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Abstract

Site-specific seeding (SSS) is a precision agricultural (PA) practice aiming at optimizing
seeding rate and depth, depending on the within field variability in soil fertility and yield
potential. Unlike other site-specific applications, SSS was not adopted sufficiently by
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farmers due to some technological and practical challenges that need to be overcome.
Success of site-specific application strongly depends on the accuracy of measurement
of key parameters in the system, modeling and delineation of management zone maps,
accurate recommendations and finally the right choice of variable rate (VR) technologies
and their integrations. The current study reviews available principles and technologies
for both map-based and senor-based SSS. It covers the background of crop and soil
quality indicators (SQI), various soil and crop sensor technologies and recommendation
approaches of map-based and sensor-based SSS applications. It also discusses the
potential of socio-economic benefits of SSS against uniform seeding. The current review
proposes prospective future technology synthesis for implementation of SSS in practice.
Amulti-sensor data fusion system, integrating proper sensor combinations, is suggested
as an essential approach for putting SSS into practice.

1. Introduction

Agricultural soils are highly variable both spatially and temporally. Some

soil properties change largely over time [e.g., moisture content (MC), nutri-

ents], whereas others changes over space (e.g., texture), or both (e.g., MC

and nutrients). Spatiotemporal heterogeneity of agricultural soils affects

crop production and yield ( Jones et al., 1989; Kravchenko and Bullock,

2000; Spomer and Piest, 1982; Stone et al., 1985). The degree of soil var-

iability differs from field to field, according to different affecting factors such

as terrain attributes, inherited soil variability and agricultural practices. Nev-

ertheless, traditional farming practices adopt a uniform seeding rate (USR),

irrespective to the within field variations. Most frequently, USR does not

match the within field variability, where suboptimal or supra-optimal seed

rates are applied at different parts of the field. Consequently, improper

seeding rates will most probably lead to improper plant populations. It will

either raise the above-ground (i.e., solar radiation inception) and below-

ground (i.e., nutritional) inter plant competition or fail to reach the highest

crop yield ( Jiang et al., 2013). Inappropriate plant populations density

necessitates improper inter cultural input applications such as fertilizers,

manure and crop protection products. Over application of agrochemicals

also can negatively affect the soil biota, disturb aquatic ecosystems and pol-

lute environment largely (Esau et al., 2014a,b). Non-optimal input alloca-

tion may raise production costs and reduce overall economic return

(Chattha et al., 2014). Therefore, ultimate fate of this USR practice is to

acknowledge poor production outcomes, which can drive food security

toward endanger for ever-growing population in coming future.
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The terms site-specific or variable rate (VR) applications in precision

agriculture (PA) are commonly known as analogous to each other. Site-

specific approach means variable application of input resources, e.g., seeds,

fertilizers, tillage, water for irrigation and crop protection products within a

field. Optimal input rates are made for optimum production at each within-

field location aiming at reducing resource inputs and labor costs, maximizing

farm productivity and reducing environmental risk due to over application

of agricultural inputs (Khanal et al., 2017). Site-specific seeding (SSS) refers

to both variable seed densities and sowing depth. Isbell (2005) defined SSS

as a PA practice to help farmers tailoring their seeding rates to address field

variability thereby increasing utilization efficiency. SSS ensures optimal

number of plant density for a particular part of a field by placing right num-

ber of seeds regarding to the yield potential of a specific region of field. As a

result, SSS can maximize overall production by managing within field

variabilities and farm resources. It has great potentiality to produce extra

profit margin through three different ways, i.e., (i) increase yield by the same

amount of seeds, (ii) applying smaller amount of seeds for similar yield and

(iii) maximizing yield for the smallest amount of seeds. Site-specific seeding is

an environmental friendly approach that entertains optimal plant populations

and ensures the optimal application of the other agricultural inputs like fer-

tilizers, manure, insecticides and pesticides (Holmes, 2017). According to the

Alabama Precision Extension, SSS reduces overall seed costs and maximize

yield (Isbell, 2005). Nevertheless, practicing variable plant populations

within fields is an old concept and the availability of GPS technology has

given a new era to re-introduce this promising idea (Robert et al., 1999).

High resolution sensing andmapping of soil quality and crop growth var-

iation is crucial to implement SSS successfully, aiming at maximizing crop

production and minimizing resource input and cost. Within field variability

is a complex phenomenon of multiple biotic and abiotic factors (Clay et al.,

2009; Van Roekel and Coulter, 2011) that influence soil fertility and crop

growth and thus affect overall production. Analyses with multiple factors

could essentially represent soil fertility better than individual factor. Soil

nitrogen (N), potassium (K), phosphorus (P), magnesium (Mg), electrical

conductivity (EC), cation exchange capacity (CEC), acidity (pH), soil organic

matter (SOM) and organic carbon (OC) are considered as the most significant

properties affecting soil fertility and crop productivity (Ehsani et al., 2005;

Qi et al., 2018;Vasiliniuc andPatriche, 2011;Whetton et al., 2017a).Tomea-

sure soil and crop properties, a large number of sensors are available under

both in research or commercially. These include but not limited to electrical,
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magnetic, electromagnetic, electrochemical, mechanical, optical and radio-

metric techniques (Adamchuk et al., 2004; Sudduth et al., 1997). Each sensing

technology has been used to measure a single property or multiple soil prop-

erties. Moreover, one sensor can hardly measure all soil related yield potential

factors alone, which calls a need for multi-sensor data fusion approach (Kuang

et al., 2012; Tabll et al., 2017). A proper modeling technique can extract

information from sensor signal and laboratory reference measurement. Few

of proposedmodeling tools canmodel linear and others can potentially model

nonlinear complex relationships with some specific pros and cons depending

on the application scenario (Nawar andMouazen, 2017a). Geographic infor-

mation system (GIS) along with geo-statistical analysis followed by modeling

enable mapping within field soil and crop variabilities with highly accurate

geo-reference kinematic global positioning system (RTK-GPS). Depending

on the homogeneity of soil quality map, a field can be divided into homoge-

neous management zones (MZs), with each having different soil fertility and

yield potential. It is hypothesized that each MZ should be assigned unique

seed rate and sowing depth as individual MZ has specific yield potential

(Nawar et al., 2017).

Although relatively large number of sensing, modeling and control tech-

nologies have been practicing randomly in PA (Lee et al., 2010; Zhang et al.,

2002), very few has been reported for SSS (Daberkow and McBride, 2000).

Initially SSS was presented as an uneconomic means of PA practice due to

technological impairment and higher cost of sensors and control instru-

ments. Low economic potential of SSS is the main factor to slow adoption

(Say et al., 2018). Among all the available and potential technologies, it is

essential to select and integrate most scientifically sound and economically

viable technologies to improve the implementation and adoption of SSS

and accelerate the technology extension. To our best knowledge, no review

article has attempted to cover all the respective spectra of practicing SSS.

Therefore, this paper is an integrative review on the-up-to-date PA technol-

ogies and principles for implementing SSS. It will also discuss the economics

and environmental potentials, highlighting prospective technology synthesis

for practical implementation of site specific seeding.

2. Principles of site-specific seeding

There are two fundamental approaches of SSS: (i) map-based and

(ii) sensor-based systems (Grisso et al., 2011). In the map-based approach,

the sensing and sampling of soil and crop, modeling and mapping, and
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development of SSS recommendations are made in advance before the

actual field application, whereas in sensor-based SSS, these different steps

are done in real-time using advanced algorithms, hardware and software

technologies. The following sections discuss these two approaches in details.

2.1 Map-based site-specific seeding
Map-based SSS concerns the adjustment of the application rate according to

previously developed and uploaded prescription map in the virtual terminal

of the precision seeding machine. Appropriate sensing and differential global

positioning system (DGPS) technology are essential to measure required

soil and/or crop properties and other important attributes. GIS and geo-

statistical analysis enable mapping the measured attributes. Based on the fer-

tility status of different parts of the field, the field is split up into few smaller

zones. These zones are commonly known as management zones (MZs).

Each MZ is assigned a certain seeding rate aiming at creating an application

map (AM) or a control map. Once an AM is generated, it is converted into

machine compatible shape file and finally uploaded into the virtual terminal

(Taylor et al., 2006). During field operation, variable seeding rate (VSR)

controller delivers seed rate regarding to the optimal rate and respective loca-

tion as prescribed in AM. The most positive aspect of this map-based system

is that it allows sufficient time lag between sensing and VR application, to

facilitate proper data processing for improving overall application accuracy.

Recommendations are made at office in consultation with farmer, agrono-

mist and experts. Predefined recommendations allow for “look ahead”

system, which improves controller responses and smoothens the VSR in

transition. In this principle, points location on the application map and

corresponding field points should be well synchronized by a proper geo-

referencing system (Grisso et al., 2011). Conversely, point synchronization

feature makes this system highly sensitive to an error associated with miss

placement of seeds. Map-based systems are not suitable for sharp variability

in soil conditions attributed to weather circumstances. Therefore, systems

that overcome the limitations of the map-based approach are necessary for

future smart farming.

2.2 Sensor-based site-specific seeding
In sensor-based SSS high-resolution data collected with advanced sensor

technologies is needed in real time. This continuous stream of sensor data

is transferred successively into information and recommendations to be
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implemented by a proper controller, all applied in real-time (Grisso et al.,

2011). Sensor-based seeding is seen to overcome the limitations of map-

based approach. Since it does not require a DGPS and AM, it is free from

error regarding locations of sampling points, position of the applicator and

map interpolation issues. It is not sensitive to the sharp variation in soil con-

ditions due to weather circumstances. However, a lag time is a common

issue for the implementation of sensor-based application. If the distance

between sensor and actuator is not large enough corresponding to the actual

lag time, it may place the required seed rate far from the corresponding

sensing point. Therefore, the design of sensing and controlling unit is highly

critical and sometimes problems may arise due to poor system design. More-

over, integrating an automatic sensing, modeling and controlling systems is a

complex job indeed. Several studies are available about sensor based site-

specific applications for other agricultural inputs than seed. The VR fertilizer

application (Chattha et al., 2014; Maleki and Zamiran, 2009; Maleki et al.,

2008; Mouazen and Kuang, 2016), and pesticide [Chlorpyriphos (CPP)]

spot applications (Esau et al., 2014a,b) can be highlighted as examples of

sensor based site-specific applications. It is unexpected but true, that this

review failed to find any study concerning the sensor based SSS application

to date. Therefore, SSS has a great scope to adopt similar principles like other

sensor-based site-specific applications. Future research should focus on

developing and evaluating of sensor-based SSS under various soil quality,

crops, locations and weathers conditions.

3. Key field quality indicators for defining site-specific
productivity potential

The SSS mainly deals with two-core questions, i.e., (i) how much

seeds should be allocated and (ii) which seed densities should be applied

and at which depth. However, answering these two particular questions

seem to be relatively complex. Allocating the correct rate of seeding and

depth should bemade according to productivity potential of a particular zone

of a field. Mapping soil and crop quality indicators related to yield potential is

essential for successful application of SSS. The assessment of soil quality is

done through soil quality indexes (SQI) that are calculated as a function

of individual or of fusion of several quality indicators (e.g., organic matter,

N, P, K, pH, clay content). Crop quality is widely measured in terms of veg-

etation indexes (VIs), which calculated from measured reflectance spectra

from crop canopy. Defining and quantifying of both SQI and crop VI
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could affect the successful implementation of SSS largely. Therefore, this sec-

tion focuses on identifying the key soil quality indicators, SQIs andVIs essen-

tial for assessing the soil and crop quality and associated yield potential.

3.1 Soil quality indicators
There is a great debate about the terminology “soil quality” and “soil

fertility,” and previously researchers discriminated soil quality from soil fer-

tility. Gheorghi (1932) mentioned this discrimination as the philosophical

ideology rather than soil quality status. Soil fertility is described as soil’s abil-

ity to provide essential plant nutrients (Watson et al., 2006) and water in

adequate amounts and proportions for plant growth and reproduction to

result in sustained and consistent yields of high quality. Soil quality is the

ability of soil to perform its various functions for biological productivity,

ensure ecosystems services, maintain environmental sustainability and pro-

mote plant and animal habitat (Doran et al., 1994). Since the functions are

immeasurable directly, appropriate physical, chemical and biological param-

eters are selected as proxy for the different soil functions (Karlen et al., 2004).

An important condition for a soil property to be considered as a soil quality

indicator is that it should show sensitivity to any changes occurring within

the soil function in discussion. Other favorable features of soil quality indi-

cators include (i) a positive correlation with ecosystem services, (ii) easily

measurable, (iii) sensitive to management, and (iv) whenever possible, to

be a factor of an earlier available dataset (Andrews et al., 2004).

Scientists have been attempting to characterize the soil quality indicators

(Vasiliniuc and Patriche, 2011) and quantifying their importance for crop

yield (Whetton et al., 2017a). It is hardly possible to evaluate soil function-

ality based on little or individual soil property responsible for regulating

crop yield (Nolin et al., 2001; Ward and Cox, 2001), as crop yield variation

is affected by a number of biotic and abiotic factors (Shanahan et al., 2004;

Van Roekel and Coulter, 2011; Viscarra Rossel and Behrens, 2010).

Soil generally supplies a large amount of macronutrients along with trace

amount of micronutrients except H, O, and C since plants draw most of

them from air and water. The plant available soil nutrients are highly var-

iable, due to complex nature of soil nutrient dynamics, which are strongly

influenced by root–soil interactions. Plants can uptake only a limited por-

tion of total amount of nutrients for their growth and development

depending on the chemical formulation of soil minerals and interaction

with other influencing parameters. For instance, about 30–70% of the total
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phosphorus (P) content in agricultural soils is organically bound and this

percentage can be as high as 80–95% for grassland, peat and forest soils

(Li et al., 2014a,b). The soil P availability is also influenced by the frequent

presence the Fe, Al, and Ca ions, since the Fe and Al are key parameters to

P fixation. Soil inherent acidity (i.e., pH) does critically regulate the

P fixation and pH value between 6.0 and 7.5 is considered as an ideal acidity

for soil P to be available to the plants (Pierzynski et al., 1994). In addition,

availability of nutrients are highly dependent on soil physical properties

such the soil texture, soil organic matter (SOM), soil moisture content

(MC), electrical conductivity (EC) and temperature. In-field soil microcli-

mate varies with the variation of soil texture, color, soil depth, clay content

largely in temporal scale (Liu and Luo, 2011; Zheng et al., 1993). Some

of the soil variations are strengthened due to the agricultural practices such

as land preparation (tillage) and agro-chemical (fertilizer, manure and CPP)

applications (Carvalho et al., 2003;Keesstra et al., 2016;Montzka et al., 2011).

For instance, tillage can manipulate soil physical and hydraulic properties like

water holding capacity, plant available water, hydraulic conductivity, soil

bulk density (BD) and particle size distribution (González et al., 2015;

Mohammadshirazi et al., 2017; Pires et al., 2017; P€ohlitz et al., 2018). These
properties have direct interactions with plant available nutrients dynam-

ics and soil-plant-water relationships (Bogunovic et al., 2018; Breland

and Hansen, 1996; Gomez et al., 2002; Lipiec and Stepniewski, 1995;

Mouazen and Ramon, 2006; Rosolem et al., 2002; Tracy and Zhang,

2008). Physical soil properties also have direct links with topographic

attributes such as elevation, slope, aspect of slope, and profile and plane

curvature (Franzen et al., 2002). All of these mentioned chemical and phys-

ical properties and topographic attributes are highly inter-linked and

changing one characteristic influences the change of other characteristics

(Ceddia et al., 2009; Paulus et al., 2010; Wilson and Gallant, 2000). This

interlinked changing property creates a complex context of identifying

soil quality indicators to address in-field soil quality variation. B€unemann

et al. (2018) reviewed 65 scientific studies about soil quality assessment

approaches. They identified a total of 27 soil parameters that were fre-

quently considered as quality indicators. Mostly reported indicators were

organic carbon (OC), pH and available P, whose frequency was higher

than 70%. Including top three indicators, 50% of studies considered two

more indicators only, namely, BD and water storage. This indicates that

in total five indicators showed frequency higher than 50%. Only 10 out

of 27 indicators were reported repeatedly (frequency>30%), whereas other
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parameters showed lower frequency (<30%). Among three categorical

soil properties, chemical properties were largely considered than physical

and biological properties. There was no biological property in the top

10 frequently recommended indicator’s list.

3.2 Soil quality indexes
Soil quality index is a measurable soil parameter that affects the capacity of a

soil to perform a specific function (Karlen et al., 2006). The most common

method for calculating SQI was described by Andrews et al. (2004) and later

several scientists followed this methodology for different locations and man-

agement goals (e.g., Askari and Holden, 2015). It comprises of three succes-

sive steps: (i) selecting key quality indicators, (ii) assigning appropriate scores

and weight for each indicator, and (iii) integrating different indicators into

one index value. Key indicators may ranges from soil physical, chemical and

biological attributes forming a large data matrix called total data set (TDS).

Selecting a proper indicator set is crucial for SQI calculation, and the most

relevant soil quality indicators should be specified based on the management

goals. One frequently used method is the selecting the minimum dataset

(MDS) out of TDS by means of principal component analysis (PCA)

(Andrews et al., 2002; Armenise et al., 2013).

Experts’ opinion can also help in the selection of the right set of quality

indicator. After selecting a MDS, the next step involves the transformation

of eachMDS indicator value into scores using scoring curves. Scoring curves

are generally known as logic statement or algorithm. Algorithms may vary

from linear to nonlinear types (Andrews et al., 2002). The weight factors are

obtained from the PCA results. In the case of uncorrelated indicators in prin-

cipal components (PCs), weighting factors were equal to the percentage of

total variance explained by specific PC standardized to unity. For correlated

indicators, the percentage of the total variance explained by the PC is

divided among these and then standardized to unity (Masto et al., 2008).

Finally, SQI is calculated by summing up these additive and/or weighted

indicators. The higher the SQI the higher is the soil quality for a certain soil

function (Mukashema, 2007). Usually, SQI values are normalized within a

particular range say 1–10 (Andrews et al., 2004; Armecin and Cosico, 2010;

Mukashema, 2007).

Table 1 summarized several studies about SQIs, corresponding to differ-

ent soil functions, management goals, quality indicators and key facts and uti-

lization. Productivity management goals are linked with some soil functions
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Table 1 Summary of soil quality indicators and indexes with their respective management goal and supporting soil functions.

