
University of London

Imperial College of Science, Technology and Medicine

Department of Computing

Performance Modelling and Optimisation of
NoSQL Database Systems

Salvatore Dipietro

Submitted in part fulfilment of the requirements for the degree of
Doctor of Philosophy in Computing of the University of London and

the Diploma of Imperial College, October 2019

Declaration of originality

I declare that this thesis was composed by myself, and that the work it presents is my own,

except where otherwise stated.

Copyright declaration

The copyright of this thesis rests with the author. Unless otherwise indicated, its contents

are licensed under a Creative Commons Attribution-Non Commercial 4.0 International Licence

(CC BY-NC).

Under this licence, you may copy and redistribute the material in any medium or format. You

may also create and distribute modified versions of the work. This is on the condition that:

you credit the author and do not use it, or any derivative works, for a commercial purpose.

When reusing or sharing this work, ensure you make the licence terms clear to others by naming

the licence and linking to the licence text. Where a work has been adapted, you should indicate

that the work has been changed and describe those changes.

Please seek permission from the copyright holder for uses of this work that are not included in

this licence or permitted under UK Copyright Law.

i

ii

Abstract

Over the last decade, the use of mathematical models and tools to describe and analyse com-

puter applications have grown considerably, for example to automate management in the cloud.

Modelling techniques help performance engineers to analyse the behaviour of the system under

certain simplifying assumptions and predict its performance, often without running experiments

on the real system. However, modern computer applications such as distributed applications

can be challenging to describe using models and, even then, their analysis can be technically

non-trivial also due to the number of resources involved and their interactions.

In this thesis, we consider modelling and optimisation of distributed NoSQL databases, fo-

cussing in particular on Apache Cassandra. NoSQL databases have attracted large interest in

recent years thanks to their high availability, scalability, flexibility and low latency. Nonetheless,

concrete implementations such as Cassandra are challenging to analyse since requests interact

in complex ways with the nodes that form the database ring. We address the underpinning

modelling and management challenges as follows.

We first propose a novel queueing network model for Cassandra to support database resource

provisioning exercises. The model defines explicitly key configuration parameters of Cassandra

such as consistency levels and replication factor, allowing engineers to compare alternative sys-

tem setups. The experimental results are conducted using different architectures and hardware

resources, achieving good predictive accuracy across different loads and consistency levels. In

addition, we also present a case study where the model is used to perform capacity planning

activities and to compare possible alternative consistency level definition strategies.

A second contribution focuses on management, where we introduce PAX, a partition-aware elas-

tic resource management system for Apache Cassandra. PAX allows engineers to adapt NoSQL

database resources to reduce operational costs without compromising Service-Level Objectives

(SLOs). Using a low-overhead query sampling and knowledge of the data-partitioning across

the nodes, PAX automatically adapts capacity in Cassandra clusters looking for the configu-

ration that is able to achieve the best performance. We analyse the system using a reactive

and a proactive implementation of PAX and compare their performance against different work-

loads with varying intensities and item popularity distributions, finding that in particular the

proactive version of PAX significantly reduces SLO violations.

iii

We also present a new estimation algorithm to instantiate performance models based on em-

pirical measurements, called State Divergence (SD). Frequently, service demand estimation for

real-world systems is calculated in testing environments that can have different characteristics

compared to the production ones, leading to inaccurate performance predictions. SD offers a

novel approach to demand estimation that has a minimal impact on the application and makes

it suitable for application also in production environments. Differently from existing inference

algorithms, SD seeks to minimise the divergence between marginal state probability of the real

and analysed model to produce accurate demand estimates that reflect not only the perfor-

mance metrics, but also the likelihood that the system is in an given state. We validate the

SD estimation algorithm through several randomly generated models and by means of a real

case study conducted on Apache Cassandra. The results show that SD infers with a low error

the demands of the system under study and predicts with accuracy its performance, allowing

to parameterise performance models with ease and higher fidelity than with existing methods.

iv

Acknowledgements

First of all, I would sincerely like to thank my academic supervisor Giuliano Casale for his

continuous advice, encouragement and guidance throughout the last four years. He helped me

to develop a critical thinking as well as a rigorous methodology through the development of

this thesis.

Second, I would like to express my gratitude to the Engineering and Physical Sciences Research

Council (EPSRC) to fund my HiPEDS studentship. In particular, I would like also to thanks

all the lecturers, staff and students of my cohort that made these years a beautiful adventure.

Most importantly, I would like to thank my family for all the support I received to achieve

this goal. During bad days, good days, milestones moments, difficulties; when you are ready to

give up and just leave everything behind. You are always there with the right word, the right

advice or even just being there, because I know I can count on you and you are my greatest

supporters. Thank you.

To Guinevere and William, I dedicate my entire work. For all your life to be full filled of happi-

ness, achievements and to always pursue your dreams and wishes. Growing is hard sometimes

but with a strong will and positiveness everything is possible. I promise I will always be there

to support you and guide you every step of the way.

v

“ Imagination is more important than knowledge.
For knowledge is limited, whereas imagination
embraces the entire world, stimulating progress,
giving birth to evolution. ”

Albert Einstein(1929)

vi

Contents

Abstract iii

Acknowledgements v

1 Introduction 1

1.1 Motivation and Objectives . 1

1.2 Contributions and Thesis outline . 7

1.3 Publications . 8

2 Background 10

2.1 NoSQL databases . 10

2.2 Cassandra . 14

2.2.1 Cassandra architecture . 16

2.2.2 Read and Write operations . 18

2.3 Queueing Networks . 20

2.3.1 Closed queueing network . 22

2.3.2 Analysis and Solutions . 24

2.3.3 Class-switching models . 28

vii

viii CONTENTS

2.4 Demand estimation algorithms . 29

2.4.1 Regression . 30

2.4.2 Machine Learning . 31

2.4.3 Maximum Likelihood Estimation . 32

2.4.4 Optimisation . 33

3 Apache Cassandra Queueing Network Model 35

3.1 Introduction . 35

3.2 Related Work . 37

3.3 Cassandra Queueing Network Model . 39

3.3.1 Local Request . 40

3.3.2 Remote Incoming Request . 41

3.3.3 Remote Request . 42

3.3.4 Workload . 42

3.4 Models Parametrization . 44

3.4.1 Single client network monitoring . 45

3.4.2 Multi clients network monitoring . 46

3.4.3 Cassandra tracing tool . 46

3.5 Model validation . 48

3.5.1 Validation on private cloud . 48

3.5.2 Evaluation on public cloud . 52

3.5.3 Fitting demands function . 55

3.6 Case Study: applicability of our model to other NoSQL databases 58

CONTENTS ix

3.7 A What-If Scenario: the Impact of Query Replication in Cassandra 61

3.8 Summary and Conclusion . 62

4 Partition-Aware Autoscaling for the Cassandra NoSQL Database 63

4.1 Introduction . 63

4.2 Related work . 65

4.3 Data recovery in Cassandra . 67

4.3.1 Data partitioning . 67

4.3.2 Hinted handoff mechanism . 67

4.4 PAX: Partition-aware autoscaling . 70

4.4.1 Controller . 70

4.4.2 Workload analyser (WA) . 71

4.4.3 Workload forecasting . 73

4.5 Autoscaling algorithms . 75

4.5.1 Metrics . 75

4.5.2 Data-aware node acquisition . 76

4.5.3 Number of nodes to scale . 78

4.5.4 Triggering a scaling action . 79

4.6 Tuning the PAX Architecture . 81

4.6.1 Hinted handoff storage . 83

4.7 Performance Evaluation . 85

4.7.1 Methodology . 85

4.7.2 Comparing proactive and reactive approaches 86

x CONTENTS

4.7.3 Step response and overlapped peaks . 87

4.7.4 Architecture change . 88

4.7.5 Different Consistency Level . 90

4.8 OPAX strategy . 90

4.9 Summary and Conclusion . 93

5 SD: a Divergence-based Estimation Method for Service Demands 94

5.1 Introduction . 94

5.2 Motivation Example . 97

5.3 Efficient marginal probabilities calculation . 99

5.4 Estimation Algorithm . 100

5.4.1 SD Algorithm . 100

5.4.2 Divergence measures . 102

5.5 Evaluation . 104

5.5.1 Cassandra Simplified Model . 105

5.5.2 Experiment settings . 108

5.5.3 Minimization algorithm settings . 109

5.5.4 Sensitivity analysis . 110

5.5.5 Cassandra Demand Estimation . 117

5.6 Random Models . 119

5.7 Summary and Conclusion . 122

6 Conclusion 124

6.1 Summary of Thesis Achievements . 124

6.2 Future Work . 126

Bibliography 127

xi

xii

List of Tables

2.1 Summary of main notation for the model input parameters 24

3.1 Classes description. 41

3.2 CPU demands for different classes. 49

3.3 Different component demands. 49

3.4 Model relative error. 50

3.5 Demands with 50 clients and CL ALL . 51

3.6 Microsoft Azure details. 51

3.7 Demands with 60 clients and CL ONE . 51

3.8 Overall model performance prediction relative error with CL ONE. 53

3.9 Overall model performance prediction relative error with CL ALL. 53

3.10 Values for 4 points function with CL ONE and ALL 56

3.11 Values for 7 point function with CL ALL . 57

4.1 Performance comparison results. 81

4.2 Minimum configuration size M under different Ti values. Experiments executed

with a Cassandra cluster with N = 8 nodes, assuming a CLmax of ONE 81

4.3 Testbed configuration used for the controller evaluation. 85

xiii

4.4 YCSB Workload characteristic used for the system evaluation 85

4.5 Evaluation results for PAX and OPAX. 89

5.1 Summary of main notation for queueing network models 99

5.2 Description of the classes used for in simplified Cassandra model 106

5.3 Testbed details. 108

5.4 How the total number of states grows with the number of clients. 111

5.5 Average percentage of error of the founded demands with SD algorithm using

the random models. 120

xiv

List of Figures

2.1 CAP Theorem representation with some databases examples. 13

2.2 Cassandra read request representation. 16

2.3 a. Representation of write operations in Cassandra; b. Cassandra compaction

processes. 18

2.4 Queueing Station . 20

2.5 Closed queueing network . 22

3.1 Local, Remote and Remote Incoming requests workflow. 39

3.2 The model representation of a Cassandra node. 40

3.3 Cassandra model overview at high level of granularity. 43

3.4 Throughput comparison between Cassandra system and our model. 48

3.5 Response time comparison between Cassandra system and our model. 49

3.6 Cassandra CPU utilisation. 50

3.7 Model performance on public cloud with CL ONE 52

3.8 Model performance on public cloud with CL ALL 52

3.9 Model performance with demand fittings with 4 points and CL ONE 56

3.10 Model performance with fitting with 4 points and CL ALL 57

xv

xvi LIST OF FIGURES

3.11 Model performance with fitting with 7 points and CL ALL 58

3.12 Model performance with ScyllaDB. 59

3.13 Throughput impact of query replication. 61

4.1 Data synchronisation period when a new node joins the cluster. 64

4.2 Data synchronisation through the hinted handoff. 69

4.3 PAX architecture . 70

4.4 Overhead of the tracing tool. 72

4.5 Mean service demand change with the number of active nodes. 74

4.6 Over and under provisioning representation. 75

4.7 Gains due to data-aware node acquisition. 77

4.8 Aggressive strategies comparison. 78

4.9 Comparison between Proactive PAX (PB), Proactive Data-Aware Worst (PW),

Reactive PAX (RB), Reactive Data-Aware Worst (RW). 80

4.10 PAX benchmark with a peak of maximum 80 clients using workload B. 87

4.11 PAX controller response to a) a step of 80 clients starts issuing YCSB workload

A; b) two overlapped peaks and workload C. 88

4.12 PAX controller response to a) changes in the hot partitions; b) a different con-

sistency level (CL=TWO). 89

4.13 OPAX and PAX comparison with a peak of maximum 80 clients using workload A 91

5.1 Marginal probability difference between Cassandra and Simulation. 98

5.2 Simplified Cassandra model. 105

5.3 CDF for the first 200 state of the marginal state probability. 111

5.4 Execution time and throughput error in relation to the number of elements in

the search state space. 112

5.5 Comparison between Frequency and Largest strategies with 10 clients and using

HE. 113

5.6 Divergence comparison with 10 clients and using Largest strategy with Fmincon

and GA. 115

5.7 Divergence comparison with 10 clients and using Largest strategy with GS and

MS. 116

5.8 Predicted throughput performance using different number of elements in the

searching state space. 117

5.9 Estimated response time and execution time of the model with K30 state. . . . 118

5.10 State probability distribution for the model with K30 state and 10 clients. . . . 119

5.11 Average Divergence value and System throughput error for Random Model with

δ = 0.2. 121

5.12 a) Average Execution Time for Random Models with δ = 0.2 b) Mean distance

between demands of each class compared to the real one using MS and δ = 0.2. . 121

xvii

xviii

Chapter 1

Introduction

1.1 Motivation and Objectives

Software performance requirements are usually described in terms of Quality-of-Service (QoS)

levels expected from a system. Common QoS metrics include system availability, reliability,

fault tolerance and performance metrics such as throughputs, resource utilisation, and response

times. Quality-of-service levels for a software product are normally agreed between the service

provider and the user in a contract called a Service Level Agreement (SLA) [RPS09]. QoS

violations with respect to the parameters specified in the SLA contract usually cause a finan-

cial penalty for the service provider because such violations can impact severely the end-user

business. Therefore, it is essential for service suppliers to guarantee that their services do not

violate the SLA or, at least, to attempt to minimise the number of occurrences in which this

happens in production. However, it is not possible in general to test a system under every pos-

sible workload and to address this limitation performance modelling techniques may be used

to identify workloads that are potentially problematic for SLA compliance.

Over the last few decades, a wide range of mathematical techniques and tools have been

developed to model and analyse QoS in computer software applications and infrastructures.

These methods have helped in many instances performance engineers to analyse and meet soft-

ware requirements using systematic and quantitative approaches [CL02]. Some of the most

1

2 Chapter 1. Introduction

popular performance analysis methods include queueing networks [LZGS84], Markov chains

[BGDMT06], stochastic process algebras [CGHT07], and stochastic Petri nets [Mur89]. Among

other common uses of such models we find, for example, capacity planning of computer infras-

tructures [MADD04, LFG05, CRB11], optimisations of software or infrastructure configuration

[BM04, Koz10, ABG+13], what-if analysis of the system behaviour in response to software or

infrastructure changes to be carried out before these are applied to the production environment

[TW79, LBMAL14].

In this thesis, we focus on QoS in Big Data applications, which in recent years have become very

popular and are used to support many different application domains [CZ14, IZE11, LZL+15,

BGI14]. Big Data applications are typically heavily distributed across multiple commodity

server nodes that collaborate to deliver one or more services. These distributed applications

are usually built to be horizontally scalable, highly available, reliable and to serve requests with

low latency [DMGG16]. Each application integrates these features differently characterising the

software specifications. However, all of them have something in common, for example, nodes

are able to communicate with each other to keep track of the state of the system, of the requests

synchronisations and of the distribution of the jobs across the cluster. In addition, for some

of these applications, multiple nodes are involved to process a single request. In this case,

each node executes one or more tasks before the next node can continue the execution of the

requests. Due to a highly interconnected infrastructure, to be able to describe these systems

with mathematical tools, a performance engineer needs to solve several challenges such as

reproducing the interaction of the nodes to execute one request, differentiate the different types

of requests and their activity stage, define the system resource constraints, and generalise the

model in a way that different system settings can be easily tested. Due to these challenges, only

a limited number of performance models for Big Data applications have been developed over

the last few years. In particular, our work is motivated by a significant shortage of modelling

methods for NoSQL databases [AM19].

In this thesis, we focus the attention on modelling and managing QoS in NoSQL databases, and

in particular we focus on a concrete implementation, namely Apache Cassandra. We choose

this particular system because Cassandra has the majority of the distinguishing features of the

1.1. Motivation and Objectives 3

NoSQL approach and it is also a very popular back-end for many Big Data applications. For

example, Cassandra presents an architecture which is completely decentralised with no single

point of failure, it is scalable and able to process read and write requests with low latency. In

addition, the consistency level required for a query can be specified directly inside the query

itself, leveraging the property that all the data that this database stores is divided across

the cluster nodes allowing parallelism. That is, each node stores locally part of the database

and the data is replicated several times across the cluster, based on the replication factor.

Therefore, different consistency levels can be used upon retrieving the data from the target

nodes. Redundancy and consistency ensure tuneable data resiliency for the application so that,

even under failures, the system is able to execute the requests using the available copies of the

data.

Apache Cassandra Queueing Network Model

This thesis delivers three main research contributions. As a first contribution, we present a

detailed queueing network model for Apache Cassandra that is able to predict with accuracy the

database performance and to simulate all the characteristics of this software, such as different

consistency levels, different replication factors and with a different number of clients into the

system. After its definition, we characterise the model based on representative configuration

and we analyse its performance predictions compared to the real one.

Our initial experiments are conducted on a private cloud where we demonstrate that our model

is able to predict with an error below 10% some key performance metrics such as throughput,

response time and CPU utilisation of the real system. We then extend our investigations with

different model configurations and different hardware using a private and public cloud provider

such as Microsoft Azure. We improve our performance prediction in high load, estimating in

multiple points the demands and fitting them over a mathematical function to increase its

accuracy.

In addition, through a case study, we demonstrate the utility of these type of models for the

performance analysis of the system if a different consistency level algorithm to retrieve the data

4 Chapter 1. Introduction

is used by the database. Furthermore, we demonstrate that our Apache Cassandra model can

also be used to predict the performance of other NoSQL databases, such as ScyllaDB, that uses

a similar workflow for the execution of the queries.

Partition-Aware Autoscaling for the Cassandra NoSQL Database

As second contribution of this thesis, we develop a method to optimise the running costs of

a NoSQL system in production. The size of the deployment of these NoSQL databases can

grow very fast and it is usually related to the amount of data that the database contains and

the SLA that needs to satisfy. As an example, some of the largest production deployment of

Cassandra can reach thousands of nodes, such as the one used by Apple with 75000 nodes able

to stores over 10 petabytes of data, or by Netflix which uses around 2500 nodes to serve over

1 trillion requests per day [Apa]. More commonly, NoSQL database deployments involve some

tens of servers. The operating expenses (OPEX) to run these databases can be quite expensive

especially if the resources are not utilised efficiently. As it frequently happens in production

environments, the database or application does not receive a constant number of requests, but

it changes over time for example as a result of the daily cycle. To optimise the number of

resources involved in an infrastructure and save money, it is now common to require that a

system elastically adapts the resources based on the number of active visitors.

Most of the NoSQL databases enable the possibility to the database administrator to manually

add or remove nodes to the system when this is required to achieve better performance or

increase the database capacity. However, in Apache Cassandra when the scaling action is

invoked, several computational and network expensive processes. Indeed, to scale a cluster, the

system needs to re-partition the data according to the new infrastructure and then transfers the

data across the network and verifies the consistency of them. The impact of this action, in terms

of computation and time, is closely related to the number of nodes involved and the amount

of data that needs to be transferred across the network. For this reason, implementing an

autoscaling system for a NoSQL database can be challenging. In the literature, some autoscaling

methods have been published [CM13, KAB+11, DMVRT11], but they present some limitations

1.1. Motivation and Objectives 5

such as the inability to quickly adapt to new changes and/or a long time required to converge

to steady-state.

As second main contribution of this thesis, we therefore present PAX, a partition-aware elastic

resource management system for Apache Cassandra. PAX allows engineers to adapt NoSQL

database resources to reduce operational costs without compromising the Service-Level Objec-

tives (SLOs). Differently from existing approaches, it is not leveraging on the scaling ability

of the database, but rather it dynamically changes the state of the cluster by keeping a set of

nodes in sleep mode and maintaining an active set only to satisfy the performance requirements.

Using a low-overhead query sampling and knowledge of the data-partitioning across the nodes,

PAX automatically adapts capacity in Cassandra clusters looking for the node configuration

that is able to achieve the best performance, in terms of data replicas that are available online

at a given time. To ensure data consistency, PAX exploits Cassandra’s hinted handoff mecha-

nism and a shared hints storage to minimise the time necessary for a node to join the cluster.

Hinted handoff is a mechanism activated by default that records data changes when one or

more nodes are unavailable. We have implemented a reactive and proactive approach of PAX

and compared their performance against different workloads with varying intensities and item

popularity distributions, finding that the proactive version significantly reduces SLO violations.

We further investigate the system optimisation using an alternative holistic approach to PAX

(OPAX). Differently from the previous method, when the system needs to compare different

configurations, OPAX considers the different factors together reducing, even more, the number

of SLO violation.

SD: a Divergence-based Estimation Method for Service Demands

During our experiments, we have noticed that some of the existing demand estimation algo-

rithms produced a set of demands that were able to predict the mean system performance with-

out reproducing the same behaviour of the real system in terms of more fine-grained measures,

such as state probabilities. This means that, under workloads that are sufficiently different

from the reference one, the model will be likely to deliver inaccurate predictions. In addition,

6 Chapter 1. Introduction

existing demand estimation algorithms are designed to run only on simple test environment,

which use different hardware resources, fewer nodes, and different workloads from production,

which can lead to errors in the predictions when this model is applied to the production sys-

tem. For these reasons, we develop a novel inference algorithm for service demand estimation

in queueing network models, called State Divergence (SD) estimation.

Differently from other algorithms, SD does not consider aggregated metrics such as mean

throughput or response time for its calculation, but instead uses the marginal state proba-

bility of requests at each node to infer their service demands. The marginal state probability

describes the probability to observe a given system node in a specific state. Leveraging on

information-theoretic divergence measures, SD infers the system service time seeking for a set

of demands that reduces the distance between the marginal state probability of the real system

and the one predicted by the model. In this way, the algorithm is not only able to identify the

service demands to be used to predict with accuracy the system performance, but also increases

the confidence that the model actually reproduces the behaviour of the real system dynamics.

Moreover, since SD uses the marginal state probability to infer demands, the algorithm is also

able to infer the demands of the system where jobs dynamically change classes during the re-

quest execution. This feature is essential for distributed applications to manage the different

stages of the system under test and, to the best of our knowledge, only few other algorithms

implement this feature but they require data that can be more difficult to obtain than the one

needed in input by our SD algorithm.

The results of the experiments conducted on Apache Cassandra show that SD is able to predict

with accuracy not only the performance metrics of the system under test but also to reproduce

the probabilistic behaviour of the system. Furthermore, we analyse the performance of our

algorithm on 100 random generated models. The results show that in the absence of noise and

even just using a simplified model, the SD algorithm is able to define models that achieve even

better performance reducing the error to around 1% in several cases.

1.2. Contributions and Thesis outline 7

1.2 Contributions and Thesis outline

In summary, the purpose of this thesis is to analyse and optimise the performance of distributed

NoSQL databases, with a focus on the Apache Cassandra system. The main contributions are

as follows:

• A stochastic queueing network model for Apache Cassandra and related NoSQL databases

that is able to simulate and predict with accuracy the performance of these systems. This

queueing network model is configurable to support all the main features of these systems

such as the data replication across the cluster or the different consistency levels that can

be applied to each query;

• A novel autoscaling method to scale efficiently NoSQL databases and able to adapt them

quickly to several situations without compromising the SLO or any functionality of these

systems. Through the analysis of the most frequently accessed partitions, the strategy to

optimise the database performance has been analysed. Moreover, a comparison between

different autoscaling strategies is presented;

• A novel inference algorithm able to estimate the demands of a system based on its state

probability. The SD algorithm allows also the user to parameterize models that not only

are able to predict correct performance metric but also reproduce more accurately system

behaviour.

The content of the following chapters is summarised below:

Chapter 3: Apache Cassandra Queueing Network Model

We analyse and describe in detail the Apache Cassandra database and how these processes are

translated into the presented queueing networks model. Using this model, we compare the pre-

dicted major performance of the system with different settings and configurations using private

and public cloud. The results show that the model is able to predict with low error its per-

formance. Furthermore, through a case study, we analyse the Apache Cassandra performance

when a different consistency behaviour is applied to the database.

8 Chapter 1. Introduction

Chapter 4: Partition-Aware Autoscaling for the Cassandra NoSQL Database

Starting from the different approaches in the literature, we analyse them to understand the

strengths and limitations of each one. Then, we present our efficient autoscaling approach

able to quickly adapt the number of active nodes based on the amount and type of workload

that the database is going to receive depending on the prediction and its history. In addition,

we implement a workload profiling tool able to record some of the queries processed by the

database with the aim of understand how frequently each partition of the database is accessed.

This information is then used by the autoscaling algorithm to optimise the number of nodes

available. The performance of two different autoscaling algorithms are presented. Moreover, we

present the proactive and reactive autoscaling strategy and we test both on a real system. The

experiments demonstrate that the proactive approach helps to not violate the SLA defined by

the user. Furthermore, we investigate different autoscaling algorithm and we study a variant

of the PAX system called OPAX.

Chapter 5: SD: a Divergence-based Estimation Method for Service Demands

Starting from the analysis of divergence of a state probability from the real one and the limita-

tion of some existing algorithms, we develop our State Divergence algorithm. After formalising

the algorithm, we conduct a sensitive analysis using Apache Cassandra to identify the best

parameters to use for this minimisation problem. The parameters involved are the divergence

measures, the number of state in the search space and the optimisation algorithm to use. We

then analyse some metrics performance using the estimated demands, demonstrating that the

algorithm is able to find demands similar to the real one that, not only generates good per-

formance metric results, but also to maintain a comparable behaviour to the real system. We

further validate our approach using 100 random models.

1.3 Publications

I have been made the following publication during the investigations that led to this thesis and

my individual contributions of the thesis author are now described in detail for each of them:

1.3. Publications 9

S. Dipietro, G. Casale, and G. Serazzi. A Queueing Network Model for Performance

Prediction of Apache Cassandra. Accepted as full paper in 10th EAI International Confer-

ence on Performance Evaluation Methodologies and Tools (VALUETOOLS’16), page 186-193,

2016.

In this paper, we present the novel Apache Cassandra queueing network model to predict the

database performance. In addition, we show how the model can be used to represent other

NoSQL databases and how it can be applied to analyse application changes. I contributed to

this paper analysing the application and defining the presented models. Moreover, I conducted

the experiments and their validation. The main results are presented in Chapter 3.

S. Dipietro, R. Buyya and G. Casale, PAX: Partition-aware autoscaling for the Cas-

sandra NoSQL database. Accepted as full paper in IEEE/IFIP Network Operations and

Management Symposium (NOMS 2018), Taipei, 2018.

In this paper, we present our autoscaling solution for NoSQL databases. The solution includes

the workload profiler, the workload forecasting, different autoscaling algorithms and autoscal-

ing types. I contributed to this paper defining the autoscaling’s structure, understanding the

fault-tolerance that Cassandra uses, implementing the autoscaling engine, strategies and the

workload profiler. Moreover, I conducted all the presented experiments and wrote the tools

necessary to generate the results. The main finding are presented in Chapter 4

S. Dipietro and G. Casale, SD: a Divergence-based Estimation Method for Service

Demands in Cloud Systems. Accepted as full paper in 7th International Conference on

Future Internet of Things and Cloud (FiCloud 2019), Istanbul, 2019.

In this paper, the novel demand inference algorithm reported in Chapter 5 is presented. The

paper presents the SD algorithm with the sensitivity analysis and further validation using some

random models. I contributed to this work defining the simplified queueing network model, the

SD algorithm, running the experiment on the real system to gather the marginal probability,

the sensitivity analysis and the SD validations using the real system and random models.

Chapter 2

Background

2.1 NoSQL databases

Over the last decade, human life has been completely transformed by technology in particular

by computers and smart devices. As a consequence of this phenomenon, the amount of data

generated by humans and machines has grown rapidly over the last 15 years and, according to

Gantz [GR11], the total amount of digital data stored worldwide is going to at least double up

every two years. In this new era of Big Data it has become essential to have the possibility to

interrogate these data to predict or analyse historical trends before taking any decision. This

new method to operate has radically changed many sectors such as finance, health, insurance,

government, research, etc.

Big Data is usually defined as a huge dataset with a great variety of data types that it is diffi-

cult to process using state-of-the-art data processing approaches or traditional data processing

platforms [CZ14]. The Big Data system are characterised by 5 Vs: Volume, Velocity, Variety,

Veracity and Value [IA15]. These terms represents [IA15, ZE11, Lan01, Bey11, CZ14]:

• Volume: massive amount of data that the system receives or needs to handle;

• Velocity: the speed at which the data are generated and processed (for example batch,

real-time, stream, etc.);

10

2.1. NoSQL databases 11

• Variety: the type of data that the system receives as input (for example structured,

unstructured, probabilistic, etc.);

• Veracity: the quality of the data received. Better data as input could produce better

analysis or results;

• Value: is the most important aspect and represents how the business can take advantage

of them like, for example, make profit from this data and repay the investments.

This Big Data era opens several opportunities produced by the data-intensive decision-making

such as define better strategy directions, identify new products and services, enhance the cus-

tomer experience, identify new possible markets, etc. [MH13, CZ14, MCB+11, AHLJ12]. On

the other hand, it creates more computing challenges to be solved especially in the receiving,

processing and storing processes. A usual path for this data involves several stages like, data

pre-processing to format the input data that are inconsistent or incomplete. So the data goes

through a data cleaning process, data integration, data transformation and data reduction

[CZ14, HC06]. After the pre-processing phase, the data is ready to be the analysed. Depend-

ing on the type of application, the data can be processed in real-time (or near-time) [Man04]

or stored to be analysed later with batch processing tools [DG04, ZCDD12]. The techniques

applied can be different including statistic, data mining, machine learning, neural networks,

optimisation methods [CZ14].

Independently from the kind of applications, the data and the results of their execution need

to be stored. These applications are able to collect and analyse a huge amount of informa-

tion on the order of petabytes, exabytes or zettabytes of data and they need to retrieve them

with low latency. The usage of Relational DataBase Management System (RDBMS), such as

MySQL[MyS], SQLServer [SQL], Oracle [Ora], etc., is not suggested for these kind of applica-

tions because, due to their construction, they are not able to scale and retrieve efficiently such

amount of data. In addition, they are not able to store unstructured data. For this reason,

NoSQL databases have been developed.

“Not Only SQL” (NoSQL) are distributed databases that are able to manage a large amount

12 Chapter 2. Background

of data. As also the name suggests, they support Standard Query Language (SQL) but they

are not entirely relational and, for this reason, some operations like join cannot be performed

on NoSQL databases. NoSQL databases avoid the rigidity of relational databases separating,

in two independent parts, the data storage and management. In this way, NoSQL databases

are able to store also unstructured and not relational data [HHLD11]. This design allows the

data storage to focus on the scalability and high performance of the database and the data

management to be optimised for the low-level operations [CDG+06, CZ14].

