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Abstract

Chronic pain surrounding the temporomandibular joints and masticatory muscles is often the primary chief
complaint of patients with temporomandibular disorders (TMD) seeking treatment. Yet, the neuro-pathophysiological
basis underlying it remains to be clarified. Neuroimaging techniques have provided a deeper understanding of what
happens to brain structure and function in TMD patients with chronic pain. Therefore, we performed a systematic
review of magnetic resonance imaging (MRI) studies investigating structural and functional brain alterations in TMD
patients to further unravel the neurobiological underpinnings of TMD-related pain. Online databases (PubMed,
EMBASE, and Web of Science) were searched up to August 3, 2019, as complemented by a hand search in reference
lists. A total of 622 papers were initially identified after duplicates removed and 25 studies met inclusion criteria for
this review. Notably, the variations of MRI techniques used and study design among included studies preclude a
meta-analysis and we discussed the findings qualitatively according to the specific neural system or network the
brain regions were involved in. Brain changes were found in pathways responsible for abnormal pain perception,
including the classic trigemino-thalamo-cortical system and the lateral and medial pain systems. Dysfunction and
maladaptive changes were also identified in the default mode network, the top-down antinociceptive periaqueductal
gray-raphe magnus pathway, as well as the motor system. TMD patients displayed altered brain activations in
response to both innocuous and painful stimuli compared with healthy controls. Additionally, evidence indicates that
splint therapy can alleviate TMD-related symptoms by inducing functional brain changes. In summary, MRI research
provides important novel insights into the altered neural manifestations underlying chronic pain in TMD.
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Introduction

Temporomandibular disorders (TMD) are a subgroup of
craniofacial pain disorders involving pain and dysfunc-
tion of the temporomandibular joint (TMJ), masticatory
muscles and associated musculoskeletal structures of the
head and neck. It is the commonest cause of nondental
pain in the orofacial region [1]. Patients with TMD fre-
quently suffer from localized pain, impaired jaw move-
ment and noise from TM] during jaw movement, as well
as less specific symptoms including ear pain and stuffi-
ness, tinnitus, dizziness, neck pain and headache [2, 3].
Although not life-threatening, it can affect oral health-
related quality of life, and the symptoms can be chronic
and difficult to manage [4, 5]. However, as with many
chronic pain syndromes, the neurobiological mecha-
nisms pertaining to pain in TMD remain to be clarified.

Initially, TMD-related chronic pain was considered to
be caused primarily by peripheral factors, such as
chronic inflammation of the TM]J, microtrauma of the
masticatory muscles, and oromotor dysfunction. How-
ever, the correlation between pain severity and tissue
pathology is often poor, and not all patients have
clearly identifiable peripheral etiological factors [6-8].
Moreover, TMD patients may have pain in other
body areas [9, 10], and there is high comorbidity with
functional syndromes such as fibromyalgia [11] and
irritable bowel syndrome [12]. Such evidence impli-
cates central nervous system dysfunction in pain asso-
ciated with TMD [13-15].

Previous studies have thoroughly investigated changes
in brain activity when experiencing clinical pain [16].
Persistent nociceptive input to brain can induce mal-
adaptive anatomical and physiological changes in the
brain via pathology or compensation [17, 18]. Functional
and structural magnetic resonance imaging (MRI)
methods have been widely used separately or combined
to explore brain alterations in patients with chronic pain
[19-21], including TMD, for better understanding of the
neural mechanisms of pain perception and chronifica-
tion. MRI studies in TMD have provided evidence for
structural and functional changes within the ascending
trigemino-thalamo-cortical pathway involving the tri-
geminal nerve root, spinal tract subnucleus caudalis
(SpVc), thalamus, and primary somatosensory cortex
(S1). For example, SpVc, which lies within the caudal
brainstem and processes orofacial nociceptive input
from the trigeminal peripheral nerve ending, shows de-
creased gray matter volume (GMV) [22] and elevated
cerebral blood flow (CBF) [23] in TMD patients. Brain
alterations have also been found in widespread brain re-
gions involved in the lateral and medial pain systems,
the default mode network (DMN) and the top-down
antinociceptive periaqueductal gray (PAG)-raphe mag-
nus pathway functioning for pain perception and
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modulation. These new findings of structural and func-
tional alterations at network levels may either account
for the pathogenesis or be the consequences of pain in
TMD. Although there are systematic reviews and meta-
analysis on brain alterations of patients with orofacial
pain disorders within which TMD was involved [24—26],
there has so far been no comprehensive review specific-
ally focusing on TMD to highlight progress in this area
of work.

Therefore, this systematic review was conducted to
provide an overview of neuroimaging MRI studies that
shed light on neuro-pathophysiological basis underlying
TMD-related pain by defining associated structural and
functional brain alterations. Studies reporting brain
changes after splint treatment that have potential impli-
cations for clarifying the therapeutic mechanism of
TMD were also reviewed. Finally, while reviewing pro-
gress in this field, consideration was also given to de-
scribing the limitations of previous work and suggesting
future directions for neuroimaging investigations of
TMD.

Methods

Search strategy and study selection

We followed the Preferred Reporting Items for System-
atic reviews and Meta-Analyses (PRISMA) guidelines for
data collection [27]. Studies were identified by searching
electronic databases including PubMed, EMBASE, and
Web of Science up to August 3, 2019. The following
search terms were used: (TMD OR temporomandibular
disorders) AND pain AND (neuroimaging OR (sMRI
OR structural MRI) OR (DTI OR diffusion tensor im-
aging) OR (fMRI OR functional MRI) OR (ASL OR ar-
terial spin labeling) OR (MRS OR magnetic resonance
spectroscopy)). Additional publications were identified
by manual search in reference lists. Studies were in-
cluded according to the following criteria: 1) original
publications in English from peer-reviewed journals; 2)
studies conducted in patients with TMD diagnosed with
Research Diagnostic Criteria for TMD (RDC/TMD) [28]
or Diagnostic Criteria for TMD (DC/TMD) [29]; and 3)
MRI studies exploring the brain structure and function
of TMD patients. Exclusion criteria included: 1) confer-
ence abstracts, theoretical papers, and reviews; and 2)
studies using magnetoencephalography or electroen-
cephalography. Two of us (Y.Y.Y. and S.S.H.) independ-
ently conducted the literature search. The results of
these two searches were compared and any inconsisten-
cies were discussed, and a consensus decision reached
about inclusion.