Fertility
index name Index model/logical conditions Soil class

Prospective
management
goal

Focused soil
functions

Key soil quality
indicators
(contribution
ranking, %) Key notes

Key
references

Synthetic

indicator of

soil (SISF)

SISF(%)¼{VETL(%)+PGI(%)}�2

where,

VETL(%)¼{BSI(%)+CSI(%)}�2

BSI, Biological synthetic indicator

CSI, Chemical synthetic indicator

NA Productivity,

Environmental

protection

Nutrient

cycling,

Biodiversity

and habitat,

Filtering and

buffering

TC, ext. OC,

Humic acid,

TN, organic P,

pH

SISF is one of the indicators

significant for agronomic point

of view.

Gheorghi

(1932)

Biological

index of soil

fertility (F)

F¼√ (M2+H2+T2)

where,

M, enzyme activity

H, SOM content

T, sorption capacity (SC) of soil

Sandy Environmental

protection

Biodiversity

and habitat

SOM, SC Soil fertility index evaluated for

maize (r¼0.878) and potatoes

(r¼0.879).

My�sków
et al. (1994)

Overall soil

quality

index

(Index)

Index¼ f(y nutrient+y water+y rooting)

where,

y, is the weighting function for each function

Silt loam All goals Water

relations,

nutrient

relations,

Rooting

relations

AGG, OC,

porosity, crop

residue, OC,

water storage

porosity, Bray

P, exh. K, pH

BD, pH, OC,

air porosity

Index was evaluated for

assessing the soil fertility change

due to tillage operation over

8 years period.

Hussain et al.

(1999)

Soil fertility

index (SFI)

SFI¼pH+SOM+P+K+Ca+Mg�Al Diverse Productivity Nutrient

cycling

pH, SOM, P, K,

Ca, Mg, Al

Drawbacks of this index about

the unclear definition of unit

assignment to the parameter

used, i.e., Ca, Mg, K, Al is in

Meq 100/g, P in ppm, and

SOM is in percentage.

Moran et al.

(2000)

Soil

evaluation

factor (SEF)

SFE¼ [Ca+Mg+K� log(1+Al)]∗SOM+5 Humid

tropical

Productivity Nutrient

cycling

Ca, Mg, K, Al,

SOM

SEF showed significant positive

correlations with soil OC,

CEC, N, P, K.

Lu et al.

(2002)
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Soil quality

indicator

(SQI)

SQI¼
Pn

i¼1
Si

n

� �
�10

S, score value for each indicator feature

n, number of indicator

NA Productivity,

environmental

protection,

waste

management

Nutrient

cycling,

Resistance and

resilience,

Water relations

PMN, pH, P,

AGG, BD,

TOC, AWC,

SAR, EC

SQI determined by integrating

the scores into an index value

and evaluated for four different

case studies. Stepwise regression

showed that the scored

indicators usually had R2 similar

or greater than those of the

observed indicator values.

Andrews

et al. (2004);

Armecin and

Cosico

(2010)

Soil fertility

index (SFI)
SFI¼

Pn

i¼1
Sci

N

� �
∗10

Sci¼Cj∗pc
pc ¼ 1

nc

where,

Pc, probability of the class c

nc, the number class

Sci, score given to each class

N, number of indicators

Diverse Productivity Nutrient

cycling

pH, OC, Al, P,

K, Ca, Mg

SFI vary from 0 to 1, which

means from extremely low

fertile soil to very high fertile

soil. Each MSFI (minimum soil

fertility indicator) was assigned a

score equivalent to its

probability of falling in very

high fertile soil (i.e., SFI¼1) by

using the threshold and soil

property classes.

Mukashema

(2007)

General

Indicator of

Soil Quality

(GISQ)

GISQ¼1.51SIOM+1.13SIP+1.11SIF+1.10SIM+0.35SIC
SI(OM,P,F,M,C) are the sub-indicators of organic matter,

physical, fauna, morphological, chemical variables

SIi ¼
Pn

i¼1wivi
SI, sub-indicators

Vi, variable values

Wi, respective weights

Diverse All goals All functions Multiples GISQ showed better

performance at locally but their

methodology for SQI

calculation can work

everywhere.

Velasquez

et al. (2007)

Soil fertility

index for

sugarcane

(SFI-SC)

production

Index Clay, g/kg CEC,

mmol/kg

Bsat, % SOM, g/kg Oxisols,

Entisols,

Alfisols,

Ultisols,

Inceptisols

(Soil Survey

Staff, 1999)

NA NA Clay [78], CEC

[32], Bsat [8],

SOM [36]

Soil properties showed

significant contributions to the

fertility index than terrain

attributes. SFI-SC showed a fair

agreement with green

vegetation index (Spearman

correlation, 0.45).

Viscarra

Rossel et al.

(2010)
High fertile >350 >150 >70 >25

Fertile 150–350 50–150 50–70 15–25

Least fertile <150 <50 <50 <15

Continued
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Table 1 Summary of soil quality indicators and indexes with their respective management goal and supporting soil functions.—cont’d

Fertility
index name Index model/logical conditions Soil class

Prospective
management
goal

Focused soil
functions

Key soil quality
indicators
(contribution
ranking, %) Key notes

Key
references

Soil quality

index (SQI)

SQI¼Pn
i¼1Wi�Si

where,

si, scores of individual indicator

wi, corresponding weight factor

Fluvisol,

silty clay

loam

Productivity Nutrient

cycling, water

relations

Clay, SOM,

Exh. K, PAW,

avl. P

Correlation between SQI and

crop yield (wheat and sugar

beets) was not significant that

make sense to consider better

MDS including other

indicators. The author also

suppose this SQI could be

applicable at regional scale.

Armenise

et al. (2013)

Integrated

fertility

quality

index (IFQI)

IFQI¼Pn
i�1Wi∗Ii

where,

Wi, weight coefficient of the ith fertility quality parameter

Ii, score of the Ith parameter

N, number of parameters

The score is determined according to standards scoring

function (SSF)

(Hussain et al., 1999) for all indicators except pH

f xð Þ¼
0:1 x� x1

0:9 x1�x1ð Þ
x2�x1

+ 0:1 x1 � x� x2

1:0 x� x2

8>><
>>:

Specially for soil pH this SSF is:

f xð Þ¼

0:1 x< x1,x� x4
0:9 x�x1ð Þ
x2�x1ð Þ +0:1 x1 � x� x2

1:0 x2 � x� x3
0:9 x�x3ð Þ
x4�x3ð Þ +0:1 x3 � x� x4

8>>>>>><
>>>>>>:

where

X, monitoring value of parameter

X1, x2, x3, x4, influence of each parameter on crop growth

(Qi et al., 2011; Wang and Gong, 1998)

Diverse Productivity,

environmental

protection

Nutrient

cycling,

filtering and

buffering

OC, TN, TP,

TK, AP, AK

IFQI was evaluated to assess the

change of soil fertility over the

20 years period due to

application of fertilizer. Fertility

index performed differently for

different cropping rotations and

across the fertilizer treatments.

Shang et al.

(2014)

A
R
T
IC
L
E

IN
P
R
E
S
S



Soil quality

index (SQI)
SQIA ¼

Pn
i¼n

Si
n

SQIW ¼Pn
i¼nWiSi

SNL ¼ a

1+
x

xo

� �b

SL ¼ x�l
h�l

� �
SL ¼ 1� x�l

h�l

� �
where

A and W, additive and weighted additive scoring cases,

respectively

Si, score of each indicators (linear or non-linear)

SL, linear score

SNL, non-linear score

Wi, weight value of each indicator

n, number of indicators

a, maximum score, equal 1

x, measured value of indicators

x0, mean value of indicators

b, slope of equation, equal (�) 2.5

l, minimum value of indicator

h, maximum value of indicator

Typical

brown

earths and

luvisols

Productivity,

Environmental

protection

Nutrient

cycling,

physical

stability and

support,

resistance and

resilience

TN, CN ratio,

Mg, ASD, BD,

PR, SR

This research compared their

proposed SQI against visual

evaluation of soil structure

(VESS) practiced by Askari et al.

(2013). SQI effectively could

represent the influence of tillage

on soil quality.

Askari and

Holden

(2015)

Soil quality

index (SQI)
SQIAP ¼

Pn

i¼1
Si

7

� �

where,

SQIAP, soil quality index for arable land

Si, non-linear scores for seven indicators

Typical

brown

earths and

typical

luvisols

(Arable)

Productivity,

environmental

protection

Nutrient

cycling,

physical

stability and

support,

resistance and

resilience

BD, Mg, CN

ratio, TN, SR,

ASD

Vis-NIR was found effective to

calculate SQI with excellent

accuracy under grassland

(RPD¼3.04, R2¼0.92,

RMSE¼0.03) and arable

(RPD¼2.78, R2¼0.89,

RMSE¼0.04) management.

Askari et al.

(2015)

SQIGP¼ (0.557∗G1)+(0.262∗G2)+(0.181∗G3)

where,

SQIGP, soil quality index for grassland

G1, G2, G3 are non-linear scores for OC, BD and CN ratio

Typical

surface-

water gleys

and stagnic

luvisols

(Grassland)

Productivity Nutrient

cycling,

physical

stability and

support,

resistance and

resilience

OC, BD, CN

ratio

Continued
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Table 1 Summary of soil quality indicators and indexes with their respective management goal and supporting soil functions.—cont’d

Fertility
index name Index model/logical conditions Soil class

Prospective
management
goal

Focused soil
functions

Key soil quality
indicators
(contribution
ranking, %) Key notes

Key
references

Soil quality

index (SQI)
SQI %ð Þ¼ yi

ytotal

� �
�100

where,

Sum of soil attribut index, yi¼m1x+m2x…+e

m1, m2, ….corresponding regression coefficients for “x”

indicators

ytotal, combined soil attribute indices obtained from

regression

Diverse Productivity,

environmental

protection

Nutrient

cycling,

physical

stability and

support,

resistance and

resilience,

water relations

BD, CN ratio,

OC, TN,

AWC, pH, EC

SQI based yield prediction

showed good accuracy

(R2¼0.74) for maize and

(R2¼0.89) for soybean.

De Paul

Obade and

Lal (2016)

AGG, Macro-aggregate stability; ASD, aggregated size distribution; PMN, Potential Mineralizable Nitrogen; PR, penetration resistance; SR, soil respiration.

Prospective management goals and focused soil functions are based on Andrews et al. (2004) approximately.
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such as nutrient cycling, water relations, physical stability and support, resis-

tance and resilience. Some of SQIs are relevant to a specific management

goal (Lu et al., 2002; Moran et al., 2000; Mukashema, 2007), whereas others

incorporate more than one management goals (Andrews et al., 2004;

Armecin andCosico, 2010;Gheorghi, 1932).When themanagement objec-

tive is productivity, summation of score-based derived SQI (Armenise et al.,

2013) is frequently suggested. Although awide range of quality indicators are

reported for SQI determination, these are measured by traditional laboratory

analysis. Exception is also rarely reported for quality indicators measured

with advanced sensor technology, e.g., visible and near infrared (vis-NIR)

spectroscopy for SQI calculation and also for direct prediction of soil quality

indicators (Askari et al., 2015).

Based on the above-provided information, it can be assumed that, top

13 most frequently reported indicators should be used to calculate SQI

while the management goal is crop productivity. Fig. 1 illustrates the cross

identification of soil quality indicators satisfying three different reference

contexts: (i) quality indicators listed in Table 1 related to crop productivity,

(ii) frequency of recommended soil quality indicators reviewed by

B€unemann et al. (2018) and (iii) most crop influential soil quality indicators

reported by several studies*. These identified soil quality indicators yield a

ranked list of indicators shown in Table 2, which are assumed to be sufficient

to support soil functions (e.g., nutrient cycling, water relations, physical sta-

bility and support, resistance and resilience) satisfying the crop productivity

management goal (Andrews et al., 2004).

Practically speaking, soil quality indicators can be measured by: (i) the

traditional methods of laboratory analyses (Wienhold et al., 2004), (ii) the

Munsell soil color chart (Gobin et al., 2000) or (iii) proximal and remote

sensing tools (Kuang et al., 2012; Mulla, 2013). However, the implementa-

tion of SSS requires high spatial resolution data that can be collected by cat-

egory (iii), e.g., proximal and remote sensing tools. The optimal sensor

technology or combination of sensor technologies to measure the MDS

for the top key soil quality indicators for SSS need to be determined.

3.3 Crop quality indicators
Crop quality indicators can be used as the measure of crop health and yield

potentiality. Crop canopy and it’s geometric characteristics are the key indi-

cators of crop growth and productivity (Lee and Ehsani, 2009). Multiple

studies reported the use of canopy information as potential indicators to
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Fig. 1 Cross identification of soil quality indicators for crop productivity management
based on three different reference scales. *Heege (2013a,b), Kravchenko et al. (2003),
Kravchenko and Bullock (2000), Licht (2015a,b), Miao et al. (2006), Vasiliniuc and
Patriche (2011), Whetton et al. (2017a). **Indicates those quality indicators supported
by two reference scales. This group also includes Mg, Ca and SOM. ***Indicates those
quality indicators supported by three reference scales. AGG, macro-aggregate stability;
ASD, aggregated size distribution; AWC, available water capacity; BD, bulk density;
CEC, cation exchange capacity; CN ratio, carbon and nitrogen ratio; EC, electrical con-
ductivity; MC, moisture content; OC, organic carbon; PMN, potentially mineralizable
nitrogen; PR, penetration resistance; SAR, sodium absorption ratio; SOM, soil organic
matter; SR, soil respiration; TC, total carbon; TN, total nitrogen.
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predict crop yield (Villalobos et al., 2006; Zaman et al., 2006) and biomass

production (Ehlert et al., 2008). Canopy dimensions including crop height,

width and volume were widely considered to develop variable rate recom-

mendation (R€uegg et al., 1999; Viret et al., 2007). Assessment of overall crop

growth and health condition cannot be done directly by measuring crop

morphological attributes. Early detection of crop biotic and abiotic stresses

is also essential to reduce yield losses and increase profitability. Therefore, a

group of vegetation indexes (VIs) are being repeatedly reported for mon-

itoring crop quality and predicting crop yield (Marino and Alvino, 2014).

Vegetation indices are mathematical combinations of several spectral bands

mainly the red, green and infrared wavelengths, and they are designed to

find functional relationships between crop characteristics and sensing

observations (Wiegand et al., 1989). Some of the most commonly used

VIs are presented in the Table 3, although >100 VIs have been reported

Table 2 Ranking of identified key soil quality indicators for productivity
management goal.

Sl. No.
Soil
property

Rank
(Ranking scorea) Supporting soil function(s)

1 pH 1 (100) Nutrient cycling, Physical stability and

support, Water relations

2 Avl. P 2 (90) Nutrient cycling

3 Avl. K 2 (90) Nutrient cycling

4 TN 2 (90) Nutrient cycling

5 Texture 2 (90) Physical stability and support

6 OC 2 (80) Resistance and resilience

7 EC 2 (80) Water relations

8 CEC 2 (80) Nutrient cycling

9 MC 3 (70) Water relations

10 BD 3 (70) Physical stability and support, Water relations

11 SOM 4 (60) Resistance and resilience

12 Mg 4 (60) Nutrient cycling

13 Ca 5 (50) Nutrient cycling

aRanking score (0–100). Higher the score means higher the contribution.
BD, bulk density; Ca, calcium; CEC, cation exchange capacity; EC, electrical conductivity; MC,
moisture content; Mg, magnesium; OC, organic carbon; SOM, soil organic matter; TN, total nitrogen.
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(Bannari et al., 1995; Ollinger, 2011; Xue and Su, 2017) for different appli-

cations. One should be wise to choose an optimal VI and/or their combi-

nations for accurate estimation of crop yield (Chlingaryan et al., 2018). The

VIsmust bemeasured directly from the crop canopy although some other spe-

cific vegetation indexes differentiate crop vegetation from the soil surface,

for example, the soil adjusted vegetation index (SAVI) (Huete, 1988). Among

all VIs, the normalized difference vegetation index (NDVI) (Sellers, 1985) is

Table 3 Mostly known reflectance based vegetation indexes (VIs) used for assessing the
crop canopy quality and their mathematical formulation.

Reflectance vegetation indexes

Vegetation indexes name
Mathematical
formulation Key reference

Normalized Difference Vegetation

index (NDVI)

NIR�Red
NIR+Red

Sellers (1985)

Green Normalized Difference

Vegetation index (GNDVI)

NIR�Green
NIR+Green

Ma et al. (1996)

Red Ratio of Vegetation index (RVI) NIR
Red

Birth and McVey

(1968)

Green Ratio of Vegetation index (GVI) NIR
Green

Birth and McVey

(1968)

Chlorophyll Vegetation Index (CVI) NIR
Green

� Red
Green

Vincini et al.

(2008)

Soil Adjusted Vegetation Index (SAVI) NIR�Red
NIR+Red+L

Huete (1988)

Optimized Soil Adjusted Vegetation

Index (OSAVI)

NIR�Red
NIR+Red+0:16

Rondeaux et al.

(1996)

Red Edge Normalized Difference

Vegetation index (RENDVI)

NIR�RedEdge

NIR+RedEdge
Gitelson and

Merzlyak (1994)

Canopy Chlorophyll Content Index

(CCCI)

RENDVI�RENDVImin
RENDVImax�RENDVImin

Barnes et al.

(2000)

Ratio of RENDVI and NDVI RENDVI
NDVI

Varco et al. (2013)

Red Edge Index (REI) NIR
RedEdge

Vogelmann et al.

(1993)

Chlorophyll Index (CI) NIR
Red

�1 Gitelson et al.

(2003)

Adopted from Padilla, F.M., Gallardo, M., Peña-Fleitas, M.T., De Souza, R., Thompson, R.B., 2018.
Proximal optical sensors for nitrogen management of vegetable crops: a review. Sensors. 18, https://doi.
org/10.3390/s18072083.
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probably the most widely reported and used vegetation index (Padilla et al.,

2018). The NDVI showed a strong correlation (R2¼0.85) with leaf area

index (LAI) (Sankaran et al., 2015), which is defined as the total leaf area

per unit of ground area (Watson, 1937). It is considered as an important factor

for explaining various physiological processes in crop such as evapotranspira-

tion, photosynthesis, and crop yield (Price and Bausch, 1995). During the

initial crop growth stage, low LAI and soil light scattering make spectral

measurement difficult to isolate crop vegetation from soil (Huete, 1988).

Later in crop season, high LAI can cause some VI measurements insensitive

to the crop responses. However, the NDVI can be used as a proxy to cal-

culate LAI (Pontailler et al., 2003) and yield prediction (Pantazi et al., 2016).

