed ANN design scheme
Subroutine for feature extraction
Input: N, Label, Data
Output: Features

1: size = len(Data) / N
2: Samples 1BC N Samples
3: E = Energy (Samples) {Compute energy value}
4: Z = Zhang statistic (Samples) {Compute Zhang statistic}
5:
5: for 9 ← 2 to size do
6: Samples = ( 9) Cℎ N Samples {read the signal with

window # }
7: E_P = E{Energy of previous sensing event}
8: Z_P = Z{Zhang statistic of previous sensing event}
9: E = Energy (Samples)
10: Z = Zhang statistic (Samples)
11: Feature[j-1] = {E, E_P, Z, Z_P, Label}
12: end for
12:

Subroutine for ANN Training
Input: N, Epoch, Batch_size, Label, U, Data
Output: ANN Network

13: ANN Network = Construct Network Layers ()
14: Network_weights & Bias = Initialize (ANN Network)
15: Feature = FeatureExtraction(N,Label,Data)
16:
16: for 8 ← 1 to �?>2ℎ do
17: T_F & label = Extract (Feature, Batch_size)
18: output = Forward Propagate (T_F, ANN Network)
19: Error = BackwardPropagateError (label, output)
20: Weights = UpdateWeights(label,output,ANN

Network,U)
21: end for
21:

Subroutine for ANN Testing
Input: ANN Model, N, No. of sensing events
Output:S

22: weights & bias = ANN Model
23:
23: for 8 ← 1 to No. sensing event do
24: E_P = Energy of (8 − 1) Cℎ N Samples
25: Z_P = Zhang statistic of (8 − 1) Cℎ N samples
26: E = Energy of (8) Cℎ N Samples
27: Z = Zhang statistic of (8) Cℎ N samples
28: Features = {E, E_P, Z, Z_P}
28: end for
29: output = ANN Predict (Features, weights, bias)
30:
30: if output == 1 then
31: S8 = H�
32:
32: else
33: S8 = H0

34: end if

3.1 Feature Extraction

Firstly, data pre-processing steps are applied on the
captured data in which the data-set is divided into three
categories, training, validation and testing as discussed
earlier. AWGN is then added to the generated training
data and samples of size # are extracted to calculate
features like the energy and Zhang statistics. Similarly,

feature samples of size # are also extracted for the case
where only noise is generated. Both components are
then added together and each row in the data-set then
behaves as detection in one instance. The labels are
added to the data-set, where signal plus noise is de-
noted by label 1, implying that the PU channel is busy.
Similarly, only noise is denoted by label 0, implying
that the PU channel is idle. Feature extraction pseudo
code is formulated in Algorithm 1 and a summary of
the overall feature extraction procedure is illustrated
in Fig. 2.

3.2 ANN Training

The prime objective of ANN training is to minimize
the cost function formulated in (11). Training of any
ANN model iteratively involves two steps, namely for-
ward propagation and backward propagation, which are
discussed below:

3.2.1 Forward Propagation

The feature vector is fed as input to the ANN and each
neuron is assigned random values of weight. In the for-
ward pass, the neuron weights are multiplied with fea-
ture values and added to a bias value which is eventu-
ally passed as an input to an activation function. For
an ANN with =� hidden layers, mathematically,

net j =

?∑
8=1

G8F 98 + F 90, (14)

where G8 is the 8Cℎ feature value, F 98 is the 8Cℎ weight of
9 Cℎ hidden layer, F 90 is the bias value and =4C 9 is the
net activation of 9 Cℎ hidden layer. The output of the
9 Cℎ hidden layer can be obtained by:

y j = 5 (net j), (15)

where 5 denotes the activation function. Similarly, we
evaluate the net activation and output for the output
layer of the ANN:

netk =

=�∑
9=1

H 9F: 9 + F:0, (16)

zk = 5 (netk ) (17)

Here, the activation function maps input R→ [0, 1].
This is one of the hyperparameters which can be opti-
mized to obtain better results. After evaluating various
activation functions on real world signals, the best ac-
tivation function is used for testing the ANN model.
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3.2.2 Backpropagation

This calculates the gradient of the cost function. There-
fore, the error in output to input layer is calculated
using the chain rule of differentiation as follows:

m�

mF 98
=
m�

mI:

mI:

m=4C:

m=4C:

mH 9

mH 9

m=4C 9

m=4C 9

mF 98
(18)

The weights of the neural network are updated using
these gradients by moving into the direction of steep-
est slope, minimizing the cost function. To update the
weights, there are various optimization techniques such
as Adam optimizer, momentum based gradient descent,
etc. A summary of the ANN training module and proce-
dural psuedo code is given in Algorithm 1. The various
hyperparameters, the best of which is used in testing
the ANN model after evaluation of its performance on
various real life signals is described in the section below.