Quality assessment
A customized 9-point checklist based on the Strengthen-
ing the Reporting of Observational Studies in
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Epidemiology statement [30] was used for study quality
and risk of bias assessment (Additional file 1). The
checklist focused on characteristics of participants for
considerations of the heterogeneity of diagnosis and the
impact of medication and comorbidity on results. We
also incorporated items assessing the imaging method-
ology and statistical analysis. Any study scoring >5 was
included in this systematic review. Two independent re-
viewers (Y.Y.Y. and S.S.H.) performed the assessment
and disagreements were resolved by discussion to reach
a consensus.

Data analysis

The present results of brain structural and functional
differences between patients with TMD and controls
were qualitatively described according to the specific
brain system or network the brain regions were involved
in. Altered brain activations in response to mechanical
stimuli, the effects on the brain of splint treatment, as
well as the association between brain alterations and
other pain-related measurements were summarized and
presented descriptively.

Results

Search results and study characteristics

Figure 1 shows a flowchart of the search and selection
process. A total of 25 studies published between January
1, 2010 and August 3, 2019 were included (details in
Tables 1 and 2 and Additional file 2). Twenty-four MRI
studies [22, 23, 31, 32, 35, 39, 41-43, 45-59] compared
patients with TMD and healthy controls, while 1 longi-
tudinal study recruited only patients [60].

Neuroimaging methods employed in the reviewed studies

Of the 25 studies, 4 studies [31, 32, 39, 41] used the sin-
gle modality of structural MRI (sMRI) to assess GMV
changes by voxel-based morphology and/or cortical
thickness alterations using surface-based morphometry;
of these, 2 studies [31, 32] performed a whole-brain ana-
lysis and 2 studies [39, 41] used a region of interest
(ROI) approach. Three studies [22, 43, 45] combined
sMRI and diffusion tensor imaging (DTI) to explore
both GMV and white matter microstructure. One study
[42] employed the single modality of DTI to investigate
changes of fractional anisotropy (FA) and mean diffusiv-
ity (MD) in patients with TMD. Four studies [46-49]
used resting-state fMRI (rs-fMRI) to evaluate spontan-
eous neural function and functional connectivity (FC).
Nine studies [50-57, 60] used task-state fMRI (ts-fMRI)
to investigate regional changes in neural activity during
pain perception and modulation, of which 1 study [51]
combined resting and task state fMRI and 1 study [50]
mixed 3 modalities of ts-fMRI, DTI, and arterial spin la-
beling (ASL). One study [23] used the single modality of
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ASL to measure CBF in the whole brain and the brain-
stem in two steps. Three studies [35, 58, 59] used proton
magnetic resonance spectroscopy (‘"H MRS) to identify
the metabolites in the brain of TMD patients; of these 2
studies [58, 59] focused on the posterior insular and 1
study [35] used both sMRI and 'H MRS.

Characteristics of the subject populations

Notably, there was some overlap in the patient cohorts.
Six studies from the University of Toronto recruited the
same subjects (17 TMD patients and 17 healthy con-
trols) [39, 41-43, 46, 54]. The patients in 3 research
groups of studies partially overlapped: first, 5 studies from
the University of Sydney [22, 23, 35, 45, 50]; second, 4
studies from the University of Michigan [32, 51, 56, 58];
third, 3 studies from Sichuan University [47, 48, 57].

Most studies include either only female subjects [31,
32, 39, 41-43, 46, 49, 51, 52, 54, 59] or many more fe-
males than males [22, 23, 35, 45, 50, 53, 56, 58, 60].
While some studies specifically focused on patients in a
narrow age-range (for example, from 20s to 30s) [32, 47,
48, 51, 52, 56-59], others included a broader range of
ages, ranging from 20s to 50s [22, 23, 31, 35, 39, 41-43,
45, 46, 49, 50, 53-55, 60]. Five studies [31, 32, 51, 56,
58] included patients with myofascial TMD and 2 stud-
ies [49, 53] investigated patients with TMJ synovitis pain,
whereas the other studies included patients with either
muscle pain or synovitis pain or both. The average dur-
ation of symptoms across the studies ranged from 14
months to 12 years. Pain intensity and other pain-related
characteristics were recorded using the visual analog
scale [32, 35, 49-51, 53, 55, 56], numeric pain scale [39,
41-43, 46], numerical rating scale [31, 54, 59], McGill
pain questionnaire [22, 23, 32, 35, 45, 50-52, 56, 58] or
Graded Chronic Pain Scale [47, 48, 55, 57, 60].

Four studies [47-49, 57] reported that patients took
no medication for TMD treatment before. Five studies
[52, 53, 55, 59, 60] did not report whether patients were
medicated for TMD or not. Other studies reported de-
tails on individual medication status and/or asked pa-
tients to be free of pain medications before MRI scanning
[22, 23, 31, 32, 35, 39, 41-43, 45, 46, 50, 51, 54, 56, 58].

Quality assessment

Quality scores for each study are reported in Additional
file 1: Table S1. A total score of 9 was possible. For the
study not including a control group [60], a maximum
score of 7 was allowed. The majority of included studies
showed a moderate to high score of methodological
quality assessment. A prevalent strength of included
studies was the detailed descriptions of the patient and
control groups, in which the age and sex were matched,
although a few studies [23, 35, 45, 50, 52, 60] did not re-
port whether recruited TMD patients are free of
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Records excluded (n = 587)

- Focusing on structural changes of
temporomandibular joints in TMD but not the brain
- Investigating other diseases of temporomandibular
joints but not TMD, such as cysts around joints

- Investigating the effects of treatment approaches

such as stabilization splint and arthrocentesis

Fig. 1 Flowchart of the selection procedure. Abbreviations: TMD, temporomandibular disorders; MRI, magnetic resonance imaging; fMRI, functional
MRI; sMRI, structural MRI; rs-fMRI, resting-state fMRI; ts-fMRI, task-state fMRI; ASL, arterial spin labeling; MRS, magnetic resonance spectroscopy; DTI,