The use of NDVI and SAVI for potato yield prediction showedmoderate to

good prediction accuracy (R2¼0.39 to 0.65). The prediction accuracy of

VI varied among different sensing devices (Al-Gaadi et al., 2016) or crop

sensors. A good choice of crop sensor should consider the crop growth

stage, real application conditions and sensing period.

4. Soil and crop sensing technologies

High-resolution soil and crop data is the prerequisite for evaluating the

spatial and temporal variability of a field to implement site-specific applica-

tions including seed rate. Sensing technologies are proven for mapping dif-

ferent source of variations at different geographic scales. They outperform

the traditional soil and crop sampling and chemical analyses of being fast, cost

effective and provide high resolution spatial representation (Adamchuk and

Viscarra Rossel, 2010). Though a wide range of proximal soil sensing tech-

nologies have been reported (Adamchuk et al., 2004), the current review

refers to proximal sensing (PS) and remote sensing (RS) technologies rele-

vant to SSS. One more sensing approach designated as multi-sensor data-

fusion is also discussed. A proper choice of a particular PS or RS technology

depends on several factors including sensor cost, spatiotemporal coverage

and resolution (in case of RS in particular), spectral range (e.g., optical),

and intended application (Mulla, 2012). The use of RS to measure soil qual-

ity indicators has limited applicability to measure few millimeters of top soil

and requires bare soil surface (Whetton et al., 2017a).

4.1 Proximal soil sensing
Proximal soil sensing (PSS) is the ground-based sensing tools to detect

respective signals with or without direct contact with the objects, while

residing within a sensing distance ranging from few centimeters to few
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meters (i.e., 2m) (Viscarra Rossel et al., 2011). PSS is fast, cost-effective,

portable, and environmental friendly tools for measuring wide range of soil

physical, chemical and biological properties. In order to map soil fertility

characteristics, researchers have built numerous PSS platforms (Adamchuk

et al., 2004; Hummel et al., 1996; Sudduth et al., 1997) using different sens-

ing techniques, e.g., electromagnetic induction (EMI), electrical resistivity,

ground-penetrating radar (GPR), passive gamma ray spectrometry, diffuse

reflectance spectroscopy in the visible–near-infrared (vis–NIR) and mid-

infrared (mid-IR) range (Stenberg et al., 2010), electrochemical sensors,

e.g., ion-sensitive field effect transistors (ISFETs) and ion-selective electrodes

(ISEs) (Adamchuk et al., 2005; Viscarra Rossel et al., 2005) and X-ray

fluorescence spectroscopy. Adamchuk et al. (2004) classified PSS into six

categories depending on the measurement concepts: (i) electrical and elec-

tromagnetic, (ii) optical and radiometric, (iii) mechanical, (iv) acoustic,

(v) pneumatic and (vi) electrochemical. Later, Kuang et al. (2012) suggested

five categorical soil sensors based on the measurement conditions such as

(i) reflectance, (ii) conductivity, resistivity, permittivity, (iii) passive radio-

metric, (iv) strength and (v) electrochemical based soil sensors. Initially, elec-

tric and electromagnetic soil sensors were widely used for PA applications

(Adamchuk et al., 2004). Afterward, other soil sensors were brought into

application, bearing in mind that a right choice of soil sensor should depend

on several factors such as soil property to be measured, mode of application

(in situ, on-line or laboratory), actual field conditions (e.g., MC), sensor per-

formance, among others. According to the SQIs determined above, two

widely used proximal soil sensors that are potentially linked with implemen-

tation of SSS will be discussed, namely, EMI and vis-NIR spectroscopy.

4.1.1 Electromagnetic induction
Electromagnetic induction (EMI) is a non-contact, non-invasive, active

sensor, whose working principle is the Faraday’s law. It consists of a primary

coil (transmitter) and a secondary coil (receiver) installed on both ends of a

nonconductive bar, or double coils in more recent versions. McNeill (1980)

explained the working principle of EMI devices in that the supply of alter-

nating current excites the transmitter coil to induce an alternating magnetic

field in the soil volume called primary magnetic field. This magnetic field

generates small eddy currents in the soil while the soil matrix induces a

weak secondary magnetic field corresponding to the eddy currents. After-

ward, the receiver coil measures the secondary magnetic field, whose inten-

sity is directly linked with the apparent electrical conductivity (ECa) of soil.
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Themagnitude and phase of the secondarymagnetic field in the receiver coil

differs from the primary magnetic field due to soil properties, spacing and

orientation of transmitter and receiver coils (Hendrickx and Kachanoski,

2002). The exploration depth of the EMI signal depends also on the relative

spacing between transmitter and receiver coils, instrument orientation and

working frequency (McNeill, 1980). Soil ECa is the integrated contribution

of soil physical and chemical properties and conductivity due to dissolved

electrolytes in soil water and conductive minerals. Except metal objects,

the soil conductivity is primarily electrolytes, as most of the soil and rock

minerals are poor electrical conductors, formed by rocks and minerals (clay)

(McNeill, 1980). The conductivity is proportional to the number of ions

dissolved in the soil solution. In addition to electrolytes, soil physical prop-

erties including porosity and pore size distribution, moisture filled macro

pores, and temperature of pore-water greatly affect soil ECa. Since a number

of factors affects the ECa, it is difficult to identify the individual causal effect

on soil ECa. Therefore, the majority of EMI applications in PA were aimed

at mapping within field variability and to delineate MZs that can be used for

site-specific soil and crop management (Corwin and Lesch, 2003).

Several authors used EMI to map soil salinity (Hendrickx et al., 1992;

Williams and Baker, 1982), soil texture classes (e.g., James et al., 2003),

including top soil clay content and depth of clay layers (e.g., Williams and

Hoey, 1987; Stadler et al., 2015) and MC (e.g., Sheets and Hendrickx,

1995; Sun et al., 2011). Soil ECa can be used as a proxy of quantifying soil

heterogeneity effect on crop yield (Stadler et al., 2015). The most relevant

reviews about applications of EMI based ECa survey data for mapping var-

ious soil properties are summarized in Table 4. Most commonly used EMI

device is EM38 found among all the literatures although other EMI devices

are available such as EM31, EM34/3, GEM300, CMDminiexp and

DUALEM.

4.1.2 Visible near infrared (vis-NIR) diffuse reflectance spectroscopy
Near infrared (NIR) spectroscopy’s working principle relays on the internal

vibrations of covalent bonds of soil molecules (C–H, O–H, N–H) due to

applying external excitation, such as a light source. Stenberg et al. (2010)

described the fundamentals of reflectance spectroscopy for soil analysis as

when radiation is directed to a sample soil, individual molecular bonds

vibrate by either bending or stretching, depending on the constituent pre-

sent in soil. These vibrations lead to absorption of light, to various degrees,

with a specific energy quantum corresponding to the difference between
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two energy levels. As the energy quantum directly relates to the frequency,

the resulting absorption spectrum is of a characteristic shape that can be used

for further analytical purposes. The frequencies at which light is absorbed

appear as a reduced signal of reflected radiation and are displayed in % reflec-

tance (R), which can then be transformed to apparent absorbance (log(1/R))

(Chang et al., 2001). The wavelength at which the absorption takes place

(i.e., energy quantum size) depends also on the chemical matrix and envi-

ronmental factors such as neighboring functional groups and temperature,

allowing for the detection of a range of molecules, which may contain

the same type of molecular bonds.

Table 4 Potentiality and performance of electromagnetic induction (EMI) for the
measurement of soil physical and chemical properties.
Soil properties EMI device used Performance (R2) Key references

Soil water

content

EM38 & EM31,

VERIS3100,

GEM300, CMD-

MiniExplorer

0.37–0.99 Brevik et al. (2006), Hezarjaribi and

Sourell (2007), Hossain et al. (2010),

Huth and Poulton (2007), Khakural

et al. (1998), Mueller et al. (2003),

Reedy and Scanlon (2003), Sheets

and Hendrickx (1995), Stadler et al.

(2015), Tromp-van Meerveld and

McDonnell (2009)

Available N EM38 * Eigenberg et al. (2002)

OC VERIS3100, EM38 *0.52–0.80 Banton et al. (1997), Martinez et al.

(2009), Vitharana et al. (2008a,b)

Soil pH EM31, EM38 *0.49–0.91 Dunn and Beecher (2007), Van

Meirvenne et al. (2013), Vitharana

et al. (2008a,b)

CaCO3 EM38 0.80 Vitharana et al. (2008a,b)

Exc. Ca &Mg 0.87 McBride et al. (1990)

CEC EM31 EM38 0.17–0.71 Rodrigues et al. (2015), Triantafilis

et al. (2009)

Soil texture EM38, DUALEM-

21S, VERIS3100,

CMD-MiniExplorer

0.67–0.98 Heil and Schmidhalter (2012), James

et al. (2003), Stadler et al. (2015)

Clay content EM38, EM34/3,

CMD-MiniExplorer

*0.02–0.92,
**2.83%

Cockx et al. (2009), Harvey and

Morgan (2009), Mueller et al.

(2003), Rodrigues et al. (2015),

Sommer et al. (2003), Stadler et al.

(2015), Williams and Hoey (1987)

*Significant (P <0.05); **Root means square error (RMSE); CEC, cation exchange capacity; EMI, electromagnetic
induction; OC, soil organic carbon; N, nitrogen.
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Soil reflectance spectrum of NIR is complex and contains diversified but

rich information of chemical and physical composition (Workman and

Shenk, 2004). Broadening and overlapping bands cause vis-NIR spectra

to contain fewer absorption peaks than the MIR spectra and can be more

challenging to interpret. Nevertheless, this region contains useful informa-

tion on organic and inorganic materials in the soil. Absorptions in the visible

region (400–780nm) primarily indicate the presence of minerals in soil that

contain iron (e.g., hematite, goethite) (Mortimore et al., 2004; Sherman and

Waite, 1985). Likewise, SOM can show broad absorption bands in the vis-

ible range that are dominated by chromophores and the darkness of SOM.

Absorptions in theNIR region (780–2500nm) are associated with overtones

of OH, SO4, and CO3 groups, and combinations of fundamental vibrations

that take place in the MIR range (Clark, 1999). Clay minerals can also have

absorption in the NIR region due to metal-OH bend plus O–H stretch

combinations (Viscarra Rossel et al., 2006a,b). Water has a strong influence

on vis–NIR spectra of soils, with dominant absorption bands of water

around 950, 1450 and 1950nm, in the third, second and first overtones

of OH absorptions. Vis-NIR spectroscopy can measure several soil prop-

erties simultaneously with adverse but appreciable prediction accuracy. Lit-

eratures reported successful application for soil MC, pH, OC, TN, TP, TK,

CEC, and clay content measurement. Generally, fewer literatures found on

measuring soil physical properties like bulk density (Cho and Sudduth,

2015) or soil classification (Mouazen et al., 2005).

At the beginning of application of the vis-NIR spectroscopy technique

for soil analysis, multiple linear regression (MLR) analysis was most used.

However, today there are different linear and nonlinear modeling tools to

transfer the vis-NIR spectral data into qualitative and quantitative informa-

tion. These include among others partial least squares regression (PLSR), and

machine learning tools, such as artificial neural networks (ANN), random for-

est (RF), cubist and support vector machine (SVM) (Nawar and Mouazen,

2017a). Neither machine-learning algorithm nor linear regression is best per-

forming for all properties since the prediction performance strongly depends

on the data structure, variability and size of the calibration and validation sets.

Irrespective to the calibration algorithms, the prediction output is usually val-

idated and compared by means of root means squared error of prediction

(RMSEP), coefficient of determination (R2) and residual prediction devia-

tion (RPD) (Kuang et al., 2015;Mouazen et al., 2010;Nawar andMouazen,

2017b). It is common practice to use more than one performance index at a

time for reliablemodel selection and evaluation. The best performingmodels

are those of the highest R2 and RPD and lowest RMSEP.
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Vis-NIRShas been reported for laboratory and field applications. Among

field applications, on-line vis-NIR sensing platforms offer high-resolution

data on soil (e.g., Mouazen, 2006) (Table 5). Although on-line field mea-

surement has some good features, literature found few researches under this

category, due to problems associated with noise, sensor-to-soil distance var-

iation and debris (Mouazen et al., 2007). Almost all studies showed higher

accuracy for laboratory measurement than corresponding field studies, par-

ticularly concerning the on-line measurement mode (Kuang et al., 2012).

For instance, Marı́n-González et al. (2013) reported larger R2 values for

laboratory measurement of pH, CEC, Caexc and Mgexc of 0.86, 0.68, 0.86

and 0.66, respectively, compared with the on-line measurement of 0.78,

0.62, 0.61, 0.67, respectively. Higher RPD of 2.69, 1.77, 2.19 and 1.72,

respectively, were reported for the laboratory measurement, compared to

the on-line results of 2.14, 1.61, 1.30 and 1.49, respectively. Soil properties

with direct spectral responses (MC,OC, TN, and clay) in theNIR range can

be measured with higher confidence under both the field and laboratory

conditions (Mouazen et al., 2007; Nawar andMouazen, 2017b, 2018), com-

pared to properties having indirect spectral responses (e.g.,Mg, P, K, pH, Fe,

Cu, Mn, Zn) (Marı́n-González et al., 2013; Malley and Williams, 1997).

Literature demonstrates that there is a lack of studies on on-linemeasurement

of soil micronutrients.

Vis-NIR showed the highest and consistent performance results ((R2)>
0.84, (RPD)>2.36) in measuring soil MC, compared to the other prop-

erties both those having direct spectral and indirect spectral responses.

Properties having indirect spectral responses are measured with NIR spec-

troscopy due to the covariation with the soil properties having direct

spectral responses (Stenberg et al., 2010). For example, soil pH showed

stronger covariation with clay mineralogy and MC. Kuang et al. (2012)

reported successful measurement of soil CEC, pH, exchangeable Ca and

Mg using NIR spectroscopy although prediction performances were rel-

atively lower than for the directly responsive properties. The current

review points out two key prospects for the future use of vis-NIR spectros-

copy: (i) future research should focus on minimizing measurement accu-

racy related gaps between field and laboratory measurement modes and

(ii) there is need for an on-line measurement of soil micronutrients. Since

the proven evidence of vis-NIR capable to measure diversified soil quality

indicators under laboratory and on-line field condition, it can be con-

cluded that the vis-NIR is the best proximal sensing candidate for SSS.
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Table 5 Summary of the use of visible and near infrared (vis-NIR) spectroscopy for measuring soil properties.

Soil
properties

Spectral
response
behavior

Laboratory measurement
performancea

Key references

On-line (field) measurement
performancea

Key referencesR2 RPD RMSEb, % R2 RPD RMSEb, %

Chemical properties

TN direct 0.04–0.99 0.34–6.80 0.0004–0.08 Coûteaux et al. (2003), Cozzolino et al.

(2013), Dalal and Henry (1986), Guerrero

et al. (2010), He and Song (2006), Kuang

and Mouazen (2011), Vågen et al. (2006)

0.86–0.98 5.58–6.57 0.01–0.10 Christy (2008), Nawar and

Mouazen (2017a,b)

TP indirect 0.01–0.93 0.10–3.80 1.35–24.6
(100mg/kg)

Bogrekci and Lee (2005), Cozzolino et al.

(2013), He and Song (2006), Moron and

Cozzolino (2007), Mouazen et al. (2010),

Kuang (2016), Niederberger et al. (2015),

Pinheiro et al. (2017), Stenberg et al.

(2010), Wetterlind et al. (2010)

0.60 1.5 6.0 (mg/kg) Kuang (2016)

Avl. P Indirect 0.68–0.95 1.70–4.54 0.01–19.79
(100mg/kg)

Bogrekci and Lee (2005), Cohen et al.

(2005), Ludwig et al. (2002), Qiao and

Zhang (2012)

0.69, 0.86 1.80 1.345, 8.67 Lei and Rong-biao (2016),

Mouazen et al. (2007)

Ext. P Indirect 0.32–0.77 0.40–2.07 1.70–3.89
(100mg/kg)

Chang et al. (2001), Cohen et al. (2005),

De Oliveira et al. (2015), Udelhoven et al.

(2003)

0.64–0.77 1.72–2.89 8.87

(mg/kg),

11.523

Mouazen et al. (2007),

Shaddad et al. (2013)

TK Indirect 0.11–0.85 0.52–5.13 0.05–1.84
(cmol/kg)

Cozzolino et al. (2013), Cozzolino and

Moron (2003), He and Song (2006),

Mouazen et al. (2006a,b), Qiao and Zhang

(2012), Tekin et al. (2016), Van Groenigen

et al. (2003)

0.64–0.78 1.68 13.42, 0.13 Lei and Rong-biao (2016),

Tekin et al. (2016)

Continued
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Table 5 Summary of the use of visible and near infrared (vis-NIR) spectroscopy for measuring soil properties.—cont’d

Soil
properties

Spectral
response
behavior

Laboratory measurement
performancea

Key references

On-line (field) measurement
performancea

Key referencesR2 RPD RMSEb, % R2 RPD RMSEb, %

OC direct 0.46–0.98 1.30–9.70 0.06–2.90 Chang et al. (2001), Cozzolino et al.

(2013), Dalal and Henry (1986), Kuang

andMouazen (2011), Nawar andMouazen

(2018), Pinheiro et al. (2017), Shepherd

and Walsh (2002), Viscarra Rossel and

Behrens (2010)

0.71–0.86 1.93–2.33 0.34–2.01 Bricklemyer and Brown

(2010), Cho and Sudduth

(2015), Kuang et al. (2015),

Mouazen et al. (2007), Nawar

and Mouazen (2018), Yang

et al. (2012)

In-OC Indirect 0.53–0.96 4.01–4.99 0.17–0.56 Brown et al. (2006), Cohen et al. (2005),

Fontán et al. (2010), Krishnan et al. (1980),

Yang et al. (2012)

0.31 1.24 Yang et al. (2012)

TC Indirect 0.56–0.90 1.83–3.96 0.16–0.90 Kuang and Mouazen (2011), Mouazen

et al. (2007)

0.73–0.98 1.92–7.54 0.01–0.268 Mouazen et al. (2007), Nawar

and Mouazen (2017a,b)

Ca Indirect 0.07–0.95 0.60–2.75 0.66–52.90
(cmol/kg)

Cohen et al. (2005), Cozzolino andMoron

(2003), Mouazen and Ramon (2006),

Pinheiro et al. (2017)

0.80 2.17 0.66 Van Groenigen et al. (2003)

Exc. Ca Indirect 0.86 2.19 4.43 Marı́n-González et al. (2013) 0.61 1.30 7.11 Marı́n-González et al. (2013)

Mg Indirect 0.53–0.91 0.48–2.54 0.03–38.36
(cmol/kg)

Chang et al. (2001), Cozzolino andMoron

(2003), Pinheiro et al. (2017), Tekin et al.