3.3 ANN Hyperparameter selection

After the different ANN architectures are trained with
appropriate training data-set and epochs, we identify
the ANN architecture that best fits based on its perfor-
mance. The validation data-set is used to identify the
ANN model with different hyperparameters that per-
forms best on validation data-set. The validation data-
set is generated using the signal data and is processed
in a way similar to training data. The combined feature
data is then passed to all the stored models of the ANN
with different hyperparameters. The ability of differ-
ent classifiers to detect correctly is identified and then
passed to the selection stage. Here, the classifier that
yields the maximum accuracy is selected and used for
testing the proposed ANN scheme.

3.3.1 Hyperparameter-I : Number of hidden layers and
number of nodes

Number of hidden layers and number of neurons in each
layer is an important hyperparameter that needs to be
analyzed and tuned to improve the prediction accuracy
of ANN. A few set of combination of values were tested
as mentioned in Table 2 below and the accuracy of the
model was obtained. The accuracy is calculated as the
number of correctly classified labels by the built ANN.
It is worth noting that for smaller number of layers, the
validation accuracy remains almost constant.

Table 2: Different ANN architectures with their accuracy on cross
validation data-set

No. of Hidden Layers Nodes in each layer Achieved Accuracy
1 2 85.45%
1 7 87.79%
1 20 87.77%
2 5 87.85%

3.3.2 Hyperparameter-II : Optimization Techniques

In this section, we discuss the optimization techniques
used to obtain the improved results for each radio tech-
nology.

1. Stochastic Gradient Descent (SGD): This al-
gorithm updates the parameters F of the cost func-
tion � (F) as:

F := F − [ · ∇F � (F) (19)

The learning rate [ remains constant for all the up-
dates. Also, the learning rate for SGD is typically
smaller as compared to batch gradient descent in
order to avoid overshooting the convergence point.

2. AdaGrad: This algorithm is a sound method for
an efficient adaptation of the learning rate [53]. It
maintains the learning rate per parameter as op-
posed to having the same learning rate for all the
weights. One of the drawbacks of AdaGrad is that
once it reaches closer to minima, the learning rate
becomes significantly smaller, hence it cannot reach
the exact minima even after numerous iterations.

3. Adam: This optimization algorithm can be used
instead of classical SGD to update network weights
iteratively based on training data. The name is de-
rived from "Adaptive Moment Estimation" (ADAM)
[51]. Unlike the classical SGD which maintains a
single learning rate for all the weight updates, a
learning rate is maintained for each network weight
(parameter) and separately adapted as learning un-
folds. Adam realizes the benefits of both AdaGrad
and RMSProp (another optimization algorithm), mak-
ing use of first (mean) and second (uncentered vari-
ance) moments of gradients.

4. Nesterov Accelerated Gradient: This optimiza-
tion algorithm is a momentum based gradient de-
scent technique. Its goal is to tune smaller updates
when closer to minima and tune larger updates when
away from minima [52].

ADAM optimizer is generally used for achieving faster
convergence. However, the best performing optimizer is
subject to the data-set on which it is trained and being
tested. In the case of spectrum sensing, it is observed
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that Nesterov accelerated gradient optimization tech-
nique yields minimum model loss due to its ability to
gather momentum and avoid convergence on other local
minima. The plot of loss v/s epoch for various optimiz-
ers over different radio technology is explained in Fig.
9 of the numerical results section.

