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Background – Antimicrobial resistance is a problem in human and animal healthcare. Honey may be used for its

wound healing properties and antimicrobial effects.

Objective – To investigate the antimicrobial activity of two commercially available medical grade honeys (MGHs)

against Staphylococcus spp. and Pseudomonas spp. isolates.

Methods and materials – Two formulations, MGH1 (40% w/v honey) and MGH2 (80% w/v Manuka honey),

were tested in vitro for minimal inhibitory concentrations (MIC) and minimal bactericidal concentrations (MBC)

against 11 Staphylococcus and 11 Pseudomonas isolates at low [1.5 9 104 colony forming units (cfu)/well] and

high (1.5 9 106 cfu/well) concentrations of inoculum, representing systemic and cutaneous bacterial loads dur-

ing infection, respectively.

Results – MGH2 showed a lower MIC against staphylococci than MGH1, although this was not statistically sig-

nificant. MGH1 had stronger bactericidal effects against staphylococci than MGH2, although this effect was sta-

tistically significant only at the higher bacterial concentration (P < 0.01). For Pseudomonas spp., MGH1 had

significantly higher antimicrobial activity (both MIC and MBC) than MGH2 against all isolates tested and at both

bacterial concentrations (P < 0.05).

Conclusions and clinical importance – Both MGHs were effective in vitro against common cutaneous patho-

gens including meticillin-resistant staphylococci and Pseudomonas species. The higher efficacy of the MGH1 for-

mulation against Pseudomonas and its consistent effects against staphylococci, while containing only half of the

amount of honey compared to MGH2, invites further investigation of the mechanisms and clinical applications of

MGH1.

Introduction

Staphylococcus spp. and Pseudomonas aeruginosa are

among the most common opportunistic pathogens of

humans and domestic animals, and possess the ability to

persist in harsh environments and to develop resistance

to many antimicrobials.1–3 With both bacterial genera dis-

playing increasingly high-risk lineages both in human

patients and veterinary species there is growing interest

in assessing the efficacy of alternative therapeutic agents

against antimicrobial-resistant strains.4 Several sub-

stances exist that have antimicrobial activity including

honey, phytochemicals, essential oils and phages. Honey

has seen renewed interest in recent times including for

infected wounds and those associated with antimicrobial-

resistant bacteria.5,6 Whereas standard antimicrobials

possess highly specialized mechanisms of action, the

antibacterial effects of honey are based on a wide range

of properties.5,7,8

Different medical grade honeys (MGHs) exist. Two

formulations used in wound care are MGH1 (L-Mesitran

Soft, Triticum; Maastricht, the Netherlands) and MGH2
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(Medihoney; Integra Life Sciences, Plainsboro, NJ,

USA). Apart from the honey, MGH1 contains additional

healing components including vitamins C and E.2,10–12

The antimicrobial activity of MGH1 against S. pseudin-

termedius and Malassezia pachydermatis has been

investigated previously, and it was reported that MGH1

had stronger antimicrobial activity against both patho-

gens than honey alone, which suggests that the other

components may enhance the antimicrobial activity.2

MGH2 contains pure monofloral Leptospermum scopar-

ium (Manuka) honey. A major difference is that MGH2

contains Manuka honey, which exerts antimicrobial

effects mainly based on methylglyoxal, whereas other

honeys primarily exert antimicrobial activity via hydro-

gen peroxide.13–15 Manuka honey was the first honey

to be extensively investigated,5,16–20 but other types of

honey have been compared to it and found to have a

similar or even stronger antimicrobial activity.21–23 A

100-fold difference in antimicrobial activity has been

reported between different types of honey, supporting

the importance of selecting the most potent product

for any given application.9

The present study sought to evaluate the bacterio-

static (minimum inhibitory concentration; MIC) and bac-

tericidal (minimum bactericidal concentration; MBC)

concentrations of two commonly used MGH formula-

tions against clinical isolates of two skin pathogens

(Staphylococcus spp. and Pseudomonas spp.). Two

concentrations of bacteria were used for testing accord-

ing to the “105 guideline”; a lower concentration to rep-

resent a systemic bacterial load during infection and a

higher concentration to represent bacterial load curing

cutaneous infection.24–28

Methods and materials

Medical honey formulations
The two MGH formulations, MGH1 and MGH2, were as follows:

MGH1 consisted of 40% MGH, propylene glycol, lanolin,

PEG4000 and vitamins C and E (L-Mesitran Soft); MGH2 con-

sisted of 80% MGH with a hydrocolloidal gelling agent (Medi-

honey). Percentages (w/v) of MGH formulation that have

antimicrobial effects are reported, rather than the percentage of

honey in the products.