(2016), Udelhoven et al. (2003), Van

Groenigen et al. (2003), Wetterlind et al.

(2010)

0.60 1.56 2.19 Tekin et al. (2016)

Exc. Mg Indirect 0.66–0.82 1.72–2.27 0.29–0.69 Marı́n-González et al. (2013), Van

Groenigen et al. (2003)

0.67 1.49 0.34 Marı́n-González et al. (2013)

S Indirect 0.92 2.19 2.1 Cozzolino et al. (2013) – – – –

Fe Indirect 0.64–0.97 1.35–3.30 3.7–23.60
(mg/kg)

Cohen et al. (2005), Malley and Williams

(1997), Moron and Cozzolino (2003),

Yarce and Rojas (2012)

– – – –
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Mn Indirect 0.65–0.92 1.79–3.66 56.4–190
(mg/kg)

Chang et al. (2001), Malley and Williams

(1997), Moron and Cozzolino (2003),

Yarce and Rojas (2012)

– – – –

Zn Indirect 0.44–0.95 1.07–3.80 1.4–299
(mg/kg)

Cohen et al. (2005), Kooistra et al. (2001),

Malley and Williams (1997), Viscarra

Rossel et al. (2006b), Yarce and Rojas

(2012)

– – – –

Cu Indirect 0.25–0.84 0.92–4.00 0.8–6.01
(mg/kg)

Chang et al. (2001), Malley and Williams

(1997), Siebielec andMcCarty (2004), Wu

et al. (2007), Yarce and Rojas (2012)

– – – –

pH Indirect 0.50–0.97 0.57–2.69 0.04–1.43 Cohen et al. (2005), He and Song (2006),

Marı́n-González et al. (2013), Mouazen

et al. (2006a,b), Pinheiro et al. (2017),

Viscarra Rossel and Behrens (2010),

Shepherd and Walsh (2002)

0.61–0.84 2.08–2.34 0.12–0.215 Christy (2008), Hummel

et al. (2001), Kuang et al.

(2015), Marı́n-González et al.

(2013), Mouazen et al.

(2007), Shibusawa et al.

(2001)

CEC Indirect 0.13–0.90 0.55–2.51 1.22–10.43
(cmol/kg)

Awiti et al. (2008) Chang et al. (2001),

Marı́n-González et al. (2013), Mouazen

et al. (2006a,b), Pinheiro et al. (2017)

0.62 1.61 – Marı́n-González et al. (2013)

SOM Indirect 0.69–0.96 1.79–2.08 0.058–1.09 He and Song (2006), Hong et al. (2018),

Qiao and Zhang (2012)

0.64–0.85 2.17–2.63 0.19–0.36 Hummel et al. (2001), Nawar

et al. (2016), Shibusawa et al.

(2001), Shonk et al. (1991)

Na Indirect 0.09–0.68 0.92–1.94 2.3–25
(cmol/kg)

Chang et al. (2001), Mouazen et al. (2006a,

b), Mouazen et al. (2010), Tekin et al.

(2016)

0.78 1.57 0.04 Tekin et al. (2016)

Al Indirect 0.61–0.68 0.5–1.97 0.88–506.7
(mg/kg)

Cohen et al. (2005), Pinheiro et al. (2017),

Siebielec and McCarty (2004)

– – – –

Continued
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Table 5 Summary of the use of visible and near infrared (vis-NIR) spectroscopy for measuring soil properties.—cont’d

Soil
properties

Spectral
response
behavior

Laboratory measurement
performancea

Key references

On-line (field) measurement
performancea

Key referencesR2 RPD RMSEb, % R2 RPD RMSEb, %

Soil physical properties

Clay

content

Direct 0.15–0.96 1.70–4.94 0.79–6.10 Awiti et al. (2008), Ben-Dor and Banin

(1995), Brown (2007), Chang et al. (2001),

Conforti et al. (2015), Curcio et al. (2013),

Gholizadeh et al. (2014), Pinheiro et al.

(2017), Quraishi and Mouazen (2013)

0.72–0.90 1.40–3.15 0.96–6.94 Bricklemyer and Brown

(2010), Kuang et al. (2015),

Nawar et al. (2016)

Sand

content

Indirect 0.59–0.92 0.87–3.40 1.91–11.93 Awiti et al. (2008), Ben-Dor and Banin

(1995), Chang et al. (2001), Conforti et al.

(2015), Cozzolino and Moron (2003),

Curcio et al. (2013), Gholizadeh et al.

(2014), Pinheiro et al. (2017)

0.38–0.61 1.26–1.41 3.37–4.0 Cho and Sudduth (2015)

Silt

content

Indirect 0.36–0.84 1.09–3.07 1.79–9.51 Awiti et al. (2008), Ben-Dor and Banin

(1995), Chang et al. (2001), Conforti et al.

(2015), Cozzolino and Moron (2003),

Curcio et al. (2013), Gholizadeh et al.

(2014), Pinheiro et al. (2017)

0.60–0.81 1.56–2.20 5.30–6.93 Cho and Sudduth (2015)

Bulk

density

Indirect 0.71–0.83 1.87–2.2 0.12–7.58 Gholizadeh et al. (2014) Viscarra Rossel

and Webster (2012)

0.20–0.36 1.12–1.22 0.08–0.11 Cho and Sudduth (2015)

MC Direct 0.84–0.98 2.36–5.86 0.50–4.88 Chang et al. (2001), Slaughter et al. (2001),

Dalal and Henry (1986), Mouazen et al.

(2006a,b)

0.68–0.93 2.86–3.98 0.024–1.75 Christy (2008), Hummel

et al. (2001), Mouazen et al.

(2007), Nawar and Mouazen

(2017b), Shibusawa et al.

(2001)

aValues of R2, RMSE, and RPD do not just represent the particular studies enlisted in adjacent column, but they are also based on other studies not listed in this table.
bRMSE unit is in percentage (%) otherwise specified in the cell.

Avl.P, available phosphorous; CC, clay content; CEC, cation exchange capacity; (Exc.) Ca, (exchangeable) calcium; Ext.P, extractable phosphorous; (In)OC, (in)organic carbon; MC, moisture content; R2, coefficient of

determination; RMSE, root mean square of error; RPD, residual of predictiom deviation; TK, total potassium; TN, total nitrogen; TP, total phosphorus; SOM, soil organic matter.
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4.2 Crop sensing
Crop sensing plays a significant role to assess the status of crop health by diag-

nosing biotic and abiotic stresses (e.g., Katsoulas et al., 2016). Considering

crop information individually and/or along with soil quality indicators

is suggested to delineate MZ for site-specific applications (Nawar et al.,

2017) and yield prediction. In order to measure crop quality indicators

(i.e., VI), a wide range of crop sensors has been identified and those could

be grouped as proximal and remote crop sensing. This review will discuss

RS application for measuring crop quality indicators (e.g., NDVI, biomass

and crop density) crucial for SSS and expands the usage of both PS and RS

tools for its measurement.

4.2.1 Remote crop sensing
The use of RS in agriculture refers to non-contact measurements of reflected

or emitted radiation from agricultural fields. The RS platforms include

unmanned aerial vehicle (UAV), airborne (airplanes with onboard pilot)

and satellites. Incorporating respective sensors [i.e., Light Detection and

Ranging (LiDAR), NIR, red, green, blue (RGB), or multi/hyperspectral

camera], RS collect data in the form of images or spectra. It provides spe-

cialized capabilities for manipulating, analyzing, and visualizing images. RS

has been proven to map the spatial variation in characteristics (Ammad-Udin

et al., 2016) with the potential of decreasing considerable amount of labor,

cost and time (Manchanda et al., 2002). Among the RS platforms, use of

UAV is increasing day by day since it has enormous number of advantages

for managing farm resources and exclusively for examining crop growth and

biotic and abiotic stresses (Primicerio et al., 2012). Common applications

of UAVs are crop sensing for site-specific fertilizer applications and weed

control (Candiago et al., 2015; Ehsani et al., 2012; Evaraerts, 2008;

Lucieer et al., 2014; Sugiura et al., 2003). The major drawback of copters

UAV is that they are slow due to low battery capacity, thus causing shorter

flight duration. Scientists are gradually trying to improve the battery tech-

nology that powers the copter (multi-propellers) and fixed wing UAVs

to increase flight duration (Sankaran et al., 2015). Besides, conventional

RS (i.e., satellite) technology has largely been suffering from numerous

drawbacks such as prohibited access to free data, high price of images, less

frequent and longer revisiting time, poor spatial resolution due to great

height (Bansod et al., 2017) and weather conditions like cloud coverage

and rainstorm. To overcome problems associated with spatial and temporal
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resolutions, there are several commercial satellites have been launched in the

last two decades, for example, QuickBird (2001), RapidEye (2008), GeoEye

(2008) etc., providing finer resolutions (Bansod et al., 2017), but at the cost

of higher prices. There should be a recommended trade-off between price

and optimum spatial and spectral resolution depending on the management

objective, size of the machine used and size of MZ. For example, fine res-

olution (1–3m) is required to analyze spatial variation of crop yield and bio-

mass, while relatively coarse resolution (5–10m) is enough to implement VR

fertilization (Mulla, 2013). The 10m spectral resolution free data offered by

Sentinel2 and LandSat8 is potentially sufficient for measuring crop quality

indicators. Al-Gaadi et al. (2016) predicted potato yield based on NDVI

and SAVI generated by Sentinel2 and LandSat8 images.Model validation rev-

ealed that both the Sentinel2 (R2¼0.47 to 0.65,RMSE¼4.96–8.80 ton) and
LandSat8 (R2¼0.39–0.65, RMSE¼5.25–8.74 ton) showed similar predic-

tion performance. LandSat8 satellite image analysis showed consistent perfor-

mance over the ground based multispectral imagery (RedLake-MS4100) for

developing MZ map of vineyard based on NDVI measurement (Borgogno-

Mondino et al., 2018). It can be confirmed that, the free satellite RS is suf-

ficient to measure NDVI with good measurement accuracy, hence, fulfils

the requirement for SSS. In order to select proper satellite data, one should

be wise enough about the period of sensing and satellite data quality, i.e.,

radiometric and geometric correction.

4.2.2 Proximal crop sensing
Proximal crop sensing (PCS) is the ground based tools for measuring crop

characteristics either with or without direct contact with the crop canopy.

The PCS devices can be handheld or machine-mounted type (i.e., tractor,

robot, or quadbike). It includes different sensing categories; (i) mechanical,

(ii) ultrasonic and (iii) optical techniques. Mechanical (Hammen and Ehlert,

1999) and ultrasonic (Llorens et al., 2011; Shibayama et al., 1985) sensors are

mainly used for bulk measurement of canopy volume, biomass density and

plant height. Mechanical crop sensor is principally a contact type sensor

equipped with a pendulum pushed over the crop. Crop canopy exerts a

reaction force against the pendulum that deviates from the original posi-

tion of pendulum by some extent. This deviation can be related with

the crop biomass density (Hammen and Ehlert, 1999). Since this is a con-

tact type sensor, there are possibilities to damage crop by some extend,

which is often considered as a major drawback of this technology. Ultra-

sonic crop sensor is a non-contact sensor, which emits a high frequency
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sound wave (>100kHz) to the crop canopy and detect a reflected sound

echo. The time difference between sending and detecting the sound echo

is linked with the distance between crop and sensors. Several vertically

installed sensors measured relative distances, which are used to measure

plant height, crop volume and thus linked with crop density (Llorens

et al., 2011; Zaman and Salyani, 2004). Optical crop sensors are based

on sensing the amount of reflected radiation from crop canopy. Depending

on the wavelength and number of wavebands of reflected energy, optical

sensors can be classified into different categories (a) RGB, (b) multispectral,

(c) hyperspectral, (d) fluorescence, (e) thermal, and (f ) laser scanner (LiDAR),

as shown in Table 6. Optical sensors can be either active or passive. Passive

sensors require an external light/energy source, whereas the active sensors

have own energy source of a wide range of light (Birrell et al., 1996; Povh

and dosAnjos, 2014).Multispectral and hyperspectral cameras provide spec-

tral and imagery data from few wavebands (5–8) to many wavebands

(>100), respectively. Basic differences between hyperspectral and multi-

spectral imaging are in the spectral range, continuity and spectral resolution

of bands. Hyperspectral camera can measure crop properties in a finer

scale than multispectral camera, although hyperspectral sensors are more

expensive (Mulla, 2013). The spectral reflectance characteristics of plant

(and their canopies) are determined by the chemical composition and phys-

ical properties of the plants and the spectral properties of the energy source

(Bauer, 1985; Myneni and Ross, 1991). Plant absorption of light is directly

related with plant pigments and water (970, 1450, 1944nm). The most

important absorptions pigments are chlorophyll-a (435, 670–680, 740nm),

chlorophyll-b (480, 650nm), α-carotenoid (420, 440, 470nm), β-carotenoid
(425, 450, 480nm), anthocyanin (400–550nm), lutein (425, 445, 475nm) and

violaxanthin (425, 450, 475nm) (Bauer, 1985; Myneni and Ross, 1991). As

plants leaves contain most of the referred pigments and water, it is obvious to

have broader absorption peaks instead of sharp peaks. Most frequent broad-

band absorption peaks appear in the vis-NIR spectrum at 400–500nm (blue

absorption), 660–680, 740nm (chlorophyll absorption), 970 and 1450nm

(water absorption) (Myneni and Ross, 1991). In addition to light absorption,

reflectance is affected by the plant physical structure and cells structure within

the plant leaves (Bauer, 1985; Vogelmann, 1989). However, this physical

characteristic is found to bemost significant in the NIR spectrum. The reflec-

tance from plant surfaces is due to light scattering from discontinuities in the

refractive index in the leaves. The leave cell structure determines the number

of air/water/cell-wall interfaces that proportionate the number of scattering
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Table 6 Summary of various reflectance crop sensors with key features and their
prospective applications and limitations.

Crop sensors Key features
Prospective
applications Limitations

Red, green

and blue

(RGB)

Gray scale or color

images

Greenness, growth,

visible properties,

outer defects,

texture analysis

Limited spectral bands

(visible) and

properties

Multispectral/

color infrared

camera

Few spectral bands

per pixel in visible-

infrared zone

Plant nutrient

deficiency, water

stress, diseases

pressure

Limited to few

spectral bands

(e.g., 3–6 bands)

Hyperspectral

camera

Continuous/

discrete spectra per

pixel in visible-

infrared zone

Plant stress, produce

quality, and safety

control

Challenging image

processing, generally

it is expensive sensor

Thermal

camera

Temperature per

pixel (for sensor

with radiometric

calibration) related

to TIR emissions

Plant responses to

water stress, pest and

diseases pressure,

Stomatal

conductance

Ambient conditions

affect the

measurement

performance, sharp

temperature deviation

is out of sensibility,

relatively heavier

Spectrometer Vis-NIR spectra

averaged over a

given field-of-view

Crop responses and

diagnosing disease,

pest infestation and

stress

Spectral overlapping

possibilities, spectra

scattering by

background (soil) may

affect the sensing data

quality

LiDAR sensor Physical measures

resulting from laser

(600–1000nm)

flight duration

(to and from object)

Estimates plant/tree

height and biomass

volume

Limited performance

when a very small

variations in path

(flight) length

Fluorescence

sensor

Passive sensing-

visible and near

infrared regions

Photosynthesis,

chlorophyll

concentrations,

water stress

Can be affected by

background noise

Adopted fromSankaran, S., Khot, L.R., Espinoza,C.Z., Jarolmasjed, S., Sathuvalli, V.R., Vandemark,G.J.,
Miklas, P.N., Carter, A.H., Pumphrey, M.O., Knowles, N.R., Pavek, M.J., 2015. Low-altitude, high-
resolution aerial imaging systems for row and field crop phenotyping: a review. Eur. J. Agron. 70,
112–123. https://doi.org/10.1016/j.eja.2015.07.004.
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points (e.g., cell walls versus intercellular air and heterogeneities within the

cell) (Vogelmann, 1989). Different layers of vegetation will enhance the

spectral reflectance, effectively increasing the number of refractive index

discontinuities (Bauer, 1985).

Among the reflectance basedPCSs,CropCircle andGreenSeeker aremost

common commercially available ones. CropCircle uses reflectance in the

green and NIR bands to estimate crop nitrogen (N) deficiencies (Holland

et al., 2004). The motivation behind using the green band rather than red

reflectancewas that as crop LAI increases beyond 2.0, the greenNDVI ismore

sensitive to the changes in chlorophyll concentration and potential crop

yield than NDVI (Gitelson et al., 1996; Sripada et al., 2008). This feature

of CropCircle sensor can overcome the limitation of using the GreenSeeker

sensor at advanced crop growth stages (Mulla, 2013). Therefore, selection a

suitable crop sensor should consider the real application conditions and

sensing period, which can affect the performance of sensing devices. In this

sense, PCS is more flexible to measure crop quality indicators whenever

required and suitable for the measurement while RS technology suffers

from numerous limitations in this regard.

4.3 Multi-sensor and data fusion
The accuracy of a single sensor is often low because proximal soil sensors

response to more than one soil property of interest simultaneously

(Adamchuk et al., 2001; Kuang et al., 2012). This shortcoming may be over-

come by adopting a relatively new approach designated as multi-sensors

and data fusion, aiming at providing complementary, more accurate and

robustmeasurements of different parameters in the agricultural system includ-

ing soil characteristics (Adamchuk et al., 2004; Al-Asadi andMouazen, 2014;

Castrignanò et al., 2012; Mahmood et al., 2012) and crop properties (Weis

et al., 2013). Nawar et al. (2017) reported three key sorts of sensor fusion

approaches: (i) proximal-with-proximal sensor fusion, in which just proximal

sensors are mutually fused; (ii) remote-with-proximal sensor fusion, in which

proximal sensor(s) are fused with remote sensor(s); and (iii) remote-with-

remote sensor fusion, whereby only remote sensors are integrated. Multi-

sensor data fusion is expected to measure the target quantity with additional

accuracy higher than a single measurement technique. The accuracy of mea-

surement is greatly depends on the right choice of the measuring techniques.

The selection of a set of sensors to be integrated depends on the objective

parameters, practical information, actual application situations and sensor
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fusibility. Generally, some sensors are moderately easy to blend, for instance

EMI and electrical resistivity for soil measurement, others (e.g., vis–NIR,

MIR,Gamma&GPR)might need specifically designed software, regular cal-

ibration and hybrid data processing and interpretation (Grunwald et al., 2015).

