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 ABSTRACT 

 

The purpose of our research was to understand the role of ABCB5 in the development and 

progression of melanoma, the most aggressive skin cancer, which is responsible for 65% of 

deaths from skin cancer. Although primary melanoma is associated with a relatively good 

prognosis, this latter is poor after metastases development. Metastatic melanoma is associated 

with a median survival time of 6 months and a 5-year survival rate of 5 to 7%. Treatment 

resistance remains an obstacle and mainly explains the poor clinical outcome. . 

The comprehensive analysis of the ABCB5 coding region in 640 melanoma samples identified 

recurrent mutations in 13.75% of the samples analysed. Mutations were located on a 3-D 

predicted model based on the mouse Pgp structure. Four mutations, associated with a low SIFT 

score and representative of the mutational pattern, were further investigated. The ATPase assays 

showed that these mutations resulted in a decrease in ABCB5 basal ATP hydrolysis.  

The first axis of this thesis is the in vitro study of the involvement of the ABCB5 transporter in 

melanomagenesis. Overexpression of the ABCB5 mutants and the silencing of ABCB5 in 

melanoma cell lines led to an increase of their proliferation and migration abilities, compared 

with the cells overexpressing wild type ABCB5. These observations suggest that ABCB5 is a 

tumor suppressor gene.  

The second axis of this thesis is the investigation of the role of ABCB5 in melanoma 

development in vivo. Further analyses showed that the melanoma samples mutated in ABCB5, 

were also carrying alterations in the NRAS and CDKN2a genes (in 75 and 62,5 % of the samples 

analyzed, respectively). So, we performed a pilot study to assess the silencing of ABCB5 in 

mouse models harbouring these genetic alterations.  

Lastly, we wanted to determine the molecular mechanism underlying the role of ABCB5 in 

melanomagenesis. To do this, we further studied its subcellular localization in melanoma cells. 

Using cell fractionation, preliminary data revealed an enrichment of ABCB5 in the nuclear and 

the microsomal fractions.  
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MAPK Mitogen-Activated Protein 
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OS Overall Survival 
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SIFT Sorting Intolerant From Tolerant 

SLAC2a Linker Protein Melanophilin 

SNP Single Nucleotid Polumorphism 

SOS Son of Sevenless 
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TAP transporters Transport Associated With Antigen Processing Transporters 

TCGA The Cancer Genome Atlas 

TEC Tumor Endothelial Cell 
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TNF Tumor Necrosis Factor 

TRP1 Tyrosinase-Related Protein-1 
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UV Ultraviolet 

VEGFR vascular endothelial growth factor receptor 

VPG  Vertical Growth Phase 

WT  Wild type 

α-MSH Alpha-Melanocyte Stimulating Hormone 

  

https://www.leicabiosystems.com/fr/ihc-ish/reactifs-novocastra/anticorps-primaires/products/tyrosinase-related-protein-1/


 

 

 LIST OF FIGURES 

Figure 1: Layers of the epidermis.. .........................................................................................3 

Figure 2: Subtypes of melanoma. ...........................................................................................5 

Figure 3: Distribution of melanocytes in human tissues. ........................................................6 

Figure 4 : Stage II of melanosome biogenesis.. ......................................................................8 

Figure 5 : Biogenesis of melanosomes.. .................................................................................9 

Figure 6: Transfer of the melanosomes from the melanocytes to keratinocytes. .................... 11 

Figure 7: Melanogenesis pathway. ....................................................................................... 12 

Figure 8: Linear progression of melanoma.  ......................................................................... 16 

Figure 9: The gene CDKN2a encode two independent protein p14ARF and p16Ink4a affecting 

different pathways. ............................................................................................................... 19 

Figure 10: The MAPK and PI3K/Akt pathways. .................................................................. 21 

Figure 11: Incidence of melanoma in fair-skinned population between 1970 and 2007......... 22 

Figure 12: Penetration of the skin of the different types of UV radiations.. ........................... 24 

Figure 13: Worldwide melanoma age-standardized annual incidence rate by geography ...... 25 

Figure 14: Melanoma treatment. .......................................................................................... 28 

Figure 15: Combined therapy. .............................................................................................. 31 

Figure 16: Topology of half transporter. .............................................................................. 35 

Figure 17 : The nucleotide binding domains......................................................................... 36 

Figure 18: Two models describing the transport mechanism of ABCB1. .............................. 38 

Figure 19: The topology of ABCB5β  .................................................................................. 47 

Figure 20: The topology of the isoform ABCB5 full length.................................................. 49 

Figure 21: Involvement of ABC transporters in melanoma resistance to treatment. .............. 56 

Figure 22: Molecular model of ABCB5. .............................................................................. 58 

Figure 23: ATPase activity of ABCB5 WT, and mutants. .................................................... 59 

Figure 24: Effects of ABCB5 mutations on proliferation of melanoma cells. ....................... 63 

Figure 25 : Effects of ABCB5 mutations on anchorage-independent growth of melanoma cells

 ............................................................................................................................................. 64 

Figure 26: Effects of ABCB5 mutations on migratory and invasive abilities of melanoma cells..

 ............................................................................................................................................. 66 

Figure 27: Slight dark spots were observed on the skin of some mice knock out for Abcb5. 

Microspically, very few melanophages were identified. ........................................................ 75 



 

 

Figure 28: The mouse strain Abcb5TyrNRasQ61K contains two genetic constructs: the 

excision ................................................................................................................................ 76 

Figure 29: This mouse knock out for Abcb5 and expressing the activated NRasQ61K present 

several melanotic tumors visible macroscopically. ................................................................ 78 

Figure 30: The mouse strain Abcb5TyrHRasG12V contains two genetic constructs.. .............. 79 

Figure 31: A mouse knock out for Abcb5 of the mouse strain B5TyrNRas develop melanoma 

without induction with 4-hydroxytamoxifen. ........................................................................ 81 

Figure 32: The mouse strain Abcb5KO Ink4a/Arf flox
/floxTyrCre present three genetic 

constructs. ............................................................................................................................ 82 

Figure 33: Simplified scheme of the subcellular fractionation protocol. ............................... 92 

Figure 34: Distribution profiles were obtained by the assay of different marker enzymes in the 

fractions N,M,L,P and S.. ..................................................................................................... 94 

Figure 35 : ABCB5 was detected by western blot using the polyclonal antibody of Rockland..

 ............................................................................................................................................. 96 

Figure 36: The antibody Rockland detect ABCB5 in insect cells transfected to overexpress 

ABCB5 (Hi5ABCB5 CTL+) showing the specificity of the antibody.. .................................. 97 

  



 

 

 LISTE OF TABLES 

Table 1: ABC transporters and human health and disease. ABC transporters are known to be 

associated with genetic disease, caused by a defect in these transporters. .............................. 43 

Table 2: Summary table of the involvement of ABC transporters in melanomagenesis ......... 55 

Table 3: ABCB5 mutations in untreated clinical melanoma samples (results of Whole Exome, 

Whole Genome, and Sanger sequencing in a total of 54 samples). ........................................ 57 

Table 4: Contingency table of the apparition of cutaneous tumors for the mouse model 

Abcb5TyrNRasQ61K .............................................................................................................. 77 

Table 5 :Contingency table of the apparition of cutaneous tumors for the mouse model 

Abcb5TyrHRasG12V .............................................................................................................. 80 

Table 6 : Contingency table of the apparition of cutaneous tumors for the mouse model 

Abcb5TyrHRasG12V .............................................................................................................. 83 

  



 

 

TABLE OF CONTENTS 

INTRODUCTION ..................................................................................................................1 

1 Melanoma ....................................................................................................................1 

1.1 The skin ................................................................................................................1 

1.2 Types of skin cancers and melanoma subtypes ......................................................3 

1.3 Melanocytes ..........................................................................................................5 

1.4 Nevi .................................................................................................................... 13 

1.5 Melanomagenesis ............................................................................................... 14 

1.6. Epidemiology ..................................................................................................... 22 

1.7. Treatments .......................................................................................................... 27 

2. ABC transporters ....................................................................................................... 33 

2.1. Structure ................................................................................................................. 34 

2.2. Mechanisms of transport ......................................................................................... 37 

2.3. Overview of the different families of ABC transporters .......................................... 39 

2.4. ABC transporters and melanoma resistance and progression ................................... 44 

PRELIMINARY RESULTS ................................................................................................. 57 

1. Explanation about the studied cohorts ........................................................................ 57 

2. Choice of the mutations ............................................................................................. 58 

3. Effect of the mutations on the activity of the transporter............................................. 59 

OBJECTIVES OF THE THESIS .......................................................................................... 60 

RESULTS AND DISCUSSION ........................................................................................... 61 

1. Study of the implication of ABCB5 in Melanomagenesis and melanoma progression in 

vitro .................................................................................................................................. 61 

1.1. Objectives ........................................................................................................... 61 

1.2. Justification of the cellular model used................................................................ 61 

1.3. Impact of the mutations on the proliferation, migration and invasion ability of 

human melanoma cell lines ............................................................................................ 63 



 

 

1.4. Discussion .......................................................................................................... 67 

1.5. Conclusion 1 about the involvement of ABCB5 in Melanomagenesis in vitro ..... 73 

2. Study of the implication of ABCB5 in melanomagenesis in vivo ............................... 74 

2.1. Objectives of the in vivo project.......................................................................... 74 

2.2. Justification of the murine model used ................................................................ 74 

2.3. Results of the different mouse models ................................................................. 75 

2.4. Discussion .......................................................................................................... 83 

2.5. Conclusion 2 and perspectives ............................................................................ 89 

3. Study of the subcellular localization of the transporter ABCB5 in melanoma Cells .... 90 

3.1. Objective of the study of the subcellular fractionation ............................................. 90 

3.2. Results of Subcellular fractionation ..................................................................... 91 

3.3. Validation of the polyclonal antibody of Rockland .............................................. 96 

3.4. Discussion .......................................................................................................... 97 

3.5. Conclusion 3 and perspectives .......................................................................... 102 

DISCUSSION .................................................................................................................... 103 

1. Mutations in the ABCB5 gene appear to be cancer driver mutations. ....................... 103 

2. We have chosen to focus on four mutations: Q817*, a non-sense mutation, and three 

missense mutations S830F, S1184P and S1091F ............................................................. 103 

3. Are those mutations in ABCB5 observed in melanoma associated with a gain of function 

or with a loss of function? ............................................................................................... 105 

3.1. ABCB5 mutations are distributed throughout the gene. ..................................... 105 

3.2. The ABCB5 gene mutations are heterozygous. ................................................. 105 

4. How ABCB5 could be involved in melanomagenesis? ............................................. 108 

5. The in vivo study of the involvement of ABCB5 in melanomagenesis ...................... 112 

CONCLUSION .................................................................................................................. 113 

MATERIAL AND METHODS .......................................................................................... 116 

1. Cell Culture ............................................................................................................. 116 

2. Lentiviral ABCB5 Wildtype and Mutated ABCB5 Production ................................. 116 



 

 

3. Proliferation Assay .................................................................................................. 116 

4. Soft Agar Colony Formation Assay.......................................................................... 117 

5. Transwell Migration and Matrigel Invasion Assay ................................................... 117 

6. Statistical Analysis ................................................................................................... 117 

7. Mice genotyping ...................................................................................................... 117 

7.1.DNA extraction ..................................................................................................... 117 