Bacterial isolates
Clinical isolates included 11 staphylococci (S. aureus, S. epider-

midis, S. pseudintermedius and S. schleiferi) and 11 Pseudomonas

(P. aeruginosa and P. fluorescens) that had been characterized in

previous studies at the Laboratory of Antibiotic Resistance – Fac-

ulty of Veterinary Medicine, University of Lisbon (FMV-UL),29–33

Instituto de Higiene e Medicina Tropical, Universidade NOVA de

Lisboa (IHMT-UNL)29,30 and from the Genevet bacterial Biobank.

Bacterial strains were inoculated in Columbia 5% blood agar

(bioM�erieux; Lisbon, Portugal) and incubated aerobically at 37°C
for 18 h. For all isolates, the susceptibility profile against 31 antimi-

crobial agents was determined (see Tables S1 and S2 in Support-

ing information).

Susceptibility phenotypes were evaluated by determination of

the MIC using the microdilution system SIEMENS Microsan�
B1016-173 POS MIC Panel Type 33 (Siemens Healthcare Diag-

nostics; West Sacramento, CA, USA) and B1016-175 NEG MIC

Panel Type 44 (Siemens Healthcare Diagnostics) for Staphylococ-

cus spp. and Pseudomonas spp. isolates, respectively. The

staphylococcal isolates originated from human and canine skin

infections; the Pseudomonas spp. isolates originated from canine

otitis externa cases, they often exhibited resistance to aminogly-

cosides, fluoroquinolones or other classes of antimicrobials (often

multidrug resistant, MDR). The main characteristics of these iso-

lates are summarized in Table 1. Of note, MDR and meticillin-re-

sistant (MR) staphylococcal isolates [MR Staphylococcus aureus

(MRSA) ST22- SCCmec IV and MR Staphylococcus pseudinter-

medius (MRSP) ST71-SCCmec II-III] from pyoderma cases in

dogs and MRSA SM39 and SM52 isolates which harboured the

biocide resistance genes qacA and smr, respectively, were

included.29,30

Determination of the MICs and MBCs of MGH1 and

MGH2
The methods for the MIC and MBC determinations were adapted

from several Clinical Laboratory Standard Institute (CLSI) guide-

lines.34–36 Stock solutions of MGH1 and MGH2 were prepared by

dissolving the product in sterile distilled water using two-fold

serial dilutions, resulting in 40%, 20%, 10%, 5% and 2.5% (w/v)

MGH1 and MGH2. The MGH stock solutions were prepared

immediately before the antibacterial assays. An inoculum of each

isolate was prepared and the turbidity of the suspension adjusted

to achieve 0.5 McFarland [equivalent to that of 1.5 9 108 colony-

forming units (CFU/mL)] and checked to have an absorbance of

0.150 by UV-visible spectrophotometer at a wavelength of

600 nm.

The MICs of both MGH1 and MGH2 for the different isolates were

determined by the broth dilution method using 96 well microtitre

plates as follows: 100 lL of Mueller–Hinton Broth medium (MHB,

Oxoid; Madrid, Spain) was introduced to each well, and 100 lL of the

MGH1 or MGH2 were added in the first column of the 96 well micro-

titer plates, mixed and serially two-fold diluted in the subsequent

wells. Then 10 lL of the adjusted bacterial concentration inoculums

of the 11 Staphylococcus spp. isolates and 11 Pseudomonas spp.

isolates were added to the test wells, in triplicate, in order to obtain a

final concentration of 1.5 9 104 cfu and 1.5 9 106 cfu per well,

defined as “lower” and “higher” inoculums concentrations, respec-

tively. The positive control wells contained MHB with the adjusted

lower and higher bacterial inocula concentrations in order to check

the bacterial viability, whereas the negative control wells contained

only sterile MHB. Positive and negative control wells were per-

formed in triplicate. The microtitre plates were then incubated at

37°C for 18 h. One microlitre of the negative control, positive con-

trols and each of the bacterial concentration inoculums were subcul-

tured before incubation in Tryptic soy agar (TSA; Oxoid) plates to

assess the culture purity and number of cfu/mL in each well after

incubation at 37°C for 18 h and thus to double-check the initial inocu-

lum concentrations. Also, for the final validation of the initial bacterial

suspension concentrations in the positive controls, the growth of 30–
300 cfus and above 300 cfus were accepted for 1.5 9 105 cfu/mL

(1.5 9 104 cfu per well) and to 1.5 9 107 cfu/mL (1.5 9 106 cfu per

well), respectively. After incubation, bacterial growth was observed

visually by the turbidity of the wells. The lowest concentration of the

MGH1 and MGH2 that showed no turbidity was designated as the

MIC.