Records identified through Additional records identified
g database searching through other sources
B (n=681) n=2)
=}
b=
N
=
D
= v v
Records after duplicates removed
(n=622)
o0
E v
=
§ Records screened R
3 (n=622) >
\4
Full-text articles assessed
for eligibility
£ (n=35)
=
2
=
A 4
Studies included in this systematic
review (n=25)
) -4 rs-fMRI
- 9 ts-fMRI (1 used fMRI, DTI and
ASL;
E 1 used both rs-fMRI and ts-fMRI)
= -1 ASL
s - 3 MRS (1 study used both sMRI and
= MRS)
- 7 sMRI (3 used both sMRI and DTI)
-1 DTI
diffusion tensor imaging

- Analysing the correlation between clinical
manifestations and joint morphological changes
revealed by MRI in TMD

- Utilizing MRI to determine splint position for
patients with TMD

- Etiological research of TMD

- Case report without statistical analysis

- Review

Full-text articles excluded (n = 10)
- Review (n=3)

- Not patients with TMD (n=4)

- Not MRI study (n=3)

fibromyalgia or other chronic pain disorders. All studies,
except 1 with 2.0 Tesla [53], used 3.0 Tesla MRI
scanner.

Alterations in the trigemino-thalamo-cortical pathway
Alterations in the trigeminal nerve roots

In MRI studies, patients with TMD displayed signifi-
cantly lower FA [22, 42], higher MD [22] and decreased
GMV [22] in the trigeminal nerve root compared with
healthy controls. A negative correlation was found be-
tween the FA in the right trigeminal nerve root and
TMD duration [42]. However, an earlier TMD study
[45] found no diffusivity changes in the trigeminal nerve
root using a manual ROI analysis.

Alterations in the brainstem

Reports of volumetric changes in the trigeminal princi-
pal sensory nucleus (Vp) in TMD are inconsistent. Wil-
cox et al. [22] found decreased GMV in the ipsilateral
subnucleus interpolaris and caudalis of the spinal tri-
geminal nucleus as well as the ipsilateral Vp in TMD pa-
tients, which was the opposite of an increased GMV in
Vp reported by Younger et al. [31]. Wilcox et al. [22]
suggested that the discrepancy may arise from the differ-
ences in pain duration between the patients (4.4 vs 9.7
years), possibly reflecting short-term compensatory vol-
ume increase followed by volume decrease over a
longer-term course of illness [22]. In addition, another
MRI study [23] using ASL detected a significant increase
of blood flow in several brainstem regions in TMD
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patients, including the right SpVc, right Vp, and rostral
pons encompassing the ventral trigemino-thalamic tract.

Wilcox et al. [22] also used DTI to investigate micro-
structural alterations in the brainstem, focusing on the
SpVc and pain-processing pathways. Compared with 40
pain-free controls, 22 patients with TMD showed a sig-
nificant increase of MD in the ipsilateral spinal trigemi-
nal nucleus, bilateral trigeminal nerve tract within the
pons and PAG [22]. Another DTI study [42] confirmed
aberrant peripheral input from the trigeminal nerve,
finding lower FA in the brainstem white matter along
the ascending nociceptive pathways coursing through
the thalamus, internal capsule and tracts projecting to
sensorimotor cortex.

Alterations in the thalamus and S1

The thalamus and S1 are chief projections from the
trigeminal nerve system [61] and play essential roles
in the thalamocortical pathway related to pain [62].
The ventral posterior thalamus receives nociceptive
and other sensory information from the periphery
and projects to S1 [63]. Two studies [31, 39] re-
ported significantly increased GMV of thalamus in
TMD compared to controls, and 1 found a positive
correlation between the thalamus GMV and TMD
duration [39]. Additionally, age-related GMV in-
crease in the thalamus was found in TMD patients
[41], compared to a weak age-related GMV decrease
in healthy controls.

Anatomical MRI studies of S1 changes in TMD have
generated less consistent results, with different studies
reporting decreased GMV [31], increased cortical thick-
ness [39] or no change in GMV [35]. This divergence
may result from differences in pain duration, as well as
the impact of medication. To investigate changes of S1
in TMD further, Gustin et al. [50] used multiple modal-
ities of MRI (ts-fMRI, DTI, and ASL) to determine
whether S1 reorganization occurred in both neuropathic
(e.g. painful trigeminal neuropathy [PTN]) and non-
neuropathic (e.g. TMD) pain. They found that innocu-
ous brushing of the lip, thumb and little finger resulted
in similar functional activation in S1 of TMD patients
and controls, and found no significant differences in FA
or CBF within contralateral S1 between TMD patients
and controls, while PTN patients displayed functional
reorganization evidenced by reduced FA and CBF in S1
[50]. Another ASL study [23] found no significant CBF
changes in the thalamus and S1 in patients with TMD,
as opposed to CBF decrease in the 2 areas in PTN pa-
tients. Gustin et al. [50] suggested that the critical factor
for S1 reorganization may be the constant S1 input, re-
gardless of pain type (ie. neuropathic vs non-
neuropathic pain); the lack of increased S1 activity in
TMD patients as revealed by ASL might reflect a lack of
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constant nociceptive input to S1 as a general feature of
TMD patients [50].

Alterations in cortical regions

Altered lateral and medial pain systems

The lateral and medial pain systems are involved in the
nociceptive processing of pain and responsible for indi-
vidual differences in its experience. The lateral pain sys-
tem mainly carries information to the lateral thalamic
nuclei which projects to S1, secondary somatosensory
cortex, posterior insula and mid-cingulate cortex
(MCCQ), etc., and is believed to encode pain intensity, lat-
erality and somatotopy [64]. The medial pain system is
implicated in mediating the more affective-motivational
aspects in the experience of pain. This circuitry mainly
relays information through the medial thalamic nuclei to
the anterior insula and anterior cingulate cortex (ACC),
integrating interoceptive input with its emotional sali-
ence [65].

