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Background and Purpose: Resurgence in the use of chloroquine as a potential
treatment for COVID-19 has seen recent cases of fatal toxicity due to unintentional
overdoses. Protocols for the management of poisoning recommend diazepam,
although there are uncertainties in its pharmacology and efficacy in this context.
The aim was to assess the effects of diazepam in experimental models of chloroquine
cardiotoxicity.

Experimental Approach: In vitro experiments involved cardiac tissues isolated
from rats and incubated with chloroquine alone or in combination with diazepam.
In vivo models of toxicity involved chloroquine administered intravenously to
pentobarbitone-anaesthetised rats and rabbits. Randomised, controlled treatment
studies in rats assessed diazepam, clonazepam and Ro5-4864 administered: (i) prior,
(ii) during and (iii) after chloroquine and the effects of diazepam: (iv) at high dose,
(v) in urethane-anaesthetised rats and (vi) co-administered with adrenaline.

Key Results: Chloroquine decreased the developed tension of left atria, prolonged
the effective refractory period of atria, ventricular tissue and right papillary muscles,
and caused dose-dependent impairment of haemodynamic and electrocardiographic
parameters. Cardiac arrhythmias indicated impairment of atrioventricular conduction.
Studies (i), (ii) and (v) showed no differences between treatments and control.
Diazepam increased heart rate in study (iv) and as with clonazepam also prolonged
the QTc interval in study (iii). Combined administration of diazepam and adrenaline in
study (vi) improved cardiac contractility but caused hypokalaemia.

Conclusion and Implications: Neither diazepam nor other ligands for benzodiazepine
binding sites protect against or attenuate chloroquine cardiotoxicity. However,
diazepam may augment the effects of positive inotropes in reducing chloroquine

cardiotoxicity.

Abbreviations: COVID-19, coronavirus disease 2019; FDA, Food and Drug Administration; LV dP/dt, time derivative of left ventricular pressure; MTBE, methyl-tertiary-butyl ether; TSPO,

translocator protein.
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1 | INTRODUCTION

Chloroquine and hydroxychloroquine are being repurposed as poten-
tial treatments for coronavirus disease 2019 (COVID-19) (Ferner &
Aronson, 2020). The Food and Drug Administration (FDA, 2020)
authorised their emergency use in the United States and clinical
guidelines in Belgium, China, France, India, Iran, Italy, South Korea and
The Netherlands have made recommendations for their use in the
prevention and treatment of COVID-19.

Case reports of cardiotoxicity and fatal poisoning relating to the
use of chloroquine and hydroxychloroquine for COVID-19 have
emerged (Agence Régionale de Santé, 2020; Binding, 2020; Busari &
Adebayo, 2020; SimpliCity, 2020; Xuan, 2020), as well as excess death
with high doses in COVID-19 clinical trials (Borba et al., 2020). The
acute toxic effects of these drugs are well recognised (World Health
Organization, 2016) and relate to their cardiotoxic effects of widening
of the QRS complex, atrioventricular block, ventricular arrhythmias,
negative inotropy, hypotension and severe hypokalaemia, which occur
within 1-3 h of ingesting doses >5 g in adults. Without intensive, sup-
portive treatment, circulatory collapse and death can rapidly follow
acute overdose. Mortality due to acute toxicity is high, with 134 of
the 387 cases reported in the literature between 1955 and 1975
(Bondurand, N'Dri, Coffi, & Saracino, 1980), and a further 135 from
335 suicide attempts (Weniger and World Health Organization, 1979)
resulting in death.

Current recommendations for the management of acute toxicity
include ensuring adequate ventilation, gastric lavage, administration of
activated charcoal, adrenaline for its inotropic and vasoconstrictor
effects, diazepam and correction of metabolic acidosis and
hypokalaemia (Jones, 2015). The observation in 1976 of a patient
who took 5 g of chloroquine together with 500 mg of diazepam and
survived without symptoms of chloroquine toxicity (Djelardje, 1976),
drew attention to the possible role of diazepam in chloroquine poison-
ing. Subsequent case reports (Jaeger, Sauder, Kopferschmitt, &
Flesch, 1987; Meeran & Jacobs, 1993; Rajah, 1990) and a prospective
non-randomised trial (Riou, Barriot, Rimailho, & Baud, 1988), in which
the odds of survival significantly favoured diazepam therapy, led to
the recommendation of diazepam in the management of acute chloro-
quine toxicity. However, there remains controversy given some con-
flicting evidence of benefit (Demaziere et al., 1992; Clemessy
et al., 1996) and limitations in study designs (Yanturali, 2004).

Experimental toxicity studies are also inconclusive. Crouzette,
Vicaut, Palombo, Girre, and Fournier (1983) demonstrated that an
intraperitoneal injection of diazepam caused a significant decrease in
the mortality of rats treated with chloroquine. Riou, Rimailho,
Galliot, Bourdon, and Huet (1988) observed an improvement in
haemodynamics and a correction of the QRS interval prolongation
when diazepam was administered to chloroquine-intoxicated pigs.
Gnassounou and Advenier (1988) observed that clonazepam
protected anaesthetised rats against chloroquine toxicity and that
diazepam but not the translocator protein (TSPO) agonist Ro5-4864
(4'-chlorodiazepam) protected against the decrease in contractions,

observed when guinea pig atria were exposed to chloroquine. In other

What is already known

e Acute chloroquine poisoning manifests as cardiotoxicity
and is often managed using diazepam.

What this study adds

e Diazepam does not attenuate the effects of chloroquine

in isolated cardiac tissues nor in vivo.
What is the clinical significance

o Inotropic support, which is essential for chloroquine

poisoning, may be potentiated with diazepam.

studies, however, diazepam failed to improve the mechanical perfor-
mance of rat cardiac papillary muscle exposed to chloroquine (Riou,
Lecarpentier, Barriot, & Viars, 1989) and was ineffective in reversing
chloroquine toxicity in anaesthetised rats (Buckley, Smith, Dosen, &
O'Connell, 1996).