7.2. Amplification of the gene WT or mutant Abcb5 alleles ..................................... 118 

7.3. Amplification of the Ink4a/Arfflox/flox allele ................................................... 118 

7.4. Amplification of the allele transgeneTyrCreERT2............................................. 118 

7.5. Amplification of the transgene TyrHRas ........................................................... 119 

7.6. Amplification of the transgene TyrNRas ........................................................... 119 

8. Dissolution and administration of 4-hydroxytamoxifen ............................................ 119 

9. Mice monitoring ...................................................................................................... 120 

10. Cell fractionation .................................................................................................. 120 

11. Enzymatic assay ................................................................................................... 121 

11.1. Dosage of beta-galactosidase ......................................................................... 121 

11.2. Dosage of alkaline alpha-glucosidase ............................................................ 121 

11.3. Dosage of alkaline phosphodiesterase ............................................................ 121 

11.4. Dosage of cytochrome oxydase ..................................................................... 122 

11.5. Dosage of lactate deshydrogenase ................................................................. 122 

11.6. Western blot .................................................................................................. 122 

11.7. Quantification of western blot results ............................................................ 123 

REFERENCES ................................................................................................................... 124 

 



 

1 

 INTRODUCTION 

1 Melanoma 

Melanoma is the most dangerous type of skin cancer (Lideikaitė et al. 2017). It represents 

0,7% of deaths due to cancer and 1,7% of cancers newly diagnosed are cutaneous 

melanoma (Schadendorf et al. 2018). This malignancy is the most common in young adults 

between 25 and 29 years old (Gandini et al. 2011). Although melanoma represents 5% of 

skin cancer, it causes 65% of skin cancer deaths (Cummins 2006). It is crucial to study 

melanoma because its incidence and mortality are still increasing. Indeed, its incidence is 

projected to rise through 2030 (Gery et al. 2015). While the prognosis for patients with 

localized melanoma is generally good, metastatic melanoma prognosis is dismal. 

Melanoma is the most lethal kind of skin cancer that develops from the uncontrolled 

proliferation of melanocytes, which are pigment-producing cells. 

1.1 The skin 

The main function of the skin is the role of barrier between the “inside” and the “outside” 

of the organism against chemical and mechanical aggression, heat, radiation and pathogens 

(Baroni et al. 2012). The skin is composed of two main layers: the epidermis, an epithelial 

component coating on the surface, and the dermis, a dense and irregular connective tissue. 

These compartments are separated by the basement membrane, which provides a stabilizing 

and dynamic interface (Breitkreutz et al. 2009). 
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1.1.1 Epidermis 

Epidermis is the outermost layer of the skin. It is a superficial epithelium continually 

renewing itself, originating from ectoderm. It is essentially composed of keratinocytes but 

also of melanocytes, Langerhans, Merkel and inflammatory cells (Baroni et al. 2012). 

Keratinocytes synthetized several structural proteins including keratin but also lipids during 

their maturation. During their differentiation, keratinocytes migrate toward the surface of 

epidermis. Their differentiation involves important changes in their structure: they become 

anucleated and squamous, and adopt a flattened shape (Baroni et al. 2012). They are 

nucleated and viable from the basal layer to the granular layer (the layers of the epidermis 

are explained in the next paragraph) (Proksch et al. 2008; Wickett et al. 2006). Langerhans 

cells are involved in the immune response of the epidermis (Cumberbatch et al. 2003) and 

Merkel cells play the role of touch receptor and are the main sites of mechanotransduction 

in the skin (Woo et al. 2015). Melanocytes are producing pigments granules in 

melanosomes. The pigments are transferred to keratinocytes and they protect the nucleus 

of epidermal cells against UV light. The role of melanocytes is fully developed on page 5. 

Epidermis is composed of five layers as we can see in Figure 1 (Gartner L. 2012; Wickett 

and Visscher 2006): 

1. The deepest layer of epidermis, called the basal layer (stratum basal), which 

separates the epidermis (epithelium tissue) and the dermis (connective tissue). The 

basal layer is composed of one single layer of cylindrical cells responsible for the 

renewal of the epidermis. Melanocytes are located in this layer connected to 

numerous keratinocytes by dendrites. Merkel cells are also located in this layer, 

associated with afferent nerve terminals and constituting mechanoreceptors.  

2. The second one is called the spinous layer because of the presence of desmosomes, 

acting as a link between keratinocytes. Langherhans cells are found in this layer and 

are antigen presenting cells. 

3. Thirdly, the granular layer (stratum granulosum) is characterized by keratinocytes 

without nucleus and with a granular cytoplasm. These granules are called 

keratohyalin, which are precursors of keratin. 

4. Then, the clear layer, only present in palms and soles, is composed of cells 

presenting eleidin, product of transformation of keratohyalin.  
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5. The outermost layer is the cornified layer (stratum corneum). In this layer, 

keratinocytes are in the final step of their differentiation: filled with keratin and 

without organelle and nucleus. A phenomenon of desquamation is observed in the 

horny layer. The cells in this layer are called “squamous cells”. This layer is a 

permeability barrier preventing desiccation (Madison 2003). 

 

Figure 1: Layers of the epidermis. The epidermis is composed of several layers of cells: the basal, the spinous, the 

granular and the cornified layer. In palms and soles, there is an additional layer, called the clear layer. During their 

differentiation, the keratinocytes migrate toward the surface and morphological changes occur. They become anucleated 

and squamous and adopt a flattened shape. The melanocytes are responsible for melanin synthesis and transfer this 

pigment to keratinocytes by their dendrites (Mirosława Cichorek et al. 2013). 

1.1.2 Dermis 

The dermis is an irregular connective tissue between the epidermis and the subcutaneous 

tissue. The dermis is a highly vascularized connective tissue including collagen and elastic 

fibers. This tissue contains sweat, sebaceous glands and hair follicles (Baroni et al. 2012). 

It consists of two layers: the papillary dermis and the reticular layer (Gartner L. 2012). The 

papillary dermis is the uppermost layer containing dermal papillae. Its collagen fibers are 

thin and loose while the reticular layer is denser (J. Marks 2006). 

1.2 Types of skin cancers and melanoma subtypes 

There exists three main kinds of skin cancer: the basal carcinoma, the squamous cell 

carcinoma and the melanoma. 
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The basal carcinoma is the most frequent malignant tumor in the fair-skin population 

(Pedro et al. 2012; Peris et al. 2019). It develops from keratinocytes in the basal layer and 

usually appears on the sun-exposed area particularly on the head and neck. This cancer is 

associated with intense and intermittent UV exposure (Dessinioti et al. 2010). Generally 

locally invasive, its progression is slow and the occurrence of metastases is extremely rare 

(incidence ranging between 0,0028% and 0,55%). These metastases are lymphatic or 

hematogenic followed by invasion of the lungs and bones (Freitas et al. 2017). 

The squamous cell carcinoma (SCC) is the second most frequent skin cancer (Karia et al. 

2013). Developing from squamous cells and often associated with long-term UV exposure, 

this cancer can evolve in metastases and be lethal (Andrade 2012; Ribero et al. 2017).  

Melanoma develops from melanocytes and is the most aggressive skin cancer. Most 

melanoma are cutaneous but there exists non-cutaneous forms as we can see in Figure 2. 

The cutaneous melanoma includes the superficial spreading melanoma, the nodular, the 

acral lentiginous and the lentigo malignant melanoma while the non-cutaneous melanoma 

can be ocular or mucosal. 

The superficial spreading melanoma is the most common melanoma representing 55-65% 

of all melanomas (Pan et al. 2017). Its radial growth phase may last 1 to 5 years. The 

nodular melanoma, represents 15 to 30% of all cases, is characterized by the absence of 

radial growth phase, which makes its detection difficult. The acral lentiginous melanoma, 

representing ~5% of all cases (Ibrahim and Haluska 2009), is a rare kind of melanoma 

developing on the palms, soles and nails. This kind of melanoma is the most frequent in 

Asia and Africa. The prognosis tends to be worse than for the other melanoma subtypes 

(Goydos and Shoen 2016). The term lentigo melanoma was coined by Dubreuilh, 

describing an extensive and neoplastic skin lesion. It represents 5% of melanomas and it 

usually appears in sun-exposed area. This subtype of melanoma usually appears in fair-

skinned population with photo damaged skin and with a greater incidence for the age of 

65-80 years old (Volpini et al. 2017). This melanoma sub-type is typically located on the 

head and neck. The precursor lesion can be present for several years before the initiation of 

the vertical growth (Ibrahim and Haluska 2009). 
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The large majority of ocular melanoma originate from the uvea (80%), while conjunctival 

melanoma are less frequent. The ocular melanoma are usually primary, however cutaneous 

melanoma may metastasize in the ocular area (Volpini et al. 2017). The mucosal melanoma 

is rare and known to be associated with a poor prognosis (Tyrrell and Payne 2018). 

 

Figure 2: Subtypes of melanoma. There are different subtypes of cutaneous melanoma. The superficial spreading 

melanoma is the most common (55-65%) characterized by a radial growth phase. The nodular melanoma begins directly 

with a vertical growth phase. The acral lentiginous form, developing on palms and soles is rare and typical of Asian and 

African population. The lentigo malignant melanoma usually appears in sun-exposed and shows a peak incidence at the 

age of 65-80 years old. Melanoma can also be non-cutaneous including the ocular (from the uvea or the conjunctive) and 

the mucosal subtype. 

1.3 Melanocytes 

As previously mentioned, the melanocytes are localized in the epidermis but they are also 

found in hair follicle. They are responsible for melanin synthesis, a pigment responsible for 

the color of the skin and hair. In the skin, melanin protects keratinocytes against UV-

induced DNA damage (as it is further developed page 24). They are also known to play a 

role in the immune system by antigen presentation to competent immune cell and by 

phagocytosis of invading pathogens. They also produce cytokines like IL-1, IL6 and TNF-

as well as chemokines. These molecules alert macrophages and keratinocytes (Gasque 

and Jaffar-Bandjee 2015).  
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However, Melanocytes are also found in other organs as it is shown in the Figure 3 : the 

cochlea, the inner ear, the leptomeninges, the substantia nigra and the locus coerulus of the 

brain, the adipose tissue, the iris, the mucosa and in the heart (Brito et al. 2008; Eichberg 

et al. 2019; Mahanty et al. 2017; Levin et al. 2009; Robert et al. 2015; Yajima et al. 2008; 

Zecca L. et al. 2003; Steel and Barkway 2008; Brenner and Hearing 2009). While Brenner 

and colleagues summarized the role of melanocytes in the different organs (Brenner and 

Hearing 2009), this manuscript focus on the cutaneous melanocytes. 

All body melanocytes, except the retinal ones, derive from neural crest. The precursors of 

melanocytes, called melanoblast, colonize the epidermis and the hair follicle and give rise 

to several cellular populations including the melanocytes. The neural crest gives wide 

variety of other cell types like neurons, glial cells, medullary secretory cells, smooth muscle 

cells, and bone and cartilage cells (Kawakami and Fisher 2011; Vandamme and Berx 2019). 