The insula and cingulate cortex are the most consist-
ently activated forebrain regions when someone experi-
ences pain. Younger et al. [31], studying 15 female
patients with myofascial TMD, first reported increased
GMV in the right anterior insula and a negative correl-
ation between self-reported pain intensity and GMV in
the pregenual ACC (pgACC) and posterior cingulate
cortex (PCC). Ichesco et al. [51] investigated FC between
insula and cingulate cortex in 8 female patients with
TMD and found elevated FC between left anterior insula
and pgACC in resting state. They also showed that dur-
ing a task state with an applied pressure pain as a con-
trolled stimulus, this FC was negatively correlated with
subjective pain intensity [51], i.e. patients with increased
connectivity reported lower pain, suggesting compensa-
tory brain changes to regulate pain in patients. A recent
rs-fMRI study by Zhang et al. [49] found decreased re-
gional homogeneity in the right anterior insula in 8 fe-
male patients with TM] synovitis pain relative to 10
healthy controls. Gerstner et al. [32] reported decreased
GMV in the right anterior insula, ACC, and PCC in 9 fe-
male TMD patients, suggesting that via excessive stimu-
lation or increased compensatory inhibitory input,
anatomic changes may also be observed.

In regard to MCC involved in the lateral pain system,
Zhang et al. [49] reported decreased FC between MCC
and anterior insula, which was negatively correlated with
pain intensity in TMD patients, i.e. patients with de-
creased connectivity reported higher pain. MRI studies
investigating TMD patients have also reported decreased
FC between MCC and dorsolateral prefrontal cortex
(dIPEC) [54], lower FA in MCC [42] and a negative cor-
relation between the cortical thickness of MCC and pain
intensity [39].
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The involvement of posterior insula in TMD-related
chronic pain has also been noted. Two "H MRS studies
[58, 59] investigated neurochemistry in the posterior in-
sula of TMD patients. MRS-detectable neurometabolites
include glutamate (Glu), a major excitatory neurotrans-
mitter contributing to the negative affect associated with
pain [66], and its metabolite glutamine (Gln), both in-
volved in complex metabolic cycles between neurons
and astrocytes [67]. MRS studies have also examined N-
acetyl aspartate (NAA), choline (Cho) and total creatine
(tCr), markers of other aspects of neurochemistry. Gerst-
ner et al. [58] found a negative correlation between Gln
levels in the left insula and reported pain in 11 TMD pa-
tients; NAA and Cho levels in the left posterior insula
were increased compared to 11 healthy controls and
NAA levels were positively correlated with the duration
of pain. In addition, Harfeldt et al. [59] reported elevated
tCr levels within the posterior insula in 17 TMD patients
relative to 10 healthy controls; in the patient group, in-
creased Cho levels correlated with a reduced capacity for
mouth opening and lower pressure pain threshold on
the hand, while Glu levels were positively correlated with
temporal summation of the nociceptive mechanical
stimulus.

Altered DMN and pain modulation

The DMN is a group of functionally interconnected
brain regions known to be active when people are mind
wandering and not involved in any specific task, which
becomes correspondingly deactivated during goal-
oriented tasks [68]. Activity in this network reflects self-
monitoring activity and the processing of internal state
information. In patients with TMD, Weissman-Fogel
et al. [54] reported task-evoked activation in the medial
prefrontal cortex (mPFC) and PCC, as well as functional
dysconnections within the DMN in TMD patients per-
forming a task with emotional interference. In
addition, Kucyi et al. [46] found enhanced FC be-
tween mPFC and other DMN regions including PCC/
precuneus (PCu), retrosplenial cortex, and areas
within visual cortex. Furthermore, the pain rumin-
ation scores were positively correlated with the FC
between mPFC and PCC/PCu, retrosplenial cortex,
mediodorsal thalamus, and PAG [46].

The PAG-raphe magnus system is the best-studied
pathway for descending pain modulation [69]. Wilcox
et al. [22] demonstrated that in TMD subjects, the PAG
displayed a significant increase of MD value and no
GMV change, while the nucleus raphe magnus showed
GMYV decrease and no change in diffusivity.

A number of higher-level brain areas have also proved
to be engaged in pain control, including the cingulo-
frontal regions, amygdala, and hypothalamus [70]. In-
creased CBF has been found in TMD patients in brain
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regions implicated in cognitive and emotional functions,
including the ACC, dIPFC and PCu [23]. Patients with
TMD often show impaired cognitive ability on neuro-
psychological testing [71, 72]. Weissman-Fogel et al. [54]
demonstrated that TMD patients had aberrant brain re-
sponses while performing the attention-demanding
Stroop task with cognitive and emotional interference,
including reduced FC within two pairs of brain regions,
the anterior MCC [aMCC]-dIPFC and pgACC-amygdala.
Another study [39] employing sMRI reported that TMD
patients had thicker cortex in the frontal pole and
ventrolateral prefrontal cortex compared with healthy
controls, and that cortical thickness of orbitofrontal cor-
tex (OFC) was negatively correlated to pain unpleasant-
ness. Additionally, cortical thickness in the left
ventromedial prefrontal cortex (vmPFC, part of OFC)
was positively correlated with neuroticism scores [40] in
TMD patients, different from a negative correlation in
healthy subjects [73].

Alterations in the motor system

Though this is less well-explored than the sensory-
discriminative and affective-motivational components of
pain, there is increasing evidence supporting involve-
ment of the motor system in patients with TMD-related
pain. Wessman-Fogel et al. [54] found that TMD pa-
tients showed elevated activity in the primary motor cor-
tex (M1) and supplementary motor areas (SMA) during
the cognitive interference Stroop task. He et al. [47]
identified decreased neural spontaneous function in M1
and SMA in treatment-naive TMD patients, measured
by the fractional amplitude of low-frequency fluctuation
(fALFF) calculated from rs-fMRI data. Centric relation-
maximum intercuspation (CR-MI) discrepancy of bilat-
eral TMJs is an indicator of the presence and severity of
TMD [74, 75], and He et al. [47] found a negative correl-
ation between the fALFF in M1 and vertical CR-MI [76]
in TMD patients. Furthermore, in an sMRI study by Sal-
omons et al., [43] self-reported helplessness in TMD pa-
tients assessed by Pain Catastrophizing Scale [44] was
positively correlated with the cortical thickness of SMA,
a critical region implicated in cognitive aspects of motor
behavior [77], but further analysis [43] identified neither
significant group difference in the cortical thickness of
SMA nor correlation with pain characteristics.