It would therefore appear that the effectiveness of diazepam in
reversing chloroquine toxicity is equivocal and that the mechanism(s)
by which diazepam may exert its effects remain unclear. Due to the
resurgence in the use of chloroquine and its structural analogue
hydroxychloroquine for COVID-19, the aim of the present study was
to investigate the potential cardioprotective effects of diazepam in

experimental models of chloroquine toxicity.

2 | METHODS

2.1 | Invitro methods
A series of experiments was conducted to assess the effects of chlo-
roquine and diazepam alone and in combination on the contractility,

refractoriness and beating rate of isolated rat cardiac tissues.

2.1.1 | Animals

All animal care and experimental procedures were performed in
accordance with the UK Animals (Scientific Procedures) Act 1986,
approved by the institutional ethical review committee, and con-
ducted under the authority of project licences held at the University
of Liverpool. Animal studies are reported in compliance with the
ARRIVE guidelines (Kilkenny et al., 2010; McGrath, MclLachlan, &
Zeller, 2015) and with the recommendations made by the British
Journal of Pharmacology.


https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5535
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7198
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=509
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3364
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6963
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Male Wistar rats were bred in the departmental animal unit (the
Nuffield Joint Facilities) or in exceptional circumstances of supply
shortage acquired from the Biomedical Services Unit, Faculty of Medi-
cine, or the Department of Veterinary Pathology, University of Liver-
pool. Rats were kept under conditions of 12-h light/dark cycle at
20°C with food (CRM diets, SDS, Witham, Essex) and water available
ad libitum. The optimal weight range for experimental use was
200-400 g.

2.1.2 | Tissue preparation

Rats were administered 1,000 1U-kg™! of sodium heparin by an intra-
peritoneal injection. After 15 min, they were stunned by a blow to the
head, exsanguinated and hearts were excised. Isolated atria, ventricu-
lar strips (<2 mm in width) dissected longitudinally towards the apex
of the heart and right papillary muscles were prepared and suspended
in 30-ml organ baths, containing (in mM), NaCl 119; KCI 3.8; MgS0,4
1.18; KH,PO,4 1.18; NaHCO3 25; CaCl, 1.9 plus p-glucose 10.0, gas-
sed with 95% O,, 5% CO, (BOC medical gases, Guildford) and
maintained at 37°C. Each preparation was subjected to a resting dia-
stolic tension of 10 mN and stimulated with square wave pulses of
5-ms duration at a frequency of 1 Hz via a Grass S48 or S88 stimula-
tor (Quincy, Massachusetts). Tissues were stimulated at twice thresh-
old voltage <15 V. Right atria were allowed to equilibrate such that
spontaneous, rhythmic beating occurred. In all cases, tissues were

washed periodically throughout the stabilisation period.

2.1.3 | Measurement of cardiac parameters
Contractions were measured isometrically via Dynamometer UF1
transducers (sensitivity range, 559 mN) connected to Lectromed 5230
preamplifiers (Letchworth, Hertfordshire). The beating rate of right
atria was measured with a Lectromed 5250 ratemeter preamplifier.
These were housed within a MT8P preamplifier unit, which relayed
signals to a MTé thermal pen recorder giving an output on heat-
sensitive paper. Each channel was calibrated such that a full-scale
deflection of 20 mN could be observed. Time to peak tension was
measured from the onset of electrical stimulation to the peak of the
contraction (Penefsky, 1994). The effective refractory periods (ERPs)
of left atria, right papillary muscles and ventricular strips were mea-
sured using a modification of the extra stimuli method (Reuter &
Heeg, 1971).

2.14 | Experimental protocol

A target of six samples of each cardiac tissue were assigned at random
to one of four concentrations of chloroquine (calculated as the base;
1, 10, 30, or 100 uM, dissolved in Krebs solution) in the presence of
the vehicle for diazepam (1% v/v propylene glycol). Spontaneously

beating right atria were exposed only to 30-uM chloroquine. The
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highest concentration of chloroquine (100 pM) decreased the respon-
siveness of most tissues after approximately 20 to 30 min. As the
threshold voltage for contraction gradually increased, tissues failed to
respond to electrical stimuli. It was for this reason that 30 uM was
chosen for a subsequent experiment involving diazepam. In this
second experiment, fresh tissues (target of six per group) were
incubated with diazepam at concentrations of 1, 10 or 100 uM for

30 min before the addition of 30-uM chloroquine.

2.2 | Invivo methods

Experimental models of toxicity were developed in spontaneously
breathing rats, ventilated rats and ventilated rabbits, in which chloro-
quine was infused at different rates and measurements taken of
haemodynamic and electrocardiographic parameters. Studies were
then conducted in which chloroquine-intoxicated rats were treated
with combinations of diazepam, clonazepam, Ro5-4864, adrenaline or
vehicle control.

2.2.1 | Experimental protocol

In developing a model of experimental toxicity, animals (six per group)
were allocated at random to different doses of chloroquine diphos-
phate dissolved in 0.9% w/v NaCl. Non-ventilated rats were
randomised to intravenously infused doses (calculated as chloroquine

1 ventilated rats 1, 2 or

base) of 0.5, 1, 2 or 4 mg-kg’lmin’
4 mg-kg~t-min~tand rabbits 0.5, 1,0or 2 mg-kg~1-min~* for a maximum
period of 60 min or until death, after an initial period of stabilisation
of at least 20 min.

Six treatment randomised controlled trials were subsequently
conducted to assess the efficacy of diazepam, clonazepam and
Ro5-4864:- (i) prior, (ii) during and (iii) after chloroquine intoxication
(Table 1) and the effects of diazepam:- (iv) in high dose, (v) in non-
barbiturate anaesthetised rats and (vi) co-administered with adrena-
line. Six rats were randomised to each treatment group within each of
these studies. Benzodiazepines (and vehicles) were administered as a

slow intravenous bolus over 2 min.