Corresponding data can be obtained from laboratory, in situ, on-line mea-

surement, historical record or clouds.Data integration should lead to delineate

MZs and generating a recommendation map for the site-specific application

of various agricultural inputs.

In order to satisfy the needs for multi-sensor data fusion, scientists pro-

posed several sensor combinations to map soil and crop variations, as shown

in Table 7. For example, Wong et al. (2010) and later Castrignanò et al.

(2012) proposed combining EMI with gamma ray spectroscopy along with

high precision positioning system (RTK-GPS) for successful prediction of

plant available soil K and delineating within field homogenous zone.

Veum et al. (2017) evaluated the potentiality of fusing vis-NIR spectrom-

etry with a penetrometer (Veris profiler 3000) to estimate cone index (CI)

and soil ECa with the aim to assess the soil overall health by scoring the soil

biological, chemical and physical proportions. The SoilManagement Assess-

ment Framework (SMAF) (Andrews et al., 2004) was established based on

the laboratory analysis for BD, MC, texture, total organic carbon (TOC),

TN, active C, β-Glucosidase, pH, Pext, K and mineralizable N. The PLSR

results indicated that the sensor fusion improved the prediction performance

(R2¼0.78, RMSE¼7.21%) for the soil health quality quantification in

contrast to the measurement (R2¼0.69, RMSE¼8.41%) obtained by

vis-NIR spectroscopy alone. Most recently, Castrignanò et al. (2018) fused

data of EMI and GPR in order to delineate MZs for site-specific fertilizer

management and tillage practice. Unexpected but true fact is that, there is

no literature reported the multi-sensor data fusion study in relation to the

implementation of SSS.

Data fusion between proximal and remote sensing is also an effective

approach for measuring soil and crop spatial properties (Blaes et al., 2005;

De Benedetto et al., 2013a,b,c; Gao et al., 2017; Grunwald et al., 2015)

for site-specific crop management. De Benedetto et al. (2013a,b,c) proposed

a fusion approach for satellite remote sensors and proximal soil sensor (i.e.,

EMI). Particularly, WorldView2 and GeoEye1 were used for the measure-

ment of crop VI, while the EMI sensor was used to measure ECa. Their pro-

posed multi-sensor fusion resulted in an optimum delineation of different

MZs. Zhang (2010) discussed the fusion approaches which included very

high-resolution data from optical sensors such as panchromatic (PAN),
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Table 7 Summary studies of multiple-sensors data fusion in precision agriculture (PA) applications.

Sensors involved in fusion

Type of
multiple
sensor/data
fusion Objective of fusion techniques Key findings and discussions Key reference

EMI, Airborne multispectral scanner PR-soil and

crop sensing

To map soil units as field scale EM38 data was integrated with LAI,

calculated from multispectral airborne

remote sensing (Daedalus-ATM). The

quality of identified soil individual zone

was mostly dominated by AWC and

oxygen deficiency during standing

water in the field

Sommer et al.

(2003)

ER, Gamma PP-soil

sensing

To map ERa, KUTH, MS Result found higher KUTH for higher

clay content; MS was higher and ERa

was lower under higher CC

Becegato and

Ferreira

(2005)

Load cell, vis-NIR, gauge wheel with

LVDT

PP-soil

sensing

To develop on-line measurement

system of soil BD

The soil BD was assessed from draught,

cutting depth and MC with R2¼0.56.

Online measurement of BD was worse

for dry areas

Mouazen and

Ramon

(2006)

EMI, LiDAR PR-soil

sensing

To identify and map key soil indicators

and crop yield, thus for delineatingMZs

ECa, pH and OC were identified as

keys indicators to evaluate field

variation and OC was replaced by

elevation. The ECa was found

positively correlated with CC

(R2¼0.49) and negatively correlated

with sand content (R2¼�0.49).

Management zones were related to

landscape position, and thus soil MC.

Crop yield varied over the MZs

Vitharana

et al.

(2008a,b)

Continued
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Table 7 Summary studies of multiple-sensors data fusion in precision agriculture (PA) applications.—cont’d

Sensors involved in fusion

Type of
multiple
sensor/data
fusion Objective of fusion techniques Key findings and discussions Key reference

LandSat7 ETM, ASTER RR-soil

sensing

To measure the soil TP using RS

indices and geo-statistics

Log floc TP was best modeled by fusion

of Landsat ETM and NDVI effectively

with R2¼0.68

Rivero et al.

(2009)

Vis-NIR, EMI PP-soil

sensing

To measure multiple soil properties Quality of prediction estimates varied

over the sensors used, soil properties,

methods of estimation. Among the

three study areas, R2 varied from 0.01

to 0.93. Overall, sensor data fusion

produced the best soil property

estimations, followed by vis-NIR and

EMI sensor alone

Mahmood

et al. (2012)

EMI, GPR PP-soil

sensing

To estimate CC Clay content was estimated with

R2¼0.89 at 0–20cm from EMI and

GPR data where sensor data fusion

through the kriging with external drift

(KED) improved the clay content

estimations compared to ordinal

kriging (OK)

De Benedetto

et al. (2012)

2�EMI, Gamma PP-soil

sensing

To delineate MZ and to estimate and

map soil P, avl. K.,OC, pH

Result indicated that K was correlated

with Gamma-ray K counts with

R2¼0.41; Spatial patterns of P, K, OC

were positively correlated to each other

and negatively correlated with pH.

Sensor fusion improved the overall

delineation of MZs compared to single

a sensor data

Castrignanò

et al. (2012)
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EMI, 2xGPR PP-soil

sensing

To estimate soil MC MC at a depth of 0–30cm was

estimated with R2¼0.60 from EMI

(ECa), GPR and CC. Sensor data

fusion through KED improved the MC

measurement in comparison to the OK

De Benedetto

et al. (2013b)

EMI, GPR, vis-NIR, WorldView2 (PP & PR)-

soil and crop

sensing

To delineate homogenous MZ Integrating ECa from EMI with GPR

signal allowed to measure soil and

subsoil properties simultaneously. Vis-

NIR (FieldSpec) and satellite remote

sensing (WorldView) integration was

used for overlaying crop information

(NDVI) with soil properties. ECa and

vis-NIR spectra were the most

informative properties. GPR should be

used in cases where particular spatial

structures are expected in the subsoil

since data processing for GPR is more

complex

De Benedetto

et al. (2013c)

EMI, GPR, LiDAR (PP & PR)-

soil sensing

To identify and map the key indicators

for delineating MZs. Also, to measure

and map wheat yield

Results identified key indicators

(ECa, pH and elevation) to map field

variation. Fuzzy K-means classification

delineated MZs. Crop yield was

estimated with R2 of 0.88 considering

full data of ECa and elevation data. ECa

alone could predict yield with R2 of

0.98 using the 10% highest yield data

within the range of ECa measurement

Van

Meirvenne

et al. (2013)

Continued
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Table 7 Summary studies of multiple-sensors data fusion in precision agriculture (PA) applications.—cont’d

Sensors involved in fusion

Type of
multiple
sensor/data
fusion Objective of fusion techniques Key findings and discussions Key reference

Single-probe horizontal penetrometer,

A dielectric-type soil water content

sensor, Gamma-ray sensor (Mole)

PP-soil

sensing

To estimate and map multiple soil

properties, To map crop yield

BD was estimated with R2¼0.72 from

MR (mechanical resistance), MC (vol.)

and CC, and with R2¼0.90 fromMR,

MC (grav.), CC and OM.Maps of crop

yield, MR, MC(vol.), CC and BD

showed similarities

Naderi-

Boldaji et al.

(2013)

EMI, Gamma, Panchromatic aerial

imagery, RTK-GPS

(PP & PR)-

soil sensing

To measure and map CC CC was measured with minimum

mean absolute error (MAE) of 1.2%

from ECa and Gamma-ray, and the

addition of aerial photography and

topographic variables did not improve

these estimations. CC estimations from

ECa alone were improved with the

addition of gamma-ray or aerial

photography. CC estimations from

Gamma-ray alone were not much

improved by addition of other data. CC

estimations from sensor data

outperformed OK estimations

Piikki et al.

(2013)

EMI, vis-NIR PP-soil

sensing

To delineate MZs and measure crop

yield for saline region

Crop yield was measured with

R2¼0.53 from EC, BD, OC and CC.

These soil properties were properly

described only by the integration of

ECa and bare soil NDVI, thus

delineation of MZs required both

sensors. Fuzzy c-means clustering

algorithm delineated five MZs

according to the soil fertility

Scudiero et al.

(2013)
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CropCircle (ACS-210), vis-NIR PP- soil and

crop sensing

To delineate MZ for VR fertilizer

management

MZ delineated using vis-NIR

measurands coupled with NDVI from

CropCircle outperformed the

traditional MZ performance in terms of

yield and economic return for oil-seed

rape

Halcro et al.

(2013)

ER, Hyperspectral satellite imaging PR-soil

sensing

To compare the sensor data fusion

techniques for infield estimation of soil

properties.

This research reported a joint

exploitation of hyperspectral satellite

data and geophysical data for estimating

soil properties at the field scale.

Regression kriging estimated clay, sand

and AWC with a sufficient degree of

accuracy (RPD>1.4). PLSR-kriging

estimated these variables by using only

remote sensing covariates and obtained

better results than PLSR in most cases.

For other soil variables, the prediction

ability was unsatisfactory (RPD<1.4)

due to smaller sample set, and range and

weaker correlation with the covariates

Casa et al.

(2013)

EMI, Satellite imagery (Worldview2,

GeoEye)

PR-soil and

crop sensing

To make partition of filed for site-

specific irrigation management

Multivariate geo-statistics and a

clustering approach were applied to the

overall multi-sensor dataset recorded

form ECa (EMI) and NDVI

(WorldView2 images), whereas the

data from GeoEye were clustered to

validate the MZ delineation. The

approach allowed to integrate different

sensors data and to identify three

homogenous sub-field areas related to

the intrinsic properties of soil and the

crop response

De Benedetto

et al. (2013a)

Continued

A
R
T
IC
L
E

IN
P
R
E
S
S



Table 7 Summary studies of multiple-sensors data fusion in precision agriculture (PA) applications.—cont’d

Sensors involved in fusion

Type of
multiple
sensor/data
fusion Objective of fusion techniques Key findings and discussions Key reference

FDR, vis-NIR PP-soil

sensing

To determination MC, BD MC (vol. and grav.) were measured at

R2¼0.98 from FDR output voltage

and vis-NIR spectra, and then used to

measure BD at R2¼0.81; This PP

sensor data fusion improved the MC

and BD estimation

Al-Asadi and

Mouazen

(2014)

EMI, vis-NIR, load cell, gauge wheel PP-soil

sensing

To delineate MZ for sit-specific

irrigation

On-line measurement accuracy for OC

and MC were good to excellent where

RMSEP 0.06–0.72% and 0.97–2.49%
and (RPD) values of 2–2.57 and

1.94–2.1, respectively. For CC and PI,

the measurement was of fair to

moderate accuracy withRMSEP values

of 1.4–3.94% and 2.43–2.77% and

RPD values of 1.41–1.77 and

1.25–1.48, respectively. The water
holding capacity (WHC) was derived as

a function of OC, CC, BD, PI and ECa

using theMLR and ANN analyses. The

MZs were designated according to the

normalized value of WHC.

A comparative analysis between WHC

and available water content (AWC)

reported the similar spatial distribution

thus recommended the multi-sensor

data fusion to optimize irrigation

scheduling

Mouazen

et al. (2014)

A
R
T
IC
L
E

IN
P
R
E
S
S



Vis-NIR, multi-source Data fusion To delineate MZ Based on the vis-NIR spectra, the

PLSR model predicted pH, P, MC,

K at excellent to moderate accuracy.

First regionalized factor produced three

MZs of same size. This factor was

assumed as synthetic fertility indicator

of field since it could reveal 40% of

yield-MZs association

Shaddad et al.

(2016)

Vis-NIR, Penetrometer (ECa, CI) PP-soil

sensing

To assess the overall soil health based

(SMAF)

They calculated the SMAF based on the

laboratory data such as BD, MC,

texture, TOC, TN, active C,

β-Glucosidase, pH, Pext., K and

mineralizable N. Sensor fusion could

increase the PLSR model’ prediction

performance (R2¼0.78,

RMSE¼7.21%) of quantifying the soil

quality score by reducing 14% the

RMSE, whereas, the vis-NIR

spectroscopy alone showed lower

performance (R2¼0.69,

RMSE¼8.41%)

Veum et al.

(2017)

Continued
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Table 7 Summary studies of multiple-sensors data fusion in precision agriculture (PA) applications.—cont’d

Sensors involved in fusion

Type of
multiple
sensor/data
fusion Objective of fusion techniques Key findings and discussions Key reference

LandSat, MODIS RR-crop

sensing

To map the progress of crop

development

Results showed that the detailed spatial

and temporal variability in vegetation

can be made by using sensor fusion

between the Landsat-MODIS data.

The mean difference in NDVI between

actual Landsat observations and the

fused Landsat-MODIS data is in the

range of�0.011 to 0.028 for every year.

Results suggested that crop phenology

and certain growth stages at field scales

(30m spatial resolution) can be linked

and mapped by integrating imagery

from multiple remote sensing platforms

Gao et al.

(2017)

EMI, GPR PP-soil

sensing

To delineate MZs using geo-statistics Geo-statistically sensor fusion

technique estimated synthetic

scale-dependent regionalized factors.

Complementary 2D EMImeasurement

and 3D GPR attenuation effectively

delineate MZs for site-specific

application

Castrignanò

et al. (2018)

ANN, artificial neural network; ASTER, advanced space-borne thermal emission and reflection radiometer; AWC, available water content/capacity; BD, bulk density; CC, clay content; EMI,
electromagnetic induction; ER, electrical resistance; ERa, apparent electrical resistance; ETM, enhanced thematic mapper; FDR, frequency domain reflectometer; GPR, ground penetrating radar;
KED, kriging with external drift; KUTH, counts for potassium, equivalent uranium and equivalent thorium; LAI, leaf area index; LiDAR, Light detection and ranging; LVDT, linear variable
differential transducer; MAE, mean absolute error; MC, moisture content; MLR, Multiple linear regression; MODIS, moderate resolution imaging spectroradiometer; MR, mechanical resistance;
MS, Magnetic susceptibility; MZ, management zone; NDVI, normalized difference vegetation index; OC, organic carbon; OK, ordinal kriging; PI, penetration index; PLSR, partial least square
regression; PP, proximal with proximal; PR, proximal with remote; RMSE(P), root mean square error (of prediction); RPD, residual prediction deviation; RR, remote with remote; RS, remote
sensing; SMAF, soil management assessment framework; TN, total nitrogen; TOC, total organic carbon; TP, total phosphorous; WHC, water holding capacity.
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multi-spectral, synthetic aperture radar (SAR) and LiDAR. Fusion of RS

is used mainly to integrate different resolution sensor data to improve the

level of information obtained from these sensors (Grunwald et al., 2015).

Over all, this type of sensor combination has been adopted less frequently

for soil mapping than proximal-proximal sensor fusion for soil and crop

measurement.

Based on the discussion about multi-sensor data fusion, one may expect a

better sensor combination including vis-NIR and EMI for better measure-

ment of soil properties, related to SSS applications. With the adoption of

proper chemometrics, machine learning, and geo-statistical analysis, the out-

put is expected to be a more accurate MZ delineation. The MZ delineation

may further be tuned by coupling crop data including NDVI, crop density

and yield with auxiliary data such as terrain characteristics and weather con-

ditions (Halcro et al., 2013). Therefore, future research should focus on

which sensing system apart from EMI does perform better when fused with

vis-NIR for implementation of SSS.

5. Site-specific recommendation

Defining the desired seeding rate or seed placement depth, for a spe-

cific group of affecting parameters, is a key issue for successful implementa-

tion of SSS. In this section, a critical review is undertaken on methods

adopted for SSS rate and seed placement depth.

5.1 Site-specific seeding rate recommendation
Recommendation for SSS requires detailed information about soil type and

fertility, soil and crop microclimatic conditions, crop types and growth,

biotic and abiotic crop stresses and topographical information. Different

layers of information are then fused by means of relevant geo-statistical

tools, modeling and artificial intelligence technologies. In the first step,

maps of different layers are developed and visualized. Crop yield relation-

ships with collected multilayer data is then examined, to quantify the yield

limiting factors of individual and collective data layers (Whetton et al.,

2017a,b). This should be followed by the derivation of MZ maps that

mainly reflect the yield potentiality. Based on the analysis of yield potential

of each MZ, a decision support scheme for SSS is developed. Finally, a rec-

ommendation is generated, which provides guidance to a PA equipment

and ensure optimum production inputs for economic and environmental
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perspectives. There are different methods found in the literature on how

the amount of optimum seeding rate have been defined so far, which are

discussed in the following subsections.

5.1.1 MZs-specific arbitrary seed rate
After required measurement of all soil and crop quality indicators, MZs need

to be delineated based on the within field variability. Once MZs are iden-

tified and delineated, one has to assign the most practical seed rate per MZ.

For VSR recommendation, an average seed rate or widely pragmatic seeding

rate is assigned to the moderately fertile MZ. Higher seeding rates are rec-

ommended to the higher fertile zone to produce higher crop yield while

low productive zone could deliver better yield at lower seeding rate or plant

populations (H€orbe et al., 2013). For the remaining MZs, seed rate recom-

mendations are determined roughly by increasing or decreasing seed rate by

given percentage of the average seed rate. For instance, individual farmers

would have their own seeding rate respective to the field and the upper,

and lower seeding rates would vary by �30% from the average seeding rate

(Smidt et al., 2015). Percentage increase and decrease of seed rate recom-

mendations over the average rate depends on corresponding yield potenti-

ality of MZs (Lovell, 2016). To date all the existing SSS approaches are based

on this arbitrary recommendation approach (Table 9), as it is easier and faster

to develop, and reliable to the farmers. Arbitrary recommendation also

carries higher risk of non-optimal VSR recommendation for most instances

across the growing conditions and crops.

5.1.2 MZs-specific optimal seed rate
MZs-specific optimal recommendations has been reported by Kirk (2017),

which was designated as “Directed-Rx.” Directed-Rx is a system that was

developed in an effort to improve arbitrary VSR recommendation.