In addition to M1 and SMA, the striatum has also
been implicated in the motor response to pain in TMD.
TMD patients with myofascial pain had increased GMV
in the right putamen and right globus pallidus relative to
controls [31]. TMD patients also showed sustained in-
creased GMV in the dorsal striatum independent of
TMD duration, while healthy controls had normal age-
related gray matter atrophy in this region [41], suggest-
ing an aberrant pattern of striatal aging in TMD. In
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addition, a rs-fMRI [48] study explored the FC of the
corticostriatal circuit in patients with TMD. Compared
with controls, the patient group had reduced FC in the
ventral corticostriatal circuitry between the ventral stri-
atum and ventral-frontal cortices (ACC and anterior in-
sula), in the dorsal corticostriatal circuitry between
dorsal striatum and dorsal cortices (precentral gyrus and
supramarginal gyrus), and also within the striatum [48].
Exploratory analysis found associations between de-
creased corticostriatal FC and clinical variables of overall
clinical dysfunction measured by Helkimo indices [78]
and pain intensity [48].

Altered brain activations in response to mechanical
stimuli

Previous studies found that patients with TMD had ab-
normal vibrotactile sensibility on the face, with elevated
detection threshold [79] and impaired frequency dis-
crimination [80], indicating a disruption of the somato-
sensory system in TMD. Compared with healthy
controls, with the stimulation of low frequency and in-
nocuous vibration of the index finger, patients with
TMD displayed greater activations in bilateral ACC and
contralateral amygdala [52], 2 critical regions implicated
in the emotional aspect of pain [81, 82]. In addition, 16
TMD synovitis patients with biting pain showed elevated
activation of ACC during clenching tasks compared with
14 controls, and the activation of ACC was found to be
associated with higher levels of psychological distress in
patients [53].

Multivariate analysis techniques have begun to be used
to identify the central mechanisms underlying pain pro-
cessing in TMD. Roy et al. [55] investigated neural activ-
ity during a grip-force task and a pain-eliciting forearm
thermal stimulus in TMD patients with chronic jaw pain
[83] and controls, using multivariate analyses to identify
brain regions whose functional activity could discrimin-
ate between the groups. By using multivariate analyses,
in the motor control task, increased activity in brain
areas including PFC, insula, and thalamus could distin-
guish the patients from controls with a mean test for the
area under the receiver operator characteristic curve
(AUC) of 0.8, although the parameters of grip-force pro-
duction were similar in both groups [55]. In the pain
task, there was no significant difference in stimulus in-
tensity and pain perception between groups, but the
functional activations of dIPFC, ventral premotor cortex,
and inferior parietal lobule could distinguish the groups
with a mean test AUC of 0.85 [55].

Harper et al. [56] explored the differences in brain ac-
tivity evoked by subjectively equated pain originated
from temporalis (a clinically painful region) and thumb
(a remote asymptomatic area) in patients with TMD and
controls. The support vector machine (SVM) method
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was able to distinguish between the neural activations in
areas with cognitive valuation of pain, including the left
OFC, ACC, and operculum in response to temporalis-
evoked pain and thumb-evoked pain in TMD patients
with an accuracy of 75%, but not in healthy controls
(55%) [56].

Brain changes after splint therapy

Lickteig et al. [84] first used fMRI to record cerebral ac-
tivation changes of a single TMD patient before and
after splint therapy (individually optimized, applied for
11 nights and partial days) and found decreased brain
activity (in bilateral sensorimotor regions and other
areas such as left posterior insula) during occlusion
(both on natural teeth and splint) after treatment com-
pared to the untreated baseline. The same group per-
formed a longitudinal fMRI study to assess the effect of
2-week splint therapy on 14 patients with TMD [60].
After splint treatment the patients showed reduced acti-
vations in the right anterior insula and right cerebellar
hemisphere during occlusion, accompanied by relief of
subjective pain and increased symmetry of condylar
movements. Correlation analysis identified an associ-
ation between reduced pain scores and attenuated acti-
vations in the right anterior insula, left posterior insula
and left cerebellar hemisphere, as well as between im-
proved condylar movements and decreased activations
in the left cerebellar and right M1 [60].

He et al. [47] used rs-fMRI to investigate the spontan-
eous brain activity of 23 TMD patients with CR-MI dis-
crepancy and assessed the therapeutic effect of maxillary
stabilization splint. Eleven out of 23 patients received 3
months splint therapy, showing improved signs and
symptoms and more stable condylar position; the fALFF
in left M1 and left posterior insula, which had been de-
creased before treatment compared to healthy controls,
recovered to the normal level [47]. Another study [57]
explored neural activation in TMD patients during a
clenching task before and after stabilization splint ther-
apy. Compared with the control group, TMD patients
before treatment exhibited decreased positive activations
in cerebral areas associated with motor and cognitive
functions (including the left M1, bilateral inferior tem-
poral gyrus and left cerebellum) and elevated negative
activations in the DMN (right mPFC). Neural activity in
these cortical regions normalized after splint therapy, ac-
companied by improvement of TMJ status [47].

Discussion

In this review, 25 original MRI studies were retrieved to
investigate the neuro-pathophysiological manifestations
of TMD-related pain. Notably, our findings provide evi-
dence for both peripheral and central neural basis for
pain in TMD (briefly summarized in Fig. 2). The lack of
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Fig. 2 Schematic representation of main brain regions with altered structure and function involved in TMD related-pain. Green balls represent the
areas in the classic trigemino-thalamo-cortical system. Red balls are in the motor system. Yellow balls are the brain cortical regions implicated in
pain perception and pain modulation. Brain regions with altered functional connectivity in TMD are connected with lines in khaki. Abbreviations:
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cingulate cortex; mPFC, medial prefrontal cortex; ACC, anterior cingulate cortex; PCC, posterior cingulate cortex; alC, anterior insular cortex; plC,
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large sample size studies and the variety of methodo-
logical approaches complicate the process of synthesiz-
ing findings to reach broad conclusions and may explain
some discrepancies in results between studies. The fol-
lowing discussion will provide a detailed interpretation
of the findings and their clinical implications in a
broader context.

Implications of findings in the trigemino-thalamo-cortical

pathway

The classic trigemino-thalamo-cortical pathway is re-
sponsible for the sensation of oral and maxillofacial re-
gions [85]. Current evidence reveals brain structural and
functional alteration in key nodes within this ascending
trigemino-thalamo-cortical pathway in TMD.