2.2.2 | Drug doses

Diazepam was administered in a 2 mg-kg™? intravenous bolus dose,
based on Riou, Rimailho, et al. (1988) and 10 mg-kg™? in the study of
high dose diazepam, which approximates to the dose recommenda-
tions for human cases of overdose (Jones, 2015) when scaled allo-
metrically (Nair & Jacob, 2016). The doses of clonazepam
(1.1 mg-kg™1) and Ro5-4864 (0.16 mg-kg™1) were chosen to have the
equivalent GABAergic and non-GABAergic activity respectively, to
2 mg-kg™? of diazepam (Wang, Taniguchi, & Spector, 1984). These
approximate to human equivalent doses of 0.18 and 0.03 mgkg™,
Y

respectively. The dose of adrenaline (0.3 pg~kg‘1~min‘ was chosen
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to correspond to that which produced 50% increase in maximum rate
of left ventricular pressure (LV + dP/dt..,) in anaesthetised rats
(Latini, Zuanetti, Conforti, Schwartz, & Lazzara, 1988). However, this
is appreciably lower (allometrically scaled human equivalent dose of
0.05 pg'kg_lmin‘l) than infusion rates in human poisoning, which are
titrated to maintain arterial pressure (median maximal rate of
0.7 pg»kg_l»min‘l) (Mégarbane et al., 2010).

2.23 | Animals

Male Wistar rats (as above) and female New Zealand White rabbits,
which were either bred in the departmental animal unit or purchased
from Harlan Interfauna (Huntingdon, Cambridgeshire), were used.
Rabbits were housed under ambient conditions of a 12-h light/dark
cycle at 18°C with food (R14 from SDS, Witham, Essex) and given
amprolium HCI 7.68% w/v and ethopabate 0.49% w/v (1.5 ml per
500 ml) drinking water for 5 days as a prophylaxis against coccidiosis
infection. For rabbits, the optimal weight range for experimental use
was 2-3 kg.

2.2.4 | Anaesthesia

Anaesthesia was induced in rats with sodium pentobarbitone of
60 mg»kg’1 intraperitoneally and, once venous access was established,
maintained with intravenous boluses of 3 mg as required. In the treat-
ment study (v), urethane was prepared as a 15% w/v solution in iso-
tonic saline and administered as an intraperitoneal dose of 1.4 g-kg™™.

Neuroleptanalgesia was induced in rabbits by an intramuscular
injection of 0.5 ml-kg™? Hypnorm (0.315 mg-ml~! fentanyl citrate and
10 mg-ml~? fluanisone). Surgical anaesthesia was achieved by adminis-
tering sequential 4-mg boluses of sodium pentobarbitone into the
marginal ear vein and then 12-mg boluses via a cannulated femoral

vein, as required, upon commencement of ventilation.

2.2.5 | Surgical preparation

Femoral veins were cannulated for venous access for drug administra-
tion. The right common carotid and a femoral artery were accessed for
measurement of left ventricular pressure and recording of BP using a
Druck PDCR 75 or a Bell and Howell type 4-422-0001 pressure trans-
ducer. A tracheotomy was performed to facilitate respiration, and a
wide bore cannula secured in place. Subcutaneous stainless-steel nee-
dle electrodes were inserted to each limb for the recording of the ECG.

All animals were maintained at a rectal temperature of 37°C.

2.2.6 | Mechanical ventilation

Ventilation necessitated a thoracotomy at the fifth intercostal space

as, in closed-chest rats, excessive contractions of the diaphragm and
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intercostal muscles were found to prevent effective respiration. A
positive end-expiratory pressure was exerted and air ventilation pro-
vided at 54 strokes-min~* (3-4.5 ml per stroke) using a Harvard Bio-
science small animal respirator. Rabbits were ventilated with air at
38 strokes-min~! (13-18 ml per stroke). A thoracotomy was not nec-
essary in anaesthetised rabbits. Blood gases were measured using a
Corning 158 or 850 pH/blood gas analyser. Stroke volumes were
adjusted for pre-drug PO, >80 mmHg and PCO, >30 mmHg.

2.2.7 | Exclusion criteria

Animals were excluded with pre-drug mean arterial BP <60 mmHg
(in anaesthetised rats) or <40 mmHg (in ventilated rabbits), arterial
PO, of <70 mmHg, arterial PCO, <25 or >40 mmHg or if arrhythmias
occurred during the stabilisation phase of the experiment. In the
randomised trials, rats were excluded if they died prior to the adminis-
tration of chloroquine in trial (i) or the treament in trials (i) to (vi).

2.2.8 | Measurement of cardiovascular parameters
Arterial BP, left ventricular pressure, and its first derivative
(LV + dP/dtyax) and contractility index LV + dP/dt,,.,/P, left ventricu-
lar end-diastolic pressure, heart rate and ECG (lead Il) were measured
and recorded using Lectromed systems (Letchworth, Hertfordshire) or
a Grass 79D recorder (Quincy, Massachusetts) connected to a Po-Ne-
Mah digital data acquisition system (Linton, Diss, Norfolk) and
recorded at a sampling rate of 1,000 Hz.

2.2.9 | Whole blood concentration of chloroquine

Blood samples for the determination of chloroquine concentration
were obtained from trial (iv). Approximately 250-pl arterial blood sam-
ples were drawn after 25, 45 and 60 min of chloroquine infusion from
six rats for the analysis of whole blood chloroquine concentrations.
Four 50-pl aliquots were accurately pipetted on to a sheet of
Whatman grade 3 blotting paper and protected from light exposure.