Directed-Rx aimed at the integration of soil properties layers with yield data

records to optimize input requirements for a specific zone of a field. This

system allows for any spatially observed soil property (MZ proxy) data to

be used as a foundational indication of field variation, on which field is

divided into different MZ. Strip trial treatments are then allocated to each

field study. Generally, one treatment is assigned a seed rate similar to the

growers’ normal practices, two rates above the normal, and two rates below

the normal rate. Georeferenced yield is recorded during harvesting and then

a point dataset is created that includes the yield, strip trial seed rate and soil

property map. After a proper data pre-treatment, yield data is averaged across
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each MZ within each strip treatment. As a function of yield, market prices,

input rates and input costs, returns above variable input costs (RAVIC) is

calculated for each averaged yield. Yield and RAVIC are then regressed

as a function of sequentially ranked MZ within each strip treatment. These

regression models predict crop yield potential and RAVIC, as a function of

MZ proxy for each MZ and each strip treatment (e.g., input rate). From

among the strip treatments for each MZ, the treatment producing the max-

imum yield or RAVIC would be selected as the optimum treatment rate.

Afterwards, these optimum rates are assigned to theMZs resulting in the rec-

ommendation plan for map-based site-specific application in the subsequent

year. Directed-Rx can determine optimum input level for maximizing crop

yield for each MZ in the field. Moreover, taking current market prices per

unit input, Directed-Rx potentially allows analyzing the economic return

on investment over other VR competencies. Kirk (2017) discussed six case

studies for site-specific rate recommendations for maize (hybrid: A, B, C and

Dual) and soybean seeding, including nitrogen application for cotton pro-

duction where they considered soil EC as MZ-proxy. Economic benefits of

the Directed-Rx are reported for SSS of maize (3–19 $/ac), dual hybrid
maize seeding (2–18 $/ac), SSS for soybean (6 $/ac) and VR nitrogen for

cotton (11 $/ac).

5.1.3 Model-based optimal seed rate
Model-based optimal VSR recommendations are made according to

predefined mathematical formulation of input rate as a function of soil spe-

cific quality indicators and/or yield potential. Recommendations are gener-

ated in real time by sensing and measuring required soil and crop properties.

The hypothesis is that, the real time optimization of input allocation can

ensure best utilization of yield potential of a certain field. Several attempts

have been reported by many scientists for developing model-based optimal

recommendation for site-specific fertilizers application, tillage practices and

seeding ( Jiang and Thelen, 2004; Licht et al., 2017; Maleki et al., 2007,

2008; Mouazen and Ramon, 2006; Taylor et al., 2000).

Initially, VSR was implemented arbitrarily, ignoring site-specific soil

quality or yield potential. Most researches proposed crop yield regression

models as a function of plant populations where crop yield was expressed

as a nonlinear quadratic function of plant populations (e.g., Assefa et al.,

2016; Murányi, 2015; Woli et al., 2014). Vories et al. (2015) investigated

the relationship between maize plant populations and yield, reporting a

stronger relationship between the final stalk counts and yield than the
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relationship between target seeding rate and stalk counts. Scientists have

been trying to incorporate more soil parameters into the yield models beside

plant populations ( Jiang and Thelen, 2004; Licht, 2015a,b; Licht et al.,

2017; Taylor et al., 2000), with a view to build more universal models

for prescribing seeding rate. Several researchers have developed index-

models for determining the optimum seeding rates of maize based on the

soil quality status (Table 8). Taylor et al. (2000) reported a seeding rate

model based on soil EC only, which showed inconsistent estimation of

seeding rate across the sites and years. The EC showed variable (positive

and negative) correlation with crop yield and seeding rate for different site

years. Based on one site-year interaction, the optimum predicted seeding

rate for maize was approximately 28,000 seeds/ac, which was slightly higher

than (26,000 seeds/ac) proposed by other researcher (Staggenborg et al.,

1999). Research conducted by Licht et al. (2017) for optimizing seeding rate

of maize in Iowa State University considered average measured soil physical

and chemical properties (P, Kexh, pH, SOM, CEC and Texture) and topo-

graphical features (e.g., elevation, aspect, slope and curvature). Only three

among nine site-years could reflect the acceptable optimization of seeding

rate (R2�0.50). Both Licht (2015a,b) and Taylor et al. (2000) reported

closely likewise maize yield model as a function of seed rate along with other

soil properties.

5.2 Site-specific sowing depth recommendation
Placing seeds should be where the soil offers the optimum nutrients, water,

aeriation, and microclimate conditions during both germination and post-

germination periods. Surface compaction (e.g., crust) could reduce or in

extreme cases prevent seed germination (Masaka and Khumbula, 2007).

Therefore, seeds should not be placed too deep to prevent germination or

two shallow that gives problems associated with roots anchoring (Rosolem

et al., 2002), hence, may considerably affect crop yield (Abu-Hamdeh,

2003). Optimal seeding depth enhances highest germination, emergence

and growth rate and thus maximum yield by ensuring proper soil moisture,

oxygen availability, temperature and soil-seed contact. Recommendation

of optimal seeding depth could essentially be made based on inherent

within-field soil variabilities with a view to ensure uniform seed emergence

and growth. Reports indicated that soil moisture (Weatherly and Bowers,

1997), temperature (Håkansson et al., 2002) and texture (Lukas et al., 2009;

Fulton et al., 2015) are the most influencing parameters on recommendations
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Table 8 Potential seed-rate-index models for optimal recommendation development.
Maize yield models as the functions as follows R2 Site Year References

�0.42 VFSD�2.1 CL 0.67 Field-1 1996 Jiang and

Thelen

(2004)
23.8 pH+2.0 VFSD+52.2 K 0.85 1998

�6.7 TB 0.28 2000

�9.9 SL 0.37 Field-2 1997

�11.1 SL�6.0 VFSD 0.62 1999

�4.2 E�11.4 SL+29.6 EC 0.73 2001

135.76+1.35e�5 SR�8.6e�10 SR2+0.05 K+

0.1 pH�0.02 SOM�0.14 CEC�6.0e�3

SD�0.02 CL�0.07 SL�0.37 E

0.65 Ames 2012 Licht et al.

(2017)

19.76+0.01 K�0.35 pH�0.17 CEC�0.01

SD�0.01 CL�0.05 SL�0.25 C

0.2 2013

17.54�3.90e�5 SR�4.02e�10 SR2�0.01 P+

0.01 K�0.77 pH+0.01 SOM�0.07

CEC�9.54e�4 SD�0.02 SL

0.77 2014

93.73�2.93e�5 SR�0.03 P+0.01 K�0.68

pH+0.16 CEC�8.86e�3 CL+0.05 SL�0.34

C+0.49 A�0.27 E

0.50 Kelley 2012

85.04�1.37e�5 SR�2.37e�10 SR2�0.01 P+

2.34e�3 K�0.24 pH+0.03 CEC�2.54e�3

CL+0.04 SL�0.23 E

0.16 2013

�193.34�2.07e�5 SR�0.01 K�0.90 pH+

0.06 CEC�0.01 SD�0.01 CL+1.60

C�0.28 A+0.68 E

0.41 2014

186.85�8.87e�6 SR�7.95e�10 SR2+0.03 P+

7.76e�3 K+5.66e�6 SD�0.06 SL�0.33

C�0.26 A�0.51 E

0.19 Ogden 2012

�333.64�4.32e�10 SR2+0.01 P�4.91e�3

K+1.56e�3 SD+4.64e�3 CL+0.06 SL�0.19

C+1.03 E

0.32 2013

69.85�6.21e�6 SR�6.23e�10 SR2+0.02

P�0.30 pH+0.01 CEC�0.02 SL+0.07

C�0.08 A�0.17 E

0.39 2014

10.36 SR�0.186 SR2+0.007 SR∗EC 0.79 OC 1998 Taylor et al.

(2000)

15.83 SR�0.242 SR2�0.141 SR∗EC 0.89 DC 1996

11.83 SR�0.162 SR2�0.136 SR∗EC 0.88 DC 1997

A, aspects; BS, base saturation; C, curvatures; CEC, cation exchange capacity; CL, clay; E, elevation;
EC, electrical conductivity;K, potassium; P, phosphorus; SD, sand; SL, slope; SOM, soil organic matter;
SR, seeding rate; TB, total bases; VFSD, very fine sand.
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Table 9 Summary of management zones (MZ) proxies and their measuring technique, MZ delineation approaches and recommendation methods for
map-based site-specific seeding (SSS) implementation.

Country Year Crop
Key MZ proxy
property

Property measuring
technique

MZ delineation
approach

No. of
class Seed rate range

Recommendation
method

Key
reference

Kansas, USA 1996,

1997

Maize Historical yield, ECa EMI sensing

(Veris 3100)

Proximal sensing,

Yield map

4 22,000–34,000,
(seeds/ac)

Arbitrary Taylor et al.

(2000)

Germany 2003 Wheat

(Winter)

Yield potential, soil

quality: 1(worst) to

100 (best)

Undefined (as it used

historical data)

Yield map 3 136–163 (site1),

116–150 (site2),

(kg/ha)

Arbitrary Reining

et al. (2003)

Ohio, USA 2002,

2003

Maize

(hybrid)

ECa EMI sensing

(veris 3100)

Proximal soil

sensing

4 64,925–85,750,
(seeds/ha)

Arbitrary Ehsani et al.

(2005)

NSW,

Australia

2002,

2003,

2005

Canola,

Wheat

Yield data, ECa

Elevation

EMI sensing (EM38,

31, Veris3100), RTK-

GPS, Yield monitor

(CaseIH AFS)

Data fusion 3 50–125 (kg/ha) Arbitrary Taylor et al.

(2006)

Albama, USA 2006,

2007,

2008

Maize,

Cotton

Terrain attributes,

ECa

NA Proximal and

remote soil

sensing

NA 18,000–30,000
(dryland maize),

22,000–34,000
(irrigated maize),

35,000–80,000
(cotton), (seeds/ha)

Arbitrary Fulton et al.

(2010)

USA 2013 NA Yield history, ECa,

Elevation and slope,

EMI sensing (Veris)

RTK-GPS

Proximal soil

sensing

NA Expert

consultations

Arbitrary Dwight

et al. (2013)

New Zealand 2015,

2016

Maize Historical yield

record

NA Yield map 3 75,000–120,000
(seeds/ha)

Arbitrary Holmes

(2017)

Netherlands 2015 Potato Soil map VerisMSP3

EM38

Proximal sensing NA NA Arbitrary Kempenaar

et al. (2017)
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for sowing depth. Depending on the soil environment, recommended maize

seeding depth could vary from 3.75 to 5.0cm (Elmore et al., 2014) and potato

planting depth from 5.0 to 20.0cm (Chang et al., 2016). However, farmers

always prefer to sow at a shallower depth because they believe that the tiny

seed may not emerge if they are placed too deep (Forcella et al., 2000;

Gazanchian et al., 2006).

5.2.1 Soil texture specific sowing depth
Soil texture class varies by the percentage sand, silt, clay that drives some

textural characteristics like temperature, water-holding capacity, field capac-

ity and soil water potential. Clay soils naturally have higher water potential

and water holding capacity due its inherent pore size distribution followed

by loamy and sandy soils (Li et al., 2014a,b). Consequently, optimal seeding

depth decreases with the increase in clay content or alternatively increases

with the increase of percentage sand content. For instance, maize seed

should be planted as deep as 7.5–8.75cm in clay soils, 10–11.25cm in silt

soils, and 12.5–15cm in sandy soils (Elmore et al., 2014). Soil texture is tra-

ditionally determined by laboratory standard methods, which are slow,

expensive and provide limited information about the within field variability.

Both EMI and vis-NIR (discussed above) are among the best candidates to

map within field variability in soil texture (T€umsavaş et al., 2019). Lukas
et al. (2009) reported that soil ECa was correlated with sand (R2¼0.548)

and clay (R2¼0.406) content. However, among the all PSS technologies

mentioned above, only ECa was used for practicing SSS so far. Fulton

et al. (2015) found that by the use of ECa, seeding depth of maize was highly

variable between different zones with different textures, and that the

shallowest optimum depth was reported for the heavier textured soil.

5.2.2 Soil moisture specific sowing depth
Adjusting seeding depth based on soil moisture availability can significantly

improve seed germination and emergence. Adequate moisture for proper

germination can be ensured by increasing seeding depth but challenges in

the increased soil mechanical impedance with planting depth are to be

expected (Adamchuk et al., 2001). Therefore, optimum seeding depth

should be selected as to be deep enough to assure required moisture, while

not far from the soil surface so that the magnitude of impedance is low and

the stored seed nutrients are sufficient for the seedlings (Weatherly and

Bowers, 1997). During early stages of seed germination, a rapid rise in seed

respiration requires sufficient quantity of oxygen for proper germination
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(Vidaver and Lue-Kim, 1967). The poor germination observed in soils at

or near saturation has been attributed to reduced oxygen diffusion as a

result of thick water films around the seed (Grable and Siemer, 1968).

Therefore, germination and emergence increase with the increased soil

MC (Lindstrom et al., 1976) up to field capacity. Further rise in soil MC

up to saturation level generally results in a delay in germination and increase

in emergence time (Dasberg and Mendel, 1971) due to limited respiration

of germinating seeds. However, once the soil MC is adequate at a specific

soil depth, there is no reason to differ planting depth shallower or deeper.

Elmore et al. (2014) suggested placing maize seeds at an adequate depth

where MC is at the field capacity, since crop seeds are expected to absorb

water of about 30% of their weight to begin germination.

5.2.3 Soil temperature specific sowing depth
Like soil texture andMC, soil temperature also affects the seeding depth and

the optimal soil temperature depends on soil type, MC, soil color, plant

residue, mulching, and direction of slope. Researchers reported that the

influence of soil temperature dominated the maize emergence time over

the influence of soil MC (Larson and Hanway, 1977), when soil MC is near

the field capacity. Both germination and emergence increased with soil tem-

perature (Lindstrom et al., 1976), which was found to vary with changes in

soil depth (Cui et al., 2011; Florides and Kalogirou, 2005). Additionally,

maize could not germinate when the temperature was lower than a specific

minimum temperature, i.e., 10 °C (Blacklow, 1973). Maize (radicle and

shoot) growth and development showed a linear but positive relationship

with rising temperature from 10 to 30°C and the growth reached a peak

at 30 °C (Blacklow, 1973). Beauchamp and Lathwell (1967) reported that

the time needed for emergence for maize seeds planted at a 5.0cm depth

increased from 3 to 4 days at 25 °C to 16 days at 12.5 °C. Within a range,

soil temperature can accelerate or decelerate the germination and emergence

rate without affecting too much the final plant counts (Evert et al., 2009). In

order to ensure uniform emergence, seeding depth recommendation could

be developed based on the concept of constant cumulative degree-days or

thermal time (called heat unit) (Alessi and Power, 1971; Baskin and Baskin,

1998; Håkansson et al., 2002) required to seed germination. The idea is that,

one can ensure a specific emergence time for entire field while soil temper-

ature variation could be adjusted by variable seeding depth according to the

heat unit.
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6. Implementation of map-based site-specific seeding

The implementation of the map-based SSS necessitates a well-defined

MZ map, by which the field is divided into different zones having different

yield potential or soil fertility levels. TheMZ concept is being widely used in

various map-based PA applications including SSS. Very few studies have

been conducted on SSS than other site-specific applications such as fertilizer

and pesticide applications (Esau et al., 2014a; Maleki et al., 2008). Table 9

shows a summary of available studies of map-based SSS including respective

MZ proxies and their measuring techniques. Reining et al. (2003) evalu-

ated a GIS-based software module for calculating winter wheat seed rates

depending on the corresponding yield potential of specific zones of a field,

which was derived from the historical yield records over several years. The

software module calculated the seed rate for different yield potential zones

and transformed seed rate directly to an application map. It was flexible to

adjust the yield potentiality according to algorithms developed in advance

[e.g., such as the one developed by Roth et al. (2001)] for seed rate calcu-

lation respective to the expected yield margin. Ehsani et al. (2005) reported

a 2-year field experiment to investigate the potential application of soil

EC for SSS. They mapped soil EC using a commercially available sensor

to measure electrical resistivity (Veris-3100, USA). Based on EC map, the

research team implemented variable seeding within an experimental set up,

where treatments were arranged in strips. The study quantified a clear rela-

tionship among soil EC, seed rate and yield data and it recommended EC

as a reference property for SSS implementation. Jeschke et al. (2012) used

some or all of the following reference data to delineate MZs for SSS: yield

history, field productivity, dryness and wetness of the field, soil EC and

color, remote sensing images for crop, soil and crop VI, environmental

response index, soil type and topography. Heege (2013a,b) reported SSS

to be affected by several parameters ranging from crop type and species,

planting time, soil water availability and soil texture. Among all the dis-

cussed properties, authors indicated that soil texture is a relatively static

property over the years and other properties do vary within a year and dur-

ing a cropping season. They discovered some seed rate converting factors

for wheat, by which respective seed rate could be adjusted based on soil

texture and annual precipitations. In addition, the influence of soil texture

on the seed density was more distinct in contrast to the influence of annual

precipitations. As an effective alternative to the soil texture, research
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suggested EC, which is more flexible for sensing, mapping, and maps are

relatively stable, hence, could be utilized for several decades to come for

SSS (Heege, 2013a,b). Fulton et al. (2010) conducted a case study in Ten-

nessee valley, Albama for map-based SSS of maize with four seeding rates

and four replications during 3 years. Maize seeding rates included 18,000,

22,000, 26,000, and 30,000 seeds/ha for dryland trials and 22,000, 26,000,

30,000 and 34,000 seeds/ha for an irrigated field setup. MZ was delineated

using various terrain attributes, soil EC and soil survey data. The spatial

analysis revealed that the terrain and soil type influenced the maize yield

with varying seeding rate both for the dry and irrigated fields. Dwight

et al. (2013) on behalf of CropQuest, a leading crop consulting commercial

service provider in USA, proposed the yield map as a potential basis of

VSR. However, considering the yield map for 1 year only was not enough

to define MZs for map-based SSS. Consequently, they emphasized on the

need for generatingMZs based on yield maps of several years along with soil

EC, topography and crop (hybrids) characteristics, such as fixed ear, canopy

architecture and stalk quality. Recently, Holmes (2017) considered 6 years

long historical yield records for analyzing the spatial and temporal variabil-

ities for SSS based-on MZs approach. The normalized yield data created

three separate MZs with respect to a certain threshold of coefficient of

variances (CV). Having a CV value<30% over the project years associated

with highly stable yield, CV value close to 30% referred to low stability and

CV value higher than 30% indicated unstable MZs.