Over the years, different types of NoSQL databases have been developed, each one with specific

characteristic based on the data model, architecture and properties. Among the most popu-

lar, we can find BigTable[CDG+06], HBase[HBa], Hypertable[Hyp], MongoDB[Mon], Berke-

leyDB [OBS99], Redis[Red], Voldemort[SKG+12], CouchDB[Cou], SimpleDB[Sim], Riak[Ria]

and Cassandra[LM10].

Usually, RDBMS databases ensure to the user the consistency of the database basing its transac-

tions execution on Atomicity, Consistency, Isolation and Durability (ACID) [Gra81]. However,

since the ACID characteristics are not applicable to NoSQL databases, this theorem has been

generalised defining the CAP theorem [GL02]. The CAP theorem is based on Consistency,

Availability and Partition Tolerance. It postulates that a system can only have two of these

three factors [Bre00, GL02]. These factors are defined as [BL13]:

• Consistency: all the cluster nodes can see and retrieve the same version of the data at

the same time;

• Availability: the system guarantees that the client receives an answer regardless of the

state of the system. In other words, the system is able to cope with hardware or power

failure and network problems;

• Partition-tolerance: the system distributes the data and/or the requests across the

cluster to improve the overall performance. Sharding is a popular technique to distribute

slice of data on separate nodes to increase the throughput.

2.1. NoSQL databases 13

Figure 2.1: CAP Theorem representation with some databases examples.

Since only two over these three factors of the CAP theorem can be chosen at the same time,

different NoSQL databases were developed with a different balance of these factors based on

the importance that each product gives them [HHLD11]. As shown in Figure 2.1, among

the most well known databases, we have databases like BigTable [CDG+06], HBase [HBa],

Hypertable [Hyp], MongoDB [Mon], BerkeleyDB [OBS99], Redis [Red], that focus their atten-

tion on the Consistency and the Partition tolerance and databases like Voldemort [SKG+12],

CouchDB[Cou], SimpleDB [Sim], Riak [Ria] and Cassandra [LM10] that focus their attention

on the availability and the partition tolerance. On the other hand, RDBMS databases are based

on consistency and availability without considering the partition tolerance since they frequently

store all the data locally.

Among each group of databases, another important classification can be done based on the

type of data that they are able to store. Four different types of input data can be used by a

NoSQL database:

• Key-value: each value stored in the database is associated with a key. This key is

usually hashed to have a higher distribution of the keys around the different nodes of

the database. This kind of databases is more suitable for retrieving small values as user

profiles, sessions, products name or shopping carts. Some examples are Amazon Dynamo,

Voldemort and BerkleyDB;

14 Chapter 2. Background

• Column-oriented: it is designed to store multiple attributes per key. It is used especially

when it is necessary to keep versioned data or batch-oriented data processing. Some

examples are: BigTable, HyperTable, Cassandra, SimpleDB;

• Document-based: it is designed to contain semi-structured data such as XML, JSON

or BSON. Respect to the key-value, the fields are fully searchable (key and value). Some

examples are: MongoDB, CouchDB.

• Graph database: It is designed to keep the interconnection between the key-value

pairings in the database. In general, this type of databases is useful when the interest is

more on the relationship between the objects than the data itself [MH13]. An example is

Neo4j[neo].

The choice of the correct NoSQL database to use for a specific application is based on these two

factors. For the purpose of this thesis, we focus our attention on Apache Cassandra NoSQL

database. It is a column-oriented database that is characterised by a good availability and

partitions of the data in preference to consistency.

2.2 Cassandra

Cassandra is one of the most popular NoSQL databases. Initially developed by Facebook to

support one of their products (Facebook Inbox Search), it was soon deployed also to other

Facebook’s products. Today, it is an open source software under the Apache licence, supported

by Datastax [Dat], and used for thousands of applications.

The initial idea of Lakshman and Malik when they started to develop Cassandra was to create

a distributed storage system for managing a huge amount of structured data, distributed across

many commodity servers without a single point of failure [LM10]. The architecture of Cassandra

may be seen as a combination of other two well-known NoSQL databases: Google BigTable and

Amazon Dynamo. Indeed, like in Amazon Dynamo, all nodes are disposed in circle without any

concept of master-slave and the overall key space is divided into equal parts among the nodes,

2.2. Cassandra 15

using a consistent hashing algorithm [MRSJ14]. Differently, Dynamo is a key-value store while

Cassandra uses a column-oriented approach like BigTable. The columns are grouped together

into sets, called “column families”.

The main architectural and data modelling feature of Cassandra are:

• Schema-less: even if Cassandra is a column oriented database, the columns are very

flexible and it is not mandatory to define a specific structure for the rows. This implies

that different numbers of columns can be stored in different rows and new columns can

be added anytime into the table.

• Data replication: the data are stored locally in each node and the data replication is

achieved storing multiple time the same partition across different nodes. This is different

from other NoSQL database where replication is provided by the file system.

• Performance: Cassandra is optimised for write operations. This means that it is able

to reach low latency for write operations. Cassandra is also able to reply with low latency

to read requests using some caching mechanism and optimising the access to the storage

disks.

• Fault tolerant: it is built to be deployed on commodity hardware or in the cloud

infrastructure. This implies that the machines can be turned off or fail at any time. Since

the data is automatically replicated to multiple nodes or across multiple data centers, if

few nodes of the cluster failed at the same time, they can be manually replaced with no

downtime.

• Decentralised: There are no single points of failure and every node in the cluster is

identical. In addition, all the nodes accept queries from the client, so there are no network

bottlenecks.

• Scalable: the database performance scales linearly with the number of nodes in the

cluster. If more storage or performance (read and write throughput) are required, new

nodes can be always added to the cluster.

16 Chapter 2. Background

Figure 2.2: Cassandra read request representation.

• Durable: Cassandra is suitable for applications that cannot afford to lose data, even

when an entire data-center goes down.

In the next sections, we describe how all these features have been integrated in Cassandra and

the required architecture to support them.

2.2.1 Cassandra architecture

A normal Apache Cassandra deployment is represented in Figure 2.2. The figure represents

a cluster of four nodes disposed in circle since Cassandra does not differentiate the nodes in

master and slaves. To deploy an infrastructure with no single point of failure, each Cassandra

node is able to perform all the processes so, there is no separation of duties across the cluster.

Each node is able to: connect itself to the rest of the cluster, retrieve information about the

state of the system using the gossip protocol, allow clients to connect to it to perform queries,

retrieve data across the cluster, provide data synchronisation and store part of that database

on its local disks.

When the cluster starts for the first time, inside the configuration file of each node, a set of IP

addresses of some existing nodes of the cluster are specified. These nodes are called “seeds”

and they are used from the other nodes to retrieve initial information, IP addresses of the

other machines and join the cluster. During the join process, part of the hashing space is

attributed to each node. The overall hashing table (from −263 to +263 − 1) is split in smaller

ranges based on the overall number of partitions, called virtual nodes (vnodes). A vnode is

2.2. Cassandra 17

defined as a hash range on which all the data that has the hashed primary key in that range

are stored. These ranges can be defined by the user inside the Cassandra configuration file of

each machine, or automatically attributed by the program. By default, Cassandra creates 256

vnodes for each node to ensure an even distribution of the data and its copy across the nodes.

The default Cassandra partitioner is Murmur3Partitioner [App19] which use the MurmurHash

hashing algorithm to hash the primary keys. This algorithm has been chosen because it provides

a fast non-cryptography hashing function and more equal distribution of the data across the

vnodes. In Figure 2.2, the partitions’ distribution has been simplified and each partition is

represented with capital letters inside each node.

To ensure high availability, durability of the data and reduce the database latency, each vnode

can be stored multiple times inside the same cluster. The number of copies is defined by the

Replication Factor (RF) and it is specific for each keyspace of the database. For example

in Figure 2.2, the vnode has been represented with capital letters and the replication factor

applied to this keyspace is 3, since the cluster stores three copies of the same data partition.

Another main duty of each Cassandra node is to resolve queries from the clients. The client

is able to connect to any of the Cassandra nodes of the cluster and once the connection is

established, it can retrieve the complete list of the nodes available and it can choose to which

node forward its query. The selected node for the query becomes responsible for it and it is

called request coordinator. The request coordinator has the duty to perform all the processes

necessary to complete the query.

One of the Cassandra peculiarity is that for each query it is possible to define a different

Consistency Level. The Consistency Level defines the number of copies that need to be read

or written to complete a query. Three are the main Consistency Levels: ONE, QUORUM,

ALL. With Consistency Level ONE, only one copy of the data needs to be read or updated to

complete the query. So the request coordinator chooses one node that contains that data to

perform the operation. When the response is received back from the request coordinator, the

request can terminate returning the result to the client. This is the lowest consistency level and

also the one which ensures less consistency of the data. On the other hand, the Consistency

18 Chapter 2. Background

(a) Write operations (b) Compaction

Figure 2.3: a. Representation of write operations in Cassandra; b. Cassandra compaction
processes.

Level ALL involves all the copies of the data, so the number defined as RF , and provide the

best consistency ensuring that the read data is the latest one or that the data is written on all

nodes. An intermediate possible Consistency level is the QUORUM which involves (RF/2 + 1)

copies.

Choosing the right Consistency Level and Replication Factor is always a balance between

performance and data consistency. To achieve strong consistency, the user can either use

the Consistency Level ALL or have an overlap between the read and write consistency levels.

This can be defined with W + R > RF where W and R are the respectively write and read

consistency level and RF the Replication Factor used. Let’s assume that we use for read and

write operations the Consistency Level QUORUM, this guarantees that the latest version of the

data is always read achieving a strong consistency. On the other hand, if strong consistency

is not required by the application, lower consistency level can be used achieving also better

performance [WLZZ14, LRS+14].

2.2.2 Read and Write operations

Cassandra is a low latency database optimised for write operations but able to achieve good

performance also for read operations [LM10]. Similarly to BigTable, to increase the overall

throughput, Cassandra uses an in-memory data structure, called Memtable. As shown in

Figure 2.3, after a write operation reaches the database Cassandra, firstly, writes the query

2.2. Cassandra 19

into the request coordinator commit log (on disk) for durability and then it writes the data

on the Memtable and informs all the other nodes that hold a copy of the data of the update.

When the consistency level applied to the query is satisfied, the request coordinator can notify

the client that the operation is successfully executed.

When the Memtable size reaches a certain threshold, defined in the configuration file, Cassandra

flushes the table on the node local disk in form of SSTables (Sorted String Table). This process

is called “minor compaction”. The SSTables are immutable and written sequentially into the

disk. Besides the data, each SSTable contains also some metadata information as a key index

and a bloom filter to rapidly and memory-efficiently check whether a key is included in a specific

SSTable file. The minor compaction has also the capability to remove the previous version of

the data, called tombstones, from the new SSTable. Since, over time, the data grows or has

been updated, previous values can decrease the database performance. To enhance the database

performance and to reduce the searching time, Cassandra performs a merge of all the SSTables.

This process is called “major compaction” and it needs to be run by the system administrator

manually since it is an expensive operation to perform.

Differently, when a read operation needs to be performed, the request coordinator contacts

as many nodes that hold that primary key as necessary to satisfy the Consistency Level of

the requests. The decision on which nodes to contact is based on the average latency of the

previous requests. When all the contacted nodes return the value, the request coordinator

compares the results and responds to the client. If some incoherence is detected, the request

coordinator informs the not updated nodes of the latest value for that record, similarly to a

write operation. Each node retrieves the data looking, initially, into the Memtable to see if it

contains the value and then, if necessary, it reads the SSTables to gather the value from disk.

To speed up the data search on SSTables, Cassandra maintains in memory all the information

regarding the SSTables and the column indices, which allows to jump directly to the right

chunk of the disk [LM10].

20 Chapter 2. Background

Figure 2.4: Queueing Station

2.3 Queueing Networks

Queueing theory is a mathematical study of the delays and waiting time. The system that

needs to be studied is composed of a series of stations that interact together and compose the

queueing network. In computer science, these stations usually represent the different resources

of the system like, for example, CPU, memory, disk or an entire server. The jobs are the entities

which visit the different stations and simulate how a request is executed by the system.

A station is usually represented as in Figure 2.4. When a job reaches a station, it is inserted

into the queue of the station and it waits there until the server chooses it to be executed.

After the job is executed with a user defined service time, the job leaves the station to reach

another component of the model. Different policies and servicing strategies can be applied to

each station.

In order to describe the characteristic of the represented resource, we need to know the details

of:

• Arrival rate λ: the mean value of jobs that arrive at the resource. Not only the mean

value is important but also the distribution function of the inter-arrival times. Regarding

the inter-arrival distribution, we mainly considered the exponential distribution.

• Service Time θ: the mean time of a job to be executed by the server. As for the arrival

rate, the service time is characterised by a mean value and a distribution. Also in this

case, if not specified differently, the main service time distribution used is exponential.

• Number of servers c: This indicates how many jobs can be processed in parallel by the

2.3. Queueing Networks 21

station at the same time. Three type of cases can be considered: single-server, multi-

server and infinite-server. In the case of single-server, the server has the capacity to

process a single job at the time. Differently, in case of multi-server with c cores, the same

amount of jobs can be processed at the same time. In these first two cases, the jobs

that are not currently processed wait in the queue to be executed. The method to decide

which job should be executed next, is defined by the service discipline. Infinite-server is

a special case of the multi-server in which the number of servers is infinite. In this case,

the job is not spending time in the queue since a server is always available to process the

job.

• Queue Capacity : if all the servers are processing some other requests when a new request

arrives at the station, the new request waits in the queue. If the arrival rate of the job

is bigger than the service rate, there is the possibility that the queue becomes full. In

this case, the queue has two possibilities: notify to the arrival process that the queue is

full and the arrival process is suspended until the queue has same spare capacity or drop

the jobs that cannot be taken by the queue. However, usually, the queue is considered

infinite and so it is not necessary to apply any policy.

• Population: number of jobs that are circulating on the model. If the number of jobs

N is fixed, no more than N requests can be seen by the resource. The jobs that share

the same behaviour can be grouped together in classes. Different classes usually have

different characteristics such as behaviour or service demand.

• Service Discipline: is the method that decides which is the next job to be executed in

case that more than one job is waiting in the queue. The service disciplines can be:

– First Come First Served (FCFS): based on the arrival order (FIFO);

– Last Come First Served (LCFS): the last job arrived is the first to be executed

(LIFO)

– Random: the job is selected randomly from the queue

– Priority: the decision is based on the priority assigned to the class of the jobs in the

queue.

22 Chapter 2. Background

Figure 2.5: Closed queueing network

For the purpose of this thesis, we focus our attention to a particular subset of networks, called

closed queueing networks. Differently, for the open queueing network, the number of jobs N

inside the model is always constant.

2.3.1 Closed queueing network

To understand better how a closed queueing model is structured, in Figure 2.5 a simple model

is presented. The model describes a system with two resources, represented by the queueing

stations one and two. These two resources illustrate the behaviour of, for example, two different

servers that process some web requests in parallel. The requests are generated by a particular

type of queueing station, called infinite server (or delay server). Usually, it simulates the user

behaviour and it is the starting and ending point of the requests for a closed queueing network.

The requests generated by the infinite server are then distributed between the two queueing

stations based on some routing probability p. The requests that reach one of these two queues

are, first, inserted into the queue of the station waiting for their turn to be processed and

then executed. The requests in the server can be executed in two modes: preemptive and non-

preemptive. In non-preemptive mode, the server needs to execute the job entirely before being

able to serve the next one. Differently, with the preemptive mode, the server scheduler is able

to suspend the current job to execute another one. Normally, the preemptive mode is used to

simulate the real CPU behaviour. To be categorised as closed model, the requests need to be

2.3. Queueing Networks 23

able to reach the starting point after they have been processed by the last queueing station.

Depending on the level of detail and the complexity of the system under test, the queueing

network models can be divided in single-class or multi-class. Single-class models are usually

used to represent simple or a higher level view of the systems. Moreover, they are less expensive

and quicker to be analysed but the results can be inaccurate. Nowadays, the majority of the

queueing networks are multi-class due to the complexity of the analysed systems and the higher

accuracy that is possible to gather from them. All the queueing models presented in this thesis

are multi-class models.

After designing the model, before being able to solve it, it is necessary to parametrize it.

During the parametrisation phase of the model, for each class at each station, a demand value

and distribution needs to be defined. In the case of the infinite server, the demand is called

thinking time. Apart from the demands, some other value needs to be defined. Let’s consider

a closed queueing network model with R classes and K queueing stations both in the range of

1 ≤ r ≤ R and 1 ≤ i ≤ K . So, to be able to analyse or simulate this model, it is necessary to

define:

• Nr: number of jobs of class r that circulates in the system. The total number of jobs is

fixed and equal to N =
∑R

r=1Nr but Nr can variate between classes;

• pir,i′r′ : probability that a job of class r at station i reaches the station i′ with the class r′;

• vir: average number of visits of class-r jobs at station i;

• θir: service demand of class r at station i;

• Zr: the think time for jobs of class r. This is usually an average between the time past

from the completion to the generation of the same job of class r;

• µir: service rate of class-r jobs at station i. It is the inverse of the service time: µir = θ−1
ir ;

Once the model is defined and parametrised, in order to retrieve some performance metrics, it

is necessary to solve it. In the next sections, we present first some solutions and performance

24 Chapter 2. Background

Notation Description
M Number of stations in the model (queueing and infinite server)
K Number of queueing stations.
C Number of job into the infinite servers (J = M −K).
R Number of classes.
Nr Number of jobs in class r, N =

∑
rNr

θir Service demand of class r at node i.
Zr Think time for job of class r

σr Response time of class-r, σr =
∑M

k=K+1 Θkr

ci Number of servers at node i
sir Service time at node i for jobs in class r
vir Visit ratio at station i for jobs in class r
pir,i′r′ Routing probability for job in node i of class r to node i′ in class r′

π(n) Probability to observe the system in state n
πi(ni) Probability to observe the station i in state ni

Table 2.1: Summary of main notation for the model input parameters

metrics for closed network and then the most popular methods to analyse closed network

models.

2.3.2 Analysis and Solutions

Over the years, several methods to solve these models have been presented. These include

several analytical and stochastic analysis methods and simulation. In general, the analysis

of a queueing network model is amenable to the analysis of a Continuous-Time Markov Chain

(CTMC). CTMC analyses the state of the system at each moment where the state is represented

by the distribution of the jobs at each station of the different classes.

Given a model with R classes and M stations which K < M are queueing stations, the state

of the i-th station can be defined as ni = (ni1, ni2, ..., niR). Moreover, the state of the entire

system can be defined as n = (n0,n1, ...,nK) and we require
∑

n∈S π(n) = 1, where S = {n ∈

NMR|nkr ≥ 0,
∑M

k=1 nkr = Nr} is the model state space. We also define the job population as

N = (N1, ..., NR) and the demands vector for all classes and stations as θ = (θ11, ..., θMR).

Observing this model, we can calculate some system properties at equilibrium (or steady-state)

such as [BCMP75, Har04, GN67]:

2.3. Queueing Networks 25

• Joint state probability π(n): describes the probability to observe the system in the state

n

• Marginal State probability πi(ni): describes the probability that the station i is the state

ni.

The calculation of the joint and marginal state probability can be achieved using the product-

form solution. For the purpose of this thesis, we focus in particular on product-form queueing

network models since their steady-state probabilities can be analytically calculated [BCMP75,

Har04, GN67]. Under specific assumptions given by the BCMP theorem [BCMP75], these mod-

els admit, up to a normalising constant, a closed-form solution for their equilibrium distribution

from which marginal probability expressions can be explicitly derived. The BCMP theorem

[BCMP75] considers queueing network models composed by nodes that satisfy the following

assumptions:

• Nodes admit either a First Come First Served (FCFS), Processor Sharing (PS), Infinite

Server (IS or delay) or Last Come First Served with PRemption (LCFS-PR)

• Service time distributions at nodes are exponentially distributed at FCFS stations

• Load dependent service rates are supported, but under FCFS scheduling the demand can

depend only on the total number of jobs at the node.

• Arrival processes: where, for open networks, the arrival process is Poisson and all jobs

arrive at the network from a single source or where different sources stream jobs to

different chains.

• Routing between nodes is governed by a discrete-time Markov chain that specifies the

probability that a job departing node i in class r joins node j in class s.

For the models that complains to the BCMP theorem, the joint state probabilities with the

product-form can be calculated like [BCMP75]

π(n) =
1

GΘ(N)

M∏
i=1

fi(ni) n ∈ S (2.1)

26 Chapter 2. Background

where GΘ is a normalising constant and the analytical form of fi(ni) depends on the type of

scheduling policy assumed at station i.

Let’s consider for example a closed model where the scheduling policy for the target station is

preemptive (or processor sharing (PS)). If the K stations are single-server, the product-form

formula for the steady-state probability of this model is given by

π(n) =
1

GΘ(N)

M∏
i=1

ni!
K∏
k=1

R∏
r=1

θnkr
kr

nkr!
n ∈ S (2.2)

The formula is different if we assume that PS node i is multi-server and it has ci ≥ 1 servers,

such that when the node has up to ci running jobs they run without contention. Note that

infinite server nodes may be seen as a special case of multi-server nodes where ci = +∞. In

this case, the product-form formula for the steady-state probability of this model is given by

π(n) =
1

GΘ(N)

M∏
i=1

ni!
K∏
k=1

R∏
r=1

θnkr
kr

nkr! ·
∏nk

u=1 min(u, ci)
n ∈ S (2.3)

where the factorials capture the ordering of jobs within the PS node and the product of

min(u, ci) functions describes load-dependence due to the multi-server nodes. The infinite

server is a special case of these of Equation (2.3) that it is achieved removing the limitation of

number of servers. So, ci is set to be N .

From Equation (2.2) and (2.3), the normalising constant GΘ(N) may be determined by requir-

ing that state probabilities sum to one, which leads to the explicit formula

GΘ(N) =
∑
n∈S

M∏
i=1

ni!
K∏
k=1

R∏
r=1

θnkr
kr

nkr! ·
∏nk

u=1 min(u, ci)
(2.4)

However, computing GΘ(N) using direct summation over the state space S is usually infeasible

unless the model is small, because the number of states generated by the model grows as

O(NMR), where N is the total number of jobs in the model. To solve this problem, several

approaches have been proposed using exact [BM93, RK75, CG86, Gou56, HL04, RL80, Cas11]

or approximate methods [Sch79, Sau02, CHW75, PPSC13] when ci = 1. However, few of these

2.3. Queueing Networks 27

techniques are applicable to the general multi-server case ci > 1 [SSV07, CKOG10, NKY+11],

therefore posing a challenge in describing PS nodes with multiple servers, which are yet often

needed to describe contention at multi-core processors.

Using these product-form equations, it is also possible to deduce model performance metrics

such as throughput, response time, utilisation, and mean number of jobs [BGDMT06]. For

example, the class-r throughput is given by

Xr =
GΘ(N − 1r)

GΘ(N)
(2.5)

for r = 1, . . . , R, where N − 1r represents a vector obtained from N by decreasing of one

job the population of class r. The same performance metrics can also be calculated using the

marginal state probability such as

• Utilisation Uir: the average server utilisation of the class-r job at the station i

Uir =
∑
n∈s

& nir>0

πi(ni)

• Station Utilisation Ui: the overall utilisation of the ith station

Ui =
R∑
r=1

Uir

• Throughput Xir: the average rate of completions of class-r jobs at station i

Xir = Uirµir

• System Throughput Xr: the average system throughput at the reference station for the

job of the class r

Xr =
Xir

vir

• Mean Queue length Qir: the average number of class-r jobs at the station i. This include

28 Chapter 2. Background

also the jobs that are in execution on the station

Qir =
∑
n∈S

& nir>0

nirπi(ni)

• Mean Response time Wir: the average time a job of class r waits to the station i before

being executed

Wir =
Qir

Xir

• System Response time Wi: the average time spent a job of class r to return to the reference

station and be processed again. This is calculated summing all the mean response times

for the job of class-r and weight them with the visit at each station

Wr =
K∑
i=i

Wirvir

2.3.3 Class-switching models

The BCMP theorem allows within the described class of models also to enable class-switching,

whereby jobs departing from a node in class r can arrive in the destination node in class s 6= r.

However, under class-switching, the number of jobs in each class is no longer constant over time,

implying that the underpinning state space is much larger than in regular multiclass networks

without class switching. To address this issue, under class-switching the original R job classes

can be partitioned into C ≤ R disjoint chains [Zah79, BBS+77, Bru78, Won78] , defined by

the strongly connected components of the class-switching probability matrix. In other words,

chains are defined such that a job within chain c can become over time any of the classes in

that chain, but cannot become of a class belonging to any other chain h 6= c.

To do so, we first need to calculate the number of visits (vir) to each station and class of the

original network and then compute the corresponding number of visits for each chain q at every

2.4. Demand estimation algorithms 29

node i in the aggregate model (v̂iq) as

v̂iq =

∑
c∈Cq

vic∑
c∈Cq

v1c

(2.6)

where we assume that station i = 1 is the reference station for the computation of the system

throughput for each class.

Thanks to this transformation, the class-switching model can now be solved as a standard

multiclass model with job populations equal to the chain population. However, due to this

transformation, the information regarding the service time of the different classes at a station

is lost by the aggregation. Let q now represent the class in the new model associated to the

original chain. The service demand for class q at station i needs to be computed as [BGDMT06]

θ̂iq =
∑
r∈Cq

αirθir (2.7)

where αi is a scale factor defined as

αir =
vir∑
c∈Cq

vic
(2.8)

The aggregate demands θ̂iq are stored in matrix Θ̂. The population of chain q is set to N̂q =∑
c∈Cq

Nc.

2.4 Demand estimation algorithms

Demand estimation is one of the most challenging steps for performance model parametrisation.

Existing techniques are based mostly on the statistical inference of indirect measurements such

as throughput, response time and resource utilisation. The demand estimation algorithms are

grouped and presented based on the technique used: regression, machine learning, maximum

likelihood estimation and optimisation.

30 Chapter 2. Background

2.4.1 Regression

Linear regression is a popular statistical method for the service demand inference. Given a

set of independent variables, in regression called control variables, x1, .., xr and a dependent

variable, called response variable, y, the linear relation between them can be defined as:

y = β0 + β1x1 + β2x2 + ..+ βrxr + ε (2.9)

The goal of this method is to identify a set of parameters βj with 0 ≤ j ≤ r that minimise

the residual error ε. Using the Utilisation Law provided by the Queueing Network theory, the

linear regression problem can be rewrited as:

U (n) = U
(n)
0 +

∑
r∈R

X(n)
r θr + ε(n) n = 1, .., N (2.10)

where U is the resource utilisation, Xr the throughput of class r with 0 ≤ r ≤ R and θr

represents the demand for each class of the system. The index n ∈ N refers to the observations

considered. To solve the set of equations with R control variables, a system of N > R + 1

observations are necessary to be collected from the real system [CCT08]. The error of the

current set of θ values can be evaluated using, for example, the Least Squares (LSQ) regression

or the non-negative Least Squares (NNLS) regression. The estimate demand θj is the mean

values across all the θ
(n)
j observations.

The regression method applied to service demand estimation has been presented, for the first

time, by Bard and Shatzoff in 1978 to characterise the resource consumption of some specific

functions of an operating system [BS78]. Then, the method has been extended in [RV95] to

estimate the CPU demand for a single-thread application using multiple classes. [PSST08] and

[ZCS07] apply the regression methodology to estimate the different demands of more complex

systems such as a multi-tier architecture. In particular, [ZCS07] conducts an extensive evalu-

ation using the TPC-W e-commerce platform with different workloads and demonstrates the

robustness of this algorithms.

2.4. Demand estimation algorithms 31

However, this method can fail or produce wrong results if the observation time is too small,

with outliers or if the variance across the samples is limited [RV95, ZCS07]. In addition, a well-

known issue which affects the regression method is the multicollinearity [MPV12, KKRR11].

Multicollinearity occurs when two or more explanatory variables in a multiple regression model

are highly linearly related. This can produce unstable and unreliable results. To address

these problems, more robust statistical methods, such as Least Absolute Differences (LAD)

[KZ06, ZCS07, SKZ07] and Least trimmed squares (LTS)[CCT08] can be adopted. Other

techniques involve the use of machine learning algorithm, such as Support Vector Regression

(SVR) [KKRR11] to achieve the same scope.

2.4.2 Machine Learning

Machine learning algorithms have also been exploited in demand estimation. One of the first and

most used technique is based on the Kalman filter [SCBK15, ZM]. The Kalman filter technique

estimates the state vector x from a series of measurements z. The term state is defined as the

complete representation of the system status at a given time of a dynamic system that evolves

over time. The Kalman filter is defined by two equations. The first equation describes how the

system has evolved from the previous state (k − 1). So, the current state xk is calculated as:

xk = Fkxk−1 +Gkuk +wk (2.11)

where the F and G matrix are the state transition and control-input model, u contains the

input from the system and w the process noise. The second equation, defines the linear relation

between the current system state xk and the measurements zk.

zk = Hkxk + vk (2.12)

where vk is the observation noise and Hk the observation matrix which maps the state to the

observation space.

To use this method also for non-linear problems, the Extended Kalman Filter (EKF) has been

32 Chapter 2. Background

developed and its usage has been demonstrated in [Sim06]. The EKF has been applied in

[ZYW+05, ZWL08, WZL05, WZL06] to estimate the demands of a real-time system of an open

and close model with a single class. [KZT] and [WHQ+12] extended the Kalman filter to

multi-class model.

Another machine learning technique for demand inference includes clustering [CS14], which

observes the data composed by timestamps, throughput and utilisation. [CDS10] develops

furthermore this technique recognising the deviation over time of the demands, such as those

resulting from hardware upgrades. A similar approach has been also applied in [KYTA12] but

using pattern recognition techniques. Differently, [SBC+08] applied the independent component

analysis to profile the workload using CPU utilisation and the number of customers information.

2.4.3 Maximum Likelihood Estimation

MMaximum Likelihood Estimation (MLE) is a statistical method based on the likelihood func-

tion L(θ | x) that, starting from some observations x, infers the parameters θ that categorise

the normal distribution. The output of this function is a set of particular parameters θ that

obtained the highest likelihood value. The MLE can be described as:

θ̂ = max L(θ | x) (2.13)

Recently, [PCPS15, PPSC13, KPSCD09] propose an algorithm that considers as input the re-

sponse time of the requests. However, this information can sometime be difficult to retrieve

or to save in a log without impacting the application performance. In addition, [KKRD12]

introduces the concept of confidence in the demand estimation with this method. Differently,

[WCKN16] propose the QMLE algorithm that uses mean queue length values, rather than

response times, to perform demand estimation. The queue-length is also used by other algo-

rithms such as Gibbs sampling and Bayesian inference [SJ11, WC13]. However, such methods

are computationally intensive and they can require even hours to complete compare to other

algorithm that are able to provide a result in minutes.