3.3.3 Hyperparameter-III : Activation Functions

Another important hyperparameter to be tuned opti-
mally is the choice of activation function. For that, we
consider the following activation functions to analyze
the performance of the proposed ANN architecture:

1. Sigmoid activation function:

5 (0) = 1

1 + 4−0 , (20)

2. ReLU activation function:

5 (0) = <0G(0, 0), (21)

3. Tanh activation function:

5 (0) = 40 − 4−0
40 + 4−0 , (22)

Sigmoid and Tanh usually are not used due to the
vanishing gradient problem, which eventually degrades
the overall accuracy. However, for the case of spectrum
sensing, since the network used here is not very deep, all
the activation functions yield nearly similar accuracy as
discussed in Table 7 of numerical results section.

3.4 ANN Testing

After having trained and validated the proposed ANN
framework, we move to the final phase to evaluate the
sensing scheme. Fig. 3 illustrates the entire testing pro-
cess. In order to compute the detection probability %3,
the testing data-set is added with AWGN to obtain sig-
nals with the desired SNR. Further, the data are then
divided into small chunks (e.g., # = 100 samples) and
features like the energy and Zhang test statistics are ex-
tracted. These features are fed as inputs to the trained
neural network. We compute %3 for a given SNR by di-
viding the number of times that the neural network pre-
dicts that the channel is busy (�:,1) by the total num-
ber of samples. Similarly, we compute the false alarm
probability % 5 , by using only AWGN sequences for fea-
ture extraction instead of test data. Algorithm 1 enu-
merates the final sensing steps where the ANN takes
the decision about the existence of a primary signal.
Fig. 4 shows the flowchart of the proposed scheme.

Fig. 3: ANN Testing: Computation of %3 and % 5 for the proposed
scheme. The number of times network correctly the PU signal to
the total examples fed gives %3 . Similarly, number of times it
does not predict �0 divided by the total AWGN examples fed
gives % 5 .

Start

Spectrum Data Acquisition 
(x_train and x_test)

Feature Engineering 
(Extract Energy and Zhang

Statistics)

Compute Pd or
classification accuracy and

test the model

Hyperparameter 1: 
Is No. of hidden layers 

and nodes optimal ?

ANN model training

Hyperparameter 2: 
Is the optimizer

best suited?

Hyperparameter 3: 
Is Activation function

 adequate?

Y

Y

Y

Select the best
model

N

N

N

Fig. 4: Flowchart of the proposed scheme. After training the
model, the detection probability is computed. The Algorithm is
then iterated for various hyperparameters, until the best model
is obtained.

4 Empirical Setup

4.1 Measurement Platform

A combination of both hardware and software compo-
nents has been employed in this study, similar to [56].
The hardware components used for this study are the
Universal Software Radio Peripheral (USRP - N210)
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Fig. 5: Empirical test-bed measurement setup for spectrum data acquisition. The upper part of the figure shows the spectrum analysis
through which the busy channel is identified while the bottom part shows the data acquisition using USRP N210 in the identified busy
channel.

Table 3: Channels measured in this study

Radio
Technology

Channel
Number �BC0AC (MHz) �24=C4A (MHz) �BC>? (MHz) Signal Bandwidth

(MHz)
Gain
(dB)

Decimation
Rate (M)

Sampled
Bandwidth
(MHz)

FM
Broadcasting

94.1
96.5
98.3

94.3
96.7
98.3

94.5
96.9
98.5

0.2 45 64 1

E-GSM
(900) DL

27
77
120

940.2
950.2
958.8

940.4
950.4
959

940.6
950.6
959.2

0.2 45 64 1

DCS
(1800) DL

527
690

1808
1839.6

1808.2
1840.8

1808.4
1841 0.2 45 64 1

UHF
Television

U - 29
U - 33

534
566

538
570

542
574 8 45 8 8

[57], WBX daughter board, RF Explorer and a D3000N
super discone antenna. All these components are re-
quired to capture the PU data. The software used in-
cludes GNU Radio [58] and MATLAB. The host PC
runs the GNU Radio’s script to collect the digital sam-
ples from USRP. Once the data are captured, off-line
processing is performed in MATLAB. Further, the pro-
posed scheme is employed on the stored data to evaluate
the detection and false alarm probabilities.