The MBCs also were determined for the two different bacterial

inoculum concentrations. The MBC was determined by adding 10 lL
of the concentration which did not show any growth after incubation

during MIC testing, to TSA plates. TSA plates were then incubated at

37°C for 18 h in the absence of the MGH products. The lowest con-

centration that killed 99.9% of the initial bacterial population and in

which the plates showed no growth of colonies on the TSA agar,

was recorded as the MBC.36

Statistical analysis
Data were analysed using PRISM 8.0.1 software (GraphPad; San

Diego, CA, USA). The statistical significance of differences between

MGH1 and MGH2 concerning MIC and MBC, for each of the two

concentrations separately, were evaluated using the nonparametric

Wilcoxon matched-pairs signed rank test; no values were left out
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during analysis. Results were considered significantly different for

P < 0.05.

Results

In vitro efficacy of MGHs against staphylococci

The MIC data for MGH1 and MGH2 at low and high bac-

terial loads for all staphylococcal isolates are presented in

Figure 1. For MGH1, independently of the inoculum con-

centration, bacteriostatic effects were observed at 10%

(w/v) for all staphylococcal isolates, except for MRSP

FMV 4877/10. For this isolate, at the high inoculum con-

centration, a bacteriostatic effect of MGH1 was only

observed at 20% (w/v). A higher variation in MIC values

was observed for MGH2, although for most isolates a

bacteriostatic effect also was achieved at 10% (w/v). At

the low inoculum concentration, three isolates presented

a MIC of 2.5% (w/v), whereas two isolates presented

MICs of 5% (w/v). At the high bacterial load, one isolate

displayed a MIC of 2.5% (w/v), whereas two had a MIC

of 5% (w/v). Again, isolate MRSP FMV 4877/10 pre-

sented a MIC of 40% (w/v) for MGH2 at high inoculum

concentration.

Overall, higher concentrations of MGH1 were needed

to exert bacteriostatic effects against some staphylococ-

cal isolates when compared to MGH2. However, MGH1

had more consistent MIC values and demonstrated less

variation against the different isolates. No statistically sig-

nificant differences were found between MGH1 and

MGH2 regarding the MICs (P = 0.0625 and P = 0.75) for

the low and the high bacterial inocula, respectively.

The bactericidal effects of both MGHs were investi-

gated regarding the MBC (Figure 1). For MGH1, at low

inoculum concentration, an MBC of 10% (w/v) was

observed for the majority of isolates tested, except for

three isolates which showed an MBC of 20% (w/v). How-

ever, at high bacterial load, only two isolates presented

an MBC of 10% (w/v), whereas most had an MBC of

20% (w/v).

For MGH2, the MBC values at low bacterial concentra-

tion were dispersed; ranging from 5% to 40% (w/v); two

with an MBC of 5% (w/v), three at 10% (w/v), four at

20% (w/v) and two at 40% (w/v). This dispersion was not

detected at the high bacterial concentration, where all iso-

lates showed an MBC of 40% (w/v). Neither MGH was

effective in killing two isolates (MRSP FMV 4877/10 and

MRSP GV818/2017) at the high inoculum concentration.

Overall, MGH1 had a significantly stronger bactericidal

effect compared to MGH2 at the high inoculation concen-

tration (P = 0.0039) , whereas at low bacterial concentra-

tion no significant difference between the MGHs was

found (P = 0.125).

In vitro efficacy of MGHs against Pseudomonas spp.

The MICs of MGH1 against Pseudomonas spp. were sig-

nificantly lower compared to MGH2 at both bacterial con-

centrations (P = 0.0020 low and P = 0.0039 high;

Figure 2). At both bacterial concentrations and for all

Pseudomonas isolates, MGH1 had a MIC of 20% (w/v),

whereas MGH2 showed a MIC of 20% (w/v) for only one

strain (P. aeruginosa ATCC 15442) and a MIC of 40% (w/

v) against the 10 remaining isolates, except for the isolate

Table 1. Overview of staphylococcal and Pseudomonas strains used in this study

Strain Clonal lineage

Antimicrobial and biocide

resistance genes Origin Type of Infection Reference

MSSA ATCC� 6538TM ST464-t3297 - Human Human lesion ATCC51

MSSA ATCC� 29213TM - -- Human Skin wound ATCC

MSSA FMV 77/2015 ND ND Dog Skin infection 31,33

MRSA FMV 1504A/08 ST22-t032-SCCmec

type IV

blaZ, mecA Dog Skin infection 32

MRSA SM39 ST88-t186 blaZ, cadA, qacA Human Nosocomial infection 29,30,52

MRSA SM52 ST8-t008 Smr, GrlA: S80Y, GyrA: S84L Human Nosocomial infection 30

MRSP FMV 4877/10 ST71-t02-SCCmec

type II-II

blaZ, mecA, erm(B), tet(K),

aacA-aphD, aphA3, aadE, dfr(G)