2.4. Demand estimation algorithms 33

2.4.4 Optimisation

The optimisation problem is a method that looks for a set of parameters able to minimise (or

maximise) an objective function f within a given domain D ⊆ Rn and a set of constraints

Ω ⊆ D. Then, an optimisation problem that minimise a function can be written as:

min
Ω
f(ω) ω ∈ Ω (2.14)

Optimisation problems can be categorised in two groups: unconstrained and constrained. The

difference between them is that constrained problems have additional constrains which the

objective function needs to satisfy. Based on the objective and constraints functions, it is

possible to define:

• Linear programming : for problems with a linear objective function and linear equalities

and inequalities constraints;

• Quadratic programming : for problem with a quadratic objective and linear equalities and

inequalities constraints;

• Non-linear programming : for problem with non-linear objective function and constrains.

Demand estimation methods based on optimisation usually require response time or CPU

utilisation datasets [LXMZ03, LWXZ06]. Optimisation is then used to estimate the demands

in [KZT] with a load-dependent model using quadratic programming techniques. Differently,

[Men08] uses different metrics, such as response time and arrival rate to estimate the system

demands.

Despite their extensive validation on parameterization of models with isolated classes, none of

the above methods have, to our knowledge, been validated in the presence of class-switching.

For the purpose of this work, we focus the attention on some of the most common non-linear

optimisation algorithms such as Fmincon [BGN00, WMNO06], GlobalSearch (GS) [ULP+07],

MultiStart (MS) and Genetic Algorithm (GA) [GH88, CGT97, Mit98]. Fmincon is a well known

34 Chapter 2. Background

optimisation algorithm based on the gradient-based method to find quickly the local minimum

of the given objective function. However, if the function is too complex with several local

minimum, this algorithm does not guarantee to return the global minimum of the function. For

this reason, to make it more robust, Fmincon can be run multiple times from different starting

points increasing the probability of finding a global minimum for the objective function.

The GlobalSearch and Multistart are more robust optimization algorithms that run several

time the Fmincon algorithm. They just implement different strategies to identify the starting

points for the Fmincon. For example, using the GlobalSearch, the initial starting points are

chosen with the scatter search algorithm [Glo98] between the boundaries of the optimisation

function. Then, it analyses each starting point and rejects those points which are unlikely to

improve the best local minimum. On the other hand, the MultiStart algorithm chooses the

starting points equally distributed inside the searching range and it runs all of them.

On the other hand, the Genetic Algorithm belongs to the evolutionary algorithms [Coe07]

and, differently from the other considered algorithms, this algorithm is not based on Fmincon.

The Genetic Algorithm starts its execution generating a population of possible configurations.

Like in biological evolution, the algorithm selects randomly two configurations, called parents,

to generate a new configuration, called child, that is a combination of the parents. All the

children generated by the previous population are then becoming part of the next population

and they are used as parents. The algorithm stops when one of the stopping criteria is satisfied

(generation limit, time limit, constrains tolerance, etc.).

Differently from other optimisation algorithms and Fmincon, the genetic algorithm is able to

work well with integer programming, so in problems where the possible values are restricted

to integers. However, due to the randomness of the algorithm and since the next point to

test is not deterministic (as in the other optimisation algorithms), it does not ensure that two

executions of the same algorithm produce the same result.

Chapter 3

Apache Cassandra Queueing Network

Model

3.1 Introduction

The growing importance of Big Data applications has led in recent years to a rapid growth of

interest for NoSQL databases [LJ12]. In spite of their popularity, performance engineering for

NoSQL databases is still in its early stages. In particular, NoSQL databases are commonly

deployed on cloud platforms where hardware resources are rented, calling for dedicated pro-

visioning methods in order to strike the right trade-off between costs and quality-of-service.

Unfortunately, database performance can be challenging to manage in cloud environments,

where it can be compromised by several factors, such as network contention and CPU multi-

tenancy. For this reason, it is desirable to support engineers with analysis tools to assess risks

associated to a target deployment.

Today, service providers tend to over-provision NoSQL databases, wasting resources and in-

creasing the costs for their infrastructure. Finding the optimal configuration, in terms of

number of nodes, number of replicas (Replication Factor) and data consistency (Consistency

Level), is thus important and desirable, but still considered a research challenge. Performance

prediction based on stochastic models can support sizing activities of this kind by allowing en-

35

36 Chapter 3. Apache Cassandra Queueing Network Model

gineers to easily compare alternative system configurations and predict performance and costs

before deployment in the cloud.

One of the main challenges in modelling NoSQL databases is to properly account for the

replication factors and data consistency levels. The goal of this chapter is to develop a model

that addresses this need for NoSQL databases. Due to its popularity we analyse Apache

Cassandra [LM10] and then we generalise the model to be used with other databases that use

a similar data path. The data path of NoSQL databases is usually characterised by the data

replication that is usually executed asynchronously, reducing response time despite a weaker

data consistency level than traditional databases [Cat11]. In order to ensure consistency, read

requests thus need to hit multiple replicas before the database system can respond to the client.

This synchronisation can considerably affect system response time and, for this reason, in this

work we focus our attention only on the read requests. Finding the optimal trade off between

data consistency, costs and offered performance thus requires a quantitative approach that

should assess all of these dimensions.

The proposed model is based on extended queueing networks consisting of fork-join elements,

finite capacity regions, and class-switching. Since the model includes several features that are

not readily amenable to analytical solution, we focus here on simulation-based assessment. Our

performance model explicits both replication factor and consistency level, allowing engineers

to compare alternative system setups.

We validate the proposed models against experiments based on the YCSB database benchmark

[CST+10], under varying consistency levels and different infrastructures. Our results on a

private cloud indicate that average error for the throughput is lower than 7% and lower than

10% for the response time, increasing prediction robustness compared to existing models. Also

using the public cloud, the model is able to capture all the main database performance.

To enhance furthermore the accuracy of our model, especially in high load, we infer the demands

for our system in multiple points and fit them in some mathematical functions. We then use

these functions to parametrise our model setting the demands in correlation to the number of

jobs in the system. In addition, we generalise our queueing networks model to represent a large

3.2. Related Work 37

number of NoSQL databases with similar data path such as ScyllaDB. Moreover, in a case

study, we demonstrate the utility of these models analysing the change in performance due to

a different application behaviour.

The rest of the chapter is organised as follows. Section 3.2 summarises related work. Sec-

tion 3.3 and Section 3.4 introduces the proposed queueing network and its parametrization,

which are subsequently validated in Section 3.5. In Section 3.6 and 3.7, we demonstrate the

applicability of our model to another NoSQL database, ScyllaDB, and propose a model-based

analysis of Cassandra performance under quorum-based synchronisation. In the last section,

the conclusions are discussed.

3.2 Related Work

Database performance modelling has been traditionally focused on relational databases [OK12].

With the increasing growth in popularity of NoSQL databases over the last ten years, re-

search work in performance evaluation has been increasingly conducted also on these emerging

database systems. Prior work has focused on comparing NoSQL systems in terms of read/write

performance, scalability and flexibility [Cat11, LAV+15, BS15, KP14, KM17]. To the best of

our knowledge only a limited number of works have been conducted on performance modelling

of NoSQL databases, and available models specific to Cassandra are few [GGK+14, OP14]. The

models in [GGK+14] and [OP14] use two different modelling techniques due to the difficulty to

represent, in the same model, the synchronisation and the scheduling of the requests.

Gandini et al. present a high level queueing network model for Cassandra [GGK+14]. Each

node of the distributed setup is described using two queues: one for the CPU and one for

the disk. This model is able to capture throughput and latency for read and write requests.

However, compared to our model, it does not take in consideration requests other than those

executed locally and there is not synchronisation of the tasks between the nodes. Moreover,

communication latency is not taken in consideration and there is no representation of the CPU

tasks limit that Cassandra has.

38 Chapter 3. Apache Cassandra Queueing Network Model

Subsequently, [OP14] presents a model for simulating read requests. The authors use Queueing

Petri Nets (QPN) [Bau93] in order to describe synchronisation. QPNs are an extension of

coloured stochastic Petri nets, particularly useful when the model needs to explicit scheduling

at queueing resources. Each node is represented by only CPU processes, described as a timed

queue. Compared to the model in [GGK+14], the authors limit the number of simultaneously

running queries for a node and distinguish between local and remote requests. However, no

information about the disk and network latency is considered. In case of records of large size,

the disk and network response time can considerably affect performance. The model in [OP14]

is validated by predicting response time and throughput of different Cassandra configurations

and appears to be the most accurate among existing performance models. However, for some

particular configuration the error between real system and simulation can grow over 40%.

Compared to the previous models, our model is able to capture network and disk latencies, dis-

tinguishing the different type of requests (represented in the model as classes) and attributing

different CPU demands to each class and to each phase of the query execution. These improve-

ments deliver more accuracy on throughput and response time prediction. In addition, our

model is able to represent different data replication factor and simulate the major consistency

levels implemented in Cassandra.

Queueing Petri Nets have also been used in [Nie16] to predict and study Cassandra energy

consumption. A study on how performance changes in relation to different data model struc-

tures has been conducted in [CKL15]. Chebotko et al. present a query-driven data mod-

elling for Cassandra whose results are highly different from the one applied for the traditional

databases. The paper also argues about the importance of the modelling consistency levels.

The relation between performance and consistency level has been studied in several papers

[BT11, ALS10, WFZ+11]. To achieve higher performance, Cassandra adopts eventual consis-

tency instead of strong consistency. For this reason, to achieve strong consistency and meet the

consistency levels required by the application without sacrificing the performance, variations

of Cassandra database have been developed [CIAP12, GPM14]. Chihoub et al. presents a self-

tuning mechanism to change at run-time query consistency levels, taking in consideration the

system state. Differently, in [GPM14] the Cassandra’s node architecture is modified to always

3.3. Cassandra Queueing Network Model 39

Figure 3.1: Local, Remote and Remote Incoming requests workflow.

achieve strong consistency of the data.

3.3 Cassandra Queueing Network Model

In this section, we present the Cassandra model used to predict database performance. The

model is built using queueing network theory [LZGS84]. To represent and simulate our model,

we use the JSIMgraph simulation environment provided with Java Modelling Tool (JMT)

[BCS09].

As described in the background section, each node in Cassandra issues two main types of read

requests: read data from the disk (local request) or retrieve data from another node (remote

request). As part of a remote request, if a different node asks the data to the target node,

the target node has to provide them (remote incoming request). Depending on the type of

request that the node needs to process, the request follows different paths through the model.

The different workflows are represented in Figure 3.1. In the figure, the boxes represent the

node components used for a single node in our model. How the requests are forwarded are

represented by the lines. Two different types of lines are shown: continuous lines indicate the

connections inside the same node and dashed lines represent external node connections.

Figure 3.2 describes a single Cassandra node (identified as c1). The node is characterised by

three queueing stations representing: network (c1 net), CPU (c1 cpu) and disk (c1 disk). For

all the queues the scheduling policy used is non-preemptive first-come first-served (FCFS), with

the exception of the CPUs for which processor sharing scheduling is used. To model all the

functionalities that each node offers, other elements such as class-switches, a fork-join and a

40 Chapter 3. Apache Cassandra Queueing Network Model

Figure 3.2: The model representation of a Cassandra node.

finite capacity region have been added to the model. In particular, class-switches are used to

change the class of a request inside the model, the fork-join to manage multiple remote requests

and finite capacity region to limit the number of simultaneous requests that the system can

handle. This limit is static and set by default to 32 requests in the configuration file of each

Cassandra node (parameter: concurrent reads).

In addition, in order to model different types of requests, six different classes are defined in

the model (described in Table 3.1). The number of classes is related to the number of nodes

present in the system. Indeed, to maintain information about the origin of a request for each

read-remote request, a read-remote-ID class for each node is created, where ID identifies a

Cassandra node.

In our model, the initial requests received by the node from the client can be only local or

remote and enter in the node via the network queue (c1 net element in Figure 3.2). Based on

the type of request, different paths may be taken. Such paths are presented in the following

sections. We also discuss model parametrization and workload characteristics.

3.3.1 Local Request

Local requests are queries for which the node stores data locally on the disk. In this case it does

not need to contact any other node if the CL is ONE. Figure 3.1 shows the main steps for this

type of request. The read-local request from the network queue goes directly to the CPU queue

3.3. Cassandra Queueing Network Model 41

Class Description
1 read-local Local read request
2 read-local-end Local request that needs to perform the end operations

before to return to the client
3 read-remote-ID Remote read request where the ID node is acting as

proxy
4 read-remote-return The returned remote incoming request performed by an-

other node
5 read-remote Remote read request
6 read-remote-end Remote request that needs to perform the end opera-

tions before to return to the client

Table 3.1: Classes description.

through the c1 initial class-switch. After it has been served, the request goes through the fork

and router, reaching the disk. In the case of CL QUORUM or ALL, the fork generates as many

remote requests as needed in order to satisfy the CL. When the disk finishes the execution

of the request, it reaches the join (c1 join) where it waits until all the remote requests come

back from all the other nodes. In case of CL ONE, the join fires the request immediately.

Afterwards, the request class is changed in read-local-end inside the class-switch c1 end and it

is forwarded to the CPU to perform the ends operations before it leaves the node through the

network queue and the class-switch exit.

3.3.2 Remote Incoming Request

Remote Incoming requests (see the central row of Figure 3.1) are the data that a proxy node

retrieves from the target node to complete a query. The data gathering process is defined

similarly to local requests. Remote incoming requests enter in the node from the initial class-

switch of the node c1. The class request arrived to the node c1 is one of the read-remote-ID

classes. The request is executed by the CPU. The fork and router forward the request directly

to the disk that retrieves the information and sends it to the join. The node network (c1 net)

takes the request and based on the request class (read-remote-ID), forwards it back to the

original node (ID).

42 Chapter 3. Apache Cassandra Queueing Network Model

3.3.3 Remote Request

Remote requests are the requests for which the node does not store the data locally. In this case,

the node needs to act as a proxy and issue remote requests towards other nodes to complete

it. Requests generated in this scenario are the remote incoming requests received from other

nodes. Differently from the local requests, these queries never reach the local disk of the node.

After it is served by the network queue, the request reaches the c1 initial class-switch in which

the request changes class, becoming a read-remote-C1 request, and it continues execution into

the CPU. As described in Table 3.1, this type of requests is characterised by two main CPU

operations: parsing and end. When the request hits for the first time the CPU, it executes the

parsing phase and after it is sent to the fork. Here, based on the CL applied to the queries, the

fork generates as many requests as the CL needs. These requests are forwarded to the router

and then redirected to the network queue. The requests are then randomly sent to some other

nodes of the ring and executed as a remote incoming request by another node.

When the read-remote-C1 requests come back from the remote nodes, they change class in

read-remote-return (inside c1 initial) and they are forwarded to the join. When all the gener-

ated requests come back, the join fires generating a single read-remote-end request that is sent

to the CPU via the initial class-switch. Inside the CPU a read-remote-end request is processed

to perform the end operations. Finally, the request exits from the node through the network

queue (c1 net) and is sent back to the client through the exit class-switch.

3.3.4 Workload

Another important component of our model is represented by the workload generator. To the

best of our knowledge, two benchmarks are available to measure the performance of a Cassandra

cluster: cassandra-stress tool and YCSB. Cassandra-stress tool is developed by Datastack and

shipped with Cassandra. On the other hand, Yahoo! Cloud System Benchmark (YCSB)

[CST+10] was initially developed by Yahoo! and then released under the Apache License.

3.3. Cassandra Queueing Network Model 43

Figure 3.3: Cassandra model overview at high level of granularity.

Differently from cassandra-stress tool, YCSB is a benchmark tool that supports many different

types of applications and databases and new features or support for new applications are added

regularly. For this reason, it is a quite popular framework used in industry and academia

[ABF14, MAS19, NL18]. The two tools provide similar functionality and are able both to

generate write-only, read-only and mixed workloads using different distributions. However,

for the type of experiments that we need to run, YCSB gives us more flexibility especially

displaying the partial performance results of the cluster during the experiments. So, for this

reason, for our experiments through this chapter and the whole thesis, we decided to use the

Yahoo! Cloud System Benchmark (YCSB) [CST+10].

Figure 3.3 provides an overview of the system, including the YSCB workload generator. In

order to approximate better the performance of our model, we have decided to model it with

two queues that represent the CPU and the network running the workload generator machine.

YCSB CPU queue manages only read-local class requests. The new requests generated by the

CPU are sent directly to the start class-switch through the network queue. This class-switch

changes in read-remote some of the requests, according to the replication factor and CL applied

to the system. The proportion of read-remote requests is equal to (N − RF)/N . Then, read-

local and read-remote requests are forwarded to a router that sends them randomly to the

nodes inside the ring.

When the requests have been executed by the node, the network queue of the node sends the

response to the exit class-switch which changes class to read-remote-end. In the end, before

being received by the YCSB CPU, the request is sent to the YCSB network and to a class-switch

to reset the class in read-local. When the query comes back to YCSB CPU queue, the request

44 Chapter 3. Apache Cassandra Queueing Network Model

is considered completed and a new query is generated by the YCSB workload generator.

3.4 Models Parametrization

To parameterize the model, we need to estimate disk, network capacity and CPU demands for

YCSB and Cassandra nodes. To gather this information, we set up a Cassandra ring with four

nodes and an additional machine for YCSB workload generator. Regarding network latency,

two different requests are taken in consideration: request (or query) and response. They differ

in size of data that they are carrying. We have observed that a normal request size is around

128 bytes. Differently, the response packet is characterised by the size of the data asked. To

calculate the network demand, we multiply the packet size with the bandwidth information

gathered from the Linux tool iperf [ESn16]. Similarly, we have estimated disk demand using

the data size and the Linux tool hdparm [Lor16].

For the CPU demand estimation, three different approaches can be used to calculate them.

The first two methods gather the information from the network packets exchanged between

the nodes and the clients. The main difference between these two methods is on the number

of multiple clients that can be used in the system during the parametrization phase and the

ability to read the network packet’s content. The first approach limits the number of concurrent

requests to one but it does not require to read the content of the transmission. On the other

hand, the second method does not introduce any limitation about the number of clients that

are querying the system but it needs to be capable to read the packets’ content to identify the

requests and calculate the demands.

Differently, the third approach samples some queries and it analyses all the events generated by

the database to complete them. We observe similar demands obtained with the first and third

methods. However, the third method allows the user to have more clients in the system and

to not have access to the operating system. In the following sections, we are going to illustrate

all the three approaches.

3.4. Models Parametrization 45

3.4.1 Single client network monitoring

The first approach observes the network traffic exchanged between the nodes and the workload

generator (YCSB). To calculate the demands, the algorithm requires only the query timestamps

and response times. In fact, this algorithm does not analyse the content of the system but it

looks only to the packet exchanged between the cluster. Analysing the IP address of different

packets, we categorise three types of read requests. For the demand estimation of the different

classes we took in consideration the timestamps packets of:

• Local request: the packets arrived from and departed to YCSB IP address.

• Remote incoming request: the packets arrived from and departed to each other node IP

address.

• Remote request (parsing phase): from when the packet arrives from YCSB to the last

packet departure directed to another node.

• Remote request (end phase): from when the first packet comes back from a node to YCSB

response.

In case of local requests with CL QUORUM or ALL, the demand is calculated as a remote

request and we differentiate between the two requests based on the number of remote-incoming

requests generated by the request coordinator. To obtain the final demand for each class, we

process the gathered data using the Complete Information algorithm [PPSC13]. In the same

way, we also estimate CPU demand of the YCSB workload generator. The timestamps taken

in consideration in this case are, simply, the packets that the server sent to and received from

a node. To avoid the simultaneity of multiple requests, all the demand estimation with this

method are taken with a single job in the system.

46 Chapter 3. Apache Cassandra Queueing Network Model

3.4.2 Multi clients network monitoring

This method is an extension of the method illustrated in the previous section. Differently from

the previous one, this method provides the visibility of the content of the packets transmitted

to calculate the system CPU demands. The message content is used to identify the different

requests that are executed on the system and, with the source and destination IP addresses,

the stage of each request. To analyse the traffic, we sniff all the network connections using

tcpdump Linux tool [Tcp18] and analyse them offline. However, to be able to see the content

of the file in clear text, we disable to network compression algorithm and disable the encryption

if it is used or to be in possess of the SSL certificates used.

The recorded traffic is then processed by a Python script that we develop to reconstruct the

execution of each query. Since in this case we can observe the content of the transmission, we

can identify the primary key of the request and group all the packets for that query together.

Then, we analyse each group of packets as described in the previous section and so we divide the

query into the different classes. Analysing the timestamps, we gather the different information

to be used with Complete Information algorithm [PPSC13] or any other algorithms.

3.4.3 Cassandra tracing tool

This approach leverage on a completely different mechanism compared to the previous two

methods and involves the utilisation of the tracing troubleshooting tool. This tool is shipped

with Cassandra and it is able to profile the internal operations that are executed by Cassandra

to complete a query. Once enabled, it starts to record all the steps that the NoSQL database

performs to complete the query with relative timestamps and the node on which it has been

executed. However, this tool can impact severely on the database performance since several

writes needs to be executed by the tool to store the information on the database.

In order to prevent performance degradation, this tool allows the database administrator to

set a ratio of queries to record. Since, the estimation algorithms that we considered require to

have all the requests executed over a period of time, we cannot use this feature and we need to

3.4. Models Parametrization 47

record all the queries. For this reason, even if this method allow us to parametrize the system

having multiple users and without touching the underground platform, in our experiments, we

evaluate this method with maximum 10 clients at the same time.

To estimate the CPU demands using the tracing tool, we divide the computation executed by

each node to complete the query identifying the different stages of the request based on the

description of the task. For each computation segment, we calculate the time that the system

spends to complete the computation looking the initial and ending timestamps. In case of

a local request with a CL of ONE, since the execution is conducted on only one node, the

CPU demand for this class is the total time the node spends to complete the query without

considering the disk read operation.

Differently, for a local request with CL greater than ONE or for a remote request, the contri-

bution of each node is calculated considering:

• Local or Remote request (parsing phase): from the beginning of the tracing execution of

the query to when the system create and send the request to the other nodes.

• Local or Remote request (end phase): from when the system received all the Remote

Incoming requests containing the data from the other nodes to the end of the execution

of the query.

• Remote incoming request: from when the node receives the remote incoming request up

to its completion. This CPU demand does not take in consideration the time spent for

the reading operation from disk.

As for the other methods, the final CPU demands for each class are obtained using one of the

inference algorithms.

48 Chapter 3. Apache Cassandra Queueing Network Model

(a) ONE (b) QUORUM (c) ALL

Figure 3.4: Throughput comparison between Cassandra system and our model.

3.5 Model validation

Here we illustrate the evaluation of our model on different platforms, using different hardware

resources and different architectures. In all the analysed cases, we demonstrate that the model

is able to predict with accuracy the system performance. However, we notice that when the

system is heavily utilised, the performance of our model slightly decreases due to several caching

mechanisms that the database uses to reduce the latency of the system. For this reason, we

infer the demand of our system on multiple points and then we fit a function for each class

using these points. Using the parametrized functions, we obtain the final set of demands to set

on the model. In this way, we obtain better performance prediction for our model.

Furthermore, we then demonstrate that our model has the flexibility and capability to represent

also other NoSQL databases that present a similar system behaviour on how they process the

queries. In the end, we present a case study on which we demonstrate the utility of models like

this one when different application behaviour need to be tested, saving a considerable amount

of time and money to develop them.

3.5.1 Validation on private cloud

We start the validation of our model using the private cloud. We decided to start with this

testbed because we can control better the noise generated by the neighbour machines and

produce better CPU demands. To validate our queueing network model, we set up a Cassandra

cluster composed of four nodes with a replication factor of 3. The private cloud manager we

3.5. Model validation 49

(a) ONE (b) QUORUM (c) ALL

Figure 3.5: Response time comparison between Cassandra system and our model.

Table 3.2: CPU demands for different classes.

Class ONE QUORUM ALL
read-local 0.8028 0.4078 0.5
read-remote 0.374 0.5712 0.6
read-remote-ID 0.6309 0.6423 0.6
read-local-end 0 0.4968 0.5
read-remote-end 0.4994 0.8917 1
read-remote-return n/a n/a n/a

Table 3.3: Different component de-
mands.

Component Demand value
Network Request 0.01333
Network Data 0.1333
Disk 0.0679
YCSB CPU 0.428

use is OpenNebula which uses KVM as hypervisor to run the machines. The machines used

as Cassandra nodes have 2 CPUs and 4 GBs of memory. Each machine has 2 disks attached:

a 20 GBs, where Cassandra commits logs and saved cache files are stored, the second of 100

GBs to store only database data. The operating system is Debian 8 with Sun Java 1.8 and

Cassandra version 2.2.4. For the purpose of these experiments, we disable any Cassandra

caching mechanisms and we maintain the default settings of the operating system. We also

ensure that the data stored in the database does not fit all in memory otherwise this can

change the database behaviour. Since we are using the cloud, we also paid attention to the

CPU steeling value to be zero or very close to it. To avoid interfering with the performance

of Cassandra nodes, the workload generator YCSB is installed on a separate virtual machine

with 4 CPUs and 4 GBs of memory.

The database is set to equally distribute the key range between all the nodes in the ring. For

the workload generator, we use the default parameters that come with YCSB. Each row of

the database is composed of 10 fields, each filled with 100B of data. The total data size for

each record is 1KB, excluding the identification key. The keyspace is filled with 15 million

of records. These parameters can be easily changed within the YCSB workload generator to

50 Chapter 3. Apache Cassandra Queueing Network Model

represent more realistic user scenario of the system under test. We assume that the data size

inside the table can variate with a limited level of degrees. In this situation, setting the correct

number of columns and using the average data size for each column, the model can predict

with accuracy the cluster performance. On the other hand, if a significant diversity of data size

is stored inside the table, higher percentage of error can be observed in the model. This error

can be reduced identifying the ratio of which these requests occur on the system and creating,

inside the model, an additional class where more specific demands for these kinds of queries

can be specified.

To emulate the different number of simultaneous clients in the system (also called jobs), the

same number of threads are set in YCSB. Each experiment on the real system is repeated

three times and it has the duration of 30 minutes with 5 minutes of warm-up before starting

to record.

Figure 3.6: Cassandra CPU utilisation.

CL Throughput Response time

ONE 6.79 % 8.17 %

QUORUM 6.41 % 9.59 %

ALL 6.98 % 7.64 %

Table 3.4: Model relative error.

The evaluation compares the throughput and response time of the real system with the results

obtained through the simulation of our model using JMT tool. The demand values used for

the model simulation are reported in Tables 3.2 and 3.3. For this set of experiments, the CPU

demands are calculated sniffing the network with a single client on the system. Figure 3.4 and

Figure 3.5 shows the average throughput values recorded by YCSB at the end of the execution

of each experiment. The figure also shows the values range recorded for the same experiment

from the real system.

Before comparing the result of the two approaches, we can analyse the effects that different CLs

3.5. Model validation 51

Algorithm Local Pars Local End Remote Pars Remote End Remote-Incoming
CI 0.00004801 0.00010055 0.00005501 0.00055917 0.00036023

QMLE 0.00004456 0.00030543 0.00004569 0.00066055 0.00038402

Table 3.5: Demands with 50 clients and CL ALL

Table 3.6: Microsoft Azure details.

Cassandra machines 4
YCSB machine 1
Machine type Standard D2s v3
CPU Frequency 2.4 GHz
vCPU 2
Memory 8
Disk 100GB
Max IOPS 4000
Storage type SSD (premium)

Table 3.7: Demands with 60 clients and CL ONE

Alg. Local Remote Remote-Inc.
CI 0.00034926 0.00068336 0.00013746

QMLE 0.00043431 0.00065454 0.00014813
ERPS 0.00048365 0.0006546 0.00017278

have on the real system. Using ONE as CL with 45 jobs, or 45 simultaneous client requests, the

system is able to serve around 6800 requests per second. Compared to ONE, the throughput

of the system is reduced more than 40% and up to 60% when QUORUM and ALL CL are

respectively used. In fact, increasing the CL, the CPU utilisation of each node grows faster

like the graph reports in Figure 3.6. In addition, the response time also changes considerably,

increasing linearly the average time that the clients wait for query completion.

Comparing the results obtained from the real system and from our queueing model, it is possible

to notice that our model captures all major changes in the database. As shown in Figure 3.4,

the model is able to approximate with a very small error the throughput of the real system, as

the number of jobs and CLs vary. As presented in Table 3.4, the average throughput relative

error is below 7% for all analysed CLs. Using our model, we also estimate the response time of

the queries for the same experiments. The results are reported in Figure 3.5. Even in this case,

the model is able to predict with good accuracy the real system performance. The average

response time error, as reported in Table 3.4, is below the 10%.

52 Chapter 3. Apache Cassandra Queueing Network Model

(a) Throughput (b) Response time

Figure 3.7: Model performance on public cloud with CL ONE

(a) Throughput (b) Response time

Figure 3.8: Model performance on public cloud with CL ALL

3.5.2 Evaluation on public cloud

In this section, we test our model performance on the cloud. Since the underline infrastructure

is managed by the cloud provider, we do not have control on the other machines around ours and

this can lead to serious noise during the execution of the experiments and the parametrization of

the model. In addition, in this section, we compare the performance of three demand estimation

algorithms CI, QMLE and ERPS. When we started the investigation we also included the UBR

algorithm on the list of inference algorithms. However, due to collinearity, a known effect of

this regression model, we were not able to use it. In this case, the collinearity is caused by

the constant rate of local and remote requests. After the performance evaluation of the model

in the cloud, we improve its performance prediction fitting the demands in a function. This

method helps to reduce considerably the error of the model especially when it is heavily loaded.

3.5. Model validation 53

Algorithm Throughput Response Time
CI 10.87 % 13.55 %

QMLE 12.59 % 15.46 %

Table 3.8: Overall model performance pre-
diction relative error with CL ONE.

Algorithm Throughput Response Time
CI 10.56 % 11.66 %

QMLE 17.16 % 19.52 %

Table 3.9: Overall model performance pre-
diction relative error with CL ALL.

The cloud provider used our experiments is Microsoft Azure on which we deployed four Cas-

sandra nodes and one YCSB machine. The replication factor used by Cassandra for these

experiments is 2. The hardware characteristics are reported in Table 3.6. The database has

been loaded with 30 million records of 1KB each divided across 10 fields as in the previous ex-

periments. The workload generator YCSB is set to use a read only profile as previously done.

Due to the resource contention problem related to the use of a public cloud provider, during

our experiments we monitored the CPU stealing value to ensure that is zero of negligible.