Diffusivity changes observed in the trigeminal nerve
root [22, 42] may reflect long-term microstructural alter-
ations of the nerve, a manifestation of microstructural
changes in response to increased peripheral nociceptive
input. The reported discrepancy of diffusivity changes in
the trigeminal nerve [22, 45] results from methodo-
logical differences between the two studies (with the
same samples). The earlier study [45] used manual ROI
analysis and the results could be affected by partial vol-
ume effects given the small size of the trigeminal nerve

root, while the deterministic tractography used in the
later study [22] provided greater sensitivity and a more
accurate estimate of diffusion properties of white matter
tracts [86]. Additionally, the GMV decrease and MD in-
crease in SpVc [22] may reflect glia shrinkage/atrophy or
neuronal loss [87] and a reduction in dendritic density
[88], while the elevated blood flow in SpVc [35] could be
a compensatory response of increased neural activity to
structural reductions. As such, the neural structural and
blood flow changes in the initial part of the trigeminal
system (the root entry zone and SpVc) indicate that the
established hyperexcitability of the nociceptive process-
ing pathways is critical for the altered perception and
maintenance of pain in TMD [89]. On the other hand,
increased GMV and aberrant age-related GMV changes
in the thalamus may also be due to persistent trigeminal
nociceptive input, which further contributed to the
hyperalgesia of TMD by enhanced facilitating trigeminal
sensory information from the thalamus to S1.

However, the structural changes of S1 are somewhat
less consistent. Gustin et al. [50] found no functional
reorganization in the S1 of TMD patients and no signifi-
cant difference in FA or CBF within S1 compared with
healthy controls. This may not necessarily rule out alter-
ations within the trigemino-thalamo-cortical pathway in
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the TMD patients examined by Gustin et al. [50], as the
authors did not investigate the structural and functional
changes of other critical areas within the pathway, espe-
cially the SpVc and thalamus. Therefore, further MRI
studies focusing simultaneously on the SpVc, thalamus,
and S1 and examining both brain anatomy and function
are required to resolve the issue of inconsistencies of S1
changes in TMD patients. If structural and functional al-
terations were found only in SpVc and/or thalamus, but
not S1, it would be interesting to investigate how TMD
patients deal with increased nociceptive inputs while
showing intact S1. Alternatively, more refined measure-
ments and larger sample studies may provide a clearer
picture of alterations that may occur in S1 in TMD
patients.

Implications of cortical findings

Altered lateral and medial pain systems

The ACC and anterior insula are two important regions
responsible for encoding the emotional and motivational
aspects of pain. Despite some inconsistencies, current
structural and functional findings in these two structures
in TMD patients [31, 32, 49, 51, 53] support the role of
abnormal medial pain system in nociceptive processing,
demonstrating the emotional sensory signals related to
pain in TMD patients.

Zhang et al. [49] found decreased FC between MCC
and anterior insula in TMD patients, while Ichesco et al.
[51] reported increased FC between pgACC and anterior
insula. FC between anterior insula and different regions
of cingulate cortex may represent different brain func-
tional alterations in different disease severity of TMD,
since the former group [49] studied patients with severe
open-mouth pain (=5 on the visual analog scale), while
the latter [51] recruited patients who were only mildly
affected by TMD. We noted that the reduced FC be-
tween MCC and anterior insula and the increased FC
between pgACC and anterior insula were both negatively
correlated with pain intensity of TMD patients, so that
these two alterations in FC may represent maladaptive
alterations resulted from pain in TMD or compensatory
brain changes for pain regulation, respectively.

The posterior insula of TMD patients showed cellular
and molecular changes in 2 neurochemical studies [58,
59]. The positive correlation between the NAA levels in
left posterior insula and duration of TMD pain suggested
a time-dependent neuronal or axonal proliferation in re-
sponse to pain [58], as NAA is considered as a biomarker
of neuronal health and synaptic integrity [90]. In addition,
since tCr can be considered as a biomarker of cell energet-
ics [90], the increased tCr levels in the posterior insula in
TMD patients [59] may indicate a state of neuroinflamma-
tion or cellular hyperactivity which has been proposed to
be implicated in chronic pain [91].

Page 14 of 20

Dysfunctional DMN and pain modulation

Previous studies have suggested that dysfunction of the
DMN may be related to cognitive and behavioral deficits
observed in patients with chronic pain [92]. In TMD pa-
tients, task-related activation, rather than typical task-
related deactivation in DMN areas including the mPFC
and PCC, has been observed [54]. PCC can be activated
by emotionally salient stimuli and is involved in context-
ualizing painful stimuli [93]. The increased activation of
PCC may indicate increased spontaneous pain in pa-
tients when completing cognitive tasks with emotional
interference since it had greater emotional effects on pa-
tients than controls. Accordingly, mPFC was recruited
during the emotion provoking task to mediate antinoci-
ceptive effects relevant to its role in descending pain
modulation [94]. Moreover, given that mPFC and PCC
are 2 functionally connected regions implicated in atten-
tion toward introspective thoughts [95, 96] which is re-
quired for coping with pain, their abnormal activation
during task may reflect a nocifensive mechanism for pa-
tients to relieve pain by focusing on internal thoughts,
which in turn leads to slower behavioral responses.

Pain rumination is perseverative negative thinking
about pain. Kucyi et al. [46] linked dysfunctional DMN
with pain rumination in TMD and suggested that indi-
viduals with high pain rumination measured by Pain
Catastrophizing Scale [44] had particularly enhanced FC
between components of the DMN including mPFC and
PCC/PCu. The positive correlation between pain rumin-
ation and FC of mPFC with mediodorsal thalamus may
reflect patients’ persistent attempts to regulate pain,
since mediodorsal thalamus is associated with the
affective and emotional aspects of pain [97]. In addition,
pain rumination was positively correlated with FC be-
tween mPFC and PAG, which may account for differen-
tial abilities in pain modulation given the prominent role
of PAG in descending pain modulation. Since healthy
controls had no such a correlation, Kucyi et al. [46] sug-
gested that the degree to which chronic pain alters the
normal function of these circuits may depend on how
much patients ruminate, supporting the critical role of
pain-related cognition in TMD-related brain alterations.

