The effect of breed line and age on measurements of pH-value as meat quality parameter in breast muscles (m. pectoralis major) of broiler chickens

Natasa Glamoclija*a, Marija Starcevic*a, Jelena Janjic*a, Jelena Ivanovic*a, Marija Boskovic*a, Jasna Djordjevic*a, Radmila Markovic*a, Milan Z. Baltic*a

*Faculty of Veterinary Medicine, Bulevar Oslobodjenja 18, 11000 Belgrade, Serbia

Abstract

The objective of this study was to determine the effect of breed line and age on pH in broiler chicken breast muscles. pH values of m. pectoralis major muscle were compared within 6 groups - each line (Cobb, Ross, Hubbard) was divided into two groups aged 42 and 50 days. pH values were recorded 15 minutes, 24 and 48 hours after slaughtering. Older broilers showed significantly lower pH than younger ones. Interactions between breed line and age were found, except for pH after 24 hours. Meat quality of broilers can be estimated quickly by determining the pH-value of breast meat.

1. Introduction

Nowadays, poultry meat is one of the most important foods in many cultures around the world, due to its nutritional characteristics. Apart from the quantities of meat that must be produced, the quality of the products must
be maintained in order to satisfy the demand under quality and health conditions\(^1\). The major attributes which define the quality of the poultry and other types of meats as well are appearance, texture, juiciness, flavor, and functionality. A critical attribute for successful product formulation and process control is pH value as a functional property\(^2\). Because of that, the meat industry has developed several methods to assess meat quality, such as pH. Some authors\(^3,4\) reported significant correlations between muscle pH value and poultry meat quality. The pH (a measure how acidic or basic a solution is) of meat can range from about 5.2 to 7.0. The pH value of meat is influenced by various factors such as genetics - breed lines, gender, the manner of holding animals, transport, lairage conditions and time - pre-slaughter stress, method of slaughter, technological parameters and post-mortem handling, storage time of meat, etc.\(^5\). Also, the pH value of the meat depends on the muscle type of the same animal; therefore, it is necessary to standardize the region of the muscle wherein the pH value will be measured. For measuring the pH of the broiler meat it is the best to use the \(m.\) pectoralis major\(^6,7,8\). Generally, ultimate pH value is measured in broiler breast 24 hours after slaughter, but also similar value can be measured after 6 to 8 hours\(^6\). According to many researchers, the highest quality products of broiler breast meat usually tend to fall within ultimate pH range of 5.7 to 6.0 \(^5,9,10,11,12,13\). Many authors agree that pH value 15 to 30 minutes after slaughter can be a reliable indicator of broiler meat quality \(^14,15,16,17,18\). Today, the main problem connected with pH value is PSE (pale, soft and exudative) broiler meat, and its typical characteristics have been reported by a number of authors\(^4,13,16,19,20,21\). The aim of this study was the determination of pH value as a meat quality parameter of broilers shortly after slaughtering depending on breeding and age.

2. Materials and methods

The study was conducted on 300 commercial market broilers (100 Cobb 500, 100 Ross 308 and 100 Hubbard Classic) which were divided into six groups - each line was divided into two groups of broilers. The first group were 42 and the second 50 days old. Broilers were between 2000 and 2600 grams of live weight. The groups were fed according to a breeder feeding program based on recommended nutrient levels. Broilers were slaughtered in a registered slaughterhouse.

Meat quality measurements were carried out on \(m.\) pectoralis major. pH values at 15 minutes, 24 and 48 hours (pH\(_{15\text{min}}\), pH\(_{24h}\), pH\(_{48h}\)) were measured on fifty carcasses from each group (total 300 carcasses). pH values were measured using a pH Measuring Instrument (Germany, Testo 205) by penetration in breast muscle.

Statistical analysis of the results was conducted using the software GraphPad Prism Version 5.00 for Windows (GraphPad Software, San Diego, California USA, www.graphpad.com). Mean values were calculated and the groups were compared with one-way ANOVA with Tukey’s multiple comparison statistical test and two-way ANOVA with Bonferroni post test. Bonferroni post test was performed to test the effect of broilers line (Cobb, Ross and Hubbard) and age (42 and 50 days) as main effects, and their interaction on pH values. Values of \(p < 0.05\) were considered significant.