Since the hardware characteristics of the machine used for this set of experiments performs

better than of the previous one, we have the possibility to test the system with more clients

querying at the same time the database. As we can see from Figure 3.7a Cassandra reaches the

maximum throughput around 100 clients in the system. Afterwards, the response time increases

linearly while the throughput remains almost the same. This effect is known as performance

knee of a system and it is presented when the system is saturated. Indeed, with 100 clients, each

node in the system has a CPU utilisation of over the 90%. The small increment of throughput

that the system has with more than 100 clients, is represented by some caching applied by

the operating system. However, due to the high CPU utilization, we do not advise to rely on

the model or run a production system where the CPU is completely saturated. In addition,

episodes of high contention of the resources and noise are likely to occur since we are using a

public cloud provider.

To calculate the demands to parametrize the model, we run the system with 60 clients at

the same time for the CL ONE and 50 clients for the CL ALL. In both cases, we record all

the network packets exchanged by the nodes and, using the second method presented in the

previous section, we divided them in the different model classes. We decided to estimate the

nodes demands using the CI, the QMLE and ERPS [WCKN16, PPSC13, SCBK15]. These

54 Chapter 3. Apache Cassandra Queueing Network Model

are quite popular advanced estimation algorithms with different characteristics. In particular,

the Complete Information (CI) is a scheduling-aware estimation algorithm for multi-threaded

applications that uses linear regression and maximum likelihood estimators. The algorithm uses

information about the number of requests and their execution to infer the demands of each class.

On the other hand, Queue-length Maximum Likelihood Estimator (QMLE) uses maximum

likelihood techniques to infer the demands of load-independent and load-dependent resources

in systems with parallelism constraints. To infer the demands, the algorithm requires the queue-

length at the different resources that can be easily collected from a real system. In addition, this

algorithm is also able to provide a confidence interval for each demand. Differently, ERPS is a

regression-based methodology that approximate CPU demands. This is an advanced regression-

based solution because it is able to reduce the level of uncertainty (or noise) present in the

recorded traces compacting workload information. To the best of our knowledge, these are only

inference algorithms that support multi-threaded applications. To calculate the CPU demands

to set in the model we use the Filling the Gap (FG) tools [WPC15] which support all the

inference algorithms described above.

The results gained by these algorithms are reported in Table 3.7 for CL ONE and 3.5 for

consistency ALL. From Table 3.7, we can notice that the CI presents values for the local and

remote-incoming requests lower than the one presented by the QMLE. On the other hand, the

ERPS values are always higher than the QMLE. This lead the model with ERPS to perform

worse than with the other two algorithms. For this reason, we do not consider the ERPS on

further experiments. A different scenario is shown with the Consistency Level ALL (Table 3.5)

where for the local end, remote pars and remote end classes, the demands are very different.

The model throughput and response time are presented in Figure 3.7a and Figure 3.7b. Observ-

ing the figures, it is evident that the model is able to capture the trend of the real system and

predicts with a low relative error the system performance. Moreover, the demand estimated

with the CI algorithm are performing slightly better than the one produced by the QMLE.

Indeed, as reported in Table 3.8, using the CI demands, we obtain an error below 11%. Fur-

thermore, a considerable portion of error is obtained when the server is heavily utilised with 150

clients or more. In fact, with the QMLE and 150 clients in the system, the model prediction

3.5. Model validation 55

error for the throughput and latency are over 20%.

Also, with consistency level ALL, the model applied on the public cloud performs very well.

In these experiments, the CI achieves even a lower percentage of error compared to the one

registered with consistency level ONE. On the other hand, the QMLE presents a slightly higher

error than before, as reported in Table 3.9. The throughput and response time prediction

for the different number of clients are presented in Figure 3.8a and Figure 3.8b. With both

the consistency level analysed, the model decreases its accuracy when the system becomes

fully utilised. For this reason, in the next section, we improve the performance of the model

estimating of the demand in several points and fitting a mathematical function to be used to

estimate the model demands.

3.5.3 Fitting demands function

Using the same public cloud test environment, we tried to enhance the performance of the

model, fitting the demands into some mathematical functions that we consequently used to

parametrize the model. To fit the function, we record several network communications with a

different number of clients in the system. Then, we parse the communications to extract all the

necessary information to run the CI algorithm and gather the different demands for each class.

We try to interpolate the data using the linear, cubical, polynomial, and exponential functions

and we select the algorithm that returns the lower Root Mean Square Error value (RMSE). We

notice that, in the Cassandra case, two functions can interpolate better the demands and this

is also related to the Consistency Level used. In particular, the a linear function is used for

consistency level ONE and exponential with ALL. We decided to not introduce any other values

a part from the estimated demands in our fitting model to have a clear comparison between the

model that use the fitting technique and the one without. Introducing other metrics such as

CPU utilization or requests response time in the fitting model can be useful in some situations,

but can also move away form the real demand value on that point especially when the system

is highly loaded. We take in consideration the case where 4 and 7 points are used to fit these

functions.

56 Chapter 3. Apache Cassandra Queueing Network Model

CL ONE CL ALL
Class p1 p2 a b c d

Local Pars 1.752e-08 7.751e-07 0.0001172 0.001907 -0.0004428 -0.1341
Local End n/a n/a 0.0001303 0.001026 -0.0005845 -0.1514

Remote Pars 2.086e-08 3.683e-07 0.0001457 0.00155 -0.0004739 -0.119
Remote End -1.101e-07 0.0005908 0.0002198 0.001325 -0.0003855 -0.05859

Remote Incoming -6.092e-07 0.0005283 0.000655 -0.04182 0.0003963 -0.001356

Table 3.10: Values for 4 points function with CL ONE and ALL

(a) Throughput (b) Response time

Figure 3.9: Model performance with demand fittings with 4 points and CL ONE

We started our analysis recording the demands with 10,30,100,250 clients and a consistency

level of ONE. We then fit the points on a linear function, like f(x) = p1 ∗ x + p2. Table 3.10

reports the values obtained from Matlab R2017b to parametrize the linear functions.

The performance of the model using the 4 points function are presented in Figure 3.9a and

Figure 3.9b. It is possible to notice that the model is able to perform considerably better in

the prediction of the throughput with an average relative error of 8.96% compared to 10.87%

recorded without using any fitting technique. Regarding the response time, no significant

change has been registered.

We applied the same technique also with consistency level ALL. However, in this case, we use

an exponential function like f(x) = a ∗ exp(b ∗ x) + c ∗ exp(d ∗ x) since the Root Mean Square

Error (RMSE) returns a better value. Using this fitting, we reduce significantly the average

error of the model to 4.57% for the throughput and 5.40% for the response time. The accuracy

of the model in this case it is also visible in the Figure 3.10a and 3.10b.

We further investigate the possibility to use more points to fit the demand function. In the

3.5. Model validation 57

(a) Throughput (b) Response Time

Figure 3.10: Model performance with fitting with 4 points and CL ALL

Class a b c d
Local Pars 0.00009719 0.002647 -0.0001045 -0.04518
Local End 0.0000969 0.002201 -0.00009772 -0.03115

Remote Pars 0.0001317 0.001954 -0.000136 -0.03382
Remote End 0.0001611 0.002566 -0.0001625 -0.03024

Remote Incoming 0.007972 -0.3288 0.0005403 -0.002972

Table 3.11: Values for 7 point function with CL ALL

case, we estimate the demands in 7 points, with 1,10,30,50,100,175,250 clients, and with a

consistency level ALL. We fit the class demands in an exponential function and we report the

value in Table 3.11.

The performance of the model using the 7 points function are presented in Figure 3.11a and

Figure 3.11b. It is possible to notice that the model is able to perform better in the prediction of

the response time with an average relative error of 9.52% compare to 11.66% that we recorded

without using any fitting technique. Also, the throughput error is decreased with an average

of 7.03%. However, the performance of the model in this case are lower than the one presented

with 4 points function. Ideally, we are expecting that adding more points to the fitting model,

this would enhance the precision of the queueing network model as well. However, we noticed

that the fitting for the Local End class presents some overfitting effect recorded using the r-

squared measure. We attribute the additional error of the queuing network model performance

compared to the model using 4 points to the overfitting of this class.

58 Chapter 3. Apache Cassandra Queueing Network Model

(a) Throughput (b) Response Time

Figure 3.11: Model performance with fitting with 7 points and CL ALL

3.6 Case Study: applicability of our model to other NoSQL

databases

As part of our evaluation, we consider the possibility to apply our out-of-the-box model to

other NoSQL databases. Due to the similar system architecture and behaviour of the queries

execution, we decided to apply the model to ScyllaDB.

ScyllaDB is an Apache Cassandra compatible column store database that aims to optimise

the performance of each node participating to the database. This increment of performance

is obtained using a different programming language (C++) and a completely new software

architecture optimised for modern hardware resources. Typically, NoSQL datastores run on a

single Java Virtual Machine. To reduce the idle periods generated by the usage of the Garbage

Collector, which tend to increase the latency of the system, these applications usually use page

cache and complex memory allocation strategies. To avoid these expensive locking mechanisms,

ScyllaDB uses an engine for each CPU core of the system, which operates with a low degree

of synchronisation. This reflects on the database with a lower usage of the hardware resources

and an increment of database performance.

To gather performance data for ScyllaDB, we deploy the same Cassandra configuration used for

the private cloud. The ScyllaDB deployment is composed by four machines, with a replication

factor of three and 1KB of data for each record stored. Due to the optimised usage of the

recent hardware features, ScyllaDB requires the presence of specific features of the CPU on

3.6. Case Study: applicability of our model to other NoSQL databases 59

(a) Throughput (b) Response time

Figure 3.12: Model performance with ScyllaDB.

the VM. For this reason, ScyllaDB VMs are deployed using a different CPU architecture that

supports the SSE4.2 CPU flag instructions [Int16b]. To accomplish ScyllaDB requirements, we

force the hypervisor to create virtual machines with the Intel Nehalem CPU microarchitecture

[Int16a]. The usage of this microarchitecture also brings more benefits to the hardware resources

allocated to the VM thanks to a larger bandwidth for the network and disk.

To adapt the model for ScyllaDB, we also need to remove the fixed capacity region set on the

CPU because ScyllaDB does not limit the number of simultaneous queries that each node can

handle. To parametrize our model, we:

• Estimate the network and disk bandwidth using the Linux tools hdparm and iperf. The

two bandwidths have been multiplied with the average size of the data stored in the

database or query network packet size.

• Estimate the YCSB CPU demand analysing the network packet exchanged between the

client and a node. We measure the latencies that the client takes to generate a new

request when a complete one is received.

• Estimate the node CPU demand for local parsing operations sniffing the network com-

munication of a node with a single client. The packets are then analysed to measure the

latencies from the instant which a client query arrives to the node to the one in which

60 Chapter 3. Apache Cassandra Queueing Network Model

the node sends the remote incoming request to another machine. This estimation process

is the same also for the remote parsing class. These two classes are distinguished by the

number of requests that the node generates. The local requests generate one request less

than the remote since a copy of the asking data is stored on the local disk of the node.

• Estimate the node CPU demand for local end operations sniffing the network communi-

cation of a node. The packets are then analysed to measure the time that a node takes

from the instant which the asking data arrives back to the node until when the response

to the client is sent. In case of CL ONE the demand for this class is set to zero. The

same process is used for the CPU estimation demand of the remote end class.

• Estimate the node CPU demand for remote incoming requests sniffing the network com-

munication of a node. The packets are then analysed to measure the time that a node

takes from when a data request comes to the server to when the request is completed and

it is sent back to the asking node.

All the CPU demands are calculated with a single job in the system and the collected latencies

are processed with the Complete Information algorithm [PPSC13] to obtain the final demand

for each class. The model is parameterised with the calculated demands for all the classes and,

according to the real implementation, the same number of CPU cores is set for each node.

ScyllaDB results, measured and simulated, are shown in the Figure 3.12. They represent,

respectively, the throughput and the response time of the system. For this case study, only

the QUORUM case is taken in consideration. Comparing ScyllaDB with Cassandra QUORUM

results, it is possible to observe that ScyllaDB is able to achieve better performance. We

observed that, differently from the Cassandra scenario, at high load, the workload generator

network represents the bottleneck of this set up. The results provided by the simulation tool

are close to the measured one and the average relative error is 8% for the throughput and 12.9%

for the response time. With this case study, we demonstrate the versatility of our model and

the possibility to apply this model to other NoSQL database with minimal changes.

3.7. A What-If Scenario: the Impact of Query Replication in Cassandra 61

Figure 3.13: Throughput impact of query replication.

3.7 A What-If Scenario: the Impact of Query Replica-

tion in Cassandra

We conclude by illustrating an application of the proposed model. Recent research have high-

lighted the potential advantages of replicating requests in systems in order to consistently

achieve low latency [QP15]. We here consider a variant of the proposed model to assess the

potential impact of query replication on Cassandra.

In the default configuration, when the CL is set to QUORUM, Cassandra generates a fixed

number of remote requests. The number of remote requests depends on the RF applied to the

database and is equal to bRF
2
c+1. We now consider a variant of this approach that generates RF

requests, but where only the first bRF
2
c+1 responses need to be synchronised before completing

the query. In this way, the system neither needs to apply any decision on which nodes to send

the requests and does notit need to keep track of node performance. Clearly, we expect a

trade-off between the enhancement of performance obtained from the higher parallelism and

the heightened contention placed on physical resources.

In order to assess this scenario, we have devised an extension of the JMT queueing simulator

which allows to synchronise a subset of requests at join nodes. Requests that reach a join

62 Chapter 3. Apache Cassandra Queueing Network Model

after this has completed the synchronisation are ignored in the computation of performance

metrics. This extension is now integrated in the stable release of JMT version 0.9.3 under the

name of Quorum Join Strategy. Figure 3.13 illustrates simulation results. We here compare

real Cassandra measurements, with the proposed Cassandra QUORUM mechanism proposed

in the previous sections, and the real QUORUM that refers to the replication mechanism.

We notice that with a very light load, the throughput under replication is nearly identical to the

one without replication. However, at higher loads Cassandra is expected to suffer on average a

performance loss compared to the system without replication. This simulation results seem to

indicate that increasing replication levels might not be beneficial in a system like Cassandra.

While experimental evidence would be needed to corroborate this prediction, this example

provides intuition on the ease of performance analysis that comes with the proposed models.

3.8 Summary and Conclusion

In this chapter, we propose a novel queueing network model for the Apache Cassandra and

other NoSQL databases. We evaluate our model with different hardware resources, different

architectures and on private and public cloud. Simulation-based analysis shows that our model

is able to predict with an error below the 10% the throughput and response time of the system

under different consistency levels and number of concurrent requests. The proposed model

appears generally more accurate than existing models in the literature that also consider the

YCSB benchmark for validation purposes. Furthermore, we increase the accuracy of the model

measuring the demands on few points and fit them on a mathematical function. In this way,

the model is able to achieve even lower error in the prediction of the throughput and response

time of the real system.

As part of this chapter, we also demonstrate that, with few adjustments, our model could be

used to predict the performance of other NoSQL databases. Moreover, we illustrate the utility

of such model to quickly develop and analyse the performance of the system if, for example,

the data request is processed by all the nodes that stores a copy of the data.

Chapter 4

Partition-Aware Autoscaling for the

Cassandra NoSQL Database

4.1 Introduction

NoSQL databases offer the ability to store large quantities of information and retrieve them

with lower latency than in traditional databases [Pok13]. For these reason, the deployment of

these systems can involve from few to even thousands of machines depending on the amount

of data to store and the SLA to achieve. By default Cassandra does not offer any autoscalable

mechanism and, only recently, researchers have started to systematically investigate autoscaling

methods for Cassandra [CM13, NSG+15, KDSS16, QCB16].

Autoscaling methods have been investigated for several years in cloud-native web applica-

tions [LBMAL14, QCB16]. Such methods help both cloud service providers and users to reduce

operational costs and cope with workload variations [AEADE11]. Databases are also increas-

ingly adapted to support autoscaling [CZ14, SWED16], but they can face long acquisition times

for the new nodes due to the wait time of data synchronisation. Indeed, the time needed to

add an entirely new node can take days if the dataset is very large, while at the same time

affecting the performance of the existing nodes.

63

64 Chapter 4. Partition-Aware Autoscaling for the Cassandra NoSQL Database

Figure 4.1: Data synchronisation period when a new node joins the cluster.

To illustrate the problem, we show in Figure 4.1 a measurement of the time required for Cas-

sandra to add a new node to a cluster. In this example, the cluster runs on the Microsoft Azure

cloud and consists of four virtual machines (VMs). Throughout the chapter, all experiments

are run using the YCSB benchmark [CST+10]. Even though the cluster is small composed by

4 nodes with RF 2 and the data stored in the nodes is not too large, around 15GB per VM,

the system spends almost 30 minutes to create and transfer the data to the newly instantiated

VM. Only at the conclusion of this process the new node is finally acquired into the Cassandra

cluster and becomes operational. On top of this, the system requires additional time to stabilise

its performance with the new node. If multiple nodes are simultaneously added to the system,

the situation further degrades, with the transfer time period becoming even longer. Clearly,

this problem hinders the ability for an autoscaling system to quickly adapt Cassandra to the

incoming workload.

In this chapter, we define a novel autoscaling method, called PAX, which relies on Cassan-

dra’s hinted handoff mechanism to efficiently add nodes to the cluster [Dat17] and we introduce

proactive and reactive policies that control Cassandra using workload and data partitioning

information. The hinted handoff mechanism exploited for autoscaling is the mechanism that

Cassandra uses for synchronising pending writes to nodes that return online after some down-

time. We argue that this mechanism can also be effectively used to enable autoscaling for

Cassandra, provided that instead of creating and booting up new VMs one keeps idle a large

4.2. Related work 65

enough set of dormant (i.e., powered-down) VMs. Such VMs can be quickly synchronised to

the cluster using the hinted handoff mechanism instead of deploying entirely new VMs.

After implementing autoscaling based on this mechanism, we show that PAX can effectively

autoscale Cassandra as the rate of incoming queries varies over time. We introduce in partic-

ular a reactive and a proactive implementation of PAX, which scale resources based on CPU

utilisation, workload demands and arrival rate forecasting. To further optimise autoscaling,

we show that PAX can leverage query sampling to decide the best dormant VMs to activate,

based on the data partitions they contain. Our experiments indicate that partition-aware node

acquisition can provide substantial improvements in throughput up to 69% compared to any

random cluster configuration that use the same number of active nodes.

We validate our approach through an extensive evaluation using time-varying arrival rates and

different item popularity distributions. Among the main findings, we show that, compared

to a system without autoscaling, PAX can deliver large cost savings without compromising

the user QoS. In addition, thanks to the ARIMA predictive algorithm, the system seldom

violates SLOs. To limit even more the SLOs violation, we present a more advanced autoscaling

algorithm (OPAX) which considerably reduces the under-provisioning time and area.

The rest of the chapter is organised as follows. Section 4.2 reviews related work on elastic

resource management for Cassandra. Section 4.3 introduces the Cassandra data partitioning

and the hinted handoff mechanism. Section 4.4 presents our elastic architecture, the PAX and

OPAX controllers. The tuning of autoscaling architecture and the experimental validation are

given in Section 4.6 and 4.7. Section 4.9 the summary and conclusion.

4.2 Related work

Over the last few years, several NoSQL databases have been adapted to support elasticity re-

source management [KAB+11, DMVRT11, SWED16, KKR14, TKB+13, CMM+13, ASV13].

For instance, [TKB+13] presents a controller for elastic resource provisioning of HBase clusters

using Markov Decision Processes (MDPs). Similarly, [CMM+13] defines a framework to auto-

66 Chapter 4. Partition-Aware Autoscaling for the Cassandra NoSQL Database

matically reconfigure HBase nodes based on their access pattern. The work in [ASV13] shows

instead a controller based on feed-forward and feedback signals for the Voldemort database.

Prior work on Cassandra autoscaling includes in particular [CM13], [NSG+15] and [KDSS16].

Both [CM13] and [NSG+15] present a reactive autoscaling mechanism. In particular, [CM13]

develops a Cassandra controller that gathers node and workload performance data to calculate

an exponentially-weighted moving average (EWMA) of the response time currently experienced

by the users. When this moving average exceeds a pre-defined threshold, the controller adds a

new node to the system. The work in [NSG+15] instead implements a controller driven using

a Markov decision process (MDP) to model the cluster state and takes optimal autoscaling

decisions. Compared to PAX, these works do not support proactive autoscaling and suffer high

synchronisation latency due to the effect shown in Figure 4.1.

Recently, [KDSS16] presented a proactive controller for Cassandra that uses regression trees to

predict latency. Upon exceeding a latency threshold, resources are scaled vertically to increase

capacity and avoid SLO violations. Compared to this approach, PAX relies on CPU utilisation

measurements, thus it is designed to optimise the infrastructure usage and cost, as opposed

to user-perceived latency. Moreover, PAX adopts horizontal scaling and ARIMA time series

forecasting of arrival rates. Recent work has shown that horizontal scaling tends to be more

appropriate than vertical scaling for Cassandra databases [KKR14].

The cost of adding or removing nodes to Cassandra and other databases has been measured

in [KKR14, KAB+11, DMVRT11, SWED16, RGVS+12, KAT+12]. For all the databases that

do not use a shared file system, measurements indicate that the time required to add a new

node is sensitive to the quantity of data stored in the entire database and the transmission rate

between nodes. It is observed in [KKR14] that the usage of higher transmission rate affects

the response time of the read operations.

4.3. Data recovery in Cassandra 67

4.3 Data recovery in Cassandra

In this section, we describe more in depth, first, the data partitioning mechanisms adopted by

Apache Cassandra and then the data recovery mechanisms, in particular the hinted hand-off

mechanism that are implemented on Cassandra.

4.3.1 Data partitioning

Cassandra’s data are partitioned into smaller datasets that are stored locally to each node.

Thus, contrary to other NoSQL databases such as HBase, Cassandra does not require a shared

filesystem (e.g., HDFS) to exploit the data locality. A hash function is used to distribute the

primary keys and associated data across the nodes. This is obtained partitioning the hash

key range into sub-ranges called partitions (also called TokenRanges). In clusters without

replication (RF = 1), each node i can be configured to locally store Ti unique partitions. The

total number of unique partitions (P) is thus P =
∑N

i=1 Ti, where N is the total number of

nodes. For systems based on horizontal scaling with similar hardware resources, Ti is set to the

same value on all the nodes, since the VMs are usually identical. In this case, the P calculation

can be simplified as P = Ti ·N .

Using the replication (RF > 1), beside the unique partitions each node stores also some data

replicas. The number of replicas that each node stored is defined by the RF used. In this case,

the total number of partitions available on a node i is Pi = Ti ·RF , where RF is the replication

factor. Then, we are able to calculate the total number of partitions like P = RF ·
∑N

i=1 Ti. For

load balancing and high availability, the partitions are distributed randomly across the nodes

with the only constraint that a given partition can be stored only once per server.

4.3.2 Hinted handoff mechanism

In this section, we present the mechanisms that Cassandra implemented to maintain the consis-

tency across the data and the service that are activated when a node is not responding anymore

68 Chapter 4. Partition-Aware Autoscaling for the Cassandra NoSQL Database

for any reason. Furthermore, we describe how we use these services to deploy our autoscaling

system.

When a node is not responding for a defined period of time, the Cassandra cluster assumes that

the node has failed. In this case, the hinted handoff mechanism will be tasked to facilitate the

data recovering of the node. The mechanism works as follows. When the request coordinator

believes that one of the cluster nodes has failed or it is overloaded of requests, pending writes

are stored locally within a hinted handoff table. The request coordinator creates one table for

each failed node and these tables are called hints. When the failed node becomes active again,

all the nodes are notified of the cluster changes through the Cassandra gossip protocol and

this trigger the second step of the hinted handoff mechanisms. In fact, before starting to serve

client requests, the target receives from all the other active nodes the hint tables and applies

the changes on its local copy of the data. When the transfer is completed, each node deletes

the transferred hints tables restoring the normal Cassandra functionality.

The hinted handoff is a configurable mechanism. The database administrator can decide to

activate or not the hint handoff, decide the amount of time for which each node needs to keep

track of the data changes and the maximum transfer rate on which each node can send the

hint tables. The tuning of this last parameter is the one which can impact more on the overall

synchronisation time and performance of the cluster since it limits the amount of writes that

the each node can send. Finding the right balance between the performance of the cluster while

hints transfer is active and the time necessary to complete the task can be challenging. For

our experiments, we use the default Cassandra configurations which expect to have the hinted

handoff active and the transfer rate unlimited. However, regarding the recording period, for

our experiments, we extended it to record the data up to twelve hours.

Figure 4.2 illustrates an example of hinted handoff in action. On this cluster composed by 8

nodes with replication factor 4, we temporary turn off 4 nodes. As shown in the figure, the size

of the hint tables for the target node grows over time. For the purpose of this illustration, the

red line represents the sum of the all hint tables for one target node recorded by all the other

active nodes and the blue line the throughput of the overall system. After the first 30 minutes of

4.3. Data recovery in Cassandra 69

Figure 4.2: Data synchronisation through the hinted handoff.

the experiment we turn on all the stopped machines. When the target node becomes available

again, each node immediately starts to send the hint tables to it and they are immediately

applied by the node. The node spends only few minutes to apply the changes and to start to

serve clients requests. In fact, the throughput of the system immediately starts to grow after

the hinted handoff mechanisms is completed.

Beside hinted handoff Cassandra implements also another mechanism, called write repair, to

repair the not up to date data. This mechanism is triggered by the request coordinator when,

after the completion of a read requests, inconsistency between the returned values is detected.

In this case, the request coordinator generates a new write requests with target the not up to

date node to write the value associated to that specific record. This mechanism is a lighter

process compared to hinted handoff and it is activated on demand.

Both hint handoff and write repair mechanisms are working at the same time in Cassandra

to ensure data consistency across the nodes. For the purpose of autoscaling, we rely more on

the hinted handoff because it is able to record the unperformed queries when some machines

are not reachable and recover the data consistency across the cluster as soon as the node is

running again. On the other hand, the write repair mechanism continues to work as normal

verifying that the answered data to the clients are the most recent one and updating values if

some nodes are not up to date.

70 Chapter 4. Partition-Aware Autoscaling for the Cassandra NoSQL Database

Figure 4.3: PAX architecture

4.4 PAX: Partition-aware autoscaling

In this section, we present PAX, the proposed partition-aware autoscaling method. Figure 4.3

illustrates PAX architectural setup, which relies on three components: i) the Cassandra clus-

ter, consisting of a fixed set of nodes (VMs), which can be either in active or dormant (i.e.,

powered-down) state; ii) the controller, which analyses the workload measurements and actu-

ates the autoscaling decisions; iii) a hinted handoff storage area, which archives the hints to be

committed to the dormant nodes upon their return to the active state. In the following sections,

we describe separately the controller component and how it interacts with its sub-components.

4.4.1 Controller

The core architectural element of PAX is the elasticity controller. The main aim of the con-

troller is to ensure that the average node utilisation U remains within a pre-defined CPU range

[U−, U+] at all times. We design the controller to be able to work without relying on any

information about the cluster state. In fact, it gathers all the information directly from one of

the active machines of the cluster. When the controller starts, it looks for an active Cassandra

node using a provided list of IPs and, through JMX, it gathers the state of the cluster. Conse-

quently, the controller is able to connect to each node and record the current CPU utilisation

4.4. PAX: Partition-aware autoscaling 71

and partitions managed by each node. All the other information are calculated at runtime by

the controller.

Since PAX relies on horizontal scaling, it can be assumed that VMs have homogeneous sizes, and

thus averaging utilisation across nodes is a well-defined metric. We also evaluate the possibility

to use other target metrics with the PAX controller, such as the maximum utilisation across

the nodes. However, we have experimentally observed that the maximum utilisation metric can

lead to make the autoscaling more aggressive than the average node utilisation. This is due

to the distribution of partitions across the nodes. In practice, we found that U is a sufficient

metric to implement effective autoscaling, as shown later in the experimental results. For this

reason, we focus the implementation of PAX using the average node utilisation metric U only.

All the cluster configurations generated by the controller need to be assessed before applying

them to the environment. To be valid, a configuration needs to guarantee that all data partitions

have at least CLmax replicas stored in the active nodes, where CLmax is maximum consistency

level allowed for a query decided by the database administrator. PAX can operate either as a

reactive controller or as a proactive one. In the reactive mode, when the system performance

is out of target CPU utilization range, PAX interacts with the cloud provider API to adjust

the configuration by starting and stopping VMs until U returns within the range. The only

exceptions is when the cluster cannot scale up or down any longer, either due to shortage of

dormant nodes or because it has reached a configuration that cannot use less nodes without

becoming invalid. On the other hand, using the proactive mode, PAX couples this control

mechanism with a workload forecasting method based on ARIMA processes. To better illustrate

the operation of the controller, in the next subsection we review the workload analysis and

forecasting features that are supplied to the controller by the architecture.

4.4.2 Workload analyser (WA)

The workload analyser (WA) is responsible for monitoring the system, analysing the resource

consumption data and the demand estimation. When PAX is configured as a proactive con-

troller, WA is also responsible for workload forecasting.

72 Chapter 4. Partition-Aware Autoscaling for the Cassandra NoSQL Database

Figure 4.4: Overhead of the tracing tool.

WA monitors the type of requests issued to the cluster (read or write operations) and the

requested primary keys. The main goal is to identify the partitions that are more frequently

requested (hot partitions). This information is used by the PAX autoscaling algorithm to select

the best dormant node to activate or, during scale down, to choose the active node to set as

dormant. While PAX does not require initial training about the hot data distribution across

the nodes, it can converge faster to a good configuration if supplied with an initial estimate

of the hot partitions, based on historical data. However, the controller works correctly also

without any prior information.

At runtime, the WA can obtain the list of hot partitions either using the nodetool or the tracing

utilities shipped with Cassandra. The command nodetool toppartitions samples the activity of

a Cassandra cluster for a specified period of time, returning the hot partitions. However, the

command can degrade the database performance and, in one of the latest Cassandra versions

we used (3.0.9), the tool frequently crashed. For these two reasons, we have used, in our

implementation, the tracing tool.

The tracing tool is a troubleshooting utility to profile the internal operations that are executed

by Cassandra to complete a query. In order to prevent performance degradation, the tool allows

to randomly sample queries with a given probability. Figure 4.4 shows the tracing overhead

we observe on the same testbed used in Figure 4.1 for different sampling probability values. If

the sampling probability is chosen small enough, the system performance is not significantly

affected by the background execution of the tracing tool. To determine the tracing probability

value to use on the system, two different approaches can be applied. The first approach consists

4.4. PAX: Partition-aware autoscaling 73

in settings a static value, independent of the current workload of the system. On the other

hand, the second approach can define some policies to dynamically adjust this value based on

some performance metrics. For example, the user can define a range of possible values for the

tracing tool and the workload analyser can, at run-time, dynamically change it based on the

number of requests per second or the requests response time that the system is receiving from

the clients. The higher is the number of incoming requests (or the response time) the lower will

be the sampling rate. Using a range of values ensures that the system is not going to use a high

sampling rate that can significantly compromise system performance. For our experiments, we

choose to use the first approach and set the sampling probability for PAX to be 0.001, for which

the system throughput is degraded by 2.9% on average. However, PAX can also work smoothly

with lower sampling probabilities, although it can take a longer time to converge to an optimal

configuration.