Dog Skin infection 31,33

MRSP FMV 56/2013A SCCmec type III erm(b), tet(M), aphA3, aadE Dog Skin infection FMV-UL

MRSP GV818/2017 ND ND Dog Skin infection Genevet Biobank

MRSE FMV 60/2012 ST5-SCCmec

type IV

blaZ, mecA, erm(C), tet(K),

aacA-aphD, fusB

Dog Skin infection 33

MRSS FMV 57/2013B SCCmec type III blaZ, mecA, tet(K) Dog Skin infection 33

P. aeruginosa ATCC�27853TM ND ND Human Blood culture ATCC

P. aeruginosa ATCC�15442TM ND ND Animal Animal room bottle ATCC

P. aeruginosa FMV114/2014 ND ND Dog OE FMV-UL

P. aeruginosa FMV74/2015 ND ND Dog OE FMV-UL

P. fluorescens FMV85/2015 ND ND Dog OE FMV-UL

P. fluorescens FMV147/2015 ND ND Dog OE FMV-UL

P. aeruginosa FMV26/2016 ND ND Dog OE FMV-UL

P. aeruginosa FMV27/2016 ND ND Dog OE FMV-UL

P. aeruginosa FMV49/2016 ND ND Dog OE FMV-UL

P. aeruginosa FMV02/2017 ND ND Dog OE FMV-UL

P. aeruginosa FMV42/2017 ND ND Dog OE FMV-UL

ATCC, American Type Culture Collection; FMV, Faculty of Veterinary Medicine (University of Lisbon); MRSA, meticillin-resistant Staphylococcus

aureus; MRSE, meticillin-resistant Staphylococcus epidermidis; MRSP, meticillin-resistant S. pseudintermedius; MRSS, meticillin-resistant Sta-

phylococcus schleiferi; MSSA, meticillin-susceptible S. aureus; ND, not done; OE, otitis externa.
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FMV74/2015 that was not susceptible at high bacterial

load.

MGH1 also had significantly lower MBCs for the Pseu-

domonas isolates compared to MGH2 at the low bacterial

concentration (P = 0.0459), whereas there was no statis-

tical significance at the high bacterial concentration

(P = 0.0918; Figure 2). At the low inoculum concentra-

tion, one isolate (P. aeruginosa FMV27/2016) could not

be killed by MGH1 and at the high bacterial concentration

one additional isolate (P. aeruginosa FMV74/2015) was

not susceptible to MGH1. This same isolate showed no

growth inhibition by either MGH at the high bacterial

inoculum. Against all other isolates, the MBC of MGH1

was 20% (w/v). Regarding MGH2, independent of bacte-

rial load, the MBC was 40% (w/v) for all Pseudomonas

isolates, except for P. aeruginosa FMV74/2015, which

was not susceptible to MGH2 at the high concentration.

Discussion

The present study has shown that two different MGH for-

mulations are effective against most Staphylococcus spp.

and Pseudomonas spp. isolates tested. Staphylococcal

strains were specifically selected that are commonly

implicated in human and canine infections and present

relevant resistance phenotypes and genotypes. Two

Figure 1. Minimal inhibitory concentration (MIC) and minimal biocidal concentration (MBC) for medical grade honey (MGH) formulations MGH1

and MGH2 against 11 staphylococcal isolates originating from human and canine skin infections.

Each symbol represents a different isolate. Mean values were plotted for each bacterial isolate; tests were performed in triplicate at each concen-

tration of the product and at both bacterial loads. There were no significant differences observed between the MICs of the two MGH formulations

at the two different bacterial loads. MGH1 showed a significantly stronger bactericidal effect compared to MGH2 at the high bacterial load

(**P < 0.01). Nevertheless, both MGH1 and MGH2 were ineffective against high bacterial concentrations of the MRSP FMV 4877/10 and MRSP

GV818/2017. The isolates that were not sensitive were not plotted in the graph but were included in the statistical analysis.

Figure 2. Minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) for medical grade honey (MGH) formulations

MGH1 and MGH2 against 11 Pseudomonas spp. isolates originating from canine ear infections.