It can be noticed (Table 9), that the map-based seeding approach was

more practiced in the United States than in any other country worldwide.

Maize was the most adopted crop for SSS compared to other crops (e.g.,

wheat, potato, canola), which might be attributed to economic reasons.

Most of the studies agreed that MZ proxies were very limited to ECa

and yield data. The majority of studies adopted Veris 3100 for measuring

soil EC while some reports were found on the use of EM38. This section

realizes that selecting a single or multiple soil, crop, weather and topo-

graphic characteristics is crucial for delineating MZ as representative of

yield potential.

7. Economics of site-specific seeding

Economic analytics can play a great role in convincing farmers and

policy makers to adopt and invest in site-specific applications, respectively.

Cost-benefit analyses should prove the economic feasibility, e.g., the return
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of investment of a technology in concern. In this regard, several researchers

have analyzed the economics of SSS, taking into account the economic plant

population, degree of in field variability, cost effectiveness of VR technol-

ogies, seed costs and yield. Bullock et al. (1999) reported that the optimum

maize seed density for SSS varied from 44,000 to 104,000 seeds/ha with

yield variability ranged within 5.1–18.3Mg/ha. Positive Pearson correla-

tion was recorded between site-specific field quality and optimal seeding

rate, and simulation revealed that farmers could increase revenue up to

$12/ha by practicing VSR in comparison with USR. In addition, their

research suggested in-depth analyses of both the soil quality and seeding

density to present clear economic benefits of SSS to the farmers. Robert

et al. (1999) documented the economic implications of site-specific plant-

ing of maize using maize-yield response curve developed by Pioneer hybrid

scientists. The study established several combinations of various yield

potentials (low, medium, high) and included costs of seed and VR technol-

ogies used in the cost-benefit analysis. Two separate strategies were used for

making SSS recommendations, namely, agronomic and economic seeding

rate recommendations according to the yield potential of eachMZ. Seeding

rates were 44,460, 69,160, 74,100 seeds/ha based on the agronomic recom-

mendation and 49,400, 64,220, 74,100 seeds/ha based on the economic

recommendation to the low, medium and high yield potential MZ, respec-

tively. Results revealed that SSS had profit potential for fields, which have

parts of low yield potential (<100 bu./a). For fields with 10% of the area is

of low yield potential SSS has resulted in economic benefits, while fields

with medium and/or high yield potential responded better to the USR sce-

nario. Results were particularly insensitive to the cost of seed or investments

in VR technologies.

In course of time, technological advancement has made concurrent site-

specific applications profitable compared to the earlier single site-specific

application. Most probably, this is happened due to the price drop and avail-

ability of VR technologies. Dillon (2013) found concurrent site-specific

applications as economically viable over the USR applications, whereas

SSS is reported to be less economically viable. It was anticipated that the addi-

tional cost for VR technologies outweigh the agronomic benefits of SSS

alone, although SSS coupled with site-specific fertilization (N) showed

greater economic potential.

Some studies concluded thatUSR is a better economical choice than SSS in

terms of net return due to the costs of soil sensing, data collection as well as VR

technologies, which could overshadow the increased maize yield from SSS.
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Taylor et al. (2000) evaluated the potential of SSS in eastern Kansas, United

States for 3 years. The study considered soil ECa as the soil quality indicator.

Economic analysis revealed the SSS is not profitable under the growing con-

ditions studied. They also suggested to search for a less expensive method

to make SSS economically feasible. Elmore and Abendroth (2008) critically

reviewed several researches, concluding that the SSS is an uneconomic

technology. Although high plant population’s density can lead to increase

yield, one should be aware ofwhether the yield benefit of planting higher seed

rate be economically viable or not. Economic viability should acknowledge

the cost of investment and associated yield increment. Reports identified a

general maize seeding rate of 86,450 seeds/ha as a good rate for field exper-

iment, but not necessarily true from economic point of view. It was also

pointed out that the optimum maize plant density can vary from 12,350

to 29,640 plants/ha in a given year depending on the purpose of the crop

(i.e., grain, silage) and growing conditions. Considering more fields and by

inclusion of environmental information in the analysis, seeding rate could

be further fine-tuned, whereas economically optimum seeding rate may

vary frequently within field but probably it is difficult to determine exactly

for point to point. Jeschke et al. (2012) reported that DuPoint Pioneer, a

worldwide leading developer and supplier of genotypes/varieties to

farmers, has implemented SSS of maize hybrids. The DuPoint Pioneer

suggested the economic optimum seeding rates after considering the over-

all return and additional seed costs, while seed rate response to productivity

function was calculated according to Woli et al. (2014). One should not

expect more savings from seed costs, instead higher yield may result from

optimal redistribution of total seeds according to the land site specific yield

potentiality (Dwight et al., 2013; Lovell, 2016).

8. Integration, research gaps and future prospects

This section will discuss research gaps, technological requirement and

prospects of site-specific seeding.

8.1 Research and technology gaps
Refereeing to previous studies discussed throughout the current review, it is

worth to identify key research gaps and technological impairments, neces-

sary for future technological development for optimizing and maximizing

the benefits of SSS. The following research gaps were identified:
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(a) No data available in the literature to clearly identify key quality indi-

cators and indexes affecting seed rate and seed depth. In this regard,

it is essential to define the most affecting indicators, which should be

followed by establishing new quality indexes that account for the most

affecting indicators on optimal seed rate and depth.

(b) Limited research have been reported on soil and crop sensing, including

multi-sensor and data fusion for SSS. This includes: (i) improper selec-

tion of sensing techniques for measuring key soil and crop quality indi-

cators, and (ii) no study has reported the optimal combination (fusion of

data) of proximal and/or remote sensing for quantifying key indicators

related to SSS, and

(c) Despite the existing decision support tools discussed above using EC

and manual soil sampling, no decision support algorithms are available

to determine the optimal seed rate and seeding depth using data derived

from vis-NIR sensing, or combination of vis-NIR, EC and/or crop

data. This is true for both the map-based and sensor-based applications.

(d) The literature does not report any successful implementation of sensor-

based SSS.

(e) The literature lack of data on the socio-economic and environmental

benefits of SSS.

8.2 Discussions and future prospects
The current world status of PA technologies is highly rich and facilitate all

sort of site-specific applications, whereas particularly SSS is lagging far behind

in technology development and adoption (Daberkow and McBride, 2000).

It is worth to note that all the available technologies are map-based SSS

where MZs are defined in advance on the basis of key affecting parameters

(e.g., soil types, EC, field topography and historical yield are the most

accounted for among others) on emergence, crop growth and yield. Map-

based SSS has an important advantage since it allows for sufficient time for

recommendation development between sensing and VR application. Syn-

chronization of the position between the measured field data with the appli-

cation map is mandatory to ensure the right application rate is placed at right

position. Seeds may also be placed at different locations than the prescribed

points on applicationmap due to the inaccuracy of positioning system and/or

longer than anticipated response time of the machine actuation. As this sys-

tem is more time consuming for data processing, it may limit its suitability

due to unexpected weather conditions.
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The above mentioned disadvantageous of the map-based system can be

partially overcome by adopting the sensor-based approach, which does not

need to follow georeferenced application map. Sensor-based SSS is much

faster, as it does not require to generate an application map in advance by

analyzing of extensive data (Grisso et al., 2011). In order to implement this

SSS, an on-line sensor to measure key soil properties affecting the seed ger-

mination and plant establishment is essential. To our best knowledge, no

on-line soil sensor-based SSS is reported in literature. Therefore, this review

points out two key future prospects of SSS technology development. First,

there is a need for designing and development of an approach and technol-

ogy for sensor-based SSS. Second, this review introduces a new approach

designated as map-sensor-based SSS. This proposed new seeding approach

relay on adjusting the seed density according to the predefined field fertility

map, allowing to account for all affecting parameters in the agriculture

system (e.g., static soil properties, crop growth, yield data, topography

and micro-weather conditions). The application rate is then decided in real

time, by integrating the information obtained in real time using an on-line

soil sensor (e.g., Mouazen, 2006) on key soil properties with the fertility

map developed in advance. In addition, it will be also possible to adjust

the sowing depth during on-line operation corresponding to dynamic soil

properties, like soil MC.

In early stages of implementing SSS, scientists suggested applications

based on the input data of soil texture. Later and with the introduction of

EMI sensor, soil ECa measurement was recommended instead of soil texture

because of the good correlation between ECa and soil texture. Since ECa

gives information on several soil properties (Ehsani et al., 2005), today all

available SSS are based on soil ECa and/or yield map. An important question

is whether or not ECa quantifies the key soil fertility parameters in sufficient

accuracy for decision making on SSS. Accurate assessment of field quality

should consider soil and crop quality indicators in the form of quality indexes.

Soil quality indicators include physical (texture, EC, MC, BD) and chemical

indicators (pH, P(avl.), K(avl.), TN, OC, CEC, SOM, Mg, Ca) responsible

for field variability in yield. Besides, spectral vegetation indexes (i.e., NDVI)

indicate crop quality as a measure of overall crop growth and yield. It has a

great scope to identify key soil and crop quality indicators and integrate these

indicators to define an integrated field quality index including soil and crop

information in order to delineate MZs for SSS.

If soil ECa was the best option for MZ delineation for SSS, then the cur-

rent review suggests to take into account the field elevation instead of or
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together with soil ECa for SSS recommendation since elevation and ECa are

strongly correlated to each other (Vitharana et al., 2008a,b). In the former

case, the cost of generating topography map by a GIS software package is

cheaper, compared to the case of soil sensing by EMI sensor. To be con-

firmed, a further study is needed to compare between the two scenarios

not only from economic but environmental point of view, as well.

This review has shown the potential of proximal soil and crop sensing

techniques for SSS. Besides, satellite RS is also documented to provide rel-

evant information about key crop characteristics and soil information of the

top layer with appreciable spatial and temporal resolution for site-specific

applications. Despite having large flexibility of UAV borneRS, this technol-

ogy also conveys several complexities that include flight planning, need for

expert pilot, legal permission, shorter flight duration and lower pay load

capacity, which collectively diminish the farmer’s interest to adopt such a

technology. Consequently, a reliable sensing solution using either proximal

(EMI and/or vis-NIR spectroscopy) or satellite RS or both for SSS appli-

cation is recommended. However, it should be noted that the main short-

comings associated with satellite RS are the cloud cover and high-resolution

satellite images are expensive unless offered by the free of charge alternatives

like Sentinel2. Similarly, there is cost associated with the implementation

of proximal sensors, either if they are purchased or rented from PA service

providers (e.g., paying per ha fee), something to keep in mind while eval-

uating the economic benefits of SSS. Above all, it is about the need rather

than the cost, or the balance between both that should be taken into account

while making a decision on the best sensing scenario. Therefore, there

is research need on the best sensor technology that should be used to opti-

mize the output of SSS. The choice of the best sensor technology is not easy

to achieve and requires further study to evaluate agronomic and socio-

economic benefits of different scenarios for different crops, soil types and

climate conditions.

It is suggested to consider a combination of sensing technologies to

achieve the final requirements for SSS. For example, vis-NIR spectroscopy

has been proven to provide quantitative information on key soil quality

indicators. The information is provided with high-resolution sampling

when on-line sensor are used. Multi-sensor data fusion approach is a prom-

ising and relatively new technology. Several combinations can be consid-

ered, but this should be decided after a long-term study comparing different

options. For example, fusion between vis-NIR spectroscopy and satellite

RS (i.e., Sentinel-2), vis-NIR spectroscopy with other PSS techniques
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(e.g., EMI) should be tested for optimal combination of and creation of a

multi-soil sensor platform. This multi-sensor platform provides input soil

data necessary for SSS in one run. Once it is established, the output data

from the soil platform can be combined with satellite images to acquire

information on crop characteristics. As an alternative of satellite RS based

crop NDVI layer, it is also worth to incorporate NDVI calculated from

proximal crop sensor like CropCircle, and/or GreenSeeker. Selection of

crop sensing device depends on cost, accuracy and suitability of sensing.

Soil quality indicators and crop properties (e.g., NDVI, yield) data can

then be fused with topographical attributes and weather data to enable

mapping of soil fertility, or yield potentiality, which is the main step

toward successful implementation of SSS.

The most positive aspect of Directed-Rx driven VSR recommendation

is that it allows the use of “on spot” data to prescribe variable rate inputs for

map-based application. It allows implementing variable rate with strip rate

treatments on the same fertility spot and finding the best rate for a specific

fertility level. Moreover, it can be used to develop recommendation for

on-line application, since it contains sufficient data about soil and crop var-

iabilities and yields from previous (strip treatments) experiments. However,

Directed-Rx is a time consuming technique, as it takes a full growing season

for developing a recommendation. A primary season is needed for experi-

mental field treatments and collecting data for recommendation develop-

ment. In the second year and once algorithms are established for SSS

recommendation, the Directed-Rx could be adopted for prescribing vari-

able rate inputs. On the other hand, MZs based prescribing method con-

siders a wide range of soil properties, crop growth indices and historical

yield data that are collected for several years. It takes into account the soil

topographical attributes and regional weather conditions (Fraisse et al.,

2001). In this way historical records, practitioners and expert opinions

can also be accounted for in developing map-based SSS recommendation.

Recommendation based on historical yield might be faster, since it does

not need a full year of experiment separately for recommendation gener-

ation. However, in the case of arbitrary recommendations, if MZs have

not been assigned the optimum input rates, these MZs would not produce

maximum yield thus losing profit of site-specific applications (Koch

et al., 2004). Like Directed-Rx method, MZ-based SSS also requires ref-

erence soil and crop data for many years. During the time of data

processing and recommendation developing, some changes might occur

in soil properties, e.g., MC, changes that should be accounted for when
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a recommendation for SSS is made. This is not possible, for a dynamic soil

property like MC, which necessitates on-line measurement of MC, partic-

ularly for seed depth control.

A unique feature of model-based site-specific recommendations is that it

can be implemented for on-line SSS in contrast to the other methods of rec-

ommendation discussed above (e.g., the MZ and Directed-Rx methods).

Once, a model is calibrated and satisfactorily validated, it can be used for

a longer term in future, assuming that the relationships between seed rate

and affecting parameters are relatively stable. However, it should be noted

that models relating crop yield and plant density are based on year-site-

specific climatic conditions, indicating that these yield models are local

and has no universal utility, as they are dependent of the external parameters

of local weather conditions. Comparatively, more robust models were

developed by inclusion of numerous soil and crop features. However, they

were developed based on average values of field attributes instead of site-

specific infield quality indicators. That is why, this review suggests a future

study to developmodels that account for within field variability for SSS opti-

mization per specific MZs. Comparing among the existing MZ [namely,

Directed-Rx and model-based (average field data-based)] methods for

deriving SSS recommendation, we believe the Directed-Rx is the most suit-

able and efficient method. Directed-Rx overcomes the limitations of other

methods by accounting for ‘on spot’ information where to apply the variable

rates. In addition, findings from Directed-Rx with strip treatments could

be applicable to derive an optimal model that may well be applicable for

on-line SSS.

The optimal model for seed rate prediction could be termed as seed-

rate-index-model, which seems most effective or implementing the

sensor-based SSS. Only few studies considered several soil physical and

chemical properties to calculate optimal SSS. By examining these models,

it would be worth to make two important notes. First, all models incor-

porate only soil information, ignoring information on crop growth and

development like NDVI and LAI. Second, models showed inconsistent

performances although more layers of soil information were accounted

for, which was expected to increase the accuracy of predicting the seed

rate, due to the increase of number of predictors. Inconsistence model per-

formance might be due to the inappropriate identification of key soil fer-

tility indicators and ignorance of crop information in the recommendation

models. Therefore, optimum seed rate models can be established by

including multiple soil properties and crop information along with
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identifying and quantifying the most significant causal properties like

topography and weather conditions (Whetton et al., 2017a) for better

model selection and performance.

Optimum seeding depth varies with the soil microclimate conditions,

namely, soil temperature and moisture content. Seeds should be placed

at a suitable depth where soil can offer optimum physical and chemical envi-

ronment for higher seed germination and emergence rate. This is essential, as

one of the major causes of reducing crop yield is the poor crop establishment,

attributed to the poor seedbed preparation (Børresen andNjøs, 1994). There-

fore, soil information particularly MC and temperature is essential for SSS

depth recommendation that should be optimized towardmaximum seed ger-

mination potential and later for optimal crop growth and development,

and finally maximum yield. Unfortunately, this review could not find any

research, which takes into account the soil microclimate conditions to opti-

mize the seeding depth. Therefore, a seeding depth model that takes

into account the joint influence of soil temperature and MC is needed.

A decision support tool is also essentially needed for determining optimal

seeding rate and sowing depth by using data derived from vis-NIR sensing,

or combination of vis-NIR, EC and/or crop data.

Literary data on economic analysis of SSS are very ambiguous to draw

clear conclusions whether it is economically viable or not. Some studies

reported SSS as an uneconomic approach, while others found it as an eco-

nomic practice. This contradictory information may originate from the

improper economic analysis and biased representations of actual economics

behind SSS.Most often researches considered only increasing gross produc-

tion without calculating net profit by including all the input and output

costs. This one sided goal of increasing the gross margin may not always

offer higher economic return rather than raising the investment costs. It

is about to confirm that SSS may produce higher yield rather than saving

in seed costs. Of course, insight economic analysis of all the costs regarding

the required sensing, modeling, and control technologies along with pro-

duction costs and market price of output yield is essential before making

conclusions on economic benefits. Along with economic return, SSS when

correctly adopted may support environmental sustainability (i.e., reducing

soil erosion, water and air pollution) by optimizing plant populations and

thus optimizing agrochemical applications. Unfortunately, there is no liter-

ature that has extensively analyzed the economics of SSS for concurrent

practice with agro-chemical applications auditing both the economic

returns and environmental benefits.
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9. Conclusions

This review has reported the principles and technologies available for

implementing site-specific seeding (SSS) with a view to explore the future

research thrust by analyzing present researches and technology gaps. It

attempted to identify the key reference soil and crop quality indicators, to

discuss the sensing and modeling technologies to measure soil and crop qual-

ity indicators, to study site-specific recommendation generation methods for

variable rate seeding and sowing depth site-specifically, and to examine

finally economic and environmental potential expected from adopting SSS.