The WA is scheduled to be activated every minute. When starts, the WA reads and removes

from the database all the tracing information provided by the tracing tool. For each query,

the script extracts the primary key and calculates the partition on which the data resides.

All the partitions are written into a file that is subsequently read to determine the list of hot

partitions. Entries of this file that do not belong to the desired windows defined by the database

administrator are deleted or moved to a separate file to be used as initial information for the

WA.

4.4.3 Workload forecasting

The WA component also retrieves performance metrics for each node and predicts changes to

the arrival rates of queries. In our implementation, performance metrics such as CPU utilisation

and the total number of operations executed are retrieved from each active Cassandra node

using JMX. However, other monitoring systems may be used.

To predict the future workload, WA maintains an AutoRegressive Integrated Moving Average

(ARIMA) model. ARIMA is a method for non-stationary time series prediction that combines

74 Chapter 4. Partition-Aware Autoscaling for the Cassandra NoSQL Database

Figure 4.5: Mean service demand change with the number of active nodes.

an autoregressive and a moving average model. ARIMA is commonly applied on several au-

toscaling work [CMRB15, THIC11, BCH+14, FLWC12, ZZBH13]. In addition, compared to

other time series forecasting models, it is easy to implement and parametrize. Anyway PAX

is able to use any type of time series forecasting model that can provide an estimation of the

near future workload that the cluster is going to receive based on the history of the database.

We set the ARIMA forecasting time to consider the mean time required to boot up a dormant

VM. In our experiments on Microsoft Azure based on VMs of class A2, we have measured this

time to be around 3 minutes on average. ARIMA predictions are thus set at 3 minutes in the

future.

WA predicts the global arrival rate λ to the cluster, measured in transactions-per-second (tps).

Since we are concerned with the mean utilisation across identical nodes, the value yields the

predicted CPU utilisation as [LZGS84]

Upred = λ ·D

where D is the mean service demand of a node and it is estimated by linear regression of

the current measurements of U and λ. We have observed that the demand D changes almost

linearly with the number of active nodes, as shown in Figure 4.5. This is potentially due to the

extra calculation and communication that each node needs to perform to be aware of cluster

changes and to the decision that needs to be taken each time that the request coordinator needs

4.5. Autoscaling algorithms 75

Figure 4.6: Over and under provisioning representation.

to execute a read request. In our tests, each additional active node increases D on average by

α = 10%. This correction is included upon forecasting the utilisation after an autoscaling

decision. In general, the value of α is sensitive to the consistency level CL of the queries. In

other setups it may requires runtime estimation by fitting to a line the obtained measurements

of U and λ as the cluster configuration changes.

4.5 Autoscaling algorithms

Central to the PAX autoscaling algorithm are the decisions on: i) which nodes to scale; ii)

how many nodes to scale; iii) when to trigger the autoscaling action. We discuss these aspects

separately in the next subsections after the metrics definition used in the chapter.

4.5.1 Metrics

The metrics we collect are similar to those presented in [HKR13]. Figure 4.6 reports an example

of under provisioning (in red) and over provisioning (in yellow) of the system. For either case,

we calculate the time and the area on which the resource provisioned do not match the resources

provided. In our case, we define the under-provisioning time TU as the time that the system

spends above U+ and the over-provisioning time TO as the time that the system spends below

76 Chapter 4. Partition-Aware Autoscaling for the Cassandra NoSQL Database

U−. U+ and U− represent, respectively, the upper and lower bounds of the CPU range decided

by the database administrator into which the system is considered in a stable state. We

condition this to the system not using the maximum number of nodes, since we regard this

situation as an error in static provisioning of the cluster size, rather than a shortcoming of the

autoscaler. In addition, we also consider the under-provisioning area AU between the cluster

utilisation and the upper bound of the target CPU range. This is computed only in periods

when the utilisation is above U+. Similar process is also used to calculate the over-provisioning

area (AO). The area is a quite important parameter on our analysis because it allows us to

define the gap between the demanded and provisioned resources.

4.5.2 Data-aware node acquisition

When the PAX controller decides to take an action, so to increase or decrease the number

of active nodes, it is necessary to identify the set of nodes that are going to be involved in

the action. This is decided based on the information generated by the WA component by

prioritising the acquisition of nodes including the hot data partitions.

PAX associates to each Cassandra node i a score (Vi). The algorithm receives from the WA

components the primary keys (K) and the key access rate λk (requests per second) for the

queries randomly sampled in the last control period. To identify the location of the data

accessed by the sampled query, the primary key is hashed and the partition (p ∈ P) that

contains the data is identified. For each of the node that stores that partition, the associate

node value Vi is then incremented by λk. Thus, for the i-th node, the node value is calculated

as Vi =
∑

p∈Pi

∑
k∈Kp

λk, where Pi is the set of local partitions on the node i and Kp is the

set of primary keys contained in the partition p. The values Vi are used to decide the order in

which dormant VMs are activated during scale-up or scale-down.

To assess the effectiveness of this data-aware scale-up approach, referred to as PAX (or data-

aware best) selection, we show in Figure 4.7 a comparison against a method that selects the

node with the worst Vi score and with a method that picks the node at random. The experiment

is conducted on a 16 nodes Cassandra cluster where the minimum number of active nodes is

4.5. Autoscaling algorithms 77

Figure 4.7: Gains due to data-aware node acquisition.

5 and the workload used a Zipfian popularity distribution for the data. To understand the

best achievable performance, we use a static workload characterisation. The remaining nodes

are activated one by one until all the nodes are active. Figure 4.7 reports the difference in

throughput with different number of active nodes and using the different algorithms to select

them.

The performance gap between the two algorithms is quite evident and reaches a maximum with

10 active nodes. We attribute the fact that the gap is maximal around the middle of the figure

since the number of active hot partitions is significantly different. In fact, observing the data

worst approach, during the first six step it does not increase the throughput because only nodes

containing cold partitions has been activated. On the other hand, the PAX approach during this

first six steps almost duplicates its throughput reaching a throughput of 19070 tps, while the

worst selection has only 11220 tps. Progressively, the gap is reduced since, using the data worst,

all the remaining dormant nodes contains hot partitions that can contribute to increase the

performance of the system. The random algorithm shows as expected a performance in-between

the two other methods, but it still fairly worse than the best one. Overall, this experiment

confirms that data-awareness can produce visible gains during Cassandra autoscaling. We

present in the next sections more advanced scenarios with dynamic workload characterisation

and varying experimental setups.

78 Chapter 4. Partition-Aware Autoscaling for the Cassandra NoSQL Database

(a) Throughput (b) Number of nodes used over time

(c) CPU utilisation (d) Tu

Figure 4.8: Aggressive strategies comparison.

4.5.3 Number of nodes to scale

PAX offers three strategies to control the number of nodes involved in a scaling action. These

strategies are called: conservative, average and aggressive. Deciding the correct strategy for

the selected environment is important since it can reduce the number of operations that the

controller needs to perform and, more importantly, reduces the SLO violation.

In the case of a scale up with the conservative strategy, the smallest possible number of nodes

that PAX predicts to bring back U within the target range is used. On the other hand, the

aggressive strategy activates the largest possible number of nodes such that the predicted U

remains between U− and U+. The average strategy targets instead the center of the target

range. Vice versa, during scale down, the conservative policy switches off the maximum number

of nodes, while the aggressive ones powers down the minimum number of nodes.

Figure 4.8 presents experimental results for the three strategies. Figure 4.8(a) shows the

4.5. Autoscaling algorithms 79

throughput changes over time. The conservative reacts slowly to these changing, perform-

ing many more scaling up actions than the other policies, as seen in 4.8(b). As visible from

Figure 4.8(c), this means that the conservative strategy remains close to the upper bound of

the utilisation band. Conversely, the aggressive strategy performs only 2 actions. However,

it activates more nodes than the other strategies but it never violates the CPU upper bound,

as shown in Figure 4.8(d). For this reason, we have decided to adopt in PAX by default the

aggressive strategy.

4.5.4 Triggering a scaling action

The data-aware acquisition and the strategies to select the number of nodes allow PAX to

implement a scaling decision. This involves CPU utilisation prediction for all the possible node

configurations, retaining only the valid ones within the target range. Among these, PAX selects

the one with the desired number of nodes, based on the strategy selected, and with the best

nodes, based on data-awareness.

As mentioned, PAX implements the decision in either reactive or proactive approach. In both

cases, PAX requires the CPU trend to violate for at least 3 consecutive times, spaced by

1-minute intervals, the CPU bounds before the controller takes any action. This avoids un-

necessary or inaccurate actions triggered by errors in the predictive model. Moreover, we set

a stabilisation period of time of 10 minutes in-between any actions cannot be taken. This re-

duces the likelihood of taking incorrect actions during instabilities or fluctuations of the system

measurements due to the recent changes.

Figure 4.9 compares the proactive and reactive implementations of PAX and also illustrates the

impact of data-awareness on these by considering the best data-aware node acquisition of PAX

against the worst-case acquisition method. The experiments run on a 8 nodes cluster with a 2

hours workload peaking at a maximum of 80 clients.

The results show that the reactive controller introduces some under provisioning time due

to the lack of utilisation prediction. On the other hand, the proactive controller exhibits

80 Chapter 4. Partition-Aware Autoscaling for the Cassandra NoSQL Database

(a) Throughput (b) TU

(c) AU (d) Cost

Figure 4.9: Comparison between Proactive PAX (PB), Proactive Data-Aware Worst (PW),
Reactive PAX (RB), Reactive Data-Aware Worst (RW).

negligible under-provisioning time and area. However, the proactive system anticipates some

actions consuming more resources and with a higher experimental cost. The throughput results

convincingly argue that the proactive data-aware controller performs much better than all the

other methods.

Based on this analysis, we consider the reactive controller better suited in situations where the

user wants to reduce the operational cost, when he is renting the VM. On the other hand, the

proactive controller limits considerably the under-provisioning time of the system making it

more appropriate in those situations where the user wants to reduce CPU utilisation, as in the

case of providers exposing Cassandra services from within their own infrastructure. Given its

increased ability to control the system, in the next sections, we will focus on evaluating the

proactive version of PAX.

4.6. Tuning the PAX Architecture 81

Table 4.1: Performance comparison results.

Ti = 2 Ti = 256

N = 8 8683 ops/sec 9067 ops/sec
N = 16 10663 ops/sec 10684 ops/sec

Table 4.2: Minimum configuration size M under different Ti values. Experiments executed with
a Cassandra cluster with N = 8 nodes, assuming a CLmax of ONE

Ti
1 2 4 8 32 128 256

RF=2
Pi 2 4 8 16 64 256 512
M 4 4 5 6 7 7 7

RF=4
Pi 4 8 16 32 128 512 1024
M 2 2 3 3 4 5 5

4.6 Tuning the PAX Architecture

In this section, we provide additional details concerning the PAX architecture, such as the

number of nodes to be used in the cluster and the setup of the hinted handoff storage mechanism.

Upon instantiating the cluster, the administrator should decide several parameters such as the

maximum number of nodes N , the RF, the maximum CL allowed for a query (CLmax), and

the data partitioning setup. These decisions affect the flexibility of the autoscaling mechanism,

i.e., the minimum number of machines M that need to remain online at all times to ensure that

the configuration remains valid. The parameters to consider are:

• Total number of nodes: The maximum number of nodes N should be such that

the cluster can achieve at least the maximum desired throughput when all nodes are

online. Benchmarking may be used to estimate the N parameter experimentally against

a reference workload. N can also be changed at runtime where needed, but as observed

in Figure 4.1 the synchronisation time will be much longer than with the hinted-handoff

mechanism, which requires only a few minutes.

• Replication factor: Normally, RF is chosen in production environments to be between

2 and 4. RF of 1 is usually not advised since, in case of failure of any node, the system

may not be able to recover the data. Besides, RF 1 does not allow to have any kind

of autoscaling system since it requires that all the machines are active at any time.

82 Chapter 4. Partition-Aware Autoscaling for the Cassandra NoSQL Database

Probabilistic methods have been devised to analyse the influence of RF on the system

availability, resilience to malicious users and identify an appropriate assignment [YG07,

LGR15, YGN06].

• Data partitioning: The RF and the number of partitions per node Ti are static prop-

erties of the cluster decided upon its creation and the initial loading of the dataset. They

determine the set of valid configurations for a cluster and thus the flexibility of the au-

toscaling mechanism. Although Ti does not significantly affect performance, as shown

in Table 4.1 for a 8-node cluster, it influences the placement of data on the nodes, and

thus how many nodes can be turned off by the autoscaling controller while remaining in

a valid configuration.

Let’s consider, for example, the case where the replication factor and the number of nodes

are the same and the database administrator decided to use CLmax ONE. In this case, the

autoscaling system can reach its maximum flexibility since it can activate from one to N

machines due to the fact that all the data are stored on all the nodes and the maximum

consistency level used is ONE. If we change the CLmax, the number of minimum number of

active machines will be the value of CLmax. On the other hand, this cluster requires the

provisioning of an higher storage space since all the machines need to store all the data of the

database. A completed opposite situation is represented when the RF is ONE and the only

valid configuration is the one with all the machines active since the data is the only copy on

the cluster.

In all the other possible configurations of the cluster, the data partitioning also come in place

and determine the flexibility of the system as well as the replication factor and maximum con-

sistency level because the distribution and location of the replicas inside the cluster determine

the system flexibility. For example consider now a cluster that with N nodes and RF = 2 that

uses CLmax ONE. The smallest valid possible configuration could be represented by N/RF , so

in this case half of the cluster, but in reality this is also related to the location of this copy.

If Ti is sufficiently large or uses the default Cassandra vnodes value (256), the system requires

almost all the nodes to be active losing the autoscaling flexibility. For this reason, finding the

4.6. Tuning the PAX Architecture 83

correct balance between the data partitioning and replication factors is essential to activate a

good autoscaling flexibility. However, the only way to find the real minimum valid configuration

is through experiments or simulation.

The dependence between these two factors is illustrated in Table 4.2. Here, we run a set of 14

experiments, changing the Ti and RF values. For example, the first column considers the case

where each node contains Ti = 1 unique partitions. In this case, out of the N = 8 nodes, 4

nodes should always remain online if RF = 2, but this reduces to 2 if RF = 4. However, larger

RF values increase costs, since more storage capacity and nodes will be needed to replicate the

data.

In addition, an optional variable that the user may be interested in considering is the availability

of the machines provided by the cloud provider. Usually inside the desired region chosen by the

user, the cloud provider offers the opportunity to use different zones to enhance the availability

and reliability of the infrastructure. Placing the application or database on different zones can

ensure that, even if a zone is unreachable for some time, the service will still be delivered as

normal. If the user is interested in applying this concept to PAX as well, after he has looked at

all the possible valid configurations obtained with only the previous variables, he can exclude all

the configurations that do not satisfy the high availability requirements of the cluster. Indeed,

this parameter can limit considerably the flexibility of the system. So, since we do not have

the possibility to use a cluster larger enough to test this scenario, we decided to not include

this parameter inside our experimentation.

4.6.1 Hinted handoff storage

To ensure that each node can retrieve all hinted handoff tables anytime, we recommend to setup

a shared storage area among the cluster nodes. For this storage solution, we decided to use the

shared file storage system provided by our cloud provider to leverage on the high availability of

their system and redundancy of the data across zone and regions. By default, the hints tables

are stored locally on each Cassandra node disk. However, it may happen that some tables are

84 Chapter 4. Partition-Aware Autoscaling for the Cassandra NoSQL Database

stored on nodes that become dormant, causing the risk that a newly activated node does not

find all hinted handoff tables required for its synchronisation.

A shared storage area avoids the above issue. Within this area, each node can store its tables

in a specific folder, so that they are always available for retrieval during scale up operations.

If one of the nodes changes status to dormant, the hint files are then moved each one on the

specific folder of the target node. So, when a dormant node is powered up, it receives the data

from all the active nodes and then it applies also the tables that it finds on its shared folder.

Although we did not experience similar cases, it is conceivable that if some nodes remain

dormant long enough, the size of the hinted handoff tables may grow large enough to become

an issue for both performance and cost. Several strategies are possible to mitigate this risk.

One possible solution could be to adopt a hybrid architecture, where most hints are stored

locally to the nodes and only the ones of the dormant nodes are in the storage area. A simpler

alternative consists in periodically activating the dormant nodes to allow them to synchronise

the pending hints. In addition, this option can decrease the required time necessary to boot

up the machine when it is really necessary. Furthermore, platforms such as Azure allows you

to pay only for the minutes effectively used, so cost should be contained.

A possible limitation, which we have not experienced during our experiments, is the bandwidth

bottleneck that this storage system can have in place. If the PAX deployment is large enough,

several nodes can have the necessity to write or read these files on the common shared storage.

We believe that the limits set by Microsoft Azure for the standard file storage service are

reasonably high for normal Cassandra size deployments. However, if the user incurs in such

issue, usually cloud providers offer also a premium version of them with the possibility to reserve

the number of IOPS that the cluster needs, guaranteeing that the nodes can quickly access the

data without incurring in the additional delays during the booting up process which impacts

on the system costs and performance. The usage of other distributed storage systems has been

also investigated but, from the best of our knowledge, these systems will impact considerably

more on the cost of the entire infrastructure.

4.7. Performance Evaluation 85

Table 4.3: Testbed configuration used for the controller evaluation.

Node YCSB client Controller

Number of VMs 8 4 1
VM type General purpose

O.S. Ubuntu 16.04.2 LTS
vCPUs 2 2 4
Memory 3.5GB 3.5GB 7GB

O.S. Disk 30GB Read/Write Host Caching
Data Disk 80GB (No Caching) none none

Table 4.4: YCSB Workload characteristic used for the system evaluation

Workload Read Write Distribution

A 50% 50% Zipfian
B 95% 5% Zipfian
C 100% 0% Zipfian
G 100% 0% Latest

4.7 Performance Evaluation

4.7.1 Methodology

The evaluation of our elastic system is conducted on Microsoft Azure cloud with a Cassandra

cluster composed of 8 nodes. The hardware characteristics of the virtual machines are presented

in Table 4.3. On each Cassandra node is installed Sun Java 1.8 and Cassandra 3.0.9. In the

original Cassandra configuration, we set in the configuration file the num tokens to 2 to allow

us to have a larger elastic range (from 2 to 8 VMs) with a CL of ONE and the hints folder is

redirected to the shared disk managed by Azure. We also install and enable Jolokia to expose

the JMX metrics over HTTP. The Cassandra database is loaded with a total of 180 GBs of

data using a replication factor of 4.

Compared to the state-of-the-art in Cassandra autoscaling presented in Section 4.2, our setup

has a larger database with a higher replication factor. Using this architecture, these factors

significantly impact on the data synchronisation time necessary to the system to change the

configuration, since the amount of data that each node needs to transfer is bigger.

The workload generator machines run the YCSB benchmark [CST+10]. The YCSB workload

86 Chapter 4. Partition-Aware Autoscaling for the Cassandra NoSQL Database

characteristics are summarised in Table 4.4. The defined workloads are characterised by dif-

ferent proportion of read and write operations. Most of the workloads are using the Zipfian

distribution with the exception of the workload G which uses the Latest distribution. Zipfian

and Latest distributions are very similar, but they select differently the target primary keys.

Using the Latest distribution, the most recent keys becomes the most popular and they are

queried more frequently. On the other hand, the popularity of the items in Zipfian is not influ-

enced by new records. Workload generator is deployed on 4 virtual machines and one VM for

the PAX controller. The PAX controller VM is independent and not able to compromise the

Cassandra stability so, in case of failure, the controller can be quickly rebooted and resumes

execution within a few minutes, during which the database operates as normal.

Each experiment is represented by two plots. The top figure shows the increase in arrival rate

(in tps) and clients. The bottom figure shows the response of the PAX controller in terms of

number of nodes, actual utilisation U of the testbed and predicted utilisation values by the

ARIMA forecasting. The predicted throughput and CPU are represented by the dot marker.

In-between any two markers, no prediction is performed since the controller awaits that the

system stabilises to retrain the ARIMA process and resume the forecasting.

4.7.2 Comparing proactive and reactive approaches

Figure 4.10a and Figure 4.10b compares PAX using the proactive and reactive controller. The

experiment uses a workload B, lasting two hours and exhibiting a peak in the number of active

clients. The figures show that both strategies are able to scale and satisfy the demands of

resources. However, the reactive approach scales later in time compared to proactive and it

also use less machines. In addition, by using less resources, the average CPU utilisation of

the reactive method is higher than the proactive case. This has also some impact on the

overall system throughput where the system satisfies the maximum load later compared to the

proactive one. On the other hand, the reactive environment consumes less resources, saving

around 0.126$ per hour. The proactive controller reduces significantly the under-provisioning

of the system and it supports better the time-varying workload.

4.7. Performance Evaluation 87

(a) proactive (b) reactive

Figure 4.10: PAX benchmark with a peak of maximum 80 clients using workload B.

4.7.3 Step response and overlapped peaks

Figure 4.11a presents the performance of the PAX controller under a step increase of 80 clients,

using the workload A. Since the system does not have any information about the future, the

controller is, as expected, not able to anticipate the sudden step increase but, immediately

after, it reacts correctly to it by starting new VMs that avoid the utilisation to step out of the

target range, except for a negligible period as reported in Table 4.5.

Differently, Figure 4.11b presents an experiment with two successive peaks in the number of

clients and based on workload C. As the clients grow, the CPU utilisation sharply reaches the

upper bound. As this is a rather slow growth pace, the ARIMA predictor suggests that this

peak can be handled with the current testbed and this is indeed the case. However, as the

second larger and growing faster peak arrives, the ARIMA controller is able to anticipate it

in the initial stages. In fact, shortly after 100 minutes, PAX activates other 3 VMs to handle

the peak workload effectively. Even if the system presents a higher Tu time compared to the

other proactive experiments (Table 4.5), the Au is very low meaning that the system is really

88 Chapter 4. Partition-Aware Autoscaling for the Cassandra NoSQL Database

(a) (b)

Figure 4.11: PAX controller response to a) a step of 80 clients starts issuing YCSB workload
A; b) two overlapped peaks and workload C.

close to the U+ bound. In addition, this experiment presents the higher cost saving of 61.42%

compared to a traditional Cassandra implementation where all the nodes are always active.

4.7.4 Architecture change

We now show the ability of the WA query sampling to trigger actions in response to a change

of the query mix issued by the clients. The results are presented in Figure 4.12a. During

the experiment execution, the workload generated by YCSB changes from workload C to G,

modifying the primary key access rates. These two workloads are composed both by read

only operations but they use different distributions. Zipfian and Latest distributions are very

similar but they select differently the target primary keys. Using the Latest distribution, the

most recent keys become the more popular and they are queries more frequently. On the other

hand, Zipfian popularity of the items it is not influenced by new records.

Few minutes after the start of the figure, the PAX controller, using the WA information,

4.7. Performance Evaluation 89

Table 4.5: Evaluation results for PAX and OPAX.

max N TU AU $/min $ saving

Fig. 4.10a 7 30s (0.41%) 0.07% 0.0059 33.56%
Fig. 4.10b 5 505s (3.54%) 0.20% 0.0038 56.36%
Fig. 4.11a 8 21s (0.3%) 0.12% 0.0074 11.53%
Fig. 4.11b 5 184s (1.28%) 0.007% 0.0037 61.42%
Fig. 4.13a 8 0s (0.0%) 0.0% 0.0085 15.34%
Fig. 4.13b 8 30s (0.416%) 0.01% 0.0077 17.00%

(a) (b)

Figure 4.12: PAX controller response to a) changes in the hot partitions; b) a different consis-
tency level (CL=TWO).

identifies a better configuration for the G workload. When a new configuration is detected,

the PAX controller activates it and during the stabilisation period the two configurations are

both active at the same time. Then the VMs of the old configuration become dormant. The

configuration changes significantly benefits throughput, which increases from 1190 tps to 2500

tps. This illustrates the benefits of partition-aware autoscaling in Cassandra.

90 Chapter 4. Partition-Aware Autoscaling for the Cassandra NoSQL Database

4.7.5 Different Consistency Level

Figure 4.12b reports the case where a different consistency level is applied to the queries. In

fact, instead of using the CL equal to ONE, we set the YCSB to perform only queries with

consistency level TWO using the workload B, so two copies of the same data needs to be read

or write to complete the request.

This experiment shows that PAX is able to work regardless of the consistency levels apply

so, the database administrator is free to decide what kind of consistency level to apply to

the queries. However, increasing the consistency level, also the number of minimum active

nodes increases and the environment becomes more expensive. For the experiment presented

in Figure 4.12b the minimum number of active nodes is set to four. Since Cassandra is able to

find enough replicas of the data it is able to work properly and PAX is able to scale out when

more clients are connected to the cluster.

4.8 OPAX strategy

We try to improve the PAX controller defining a more sophisticate strategy, called Holistic PAX

(OPAX). Differently from PAX, OPAX takes in consideration all the factors at the same time

to look for possible configurations that can potentially perform better than the one returned

by PAX. In addition, OPAX is able to predict the CPU utilisation of all the active machines

involved after the scaling action. OPAX relies on the same information used by PAX but it

processes them in a different way.

When PAX autoscaling is triggered, the strategy starts to first understand the number of

machines needed to support the workload and then, based on this number, it decides to which

machines change the status. On the other hand, OPAX generates a list with all the possible

configurations that can be deployed, which has a valid configuration for the system, and then

for each configuration, it calculates the CPU utilisation for all the active nodes and averages

them.

4.8. OPAX strategy 91

(a) OPAX (b) PAX

Figure 4.13: OPAX and PAX comparison with a peak of maximum 80 clients using workload
A

The average CPU utilisation of a possible configuration is calculated gathering the information

provided by the WA, calculating the number of requests that each partition is receiving and

splitting them across the number of available partitions that the configuration has. Let us

assume that λp is the access rate to the partition p and pa the number of active partitions

across the entire cluster. We can then calculate the new access rate to the partition (λ̂p) with

the selected configuration like λ̂p = λp
pa

. Using this information we are able to calculate the

CPU utilisation of the node i using the formula Ui = θ ·Xi where θ is the demand of the system

and Xi is the predicted throughput for the node i. The predicted throughput is calculated as

Xi = X ·
∑

p∈Pi
λ̂p where the X is the overall system throughput and Pi represent the set of

partitions stored locally on i-th node.

Once the evaluation of all the valid configurations is finished, OPAX considers only the config-

urations that return an average CPU utilisation value inside the user defined range. The final

configuration that is selected to be actuated, is chosen by the aggressive strategy based on the

user setting. For our experience, the normal strategy is the one which performs better with

92 Chapter 4. Partition-Aware Autoscaling for the Cassandra NoSQL Database

OPAX.

Now we want to present a comparison between the PAX and OPAX algorithms. These exper-

iments are conducted using a peak of maximum 80 clients and using the workload A. Figure

4.13a shows the OPAX autoscaling behaviour while PAX is shown in Figure 4.13b.

The two algorithms are performing very similarly. Both used all the available nodes to support

the maximum load of the system. However, PAX reaches the 8 nodes doing an intermediate

step of 6 nodes. This can potentially reduce the cost of the infrastructure but it can introduce

some SLO violations as show in the figure. On the other hand, increasing directly to 8 nodes,

OPAX never violates the SLO during this experiment.

A different aspect to consider between PAX and OPAX is the complexity of the OPAX algo-

rithm. Since we used a small cluster, we have not noticed any major difference between the

two. However, since OPAX has the necessity to generate and evaluate all the possible valid

configurations, in the worst case scenario it needs to evaluate

N∏
M

N !

(N −R)!R!
(4.1)

where M is the minimum number of nodes of a valid configuration that, in the most optimistic

case, it is represented by the CLmax to ensure to be satisfied. However, some factors can

influence the number of configurations to analyse, speeding up the process and reducing the

time to identify the best configuration. For example, in the case that the cluster has N
2

active

nodes and the load is increasing, so the system needs to scale up, OPAX can set M to start

from the number of active nodes or a value around that number. A similar process can be also

defined when the system needs to scale down. In general, different policies can be defined but,

due to the inability to test them, we decided to investigate them on some future work.

4.9. Summary and Conclusion 93

4.9 Summary and Conclusion

In this chapter, we have proposed two novel auto-scaling systems for Cassandra called PAX

and OPAX. Both leverages the hinted-handoff mechanism of Cassandra to reduce the data

synchronisation period when a new node is added to the cluster. Based on this, we have defined

reactive and proactive controllers that profile the current workload and use this information to

activate the Cassandra nodes that store hot data partitions. We have found that both reactive

and proactive implementations are useful in practice. The reactive method uses less VMs but

incurring more frequently under-provisioning, while the proactive allows negligible violations

of the target utilisation. We evaluate PAX under different scenario and in all the situations it

is able to address the demand of resources efficiently.

Furthermore, we develop a more sophisticated autoscaling system that reduces even more the

SLO violation compared to PAX. Both the autoscaling systems are able to identify the correct

architecture to deploy based on the current workload profiler information and to optimise the

infrastructure costs. Based on our experiments, the proposed autoscaling system is able to

reduce up to 60% the operational costs.

Chapter 5

SD: a Divergence-based Estimation

Method for Service Demands

5.1 Introduction

Over the last decade, models to predict performance behaviour of cloud systems have been

increasingly used to drive automated resource management [ACC+14]. In particular, the con-

stantly growing trend of retrieving and storing monitoring data in production systems for

analytics has also paved the way to a new generation of automated methods to parametrize per-

formance models from empirical datasets [PHK17, SCBK15]. In traditional capacity planning

methodologies, performance models are developed and validated on a test environment which

may not reflect the hardware or workload characteristics of the real system in production requir-

ing manual tuning and frequently leading to incorrect decisions at run-time [MZR+07, CMS10,

MPGSL06]. By developing automated methods for demand estimation, one may instead pa-

rameterize performance and reliability models for a given system directly in the production

environment, thus addressing the shortcomings of classic methods and concurrently supporting

other system components, such as cloud auto-scaling controllers [DBC18, HHL12, DWS12].

A common problem arising in performance model estimation is the accurate inference of ser-

vice demands, which are the average computational requirements placed by different types of

94

5.1. Introduction 95

requests within a system. Existing estimation algorithms obtain demands from steady-state

metrics such as throughput, response times[LXMZ03, UPS+07, PPSC13] , and resource uti-

lization [NKJT09, BKK09, PSST08, KZ06, ZCS07]. However, existing techniques can have

erratic performance and it is difficult to identify a method that is best in all cases [SCBK15].