As a key region of the endogenous pain inhibitory sys-
tem, PAG is well-positioned to modulate pain percep-
tion for interactions between ascending inputs from
peripheral tissue and descending projections from brain
regions (e.g., ACC and mPFC), and shows anatomical al-
terations in other chronic pain conditions [98, 99]. Since
nucleus raphe magnus serves as the recipient in the de-
scending analgesic pathway of PAG [100], reduced den-
dritic spine numbers in the PAG may alter the
descending input to raphe magnus, variably impacting
the efficiency of endogenous analgesia. Thus, the dys-
function of the PAG-raphe magnus descending
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modulatory pathway may shed light on the mechanism
underpinning the central sensitization to pain in TMD
patients.

It has been established that pain can induce attentional
biases [101], and attentional manipulation is able to
modulate the perception of pain [102—104]. This high-
lights the importance of studying brain attentional sys-
tems in relation to pain in TMD. In the study by
Weissman-Fogel et al. [54], TMD patients showed
slower task responses, with reduced FC within two pairs
of brain regions (aMCC-dIPFC and pgACC-amygdala).
The amygdala is critically implicated in the experience
and expression of emotion [81, 82], and pgACC can
modulate the reactivity of amygdala when confronted
with emotionally salient stimuli [105, 106]. aMCC and
dIPFC are highly functionally connected; the activation
of aMCC can capture attention to adjust behavior [107,
108], which is mediated by a top-down process that en-
gages dIPFC. Therefore, reduced connections between
these two pairs of structures in TMD patients may sug-
gest an influence of their chronic pain onto attentional
and emotion networks, which results in attenuated and
unsynchronized recruitment of attention-processing
areas and consequently slower behavioral responses.

Neuroticism is one of the ‘Big Five’ personality traits
and individuals with high neuroticism are more likely to
interpret common situations as threatening and minor
frustrations as hopeless. It is a personality feature associ-
ated with increased levels of current and future anxiety
and distress [109, 110]. High neuroticism is also corre-
lated with heightened pain-related suffering [111] and
sensitivity [112]. In TMD patients, Moayedi et al. [39]
found a positive correlation between cortical thickness
in vmPFC and neuroticism relative to a normal negative
correlation in healthy controls [73]. While neuroticism is
generally a stable trait, it also can vary with level of anx-
iety and distress associated with physical and psychiatric
illness. Thus, observations of associations with neuroti-
cism suggest that greater levels of distress and anxiety in
TMD are associated with gray matter changes in the
vmPFC of TMD patients, which may result from or con-
tribute to reductions in the brain’s capacity for pain
control.

Motor aspects of TMD-related pain

Neuroimaging studies in patients with TMD pain have
reported structural and functional changes in the motor
system, including M1, SMA, and striatum. Persistent
pain can inhibit protective movement and impair motor
performance due to maladaptive neuroplasticity in the
motor cortex [113, 114]. Increased activity in M1 and
SMA during cognitive interference Stroop task in TMD
patients [54] may indicate a possible compensatory
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mechanism to recruit motor areas to meet elevated de-
mands for motor planning and performance.

Uncontrollable stressors like persistent chronic pain
can lead to learned helplessness, a maladaptive response
featured by reduced motor escape behaviors and deficits
in motivation and learning [115]. The SMA has been im-
plicated in motor planning and pain processing when
pain is perceived to be uncontrollable [77, 116]. In the
study by Salomons et al. [43], the cortical thickness in
SMA did not differ between groups or show any signifi-
cant correlation with chronic pain characteristics, indi-
cating that the positive correlation between cortical
thickness and helplessness was not derived from the cu-
mulative effects of pain. Rather, helplessness in patients
with painful TMD may be a function of interactions be-
tween predisposing factors, i.e. structural characteristics
of nervous systems implicated in motor planning and
function and persistent exposure to uncontrollable
chronic pain.

As the major component of basal ganglia, striatum re-
ceives input from cortical regions and thalamic nuclei,
and sends output to other structures of basal ganglia,
serving as a critical site where cognitive, motor and
limbic signals from other brain regions overlap and are
integrated [117, 118]. Findings of increased GMV in the
right putamen and right globus pallidus [31], which
contain neurons responsive to nociceptive stimuli and
function for preparing behavioral responses [119], sug-
gest a possible somatotopic reorganization or perhaps
synaptic hypertrophy associated with sustained TMD
pain. Correlations between reduced corticostriatal FC
and clinical measurements [48] highlight the critical
role of the striatum and corticostriatal loops in the
motor response to pain.

Altered brain activations in response to mechanical
stimuli

Compared with healthy controls, TMD patients display
perceptual amplification of pressure stimulation across a
wide range of physical intensities, from gentle and in-
nocuous to strongly painful [120]. fMRI allows the de-
tection of differences in brain function in processing
external stimuli between TMD patients and healthy sub-
jects. The differences in the location and magnitude of
brain activation responsive to innocuous vibrotactile
stimulation between patients and healthy controls and
the activation of pain-related regions by innocuous in-
put, as reported by Nebel et al. [52], may reflect the dys-
function of the somatosensory system in individuals with
TMD. Findings of Harper et al. [56] using SVM provided
further support for the involvement of aberrant central
pain processing in patients with TMD pain. The ability
of SVM to discriminate the location of noxious stimuli
only in TMD patients by different functional activity in
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regions including OFC, ACC, and operculum indicate
somatotopic-dependent differences in pain processing,
reflecting regional differences of brain activation related
to the cognitive evaluation of pain between TMD pa-
tients and healthy subjects.

Although TMD, like many chronic pain conditions, is
accompanied by motor impairment, few MRI studies
have directly investigated neural activity during a motor
task in chronic pain. Roy et al. [55] first investigated
brain response during a grip force task and a thermal
pain stimulus in TMD patients with chronic jaw pain
and healthy controls, and identified brain regions with
significantly different functional activities which could
separate the groups. They found that TMD patients with
chronic jaw pain had different brain processing of
motor- and pain- related stimulus compared with
healthy controls, which supports the idea that chronic
pain is correlated with task-specific brain alterations in
the transformation of sensory input to motor activity
and to pain perception.