Standards were prepared by adding aliquots of chloroquine, giv-
ing final concentrations ranging from O to 30 pM, on to chloroquine-
free blood spots. All samples were carefully cut from the surrounding
paper, macerated and placed in individual glass vials containing 50 pl
of a 1 pg-ml~! solution of 7-chloro-4-(5-diethylamino-1-methylpentyl-
amino)-quinoline diphosphate to serve as an internal standard and
3 ml of 0.2-M HCI. The vial contents were vortexed, allowed to settle,
filtered and added to 0.5 ml of 5-M NaOH and 2.5 ml each of
methyl-tertiary-butyl ether (MTBE) and hexane. This was centrifuged
and the organic layer separated. Fresh MTBE and hexane were added
to the remaining aqueous phase and the extraction procedure
repeated. The solvent was evaporated from each organic sample by
heating combined with a gentle flow of dry nitrogen. Samples were
then stored at —20°C.
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Chloroquine was detected using an Isochrom LC Spectra-Physics
pump equipped with a Rheodyne injector, a Spectra 100 fluorescence
detector, and a Chromjet integrator. The excitation wavelength was
340 nm, and a 370-nm emission filter was used (Looareesuwan
et al., 1986). The column (0.25 m x 4.6 mm of internal diameter) was
packed with Spherisorb silica (5-uM particles; Capital HPLC) and
eluted with an isocratic mobile phase consisting of acetonitrile:metha-
nol:diethylamine (94:5.5:0.5), flowing at 1.5 ml-min~%. The limit of
detection for chloroquine was 3.1 nM, and the precision of the
method was 3.5% at 156 nM.

2.2.10 | Biochemical measurements

In randomised trial (vi), arterial blood samples were analysed for blood
gases, pH and electrolyte (K*, Na*, and free Ca?*) concentrations using
a Corning 850 analyser. Blood samples of approximately 200 ul were
collected at baseline, before treatments and 30 min post-treatment.

2.2.11 | Analysis of electrocardiographic parameters

ECG interval measurements were made manually and based on the
average of four successive ECG complexes for each recording time
point. The QRS interval was measured from the onset of the Q wave
(or R wave if no Q was visible) to the point at which the ST segment
bisected the isoelectric line. The QT interval was corrected (QTc)

using Bazett's (1920) formula.

2.3 | Drugs and reagents

All salts for Krebs solutions were of AnalaR grade or higher and
obtained from BDH, Poole, or Fisons, Loughborough. Chloroquine
diphosphate, (+) adrenaline HCI, urethane (ethyl carbamate), Tween
80, N,N-dimethylacetamide and propylene glycol were obtained from
Sigma, Poole. Heparin sodium (Multiparin of 5,000 IU-mI~2) injection
was obtained from CP Pharmaceuticals, Wrexham. MTBE was pur-
chased from Fisons, Loughborough; Ro5-4864 was purchased from
Fluka Chemika, Gillingham, Dorset; Hypnorm (fentanyl/fluanisone)
was from Janssen Animal Health, Petteridge, Kent; Amprol Plus
(Amprolium HCl/ethopabate) was from Merk Sharp & Dohme, Hert-
fordshire; and sodium pentobarbitone was from RMB Animal Health
Ltd, Dagenham. 7-Chloro-4-(5-diethylamino-1-methylpentyl-amino)-
quinoline diphosphate was a gift from the Walter Reed Army Institute
of Research, Washington D.C.; and clonazepam and diazepam were

gifts from Hoffman-La Roche, Basel.

2.4 | Data and statistical analysis

Each experiment involved six independent samples per randomised

group. This was not based on any formal calculations, as the minimally

important difference and SD of the variables of interest were
unknown. Data are presented as means + SEM of the average of
observations over the time course of the experiment. Data were
tested for normality using Shapiro-Wilk tests. For multiple (23) com-
parisons, data were compared by one-way ANOVA followed by a
Bonferroni modified t-test where indicated, or by Kruskal-Wallis tests
if non-normally distributed. The post hoc tests were conducted only if
the ANOVA F-test achieved P < .05 and there was no significant vari-
ance inhomogeneity. Comparisons of two groups of data used either
an unpaired Student's t-test for normally distributed data or a Mann-
Whitney U test for skewed data or where there was a significant dif-
ference between the variances of each group. Differences between
groups in the time to onset of arrhythmias were analysed by log-rank
tests. A P-value less than 0.05 was considered statistically significant.
Statistical analyses were performed using Arcus Pro-Stat version 3.12.
The data and statistical analysis comply with the recommendations of
the British Journal of Pharmacology on experimental design and analy-
sis in pharmacology (Curtis et al., 2018) with the exception that the
analysis was not blinded.

2.5 | Nomenclature of targets and ligands

Key protein targets and ligands in this article are hyperlinked to
corresponding entries in http://www.guidetopharmacology.org, the
common portal for data from the IUPHAR/BPS Guide to PHARMA-
COLOGY (Harding et al., 2018), and are permanently archived in the

Concise Guide to PHARMACOLOGY 2019/20 (Alexander
et al., 2019).

3 | RESULTS

3.1 | Invitro cardiac tissues

Tissues from 57 rats (272 + 4 g) were used. Decreases in the devel-
oped tension of left atria were observed with chloroquine at the
highest concentration of 100 uM. The negative inotropic effect was
time dependent, with maximal changes observed by 30 min. Chloro-
quine did not significantly alter the developed tension or time to peak
tension of right ventricular strips or papillary muscles but significantly
increased the time to peak tension in atria (70 + 4 ms with chloroquine
[100 pM] compared to 54 + 2 ms in the control group). Chloroquine
prolonged the ERP of all tissues. In left atria, for instance, the pre-
chloroquine ERP was 41 = 2 ms (in the 30 pM group), which signifi-
cantly increased to 72 + 9 ms after 30-min exposure to chloroquine.