3. Results and discussion

pH values (30 minutes, 24 and 48 hours after slaughter) of the 42 and 50 days old Cobb, Ross and Hubbard broilers breasts are presented in Table 1. Also, the effect of breed line and age, as well as their interaction on pH are presented in the same table. Average pH values after 15 minutes, 24 and 48 hours were not different regardless of breed line, but significant differences \((p < 0.001)\) were determined between broiler ages. Lower pH values were found in older broilers. Interactions between breed line and age were detected for all pH values, except for pH after 24 hours.
Table 1. The effect of breed line and age on measurements of meat quality parameters in breast muscles (m. pectoralis major) of broiler chickens.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>42 days old</th>
<th>50 days old</th>
<th>L x A</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cobb (n = 50)</td>
<td>Ross (n = 50)</td>
<td>Hubbard (n = 50)</td>
<td>Cobb (n = 50)</td>
</tr>
<tr>
<td>pH15min</td>
<td>6.44±0.19<sup>a</sup></td>
<td>6.29±0.19<sup>b</sup></td>
<td>6.48±0.22<sup>bc</sup></td>
<td>6.15±0.16<sup>ab</sup></td>
</tr>
<tr>
<td>pH24h</td>
<td>6.03±0.16<sup>a</sup></td>
<td>6.19±0.30<sup>b</sup></td>
<td>5.90±0.25<sup>b</sup></td>
<td>5.85±0.18<sup>c</sup></td>
</tr>
<tr>
<td>pH48h</td>
<td>6.04±0.17<sup>a</sup></td>
<td>6.20±0.27<sup>b</sup></td>
<td>5.93±0.20<sup>b</sup></td>
<td>5.85±0.20<sup>c</sup></td>
</tr>
</tbody>
</table>

Within a row, means with a common superscript letter significantly differ: ^a (p < 0.05) and ^{b,c} (p < 0.01); ns - no significance (p > 0.05); * - p < 0.05; ** - p < 0.01; *** - p < 0.001; L - line factor; A - Age factor; L x A - Interaction between line and age factor; pH_{15min}, pH_{24h} and pH_{48h} - pH values measured 15 minutes, 24 hours and 48 hours postmortem; t_{15min} - meat temperature measured 15 minutes postmortem.

According to Table 2, there are different reports about pH values of the m. pectoralis major of broilers (15 minutes after slaughter). The strictest were Ristic and Schön, Taylor and Jones, and Ristic and Dame, with limits of pH 5.8 and under for PSE meat^{14,18,22}. For DFD meat, the strictest were Fletcher, and Petracci et al., with limits of 5.81 and 6.04^{3,15}. Our results, which are presented in Table 1, show that pH values of the m. pectoralis major (15 minutes after slaughter) of the different broiler origins are from 6.05 (Hubbard 50 days old) to 6.44 (Cobb 42 days old). A similar situation was found for pH 24 and 48 hours after slaughter. According to Ristic and Dame, pH values 24 hours after slaughter of different broiler origins were 5.84 for Cobb and 5.71 for Ross⁵. In our results, these pH values for both breed lines were higher (Cobb 6.03 and Ross 6.19 – 42 days old; Cobb 5.90 and Ross 5.85 – 50 days old; Table 1). Age of broilers had an impact on the meat quality parameter, pH value.

Table 2. Limits of different authors for the determination of broiler meat quality using pH-measurement of broiler breasts.

<table>
<thead>
<tr>
<th>Testing time breast meat (min p.m.)</th>
<th>Meat quality-pH values</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PSE</td>
<td>Normal</td>
</tr>
<tr>
<td>15</td>
<td><5.8</td>
<td>>6.0</td>
</tr>
<tr>
<td>15</td>
<td><5.7</td>
<td>5.8-6.3</td>
</tr>
<tr>
<td>15</td>
<td>5.63</td>
<td>5.7</td>
</tr>
<tr>
<td>15</td>
<td>5.77</td>
<td>5.89</td>
</tr>
<tr>
<td>15</td>
<td><5.8</td>
<td>5.8-6.5</td>
</tr>
<tr>
<td>15</td>
<td>5.54</td>
<td>5.91</td>
</tr>
<tr>
<td>180</td>
<td><5.7</td>
<td>5.7-6.1</td>
</tr>
<tr>
<td>15</td>
<td><5.8</td>
<td>5.9-6.2</td>
</tr>
</tbody>
</table>

min p.m. - minutes postmortem, PSE – Pale, Soft, Exudative meat, DFD - Dark, Firm and Dry meat.

4. Conclusion

Broiler chicken breed line and age affects measurements of the meat quality parameter of pH in breast muscles (m. pectoralis major) of broiler chickens. 50 day old broilers had lower pH values than 42 days old broilers. However, in addition to breed line and age, many other factors like breeding, transport, cooling, the storage period, etc. also affect meat quality parameters, including pH, and this should be taken into account.

Acknowledgement

This paper was supported by Ministry of Education and Science, Republic of Serbia, Project “Selected biological hazards to the safety/ quality of food of animal origin and the control measures from farm to consumer” (31034).
References