4.2 Data Capturing and Pre-processing

The empirical setup was placed on the roof of the School
of Engineering and Applied Science (SEAS), Ahmed-
abad University in order to have direct line of sight
from several transmitters with minimum shadowing and
reflection loss. A block diagram of the experimental
setup for data collection is shown in Fig. 5. Data ac-
quisition and spectrum measurement was conducted on
Monday morning from 10:00 AM to 11:00 AM. These
timings only affect the discontinuous transmitters. We

used a Intel Core-i7 embedded processor Personal Com-
puter (PC) system along-with MATLAB and GNU-
Radio. Various environmental factors like temperature,
humidity, moisture, dew, rain, etc., need to be consid-
ered as elaborated in [59]. However, as our measurement
was of short duration we did not consider such factors
into measurement account.

With the help of RF Explorer, certain channels with
high SNR were identified for various radio technolo-
gies. As depicted from Table 3, radio technologies in-
clude FM broadcasting, GSM-900 DL, DCS-1800 DL,
and UHF TV band. The channels with appropriate cen-
tre frequency, decimation rate and gain factor are se-
lected. The gain factor is selected such that the high-
est SNR is achieved in the received signal, while the
decimation rate ensures that the reception bandwidth
is higher than or equal to the actual signal bandwidth.
For each channel, around 107 samples were captured. A
pre-processing step was applied to filter the signals and
remove any transient peaks in the initial samples. The
pre-processed data are then divided into three data-sets
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for all the radio technologies: training (60%), validation
(20%) and testing (20%).

5 Experimental Results

The proposed ANN based spectrum sensing scheme was
tested and evaluated on the empirical data. We used
channels of four different radio technologies instead of
using channels from only a single radio technology, be-
cause the overall performance for different channels of
a single radio technology was found to be very similar
to each other. Hence, as described earlier, four ANN
architectures are used and are allotted a specific radio
technology. Having obtained independent training and
testing data for each radio technology, the detection
probability %3 and probability of false alarm % 5 are
computed. One can use a single ANN also incorporat-
ing all the radio technologies together, but on doing so,
one may miss the inherent effect of the technology de-
pendency on %3 according to [56]. Moreover, a compar-
ative study of the proposed scheme with existing CED
and IED algorithms on captured data is presented for
each radio technology and the results show that the
proposed scheme outperforms the state of art schemes
in all cases.

5.1 Validity of Captured Data

Even though it becomes difficult to eliminate the ran-
domness factor and its repercussions from the empirical
setup, the captured data have been used to reproduce
the results of CED and IED algorithms given in [54]. In
addition, in order to ensure the validity of the data-set
used, the process of data capturing and sensing eval-
uation with the proposed scheme was repeated several
times and the performance remained unchanged. More-
over, these analyses were conducted to ensure that no
unexpected or incorrect trends that contradict funda-
mental theoretical expectations were present (e.g., in-
creasing the SNR and/or the sample size #, %3 in-
creases).

5.2 Analysis of ANN Training Module

5.2.1 Manipulation in training data

The proposed ANN based sensing scheme has a few crit-
ical requirements that need to be satisfied. Firstly, it re-
quires proper training in order to accurately classify the
hypotheses. Secondly, the ANN architecture requires to
be as simple as possible so that it can be deployed on

a real sensing framework. Keeping these requirements
in mind, we manipulate the training data such that it
changes the percentage of higher and lower SNR sam-
ples in training set, leaving the pure AWGN samples
unaffected.

In this paper, the SNR values have been categorised
such that the low SNR regime ranges from −20 dB to −6
dB, whereas the high SNR regime ranges from −4 dB to
4 dB. The manipulation of data has been done in such a
way that each lower SNR value contributes equally with
samples of percentage and the remaining percentage of
samples will be contributed by higher SNR class. The
ANN is trained by forming different combinations of
training data-set. For instance, varying the percentage
combinations of lower and higher SNR class samples,
which are further used to train the ANN. After com-
pletion of training, the testing mechanism is applied to
the trained ANN to compute %3 and % 5 (see Fig. 6 and
Table 4).
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Fig. 6: %3 vs SNR for different training combinations of the
model. This result indicates the trade-off between the samples
from high SNR and low SNR values. We have considered the 40-60
model in all our results. (Radio technology: DCS-1800, #=100)

The radio technology DCS 1800 is used to evalu-
ate the training and testing data-set for Fig. 6 and
Table 4 (other radio technologies demonstrated simi-
lar behaviour). Here, the training models of data rep-
resent percentage distribution of higher and lower class
samples in training data-set. For instance, 20-80 model
represents that 50% samples which contain a primary
signal in the training data-set have 20% samples from
lower SNR regime and 80% samples from higher SNR
regime, the remaining 50% are for AWGN samples.