Neural therapeutic mechanism of splint therapy
Treatment for TMD has been focused on alleviating the
main symptoms, especially chronic pain, and the pallia-
tive approaches which prevail over surgery have rela-
tively satisfactory clinical outcomes [3, 121, 122]. Splint
therapy is one of the commonest conservative treat-
ments for TMD. A recent meta-analysis evaluating vari-
ous oral orthotic appliances concluded that hard
stabilization splints, when adjusted properly, have good
evidence of modest efficacy in reducing TMD-related
pain relative to non-occluding appliances and no treat-
ment [123]. Stabilization splints are designed to improve
the functional movements of TM]Js by eliminating
occlusal interferences and removing the impact of
maximization intercuspation occlusion on joint position,
and also improve masticatory function by reducing ab-
normal muscular activity [124, 125]. It has also been hy-
pothesized that splints can increase patients’ cognitive
awareness of oral parafunctional habits, thus altering
proprioceptive input and central motor areas implicated
in masticatory function [126, 127].

The recent fMRI studies by Lickteig et al. [60, 84] and
He et al. [47, 57] revealed the neural mechanisms of
splint therapy, finding that it may work partly by elicit-
ing neuroplastic recovery of affected brain regions. Lick-
teig et al. [60, 84] found decreased activations in brain
regions accompanied by improved clinical symptoms
after splint treatment compared with pretreatment
levels, but there was no control group to assess whether
they recovered to normal. On the other hand, He and
coworkers [47, 57] found that TMD patients exhibited
recovery of previously decreased baseline neural activity
after splint therapy, compared with healthy controls.
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This discrepancy may result from differences in patients’
age, medication usage and splint design. Future MRI
studies investigating the therapeutic effects of splint
therapy for TMD are expected to identify a general
mode of splint impact on the brain of TMD patients.

Limitations

The present review, and the field of TMD brain imaging
research, have several limitations. The first important
consideration is the difference in pain origins and TMD
patients recruited in studies. Since TMD is an umbrella
term encompassing a number of painful conditions in-
volving masticatory muscles, TM] and associated struc-
tures [128], the large variability in disease characteristics
of patient groups precludes drawing a definite conclu-
sion about brain changes in TMD with a specific type
and pain origin. Studies seeking to identify subgroups of
patients in large samples of TMD patients are needed to
resolve this important issue.

Another consideration is the gender of participants.
The sex ratio of patients seeking medical advice has
been reported as ranging from 3:1 (women: men) to as
high as 9:1 [129, 130]. Accordingly, there were many
more female subjects in the studies discussed in this re-
view. However, no neuroimaging studies of TMD have
specifically targeted gender differences or investigated
the neural basis of such high morbidity in women.

A third factor that impacts neuroimaging studies of
TMD is the potential impacts of analgesics, which may
reduce some functional alterations and induce other
functional changes that might impact the experience of
persistent TMD-related pain. Studying untreated TMD
patients at illness presentation, as in other disorders,
would be a strategy to advance clarity of illness related
alterations.

Fourth, causal relationships are inherently difficult to
establish in cross-sectional studies. Among the brain al-
terations in TMD patients, differentiating features that
are the consequence of persistent pain or represent com-
pensation efforts to reduce pain can not be confidently
determined at this point, which requires further re-
search. Moreover, findings from existing studies suggest
the possibility that certain structural characteristics of
the brain associated with levels of anxiety and distress
and helplessness may either make some people more
vulnerable to developing TMD or represent responses to
TM]J-related pain with their own impact on brain anat-
omy and function.

Last, given that TMD is a multifactorial disease, un-
derstanding the personal difference in central
sensitization is critical for choosing proper clinical man-
agement. Therefore, the combination of neuroimaging
techniques and machine learning algorithms such as
SVM may serve to benefit future studies of the central
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mechanisms underlying TMD pain, and eventually facili-
tate clinical practice by providing new diagnostic strat-
egies, as well as objective measures of therapeutic
efficacy.

Conclusion

This article systematically reviewed the existing litera-
ture investigating brain changes in TMD patients for re-
vealing the pathogenic mechanisms or consequences of
TMD-related pain. MRI neuroimaging techniques have
provided a deeper understanding of what happens to
brain structure and function in patients with TMD, sug-
gesting both peripheral and central neural basis for the
most common conditions of TMD, i.e. hyperexcitability
to external stimuli and disrupted pain perception and
pain modulation. This review can enhance our under-
standing of the pathophysiology underlying symptoms of
TMD-related pain as targets for treatment development
and planning. Primary novel observations include:

e There are structural and functional changes in the
classic trigemino-thalamo-cortical system, including
peripheral trigeminal nerve roots, brainstem (SpVc
and Vp in particular), thalamus, and S1, which pro-
vides support for a peripheral origin of TMD. Specif-
ically, the results of increased GMYV in the thalamus
were consistent, while whether there are alterations
in S1 in TMD patients remains to be clarified.

e There are alterations in several cortical regions
implicated in pain perception and pain modulation
in TMD. Neurochemical alterations are identified in
the posterior insula. The altered FCs among anterior
insula, pgACC and MCC are correlated with pain
intensity. The dysfunctional DMN in TMD patients
is characterized by reduced FC in mPFC-PCC/PCu
and mPFC-PAG. TMD related pain-attention inter-
action is mediated by reduced FC in aMCC-dIPFC
and pgACC-amygdala. Structural changes in the
PAG-raphe magnus pathway may impair the effi-
ciency of the endogenous pain inhibitory system of
TMD patients.

e Regional functional brain changes in M1 and SMA,
as well as increased GMV and decreased FC in the
striatum, indicate the compensatory changes or
maladaptive neuroplasticity of the motor system in
patients with TMD pain.

e TMD patients displayed different brain activations in
the fronto-insulo-thalamo-parietal network under
both innocuous and painful stimulus compared with
healthy controls, reflecting the involvement of aber-
rant central pain processing in TMD. Multivariate
analysis techniques like SVM may help distinguish
the subtypes of TMD patients, i.e. identify whose
pain has a more peripheral or a central etiology,
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which could be clinically useful for optimal
treatment.

e Splint therapy can impact the neural function of
brain regions in TMD patients, accompanied by
improved clinical symptoms, suggesting a central
mechanism underlying the therapeutic effects of
splint therapy
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