Diazepam alone was without effect on papillary muscles or ven-
tricular tissue other than a small but significant increase from 65 + 2
to 74 + 2 ms in the time to peak tension of contracting right ventricu-
lar strips at 100 pM. However, diazepam of 100 pM evoked a positive
inotropic response and prolonged the ERP of left atria and had a sig-
nificant negative chronotropic effect on right atria (213 + 11
vs. 290 + 14 beats-min™Y).


http://www.guidetopharmacology.org
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Diazepam in the concentration range of 1 to 100 pM did not
appear to protect against the effects of 30-uM chloroquine (Table 2).
At the highest concentration, diazepam lengthened the ERP and
extended the time to peak tension in left atria and reduced rate of

beating right atria.

3.2 | Invivo models of experimental toxicity

3.2.1 | Haemodynamic effects

In both rats and rabbits, marked dose-dependent decreases in systolic
and diastolic BP were observed during continuous infusions of chloro-
quine (Figure 1). In spontaneously breathing rats, the highest dose of
chloroquine (4 mg-kg~t:min™!) caused the most pronounced effect,
with a reduction in systolic pressure from 123 + 15 to 37 + 6 mmHg
occurring during the first 8 min. Similar reductions in pressure were
observed in ventilated rats receiving chloroquine although baseline
values were lower, as expected in thoracotomized rats. Equivalent
depressor responses in rabbits occurred with approximately twofold
less chloroquine (on a mg-kg™?! basis).

Chloroquine caused dose-dependent negative inotropy in both
species. Reductions in LV + dP/dt., during the first 2 to 4 min of
infusion seemed more pronounced than reductions in BP. For exam-
ple, a 47% reduction in LV + dP/dtax occurred during the first 2 min
of infusion at 2 mg-kg~2-min~! compared with a 15% reduction in dia-
stolic pressure for the same period in non-ventilated rats. Cardiac

lusitropy (LV — dP/dt,,.,) declined in a parallel manner to the negative

TABLE 2
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inotropic response. Increases in left ventricular end-diastolic pressure
were observed with chloroquine in non-ventilated rats and ventilated
rabbits.

Chloroquine caused a similar dose-dependent bradycardia over
the time course of the experiment in both ventilated and non-
ventilated rats for the corresponding doses. In rabbits, however, heart
rate declined abruptly by approximately half at time points

corresponding to the onset of arrhythmias.

3.2.2 | Electrocardiographic effects

In rats, increases in the PR intervals occurred with all doses of chloro-
quine and in proportion to the cumulative dose received. For example,
the PR interval increased from 52 + 3 to 68 + 4 ms during the first
12 min in ventilated rats receiving 1 mg-kg=*-min~* chloroquine, and
from 50 £ 2 to 68 + 4 ms during the first 6 min at twice the infusion
rate, with both groups receiving a total of 12 mg-kg™? of chloroquine
over these periods. Chloroquine also caused a dose-dependent
increase in the PR interval in rabbits.

Chloroquine broadened the QRS complex in all animals (Figure 1),
although this was not as pronounced with the slower infusion rates as
the changes in PR duration. In ventilated rats, for example, the QRS
duration increased by 17% in the first 30 min of chloroquine being

1 while a 30% increase in PR interval

infused at 1 mg-kg™t-min~
occurred over the same period.
QT interval prolongations were observed with high infusion rates,

but these were not as apparent when the QT was corrected for rate

Effects of chloroquine (30 uM) in the presence of propylene glycol 1% v/v (control) or diazepam (1, 10 and 100 pM) on the

developed tension, effective refractory period and time to peak tension of left atria, right ventricular strips, right papillary muscles and on the

spontaneous beating rate of right atria

Tissue

Measurement Control

Left atria N=7
Developed tension (mN) 79+0.8
Effective refractory period (ms) 58+5
Time to peak tension (ms) 44 + 1

Right ventricular strips N=6
Developed tension (mN) 23+0.5
Effective refractory period (ms) 131+6
Time to peak tension (ms) 702

Right papillary muscles N=6
Developed tension (mN) 3.0+0.7
Effective refractory period (ms) 112+ 6
Time to peak tension (ms) 77 £1

Right atria N=5
Beats (min~?1) 260 + 17

Note: Data are mean + SEM.
*P < 0.05 versus control group.

Diazepam

1pM 10 M 100 pM
N=6 N=6 N=6
6.3+0.6 7907 8.7+0.5
56+7 71+8 94 + 10*
45+ 1 45+ 1 51+2*
N=7 N=8 N=7
2.7+0.6 2.3+0.5 24+0.6
106 + 10 125+5 146 +7
69 +3 703 753
N=6 N=6 N=6
2.7+0.7 2.3+0.9 33+11
1177 1199 147 + 11
76+2 77 +3 855
N=5 N=6 N=6
247 + 10 273 +13 184 + 9*
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FIGURE 1 The effects of chloroquine on 150
systolic arterial BP (left panel) and QRS interval 5
(right panel), in spontaneously breathing rats, in
ventilated rats, and in ventilated rabbits. Data are
expressed as the mean + SEM
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A substantial increase in QTc occurred only with

2 mg-kg~t-min~! in ventilated rats.

effects.

Chloroquine induced arrhythmias in 34/38 rats. Typically, impair-
ment of atrioventricular (AV) conduction leading to varying degrees of
AV block was associated with ventricular ectopy. Ventricular bigeminy
sometimes preceded episodes of ventricular tachycardia in the latter
stages of infusion. Ventricular tachycardia was commonly triggered by
“R onT” depolarisations. In three rats, the ventricular tachycardia was
polymorphic with characteristic features of torsade de pointes. Two
rats in each of the ventilated and non-ventilated groups did not expe-
rience cardiac arrhythmias at the lower dose of 0.5 mg-kg~*-min~1.

In all 16 rabbits, arrhythmias presented as Mobitz type Il, second-
degree AV block with a conduction ratio of 2:1 (two P waves for each
QRS complex). The onset of arrhythmias was dose dependent and
with higher degrees of block eventually occurring at the faster infu-
sion rates. These largely degenerated to ventricular tachycardia and
fibrillation.