 

Figure 3: Distribution of melanocytes in human tissues. The location of melanocytes is not limited to the skin but 

melanocytes are also found in the cochlea, the inner ear, the brain, the heart, the choroid, in adipose tissue and the lung 

(Brenner and Hearing 2009). 
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1.3.1 Melanogenesis 

Melanin synthesis is called melanogenesis and takes place in specialized organelles called 

melanosomes. This pigment protect the skin from DNA damages, which may occur from 

ultraviolet radiations. The skin color is not associated with the number of melanocytes but 

with variation in terms of the number and size of melanosomes (Gasque and Jaffar-Bandjee 

2015). The gradation of the skin color is due to the amount and nature of the melanin. In 

human, this latter is composed of biopolymers of eumelanin (brown and black) and 

pheomelanin (light brown, yellow or red). Both were discovered by Prota in 1980 (Prota 

1980). Following melanosomal biogenesis, which will be introduced in the next paragraph, 

melanosomes are transferred to keratinocytes and ensure the pigmentation and the 

photoprotection of epidermis (Delevoye et al. 2011). 

Melanosomes are classified as lysosome-related organelles (LRO). Their size varies 

between 0,5 to 1µm of diameter (Tadokoro and Takahashi 2017; Wasmeier et al. 2008). 

They share common features with lysosomes such as the presence of identical proteins, like 

the lysosomal membrane proteins (LAMP-1, -2 and -3) and the hydrolases, and the internal 

acid environment. Lower pH is a condition for melanin synthesis (Raposo et al. 2001; 

Raposo and Marks 2007).  

In their review, Yamaguchi and Hearing identified three kinds of proteins implicated in 

melanin production, explained in the next paragraph (Yuji Yamaguchi and Hearing 2009, 

2014). Those are: 

- The enzymes involved in the synthesis of melanin: 

The three main transmembrane enzymes implicated in melanogenesis are the 

tyrosinase (TYR), the tyrosinase-related protein 1 (TIRP1) and the dopachrome 

tauromerase (TRP2/DCT).  

- Structural proteins of melanosomes: 

The protein like premelanosome protein 17 (Pmel17, also called gp100), the protein 

melan-A (MART-1), and GPNMB give scaffold material to enzymes allowing 

melanin deposition. 

- Proteins implicated in the traffic of melanosome proteins or in the distribution of 

melanosomes microtubules such as F-actin, kinesin, Rab27a, melanophilin, myosin 

Va, RILP, etc. 
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1.3.1.1 Biogenesis of melanosomes and transfer to keratinocytes 

The biogenesis of melanosomes includes four stages of maturation. During these steps, the 

melanosomes become denser with a structure matrix containing melanin deposit. After their 

maturation, melanosomes go to keratinocytes by the dendrites as explained page 11 

(Delevoye et al. 2011; Wasmeier et al. 2008; Yuji Yamaguchi and Hearing 2014).  

At stage I, premelanosomes are non-pigmented endosomes, common to the endocytic 

pathway as we can see in Figure 5 (Delevoye et al. 2011). Pmel17 is present in the 

membrane of premelanosomes and in the internal vesicles as we can see in Figure 4 

(Raposo and Marks 2007; Wasmeier et al. 2008). This glycoprotein is composed of two 

subunits: Mα and Mβ. These ones are cleaved by a propotein convertase (of furin family), 

present in the lumen of melanosomes. The protein MART1 is also abundant in this stage 

and is required for the maturation of Pmel17 (Yuji Yamaguchi and Hearing 2014). The 

segregation between the endocytic pathway and the biogenesis of melanosomes occurs 

when premelanosomes adopt an elliptical shape, characteristic of the stage II. This 

particular shape is due to amyloid fibers formed by the polymerization of Mα subunits. 

These fibers are parallels (G. Raposo and S. Marks 2007) and will be the support for 

melanin fixation in further stages (Fowler et al. 2006).  

 

Figure 4 : Stage II of melanosome biogenesis. Pmel 17 is present in the membrane of melanosome and in intervesicle 

(represented in green). The protein is composed of two subunits (Mα and Mβ) which are separated by a proprotein 

convertase. The polymerization of Mα subunits give amyloid fibers, which will be the support for melanin fixation 

(Delevoye 2011). 
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The enzymes implicated in melanogenesis (TYR, TIRP1, TRP2) arrive in the melanosomes 

at stage II. The protein AP3 (adaptator protein 3) interacts with tyrosinase and is involved 

in its transport to melanosome while the protein AP1 (adaptator protein 1) interacts with 

tyrosinase and TRP1 (Delevoye et al. 2011). 

The melanogenesis and melanin fixation on fibers occur at stage III. From this stage, we 

can actually speak about melanosomes. At stage IV, the melanosomes are completely 

opaque and considered as mature (Raposo and Marks 2007; Wasmeier et al. 2008). The 

melanogenesis pathway is described at page 11. 

The protein GPNMB also plays a role in the biogenesis of melanosomes. Indeed, the 

silencing of this protein leads to a decrease in terms of melanosome formation (P. Zhang et 

al. 2012). This protein is similar to Pmel17 and is present at all melanosome stages, but is 

particularly enriched in late stage of melanosome biogenesis (Chi et al. 2006; Hoashi et al. 

2010). 

 

Figure 5 : Biogenesis of melanosomes. Melanosomes come from endocytic pathway. At stage I, the premelanosome is 

an endosome with internal vesicles containing Pmel17. The segregation between the endocytic pathway and the 

biogenesis of melanosomes occurs at this stage II, when premelanosome adopt an elliptical shape. Myeloid fibers are 

formed and are the support for melanin synthesis, which occurs at stage III and IV. The mature melanosomes are 

completely opaque. MVB: Multi Vesicular Body; RTG: Trans-Golgi network (Delevoye 2011). 
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After melanosomes biogenesis, these organelles are transferred to the end of dendrites by 

two phenomena: 

1. The binding of the melanosome on kinesin, which will transport the melanosome in 

the dendrite by moving on a microtubule. 

2. At the end of the dendrite, the melanosome will detach from the microtubule and 

fix on an actin filament under the plasma membrane. This is thought to be mediated 

by a complex consisting of myosin Va, the GTPase RAB27A and the linker protein 

melanophilin (also known as SLAC2a) (Raposo and Marks 2007; Wasmeier et al. 

2008). 

Then, the melanosomes can be transferred from one melanocyte to around 36 keratinocytes. 

The mechanism underlying this transfer is still under debate. Several models were proposed 

to explain the transfer of melanosomes to keratinocytes as we can see in Figure 6. The first 

one is the cytophagocytosis model suggesting that the keratinocytes phagocyte the dendrite 

tips filled with mature melanosomes. Secondly, the fusion of cellular membranes of 

melanocytes and keratinocytes was proposed. The third model implies the shedding of 

plasma membrane enclosing melanosomes that are phagocytosed by keratinocytes while 

the fourth one implies the exocytosis by melanocytes of the melanosome melanin core 

followed by the phagocytosis of the “melanocore” by keratinocytes (Wu and Hammer 

2014). Today, the mechanisms remain to be fully understood. Tarafder and colleagues have 

shown the presence of “naked” melanin (melanin non-enveloped by a membrane) in the 

extracellular environment and inside keratinocytes (Tarafder et al. 2014).  

Once in the keratinocytes, melanosomes spread around the nucleus to protect keratinocytes 

against DNA damages. 
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Figure 6: Transfer of the melanosomes from the melanocytes to keratinocytes. Four models were proposed. A. The first 

one is the cytophagocytosis model: the keratinocytes phagocyte the dendrite tips filled with mature melanosomes. B: The 

fusion of cellular membranes of the melanocyte and the keratinocyte, represented in yellow, would allow the cellular 

membranes to form a “duct” allowing the passage of melanosomes. C: The shedding of plasma membrane enclosing 

melanosome followed by the phagocytosis by keratinocytes. D: the exocytosis by melanocytes the melanocore and its 

phagocytosis by keratinocytes. The plasma membrane of the melanocyte is in red, the membrane of melanosome in blue 

and the plasma membrane of keratinocyte in green (X. Wu and Hammer 2014). 

1.3.1.2 Melanogenesis 

Both eumelanin (polymer of 5,6-dihydroxyindole (DHI) and 5,6-dihydoxyindole-2-

carboxylic (DHICA)) and pheomelanin are produced from the amino acid L-Tyrosine. The 

pathway begins with the oxidation, catalyzed by the tyrosinase, of the L-Tyrosine in L-3,4-

dihydroxyphenylalanine (DOPA), rapidly converted in DOPAquinone (Figure 7).  
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- If cysteine is available, it will react with DOPAquinone and produce either 3-S-

cysteinyldopa or 5-S-cysteinyldopa. These molecules will undergo oxidation and 

polymerization, and give pheomelanin (Hennessy et al. 2005). 

- On the other hand, if there is no cysteine available in the melanosome, the 

dopaquinone will undergo an intramolecular cyclisation, to form an orange 

intermediate called dopachrome. This one can be either decarboxylated or 

tautomerized, giving the two kinds of eumelanin. The decarboxylation is 

spontaneous and will form 5,6-dihydroxyindole (DHI). The Oxidation by TRP1 and 

TYR and polymerization of DHI will give the DHI-melanin, which is dark brown 

or black and has a high molecular weight. On the other hand, if the dopachrome 

tautomerase (DCT) enzyme is available, dopachrome does not lose its carboxylic 

acid but undergoes a tautomerization to give 5,6-dihydoxyindole-2-carboxylic, 

called DHICA-melanin. This second kind of eumelanin is lighter than DHI-

melanin, is brown and has an intermediate size and solubility (Hearing et al. 2005; 

Pillaiyar et al. 2017). 

The intermediates of melanin have toxic effects on the cells. The melanosome has a role of 

protection against those intermediates; it allows the melanogenesis to take place without 

having toxic effects for the cell (K. G. Chen et al. 2009; Hearing 2005).  

 

Figure 7: Melanogenesis pathway. The 

synthesis of both types of melanin begins with 

the oxidation of the amino acid L-Tyr in L-3,4-

dihydroxyphenylalanine (DOPA), rapidly 

converted in DOPAquinone. This latter can react 

with cysteine, which gives 3-S-cysteinyldopa or 

5-S-cysteinyldopa. These molecules will give 

pheomelanin after oxidation and 

polymerization. However, if cysteine is not 

available, the dopaquinone will give 

dopachrome, which can undergo either 

decarboxylation or tautomerization, respectively 

giving DHI-melanin and DHICA-melanin. 
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At least 25 genes regulate the pigmentation pathways and the function of melanosomes 

(Pillaiyar et al. 2017). External factors influence melanogenesis like UVB radiation, the 

pH, drugs but also several endogenous factors like the presence of molecules in the 

environment of melanocytes and keratinocytes (Hachiya et al. 2001; Videira et al. 2013). 

Keratinocytes are involved in the regulation of melanogenesis. After UV exposure, they 

express Alpha-Melanocyte Stimulating Hormone (α-MSH) and Adrenocorticotropic 

hormone (ACTH). These hormones bind on receptors MC1R at the cellular surface of 

melanocytes. This leads in the expression of MITF, which is phosphorylated by ERK1/2 

and stimulates the transcription of Tyr, DCT and TRP1 (Miller et al. 2006). 

1.4 Nevi 

The nevi are the result of melanocytes proliferation. The majority of them do not lead to 

melanoma. 