Between the two principles, still now only map-based SSS application is

being practiced at a minimal scale compared to other site-specific applica-

tions. Most of SSS systems are available at research level although some

commercial systems are also available, and these relay on the measurement

of soil electrical conductivity (EC) and/or yield map to define management

zone (MZ). Considering a single soil or crop property is not the right

decision since it cannot be presentative of soil fertility and yield potentiality

of a MZ. Therefore, multiple soil and crop properties like pH, P, K,

total nitrogen (TN), texture, organic carbon (OC), ECa, cation exchange

capacity (CEC), moisture content (MC), bulk density (BD), Mg, Ca,

normalized difference vegetation index (NDVI), and yield should be col-

lectively accounted for better simulation of the yield potentiality to delin-

eate MZ maps. Certainly, map-based application has some advantages and

disadvantages, which could be overcome by sensor-based application.

Although sensor-based SSS is potentially applicable, this was more com-

monly implemented for fertilizer and pesticide applications. There is no

report available on sensor-based SSS application. Moreover, integration

between map- and sensor-based applications so-called ‘map-sensor-based

SSS’ is introduced in this report for the first time as the next generation

technology synthesis for SSS application.

In order to measure several soil and crop properties, a single sensor is not

the right choice for securing acceptable measurement and mapping accu-

racy. Therefore, it is essential to adopt a multi-sensor approach even for

measurement of one soil property (e.g., soil bulk density). Despite the exten-

sive use of electromagnetic induction (EMI) to map soil physical properties

for SSS, the visible and near infrared (vis-NIR) spectroscopy provides extra

data on soil fertility and nutrients. In addition, when vis-NIR is combined

with EMI data it is potentially possible to optimize SSS toward maximizing
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seed germination, crop establishment, crop development and yield. Satellite

image or proximal crop data for the estimation of crop growth and yield

potential can be integrated with soil data collected with proximal soil sensors

(PSSs) by means of advanced data fusion and clustering techniques to derive

MZ for SSS. The choice for the best combination of proximal-proximal sen-

sors and proximal-remote sensing will necessitate further studies, which

should be carried out for different crops and crop varieties, environmental

conditions and soil types.

Appropriate and science-based development of recommendations is cru-

cial for allocating the right amount of seeds in the right depth and density

within a specific MZ with a certain yield potentiality. Available map-based

seeding applications are based on arbitrary recommendations, which have

major limitations. Therefore, an alternative approach to develop recom-

mendations for SSS is a perquisite that is to adopt a modeling approach to

derive a seeding rate index per MZ. In order to develop a seed rate index,

Directed-Rx is the most suitable candidate. The Directed-Rx approachmay

result in an optimal recommendation for SSS rate, since it takes into account

‘on spot’ measured soil and crop properties. An optimal depth for seed

placement was found essential as to maximize seed germination and crop

establishment. It was recommended to consider both the soil MC and tem-

perature in the recommendation development for optimal seed depth.

Information available in literature are insufficient to conclude whether

SSS is economically viable or not. Most of the literatures emphasized differ-

ent aspects of economic analysis rather than full spectrum analytics covering

the socio-economic and environmental benefits. To some extent, it could

be concluded that SSS can potentially increase yield, whereas it is limited

to save seed costs. Increasing yield may or may not overcome the input cost

of implementing SSS. It will definitely increase the gross investment

together with the other variable VR technologies implemented on the farm.

Therefore, in depth economic analysis can only reveal the actual scenario

and allow drawing a clear conclusion about profitability of SSS.

It can be concluded that SSS is a promising PA practice to manage within

field soil variability. At present, a wide range of sensing (i.e., proximal and

remote) andmodeling technologies are being used for mapping soil and crop

variabilities. Although previous VR technologies were limited to expand the

implementation of SSS largely, present technological advancements suggests

a second wave of SSS implementation is possible. SSS is still lagging behind

in comparison to the other site-specific applications. Particularly, there is no

optimum seeding rate index model, which can prescribe the optimal seeding
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rate per specific yield potential zones in the field either for map-based or

sensor-based applications. In addition, technological integration has not

been well studied specially for multi-sensor data fusion approach. Selectivity

of sensing technology can affect the overall outcome delivered from SSS.

For instance, utilizing multi-sensor data fusion approach is worth to consider

in a future research for better technology synthesis, although profitability

analyses would be essential to enhance adoption by farmers.

Acknowledgment
Authors acknowledge the financial support received from the Flemish Scientific Research

(FWO) for Odysseus I SiTeMan Project (Nr. G0F9216N).

References
Abu-Hamdeh, N.H., 2003. Compaction and subsoiling effects on corn growth and soil bulk

density. Soil Sci. Soc. Am. J. 67, 1213. https://doi.org/10.2136/sssaj2003.1213.
Adamchuk, V.I., Viscarra Rossel, R.A., 2010. Development of on-the-go proximal soil sen-

sor systems. In: Proximal Soil Sensing. Springer Netherlands, Dordrecht, pp. 15–28.
https://doi.org/10.1007/978-90-481-8859-8_2.

Adamchuk, V.I., Morgan, M.T., Sumali, H., 2001. Application of a strain gauge array to
estimate soil mechanical impedance on-the-go. Trans. ASAE 44, 1377. https://doi.
org/10.13031/2013.7000.

Adamchuk, V.I., Hummel, J.W., Morgan, M.T., Upadhyaya, S.K., 2004. On-the-go soil
sensors for precision agriculture. Comput. Electron. Agric. 44, 71–91. https://doi.
org/10.1016/j.compag.2004.03.002.

Adamchuk, V.I., Lund, E.D., Sethuramasamyraja, B., Morgan, M.T., Dobermann, A.,
Marx, D.B., 2005. Direct measurement of soil chemical properties on-the-go using ion-
selective electrodes. Comput. Electron. Agric. 48, 272–294. https://doi.org/10.1016/
j.compag.2005.05.001.

Al-Asadi, R.A.,Mouazen, A.M., 2014. Combining frequency domain reflectometry and vis-
ible and near infrared spectroscopy for assessment of soil bulk density. Soil Tillage Res.
135, 60–70. https://doi.org/10.1016/j.still.2013.09.002.

Alessi, J., Power, J.F., 1971. Corn emergence in relation to soil temperature and seeding depth.
Agron. J. 63, 717–719. https://doi.org/10.2134/agronj1971.00021962006300050018x.

Al-Gaadi, K.A., Hassaballa, A.A., Tola, E., Kayad, A.G., Madugundu, R., Alblewi, B.,
Assiri, F., 2016. Prediction of potato crop yield using precision agriculture techniques.
PLoS One 11, e0162219. https://doi.org/10.1371/journal.pone.0162219.

Ammad-Udin, M., Mansour, A., Le Jeune, D., Aggoune, E.H.M., Ayaz, M., 2016. UAV
routing protocol for crop health management. In: European Signal Processing Confer-
ence, pp. 1818–1822. https://doi.org/10.1109/EUSIPCO.2016.7760562.

Andrews, S.S., Karlen, D.L., Mitchell, J.P., 2002. A comparison of soil quality indexing
methods for vegetable production systems in Northern California. Agric. Ecosyst. Envi-
ron. 90, 25–45. https://doi.org/10.1016/S0167-8809(01)00174-8.

Andrews, S.S., Karlen, D.L., Cambardella, C.A., 2004. The soil management assessment
framework. Soil Sci. Soc. Am. J. 68, 1945. https://doi.org/10.2136/sssaj2004.1945.

Armecin R.B. and Cosico W.C., Soil fertility and land suitability assessment of the different
abaca growing areas, 19thWorld Congress of Soil Science, Soil Solutions for a Changing
World 2010, 1–6 August 2010, Brisbane, Australia. Published on DVD.

63Site-specific seeding: Principles and Technologies

ARTICLE IN PRESS

https://doi.org/10.2136/sssaj2003.1213
https://doi.org/10.2136/sssaj2003.1213
https://doi.org/10.1007/978-90-481-8859-8_2
https://doi.org/10.1007/978-90-481-8859-8_2
https://doi.org/10.13031/2013.7000
https://doi.org/10.13031/2013.7000
https://doi.org/10.13031/2013.7000
https://doi.org/10.1016/j.compag.2004.03.002
https://doi.org/10.1016/j.compag.2004.03.002
https://doi.org/10.1016/j.compag.2004.03.002
https://doi.org/10.1016/j.compag.2005.05.001
https://doi.org/10.1016/j.compag.2005.05.001
https://doi.org/10.1016/j.compag.2005.05.001
https://doi.org/10.1016/j.still.2013.09.002
https://doi.org/10.1016/j.still.2013.09.002
https://doi.org/10.2134/agronj1971.00021962006300050018x
https://doi.org/10.2134/agronj1971.00021962006300050018x
https://doi.org/10.1371/journal.pone.0162219
https://doi.org/10.1371/journal.pone.0162219
https://doi.org/10.1109/EUSIPCO.2016.7760562
https://doi.org/10.1109/EUSIPCO.2016.7760562
https://doi.org/10.1016/S0167-8809(01)00174-8
https://doi.org/10.1016/S0167-8809(01)00174-8
https://doi.org/10.2136/sssaj2004.1945
https://doi.org/10.2136/sssaj2004.1945


Armenise, E., Redmile-Gordon, M.A., Stellacci, A.M., Ciccarese, A., Rubino, P., 2013.
Developing a soil quality index to compare soil fitness for agricultural use under different
managements in the mediterranean environment. Soil Tillage Res. 130, 91–98. https://
doi.org/10.1016/j.still.2013.02.013.

Askari, M.S., Holden, N.M., 2015. Quantitative soil quality indexing of temperate arable
management systems. Soil Tillage Res. 150, 57–67. https://doi.org/10.1016/j.still.
2015.01.010.

Askari, M.S., Cui, J., Holden, N.M., 2013. The visual evaluation of soil structure under ara-
ble management. Soil Tillage Res. 134, 1–10. https://doi.org/10.1016/J.STILL.2013.
06.004.

Askari, M.S., O’Rourke, S.M., Holden, N.M., 2015. Evaluation of soil quality for agricul-
tural production using visible–near-infrared spectroscopy. Geoderma 243–244, 80–91.
https://doi.org/10.1016/j.geoderma.2014.12.012.

Assefa, Y., Vara Prasad, P.V., Carter, P., Hinds, M., Bhalla, G., Schon, R., Jeschke, M.,
Paszkiewicz, S., Ciampitti, I.A., 2016. Yield responses to planting density for USmodern
corn hybrids: a synthesis-analysis. Crop Sci. 56, 2802–2817. https://doi.org/10.2135/
cropsci2016.04.0215.

Awiti, A.O., Walsh, M.G., Shepherd, K.D., Kinyamario, J., 2008. Soil condition classifica-
tion using infrared spectroscopy: a proposition for assessment of soil condition along a
tropical forest-cropland chronosequence. Geoderma 143, 73–84. https://doi.org/
10.1016/j.geoderma.2007.08.021.

Bannari, A., Morin, D., Bonn, F., Huete, A.R., 1995. A review of vegetation indices.
Remote Sens. Rev. 13, 95–120. https://doi.org/10.1080/02757259509532298.

Bansod, B., Singh, R., Thakur, R., Singhal, G., 2017. A comparision between satellite based
and drone based remote sensing technology to achieve sustainable development: a
review. J. Agric. Environ. Int. Dev. 111, 383–407. https://doi.org/10.12895/jaeid.
20172.690.

Banton, O., Cimon, M.-A., Seguin, M.-K., 1997. Mapping field-scale physical properties of
soil with electrical resistivity. Soil Sci. Soc. Am. J. 61, 1010. https://doi.org/10.2136/
sssaj1997.03615995006100040003x.

Barnes, E.M., Clarke, T.R., Richards, S.E., Colaizzi, P.D., Haberland, J., Kostrzewski, M.,
Waller, P., Choi, C., Riley, E., Thompson, T., Lascano, R.J., Li, H., Moran, M.S.,
2000. Coincident detection of crop water stress, nitrogen status and canopy density using
ground-based multispectral data. In: Proceedings of the 5th International Conference on
Precision Agriculture, pp. 1–15. https://doi.org/10.1.1.463.8007.

Baskin, C.C., Baskin, J.M., 1998. Seeds: Ecology, Biogeography, and Evolution of
Dormancy and Germination. Academic Press, San Diego.

Bauer, M.E., 1985. Spectral inputs to crop identification and condition assessment. Proc.
IEEE 73, 1071–1085. https://doi.org/10.1109/PROC.1985.13238.

Beauchamp, E.G., Lathwell, D.J., 1967. Root-zone temperature effects on the early devel-
opment of maize. Plant Soil 26, 224–234. https://doi.org/10.1007/BF01880173.

Becegato, V.A., Ferreira, F.J.F., 2005. Gamaespectrometria, resistividade el�etrica e
susceptibilidade magn�etica de solos agrı́colas no noroeste do estado do paraná. Rev. Bras.
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surement in clods and sieved samples in a Mediterranean vertisol by visible and near-
infrared reflectance spectroscopy. Geoderma 156, 93–98. https://doi.org/10.1016/J.
GEODERMA.2010.02.001.

Forcella, F., Benech Arnold, R.L., Sanchez, R., Ghersa, C.M., 2000. Modeling seedling
emergence. Field Crop. Res. 67, 123–139. https://doi.org/10.1016/S0378-4290(00)
00088-5.

Fraisse, C.W., Sudduth, K.A.R., Kitchen, N.R., Paulus, Y.M., Jain, A., Gariano, R.F.,
Nomoto, H., Schuele, G., Sramek, C., Charalel, R., Palanker, D., 2001. Delineation
of site-specific management zones by unsupervised classification of topographic attri-
butes and soil electrical conductivity. Trans. ASAE 44, 155–166. https://doi.org/Article.

Franzen, D.W., Hopkins, D.H., Sweeney, M.D., Ulmer, M.K., Halvorson, A.D., 2002.
Evaluation of soil survey scale for zone development of site-specific nitrogen manage-
ment. Agron. J. 94, 381–389. https://doi.org/10.2134/agronj2002.0381.

Fulton, J.P., Winstead, A., Shaw, J.N., Rodekhor, D., Brodbeck, C.J., 2010. A case study for
variable-rate seeding of corn and cotton in the Tennessee valley of Alabama. In: In 10th
International Conference on Precision Agriculture, pp. 1689–1699. https://doi.org/10.
1017/CBO9781107415324.004.

Fulton, J., Poncet, A., Mcdonald, T., Bridges, R., Shaw, J., Knappenberger, T.,
Balkcom, K., 2015. Considerations for site-specific implementation of active downforce
and seeding depth technologies on row-crop planters. In: 73rd Conference LAND,
TECHNIK—AgEng 2015, November 6–7, pp. 139–145.

68 M. A. Munnaf et al.

ARTICLE IN PRESS

http://refhub.elsevier.com/S0065-2113(19)30088-4/rf0405
http://refhub.elsevier.com/S0065-2113(19)30088-4/rf0405
http://refhub.elsevier.com/S0065-2113(19)30088-4/rf0405
http://refhub.elsevier.com/S0065-2113(19)30088-4/rf7848
http://refhub.elsevier.com/S0065-2113(19)30088-4/rf7848
http://refhub.elsevier.com/S0065-2113(19)30088-4/rf7848
https://doi.org/10.1016/S0167-8809(01)00256-0
https://doi.org/10.1016/S0167-8809(01)00256-0
http://www.cornandsoybeandigest.com/variable-rate-seeding-doesn-t-pay
http://www.cornandsoybeandigest.com/variable-rate-seeding-doesn-t-pay
http://www.cornandsoybeandigest.com/variable-rate-seeding-doesn-t-pay
http://refhub.elsevier.com/S0065-2113(19)30088-4/rf0425
http://refhub.elsevier.com/S0065-2113(19)30088-4/rf0425
https://doi.org/10.13031/aea.30.10613
https://doi.org/10.13031/aea.30.10613
https://doi.org/10.1007/s11119-013-9319-4
https://doi.org/10.1007/s11119-013-9319-4
https://doi.org/10.1007/s11119-013-9319-4
http://refhub.elsevier.com/S0065-2113(19)30088-4/rf0440
http://refhub.elsevier.com/S0065-2113(19)30088-4/rf0440
https://doi.org/10.1111/j.1439-037X.2008.00343.x
https://doi.org/10.1111/j.1439-037X.2008.00343.x
https://doi.org/10.1111/j.1439-037X.2008.00343.x
http://refhub.elsevier.com/S0065-2113(19)30088-4/rf0450
http://refhub.elsevier.com/S0065-2113(19)30088-4/rf0450
http://refhub.elsevier.com/S0065-2113(19)30088-4/rf0450
http://refhub.elsevier.com/S0065-2113(19)30088-4/rf0450
https://doi.org/10.1016/J.GEODERMA.2010.02.001
https://doi.org/10.1016/J.GEODERMA.2010.02.001
https://doi.org/10.1016/J.GEODERMA.2010.02.001
https://doi.org/10.1016/S0378-4290(00)00088-5
https://doi.org/10.1016/S0378-4290(00)00088-5
https://doi.org/10.1016/S0378-4290(00)00088-5
http://refhub.elsevier.com/S0065-2113(19)30088-4/rf0465
http://refhub.elsevier.com/S0065-2113(19)30088-4/rf0465
http://refhub.elsevier.com/S0065-2113(19)30088-4/rf0465
http://refhub.elsevier.com/S0065-2113(19)30088-4/rf0465
http://refhub.elsevier.com/S0065-2113(19)30088-4/rf0465
https://doi.org/10.2134/agronj2002.0381
https://doi.org/10.2134/agronj2002.0381
https://doi.org/10.1017/CBO9781107415324.004
https://doi.org/10.1017/CBO9781107415324.004
https://doi.org/10.1017/CBO9781107415324.004
http://refhub.elsevier.com/S0065-2113(19)30088-4/rf0480
http://refhub.elsevier.com/S0065-2113(19)30088-4/rf0480
http://refhub.elsevier.com/S0065-2113(19)30088-4/rf0480
http://refhub.elsevier.com/S0065-2113(19)30088-4/rf0480


Gao, F., Anderson, M.C., Zhang, X., Yang, Z., Alfieri, J.G., Kustas, W.P., Mueller, R.,
Johnson, D.M., Prueger, J.H., 2017. Toward mapping crop progress at field scales
through fusion of Landsat and MODIS imagery. Remote Sens. Environ. 188, 9–25.
https://doi.org/10.1016/j.rse.2016.11.004.

Gazanchian, A., Khosh Kholgh Sima, N.A., Malboobi, M.A., Majidi Heravan, E., 2006.
Relationships between emergence and soil water content for perennial cool-season
grasses native to Iran. Crop Sci. 46, 544–553. https://doi.org/10.2135/cropsci2005.
04-0357.

Gheorghi, N., 1932. Soil fertility or soil quality. Rom. Agric. Res. 23, 57–64.
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