Each symbol represents a different isolate. The minimal concentration of MGH1 to exert bacteriostatic effects was significantly lower than this of

MGH2 at both low and high bacterial load (**P < 0.01). Mean values were plotted for each bacterial isolate; tests were performed in triplicate at

each concentration of the product and at both bacterial loads. At the high bacterial inoculation load, MGH1 and MGH2 were ineffective to inhibit

the growth of P. aeruginosa FMV74/2015. The isolates that were not sensitive were not plotted in the graph but were included in the statistical

analysis. The minimal concentration of MGH1 to exert a bactericidal effect at the low bacterial load was lower than for MGH2 (*P < 0.05), whereas

there was no statistically significant difference at the high concentration. Pseudomonas aeruginosa FMV27/2016 was not affected by MGH1 at

both bacterial loads. At low bacterial load, P. aeruginosa FMV74/2015 was not killed by MGH2; at high bacterial load, this isolate was killed neither

by MGH1 nor MGH2. Isolates that were not sensitive were not plotted in the graph but were included in the statistical analysis.
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P. fluorescens isolates were included in the Pseu-

domonas collection even though this species may be less

pathogenic than P. aeruginosa, because P. fluorescens

also may be isolated from skin infections where it causes

a putrid malodour.37 Furthermore, the methods devel-

oped and validated in this study were based on CLSI

guidelines but with the addition of an extra bacterial con-

centration resembling the cutaneous in vivo bacterial load

expected during skin and ear canal infections.34–36 The

105 cfu/g of tissue (“105 guideline”) is widely adopted

and is a consensus for the definition of bacterial skin

infection.25 The lower bacterial load investigated in the

present study better resembles the bacterial load during a

systemic infection.

It was demonstrated herein that both MGH formula-

tions presented low MICs and MBCs, suggesting that

those MGHs also could be effective for topical treatment

of infections caused by the tested bacteria, including

staphylococci expressing MR, MDR and reduced biocide

susceptibility, and Pseudomonas spp. isolates expressing

MDR. It should be noted that residual MGH on the agar

plate could possibly have led to an overestimation of the

MBC values; however, this effect would have been simi-

lar for both MGH formulations.

Typically, MGH1 was bacteriostatic and bactericidal at

a concentration of 10% (w/v) against staphylococci, and

at a concentration of 20% (w/v) against most of the

tested Pseudomonas spp. isolates. MGH2 showed more

isolate-dependent variation in antimicrobial efficacy,

although sometimes a higher inhibitory effect (lower

MIC) was obtained with MGH2 compared to MGH1.

However, MGH1 consistently showed a stronger bacteri-

cidal effect (lower MBC), especially against the high con-

centration of bacteria as may be encountered with

cutaneous infections. Interestingly, MGH1 was more

effective than MGH2 against all Pseudomonas spp. iso-

lates in both MIC and MBC. The higher efficiency of

MGH1 against Pseudomonas spp. and its consistent

effects against staphylococcal isolates, suggest that

MGH1 has stronger and more versatile antimicrobial

effects than MGH2. The honey concentrations in these

two MGHs differ, with MGH2 being twice as concen-

trated (80% w/v) as MGH1 (40% w/v). Therefore, lower

concentrations of honey in MGH1 exerted stronger or at

least similar biocidal action compared to the honey in

MGH2. A formulation with a lower but more effective

honey concentration might prove to be more advanta-

geous in clinical cases because high concentrations of

honey may lead to stronger osmotic effects that could

result in the sensation of stinging pain.38

The observed difference in antimicrobial effects

between MGH1 and MGH2 may be explained by the dif-

ferent types of honey in their formulations having differ-

ent mechanisms of action. Variation in antimicrobial

activity may exist between honey types, but also may

change between bacterial isolates, as is shown by the

variability in efficacy of MGH2 against S. aureus. Neutral-

ization of methylglyoxal in Manuka honey has been

shown to eliminate the antimicrobial effects towards

S. aureus,14 supporting the hypothesis that MGH2 would

depend specifically on methylglyoxal. MGH1 contains

lower levels of methylglyoxal, but acts via other

components, such as hydrogen peroxide, bee defensin-1,

low pH, sugars and high osmolarity.39,40

MGH1 previously has been evaluated in a pilot clinical

trial which reported favourable antibacterial potential in

canine otitis externa.41 In addition, MGH1 has been evalu-

ated in vitro reiterating its antifungal and antibacterial prop-

erties via a hydrogen peroxide-independent action.2 In that

study, MGH1 was compared to honey, showing that

MGH1 had a significantly stronger bactericidal effect than

honey alone against S. pseudintermedius isolates

(P = 0.003). Sixteen of the 60 isolates tested had a lower

MBC for MGH1 compared to honey. A range of 5–20%w/

v for MGH1 was observed and no difference was seen

between MSSP and MRSP isolates.2 This is in line with

the observations herein, with MGH1 typically having an

MBC of 10–20% against MRSP.MGH1 has been reported

to show antifungal activity against Candida albicans, com-

pared with raw honey, suggesting that supplemented vita-

mins may enhance antimicrobial properties.42 In a

randomized controlled trial with 127 horses having lacera-

tions, MGH1 was able to prevent infections and improve

complete healing and veterinarian satisfaction.43

Infected wounds often contain polymicrobial patho-

gens44,45 and therefore an antimicrobial agent active

against a wide spectrum of pathogens is warranted. The

broad response of almost all the isolates tested in the pre-

sent work against both MGHs suggests that they might

have therapeutic efficacy in a variety of pathologies and

that it should be considered for treatment of wounds and

otitis externa. Because MGH1 can prevent infections43

the prophylactic use of MGH in surgical wounds or pri-

mary closure of wounds also forms an interesting strat-

egy. Nevertheless, both MGH formulations showed that

certain isolates were less susceptible, suggesting that

not every infection will respond to the same extent to the

MGH therapy.