1.4.1 Benign nevi 

The benign nevus (common acquired melanocytic nevi CMN) is a very common neoplasm 

in Caucasian population. They can have different histological features depending on the 

distribution in the epidermis and the dermis. The melanocytes of the CMN present 

particular features by comparison of normal melanocytes. At first, their shape is different: 

they are non-dendritic, rounds and compact. Secondly, they are organized in cluster and 

nest. Then, they have the particularity of retaining pigment and can sometimes migrate to 

the superficial dermis. This last feature is unusual for a benign tumor because these cells 

present invasion ability without architectural (circumscription and symmetry) or 

cytological (mitoses, maturation, uniform pigmentation) malignant features (Colebatch and 

Scolyer 2018). They arise very early in the life and tend to disappear after six decades 

(Shain and Bastian 2016). 
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1.4.2 Dysplastic nevi 

While cancer is caused by an accumulation of genomic alteration, the dysplastic nevus 

represents an intermediate step between the benign nevi and melanoma (Melamed et al. 

2017). Indeed, this lesion present a mixture of benign and malignant features. It can appear 

from a pre-existing nevus or on a new site. The architectural disorder as well as the 

cytological atypia and the dermal inflammatory response is often observed. The appearance 

of the dysplastic nevi share features with melanoma like irregular borders and the 

asymmetric distribution of the pigmentation (Duffy and Grossman 2013). 

The definition of a dysplastic nevus is still controversial (Colebatch and Scolyer 2018; 

Marks 2006) The dysplastic nevi have a wider spectrum of mutations than the benign nevi 

(Melamed et al. 2017; Shain et al. 2015).  

The diagnosis of melanocytic lesion is difficult. One raison is the sharing of histological 

features between the benign melanocytic nevi and melanoma. 

1.5 Melanomagenesis 

1.5.1 Two models explaining melanomagenesis 

Two models have been proposed to explain the melanomagenesis: a more classical, which 

is the linear model and a melanoma stem cells model. According to the linear model, 

mutations occur in mature melanocytes leading to melanomagenesis, while the second 

model describes a tumoral sub-population with higher proliferative capacities. 
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1.5.1.1 The linear model 

Melanoma has been classically perceived like a stepwise progression. In this linear process, 

the mature melanocytes subsequently acquire somatic mutations in oncogenes and tumor 

suppressor genes. These mutations, associated with survival and growth advantages for the 

cells, lead to the progression from the benign nevi to melanoma following a gradual process 

of several steps (Zabierowski and Herlyn 2008). Norris was the first scientist to link the 

nevus and melanoma in 1857. One century later, the stepwise model describing the 

evolution of the melanocyte to the metastatic melanoma was proposed by Clark (Clark et 

al. 1984). This model includes five steps presented in Figure 7 (Colebatch and Scolyer 

2018; Takata et al. 2009; Zabierowski and Herlyn 2008) :  

1) The benign nevus is usually associated with BRAFV600E mutations. 

2) This benign nevus can evolve to a dysplastic nevus, characterized by cytological 

atypia and the acquisition of additional mutations. Mutations in CDKN2a and PTEN 

genes are frequent. 

3) A small proportion of dysplastic nevi leads to the radial growth phase (RPG).  

4) The vertical growth phase is associated with a poor prognosis and includes the 

invasion of the dermis. The transition to VPG is associated with the invasive 

phenotype, a key factor in melanoma progression. 

5) The melanoma cells are then able to invade distant organs and metastases appear. 

It is important to emphasize that most nevi will not lead to melanoma progression. 

Moreover, all the intermediate steps are not necessary to lead to melanoma (Colebatch and 

Scolyer 2018). The precise sequence of genetic alterations leading to melanomagenesis is 

not complete.  
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Figure 8: Linear progression of melanoma. The linear model of melanomagenesis describes several subsequent phases 

associated with the acquisition of mutations. The benign nevi is usually associated with BRAFV600E mutation and the 

following phase may occur with the acquisition of additional mutations. The nevus can become dysplastic. A small 

proportion of these nevi will follow the phase leading to melanoma, which is a radial growth phase (RPG) followed by a 

vertical growth phase (VPG). This VPG is associated with the acquisition of the invasive ability allowing the melanoma 

cells to invade distant organs (Miller et al. 2006). 

1.5.1.2 Model based on the “melanoma initiating cells” 

The melanoma stem cell model was proposed following the discovery of the tumoral 

heterogeneity. Within the tumor, there exists different gene expression profiles, which are 

correlated with the invasive capacity of the cell (Bittner and Meltzer 2000). Most melanoma 

(70%) evolve from non-appearing nevi and thus, would not follow the linear model of 

melanoma development (Bevona et al. 2003; Lin et al. 2015; Zabierowski and Herlyn 

2008). 

Studies describe a group of cells with stem cells properties even if the term “stem cells” is 

controversial. The term “tumor initiating cells” is sometimes preferred. The cancer stem 

cells is a tumoral subpopulation showing stem cell properties: the ability of self-renewal 

and of generating differentiated progeny. Cancer initiating cells have the ability to form 

tumospheres, a high invasive behavior, the ability to generate a heterogenous tumor when 

injected in nude mice and carry a specific set of biomarkers (Nagare et al. 2016). Firstly 

identified in acute myeloid leukemia (AML), they were also identified in different solid 

tumors such as in breast, brain, lung and colon cancers (Al-Hajj et al. 2003; Kim et al. 2005; 

Bonnet and Dick 1997; O’Brien et al. 2007; Piccirillo et al. 2006). 
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The cancer stem cells were also identified in melanoma. Fang and colleagues identified a 

tumoral subpopulation with stem cells properties (Fang et al. 2005). The existence of 

melanoma stem cells (MSCs) was confirmed by many studies (Boiko et al. 2010; 

Boonyaratanakornkit et al. 2010; Civenni et al. 2011; Kupas et al. 2011; Linley et al. 2012; 

Schmidt et al. 2011; Schatton et al. 2008). MSCs have the characteristic to form 

melanospheres when they are cultured in suspension and to give rise to a heterogeneous 

tumor after inoculation in nude mice (Nagare et al. 2016). Several MSC markers have been 

identified, among which we may cite CD133, CD34, CD20, CD271, Sox2, Oct3/4, 

CXCR6, etc. (Civenni et al. 2011; Fang et al. 2005; Klein et al. 2007; Held et al. 2010; 

Monzani 2007; Perego et al. 2010; Taghizadeh et al. 2010). According to this model, only 

melanoma stem cells are tumorigenic and are at the origin of the whole tumor. 

1.5.2 Pathway involved in melanomagenesis  

The transformation of the healthy melanocytes to melanoma cells is accomplished by the 

activation of oncogenes and the inactivation of tumor suppressor genes. The activation of 

oncogenes leads to a gain of function of the protein (Vicente-Dueñas et al. 2013). Such 

mutations are dominant. On the other hand, a genetic aberration in tumor suppressor genes 

may lead to a loss of function. Tumor suppressor genes can decrease cellular proliferation, 

promote apoptosis, be involved in checkpoint responses, in the detection and repair of DNA 

damages or in cell differentiation and migration (see review see C. J. Sherr 2004). The loss 

of function of a tumor suppressor gene can lead to cancer. However, these kinds of 

mutations are recessive and so must be present in both alleles to further observe the 

inactivation of the tumor suppressor gene (Nelson and Tsao 2009). 

In melanoma, the main mutated oncogenes and tumor suppressor genes are BRAF, NRAS 

and CDKN2a, PTEN, respectively. The BRAFV600E mutation is found in 50-70% of 

melanomas, while NRas is mutated in 15 to 20% of melanomas (Garnett and Marais 2004; 

Jakob et al. 2013; Muñoz-Couselo et al. 2017). Since 10% of melanoma are familial, they 

show mutations in the CDKN2a gene in 5-20% of cases (Helgadottir et al. 2015). More 

explanation about familial melanomas are provided on page 26. PTEN disruption provokes 

the activation of PI3K kinas/AKT (Chin et al. 2006; Flaherty et al. 2012) and is mutated in 

10-30% of melanomas. (Chin L. et al. 2006; Goel et al. 2006).  
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1.5.2.1 The tumor suppressor gene CDKN2A impacts the retinoblastoma and p53 

pathways 

CDKN2A (cyclin dependent kinase inhibitor 2A) is a tumor suppressor gene impacting the 

Rb and p53 pathways. Heritable deletion and mutations in the gene Ink4a/ARF represent 

the strongest genetic risk of melanoma (Nelson and Tsao 2009).  

The gene CDKN2A produce two independent transcripts through the alternate splicing of a 

separate exon 1. The p16INK4 is transcribed from the exon 1α, exons 2 and 3, while p14ARF 

is transcribed from alternate splicing of the exon 1β with exons 2 and 3. These transcripts 

are translated from different reading frame and give for two proteins : p16INK4a and p14ARF 

(p19ARF in the case of mice). This explained that their amino acid sequence is completely 

different (Gray-Schopfer et al. 2007)(Nelson and Tsao 2009).  

Both p16INK4a and p14ARF act as tumor suppressor genes by regulating the cell cycle. They 

provoke the arrest of the cell cycle or the apoptosis in various contexts including for 

instance DNA damages, mutations in oncogenes or old cells. These two proteins are 

implicated in the mechanism of senescence protecting against the apparition of cancer 

(Gray-Schopfer et al. 2006; V. Gray-Schopfer et al. 2007; Sharpless and Chin 2003). 

However, their way of action are completely different and explained in the next paragraph. 

The protein p16INK4a is implicated in the pathway of the retinoblastoma protein, while 

p14ARF is involved in the pathway of p53 as we can see in Figure 9. 

The protein p16INK4a affects the cell cycle between the G1 and S phase. It binds to and 

blocks the catalytic activity the complex CDK4-CDK6 complex already formed. Thus, this 

latter is unable to phosphorylate the Rb protein, which remains unphosphorylated and 

active. It binds on the transcription factor E2F leading to its inactivation provoking the 

arrest of the cell cycle through the blockage of the S phase (Lilischkis et al. 1996; Sherr 

2001). If p16 is mutated, it is not able to inhibit CDK4-CDK6, which phosphorylates the 

Rb protein. This inactive Rb does not bind on E2F. This one will induce S-phase genes. 

This can lead to melanomagenesis if it is combined with other factors (Nelson and Tsao 

2009). 
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The protein p14ARF has an impact on the cell cycle through its interaction with p53. To do 

so, p14ARF binds and inhibits to the HDM2, which is an ubiquitin protein ligase promoting 

the degradation of p53 in proteasome (Bothner et al. 2001). So, indirectly, p14ARF prevents 

the degradation of p53 (Nelson and Tsao 2009). If p14ARF is inactive, HDM2 remains active 

leading to p53 degradation. 

 

Figure 9: The gene CDKN2a encodes two independent protein p14ARF and p16Ink4a affecting different pathways. A. 

The protein p16Ink4a inhibits the complex CDK4/6, so this latter is not able to phosphorylate Rb, remaining active. It 

binds E2F and prevent it to activate the cell cycle. B. The protein p14ARF inhibits HDM2, which is involved in the 

degradation of p53. 