As evident from Fig. 6 and Table 4, %3 and % 5 val-
ues are lowest for the 20-80 model and highest for the
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Table 4: % 5 for different training combinations (Radio technol-
ogy: DCS-1800, # = 100).

Training Models Probability of False Alarm
20-80 0.0166
30-70 0.0231
40-60 0.0352
50-50 0.0570
60-40 0.0795
70-30 0.0860
80-20 0.0988

80-20 model. The fundamental reason behind this be-
havior is that at lower SNR the features become almost
similar to the features of noise samples, so if the training
data-set of primary signal contains a larger proportion
of low SNR samples compared to high SNR samples,
the neural network is likely to indicate the presence
of a primary signal when it identifies even a slight in-
crease in the energy value and Zhang statistic (80-20
Model). On the other hand, if the training data-set of
primary signal has a larger proportion of samples of
high SNR compared to low SNR, the neural network
becomes more robust to identify the actual presence of
a primary signal (20-80 model). Hence, every outcome
depends primarily on how the neural network is be-
ing trained. In our study, we consider the 40-60 model
which consists of 60% samples from higher SNR values
and 40% samples from lower SNR values for the ANN to
avoid overfitting on the either of lower SNR and higher
SNR values and generalize better.

5.2.2 Training outcome analysis using different
features

We analyze the performance of the proposed architec-
ture considering different sets of features as follows: 1)
only the energy of current samples, 2) only the Zhang
statistic of current samples, 3) both energy and Zhang
statistic of current samples and 4) both energy and
Zhang statistic of current and previous samples. More
specifically, we evaluate the performance of how trained
ANN fits the cross-validation data-set.

5.2.3 Impact of variations in Data-set on Accuracy

Based on the experimental results, we observed a sig-
nificant decrease in the accuracy of the proposed ANN
for the cases when the data-set has signal samples with
lowest SNR value of −10 dB and when the data-set
has signal samples with lowest SNR value of −20 dB.
This phenomenon is due to the fact that at very low
SNR conditions, the feature vector seems to overlap

with signal and noise and it becomes difficult for the
neural network to learn the difference between signal
and noise. For instance, we considered two data-sets
with signal samples of lowest SNR value of −20 dB and
0 dB. Fig. 7 demonstrates that the scatter plot of sig-
nal and noise samples obtained using previous energy
test-statistic as the feature forms overlapping clusters
for lower SNR value of −20 dB yielding an indecisive
boundary line and forms a decisive boundary line for
higher SNR value of 0 dB making it easier for the ANN
to identify the type of current sample. Similar trend can
be observed in Fig. 8 where the scatter plot of signal
and noise samples is shown using Zhang statistic value.
An important observation is that the Zhang statistic
performs better clustering as compared to the energy
samples using energy detection which is also supported
by results shown in Table 6 for all the radio technolo-
gies.

Based on the observations of different combinations
of activation functions discussed previously, we con-
clude that the performance of the proposed ANN archi-
tecture is almost similar and yields nearly identical re-
sults. The results are summarized in Table 7. Therefore,
we can conclude that an activation function with lowest
computation complexity must be used for the proposed
ANN, since they do not bring any major changes in its
performance.

Table 5 shows the observed values of accuracy for
different sets of radio technologies for a data-set con-
sisting of 100 samples with lowest SNR value of −10
dB. As it can be appreciated, the accuracy is not sig-
nificantly affected by the considered ratio technology,
showing that the neural network can provide equally
accurate results for different radio technologies. Simi-
larly, a comparison of fitting accuracy values of training
dataset for different sample sizes (# = 100 and # = 500)
is shown in Table 5 with lowest SNR value of −20 dB
in the dataset. We can notice that the results obtained
for # = 500 are much better than that obtained for
# = 100.