Besides its antimicrobial effects, honey also possesses

good wound-healing properties and stimulates tissue

growth, has immunomodulatory effects, resolves inflam-

mation, enhances angiogenesis and epithelialization, and

minimizes scar formation.46,47 The addition of supple-

ments to MGH formulations may further enhance the

pro-healing effects of MGH while possibly improving its

antimicrobial properties.42,47 MGH1 is supplemented

with vitamins C and E that act synergistically and enhance

wound repair10–12 and its antimicrobial activity.42,48 Vita-

min C is a cofactor in the biosynthesis of collagen and

improves angiogenesis and tensile strength in the

skin.49,50 Vitamin E protects cells from lipid peroxidation,

is anti-inflammatory and reduces scar formation.11 MGH

supplemented with these vitamins should be considered

for both infected and clean wounds. Further investigation

into the effects of MGH on cellular and molecular targets

is needed, and the in vivo broad-range antimicrobial effi-

cacy needs to be confirmed in clinical trials.
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R�esum�e

Contexte – La r�esistance antimicrobienne est un probl�eme en sant�e humaine et animale. Le miel pourrait

être utilis�e pour ses propri�et�es de cicatrisation et ses effets antimicrobiens.

Objectif – Etudier l’activit�e antimicrobienne de deux miels m�edicaux disponibles dans le commerce

(MGHs) contre les souches de Staphylococcus spp. et Pseudomonas spp.

Mat�eriels et m�ethodes – Deux formulations, MGH1 (miel �a 40% w/v) et MGH2 (miel de Manuka �a 80%

w/v), ont �et�e test�ees in vitro pour la concentration minimale inhibitrice (MIC) et les concentrations minima-

les bact�ericides (MBC) contre 11 souches de Staphylococcus et 11 Pseudomonas �a faibles [1.5 9 104 col-

ony forming units (cfu)/well] et hautes (1.5 9 106 cfu/well) concentrations d’inoculum, repr�esentant

respectivement une charge bact�erienne syst�emique et cutan�ee au cours de l’infection.

R�esultats – MGH2 a montr�e une MIC plus faible que MGH1 contre staphylococci, bien que ce ne soit pas

statistiquement significatif. MGH1 a des effets bact�ericides plus forts contre staphylococci que MHG2,

bien que cet effet ne soit statistiquement significatif qu’�a la concentration bact�erienne la plus �elev�ee (P <
0.01). Pour Pseudomonas spp., MGH1 avait une activit�e antimicrobienne significativement plus �elev�ee

(MIC et MBC) que MGH2 contre toutes les souches test�ees et aux deux concentrations bact�eriennes (P <
0.05).

Conclusions et importance clinique – Les deux MGHs �etaient efficaces in vitro contre les pathog�enes

cutan�es fr�equents incluant les staphylocoques r�esistant �a la m�eticilline et Pseudomonas. La plus grande

efficacit�e de la formulation de MGH1 contre Pseudomonas et ses effets contre staphylocoques, alors que

contenant moiti�e moins de mile que MGH2, implique la r�ealisation d’autres �etudes des m�ecanismes et des

applications cliniques de MGH1.

Resumen

Introducci�on – la resistencia a los antimicrobianos es un problema en la salud humana y animal. La miel

puede usarse por sus propiedades de cicatrizaci�on en heridas y por sus efectos antimicrobianos.

Objetivo – investigar la actividad antimicrobiana de dos mieles de grado m�edico (MGHs) disponibles

comercialmente frente a aislados de Staphylococcus spp. y Pseudomonas spp.

M�etodos y materiales – dos formulaciones, MGH1 (40% p/v de miel) y MGH2 (80% p/v de miel de Man-

uka), se probaron in vitro para detectar concentraciones inhibitorias m�ınimas (MIC) y concentraciones bac-

tericidas m�ınimas (MBC) frente a 11 aislados de Staphylococcus y 11 aislados de Pseudomonas a bajas

[1,5 9 104 unidades formadoras de colonias (cfu)/pocillo] y altas (1,5 9 106 cfu/pocillo) concentraciones de

in�oculo, que representan cargas bacterianas sist�emicas y cut�aneas durante la infecci�on, respectivamente.