1.5.2.2 PTEN and NRAS impact the PI3K/Akt/mTOR pathway 

The PI3K pathway is also called AKT or mTOR pathway and is involved in the regulation 

of the cellular proliferation. It is often upregulated in melanoma resulting from activating 

mutations in NRAS gene (Giehl 2005) or inactivating mutation in PTEN gene (Chin L. et 

al. 2006; Goel et al. 2006). This pathway is summarized in Figure 10. Briefly, this pathway 

consists of the conversion of Phosphatidylinositol (4,5)-bisphosphate (PIP2) in 

phosphatidylinositol (3,4,5)-trisphosphate (PIP3) by PI3K. This later activates AKT, 

subsequently promoting cell growth and proliferation. NRAS stimulates PI3K while PTEN 

converts PIP3 in PIP2 by dephosphorylation. Its action, indirectly, inhibits cellular 

proliferation and promotes apoptosis (Chin et al. 2006; Dreyer et al. 2009). 
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With more details, the signaling pathway starts with binding a ligand on a tyrosine kinase 

receptor. This ligand can be a growth factor (such as IGF, PDGF, EGF) or a cytokine. The 

tyrosine kinase receptor is composed of three domains: an extracellular, a transmembrane 

and an intracellular domain. The binding of a ligand induces the dimerization of two 

receptors and the activation of their intracellular domains. This corresponds to the 

activation of the tyrosine kinase domain by autophosphorylation. PI3K binds on the 

intracellular part of the receptor (by its regulatory subunit p85) leading to its activation. 

PI3K is a heterodimer composed of a regulatory subunit (p85) and a catalytic subunit 

(p110). It can also be activated by NRas or inhibited by PTEN (Dreyer et al. 2009). Once 

activated, PI3K converts Phosphatidylinositol (4,5)-bisphosphate (PIP2) in 

phosphatidylinositol (3,4,5)-trisphosphate (PIP3). This latter PIP3 recruits AKT near 

plasma membrane. This allows PDK1 (phosphatidylinositol 3-dependent kinase 1) to 

access and phosphorylate AKT. AKT, once activated, has many targets, it can 

phosphorylate other proteins such as BAD or GSK3. One of its downstream target is 

mTOR. By this way, it stimulates cellular proliferation or inhibits cell apoptosis 

(Hemmings and Restuccia 2012).  

1.5.2.3 The oncogenes RAS and RAF family proteins are implicated in MAPK-signaling 

pathway 

The upregulation of the Mitogen-activated protein MAPK pathway (Figure 10) is often 

observed in melanoma, mainly caused by BRAFV600E or NRAS mutations. This pathway is 

also called ERK pathway (extracellular signal-regulated kinase). 
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The signal starts with the binding of a ligand such as an extracellular growth factor (FGF, 

SCF, HGF, etc.) to a tyrosine kinase receptor. This leads to the dimerization of the receptor, 

which triggers the intrinsic tyrosine-kinase activity. This is followed by the 

autophosphorylation of the intracellular protein kinase domain. These domains bind to a 

protein containing a SH2 domain (for example GRB2). This complex recruits the cytosolic 

SOS protein (son of sevenless). This protein binds a small GTPase, member of the RAS 

family (NRAS, HRAS or KRAS) and induce a conformational change in RAS leading to 

its activation (dissociation of the GDP and binding of GTP). The GTP-bound RAS is active 

and initiates signaling cascade of phosphorylation. RAS phosphorylates one member of the 

RAF family protein (c-RAF1, BRAF and ARAF), this one phosphorylating MEK, which 

subsequently phosphorylates and activates the MAPKs ERK1 and ERK2. This is called the 

MAPK cascade and provokes the translocation of ERK into the nucleus and the 

phosphorylation of various substrates implicated in the regulation of the proliferation, the 

differentiation and the cell survival (Chin 2003; Gray-Schopfer et al. 2007; Regad 2013). 

 

Figure 10: The MAPK and PI3K/Akt pathways. The MAPK pathway (left side) is often upregulated in melanoma mainly 

caused by mutation in BRAF and NRAS oncognes. This pathway begins with the binding of a ligand on a tyrosine kinase 

receptor leading to the activation of RAS, which initiates a cascade of phosphorylation BRAF-MEK-ERK. This one is 

translocated in the nucleus, where it phosphorylates various substrates stimulating growth, proliferation and cellular 

survival. The PI3K pathway (right side) is also uregulated in melanoma. This pathway also begins with the binding of a 

ligand on the receptor of Tyrosine kinase leading to the activation of PI3K. This one is responsible of the conversion of 

PIP2 in PIP3. This later activates AKT, subsequently promoting cell growth and proliferation. Activating mutations of 

NRAS stimulates PI3K while the loss of function of the tumor suppressor PTEN converts PIP3 in PIP2.  
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1.6. Epidemiology  

1.6.1. Incidence 

In fair-skinned population, melanoma incidence is increasing for decades both in men and 

women, as shown in Figure 11 (F. Erdmann et al. 2013). Incidence has increased of 3% 

between 1982 and 2011 in countries such as Sweden, Norway, Australia, New Zealand, 

United Kingdom and in the caucasian population of the United States. Thanks to primary 

prevention, melanoma incidence is already decreasing in Australia since 2005 (Whiteman 

et al. 2016). This is due to the success of prevention campaigns that began in the 1980’s.  

Schadendorf and colleagues summarized the incidence in the different continents based on 

the data of Globocan 2012. The incidence is the highest in New Zealand with a number of 

38,5 per 100.000 persons per year and reaches 34,9 in Australia, 13,8 in North America, 

10,2 in Europe and 0,2 in South-East Asia (Schadendorf et al. 2018). 

 

Figure 11: Incidence of melanoma in fair-skinned population between 1970 and 2007. Y-axis is the number of cases per 

100.000 persons and per year age standardized. The incidence of melanoma is increasing in many countries, and is higher 

in New Zealand and Australia (Schadendorf et al. 2018). 

1.6.2. Mortality  

Schadendorf summarized Globocan data for mortality and indicates that the highest 

mortality is observed in New-Zealand with 4,7 deaths per 100 000 persons and per year 

(data age standardized), while this number reaches 1,5 in Europe and 4 in Australia 

(Schadendorf et al. 2018).  
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The survival is lower in black population developing melanoma on non-sun exposed sites. 

This is explained by the late diagnosis, the deeper tumor and more advanced stage of 

melanoma (Mahendraraj et al. 2017; Wu et al. 2011; Myles et al. 2012). 

1.6.3. Risk factors 

The main risk factor of melanoma is the UV exposure, the phenotypic characteristic, the 

presence of melanocytic and dysplastic nevi as well as their body site. The genetic 

predisposition also plays a role in the probability of melanoma development. A difference 

according to sex and age is also observed.  

1.6.3.1. UV exposure 

The UV exposure is the main risk factor of melanoma because the UV radiation can induce 

mutation in DNA (Pons et al. 2008). There are three kinds of UV radiations, knowing UV-

A, UV-B and UV-C with different radiation emission spectrum. Their absorption by the 

ozone layer and their penetration in the skin are different. Indeed, as we can see on 

Figure 12, the UV-C are absorbed by atmospheric ozone. Thus, the UV sunlight is mainly 

composed of UVA (90-95%) and UVB (5-10%). Furthermore, UVA penetrate deeply in 

the skin and reach the dermis, while UVB are mainly absorbed by the epidermis (D’Orazio 

et al. 2013; Watson et al. 2016) .  

The main mutation induced by UV is the replacing of C by T (CT) at dipyrimidine site. 

The direct effect of UV is the formation of cyclobutane pyrimidine dimers and pyrimidine-

pyrimidone adducts (Alexandrov et al. 2013; Berger et al. 2012; Shain and Bastian 2016; 

Sullivan and D. E. 2014). These mutations are called UV signatures. These mutations are 

caused by the direct mutagenic effect of UVA and UVB (Berger et al. 2012; Hodis,et al. 

2012). The interaction of UVA and melanin is responsible for the production of free 

radicals. This indirectly provokes mutations and genetic aberration (Noonan et al. 2012; 

Hennessy et al. 2005). 
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Figure 12: Penetration of the skin of the different types of UV radiations. The UVC are mostly absorbed by the ozone 

layer and atmosphere and do not represent a danger. By contrast, both UVA and UVB are dangerous for humans. The 

UVA penetrate deeply in the skin reaching the dermis, whereas UVB are mainly absorbed by the epidermis 

(D’Orazio et al. 2013). 

The apparition of a sunburn in child increases the risk of melanoma development (Cummins 

2006; Pons et al. 2008). There is a link between UV exposure in early life and melanoma 

development, particularly for melanoma mutated BRAFV600E (Thomas et al. 2007). 

The impact of the sun exposure is different according the number of nevi. Persons with few 

nevi require repeated sun exposure to develop melanoma, preferentially on highly exposed 

area like the face or the neck. The persons presenting many nevi will preferentially develop 

melanoma on the trunk with a minimal UV radiation (Whiteman et al. 2003). The criteria 

of the number of nevi is developed on page 26. 

We can distinguish two kinds of melanoma based on the sun exposure duration (long-term 

vs intermittent): the chronically sun-damaged (CSD) melanoma and the non-CSD 

melanoma. The CSD melanoma appears on a skin presenting microscopic and macroscopic 

signs of long-term UV exposure called solar elastosis (accumulation of abnormal elastin 

in the dermis). This melanoma usually appeared on the head and neck in patients older than 

55 years old. By contrast the non-CSD melanoma is caused by an intermittent sun exposure, 

appears on a skin without solar elastosis and usually in patients younger than 55 years old 

(Shain and Bastian 2016).  
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The use of indoor tanning is clearly associated with the increased of the melanoma risk as 

well as carcinoma. The risk grows with the number of sunbed session and the age of the 

person who begins to use it (Boniol et al. 2012). Risk increases with the number of nevi, 

the presence of atypical nevi and lentigines. Restriction for the use of sunbeds related to 

age and the type of skin have been put in place in some countries of Europe (Suppa et al. 

2019).  

1.6.3.2. Pigmentation characteristics 

The higher incidence rate of melanoma in Caucasian population is partly due to the lack of 

UV protection caused by reduced amount of melanin or by the kind of melanin synthetized. 

Indeed, Figure 13 shows higher incidence in North America, Europe and Australia. 

Populations with pigmented skins have a higher protection against UVA and UVB 

radiations. In a darker skin, UVB radiation passing through the epidermis decrease of 50% 

by comparison with fairer-skin persons (Brenner M. 2009).  

 

Figure 13: Worldwide melanoma age-standardized annual incidence rate by geography in 2012 (in number of cases per 

100 000 persons and per year). The distribution of melanoma around the world shows the importance of of phototype. 

Indeed, the incidence is higher among the faire-skinned population. 

In 1975, Fitzpatrick and colleagues created a numerical classification of human skin color 

and gave information on the UV sensitivity. It classes six different phototypes based on the 

color of the skin, the eyes and the hair, the presence of freckles and the reaction of the skin 

to sun exposure (Fitzpatrick 1975). Sitek and colleagues showed that models based on 

spectrophotometric variables, describing pigmentation levels skin color parameters, are a 

more precise predictor than phototype (Sitek et al., 2016).  
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1.6.3.3. Number of nevi and their body site 

The number of nevi and the presence of dysplastic nevi are established risk factors for long 

time (Chang et al. 2009; Gandini et al. 2005; Olsen et al. 2009). 

A person with more than 100 nevi has 7,6-fold risk of melanoma than a person with around 

ten nevi (Cummins 2006). A high number of nevi is associated with a higher melanoma 

risk. These persons will preferentially develop melanoma on an intermittently sun exposed 

body sites (Caini et al. 2009). This goes in the same direction that the hypothesis suggesting 

that melanomagenesis takes place following two different events : one due to intermittent 

sun exposure and one due to a long-term one (Whiteman et al. 2003). Classifying persons 

according to their number of nevi requires to take into account other risk factors like the 

country of residence, the body site, the gender, etc. (Cust et al. 2019). A high nevus count 

is an indicator of risk melanoma death, particularly in men (Li et al. 2019). 