3.3 | Invivo drug intervention studies

i Efficacy of ligands for benzodiazepine binding sites (before infu-

sion of chloroquine)

Twenty-seven rats entered in the study, but three died immedi-
ately following the administration of clonazepam and were excluded.
There were no differences between pre- and 10 min post-drug
haemodynamics or ECG parameters or between randomised groups
with the administration of diazepam, clonazepam, Ro5-4864, or vehi-
cle. In the presence of these agents, chloroquine reduced BP, heart
rate, contractility index and increased the PR, QRS and QTc intervals
(Table 3). There were no significant differences in these parameters,
or in the time to developing cardiac arrhythmias: 18.1 + 2.8,
158+ 1.6,17.5+ 1.2 and 17.8 £ 2.3 min, between the control, diaze-
pam, clonazepam and Ro5-4864 groups, respectively.

ii Efficacy of ligands for benzodiazepine binding sites (during infu-

sion of chloroquine)

Twenty-five rats entered the study, but one was excluded having
died before being administered the treatment drug/vehicle. Following
30 min of chloroquine infusion, there were similar, significant changes
in haemodynamics and ECG intervals across drug/vehicle treatment
groups (Table 3). There were no differences in any of the measured
parameters between intervention and groups following the adminis-
tration of treatment. However, all rats survived without developing

arrhythmias.
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i Efficacy of ligands for benzodiazepine binding sites (after infusion

of chloroquine)

Three rats were excluded as they died prior to the end of
chloroquine infusion. A further four rats died before the end of the
experiment but were included in the study, one each from the
clonazepam and control groups and two from the Ro5-4864 group.
There was an imbalance in pre-chloroquine baseline QRS intervals,
with higher values in those randomised to Ro5-4864 compared with
other groups. Over 15 min, chloroquine caused significant changes in
all cardiovascular parameters in all randomised groups. However,
there was a difference between groups in the QTc interval, which
was shorter in the control versus diazepam, clonazepam or Ro5-4864
groups. Following the cessation of chloroquine administration and
administration of randomised treatment, all parameters rapidly
returned to baseline values in all groups (Table 3). Heart rate was
higher and QTc interval prolonged in both the diazepam and
clonazepam groups compared with control. There was no significant
difference in the incidence of cardiac arrhythmias between drug

treatment/vehicle groups.

iv  Efficacy of high dose diazepam (during infusion of chloroquine)

In contrast to trial (ii), an infusion of chloroquine for 30 min
did not cause significant changes in any of the haemodynamic or
ECG parameters. Chloroquine did not reduce mean BP and heart
rate or increase the QTc interval significantly in those randomised
to diazepam and did not increase the QRS interval in either
group. Following treatment, heart rate increased significantly in the
diazepam group. There were no differences between treatment
groups in other parameters and none developed arrhythmias
(Table 3).

The whole blood chloroquine concentration in these rats was
122 + 0.8 pM after 25 min of infusion (1 mgkg lmin7Y),
14.3 £ 0.9 uM after 45 min and 16.3 + 1.1 pM after 60 min.

v Efficacy of diazepam (during infusion of chloroquine) with a non-

barbiturate anaesthetic (urethane)

Over 30 min of administration, chloroquine only significantly
affected the PR and QRS intervals. There were no subsequent differ-
ences between groups, following administration of diazepam or vehi-
cle control, in any of the measured parameters and none developed
arrhythmias (Table 3). A further randomised trial was initiated with

chloroquine infused at a higher rate of 2 mgkg~min~! in order to
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evaluate the effects of diazepam on more pronounced toxicity. How-

ever five of the first nine rats died and the study was terminated.

vi Efficacy of diazepam and adrenaline (during infusion of

chloroquine)

Twenty-seven rats was included, but three died before the end of
the experiment, one from each of the control, diazepam and diaze-
pam + adrenaline groups. During the first 30 min of infusion, chloro-
quine caused significant changes in all parameters, with the exception
of the QRS and QTc intervals in the adrenaline group. The lack of an
effect with diazepam (2 mg-kg™') alone was consistent with trial (ii).
The effects of adrenaline alone did not deviate significantly from the
control group in any parameter other than the QRS interval, but this
was not prolonged following chloroquine (Figure 2). The combined
administration of diazepam and adrenaline resulted in an improve-
ment of cardiac contractility compared to the control and diazepam
groups but not the adrenaline group (84 + 3 vs. 78 + 8 s™1). No signifi-
cant differences were observed in the other parameters or incidence
of arrhythmias (Table 3).

Pre-chloroquine potassium concentrations were in the range
expected for rats (Burns & De Lannoy, 1966). Chloroquine alone did
not cause any significant changes in arterial PO,, PCO, or pH values
over a period of 30-min infusion. The combined administration of

TABLE 4
infusion (pre-drug treatment/vehicle), and 30 min post-treatments
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diazepam and adrenaline, however reduced PO, when compared to
pre-treatment values but not when compared to the other groups.
Chloroquine did not alter electrolyte concentrations; but pre-
treatment groups containing adrenaline were more hypokalaemic than

the diazepam and control groups (Table 4).

4 | DISCUSSION

The results of the study indicate that chloroquine prolongs the ERP of
isolated rat atria. In vivo experiments also revealed that chloroquine
induces cardiac arrhythmias and pathophysiologic changes in
haemodynamic and electrocardiographic parameters. Different proto-
cols of diazepam administration did not result in significant improve-
ment in cardiac function either in vitro or in vivo. However, the
administration of diazepam and adrenaline in combination may be
effective against chloroquine cardiotoxicity by improving cardiac
contractility.