Resultados – MGH2 mostr�o una menor MIC frente a estafilococos que MGH1, aunque esto no fue

estad�ısticamente significativo. MGH1 tuvo efectos bactericidas m�as potentes frente a estafilococos que

MGH2, aunque este efecto fue estad�ısticamente significativo solo a la concentraci�on bacteriana m�as alta

(P <0,01). Para Pseudomonas spp., MGH1 tuvo una actividad antimicrobiana significativamente mayor

(tanto MIC como MBC) que MGH2 frente a todos los aislamientos probados y en ambas concentraciones

bacterianas (P <0,05).
Conclusiones e importancia cl�ınica – Ambas formulaciones de MGH fueron efectivas in vitro frente a

pat�ogenos cut�aneos comunes, incluidos los estafilococos resistentes a meticilina y especies de Pseudo-

monas. La mayor eficacia de la formulaci�on de MGH1 frente a Pseudomonas y sus efectos consistentes

frente a estafilococos, aun teniendo solo la mitad de la cantidad de miel en comparaci�on con MGH2, invita

a una mayor investigaci�on de los mecanismos y aplicaciones cl�ınicas de MGH1.

Zusammenfassung

Hintergrund – Die antimikrobielle Resistenz ist ein Problem bei der Gesundheitsvorsorge des Menschen

und der Tiere. Honig k€onnte aufgrund seiner Wundheilungseigenschaften und antimikrobieller Wirkungs-

weisen Verwendung finden.

Ziel – Eine Untersuchung der antimikrobiellen Aktivit€at zweier kommerziell verf€ugbarer medizinischer Hon-

ige (MGHs) im Einsatz gegen Staphylococcus spp. und Pseudomonas spp. Isolate.
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Methoden und Materialien – Zwei Formulierungen, MGH1 (40% w/v Honig) und MGH2 (80% w/v Manu-

kahonig) wurden in vitro auf ihre minimale Hemmstoffkonzentration (MIC) und minimale bakterizide Kon-

zentration (MBC) gegen€uber Staphylococcus und 11 Pseudomonas Isolate getestet, wobei niedrige[1,5 x

104 Kolonie-bildende Einheiten (cfu)/Prober€ohrchen] und hohe (1,5 x 106 cfu/ Prober€ohrchen) Konzentratio-

nen von Inokulum eingesetzt wurden, was systemische bzw kutane bakterielle Belastungen w€ahrend einer

Infektion repr€asentierte .

Ergebnisse – MGH2 zeigte eine niedrigere MIC gegen€uber Staphylokokken als MGH1, obwohl dieses

Ergebnis nicht statistisch signifikant war. MGH1 zeigte eine deutlichere bakterizide Wirkung gegen€uber

Staphylokokken als MGH2, obwohl dieses Ergebnis nur bei h€oheren bakteriellen Konzentrationen statis-

tisch signifikant war (P < 0,01). Bei Pseudomonas spp. zeigte MGH1 eine signifikant h€ohere antimikrobielle

Aktivit€at (sowohl MIC als auch MBC) als MGH2 gegen€uber allen getesteten Isolaten und bei beiden bakte-

riellen Konzentrationen (P < 0,05).

Schlussfolgerungen und klinische Bedeutung – Beide MGHs waren in vitro gegen €ubliche Hautpatho-

gene inklusive Methicillin-resistenten Staphylokokken und Pseudomonas Spezies wirksam. Die h€ohere

Wirksamkeit der MGH1 Formulierung gegen€uber Pseudomonas und seine konstante Wirkung gegen€uber

Staphylokokken, obwohl es nur die halbe Menge an Honig im Vergleich zu MGH2 beinhaltete, laden zu wei-

terer Untersuchung des Mechanismus und der klinischen Anwendung von MGH1 ein.

要約

背景 – 抗菌薬耐性は、人間および動物のヘルスケアにおける問題である。蜂蜜は、その創傷治癒特性お

よび抗菌効果のために使用される場合がある。

目的 – 本研究の目的は、2つの市販された医療グレードの蜂蜜(MGH)によるブドウ球菌およびシュードモ

ナス属菌株に対する抗菌活性を調査することである。

材料と方法 – MGH1(40%w / v蜂蜜)とMGH2(80%w / vのマヌカ蜂蜜)の2製剤に対し、それぞれ感染時の全

身および皮膚細菌負荷を表す、低濃度[1.59104コロニー形成単位(cfu)/ウェル]および高濃度(1.59106 cfu /
ウェル)のブドウ球菌および緑膿菌それぞれ11分離株に対する最小発育阻止濃度(MIC)と最小殺菌濃度