1.6.3.4.Genetic predisposition 

Around 5 to 10% of melanomas are familial (Gandini et al. 2005). A positive family 

history means that minimum three persons in the first degree have been diagnosed with 

primary melanoma. However, this definition varies according to the studies. A positive 

family history doubles the probability to develop melanoma (Chen et al. 2014; Hawkes et 

al. 2016). In area with low-medium incidence of melanoma, the families with two cases 

of melanoma or with an individual, which has developed two primary melanomas, may 

benefit of genetic testing. In high incidence area, it is the case if three melanoma were 

diagnosed in the first or second degree, or if three primary melanoma develop among one 

individual (Badenas et al. 2012). CDKN2a and CDK4 are identified as the first familial 

susceptibility gene identified. Mutation in the CDKN2a gene is associated with a high 

penetrance. The impact of alterations in this gene was already developed on the page 19. 

Patients harboring mutations in CDKN2a have a high risk of developing melanoma and 

other internal cancer, particularly in pancreas (Soura et al. 2016). Considering all 

melanoma, the incidence of germlines mutation in CDKN2a ranges from 0,2% to 5%. 

This percentage is higher in familial melanoma. CDKN2a is mutated in 10% of patients 

while it is mutated in 30-40% in families with 3 more melanoma cases (Goldstein et al. 

2007). Mutations in p16 are generally missense mutations distributed on throughout the 

length of the protein. Mutations affecting p14ARF are insertion, splice mutations or the 

deletion of the entire gene (Aoude et al. 2015). 
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So far, mutations in CDK4 were reported in few familial melanoma, all mutations occurring 

in codon 24 are supposed to be a mutational hotspot. This shows the importance of arginine, 

normally localized at this position, in the binding of p16 (Aoude et al. 2015).  

1.6.3.5.Gender 

The incidence of melanoma in adolescent and young adults is higher for women than men. 

The use of the indoor tanning by females is more frequent and was suggested to be the main 

cause of the difference observed between genders. This trend reverses after the age of 40 

years old (Watson et al. 2016; Weir et al. 2011).  

1.6.3.6.Age 

Melanoma in children under ten years old are very rare but it increases dramatically at the 

time of adolescence and adulthood (Indini et al. 2018). In the high-risk populations 

(Australia, New-Zealand and Northern Europe), the trend is an increase with the age, with 

a peak at 70 and 80 years old (Coory et al. 2006)(Sneyd and Cox 2013).  

1.7. Treatments 

When melanoma is diagnosed at an early stage, the prognosis is good and melanoma is 

treatable with surgical resection and with IFNα-2b (Achkar T. and Tarhini A.A. 2017). 

However, melanoma is an aggressive cancer, the tumor tends to metastasize and the 

prognosis is bad at advanced stage of the disease. When the melanoma spread to regional 

lymph node, the five-year survival rate is of 29% (Wu and Singh 2011) and patients 

presenting metastases have a median survival time of 6 months and a 5-year survival rate 

of 5-7% (Gray-Schopfer et al. 2007; Wu and Singh 2011). The resistance to treatment 

represents one of the main cause of poor outcomes associated with metastatic melanoma. 

This high level of resistance pushed scientists to seek newer efficient treatments. There 

exists a range of therapeutic options like chemotherapy, immune- and targeted therapies 

which are developed just below in the Figure 14.  
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Figure 14: Melanoma treatment. Main melanoma treatment can be classified in chemotherapy, including the treatment 

with dacarbazine and temozolomide, immunotherapy and therapies targeting proteins or pathways. Adapted from 

Mishra et al. 2018. 

1.7.1. Chemotherapy 

Among chemotherapy, dacarbazine and temozolomide are used to treat melanoma. 

Dacarbazine (DTIC) was approved by the FDA in 1975 but studies show that this 

chemotherapeutic agent alone provides poor overall survival benefits, for review see Bhatia 

and colleagues (Bhatia et al. 2009). Despite its inefficacy, DTIC remains, in combination 

with other anti-cancer agents, the standard treatment for metastatic melanoma (Mishra et 

al. 2018). The temozolomide is an analogue of DTIC presenting the advantage of being 

able to penetrate in the CNS (Bhatia et al. 2009; Velho 2012). Studies comparing the 

response of these treatments conclude that there is no significant difference in terms of 

response to treatment (Mishra et al. 2018). Both chemotherapeutic agents are commonly 

used for palliative treatment. The temozolomide is well tolerated and allows to improve the 

quality of life of patients (Li et al. 2015).  

1.7.2. Targeted therapy 

The targeted therapy aim to target specifically cancer cells by blocking the action of certain 

protein or other molecules involved in cellular growth and proliferation. We previously 

developed the MAPK pathway, whose upregulation leads to melanomagenesis (page 20).  
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1.7.2.1.Inhibitors of BRAFV600E 

Sorafenib was first developed to inhibit RAF-1, wild-type BRAF, BRAF V600E but in vitro 

results show that this small molecule is a multikinase inhibitor. Indeed, it targets receptor 

tyrosine kinases associated with tumor angiogenesis (VEGFR-2, VEGFR-3, PDGFR-β) 

and tumour progression (c-KIT, FLT-3) (Eisen et al. 2006). It was not associated with any 

benefit neither alone, nor in combined therapy (the combined therapy are developed on 

page 31) (Eisen et al. 2006; Mandalà and Voit 2013). 

Vemurafenib is the first BRAF inhibitor which complete the phase I of clinical trial 

showing a clinical benefits (Mandalà and Voit 2013). However, this response is limited for 

patients carrying the BRAFV600E mutation (representing 50-70% of patients with 

melanoma). No response was observed in patients wild type for BRAF. The phase II and 

III studies on vemurafenib shows its clinical superiority over dacarbazine (Mishra et al. 

2018). 

The dabrafenib is more potent than vemurafenib with a higher selectivity of the 

BRAFV600E mutant cells (Mandalà and Voit 2013) presenting the advantage to be 

efficient for brain metastases (G.S. Falchook et al. 2012). The phase III studies show a 

similar response rate than vemurafenib (Menzies and Long 2014). 

While a significant increase of progression free survival (PFS) and overall survival (OS) 

compared with chemotherapy was observed in patients with metastatic melanoma and 

harboring V600E BRAF mutation, resistance occurs in half of the patients within 6-7 

months (Hauschild et al. 2013; Sondak and Flaherty 2011). According the National Cancer 

institute dictionary, The PFS is defined as “the length of time during and after the treatment 

that a patient lives with the disease but it does not get worse”. The OS is “the length of time 

from either the date of diagnosis or the start of treatment for a disease that patients 

diagnosed with the disease are still alive”.  

1.7.2.2. Inhibitors of MEK 

MEK inhibitors are able to decrease the growth and to induce the death of melanoma cells 

mutated for BRAF and NRAS (Grimaldi et al. 2017).  
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Trametinib is a MEK inhibitor specifically inhibiting MEK1 and MEK2. The clinical 

outcome of trametinib were better than chemotherapy with an increase in terms of overall 

survival (OS) and progression free survival (PFS) (Gilmartin et al. 2011; Flaherty et al. 

2011).  

1.7.2.3. Combination of BRAF and MEK inhibitors 

Several studies show the clinical benefits associated with the combination dabrafenib and 

trametinib (Liu et al. 2015; Queiroloa et al. 2015; Smalley and Sondak 2015). A recent 

meta-analysis confirmed that the combined inhibition of both BRAF and MEK increases 

the OS and the PFS (Chen et al. 2017). However, this is accompanied by important adverse 

events (Chen et al. 2017; Liu et al. 2017).  

1.7.3. Immunotherapy 

Immunotherapy is often used as adjuvant in addition to the surgery for melanoma of stage 

II and III (Aragwala S. and O’Day Steven 2011). The immunotherapy includes the use of 

IFNα, IL2, ipimulab, ticilimumab, nivolumab and pembrolizumab.  

Ipimulab is a monoclonal antibody blocking CTLA4. It is administrated as a second line 

treatment and the studies in phase I/II/III show a higher median overall survival and a 

higher response rate (Hodi et al. 2010; Robert et al. 2011) while the ticilimumab does not 

confer any benefits (Franklin et al. 2017). Nivolumab and pembrolizumab are also 

approved by FDA and target programmed cell death protein 1(PD-1) receptors. CTLA-4 

and PD1 are negative regulators of the immune system, they lead to an increased activation 

of the immune system (Buchbinder and Desai 2016; Erdei and Torres 2010).  

The interferon-α (IFNα) are cytokines and its use was approved by FDA since 1986 as an 

adjuvant therapy for melanoma treatment (Erdei and Torres 2010). They have anti-

proliferative, differentiation inducing, pro-apoptotic and anti-angiogenic properties 

(Tarhini et al. 2012). IFNα was approved by FDA in 2011 for high risk patients affected by 

melanoma stage II and III (Franco et al. 2017). A meta-analysis showed a reduction of 12% 

of the risk of death associated with the use of IFNα as an adjuvant (Rodríguez-

Cerdeira et al. 2017). 
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The interleukin 2 (IL2), a lymphokine increasing the proliferation of T-cell, is approved for 

the treatment of metastatic melanoma since 1998 for metastatic melanoma. IL2 stimulates 

T-cell function and proliferation. The activated T-cells provokes a specific immune 

response (Erdei and Torres 2010; Velho 2012).  

In monotherapy, the cytokines are associated with severe dose limited toxicity (Conlon et 

al. 2019). 

1.7.4. Combined therapy 

Since dacarbazine is not efficient in monotherapy, it can be combined with different 

compounds such as cisplatin, nitrosoureas and tubular toxins (Mishra et al. 2018; Velho 

2012). 

 

Figure 15: Combined therapy. The combination of immunotherapy and combined therapy allows to achieve a higher and 

more durable response (Prieto et al. 2016). 

Treatments with immunotherapy are associated with a lower response rate, but their impact 

on the disease is more durable (Prieto et al. 2012). This suggests the interest in combining 

immunotherapy and targeted therapy to obtain a high and durable response as we can see 

in the Figure 15 (Prieto et al. 2016). Clinical trials are underway to determine the clinical 

benefits of the combined therapy of BRAF-1 and IFNα by comparison with monotherapy 

(Rodríguez-Cerdeira et al. 2017). 
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Despite the advance in melanoma treatment, the prognosis of metastatic melanoma is poor 

and resistance to anti-cancer agent remains an obstacle. The resistance can be intrinsic (if 

the cancer is initially resistant to the drug) or acquired (if the resistance appeared within 

continuing therapy). The acquired resistance can be limited to the drug to which the patient 

was exposed or can concern multiple drugs with different mechanism of action (MDR) 

(Gottesman et al. 2016). 

Several mechanisms lead to resistant to treatment like the efflux of the drug outside of the 

cell, the sequestration of the drug in subcellular organelles, a reduced drug uptake, altered 

cell cycle arrest, increased ability of DNA repair, dysregulation of apoptotic pathway,etc. 

( Gillet and Gottesman 2010; Gottesman et al. 2015; Kalal et al. 2017; Wu and Singh 2011). 