The findings from the in vitro studies are congruent with previous
experiments demonstrating the acute cardiotoxic effects of chloro-
quine (Essien & Ette, 1986; Tona, Ng, Akera, & Brody, 1990). At the
concentrations of chloroquine used, left atria were more sensitive to
detrimental effects on mechanical performance than either ventricular
or papillary tissue preparations. Decreases in developed isometric

Whole blood pH, gas, and electrolyte concentrations measured at baseline (pre-chloroquine), following 30 min of chloroquine

Control Adrenaline Diazepam Diazepam + adrenaline

Baseline (pre-chloroquine)

PO, (mmHg) 83+3 77 +3 83+3 84 +2

PCO, (mmHg) 25+2 241 28+ 1 29 +2

pH 7.42 +0.02 745 +0.01 7.45 +0.02 7.44 +0.02

[K*] (mmol-L7Y) 2.18 +0.32 2.34+0.24 241+0.29 2.21+0.40

[Na*] (mmol-L™%) 1438+ 25 1422+ 10 1421+ 15 1429 +£0.9

[Ca?*] (mmol-L™Y) 0.82+0.07 0.89 + 0.05 0.91+0.07 0.89 +0.10
Pre-drug/vehicle treatment

PO, (mmHg) 79 £4 78+3 764 80+6

PCO, (mmHg) 22+1 23+2 24 +2 27 +3

pH 7.42 +0.01 7.43 +0.02 7.38 £0.02 7.41 +0.03

[K*] (mmol-L~%) 1.90 £ 0.25 2.05+0.31 2.01+0.23 2.35+0.40

[Na*] (mmol-L™%) 1459 +1.7 1435+ 1.7 1449 +2.1 1443+ 1.1

[Ca%*] (mmol-L™?) 0.72 + 0.07 0.79 £ 0.06 0.76 + 0.05 0.84 +0.08
30 min post- drug/vehicle

PO, (mmHg) 74£3 675 765 65 + 3*

PCO, (mmHg) 26+2 29+3 272 32+2

pH 7.23 +£0.04* 7.31 +0.03* 7.31 £ 0.04 7.26 +0.02*

[K*] (mmol-L™%) 2.21+0.26 1.71+0.18* 273+0.16 1.52 +0.22*

[Na*] (mmol-L™%) 1473+ 1.8 1448 £ 2.2 143.6 £ 1.5 148.1+1.8

[Ca®*] (mmol-L™") 0.78 £ 0.05 0.81 +0.05 0.84 +0.04 0.77 £ 0.06

Note: Data are mean + SEM.
*P < 0.05 versus pre-drug/vehicle treatment (within-group).
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tension, together with increases in times to peak tension, were
observed, which are indicative of impaired atrial contractility. An
increase in the time to peak tension by chloroquine reflects a prolon-
gation of one or more phases of the cardiac excitation-contraction
cycle and is consistent with the ability of chloroquine to block cardiac
ion channels (Essien & Ette, 1986; Rodriguez-Menchaca et al., 2008;
Sanchez-Chapula, Torres-Jacome,
Haro, & Navarro-Polanco, 2001; Tona et al., 1990). Ikhinmwin, Sofola,

and Elebute (1981) demonstrated a negative inotropic response which

Salinas-Stefanon, Benavides-

was reversed in the presence of increased extracellular calcium aimed
to promote calcium influx via unblocked L-type calcium channels.
Tona et al. (1990) demonstrated chloroquine to inhibit the Treppe
response in atrial guinea pig preparations, but without effect on post-
extrasystolic potentiation of contractile force, suggesting that chloro-
quine interferes with cellular calcium influx upon which the Treppe
response is dependent, but not the latter response which is depen-
dent on intracellular calcium mobilisation. Increases in the refractori-
ness of cardiac tissues are indicative of potassium and/or sodium ion
channel blockade. Using voltage-clamped cat ventricular myocytes,
Sanchez-Chapula et al. (2001) observed that chloroquine blocked sev-
eral inward and outward membrane currents. The order of potency
(1-10 pM range) was inward rectifying potassium current > rapid del-
ayed rectifying potassium current > sodium current > L-type calcium
current. Neither the transient outward potassium current nor the slow
delayed rectifying potassium current was modified by chloroquine.
Salinas and Cebada (1993) also demonstrated that chloroquine blocks
the inward rectifying potassium current in dog cardiac myocytes but
had no effects on either the transient outward or the delayed rectifier
currents. Rodriguez-Menchaca et al. (2008) established that chloro-
quine blocks the inward rectifier K;;2.1 channels, that underlie the car-
diac inward rectifier potassium current, from the cytoplasmic surface.
Other quinolone antimalarials also have known actions in modulating
cardiac electrical activity, including blockade of human ether-a-go-go
related gene (hERG) potassium and L-type calcium channels (Coker,
Batey, Lightbown, Diaz, & Eisner, 2000; Kim, Lee, Cha, Kwon, &
Kim, 2010; Michel, Wegener, & Nawrath, 2002).

Diazepam had little effect on the function of myocardial tissue,
other than at 100 pM, where it increased the ERP and peak developed
tension in left atrial preparations and increased the times to peak ten-
sion in right ventricular strips. Diazepam inhibits PDE4 (Collado
et al., 1998), suggesting a possible mechanism for cardioprotection,
although this occurs at lower concentrations (ICso of 8.7 pM) than
required to elicit responses in the present investigation. The
responses of cardiac tissues to chloroquine in the presence of diaze-
pam were no different from vehicle controls, supporting previous
observations that diazepam does not attenuate the cardiac effects of
chloroquine via a direct action upon the heart (Riou et al., 1989).