(MBC)をin vitroでテストした。
結果 – MGH2は、MGH1よりもブドウ球菌に対する低いMICを示したが、統計的に有意ではなかった。

MGH1はMGH2よりブドウ球菌に対して強い殺菌効果があったが、細菌濃度が濃い場合にのみ統計的に有

意であった(P <0.01)。緑膿菌においては、MGH1は、試験した全分離株および両細菌濃度で、MGH2より
も抗菌活性(MICおよびMBCの両方)が有意に高かった(P <0.05)。
結論と臨床的重要性 – 両MGHは、メチシリン耐性ブドウ球菌と緑膿菌を含む一般皮膚病原体に対して

in vitroで効果的であった。 MGH2と比較し、半量の蜂蜜しか含まない一方で、緑膿菌に対するMGH1製
剤の高い効力およびブドウ球菌に対する一貫した効果は、MGH1のメカニズムおよび臨床応用のさらな

る調査をもたらす。

摘要

背景 – 抗生素耐药性是人类和动物医疗保健中的一个问题。由于蜂蜜具有愈合伤口和抗菌作用,因而值得使

用。
目的 – 研究现有市售的两种药用级别蜂蜜(MGHs)对葡萄球菌和假单胞菌分离株的抗菌活性。
方法和材料 – 两种配方,MGH1 (40% w/v 蜂蜜) 和MGH2 (80% w/v Manuka 蜂蜜),针对11个葡萄球菌和11
个假单胞菌分离株,体外测定其最小抑制浓度(MIC)和最小杀菌浓度(MBC),选择培养液的低 [1.5 9 104 col-
ony forming units (cfu)/well]和高 (1.5 9 106 cfu/well) 浓度,分别代表感染期间全身和皮肤的细菌量。
结果 – MGH2对葡萄球菌的MIC低于MGH1,尽管这没有统计意义。MGH1对葡萄球菌的杀菌作用强于

MGH2,但这个结果仅在细菌浓度高时才有统计意义(P < 0.01)。对于假单胞菌,MGH1对所有被测菌株的抗

菌活性(MIC和MBC)均高于MGH2,且在两种细菌浓度下均高于MGH2 (P < 0.05)。
结论和临床意义 – 在体外试验中,两种MGHs对常见的皮肤致病菌,包括耐甲氧西林葡萄球菌和假单胞菌均

有效。与MGH2相比,MGH1配方对假单胞菌疗效更高,且具有持续对抗葡萄球菌的作用,但其蜂蜜含量仅为

MGH2的一半。因此,MGH1的作用机制和临床应用有待进一步研究。

Resumo

Contexto – A resistência antimicrobiana �e um problema na sa�ude humana e animal. O mel pode ser utili-

zado por suas propriedades curativas e efeitos antimicrobianos.

Objetivo – Investigar a atividade antimicrobiana de dois m�eis medicinais (MGHs) comercialmente dis-

pon�ıveis contra Staphylococcus spp. e Pseudomonas spp. isolados.

M�etodos e materiais – Duas formulac�~oes, MGH1 (40% p / v mel) e MGH2 (80% p / v mel Manuka), foram

testadas in vitro para concentrac�~oes inibit�orias m�ınimas (MIC) e concentrac�~oes bactericidas m�ınimas

(MBC) contra 11 Staphylococcus e 11 Pseudomonas isolados em baixas [1,5 9 104 unidades formadoras

de colônias (ufc) / poc�o] e altas (1,5 9 106 ufc / poc�o) concentrac�~oes de in�oculo, representando cargas bac-

terianas sistêmicas e cutâneas durante a infecc�~ao, respectivamente.

Resultados – O MGH2 mostrou uma MIC menor contra estafilococos do que o MGH1, embora isso n~ao

tenha sido estatisticamente significativo. O MGH1 teve efeitos bactericidas mais fortes contra os
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estafilococos do que o MGH2, embora esse efeito tenha sido estatisticamente significativo apenas na

maior concentrac�~ao bacteriana (P <0,01). Para Pseudomonas spp., O MGH1 apresentou atividade antimi-

crobiana significativamente maior (MIC e MBC) do que o MGH2 contra todos os isolados testados e em

ambas as concentrac�~oes bacterianas (P <0,05).
Conclus~oes e importância cl�ınica – Ambas OS MGHs foram eficazes in vitro contra pat�ogenos cutâneos

comuns, incluindo estafilococos resistentes �a meticilina e esp�ecies de Pseudomonas. A maior efic�acia da

formulac�~ao MGH1 contra Pseudomonas e seus efeitos consistentes contra estafilococos, embora conte-

nha apenas metade da quantidade de mel em comparac�~ao com o MGH2, convida a uma investigac�~ao mais

aprofundada dos mecanismos e aplicac�~oes cl�ınicas do MGH1.
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