The most commonly used demand estimation methods accept in input mean performance met-

rics, thus not fully exploiting during the inference process of a large part of the information

available within a measured dataset. For example, although more challenging mathematically,

methods that exploit observed response time distributions have been proposed to address this

shortcoming [SCBK15]. However, the applicability of these techniques is often limited by their

scalability, as they can require a numerical solution to the underpinning queueing models using

rather computationally-intensive approaches such as absorbing Markov chains or fluid differen-

tial equations and non-linear optimisation [KPSCD09, PHK17].

In this chapter, we instead propose a demand estimation method that requires to collect

marginal state probabilities for the number of requests processed by individual nodes of a cloud

system. The marginal state probability defines the probability to observe a resource with a

particular mixture of requests in execution. This is different from the joint probability which

considers the state of the entire system. While probabilistic methods have appeared in recent

work [WCKN18], our proposal differs as we wish to carry out a more advanced probabilistic

analysis that takes into account the execution workflow of a request, in order to more accu-

rately estimate demand at various stages of operation. We assume that each job is tagged with

a class of service at a given time. Workflows are then described in terms of a sequence of class-

switching steps for jobs that visit one or more resources in the system [BCMP75, BGDMT06]

. That is, upon moving from a node to another, a job can switch its class so to represent a

different phase of execution.

Class-switching has received a limited degree of attention in prior work on demand estimation,

possibly with the exception of [PHK17] which considers it in the context of a single multi-server

resource. However, workflows arise commonly in distributed systems composed by multiple

resources, which is the case we consider in this work. For example, a request that visits the same

resource multiple times, asking statistically different computational requirements at every visit

96 Chapter 5. SD: a Divergence-based Estimation Method for Service Demands

is naturally captured in terms of a job that switches its class in-between visits. For example, a

job that visits multiple times the same node, requesting different execution requirements at each

visit, may be modelled by assuming that the job switches class in-between visits. Distributed

NoSQL databases such as Apache Cassandra provide an example, in which class-switching can

be used to express a workflow of execution through multiple nodes in order to retrieve the data

needed by a query for its completion [DCS17].

Despite their practical importance, class-switching models can be difficult to deal with due to

state-space explosion, which is more rapid than in standard multiclass models. In order to

increase their tractability, we consider class-switching in the context of product-form queueing

network theory [BCMP75], which allows one to exactly transform a model with class-switching

into a multiclass model without class-switching [Zah79, BGDMT06]. Despite this equivalence

result, we notice that in the presence of load-dependence there appear to be no exact formulas

available to perform this mapping for computing marginal state probabilities, a gap that we

also overcome in this work.

Leveraging the proposed methods to obtain marginal probabilities in the presence of class-

switching, we propose a new demand estimation approach, based on information-theoretic

divergence measures, called State Divergence (SD) estimation. SD seeks to minimise the di-

vergence between marginal state probabilities and their corresponding empirical estimates, in

order to produce accurate estimates for the demands. Because marginals capture each job

class, without the aggregation implicit in the transformations from class-switching models to

multiclass models without class-switching, it can explicitly capture the actual mix of requests

in execution at a resource more accurately than using the aggregated model. The rationale

for this method is that, by minimising state divergence, one should obtain model parameters

that accurately capture the stationary behaviour of the system, as reflected by occupancy in a

fraction of its observable states, more accurately than by looking only at its output performance

metrics, such as throughput, response times, or CPU utilisation.

We validate the SD estimation algorithm through several randomly generated models and with

a case study conducted using the Apache Cassandra NoSQL database [LM10]. Our results

5.2. Motivation Example 97

demonstrate that SD can significantly reduce errors in performance prediction compared to

state-of-the-art algorithms which do not explicitly account for class-switching. The obtained

demands are able to match the system state while reproducing a more realistic behaviour in

the model compared to state-of-the-art estimation algorithms.

The rest of the chapter is organised as follows: in Section 5.2 we provide a motivating example.

Section 5.3 presents a novel probabilistic formula we have developed to analyse systems with

class-switching. The SD algorithm is then developed in Section 5.4, where we also present

several possible divergence measures that can be used with our method. In Section 5.5 and

Section 5.6, we give experimental results on Apache Cassandra and random model instances.

Finally, Section 5.7, the conclusions are presented.

5.2 Motivation Example

Over the years, several inference algorithms have been developed to parameterize performance

models of cloud systems [SCBK15]. For the purpose of this section, we focus our attention

on the complete information (CI) algorithm [PPSC13]. This algorithm estimates the demand

taking, as input, samples of the arrival rate and execution time of the system request. We

consider this algorithm because it supports multi-threading, multi-class and class-switching.

To better understand and illustrate the limitation of an existing method such as CI when the

class-switch is in use, we want to analyse the difference between the marginal state probabilities

of a real system and the performance model parameterized using the service demands obtained

by CI. For the purpose of this experiment, we use a Cassandra cluster composed of three nodes,

deployed on Microsoft Azure. As workload generator, we run YCSB [CST+10] with 10 clients

that continuously perform read queries to the database with a consistency level ONE. While

the system is working, some network traffic is recorded from one node and then processed with

the CI demand estimation algorithm. Then, the resulting demands are set into the Cassandra

model presented in [DCS17] for recording the marginal state probability of the model of a single

Cassandra node and compare it with the real node.

98 Chapter 5. SD: a Divergence-based Estimation Method for Service Demands

Figure 5.1: Marginal probability difference between Cassandra and Simulation.

Figure 5.1 compares the two marginal state probabilities. The horizontal axis shows the system

state of a particular Cassandra node, given as the number of requests of three classes in that

node. On the vertical axis, we show the probability that the system is in the corresponding state.

The two models have very similar mean performance metrics such as throughput, response time

and CPU utilisation with the maximum error across the three metrics below 12%. The similarity

in CPU utilisation is also demonstrated observing the first state (0, 0, 0), which represents the

probability to observe the system without any outstanding requests. For this state only, the two

probabilities are very similar. However, for the remaining states, the marginal state probabilities

are significantly different.

To understand the similarity of these two probabilities, we calculate their divergence using the

Kullback-Leibler measure. This measure quantifies similarity between two probabilities distri-

butions (see Section 5.4.2). The closer the returned value is to 0, the more similar the two

probabilities are. However, if the value is above 1, the algorithm suggests that the two proba-

bilities are not very similar. In this case, the algorithm returns a value of 2.41, suggesting that

even if the predicted performance metrics are close to the real system ones, the underpinning

state dynamics in the performance model not resemble the real system dynamics. Our goal in

the rest of the chapter is to propose a method that penalizes the estimation of demands that

result in high divergence scores between predicted and measured state probabilities.

5.3. Efficient marginal probabilities calculation 99

Notation Description

M Number of nodes in the model.

K Number of queueing stations.

R Number of job classes.

C Number of job chains.

Nr Number of jobs in class r, N =
∑

rNr

θkr Service demand of class r at node k.

σr Think time of class-r, σr =
∑M

k=K+1 Θkr

ci Number of servers at node i

sir Service time at node i for jobs in class r

eir Visit ratio at station i for jobs in class r

Table 5.1: Summary of main notation for queueing network models

5.3 Efficient marginal probabilities calculation

In this section, we present the algorithm we developed to efficiently calculate the marginal

probability for BCMP model that use class-switches. The formulas are based for the product

form solver we presented in Section 2.3. To facilitate the reader, in Table 5.1 we report the

main notations used to describe the algorithm.

In the evaluation section, we have the necessity to often compute the marginal probability for a

given a set of jobs ni = (ni1, ni2, . . . , niR) that resides at station i. However, because the model

is solved by aggregating classes into chains, the underpinning state space describes the state

of station i as n̂i = (ni1, ni2, . . . , niC), where C is the number of chains, making it difficult to

recover per-class metrics.

In [Zah79, p. 110], the authors observe that probability of a particular mix of jobs n =

(n1, . . . , nR) being active in the system is the ratio of the normalising constant of a closed

model with fixed class populations n divided by the normalising constant of the model with

class-switching. Because the factors fi(ni) in the product-form solution can themselves be

regarded as normalising constants for degenerate models with a single station and population

ni, one readily concludes that the mix probability derived in [Zah79] can be used to establish

100 Chapter 5. SD: a Divergence-based Estimation Method for Service Demands

the per-class population at a node in the aggregated model. This leads to the expression

π(ni) =
ni!∏ni

u=1 min(u, ci)

R∏
r=1

θnir
ir

nir!

G−i
Θ̂

(N̂ − n̂i)
GΘ̂(N̂)

(5.1)

where G−i
Θ̂

is the normalising constant for the sub-network composed by all stations except

station i, and n̂i is obtained from ni by summing classes that belong to the same chain. Note

that both GΘ̂ and G−i
Θ̂

are defined for the aggregate model, and thus are computed using the

aggregate population vector N̂ and the matrix of the aggregate demands Θ̂.

To the best of our knowledge, (5.1) has not appeared before in the literature. This expression

paves the way to define a method for estimating service demands in class-switching models,

which is presented in the next section.

5.4 Estimation Algorithm

In this section, we describe our algorithm for demand estimation. Differently from other al-

gorithms that look into aggregated performance metrics such as system throughput, system

response time or CPU utilisation (as described in Section 2.4), the SD algorithm minimises the

divergence between the state probability distribution of the real system from the one generated

by the model under test. The algorithm is defined in the following section and then we present

some divergence measures that can be used to compare the two state probability distributions.

5.4.1 SD Algorithm

To be able to work, SD requires a model, provided by the user, of the system under test

(SUT). To reduce the execution time of the method, we consider in this work only models

that comply with the BCMP theorem, as described in Section 2.3.2, and denote this model by

M ≡ M (N ,Θ). However, the SD algorithm is in principle applicable to any other model from

which the state probability distribution can be computed fast enough to apply computational

optimisation methods.

5.4. Estimation Algorithm 101

Let ns = (ns1, . . . ,n
s
M) denote the s-th state sample (s = 1, . . . , S) obtained from the SUT

and defined such that nsi = (nsi1, . . . , n
s
iR) is the state of station i. The principle underlying

SD is to minimise the divergence between observed and predicted marginal state probabilities

π(nsi) for the SUT, for all stations i and samples s. We denote the empirical and model-based

marginal probability distributions with P and Q, respectively. That is, P consists of all the

marginal probabilities π(nsi) for every node i and state sample ns obtained from measurements

on the SUT; similarly, Q consists of the corresponding marginal probabilities computed using

the model M (N ,Θ).

A conceptual difficulty arising upon optimising state divergences is that this metric does not

explicitly consider mean performance metrics, even though these are the typical metrics used

once the model is fully parametrized. We propose to address this issue by constraining the

divergence minimisation to return predictions for mean performance metrics within a tolerance.

The performance metrics considered include, but are not limited to, the system throughput (X),

system response time (R) and the resource utilisation (U). Such metrics can be readily obtained

in SUT using conventional monitoring tools and in the model using known expressions available

for BCMP networks [LZGS84]. To differentiate the real and model-based values, we denote

the former for example as X̃ and the latter as X.

Let D∗(P,Q) ≥ 0 be a generic non-negative f-divergence function used to compare the two

probability distributions. Based on the previous considerations, we define the SD optimisation

problem as follows:

SD : min
Θ

D∗(P,Q)

subject to |X̃ −X| ≤ δ · X̃

|R̃−R| ≤ δ · R̃

|Ũ − U | ≤ δ · Ũ

0 ≤ θir ≤ R̃

(5.2)

where all the variables of the demand vector (Θ) have, as upper bound, the average response

time measured on the real system during the experiment. On the other hand, δ ≥ 0 is a

tolerance on the maximum relative error on the model mean performance predictions.

102 Chapter 5. SD: a Divergence-based Estimation Method for Service Demands

Different f-divergence measures can be used with this optimisation problem. In the following

section, we present the most popular algorithms and their properties.

5.4.2 Divergence measures

In this section, different f-divergence measures are presented, namely Bhattacharyya, Hellinger,

Jensen-Shannon and Kullback-Leibler. These measures are divided here into two groups, dis-

tance functions and divergence measures. The difference between them is represented by the

symmetric property. The distance is a symmetric function for which the order of the input

probabilities does not change the output results; conversely, divergence measures are sensitive

to the order of the input parameters. Another important difference between these measures

is the output bound range that can be limited in a range, usually between 0 and 1, or go to

infinite. The algorithm to use for a target system can depend on the measure considered and

the bound of the results.

Bhattacharyya and Hellinger distance functions

The Bhattacharyya (BC) distance is a classical distance function [Bha43, Kai67] and it is

used in several fields such as feature extraction [CL03], image processing [GRD04], speaker

recognition [YLL09], etc . It is defined as

DBC(P ||Q) = − logBC (5.3)

where BC is the Bhattacharyya coefficient that for discrete distribution. It is defined as

BC =
∑
x∈X

√
P (x)Q(x) (5.4)

The Bhattacharyya coefficient can be connected to the geometric mean between the two points.

Since the sum of all the probabilities is 1, the Bhattacharyya coefficient lies between 0 ≤ BC ≤

5.4. Estimation Algorithm 103

1. Due to the logarithm, the Bhattacharyya distance DBC is consequently defined between

0 ≤ DBC ≤ ∞. So, the Bhattacharyya measure is symmetric, unbounded and returns always

positive values.

The Bhattacharyya coefficient (BC) is also used to define the Hellinger distance (HE). HE is

defined as [Hel09, Nik01, SV16]

DHE(P ||Q) =
√

1−BC (5.5)

It lies between 0 ≤ DHE ≤ 1 and it is a linear function, differently from the Bhattacharyya

that has a logarithm behaviours. This distance is frequently applied in multi-criteria decision

maker [LK14], feature extraction [CLC+15] and independent component analysis [JWY15].

Kullback-Leibler and Jensen-Shannon divergence

Differently from a distance metric, the Kullback-Leibler (KL) divergence (or relative entropy)

is a generalisation of the Rényi entropies [Rén61]. It is an asymmetric function, so output of

the function of P and Q is not equal to the results of Q and P .

Since we use this metric in a discrete space to measure the divergence between two marginal

probabilities, here we consider only the Kullback-Leibler divergence discrete formulas. It is

defined as

DKL(P ||Q) =
∑
x∈X

P (x) · log
P (x)

Q(x)
(5.6)

The Kullback-Leibler divergence (KL) can be also expressed as the expectation of the log

difference between the two probability distributions. The expected value of a discrete function

is equal to the weighted sum of all possible values.

In other words, the closer the KL divergence value is to 0 the more similar the two probability

distributions are. On the other hand, if the value is greater or equal to 1, several differences

104 Chapter 5. SD: a Divergence-based Estimation Method for Service Demands

between the two probability distributions are present.

The Jensen-Shannon (JS) divergence is based on the Kullback-Leibler measure. It differs from

the latter for being a symmetric function, bounded within a finite range. The JS divergence is

defined as

DJS(P ||Q) =
1

2
DKL(P ||M) +

1

2
DKL(Q||M) (5.7)

where M is the average between the two distributions and it is defined as

M(P ||Q) =
1

2
(P +Q) (5.8)

The Jensen-Shannon divergence is bounded between 0 ≤ DJS ≤ 1

5.5 Evaluation

In this section, we present the evaluation of our SD algorithm. We start our investigation with

a case study base on Apache Cassandra. From a real system, we record some performance

metrics of the overall system and of each node as well as some network communication across

the nodes. We use this sniffed communication to construct the system state and gather the

marginal probability distribution of the real system. In addition, we also build a queuing net-

work representation of the real system to use with our optimisation algorithm. Using these

elements, we perform a sensitivity analysis across several factors such as optimisation algo-

rithms, state strategies, divergence measures and number of state to use as searching space.

We then present the performance of our model based on the demands provided by the SD

algorithm demonstrating that the algorithm is able to detect the set of demands that are able

to approximate best performance of the real system and so to reproduce the system behaviour

comparing on the marginal state probabilities of the two systems.

We further investigate the performance of our algorithm against a set of 100 random models.

5.5. Evaluation 105

Figure 5.2: Simplified Cassandra model.

We demonstrate that, using more accurate information that presents also less noise, the SD

algorithm is able to infer the demands with a lower error and quicker.

5.5.1 Cassandra Simplified Model

In this section, we illustrate the Cassandra model used for evaluating the SD algorithm. This

is a simplified version of the model presented in [DCS17]. With the aim to reduce the model

complexity and the system state space, we have developed a model able to support only the

Consistency Level ONE. We represent with a single queue each Cassandra node, as shown

in Figure 5.2. Each Cassandra node uses the processor sharing (PS) scheduling policy. The

disk and network stations used in [DCS17], have been grouped in a single infinite queue (or

infinite server), called “Net” positioned right after the workload generator, assuming that the

requests have few variances between them and so the demands of these resources can be group

together in a single queue. Differently, if significant variance in terms of size of the requests is

observed on the system, this model could not be able to represent the performance of the real

system correctly. Moreover, the workload generator has also been modelled as an infinite server.

Similarly to [DCS17], all the Cassandra nodes that compose the cluster are interconnected with

each other to retrieve the data that is necessary to complete the client requests. To communicate

with the workload generator, each node uses a separate connection. Moreover, due to the

simplified structure of the model and the usage of only the Consistency Level ONE, we are able

to remove the fork-join elements from the previous model and reduce the classes to 4. During

106 Chapter 5. SD: a Divergence-based Estimation Method for Service Demands

Class Description
local-pars Local request operations.
remote-pars Remote request parsing operations.
remote-ID It can represent a remote ending operations

(remote-end) or data request(remote-incoming).

Table 5.2: Description of the classes used for in simplified Cassandra model

the execution, a query needs to perform several operations before returning to the workload

generator and terminating the query execution. The classes are:

• local : accomplishes all the parsing operations for a local query. These operations involve

the interpretation of the received query, identify the location of the data on its local disk

and the ending operations of the query.

• remote-pars : accomplishes all the parsing operations for a remote query and generates

the remote-incoming request to one of the clients that holds a copy of the data.

• remote-end : the ending operations of a remote request are performed before returning

the data to the client.

• remote-incoming-ID : the request generated by the node to gathers the data to another

node. The node to contact is defined with “ID”. So multiple classes like this one needs

to be generated based on the number of Cassandra nodes in the model.

To reduce the number of classes in the model, we aggregate together the remote-end and the

remote-incoming classes in the remote-ID class as reported in Table 5.2. The model differentiate

the demands to use in each case based on the Cassandra-ID. In fact, if this class is executed on

the same ID node as the station, the remote-end operation is performed otherwise, this class

represents a remote-incoming.

Model Flow

As in the complete Cassandra model in [DCS17], the node representing YCSB is set to be the

reference station and represents the workload generator. All the requests generated by YCSB

5.5. Evaluation 107

start in the local class. After traversing a delay station to describe the network latency (Net),

part of the jobs changes class in remote-pars and are sent randomly to one of the Cassandra

nodes. The number of requests that change class depends on the total number of nodes that

compose the cluster and the replication factor used. It is defined as (N − RF)/N [DCS17].

In case of a local request, the query is processed by the node and then returns directly to the

workload generator.

On the other hand, a remote-pars request is processed by the receiving node and then switches

in the remote-ID class to be delivered to another node. The job is processed as a remote

incoming request and, when terminates, it is sent back to the previous node before returning

to the workload generator as a local class.

State conversion of the real system

Here, we present how the state are gathered by the real Cassandra system analysing the network

traffic. Since we do not want to change the Cassandra source code or its behaviour to gather

more accurate information, the state of this system are obtained only analysing the source and

destination of the packets. Analysing the IP and port of the source and destination of the

packets, we are able to identify the three classes that are executed on a target node:

1. new-query : all the new queries that come from the workload generator IP to the target

node. For these requests, we are not able to identify if a query is local or remote;

2. remote-end : represents the last operations of a remote request. The remote request is

identified if a remote-incoming request (as defined in the model) has been observed on

the network;

3. request-incoming : represents the requests issued by the other nodes to the target node of

the cluster to gather the data regarding a specified record.

To convert the model state to the Cassandra one before applying the divergence measure, the

model marginal probability is transformed as:

108 Chapter 5. SD: a Divergence-based Estimation Method for Service Demands

Resource Description
Cloud provider Microsoft Azure (IaaS).
VM type Standard D2s v3.
CPU 2 vCPUs.
Memory 8 GBs.
Disk size OS 30GB, Data 80GB.
Disk type Premium (SSD).
Cassandra nodes 3 (version Apache Cassandra 3.11).
YCSB nodes 1 (version YCSB 0.12.0).
YCSB workload Workload C (100% read).

Table 5.3: Testbed details.

1. new-query : we search all the possible combination of the local and remote-pars that

summed together obtained that value;

2. request-incoming : all the remote-incoming requests from the other nodes are summed

together;

3. remote-end : is taken the same value as the model.

Thanks to this transformation, the two marginal probability distributions can be compared

using one of the divergence measures presented in section 5.4.2.

5.5.2 Experiment settings

In order to evaluate the SD method, we have collected an empirical trace from a Cassandra

ring deployed on Microsoft Azure. As the validation is done for illustrative purposes, a small

cluster composed by 3 Cassandra Virtual Machines (VMs) has been set up. However, the

results are not expected to significantly depend on the number of nodes. Details of the testbed

are reported in Table 5.3.

The version of Cassandra installed in the testbed is 3.11. As workload generator, we have

decided to install Yahoo! Cloud System Benchmark (YCSB) tool [CST+10] on one additional

VM. Since the read operation in Cassandra is the most complex and thus the most challenging

to characterise, we decided to focus mainly on a read-only workload.

5.5. Evaluation 109

We warm up the system running for 10 minutes the cluster with the predefined number of

clients. Keeping the workload generator running, we start to record all the Cassandra traffic

communication of the target node with the YCSB and with the other clients using tcpdump

tool [Tcp18]. Different time lengths for sniffing traffic have been tested and we decided to use

one minute since the marginal probability is stable. We do not use longer periods because the

sniffed data grows very quickly so more data needs to be stored and more time is required to

process them. We develop some Python scripts to analyse the recorded traffic. Looking at the

source and destination of the connections, the scripts are able to detect the state of the system

at each stage and so construct the marginal probability of the system for the recorded period

of time.

5.5.3 Minimization algorithm settings

We have first tested the SD demand estimation approach using four different algorithms for the

optimisation of the underpinning non-linear program, namely Fmincon [BGN00, WMNO06],

GlobalSearch (GS) [ULP+07], MultiStart (MS) and Genetic Algorithm (GA) [GH88, CGT97,

Mit98], which are all available in MATLAB version R2018b. More details about these optimi-

sation algorithms can be find in Section 2.4.4.

For our evaluation, we have used for all the algorithms the same objective function, non-linear

constraints and bound [10−10, RTsystem] for all the decisions variables (i.e., service demands),

where RTsystem is the average response time observed by the workload generator. In the case of

the Fmincon algorithm, by default the starting point for all the variables are taken randomly

inside the range. Since this parameter can influence the final results, to achieve repeatable

outcome, we set all the values to half of the system response time value. Of course, this can

influence the final results but this is necessary to be able to compare the algorithm through

the different cases. Regarding the non-linear constraints, we limit the evaluation only to the

overall system throughput to make sure that the set of testing demands has a relative error (δ)

of less than 20% from the real one.

The Cassandra queueing model uses 5 random variables representing the demand due to the

110 Chapter 5. SD: a Divergence-based Estimation Method for Service Demands

network delay and the demands for the four classes of the model (local, remote-pars, remote-end

and remote-incoming), which are identical at all nodes. By default, the NC solver available in

the LINE solver [PC17, Cas19] is used to analyse and retrieve performance and marginal prob-

abilities of the model under test, using an implementation of the expressions in Section 2.3.2.

The two probability distributions are then compared using one of the divergence measures pre-

sented in Section 5.4.2. Concerning the workload generator, its demand is estimated considering

the CPU time that YCSB spent into the system divided by the number of requests generated

in that period of time.

5.5.4 Sensitivity analysis

In this subsection, we perform a sensitivity analysis of our results with respect to the state

space size sampled from the real system and the choice of divergence measures.

State Space

Some considerations about the state space used with the SD algorithm are presented in this

section. We start presenting how quickly the number of states grows increasing the number of

clients in the system and then we present the impact of three state spaces on the performance

of the SD algorithm.

As described in Section 5.4.1, the SD algorithm considers all the states that have been observed

in the real system during the monitoring period. When the number of clients in the system

is small, the state space can be exhaustively observed if the monitoring period is long enough.

However, when the number of clients grows, the state space size grows exponentially according

to the formula

S = 1 +
N∑
n=0

(
n+ L− 1

L− 1

)
(5.9)

where N is the total number of jobs into the system and L is the product between the number

of classes of the chain and the number of stations in the system or model. Since our target

node is a single station with 3 classes, for our calculation the value of L is equal to 3.

5.5. Evaluation 111

Clients Observed Actual size
1 4 4 (100%)
10 234 286 (81.8%)
30 2939 4960 (59.2%)
50 10302 23426 (43.9%)

Table 5.4: How the total number of states
grows with the number of clients.

Figure 5.3: CDF for the first 200 state of the
marginal state probability.

As reported in Table 5.4, for Cassandra the state space is composed of 4 states with 1 client,

but grows to 286 states with 10 clients of which only 234 states were observed during a reference

experiment of one minute. Since it is very expensive, or even intractable, to compute marginal

probabilities for the complete state space, we have decided to limit the number of states to a

maximum of k states. That is, we obtain marginal probabilities from the system for k states

only. All the remaining states are aggregated into a single unobserved state to complete the

state probability distribution. We evaluate the SD algorithm using k = {3, 15, 30}; we shall

equivalently refer to these three cases as K3, K15, K30. The states to include into the sample

space are selected based on the k value.

The state selection is performed by dividing the probability distribution into three sections

(high, medium, low) and take an equal number of states from each group. However, these

three sections are applied to the state with a probability higher than 0.00001 only because the

marginal state probability trend decreases quite quickly. To demonstrate how fast the marginal

state probability decreases, in Figure 5.3, we show the CDF of the first 200 states using different

number of clients. The figure demonstrates also that increasing the number of clients into the

system the probability values of the first few state decrease.

To demonstrate the impact on the SD execution time of these three different state spaces, we

have run an experiment with 10 clients in the system. We decided to use 10 clients because, with

more clients, the search takes significantly more time to complete. Differently, with less clients,

all the state are considered and so the different strategies cannot be compared. Moreover,

112 Chapter 5. SD: a Divergence-based Estimation Method for Service Demands

(a) Execution time (b) Throughput error

Figure 5.4: Execution time and throughput error in relation to the number of elements in the
search state space.

for this evaluation only, we take in consideration two optimisation algorithms, Fmincon and

GlobalSearch, to better understand the impact of the searching space with a simple and a more

complex algorithm.

The difference of the execution time is reported in Figure 5.4a. It is clear that as the number

of elements inside the searching state space grows, the time required by the Fmincon and

GlobalSearch algorithms to complete grows linearly. This is caused by two main factors: with a

bigger searching state space, the optimisation algorithm computes more steps before completing

and the time required by the solver to analyse and retrieve the state probability is larger. This

effect is clearly emphasised looking at Fmincon optimisation algorithm, where the execution

time grows exponentially with the number of elements in the searching state space. On the other

hand, using a larger searching state space, the final set of demands returned by the algorithms

presents a lower percentage of error on the system throughput and it is more reliable than a

small one, as reported in Figure 5.4b.

State Strategy

Two possible strategies to calculate the marginal probability from the real system are presented

here. These two strategies are defined as:

5.5. Evaluation 113

(a) Frequent (b) Largest

Figure 5.5: Comparison between Frequency and Largest strategies with 10 clients and using
HE.

• Largest: considers the top-k most probable states, as defined by the amount of time spent

in each state.

• Frequent: considers the top-k most occurrent state of the system without considering

the time spent on each state. For the evaluation of this strategy, the arrival theorem

[LR80, SM81, LZGS84] has been applied.

To understand which of these two state strategies is able to perform better and so improving

the algorithm performance, we run an experiment with 10 clients using different optimisation

algorithms. The final values of the SD algorithm using HE distance is reported in Figure

5.5. The figure reports that the two strategies are very similar and no significant difference

is presented between them. In addition, increasing the number of state in the searching state

space, both strategies increase similarly the value returned by the selected divergence measure.

Since the largest strategy presents a slightly lower mean error we decided to use this strategy

for the rest of the experiments. However, since the two strategies are very similar, both can be

used for the demand estimation with our model.

114 Chapter 5. SD: a Divergence-based Estimation Method for Service Demands

Divergence measures

In this section of the sensitivity analysis, we present the results of a set of experiments necessary

to select the right combination of optimisation and divergence measure able to provide stable

results at the end of the SD algorithm execution. We perform our investigation in two steps.

We first compare two different optimisation algorithms: one based on derivative (Fmincon) and

one evolutionary algorithm (GA). Since derivative approach performed better on our initial

evaluation, we investigate if more complex and robust optimisation algorithms can improve the

performance of SD and which divergence algorithms is capable of achieving the best results.

Ideally, this combination needs to provide an algorithm that it is reliable, so able to explore all

the space generated by this model, and able to reduce the performance error of the algorithm

increasing the state space used.

As first step of our investigation, we check which optimisation algorithm performs better in

this context. We take into consideration the case with 10 clients using the Largest strategy.

To have a broader view, we compare these algorithms using 3 different sample space sizes

(K3, K15, K30) and dividing the comparison of the optimisation algorithms in two groups.

We first compare the Fmincon as derivative approach against the GA that is an evolutionary

algorithm. For these set of experiments, we use the default Matlab settings for these two

algorithms. The only change we made is to set as starting point for the Fmincon algorithm

half of the average response of the queries.

In Figure 5.6 the results of the comparison between Fmincon and Genetic Algorithm are pre-

sented. It is visible that the derivative-based algorithm outperforms GA in any of the analysed

situations. In most of the cases, the difference between the two algorithms is in the order of

one or more magnitudes. This can be caused by the genetic algorithm settings that we

used for these experiments. Usually two parameters can influence the GA performance. The

first parameter is the crossover parameter, which defines how to combine the new generation

based on the parents’ information. For non-linear optimisation problem three main approaches

are available in Matlab. We decided to use the default one (crossoverscattered) because it

does not take sequences of values from the parents but it decides randomly for each parameter

5.5. Evaluation 115

(a) BC (b) HE

(c) JS (d) KL

Figure 5.6: Divergence comparison with 10 clients and using Largest strategy with Fmincon
and GA.

from which parent inherit the value. The second parameter is the mutation that can influence

the new generation. The algorithm randomly changes few individuals of the population to

create mutation children. This enables the genetic algorithm to search a broader space and

create diversity. The choice to use the default genetic algorithm setting has been preferred

for simplicity and reproducibility reasons. However, this may not be sufficient to draw results

about the effectiveness of genetic algorithms for divergence estimation in general, as the latter

would require a more extensive sensitivity analysis for optimal parameter tuning of the specific

algorithm of choice, which will be investigate as future work.