The efflux of the drug by ABC transporters is recognized as a main cause of chemotherapy 

failure due to multidrug resistance (Li et al. 2016).  
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2. ABC transporters  

Expressed in all living organisms including eukaryotes and prokaryotes, the ABC 

transporters are a large superfamily of integral membrane proteins, transporting very 

diverse substrates across the membranes. They use the energy provided by ATP hydrolysis 

(Dean and Annilo 2005). It is the largest family of transmembrane proteins, containing 48 

members in humans, classified in seven distinct families (from A to G). This classification 

is based on the gene structure, the organization of typical domains of ABC transporters (see 

page 34) as well as the sequence of these domains. The genes of ABC transporters are very 

dispersed in eukaryotic genome and are highly conserved between species (Dean et al. 

2001). 

ABCB1 was the first identified ABC transporter and is now the best-characterized one. 

Juliano and Ling reported the expression of a 170kDa protein expressed in hamster ovary 

cells resistant to colchicine (Juliano and Ling 1976). This gene was first cloned in 1985-

1986 (Gros et al. 1986; Riordan et al. 1985) while Chen and colleagues provide information 

about the complete primary structure suggesting its role in active transport (Chen et al. 

1986). Its pump activity was revealed by Horio and Gottesman in 1988 (Horio et al. 1988). 

Then, the second discovered was ABCC1 in 1992 (SP Cole et al.1992) and then ABCG2 

was reported by three groups (Allikmets et al. 1998; Doyle et al. 1998; Miyake et al. 1999)  

These latter ABC transporters were extensively studied for their role in cancer resistance. 

ABCB1 is involved in resistance to many anticancer agents like cisplatin, methotrexate, 

doxorubicin, etoposide, etc. (Chao et al. 2019; Jiang et al. 2019). It is also the case of 

ABCC1 transporting for example anthracycylines, vinca alkaloids, methotrexate, antifolate 

and etoposide (Deeley and Cole 2006). ABCG2 transport methotrexate, mitoxantrone, 

topotecan, irinotecan and flavopiridol (Mao and Unadkat 2015). So far, at least 15 ABC 

transporters were found to be involved in drug resistance (W. Li et al. 2016). In this 

manuscript, we will focus on the involvement of ABC transporters in melanoma resistance 

(see page 45) as well as their involvement in melanomagenesis (see page 52). 
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2.1. Structure 

2.1.1. Topology 

The topology of a typical full-sized ABC transporter consists of two nucleotide-binding 

domains (NBDs) and two transmembrane domains (TMDs), which are further explained in 

the next section (Figure 16A). The transporter ABCB1 (MDR1) is an example of typical 

ABC transporter (Glavinas et al. 2004; Kryczka et al. 2018) Some members of ABCC 

family (ABC-C1 ,C2, C3, C6, C10) contain an additional TMD consisting of five alpha 

helices (Figure 16B) (Gillet et al. 2007). There also exists half transporters consisting of 

one NBD and one TMD. In the typical topology of half transporters, the NBD is located at 

the C-terminal side (for example ABC-B2,B3,B6 to B10 and ABCD1 to D4 (Gillet et al. 

2007) (Figure 16C). However, there also exists a reverse topology of half transporter where 

the NBD is at the N-terminal side. It is the case of ABCG transporters (Figure 16D). 
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Figure 16: Topology of half transporter. A. The topology of a typical ABC transporter consists of two nucleotide-binding 

domains (NBD) and two transmembrane domains (TMD). B. Several ABC transporters like ABCC1, ABCC2, ABCC3 

and ABCC6 contain an additional TMD. C. The half-transporters contain one NBD and one TMD The NBD can at the 

C-terminal side (ABCB2-B3, B6 to B10 and ABCD1) or at the N-terminal side (ABCG2) (Gillet et al. 2007) 

2.1.2. The nucleotide binding domains 

The NBDs are domains, located in the cytoplasm, where ATP will bind (Dean et al. 2001). 

These domains are highly conserved among ABC transporters and contain characteristic 

motifs presented in Figure 17. The A-loop is an aromatic residue of 25 amino acids 

upstream the walker A. The walker A (also called P-loop, GXXGXGKS/T where X is any 

amino acid) and the walker B (φφφφ D, where φ is a hydrophobic residue) are separated 

by 90 to 120 amino acids and are found in all ABC transporters as well as in ATPase. The 

walkers are required for ATP hydrolysis reaction. Mutations in these sequence lead to the 

loss of ATP driven drug efflux from cells (Rees et al. 2009; Frelet and Klein 2006). The 

walker A would be involved in interaction with the phosphate groups of ATP (Ambudkar 

et al. 2006). The C motif, also called the ABC signature or LSGGQ motif is an additional 

motif of the NBD located between the walker A and B. This motif is crucial for the 

hydrolysis of ATP and the interaction with the substrate binding site (Ambudkar et al. 

2006). The NBD domains also contain a D-loop, Q-loop, a H-loop (Rees et al. 2009; 

Holland and Blight 1999).  
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We can distinguish two parts in the NBD: the catalytic core domain and the α-helical 

subdomain. The first one includes two β-sheets and six α-helices (including walker A and 

B, Q- and H-loop). The α-helical domain consists of three or four helices and includes the 

C motif. 

 

Figure 17 : The nucleotide binding domains. A. This linear representation of the nucleotide-binding domain show the 

main characteristic motifs. The walkers A and B are represented by hexagons. The motif C, represented as a red 

pentagone, is also called the ABC signature or the LSGGQ motif. B. There are two parts in the NBD: the catalytic core 

domain (RecA-like domain) and the α-helical subdomain. The characteristic motifs are represented with the same colors 

(Dassa 2011). 

These walkers A, B and the motif C form a large pocket for ATP binding (Frelet and Klein 

2006) and it is usually believed that both NBDs are required for ATP hydrolysis (Li et al. 

2016). The NDBs are able to form a “nucleotide-sandwich dimer”. ATP is then bound along 

the dimer interface between the walker A and B, of one subunit, and the LSGGQ motif and 

the D-loop of the other subunit. The adenine ring of ATP interacts with the A-loop while 

phosphate and magnesium interact with the waker A and B. The LSGGQ motif is involved 

in the formation of the NBD sandwich dimer (Ambudkar et al. 2006). 
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2.1.3. The transmembrane domains 

The transmembrane domain (TMD) is typically composed of 6 α-helices and provides the 

specificity of the substrate (Dean et al. 2001; Glavinas et al. 2004). These α-helices are 

embedded in the membranes and traverse it several times in a zigzag fashion. They allow 

the translocation of the substrate across the cellular membranes. The TMDs are very 

heterogeneous between the different ABC transporters, reflecting the high diversity of 

substrates. The exporters ABC transporters are characterized by the presence of 

extracellular loops called ICL (25 Å) that extend the transmembrane helices (Rees et al. 

2009). 

2.2. Mechanisms of transport 

ABC transporters allow an active transport of the substrate across the cellular membranes 

against a concentration gradient. This process requires energy provided by ATP hydrolysis, 

which is coupled with the substrate translocation. Two models describe the mechanism of 

transport based on ABCB1.  

The first model (Figure 18A) starts with the binding of the substrate on the cytoplasmic 

side of the TMDs (which are initially in conformation inward). This leads to conformational 

change of the NBD increasing the affinity for ATP. The displacement of the walker A (due 

to signal from TMDs) was suggested to allow ATP to gain access to its binding sites. Then, 

two Mg-ATP molecules bind to the ATP binding pocket provoking the dimerization of the 

NBDs. The formation of the nucleotide sandwich dimer provokes a conformational change 

in the TMD from the inward to outward conformation, leading to the release of the 

substrate. Two sequential ATP hydrolysis, releasing 2 ADP and 2 phosphates, provide 

energy for the dissociation of the NBDs and then the return to the original situation. The 

process can repeat again (Higgins and Linton 2004).  

The second model (Figure 18B) also requires the hydrolysis of two molecules of ATP: the 

first one provide the energy to efflux the drug and the second one to reset the protein to its 

initial state (Ambudkar et al. 2006). 
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This model consists of 8 steps. At first, one molecule of ATP binds on the ATP binding 

pocket. It is accompanied by the binding of the substrate but there is no influence between 

these binding events (I). The ATP hydrolysis provokes (II) a conformation change of the 

drug binding site decreasing the substrate affinity and leading to the release of the substrate. 

This conformational change also makes the NBD inaccessible to nucleotides. The steps III 

and IV consist of the sequential release of ADP and Pi which makes the NBDs accessible 

to ATP while the drug binding site remains in the low-affinity conformation. 

A second molecule of ATP binds the NBD (V) and its hydrolysis (VI) provide the energy 

required for the transporter to return to its original conformation. The transporter can now 

bind to ATP and substrate. 

 

Figure 18: Two models describing the transport mechanism of ABCB1. The red ovals represent the transmembrane 

domains embedded in the plasma membrane (blue rectangles). The red circles and semi-circles, in the cytoplasmic side, 

represent the nucleotide binding domains (Ambudkar et al. 2006). 
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 2.3. Overview of the different families of ABC transporters 

The physiological role of ABC transporters are very diverse. They are responsible for the 

regulation of cellular level of different molecules including hormones, xenobiotic, lipids, 

etc. They can play a role of toxins detoxification in the liver or in the gastrointestinal tract 

for example. Some are implicated in the regulation of local permeability in placenta, testis 

in blood brain barrier and the cerebrospinal fluid, others are crucial for the immune system 

by peptide transport in the endoplasmic reticulum (Gillet et al. 2007; Robey et al. 2018) 

Below we briefly go over the role of different ABC transporters by family. 

2.3.1. ABCA transporters 

The twelve members of ABCA family are typical full-transporters with two NBDs and two 

TMDs. ABCA transporters have the particularity to have a large extracellular domain 

between the first transmembrane segment and the cluster of five other transmembrane 

segments (Illing and Molday 1997; Oram 2002) They are mainly expressed in cells of the 

central nervous and hematopoietic system. ABCA transporters are classified into two 

groups: the first group comprising ABC-A1, -A2, -A3, -A4, -A7, -A12, -A13 whose genes 

are located on 6 different chromosomes and the second one including ABC-A5, -A6, -A8, 

-A9, and -A10) whose genes are arranged in a cluster on chromosome 17q24 (Arnould et 

al. 2002; Broccardo et al.1999). ABCA11 is a pseudogene (Robert et al. 2009).  

The substrates of main ABCA transporters are still to identified. The most studied ABC 

transporters in this family is ABCA1, -A2, -A3 and -A12 because they are associated with 

inherited disease (see Table 1). They are implicated in the transport of lipids across cell 

membrane (Molday and Zhong 2009). ABCA1 implicated in the efflux of cholesterol and 

phospholipid from macrophage and other cells (Oram 2002; Oram et al. 2000). The Tangier 

disease is an inherited disorder caused by a defective ABCA1 transporter due to a mutation 

in its gene (Brooks-Wilson et al. 1999). ABCA3 transport phospholipids in pulmonary 

surfactant biogenesis (Ban et al. 2007), ABCA4 is associated with Stargardt disease 

(Koenekoop 2003). ABCA12 cause harlequin and lamellar ichthyosis, link with a defective 

lipid transport (Akiyama et al. 2005; Lefèvre et al. 2003).  