As evident from Table 5, considering only the energy
of the current sensing event as a feature for training the
ANN yields the worst performance compared to other

Table 5: Fitting accuracy of training data-set for different ra-
dio technologies observed using proposed ANN for different SNR
values and sample size #

Radio Technology
Training Accuracy

SNR = -20 dB SNR = -10 dB
# = 100 # = 500 # = 100

FM Broadcast 87% 94.90% 96.50%
GSM (900) DL 86.46% 93.67% 94.32%
DCS (1800) DL 89.20% 95.86% 97.15%

UHF TV 88.58% 95.37% 96.96%
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(a)SNR = -20 dB (low) (b)SNR = 0 dB (high)

Fig. 7: Comparison of noise and signal samples using previous energy test-statistic and current energy value for low and high SNR.
The scatter plot suggests that the energy of the signal and noise samples are close to each other at low SNR as compared to high SNR.

(a)SNR = -20 dB (low) (b)SNR = 0 dB (high)

Fig. 8: Comparison of noise and signal samples using previous and current Zhang statistic for low and high SNR values. The scatter
plot suggests that the Zhang statistic of the signal and noise samples are less closer as compared to the energy statistic. This is one
of the motivation to use both the features in our proposed scheme.

Table 6: Accuracy measurement of ANN using different radio
technologies with different set of features (# = 100)

Radio
Technology

Only
Energy

Only Zhang
Statistic

Current
Energy &
Zhang
Statistic

All Four
Features

FM Broadcast 76.66% 83.82% 84.15% 86.82%
GSM (900) DL 76.91% 83.93% 84.27% 86.88%
DCS (1800) DL 78.19% 86.49% 86.51% 89.04%

UHF TV 78% 85.97% 86.02% 88.55%

combinations of features for all the radio technologies.
It is interesting to note that when the proposed ANN

is trained using both energy and Zhang statistic of the
current sensing event, the accuracy on cross-validation
data-set remains almost similar to when only the Zhang
statistic is used as a feature, proving the effectiveness
of the Zhang statistic as a feature for spectrum occu-
pancy decision. More specifically, Zhang statistic per-
forms better in the low SNR regime and hence acts as a
mitigator for cases where energy detection fails to per-
form better. Owing to this strategy supported by the
experimental results from Table 5, the combination of
all four features provides the best accuracy for all cases.
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Fig. 9: Plot of loss versus epoch for various optimizers validated over different radio technologies. We notice that the Nesterov classifier
outperforms the Adam and Adagrad optimizer for all radio technologies.

Table 7: Fitting accuracy of training data set for different technologies using different activation functions (the lowest SNR in data set
is −10 dB).

Activation function
FM Broadcast GSM (900) DL DCS (1800) DL UHF Television

First Iteration
Accuracy

Training
Accuracy

First Iteration
Accuracy

Training
Accuracy

First Iteration
Accuracy

Training
Accuracy

First Iteration
Accuracy

Training
Accuracy

Both layers: Sigmoid 94.33% 96.95% 92.32% 94.32% 92.50% 97.15% 95.31% 95.15%
1st layer: ReLU

2nd layer: Sigmoid 94.29% 96.93% 91.54% 94.34% 91.50% 97.22% 94.30% 96.93%

1st layer: Tanh
2nd layer: Sigmoid 95.49% 96.98% 92.50% 94.38% 90.50% 97.21% 95.49% 96.96%

Both layers: Tanh 92.09% 96.07% 89.24% 93.80% 91.50% 96.50% 92.49% 96.02%

5.3 Performance Analysis of various hyperparameters

Fig. 9 demonstrates the plots of model loss versus num-
ber of epochs. Nesterov accelerated gradient optimizer
yields the best performance for all the radio technolo-
gies giving minimum loss with increase in number of
epochs. This happens because if the convergence algo-
rithm slows down at any local minima then the mo-
mentum helps it regain its speed and convergence hap-
pens quickly. Also, the novelty of Nesterov accelerated
gradient is to make a big jump based on the previous
momentum and then calculate the gradient followed by
a correction which results in a parameter update. This
makes the algorithm more responsive to changes in the
gradient updates.