Focusing the attention on Fmincon, the BC and HE divergence measure perform better than

the other two algorithms with a throughput error significantly lower than 10%, in most of the

cases. Furthermore, HE presents the lowest error value among the K30 and its error is reduced

116 Chapter 5. SD: a Divergence-based Estimation Method for Service Demands

(a) BC (b) HE

(c) JS (d) KL

Figure 5.7: Divergence comparison with 10 clients and using Largest strategy with GS and MS.

linearly with the growing number of states as part of the searching space.

Since the derivative-based algorithm outperforms the genetic one, we evaluate if more robust

derivative optimisation algorithms such as GS and MS are able to perform better. Figure 5.7

shows that these algorithms reduce further the throughput error and, in few cases, the errors are

negligible. Considering now the divergence measure, we notice that the HE measures using these

two optimisation algorithms presents the property that we are looking for the SD algorithm. In

fact, increasing the searching space, it reduces the error gradually. Moreover, when we use GS

with HE and K30 as state space, the algorithm reaches a negligible throughput error. Different

is the behaviour of the other divergence measures where the error is not constant or decreases

using bigger state searching space, like BC and KL, or where they even increase the error with

a larger state space, like Jensen-Shannon using GS.

5.5. Evaluation 117

(a) K3 (b) K15 (c) K30

Figure 5.8: Predicted throughput performance using different number of elements in the search-
ing state space.

For these reasons, we have decided to consider HE as the main divergence measure. Differently,

as optimisation algorithm, both the GS and MS can be used. However, in some cases, we still

considering the Fmincon optimisation algorithm because it is significantly faster than the GS

or MS.

5.5.5 Cassandra Demand Estimation

We now examine the performance of the SD algorithm on the Apache Cassandra case study.

We first present a comparison between performance metrics of the model parameterized with

the demands returned by the SD algorithm and the same metrics recorded in the real system.

Then, we carry out a comparison between the two state probability distributions.

Figure 5.8 illustrates the throughput prediction of the different searching algorithms with dif-

ferent numbers of elements into the searching space. It is clear that, by increasing the sampled

state space utilised during the search, the proposed approaches are able to perform better. The

benefits of using a larger state space are shown with K30 where the SD algorithm using GS

and MS predict, with low error, the system performance. The maximum percentage of error

achieved with a highly loaded system is around 6.7% for the GS and 20% for the MS. Regard-

ing Fmincon optimisation algorithm, using K3 and K15, the results provided at the end of its

execution are comparable with the other two algorithms. However, using K30 Fmincon is not

able to find any acceptable solution with 30 and 50 clients in the system returning a high error

118 Chapter 5. SD: a Divergence-based Estimation Method for Service Demands

(a) Response Time (b) Execution Time

Figure 5.9: Estimated response time and execution time of the model with K30 state.

value. Since this algorithm does not use multiple starting points, it is less robust and it is more

difficult to reach a good final value when the data present noise or are not precise enough.

We also analyse the model response time prediction with K30 for the GS and MS algorithms.

The results are shown in Figure 5.9a. For GS, the average system response time is close to the

real one with an average error of around 14%. Similar is also the MS average error of 17%. As

expected the execution time for the SD algorithm is in relation to the optimisation algorithm

used, as it has already shown previously in Section 5.5.4. However, also the number of clients

and the sample state space used can influences significantly the execution time. In fact, growing

the value of these two factors, the solver takes more time to analyse the system to predict some

metrics and to retrieve the marginal state probability of the system under test. For this set of

experiments, the K30 is the one which spends more time to produce a result. In particular,

the time that each algorithm spends to complete the execution is reported in Figure 5.9b. The

difference in time of Fmincon against GS or MS is relevant with all the analysed cases taking,

in most of the cases, at least one order of magnitude less than all the others. However, Fmincon

is not always able to find a valid set of demands able to satisfy user constraints. On the other

hand, GS and MS use comparable time to complete.

To show further benefits of the SD algorithm, we report in Figure 5.10 the state probability

comparison between the real system and the model with 10 clients using K30 as sampled state

space. It is possible to see that, differently from the one figure presented in Section 5.2, the two

5.6. Random Models 119

Figure 5.10: State probability distribution for the model with K30 state and 10 clients.

distributions are very similar one each other and the distance value, using the HE measure, is

0.0938. This underlines that the set of demands returned by the SD algorithm is able not only

to predict the performance metric of the system, but also to generate demands that correctly

capture the real system dynamics.

5.6 Random Models

To further investigate the robustness and performance of SD, we run a set of random exper-

iments to analyse the sensitivity of the result to different demands, δ parameter value, and

method execution times.

To perform these experiments, we have created 100 sets of random demands, each one containing

four demands, one for each service class, in the range between 0.00001 to 0.1. Each set of

demands is then set into the model presented in Section 5.5.1 to calculate the marginal state

probability of the model and average performance metrics such as throughput, response time

and CPU utilisation of one node. These metrics are obtained by analysing the model using the

formulas presented in Section 5.3. For each random model, we then run the SD algorithm using

different values of δ, chosen in the set (0.2, 0.5, 0.7, 1), with and without non-linear constraints,

120 Chapter 5. SD: a Divergence-based Estimation Method for Service Demands

δ = 0.2 δ = 0.5 δ = 0.7 δ = 1 Without

Fmincon

K3 215.21% 207.85% 194.50% 241.95% 54.10%
K15 237.82% 213.45% 206.21% 255.92% 6.12%
K30 334.69% 271.73% 240.30% 303.68% 3.27%
K50 490.13% 432.53% 317.74% 427.76% 1.12%

GS

K3 72.39% 66.57% 64.53% 74.69% 54.23%
K15 33.22% 25.54% 11.06% 11.24% 5.90%
K30 33.98% 30.08% 18.56% 23.91% 3.96%
K50 61.52% 48.13% 26.40% 31.91% 1.03%

MS

K3 50.36% 49.94% 51.80% 50.99% 53.44%
K15 7.11% 5.16% 5.69% 6.30% 5.96%
K30 4.42% 2.40% 3.58% 3.34% 3.48%
K50 1.76% 0.78% 0.95% 0.71% 1.06%

Table 5.5: Average percentage of error of the founded demands with SD algorithm using the
random models.

different sample state space sizes (K3, K15, K30, K50), and with Fmincon, GS and MS

searching algorithms. We run the random models with HE and 10 clients. As for the previous

experiments, the searching space for the demands is limited by the average response time of

the system and, for Fmincon, the starting point for all the demands is set to half of the system

response time. In these experiments, we keep in consideration the Fmincon as reference point

for the other algorithms but we do not consider this algorithm robust enough to be used for

real demand estimation as it has been demonstrated in the previous section.

Table 5.5 presents the mean percentage of error collected between the real and the found

demands using different algorithms, search space and δ. It is clear that the MS algorithm

outperforms the other two algorithms. In particular, for all the sampled state spaces bigger

than K3 and under varying δ values, the algorithms are able to find with a very low percentage

of error the real set demands. Even in the case with K3 the algorithm is able to find good

demands compared to the other algorithms using the same state space. However, the absence of

state information makes difficult for the algorithm to find better demands. On the other hand,

the other two algorithms present a quite high percentage of error in most of the cases compared

to the MS. The GS algorithm is able to perform better than Fmincon since the multi starting

point gives the opportunity to the searching algorithm to reach closer to the real demands.

So in this case, a more structured and equally distributed starting point approach is able to

perform better.

5.6. Random Models 121

(a) Divergence (HE) (b) System throughput

Figure 5.11: Average Divergence value and System throughput error for Random Model with
δ = 0.2.

(a) Mean Execution Time (b) Demands distance

Figure 5.12: a) Average Execution Time for Random Models with δ = 0.2 b) Mean distance
between demands of each class compared to the real one using MS and δ = 0.2.

It is also interesting to see the case where the non-linear constrains are included in the search

algorithms. In this situation, the algorithms are able to perform similarly to each other and

the difference in performance is dictated only by the sampled state space size. Based on these

results we have tested if, without non-linear constraints, the demand inference in Cassandra

can improve as well or reduce the execution time. However, we noticed that the optimisation

algorithms return, in this condition, higher final divergence values and in some case they are

not able to converge. For this reason, we do not advise to use this method for a production

system.

The different performance of these algorithms are also represented by the HE divergence value

122 Chapter 5. SD: a Divergence-based Estimation Method for Service Demands

registered by the different algorithms. In Figure 5.11a are presented the mean divergence value

of the different searching algorithms with δ = 0.20. With all the state spaces, the MS algorithm

reaches HE divergence values significantly lower than the other two searching algorithms. In

some cases, such as K30 and K50, the difference between them is larger than one magnitude

indicating that a more structured starting points strategy is able to perform better. This is

also reflected in the accuracy of the model performance prediction. Figure 5.11b shows the

average system throughput error of the random models. The MS and GS present a very low

percentage of error, around 2%, but the MS still performs better in any analysed situations.

Differently, Fmincon presents a considerably higher error and it increases with the state space

utilised. This underlines that some local minimum, during the searching process, can deviate

the Fmincon from the global minimum.

Significantly different is the execution time between these three optimisation algorithms, re-

ported in Figure 5.12a. As expected, the Fmincon algorithm presents the lowest execution time

and it does not depend on the number of state in the searching space as the other algorithms.

The other two algorithms spend significantly more time before returning the result. In partic-

ular, the GS algorithm execution time increases exponentially with the number of state inside

the searching space. Also the MS increases its execution time but less than the GS meaning

that it needs to perform a lower number of steps before completing its execution.

Finally, in Figure 5.12b, we report the distribution of the absolute error between the demands

returned by the MS algorithm using δ = 0.20 and the real demand values. It is clear that

increasing the searching space, the number of outliers considerably reduces and the error de-

creases closer to zero. Only K3 presents a more substantial error in the demands values. So,

when it is possible, it is advisable to use at least 15 state in the searching space.

5.7 Summary and Conclusion

In this chapter, we present a new algorithm, called SD, that is able to infer the demands

in distributed cloud applications. The SD algorithm differs from state-of-the-art approaches

5.7. Summary and Conclusion 123

mainly for two reasons: firstly, it uses the marginal probability of the real system to perform

the inference of the demands rather than average metrics as done in most algorithms. Secondly,

users need to provide to the algorithm a representative queueing network model of the system,

allowing to capture the entire workflows of the requests.

Through a case study, the sensitive analysis has been conducted using a real Apache Cassandra

cluster deployed on the Microsoft Azure cloud. The results shown that the SD algorithm

identifies a set of demands able to not only match the average metrics performance, but also

the system behaviour represented by the marginal probability of the analysed system.

Further validation has been conducted on a set of random models where the demands have

been generated within a specific range. In this case, we have demonstrated that in absence of

system noise, the SD algorithm is able to perform well and incur a small error around 2%.

Chapter 6

Conclusion

6.1 Summary of Thesis Achievements

In this thesis, we have explored new approaches for the performance evaluation and optimisation

of NoSQL database systems. The motivation behind this work is to create new tools to better

analyse the performance, estimate with accuracy the demands and optimise the running costs

using an autoscaling system for this highly distributed system and databases.

To achieve this, in Chapter 3 we have presented a new queueing network model to describe

NoSQL databases. The model integrates the key features that this class of databases most fre-

quently implements, such as synchronisation of the query execution between nodes, replication

factor and consistency levels. Moreover, the proposed model offers a simple way to configure

them based on the real system set up. To test our model, we primarily targeted the Apache

Cassandra database because it implements all these features. However, we demonstrate that,

with few changes, the model can be used also for other popular NoSQL databases, such as

ScyllaDB. We have validated the model on different environments composed on a different

number of nodes, consistency levels and replication factors. For each setup, we evaluate the

performance of our model to predict the throughput, response time and CPU utilisation with

the different number of jobs in the system. For the experiments conducted on the private cloud,

we have demonstrated that the model is able to predict with an average error below the 6%

124

6.1. Summary of Thesis Achievements 125

the real throughput system while, using the public cloud, the error is slightly higher. We have

then improved the performance of our model on the public cloud estimating the demands in

multiple points and fitting them on some mathematical functions. Thanks to the fittings of the

demands, we can estimate with more accuracy the performance of the real system reducing, in

some cases, to around 5% the average error of the model. Through a case study, we have also

demonstrated the utility of queueing networks models for this kind of applications.

In Chapter 4, we have presented a new autoscaling system for NoSQL databases that optimises

the running costs of the infrastructure. PAX leverages on an Apache Cassandra mechanism,

called hinted handoff, that it is activated when one of the cluster nodes is unavailable. In

PAX the hinted handoff mechanism is used to speed up the data synchronisation when a

node changes state from dormant to active. To reduce the SLO violation, PAX uses the

information provided by the workload profiling and the distribution of partitions to perform a

better choice when the system needs to scale. During the evaluation, we demonstrate that PAX

is able to work properly with reactive and proactive scaling policies with small differences. We

evaluate the performance of this system using different workload trends and, in all the analysed

situation, the SLO violation is very contained. The results demonstrate also that PAX can

reduce the operation costs up to 60% compared to traditional Apache Cassandra deployments.

Furthermore, we investigate the performance of a more complex autoscaling algorithm, called

OPAX, that shows that it can help to reduce even more the SLO violation.

As last contribution of this thesis, we have presented a novel demands inference algorithm

called SD. This algorithm aims to infer a set of demands that not only is able to predict the

system demands but it can also reproduce the real system behaviour. To achieve this goal,

instead of using aggregated metrics such as average system throughput or response time, the

SD algorithm uses the marginal state probability of the target system. To compare the two

marginal state probabilities, the SD algorithm uses one of the divergence measures provided by

the information theory. After conducting a sensitivity analysis to identify the most appropriate

settings, we evaluate the algorithm on Apache Cassandra. The set of demands estimated by

the SD is able to predict with accuracy the system performance and reduce the gap between

the marginal probability of the real system and the model. Furthermore, we validate the SD

126 Chapter 6. Conclusion

inference algorithm on 100 randomly generated models.

6.2 Future Work

There are many potential points for future work. Here we present several, in our opinion,

most impacting and promising enhancements for the performance analyses and optimisation of

NoSQL databases.

Apache Cassandra queuing network model

As future work, we are considering to expand the support of our model to other NoSQL

databases that are not column-oriented or present a different set of factors of the CAP theorem

such as MongoDB, HBase, Dynamo, etc. Even if the data flow and the architecture for these

databases are different we believe that, with few changes, the model can support them. More-

over, we would like to develop a similar model using the extended queueing networks, possibly

Layered Queueing Network (LQNs), in order to progress from a simulation model to an analytic

evaluation. This can open the possibility to analyse more computationally-efficient the model

and the possibility to apply it to nonlinear optimisation programs which are commonly used

for capacity planning under performance and reliability guarantees.

In addition, the LQNs can also allow us to create models with a higher number of nodes that

are difficult to build with queueing networks due to the number of classes involved and the time

required to solve them.

Partition-Aware Autoscaling for the Cassandra NoSQL Database

As future work, we would like to extend our PAX controller to support other metrics as well

such as response time, throughput, etc. In particular, response time could be useful to address

burstiness in workloads which are not easily recognisable with CPU utilisation.

6.2. Future Work 127

Another area of interest is the policies that could be implemented to maintain the data synchro-

nisation across the nodes to avoid that the hinted handoff stops to record data after reaching

the maximum time allowed (as presented in Section 4.4). Furthermore, these policies can open

the possibility to reduce the boot-up time of the machines. A possible policy implementation

could be that, when the hints tables have reached a defined hint size threshold, the controller

changes the status of the machine to run the data synchronisation consuming all the hint tables

for the target node. Other possible solutions could be to activate the machine regularly after

a specific time of inactivity or when the cluster is in a quiet moment. Probably, the last pol-

icy is the one that affects less the performance of the entire cluster and network in particular

during the synchronisation. For all the other policies a balance between the time required to

run the data synchronisation and the cost of this operation needs to be defined. This balance

can be found restricting the hinted handoff transmission rate parameter that defining the data

synchronisation speed and so limit the impact of this operation.

SD: a Divergence-based Estimation Method for Service Demands

As future work, we would like to further investigate the SD algorithm behaviour with other

different types of applications and other families of queueing network models. In particular, we

are interested to analyse the SD performance in models where the nodes are not all identical

or in models which represent multi-tears application such as a website composed by the web,

application layer and database servers. The analysis of these type of models can severally

impact on the execution time of the algorithm since the number of configurations and variables

can increase significantly.

To address this problem a possible idea could be the implementation of a hybrid solution

composed by a two-steps algorithm. The first step executes a preliminary search that tries

to limit the space range for each variable while the second step executes a full search within

the limited space range. Another possibility is to collect some data from the model to train a

neural network able to predict faster the model performance metric without the necessity to

solve it for every optimisation cycle.

Bibliography

[ABF14] Veronika Abramova, Jorge Bernardino, and Pedro Furtado. Evaluating cassan-

dra scalability with ycsb. In International Conference on Database and Expert

Systems Applications, pages 199–207. Springer, 2014.

[ABG+13] A. Aleti, B. Buhnova, L. Grunske, A. Koziolek, and I. Meedeniya. Software archi-

tecture optimization methods: A systematic literature review. IEEE Transactions

on Software Engineering, 39(5):658–683, May 2013.

[ACC+14] Danilo Ardagna, Giuliano Casale, Michele Ciavotta, Juan F. Pérez, and Weikun

Wang. Quality-of-service in cloud computing: modeling techniques and their

applications. J. Internet Services and Applications, 2014.

[AEADE11] Divyakant Agrawal, Amr El Abbadi, Sudipto Das, and Aaron J Elmore. Database

scalability, elasticity, and autonomy in the cloud. DASFAA (1), 6587:2–15, 2011.

[AHLJ12] Alexandros Labrinidis, H. V. Jagadish, Alexandros Labrinidis, and H. V. Hv

Jagadish. Challenges and opportunities with big data. Proceedings of the VLDB

Endowment, 5(12):2032–2033, 2012.

[ALS10] Eric Anderson, Xiaozhou Li, and M Shah. What consistency does your key-value

store actually provide. Proceedings of the Sixth international conference on Hot

topics in system dependability. USENIX Association, pages 1–16, 2010.

[AM19] Michael Kaufmann Andreas Meier. SQL & NoSQL Databases: Models, Lan-

guages, Consistency Options and Architectures for Big Data Management. 2019.

128

BIBLIOGRAPHY 129

[Apa] Apache cassandra. http://cassandra.apache.org/.

[App19] Austin Appleby. Smhasher test suite (murmurhash), 2019.

[ASV13] Ahmad Al-Shishtawy and Vladimir Vlassov. Elastman: Elasticity manager for

elastic key-value stores in the cloud. In Proceedings of the 2013 ACM Cloud

and Autonomic Computing Conference, CAC ’13, pages 7:1–7:10, New York, NY,

USA, 2013. ACM.

[Bau93] Falko Bause. Queueing Petri Nets-A formalism for the combined qualitative and

quantitative analysis of systems. In Proceedings of 5th International Workshop on

Petri Nets and Performance Models, number class 1, pages 14–23. IEEE Comput.

Soc. Press, 1993.

[BBS+77] Gianfranco Balbo, Steven C Bruell, Herbert D Schwetman, et al. Customer

classes and closed network models: A solution technique. In IFIP Congrss, pages

559–564. North-Holland Publishing Co., 1977.

[BCH+14] Sean Barker, Yun Chi, Hakan Hacigümüs, Prashant Shenoy, and Emmanuel Cec-

chet. Shuttledb: Database-aware elasticity in the cloud. In Proceedings of the

11th International Conference on Autonomic Computing (ICAC 14), pages 33–

43, Philadelphia, PA, 2014. USENIX Association.

[BCMP75] Forest Baskett, K. Mani Chandy, Richard R. Muntz, and Fernando G. Palacios.

Open, closed, and mixed networks of queues with different classes of customers.

J. ACM, 22(2):248–260, April 1975.

[BCS09] Marco Bertoli, Giuliano Casale, and Giuseppe Serazzi. Jmt: performance engi-

neering tools for system modeling. SIGMETRICS Perform. Eval. Rev., 36(4):10–

15, 2009.

[Bey11] Mark Beyer. Gartner Says Solving Big Data Challenge Involves More Than Just

Managing Volumes of Data. Gartner. Archived from the original on, 10, 2011.

http://cassandra.apache.org/

130 BIBLIOGRAPHY

[BGDMT06] Gunter Bolch, Stefan Greiner, Hermann De Meer, and Kishor S Trivedi. Queueing

networks and Markov chains: modeling and performance evaluation with computer

science applications. John Wiley & Sons, 2006.

[BGI14] Enrico Barbierato, Marco Gribaudo, and Mauro Iacono. Performance evaluation

of nosql big-data applications using multi-formalism models. Future Generation

Computer Systems, 37:345 – 353, 2014.

[BGN00] Richard H Byrd, Jean Charles Gilbert, and Jorge Nocedal. A trust region method

based on interior point techniques for nonlinear programming. Mathematical Pro-

gramming, 89(1):149–185, 2000.

[Bha43] Anil Bhattacharyya. On a measure of divergence between two statistical pop-

ulations defined by their probability distributions. Bull. Calcutta Math. Soc.,

35:99–109, 1943.

[BKK09] Fabian Brosig, Samuel Kounev, and Klaus Krogmann. Automated extraction of

palladio component models from running enterprise java applications. In Pro-

ceedings of the Fourth International ICST Conference on Performance Evalua-

tion Methodologies and Tools, VALUETOOLS ’09, pages 10:1–10:10, ICST, Brus-

sels, Belgium, Belgium, 2009. ICST (Institute for Computer Sciences, Social-

Informatics and Telecommunications Engineering).

[BL13] Russell Bradberry and Eric Lubow. Practical Cassandra: A Developer’s Ap-

proach. Addison-Wesley Professional, 1st edition, 2013.

[BM93] A. Bertozzi and J. Mckenna. Multidimensional residues, generating functions,

and their application to queueing networks. SIAM Review, 35(2):239–268, 1993.

[BM04] Antonia Bertolino and Raffaela Mirandola. Cb-spe tool: Putting component-

based performance engineering into practice. In Component-Based Software En-

gineering, pages 233–248, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

BIBLIOGRAPHY 131

[Bre00] Eric A. Brewer. Towards robust distributed systems (abstract). In Proceedings of

the Nineteenth Annual ACM Symposium on Principles of Distributed Computing,

PODC ’00, pages 7–, New York, NY, USA, 2000. ACM.

[Bru78] Steven Christopher Bruell. On Single and Multiple Job Class Queueing Net-

work Models of Computer Systems. PhD thesis, West Lafayette, IN, USA, 1978.

AAI7914877.

[BS78] Y Bard and M Shatzoff. Statistical methods in computer performance analysis.

Current Trends in Programming Methodology, 3:1–51, 1978.

[BS15] Michael Bar-Sinai. Big Data Technology Literature Review. Proceedings of

the twenty-ninth annual ACM symposium on Theory of computing - STOC ’97,

2013(April 2013):654–663, jun 2015.

[BT11] David Bermbach and Stefan Tai. Eventual consistency. In Proceedings of the

6th Workshop on Middleware for Service Oriented Computing - MW4SOC ’11,

number May, pages 1–6, New York, New York, USA, 2011. ACM Press.

[Cas11] Giuliano Casale. Exact analysis of performance models by the method of mo-

ments. Performance Evaluation, 68(6):487 – 506, 2011.

[Cas19] G. Casale. Automated multi-paradigm analysis of extended and layered queueing

models with line. ACM/SPEC ICPE, 2019.

[Cat11] Rick Cattell. Scalable SQL and NoSQL data stores. ACM SIGMOD Record,

39(4):12, 2011.

[CCT08] G. Casale, P. Cremonesi, and R. Turrin. Robust workload estimation in queueing

network performance models. In 16th Euromicro Conference on Parallel, Dis-

tributed and Network-Based Processing (PDP 2008), pages 183–187, Feb 2008.

[CDG+06] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A Wal-

lach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E Gruber.

Bigtable: A distributed storage system for structured data. 7th Symposium on

132 BIBLIOGRAPHY

Operating Systems Design and Implementation (OSDI ’06), November 6-8, Seat-

tle, WA, USA, pages 205–218, 2006.

[CDS10] Paolo Cremonesi, Kanika Dhyani, and Andrea Sansottera. Service time estima-

tion with a refinement enhanced hybrid clustering algorithm. In Analytical and

Stochastic Modeling Techniques and Applications, pages 291–305, Berlin, Heidel-

berg, 2010. Springer Berlin Heidelberg.

[CG86] A. E. Conway and N. D. Georganas. Recal—a new efficient algorithm for

the exact analysis of multiple-chain closed queuing networks. J. ACM, 33(4):768–

791, August 1986.

[CGHT07] Allan Clark, Stephen Gilmore, Jane Hillston, and Mirco Tribastone. Stochastic

Process Algebras, pages 132–179. Springer Berlin Heidelberg, Berlin, Heidelberg,

2007.

[CGT97] A Conn, Nick Gould, and Ph Toint. A globally convergent lagrangian barrier

algorithm for optimization with general inequality constraints and simple bounds.

Mathematics of Computation of the American Mathematical Society, 66(217):261–

288, 1997.

[CHW75] K. M. Chandy, U. Herzog, and L. Woo. Parametric analysis of queuing networks.

IBM Journal of Research and Development, 19(1):36–42, Jan 1975.

[CIAP12] Houssem-eddine Chihoub, Shadi Ibrahim, Gabriel Antoniu, and Maria S. Perez.

Harmony: Towards Automated Self-Adaptive Consistency in Cloud Storage. In

2012 IEEE International Conference on Cluster Computing, volume 2012, pages

293–301. IEEE, sep 2012.

[CKL15] Artem Chebotko, Andrey Kashlev, and Shiyong Lu. A Big Data Modeling

Methodology for Apache Cassandra. 2015 IEEE International Congress on Big

Data, pages 238–245, 2015.

BIBLIOGRAPHY 133

[CKOG10] Dirceu Cavendish, Hiroshi Koide, Yuji Oie, and Mario Gerla. A mean value

analysis approach to transaction performance evaluation of multi-server systems.

Concurrency and Computation: Practice and Experience, 22(10):1267–1285, 2010.

[CL02] US Connie and GW Lloyd. Performance solutions: a practical guide to creating

responsive, scalable software. Addison-Wesley, Reading, 2002.

[CL03] Euisun Choi and Chulhee Lee. Feature extraction based on the bhattacharyya

distance. Pattern Recognition, 36(8):1703 – 1709, 2003.

[CLC+15] Hsueh-Hsien Chang, Meng-Chien Lee, Nanming Chen, Chao-Lin Chien, and Wei-

Jen Lee. Feature extraction based hellinger distance algorithm for non-intrusive

aging load identification in residential buildings. In Industry Applications Society

Annual Meeting, 2015 IEEE, pages 1–8. IEEE, 2015.

[CM13] M. Chalkiadaki and K. Magoutis. Managing service performance in the cassandra

distributed storage system. In Proceedings of the 2013 IEEE 5th International

Conference on Cloud Computing Technology and Science, volume 1, pages 64–71,

Dec 2013.

[CMM+13] Francisco Cruz, Francisco Maia, Miguel Matos, Rui Oliveira, João Paulo, José

Pereira, and Ricardo Vilaça. Met: Workload aware elasticity for nosql. In Pro-

ceedings of the 8th ACM European Conference on Computer Systems, EuroSys

’13, pages 183–196, New York, NY, USA, 2013. ACM.

[CMRB15] R. N. Calheiros, E. Masoumi, R. Ranjan, and R. Buyya. Workload prediction

using arima model and its impact on cloud applications’s qos. IEEE Transactions

on Cloud Computing, 3(4):449–458, Oct 2015.

[CMS10] Giuliano Casale, Ningfang Mi, and Evgenia Smirni. Model-driven system capacity

planning under workload burstiness. IEEE Transactions on Computers, 59(1):66–

80, 2010.

[Coe07] MOP Evolutionary Algorithm Approaches, pages 61–130. Springer US, Boston,

MA, 2007.

134 BIBLIOGRAPHY

[Cou] Couchdb databases. http://couchdb.apache.org/.

[CRB11] R. N. Calheiros, R. Ranjan, and R. Buyya. Virtual machine provisioning based

on analytical performance and qos in cloud computing environments. In 2011

International Conference on Parallel Processing, pages 295–304, Sep. 2011.

[CS14] Paolo Cremonesi and Andrea Sansottera. Indirect estimation of service demands

in the presence of structural changes. Performance Evaluation, 2014.

[CST+10] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Rus-

sell Sears. Benchmarking cloud serving systems with YCSB. Proceedings of the

1st ACM symposium on Cloud computing - SoCC ’10, pages 143–154, 2010.

[CZ14] C.L. Philip Chen and Chun-Yang Zhang. Data-intensive applications, challenges,

techniques and technologies: A survey on big data. Information Sciences, 275:314

– 347, 2014.

[Dat] Datastax.

[Dat17] Datastax. Hinted handoff: repair during write path, sep 2017.

[DBC18] Salvatore Dipietro, Rajkumar Buyya, and Giuliano Casale. Pax: Partition-aware

autoscaling for the cassandra nosql database. In NOMS 2018-2018 IEEE/IFIP

Network Operations and Management Symposium, pages 1–9. IEEE, 2018.

[DCS17] Salvatore Dipietro, Giuliano Casale, and Giuseppe Serazzi. A queueing network

model for performance prediction of apache cassandra. In Proceedings of the

10th EAI International Conference on Performance Evaluation Methodologies and

Tools, 2017.

[DG04] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on

Large Clusters. Proceedings of 6th Symposium on Operating Systems Design and

Implementation, pages 137–149, 2004.

[DMGG16] Andrea De Mauro, Marco Greco, and Michele Grimaldi. A formal definition of

big data based on its essential features. Library Review, 65(3):122–135, 2016.

http://couchdb.apache.org/

BIBLIOGRAPHY 135

[DMVRT11] Thibault Dory, Boris Mej́ıas, Peter Van Roy, and Nam Luc Tran. Comparative

elasticity and scalability measurements of cloud databases, 2011.

[DWS12] Brian Dougherty, Jules White, and Douglas C Schmidt. Model-driven auto-scaling

of green cloud computing infrastructure. Future Generation Computer Systems,

28(2):371–378, 2012.

[ESn16] ESnet. Iperf, jun 2016.

[FLWC12] W. Fang, Z. Lu, J. Wu, and Z. Cao. Rpps: A novel resource prediction and

provisioning scheme in cloud data center. In Proceedings of the 2012 IEEE Ninth

International Conference on Services Computing, pages 609–616, June 2012.

[GGK+14] Andrea Gandini, Marco Gribaudo, William J Knottenbelt, Rasha Osman, and

Pietro Piazzolla. Performance Evaluation of NoSQL Databases. In Computer

Performance Engineering, pages 16–29. 2014.