The in vivo experimental models of chloroquine toxicity indicated
that impaired cardiac contractility was the primary event in the
sequalae of toxicity. Hypotension, bradycardia, changes in ECG inter-
vals, arrhythmias and death followed in a similar manner as described
previously (Sofola, 1980). However, cardiac arrhythmias may be less

prevalent in cases of human chloroquine poisoning which occurs

following oral ingestion (absorption half-life ~20 min) and where
blood concentrations are predominantly governed by the distribution
and redistribution processes from the various body compartments
back to the intravascular space (Mégarbane et al., 2010). Differences
between species in cardiac electrophysiology may also explain varying
arrhythmic manifestations. The provision of mechanical ventilation did
not appear to influence the onset or the severity of these effects. Sig-
nificant changes in cardiovascular function occurred in the absence of
changes in either arterial blood gas levels or pH, suggesting that toxic
manifestations due to chloroquine are not secondary to hypoxia.
Chloroquine was about twice as potent in its toxic effects in rabbits
than in rats (on a mg-kg™? basis), where whole blood concentrations
were within the 10-20 pM range. This concentration range is compa-
rable with the concentrations used in the in vitro experiments and
observed in human toxicokinetic studies. Clemessy et al. (1995)
reported a mean whole blood chloroquine concentration of 20.1 pM
(range 1.8 to 78 pM) among 191 patients admitted to intensive care.
Mégarbane et al. (2010) correlated mild cardiotoxicity with peak con-
centrations <16 pM, moderate 16-25 pM and severe >25 pM. Chloro-
quine is extensively distributed to extravascular tissues and some
reversal of cardiotoxicity would be expected upon cessation of admin-
istration. The in vivo experimental models of chloroquine toxicity did
not test this. However, in experiment (iii), the administration of chlo-
roquine (2 mg-kg~t-min~1 i.v.) ceased after 15 min and recovery in car-
diovascular parameters was observed in all treatment/vehicle groups.

The series of randomised controlled trials was designed to assess
whether modulation of the GABA, receptor or other effects of diaze-
pam might account for previous reports of reduced toxicity with chlo-
roquine. However, diazepam, whether administered prior, during or
after the administration of chloroquine or at high dose, failed to atten-
uate chloroquine-induced cardiotoxicity in anaesthetised rats. These
results are consistent with previous studies in spontaneously breath-
ing rats anaesthetised with thiobutobarbitone (Buckley et al., 1996),
but contrast with experiments performed in conscious rats (Crouzette
et al., 1983) and pentobarbitone-anesthetised, mechanically ventilated
pigs (Riou, Rimailho, et al., 1988). Possible explanations for these dis-
crepancies might include the choice of species, doses of chloroquine
and diazepam, and anaesthesia. Based on allometric scaling to human
doses, 2 and 10 mg-kg™?! of diazepam administered to rats correspond
to 0.3 and 1.6 mg-kg™! in adults. Effects were similar in the trial in
which urethane was chosen as an anaesthetic for its lack of interac-
tion with GABA, receptors.

Experiments aimed to differentiate any GABA mediated versus
other effects of diazepam, used Ro5-4864, which has activity at the
mitochondrial TSPO benzodiazepine binding site distinct from the
GABA, receptors in the CNS and clonazepam, which rapidly crosses
the blood-brain barrier and is a potent positive allosteric modulator of
GABA, receptors, while having low affinity towards TSPO. Mitochon-
drial TSPO is ubiquitously expressed in various tissues, including the
heart with a putative role in regulating heart rate and contractility
(Surinkaew, Chattipakorn, & Chattipakorn, 2011). As neither diazepam
nor either of these agents protected against or attenuated chloro-

quine toxicity, it is unlikely that any cardiovascular effects in the
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context of chloroquine toxicity can be attributed to interaction with
benzodiazepine binding sites.

In view of the fact that the principal adverse effect of chloroquine
is negative inotropy (Sofola, 1980) and the absence of positive inotro-
pic effects of diazepam under basal conditions (and negative inotropy
Wilgenburg, &

Leeuwin, 1998]), the use of a positive inotrope seems essential for the

under certain conditions [Zeegers, van
improvement in the cardiac function following chloroquine toxicity.
While neither diazepam nor adrenaline alone reversed any
chloroquine-induced cardiovascular changes, the improvement in car-
diac contractility observed with their combined administration may
indicate a beneficial interaction. Studies in rat ventricular tissues dem-
onstrated that diazepam (10 pM) augmented contractility due to iso-
Collado, 1995),

noradrenaline (Juan-Fita, Vargas, & Hernandez, 2003) and dopamine

prenaline (Martinez, Penafiel, & Hernandez,
(Juan-Fita, Vargas, & Hernandez, 2006). These effects were not mim-
icked by GABA nor antagonised by the selective TSPO inhibitor
PK11195 or flumazenil, an antagonist of the GABAA benzodiazepine
binding site. Rather, they were attributed to diazepam's ability to
inhibit PDE4, the main isoenzyme responsible for the inotropic effect
of B-adrenoceptor agonists in the rat myocardium. This offers a plausi-
ble mechanism for the observed effects in chloroquine-intoxicated
rats. However, there are differences between species in the expres-
sion of PDE4, with a fivefold higher amount of non-PDE4 activity in
human hearts compared to rodents, and this will impact on the effect
of enzyme inhibition (Richter et al., 2011). Further mechanistic studies
are warranted to assess the role of PDE4 inhibition in this context.

In conclusion, the results of this study do not offer compelling
support for the wuse of diazepam in reducing chloroquine
cardiotoxicity. Ligands for benzodiazepine binding site, clonazepam,
and Ro5-4864 were similarly ineffective in the experimental models
used. However, the results provide evidence that diazepam might
enhance cardiac contractility when co-administered with adrenaline,
although the lowering of whole blood potassium concentrations, con-
sistent with agonism of p,-adrenoceptors in skeletal muscle, might risk
exacerbation of chloroquine-induced hypokalaemia (Clemessy
et al., 1995) and increased arrhythmogenicity.

These new insights have important clinical and research implica-
tions in the current context of widespread publicity and use of chloro-
quine for COVID-19. Chloroquine is widely used and available
without prescription in many countries, including the United Kingdom,
presenting dangerous opportunities for unintentional overdose. For
the management of patients with chloroquine poisoning, testing the
efficacy of a positive inotrope with a greater selectivity for p4-
adrenoceptors, such as dobutamine, would be desirable, as would a
greater understanding of the non-cardiovascular roles for diazepam
treatment given that chloroquine poisoning often causes convulsions,

which can be intractable.
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