Table 8 shows the training accuracy for different
learning rates. As shown, a learning rate of 10 gives the
worst performance of proposed ANN, whereas a learn-
ing rate of 0.0001 results into the best accuracy for all
the radio technologies. This happens because a large
value of learning rate results in an unstable training
process, where abrupt changes in the loss function may
eventually skip the global minima. The learning rate
is a hyperparameter which if not tuned properly, may
lead the ANN to yield lower accuracy. This is due to
the fact that when learning rate is very large it causes
the optimizer to move around the minima and never
converge on the point of minima. leading to results of
lower accuracy. Hence, it becomes necessary to tune

Table 8: Fitting accuracy of training dataset for different tech-
nology for different learning rate (the lowest SNR in data-set is
−10 dB).

Learning
Rate

Training Accuracy
FM

Broadcast
GSM

(900) DL
DCS

(1800) DL
UHF
TV

0.0001 95.96% 93.11% 96.39% 92.40%
0.2 92.44% 92.16% 95.01% 91.02%
1 93.77% 92.74% 50% 50%
10 50% 50% 50% 50%

the learning rate parameter such that it yields superior
performance.

5.4 Overall Performance Analysis of the Proposed
ANN scheme

The proposed ANN based sensing scheme has been eval-
uated for all the radio technologies mentioned in Table
3 with different combinations of sample sizes and false
alarm rates as evident from Fig. 10 (# = 100) and Fig.
11 (# = 500) where the detection performance of the
proposed scheme is compared with CED and IED sens-
ing schemes.

The plot in Fig. 12 shows the %3 v/s SNR com-
parison for the proposed scheme with NBC in [32] and
BPNN. The spectrum data in our case are acquired
through the empirical test-bed setup. However, for a
fair comparison, we have generated the data through
the simulation parameters as provided in [32]. More-
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Fig. 10: Detection performance of proposed optimal hyperparameter tuned ANN based spectrum sensing method (%3 vs SNR) for
sample size, # = 100. The proposed scheme is compared with IED (L=3) and CED schemes for all radio technologies.
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Fig. 11: Detection performance of proposed optimal hyperparameter tuned ANN based spectrum sensing method (%3 vs SNR) for
sample size, # = 500. The proposed scheme is compared with IED (L=3) and CED schemes for all radio technologies.

over, we have trained our proposed model with the fea-
tures �1 and �2 as mentioned in the article. The num-
ber of training samples per class in Fig. 12 (a) is 100
while in Fig. 12 (b) it is 250. We can notice that, as
compared to the BPNN scheme without hyperparam-
eter tuning, our proposed scheme performs quite close
with the NBC at low SNR regime. This is due to the
fact that the proposed algorithm learns better when the
hyperparameters are tuned as compared to the trained
model without hyperparameter tuning.

Table 9 shows the computational complexities of the
algorithms considered in this work. In the table, # de-
notes sample size, #CA08= denotes the number of training
samples, � denotes the number of epochs, < denotes the
number of features, � indicates the number of classes
while 8, 9 denote the nodes in the first and second layer,
respectively. We can notice that although CED and IED
are computationally simple, ML based scheme outper-
forms them in terms of detection probability. Moreover,
the computational complexity of NBC is a function of
� (i.e., twice the number of SNR values considered).
This makes the computational complexity of NBC very
high as compared to the proposed model.

The above observation is also substantiated by the
average execution time as shown in Table 10. We also

notice that the computational complexity of BPNN and
our proposed scheme will be the same. Furthermore,
the proposed scheme is also compared with NBC and
BPNN in terms of average execution time, Area Under
the Curve (AUC) and F-Score as shown in Table 10.
F-Score is often used to quantify the accuracy and it
can be interpreted as a weighted average of the preci-
sion and recall. We can observe from Table 10 and Fig.
13 that the average execution time for NBC scheme
is approximately 0.911 ms while that for the proposed
scheme is approximately 0.633 ms i.e., ≈ 44% less. The
comparable accuracy alongwith the low computational
complexity and lower execution time are the key advan-
tages of the proposed scheme, which is an important
parameter for the real time systems.