[GH88] David E. Goldberg and John H. Holland. Genetic algorithms and machine learn-

ing. Machine Learning, 3(2):95–99, Oct 1988.

[GL02] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of consis-

tent, available, partition-tolerant web services. SIGACT News, 33(2):51–59, June

2002.

[Glo98] Fred Glover. A template for scatter search and path relinking. Lecture notes in

computer science, 1363:13–54, 1998.

[GN67] William J. Gordon and Gordon F. Newell. Closed queuing systems with expo-

nential servers. Operations Research, 15(2):254–265, 1967.

[Gou56] H. W. Gould. Some generalizations of vandermonde’s convolution. The American

Mathematical Monthly, 63(2):84–91, 1956.

[GPM14] Panagiotis Garefalakis, Panagiotis Papadopoulos, and Kostas Magoutis. ACaZoo:

A Distributed Key-Value Store Based on Replicated LSM-Trees. In 2014 IEEE

136 BIBLIOGRAPHY

33rd International Symposium on Reliable Distributed Systems, pages 211–220.

IEEE, oct 2014.

[GR11] John Gantz and David Reinsel. Extracting Value from Chaos State of the Uni-

verse: An Executive Summary. IDC iView, (June):1–12, 2011.

[Gra81] Jim Gray. The Transaction Concept : Virtues and Limitations. Proceedings of

the 7th International Conference on Very Large Data Bases, (1):144–154, 1981.

[GRD04] François Goudail, Philippe Réfrégier, and Guillaume Delyon. Bhattacharyya dis-

tance as a contrast parameter for statistical processing of noisy optical images.

J. Opt. Soc. Am. A, 21(7):1231–1240, Jul 2004.

[Har04] Peter G. Harrison. Reversed processes, product forms and a non-product form.

Linear Algebra and its Applications, 386:359 – 381, 2004. Special Issue on the

Conference on the Numerical Solution of Markov Chains 2003.

[HBa] Hbase. http://hbase.apache.org/.

[HC06] Sang-Jun Han and Sung-Bae Cho. Evolutionary Neural Networks for Anomaly

Detection Based on the Behavior of a Program. 36(3), 2006.

[Hel09] Ernst Hellinger. Neue begründung der theorie quadratischer formen von un-

endlichvielen veränderlichen. Journal für die reine und angewandte Mathematik,

136:210–271, 1909.

[HHL12] Che-Lun Hung, Yu-Chen Hu, and Kuan-Ching Li. Auto-scaling model for cloud

computing system. International Journal of Hybrid Information Technology,

5(2):181–186, 2012.

[HHLD11] Jing Han, E. Haihong, Guan Le, and Jian Du. Survey on NoSQL database.

Proceedings - 2011 6th International Conference on Pervasive Computing and

Applications, ICPCA 2011, pages 363–366, 2011.

http://hbase.apache.org/

BIBLIOGRAPHY 137

[HKR13] Nikolas Roman Herbst, Samuel Kounev, and Ralf H Reussner. Elasticity in cloud

computing: What it is, and what it is not. In ICAC, volume 13, pages 23–27,

2013.

[HL04] P. G. Harrison and Ting Ting Lee. A new recursive algorithm for computing gen-

erating functions in closed multi-class queueing networks. In The IEEE Computer

Society’s 12th Annual International Symposium on Modeling, Analysis, and Sim-

ulation of Computer and Telecommunications Systems, 2004. (MASCOTS 2004).

Proceedings., pages 231–238, Oct 2004.

[Hyp] Hypertable databases. http://hypertable.org/.

[IA15] Ishwarappa and J Anuradha. A brief introduction on big data 5Vs characteristics

and hadoop technology. In Procedia Computer Science, volume 48, pages 319–324,

2015.

[Int16a] Intel. Intel next generation microarchitecture (nehalem), jun 2016.

[Int16b] Intel. Intel sse4 programming reference, jun 2016.

[IZE11] IBM, Paul Zikopoulos, and Chris Eaton. Understanding Big Data: Analytics for

Enterprise Class Hadoop and Streaming Data. McGraw-Hill Osborne Media, 1st

edition, 2011.

[JWY15] Qingchao Jiang, Bei Wang, and Xuefeng Yan. Multiblock independent component

analysis integrated with hellinger distance and bayesian inference for non-gaussian

plant-wide process monitoring. Industrial & Engineering Chemistry Research,

54(9):2497–2508, 2015.

[KAB+11] Ioannis Konstantinou, Evangelos Angelou, Christina Boumpouka, Dimitrios

Tsoumakos, and Nectarios Koziris. On the elasticity of nosql databases over cloud

management platforms. In Proceedings of the 20th ACM International Conference

on Information and Knowledge Management, CIKM ’11, pages 2385–2388, New

York, NY, USA, 2011. ACM.

http://hypertable.org/

138 BIBLIOGRAPHY

[Kai67] T. Kailath. The divergence and bhattacharyya distance measures in signal selec-

tion. IEEE Transactions on Communication Technology, 15(1):52–60, February

1967.

[KAT+12] Ioannis Konstantinou, Evangelos Angelou, Dimitrios Tsoumakos, Christina

Boumpouka, Nectarios Koziris, and Spyros Sioutas. Tiramola: elastic nosql pro-

visioning through a cloud management platform. In Proceedings of the 2012

ACM SIGMOD International Conference on Management of Data, pages 725–

728. ACM, 2012.

[KDSS16] Y. Kishore, N. H. V. Datta, K. V. Subramaniam, and D. Sitaram. Qos aware

resource management for apache cassandra. In Proceedings of the 2016 IEEE 23rd

International Conference on High Performance Computing Workshops (HiPCW),

pages 3–10, Dec 2016.

[KKR14] Jörn Kuhlenkamp, Markus Klems, and Oliver Röss. Benchmarking scalability

and elasticity of distributed database systems. Proceedings of the VLDB Endow.,

7(12):1219–1230, August 2014.

[KKRD12] A. Kalbasi, D. Krishnamurthy, J. Rolia, and S. Dawson. Dec: Service demand esti-

mation with confidence. IEEE Transactions on Software Engineering, 38(3):561–

578, May 2012.

[KKRR11] A. Kalbasi, D. Krishnamurthy, J. Rolia, and M. Richter. Mode: Mix driven

on-line resource demand estimation. In 2011 7th International Conference on

Network and Service Management, pages 1–9, Oct 2011.

[KM17] Flora Karniavoura and Kostas Magoutis. A measurement-based approach to per-

formance prediction in nosql systems. In 2017 IEEE 25th International Sympo-

sium on Modeling, Analysis, and Simulation of Computer and Telecommunication

Systems (MASCOTS), pages 255–262. IEEE, 2017.

BIBLIOGRAPHY 139

[Koz10] Heiko Koziolek. Performance evaluation of component-based software systems: A

survey. Performance Evaluation, 67(8):634 – 658, 2010. Special Issue on Software

and Performance.

[KP14] S. D. Kuznetsov and A. V. Poskonin. NoSQL data management systems. Pro-

gramming and Computer Software, 40(6):323–332, nov 2014.

[KPSCD09] Stephan Kraft, Sergio Pacheco-Sanchez, Giuliano Casale, and Stephen Dawson.

Estimating service resource consumption from response time measurements. In

Proceedings of the Fourth International ICST Conference on Performance Eval-

uation Methodologies and Tools, VALUETOOLS ’09, pages 48:1–48:10, ICST,

Brussels, Belgium, Belgium, 2009. ICST (Institute for Computer Sciences, Social-

Informatics and Telecommunications Engineering).

[KYTA12] A. Khan, X. Yan, S. Tao, and N. Anerousis. Workload characterization and

prediction in the cloud: A multiple time series approach. In 2012 IEEE Network

Operations and Management Symposium, pages 1287–1294, April 2012.

[KZ06] Terence Kelly and Alex Zhang. Predicting performance in distributed enterprise

applications. HP Laboratories Technical Report HPL-2006-76, 2006.

[KZT] Dinesh Kumar, Li Zhang, and Asser Tantawi. Enhanced inferencing: Estimation

of a workload dependent performance model. VALUETOOLS ’09.

[Lan01] Doug Laney. 3D Data Management: Controlling Data Volume, Velocity, and

Variety. Application Delivery Strategies, 949(February 2001):4, 2001.

[LAV+15] João Ricardo Lourenço, Veronika Abramova, Marco Vieira, Bruno Cabral, and

Jorge Bernardino. NoSQL Databases: A Software Engineering Perspective. In

Alvaro Rocha, Ana Maria Correia, Sandra Costanzo, and Luis Paulo Reis, editors,

Advances in Intelligent Systems and Computing, volume 353 of Advances in Intel-

ligent Systems and Computing, pages 741–750. Springer International Publishing,

Cham, 2015.

140 BIBLIOGRAPHY

[LBMAL14] Tania Lorido-Botran, Jose Miguel-Alonso, and Jose A. Lozano. A review of auto-

scaling techniques for elastic applications in cloud environments. Journal of Grid

Computing, 12(4):559–592, Dec 2014.

[LFG05] Yan Liu, Alan Fekete, and Ian Gorton. Design-level performance prediction of

component-based applications. IEEE Trans. Softw. Eng., 31(11):928–941, Novem-

ber 2005.

[LGR15] P. Li, D. Gao, and M. K. Reiter. Replica placement for availability in the worst

case. In Proceedings of the 2015 IEEE 35th International Conference on Dis-

tributed Computing Systems, pages 599–608, June 2015.

[LJ12] Alexandros Labrinidis and Hosagrahar V Jagadish. Challenges and opportunities

with big data. Proceedings of the VLDB Endowment, 5(12):2032–2033, 2012.

[LK14] Rodolfo Lourenzutti and Renato A Krohling. The hellinger distance in multicri-

teria decision making: An illustration to the topsis and todim methods. Expert

Systems with Applications, 41(9):4414–4421, 2014.

[LM10] Avinash Lakshman and Prashant Malik. Cassandra: A decentralized structured

storage system. SIGOPS Oper. Syst. Rev., 44(2):35–40, April 2010.

[Lor16] Mark Lord. hdparm, jun 2016.

[LR80] S. S. Lavenberg and M. Reiser. Stationary state probabilities at arrival instants

for closed queueing networks with multiple types of customers. Journal of Applied

Probability, 17(4):10481061, 1980.

[LRS+14] Si Liu, Muntasir Raihan Rahman, Stephen Skeirik, Indranil Gupta, and José

Meseguer. Formal modeling and analysis of cassandra in maude. In International

Conference on Formal Engineering Methods, pages 332–347. Springer, 2014.

[LWXZ06] Zhen Liu, Laura Wynter, Cathy H. Xia, and Fan Zhang. Parameter inference

of queueing models for it systems using end-to-end measurements. Performance

Evaluation, 63(1):36 – 60, 2006.

BIBLIOGRAPHY 141

[LXMZ03] Zhen Liu, CH Xia, P Momcilovic, and L Zhang. Ambience: Automatic model

building using inference. In Congress MSR03, 2003.

[LZGS84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik.

Quantitative System Performance: Computer System Analysis Using Queueing

Network Models. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1984.

[LZL+15] P. Lu, L. Zhang, X. Liu, J. Yao, and Z. Zhu. Highly efficient data migration

and backup for big data applications in elastic optical inter-data-center networks.

IEEE Network, 29(5):36–42, Sep. 2015.

[MADD04] Daniel A Menasce, Virgilio AF Almeida, Lawrence W Dowdy, and Larry Dowdy.

Performance by design: computer capacity planning by example. Prentice Hall

Professional, 2004.

[Man04] Jason Manning. Apache Storm, 2004.

[MAS19] Pedro Martins, Maryam Abbasi, and Filipe Sá. A study over nosql performance.

In World Conference on Information Systems and Technologies, pages 603–611.

Springer, 2019.

[MCB+11] James Manyika, Michael Chui, Jacques Bughin, Richard Dobbs, Peter Bisson,

and Alex Marrs. Big data: The next frontier for innovation, competition, and

productivity — McKinsey & Company. Technical Report June, 2011.

[Men08] Daniel A Menasce. Computing missing service demand parameters for perfor-

mance models. In Int. CMG Conference, pages 241–248, 2008.

[MH13] A B M Moniruzzaman and Syed Akhter Hossain. NoSQL Database : New Era

of Databases for Big data Analytics- Classification , Characteristics and Com-

parison. International Journal of Database Theory and Application, 6(4):1–13,

2013.

[Mit98] Melanie Mitchell. An introduction to genetic algorithms. MIT press, 1998.

[Mon] Mongodb databases. https://www.mongodb.org/.

https://www.mongodb.org/

142 BIBLIOGRAPHY

[MPGSL06] Josefa Mula, Raul Poler, Jose P Garćıa-Sabater, and Francisco Cruz Lario. Models

for production planning under uncertainty: A review. International journal of

production economics, 103(1):271–285, 2006.

[MPV12] D.C. Montgomery, E.A. Peck, and G.G. Vining. Introduction to Linear Regression

Analysis. Wiley Series in Probability an. Wiley, 2012.

[MRSJ14] Prashanth Menon, Tilmann Rabl, Mohammad Sadoghi, and Hans Arno Jacob-

sen. CaSSanDra: An SSD boosted key-value store. Proceedings - International

Conference on Data Engineering, pages 1162–1167, 2014.

[Mur89] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the

IEEE, 77(4):541–580, April 1989.

[MyS] Mysql databases. http://www.mysql.com/.

[MZR+07] Ningfang Mi, Qi Zhang, Alma Riska, Evgenia Smirni, and Erik Riedel. Per-

formance impacts of autocorrelated flows in multi-tiered systems. Performance

Evaluation, 64(9-12):1082–1101, 2007.

[neo] Neo4j databases. http://neo4j.com.

[Nie16] Raik Niemann. Towards the Prediction of the Performance and Energy Effi-

ciency of Distributed Data Management Systems. In Companion Publication for

ACM/SPEC on International Conference on Performance Engineering - ICPE

’16 Companion, pages 23–28, New York, New York, USA, 2016. ACM Press.

[Nik01] Mikhail S Nikulin. Hellinger distance. Encyclopedia of mathematics, 78, 2001.

[NKJT09] Ramon Nou, Samuel Kounev, Ferran Juli, and Jordi Torres. Autonomic qos con-

trol in enterprise grid environments using online simulation. Journal of Systems

and Software, 82(3):486 – 502, 2009.

[NKY+11] Y. Nakamizo, H. Koide, K. Yoshinaga, D. Cavendish, and Y. Oie. Mva modeling

of multi-core server distributed systems. In 2011 Third International Conference

on Intelligent Networking and Collaborative Systems, pages 617–620, Nov 2011.

http://www.mysql.com/
http://neo4j.com

BIBLIOGRAPHY 143

[NL18] Trong-Dat Nguyen and Sang-Won Lee. Optimizing mongodb using multi-

streamed ssd. In Proceedings of the 7th International Conference on Emerging

Databases, pages 1–13. Springer, 2018.

[NSG+15] A. Naskos, E. Stachtiari, A. Gounaris, P. Katsaros, D. Tsoumakos, I. Konstanti-

nou, and S. Sioutas. Harmon. In Proceedings of the 2015 15th IEEE/ACM

International Symposium on Cluster, Cloud and Grid Computing, pages 31–40,

May 2015.

[OBS99] Michael A Olson, Keith Bostic, and Margo I Seltzer. Berkeley db. In USENIX

Annual Technical Conference, FREENIX Track, pages 183–191, 1999.

[OK12] Rasha Osman and William J. Knottenbelt. Database system performance evalu-

ation models: A survey. Performance Evaluation, 69(10):471–493, 2012.

[OP14] Rasha Osman and Pietro Piazzolla. Modelling Replication in NoSQL Datas-

tores. In Quantitative Evaluation of Systems, pages 194–209. Springer Interna-

tional Publishing, 2014.

[Ora] Oracle databases. http://www.oracle.com/us/products/database/overview/

index.html.

[PC17] J. F. Prez and G. Casale. Line: Evaluating software applications in unreliable

environments. IEEE Transactions on Reliability, 2017.

[PCPS15] Juan F Pérez, Giuliano Casale, and Sergio Pacheco-Sanchez. Estimating com-

putational requirements in multi-threaded applications. IEEE Transactions on

Software Engineering, 41(3):264–278, 2015.

[PHK17] Iker Perez, David Hodge, and Theodore Kypraios. Auxiliary variables for bayesian

inference in multi-class queueing networks. Statistics and Computing, Nov 2017.

[Pok13] Jaroslav Pokorny. Nosql databases: a step to database scalability in web environ-

ment. International Journal of Web Information Systems, 9(1):69–82, 2013.

http://www.oracle.com/us/products/database/overview/index.html
http://www.oracle.com/us/products/database/overview/index.html

144 BIBLIOGRAPHY

[PPSC13] Juan F. Perez, Sergio Pacheco-Sanchez, and Giuliano Casale. An Offline Demand

Estimation Method for Multi-threaded Applications. In 2013 IEEE 21st Inter-

national Symposium on Modelling, Analysis and Simulation of Computer and

Telecommunication Systems, pages 21–30. IEEE, aug 2013.

[PSST08] Giovanni Pacifici, Wolfgang Segmuller, Mike Spreitzer, and Asser Tantawi. Cpu

demand for web serving: Measurement analysis and dynamic estimation. Per-

formance Evaluation, 65(6):531 – 553, 2008. Innovative Performance Evaluation

Methodologies and Tools: Selected Papers from ValueTools 2006.

[QCB16] Chenhao Qu, Rodrigo N Calheiros, and Rajkumar Buyya. Auto-scaling web

applications in clouds: A taxonomy and survey. ACM Computing Surveys, 2016.

[QP15] Zhan Qiu and Juan F. Pérez. Evaluating the effectiveness of replication for tail-

tolerance. In CCGrid, pages 443–452. IEEE Computer Society, 2015.

[Red] Redis databases. http://http://redis.io/.

[Rén61] Alfréd Rényi. On measures of information and entropy. In Proceedings of the 4th

Berkeley symposium on mathematics, statistics and probability, volume 1, 1961.

[RGVS+12] Tilmann Rabl, Sergio Gómez-Villamor, Mohammad Sadoghi, Victor Muntés-

Mulero, Hans-Arno Jacobsen, and Serge Mankovskii. Solving big data challenges

for enterprise application performance management. Proceedings of the VLDB

Endowment, 5(12):1724–1735, August 2012.

[Ria] Riak databases. http://basho.com/products/.

[RK75] M. Reiser and H. Kobayashi. Queuing networks with multiple closed chains: The-

ory and computational algorithms. IBM Journal of Research and Development,

19(3):283–294, May 1975.

[RL80] M. Reiser and S. S. Lavenberg. Mean-value analysis of closed multichain queuing

networks. J. ACM, 27(2):313–322, April 1980.

http://http://redis.io/
http://basho.com/products/

BIBLIOGRAPHY 145

[RPS09] Ajith Ranabahu, Pankesh Patel, and Amit Sheth. Service Level Agreement in

Cloud Computing. 01 2009.

[RV95] Jerome Rolia and Vidar Vetland. Parameter estimation for performance models

of distributed application systems. In Proc. of the 1995 Conference of the Centre

for Advanced Studies on Collaborative Research, 1995.

[Sau02] Roger M Sauter. In all likelihood. Technometrics, 44(4):404–404, 2002.

[SBC+08] Abhishek B. Sharma, Ranjita Bhagwan, Monojit Choudhury, Leana Golubchik,

Ramesh Govindan, and Geoffrey M. Voelker. Automatic request categorization in

internet services. SIGMETRICS Perform. Eval. Rev., 36(2):16–25, August 2008.

[SCBK15] Simon Spinner, Giuliano Casale, Fabian Brosig, and Samuel Kounev. Evaluating

approaches to resource demand estimation. Performance Evaluation, 2015.

[Sch79] P Schweitzer. Approximate analysis of multiclass closed networks of queues”

presented at the. In International Conference on Stochastic Control and Opti-

mization, 1979.

[Sim] Simpledb databases. https://aws.amazon.com/simpledb/.

[Sim06] Dan Simon. Optimal state estimation: Kalman, H infinity, and nonlinear ap-

proaches. John Wiley & Sons, 2006.

[SJ11] Charles Sutton and Michael I. Jordan. Bayesian inference for queueing networks

and modeling of internet services. The Annals of Applied Statistics, 5(1):254–282,

2011.

[SKG+12] Roshan Sumbaly, Jay Kreps, Lei Gao, Alex Feinberg, Chinmay Soman, and

Sam Shah. Serving large-scale batch computed data with project voldemort.

In Proceedings of the 10th USENIX Conference on File and Storage Technologies,

FAST’12, pages 18–18, Berkeley, CA, USA, 2012. USENIX Association.

[SKZ07] Christopher Stewart, Terence Kelly, and Alex Zhang. Exploiting nonstationarity

for performance prediction. SIGOPS Oper. Syst. Rev., 41(3):31–44, March 2007.

https://aws.amazon.com/simpledb/

146 BIBLIOGRAPHY

[SM81] K. C. Sevcik and I. Mitrani. The distribution of queuing network states at input

and output instants. J. ACM, 28(2):358–371, April 1981.

[SQL] Microsoft sql server databases. http://www.microsoft.com/en-us/sqlserver/

default.aspx.

[SSV07] Rajan Suri, Sushanta Sahu, and Mary Vernon. Approximate mean value analysis

for closed queuing networks with multiple-server stations. In Proceedings of the

2007 Industrial Engineering Research Conference, 2007.

[SV16] I. Sason and S. Verd. f -divergence inequalities. IEEE Transactions on Informa-

tion Theory, 62(11):5973–6006, Nov 2016.

[SWED16] D. Seybold, N. Wagner, B. Erb, and J. Domaschka. Is elasticity of scalable

databases a myth? In Proceedings of the 2016 IEEE International Conference on

Big Data (Big Data), pages 2827–2836, Dec 2016.

[Tcp18] Tcpdump. Tcpdump, 2018.

[THIC11] Juan M Tirado, Daniel Higuero, Florin Isaila, and Jesus Carretero. Predictive

data grouping and placement for cloud-based elastic server infrastructures. In

Proceedings of the 2011 11th IEEE/ACM International Symposium on Cluster,

Cloud and Grid Computing, pages 285–294. IEEE Computer Society, 2011.

[TKB+13] D. Tsoumakos, I. Konstantinou, C. Boumpouka, S. Sioutas, and N. Koziris. Auto-

mated, elastic resource provisioning for nosql clusters using tiramola. In Proceed-

ings of the 2013 13th IEEE/ACM International Symposium on Cluster, Cloud,

and Grid Computing, pages 34–41, May 2013.

[TW79] Kishor S. Trivedi and Robert A. Wagner. A decision model for closed queuing

networks. IEEE Transactions on Software Engineering, (4):328–332, 1979.

[ULP+07] Zsolt Ugray, Leon Lasdon, John Plummer, Fred Glover, James Kelly, and Rafael

Mart. Scatter search and local nlp solvers: A multistart framework for global

optimization. INFORMS Journal on Computing, 19(3):328–340, 2007.

http://www.microsoft.com/en- us/sqlserver/default.aspx
http://www.microsoft.com/en- us/sqlserver/default.aspx

BIBLIOGRAPHY 147

[UPS+07] Bhuvan Urgaonkar, Giovanni Pacifici, Prashant Shenoy, Mike Spreitzer, and Asser

Tantawi. Analytic modeling of multitier internet applications. ACM Trans. Web,

1(1), May 2007.

[WC13] W. Wang and G. Casale. Bayesian service demand estimation using gibbs sam-

pling. In 2013 IEEE 21st International Symposium on Modelling, Analysis and

Simulation of Computer and Telecommunication Systems, pages 567–576, Aug

2013.

[WCKN16] Weikun Wang, Giuliano Casale, Ajay Kattepur, and Manoj Nambiar. Maximum

likelihood estimation of closed queueing network demands from queue length data.

In Proc. of the 7th ACM/SPEC on International Conference on Performance

Engineering, 2016.

[WCKN18] Weikun Wang, Giuliano Casale, Ajay Kattepur, and Manoj K. Nambiar. QMLE:

A methodology for statistical inference of service demands from queueing data.

TOMPECS, 2018.

[WFZ+11] Hiroshi Wada, Alan Fekete, Liang Zhao, Kevin Lee, and Anna Liu. Data Con-

sistency Properties and the Trade-offs in Commercial Cloud Storage: the Con-

sumers’ Perspective. Cidr, pages 134–143, 2011.

[WHQ+12] W. Wang, X. Huang, X. Qin, W. Zhang, J. Wei, and H. Zhong. Application-level

cpu consumption estimation: Towards performance isolation of multi-tenancy web

applications. In 2012 IEEE Fifth International Conference on Cloud Computing,

pages 439–446, June 2012.

[WLZZ14] Huajin Wang, Jianhui Li, Haiming Zhang, and Yuanchun Zhou. Benchmarking

replication and consistency strategies in cloud serving databases: Hbase and cas-

sandra. In Workshop on Big Data Benchmarks, Performance Optimization, and

Emerging Hardware, pages 71–82. Springer, 2014.

148 BIBLIOGRAPHY

[WMNO06] Richard A Waltz, José Luis Morales, Jorge Nocedal, and Dominique Orban. An

interior algorithm for nonlinear optimization that combines line search and trust

region steps. Mathematical programming, 107(3):391–408, 2006.

[Won78] J. W. Wong. Queueing network modeling of computer communication networks.

ACM Comput. Surv., 10(3):343–351, September 1978.

[WPC15] Weikun Wang, Juan F Pérez, and Giuliano Casale. Filling the gap: a tool to

automate parameter estimation for software performance models. In Proceedings

of the 1st International Workshop on Quality-Aware DevOps, pages 31–32. ACM,

2015.

[WZL05] Murray Woodside, Tao Zheng, and Marin Litoiu. The use of optimal filters to

track parameters of performance models. In null, pages 74–84. IEEE, 2005.

[WZL06] M. Woodside, Tao Zheng, and M. Litoiu. Service system resource management

based on a tracked layered performance model. In 2006 IEEE International Con-

ference on Autonomic Computing, pages 175–184, June 2006.

[YG07] Haifeng Yu and Phillip B. Gibbons. Optimal inter-object correlation when repli-

cating for availability. In Proceedings of the Twenty-sixth Annual ACM Sympo-

sium on Principles of Distributed Computing, PODC ’07, pages 254–263, New

York, NY, USA, 2007. ACM.

[YGN06] Haifeng Yu, Phillip B Gibbons, and Suman Nath. Availability of multi-object

operations. In Proceedings of the 3 USENIX Symposium on Networked Systems

Design and Implementation, pages 211–224, 2006.

[YLL09] C. H. You, K. A. Lee, and H. Li. An svm kernel with gmm-supervector based

on the bhattacharyya distance for speaker recognition. IEEE Signal Processing

Letters, 16(1):49–52, Jan 2009.

[Zah79] John Zahorjan. An exact solution method for the general class of closed separable

queueing networks. In Proc. of Conference on Simulation, Measurement and

Modeling of Computer Systems, 1979.

BIBLIOGRAPHY 149

[ZCDD12] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, and Ankur Dave. Resilient

distributed datasets: A fault-tolerant abstraction for in-memory cluster comput-

ing. Nsdi, pages 2–2, 2012.

[ZCS07] Q. Zhang, L. Cherkasova, and E. Smirni. A regression-based analytic model for

dynamic resource provisioning of multi-tier applications. In Fourth International

Conference on Autonomic Computing (ICAC’07), pages 27–27, June 2007.

[ZE11] Paul Zikopoulos and Chris Eaton. Understanding Big Data: Analytics for Enter-

prise Class Hadoop and Streaming Data: Analytics for Enterprise Class Hadoop

and Streaming Data. 2011.

[ZM] P. Zarchan and H. Musoff. Fundamentals of Kalman Filtering: A Practical Ap-

proach.

[ZWL08] T. Zheng, C. M. Woodside, and M. Litoiu. Performance model estimation

and tracking using optimal filters. IEEE Transactions on Software Engineering,

34(3):391–406, May 2008.

[ZYW+05] Tao Zheng, Jinmei Yang, Murray Woodside, Marin Litoiu, and Gabriel Iszlai.

Tracking time-varying parameters in software systems with extended kalman fil-

ters. In Proceedings of the 2005 Conference of the Centre for Advanced Studies

on Collaborative Research, CASCON ’05, pages 334–345. IBM Press, 2005.

[ZZBH13] Qi Zhang, Mohamed Faten Zhani, Raouf Boutaba, and Joseph L Hellerstein.

Harmony: Dynamic heterogeneity-aware resource provisioning in the cloud. In

Proceedings of the 2013 IEEE 33rd International Conference on Distributed Com-

puting Systems (ICDCS),, pages 510–519. IEEE, 2013.

	Abstract
	Acknowledgements
	Introduction
	Motivation and Objectives
	Contributions and Thesis outline
	Publications

	Background
	NoSQL databases
	Cassandra
	Cassandra architecture
	Read and Write operations

	Queueing Networks
	Closed queueing network
	Analysis and Solutions
	Class-switching models

	Demand estimation algorithms
	Regression
	Machine Learning
	Maximum Likelihood Estimation
	Optimisation

	Apache Cassandra Queueing Network Model
	Introduction
	Related Work
	Cassandra Queueing Network Model
	Local Request
	Remote Incoming Request
	Remote Request
	Workload

	Models Parametrization
	Single client network monitoring
	Multi clients network monitoring
	Cassandra tracing tool

	Model validation
	Validation on private cloud
	Evaluation on public cloud
	Fitting demands function

	Case Study: applicability of our model to other NoSQL databases
	A What-If Scenario: the Impact of Query Replication in Cassandra
	Summary and Conclusion

	Partition-Aware Autoscaling for the Cassandra NoSQL Database
	Introduction
	Related work
	Data recovery in Cassandra
	Data partitioning
	Hinted handoff mechanism

	PAX: Partition-aware autoscaling
	Controller
	Workload analyser (WA)
	Workload forecasting

	Autoscaling algorithms
	Metrics
	Data-aware node acquisition
	Number of nodes to scale
	Triggering a scaling action

	Tuning the PAX Architecture
	Hinted handoff storage

	Performance Evaluation
	Methodology
	Comparing proactive and reactive approaches
	Step response and overlapped peaks
	Architecture change
	Different Consistency Level

	OPAX strategy
	Summary and Conclusion

	SD: a Divergence-based Estimation Method for Service Demands
	Introduction
	Motivation Example
	Efficient marginal probabilities calculation
	Estimation Algorithm
	SD Algorithm
	Divergence measures

	Evaluation
	Cassandra Simplified Model
	Experiment settings
	Minimization algorithm settings
	Sensitivity analysis
	Cassandra Demand Estimation

	Random Models
	Summary and Conclusion

	Conclusion
	Summary of Thesis Achievements
	Future Work

	Bibliography