In order to realize the difference in the proposed
novel sensing scheme in comparison to the existing schemes,
a bar graph is shown in Fig. 14 where the detection

Table 9: Performance comparison with other algorithms

Parameter \Algorithms Proposed
Scheme NBC [32] BPNN

Average execution time (ms) 0.637 0.911 0.614
Area under the curve (AUC) 0.971 0.952 0.946

F-Score 0.86 0.81 0.79
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Fig. 12: %3 vs SNR comparison of the proposed scheme with NBC [32] and BPNN. Training examples per class in (a) is 100 while in
(b) is 250.
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Fig. 13: Comparison of average execution time v/s number of
classes for the proposed scheme, NBC [32] and BPNN.

probability values are plotted for the SNR value of -8
dB for a sample size # = 100. These values have been
considered particularly because a sample size of 100 is
more efficient for a system as compared to a sample
size of 500. Similarly, the SNR value of -8 dB lies in
the low SNR regime and hence is a true test for the
proposed scheme to be justify its significance. As evi-
dent from Fig. 14, an analysis of performance improve-
ment in terms of percentage using the proposed scheme
against the IED and CED schemes for all the four ra-
dio technologies for number of samples, # = 100 has
been demonstrated. Clearly, the proposed scheme out-
performs the standard spectrum sensing schemes. For
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Fig. 14: Analysis of improvement in detection probability us-
ing proposed scheme as compared to CED and IED schemes
(# = 100) for all radio technologies. On an average, the pro-
posed scheme performs ≈ 63% better than the IED scheme and
≈ 67.5% better than the CED scheme.

Table 10: Computational complexities of the various schemes

Algorithms Computational
Complexity

CED O(# ·  )
IED O(# ·  )
NBC O(#CA08= · < ·�)
BPNN O(#CA08= · � · 8 · 9)

Proposed Scheme O(#CA08= · � · 8 · 9)

DCS (900) DL radio technology, the proposed ANN
based scheme performs 67% better than the IED scheme
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Table 11: False alarm rate for the ANN model trained on different
radio technologies with different sample sizes (# ).

Radio Technology % 5 0 at # = 100 % 5 0 at # = 500
FM Broadcast 0.0440 0.0220
GSM (900) DL 0.0434 0.0200
DCS (1800) DL 0.0352 0.0137
UHF Television 0.0414 0.0191

and 71% better than the ED scheme. Similarly, the per-
centage improvement for all other schemes has been
shown in Fig. 14.

Further, as the ANN learns about the spectrum
sensing decision from the features dynamically, the as-
sociated false alarm rate remains almost static for a
particular sample size for different radio technologies
as evident from Table 11. Moreover, it is worth noting
that as the sample size increases from 100 to 500, there
is a significant reduction in the false alarm rate. This is
due to the fact that as the number of samples increases,
the ANN learns better as compared to a lower count of
samples. However, one cannot overshoot the number
of samples, since it may lead to issues like overfitting.
Similar reasoning can be applied to the behaviour of
detection probability %3 as well.

6 Conclusion

The designed artificial neural network for spectrum sens-
ing have an outstanding ability to learn the non-linear
behaviour of the dataset, yielding higher classification
accuracy than IED and CED. In this work, we pro-
vide energy and Zhang statistic of current and previous
sensing events as an input features for improving spec-
trum sensing performance. Furthermore, we determine
the optimal set of hyperparameters such as optimiza-
tion techniques, learning rate and activation functions.
Moreover, the performance of proposed scheme is eval-
uated and validated on the spectrum data of various
radio technologies captured using an empirical testbed
setup.

The optimal set of hyperparameters yielding the
best performance of ANN are obtained by using the
40 − 60 model of SNR values (40% of the samples are
from lower SNR values and 60% of the samples are from
higher SNR values), all the four features (energy and
Zhang statistic of current and previous samples) for
training, Nesterov Accelerated Gradient optimizer as
the optimization algorithm and learning rate of 0.0001
and sample size # = 500. However, the sample size can
be varied based on the system requirement of the par-
ticular application. Setting these parameters, we obtain
performance improvement of approximately 63% on av-
eraging the performance gain of all four RF technolo-

gies, which demonstrates a significant superiority of the
proposed scheme. Notice that this work considered only
a single PU and a single SU. However, the study of mul-
tiple PU and multiple SU [60] which includes the PU
channel selection among multiple PUs is an interesting
topic of further research.
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