2.3.2. ABCB transporters (MDR) 

The ABCB family has the particularity to contain both full-transporters (ABC-B1, -B5 Full-

lenght, -B4, -B11) and half-transporters (ABCB2, -B3, -B6, -B7, -B8, -B9, -B10).  
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Members of this family were known to be involved in multidrug resistance. ABCB1, also 

called MDR1, is the best-characterized ABC transporter as previously mentioned. The 

transporters ABCB4 and ABCB11 were also shown to be able to transport anticancer 

agents. Indeed, ABCB4 was shown to transport daunorubicin, doxorubicin, vincristine, 

etoposide, mitoxantrone and ABCB11 to confer resistance to paclitaxel (Gillet et al. 2007). 

ABCB2 and –B3 are TAP transporters (Transport Associated with Antigen Processing), 

respectively called TAP1 and TAP2. They heterodimerize to allow the transport of peptides 

in the endoplasmic reticulum and are associated with antigen processing (Herget and 

Tampé 2007). ABCB9 is closely related to TAP1 and TAP2 and is located in lysosomes 

(F. Zhang et al. 2000). So far, the physiological role of this transporter is unknown but it 

seemed to be implicated in phagosome maturation (Lawand et al. 2018). ABCB4 and 

ABCB11 are hepatocellular transporters. ABCB4 export phosphatidylcholine into bile 

(Zhao et al. 2015) while ABCB11 is responsible for bile salt transport (Gerloff et al. 1998). 

The transporter ABCB5 will be further explained in detail page 46 and page 53. ABCB6, 

ABCB7, ABCB8 and ABCB10 are mitochondrial ABC transporters and were associated 

with oxidative stress. They would homodimerize with the NBD facing the matrix 

(Schaedler et al. 2015). 

Mutations in ABCB genes were associated with inherited disease as we can see in the 

Table 1. For example, ABCB4 was associated with cholestasis, ABCB1 with intrahepatic 

cholestasis of pregnancy, neonatal respiratory syndrome (Linton 2015) and ABCB7 in 

Sideroblastic amaemia and ataxia (Schaedler et al. 2015). 

2.3.3. ABCC transporters (MRP)  

The ABCC subfamily contains the higher number of drug transporters and is called the 

multidrug resistance protein family. The ABCC family consists of twelve full transporters. 

Except ABCC8-9, members of this family are called MRP (Multidrug Resistance-

associated Protein).  
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ABCC family has the particularity that several members (ABCC1, ABCC2, ABCC3, 

ABCC6, and ABCC10) have an additional TMD domain called the TMD0, consisting of 

five alpha helices. The presence of the TMD0 is important for the function of the protein 

and its absence leads to the protein instability (Bera et al. 2017; Jedlitschky et al. 2006). 

Among this family, ABCC1, -C2, -C3, -C4, -C5, -C6 and C11 are responsible form efflux 

of chemotherapeutic drugs (Dean 2009). ABCC8 and ABCC9 are regulator of K+ channels 

without playing a role of transport but form a complex with the channel (Bryan et al. 2007). 

ABCC7, also called CFTR, is a very particular member because it is the only one acting as 

an ion channel. It also presents a regulatory domain. Mutations in this gene are responsible 

for Cystic fibrosis (Aleksandrov et al. 2007). Other diseases are associated with ABC 

transporters. Indeed, ABCC2 is associated with Dubin–Johnson syndrome, ABCC5 with 

Inherited hypertrichosis, ABCC6 with Pseudoxanthoma elasticum and ABCC8 and -C9 are 

associated with diabetes (Theodoulou and Kerr 2015). 

2.3.4. ABCD family 

The ABCD family contains four genes encoding for half transporters. They can homo- or 

heterodimerize to be functional and transport (Dean et al. 2001).  

ABCD1, -D2, -D3 are localized in peroxisome and are responsible for the transport of fatty 

acids across the membrane. Hillebrand and colleagues show that the homodimerization 

predominates (Hillebrand et al. 2007). ABCD4 is localized in the lysosomal membrane and 

would transport vitamin B12 from lysosome to cytosol. 

As we can see in the Table 1, mutations in ABCD1 are associated with X-linked 

adrenoleukodystrophy caused by an impaired peroxisomal beta-oxidation leading to 

accumulation of very long-chain fatty acids in plasma and tissues (Kemp and Wanders 

2010). ABCD3 is associated with hepatosplenomegaly and liver disease while mutations 

in ABCD4 gene lead to inborn error or vitamin B12 metabolism (Theodoulou and Kerr 

2015). 
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2.3.5. ABCE and ABCF family 

ABCE and ABCF proteins do not contain transmembrane domain. This is unlikely that 

these proteins act as a transporter. The ABCE family only contains one member called 

ABCE1 which is an organic anion binding transporter (or OAPB). This protein only 

contains a nucleotide-binding. ABCF genes are upregulated by tumor necrosis factor-α 

suggesting the role of ABCF members in inflammatory process (Vasiliou et al. 2009). 

2.3.6. ABCG family  

ABCG family comprised five half transporters with a reverse topology, with the NBD 

located at the N-terminal side. ABCG1 is involved in the cholesterol homeostasis by 

effluxing cholesterol (Tarr et al. 2009) and is also involved in intracellular transport of 

cholesterol (Sturek et al. 2010). 

As previously mentioned, ABCG2 (BCRP) was extensively studied for its role in drug 

resistance. It also plays an important role of protection in the organism. This half-

transporter is expressed in the apical membrane of epithelial cells, in the liver canalicular 

membrane, in blood brain barrier, in placenta. It transports very diverse substrates including 

fate and glucuronide conjugates of sterols and xenobiotics, natural compounds and toxins, 

etc. (Mo and Zhang 2012). The most studied transporter of this family is ABCG2 for its 

implication in drug resistance.  

ABCG5 and ABCG8 form heterodimers and are expressed in canalicular membranes of 

hepatocytes. They play a key role in biliary cholesterol transport (Velamakanni et al. 2007). 

ABCG4 was found in macrophage, eye, brain and spleen (Vasiliou et al. 2009). 
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Table 1: ABC transporters and human health and disease. ABC transporters are known to be associated with genetic 

disease, caused by a defect in these transporters. For example, ABCA1 is associated with Tangier disease, ABCA4 with 

Stargardt disease, ABCC2 with Dublin-Johnson syndrome, etc. 
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2.4. ABC transporters and melanoma resistance and progression 

A cluster of ABC transporters were found in melanoma cells : ABCA9, ABCB1, ABCC1, 

ABCC2, ABCB5, ABCB8, ABCD1, ABCG2 (Chen et al. 2009; Elliott and Al-Hajj 2009; 

Fukunaga-Kalabis and Herlyn 2014; Röckmann and Schadendorf 2003; Setia et al. 2012; 

Luo et al. 2012).  

Furthermore, the study of Heimler and colleagues reported the expression of ABCA5, 

B2,B5, B6, D3, D4, F1, F2 and F3 in melanoma were expressed using RT-qPCR. The 

expression level of ABCB3, B6, C2, C4 and ABCE1 was found to be high in melanoma 

cell lines as compared with ABCA7, A12, B2, B4, B5 and ABCD1 (S. Heimerl et al. 2007). 

However, Deichmann et al. did not find ABCG2 to be expressed in melanoma both at 

mRNA and protein level (Deichmann et al. 2005).  

The Figure 21 and the Table 2 summarize the involvement of ABC transporters in 

melanoma resistance and melanomagenesis. 

2.4.1. ABC transporters and melanoma stem cells (MSCs) 

The melanoma stem cells were previously developed on page 16. Several ABC transporters 

were identified as MSCs including ABCB5β (Frank et al. 2005; Gerber et al. 2017; Suzuki 

et al. 2015; Schatton et al. 2008; Luo et al. 2012; Zhang et al. 2016). The ABCB5β isoform 

is co-expressed with other markers of melanoma initiating cells such as CD44, CD133 and 

CD24 (Zhang et al. 2016). ABCB1 was also found to be expressed in a subpopulation of 

cells representing 1 to 10% of the bulk tumor. The expression of ABCB1 increased when 

cells are cultured in a media for stem cells. These cells co-express ABCB5 and ABCC2 

(Keshet, G. I. 2008). ABCG2 was identified to be expressed in a subpopulation of potent 

melanoma stem cells also expressing CXCR6 (Taghizadeh et al. 2010). 

The fact that ABC transporters are considered as marker of MSC is important at two levels: 

for melanoma resistance and for melanomagenesis. Indeed, the cancer stem cells have the 

property to show a higher resistance to anti-cancer agent and to be associated with a higher 

tumorigenic potential. 
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2.4.2. ABC transporters and drug resistance in melanoma 

Resistance to anticancer agents remains an obstacle for the treatment of melanoma. It 

represents a challenge for effective cancer therapy. One of the most common resistance 

mechanism observed is the efflux of the drug out of the cell by ABC transporters (Gillet et 

al. 2007; Szakács et al. 2006). In melanoma, drug sequestration was also suggested to be a 

mechanism of drug resistance (K. G. Chen et al. 2009). 

2.4.2.1.ABCB1 

Surprisingly, while ABCB1 was extensively studied for its role in resistance in many types 

of cancer, this transporter does not seem to be the key factor of resistance in the case of 

melanoma. However, some studies suggested its implication in melanoma resistance. The 

expression of its transcript was detected in the following melanoma cell lines: SK-Mel-28, 

SK-Mel-5 and M14 (Chen et al. 2005; Szakács et al. 2004). As previously mentioned, 

ABCB1 was identified as being expressed by a subpopulation of MSCs. This subpopulation 

was shown to efflux paclitaxel (Keshet et al. 2008; Luo et al. 2012). Joo and colleagues 

showed the important role of ABCB1 in brain metastatic tumor resistance. Using a murine 

model, they implanted the melanoma cells K1735 either in the skin or in the brain. The 

paclitaxel was efficient in the skin but not in the brain. Using an inhibitor of ABCB1, this 

brain-specific resistance disappeared. Their study confirmed the role of ABCB1 in the brain 

microenvironment (Joo KM. et al. 2008). This transporter was also shown to be involved 

in the limited distribution of trametinib in the brain (H. Vaidhyanathan et al. 2014). The 

tumor endothelial cells (TECs), representing an important target for the anti-angiogenic 

chemotherapy, are resistant to paclitaxel. This seems to be mediated by ABCB1. Indeed, 

the addition of verapamil (inhibitor of ABCB1) abrogated the resistance in a melanoma 

xenograft mouse model. This co-administration of paclitaxel and verapamil reduced lung 

metastasis (Akiyama et al. 2015). 
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2.4.2.2.ABCB5 

According to AceView program, which provides a strictly cDNA-supported view of the 

human transcriptome and the genes, ABCB5 gene transcription gives rise to at least 11 

different transcript variants (Thierry-Mieg D. and Thierry-Mieg J. 2006). Among those, 

three variants have been documented. In chronological order: ABCB5beta.b (812 aa, also 

referred to as ABCB5 (Chen et al. 2005; Frank et al. 2003), ABCB5.h (131 aa, also 

referred to as ABCB5 and ABCB5.a (1257 aa, also referred to as ABCB5FL Full-

Length). The ABCB5 mRNA encode for a soluble protein of 15kDa only containing one 

walker B and one C motif (Chen et al. 2005; Moitra et al. 2011). We focus here on the 

ABCB5and full-length isoforms, studied for their role in melanoma.  

There is a correlation between the transporter ABCB5 expression and melanoma 

progression and recurrence. Indeed, Gray and colleagues showed that the expression of 

ABCB5 is higher in melanoma circulating cells than in the solid tumor (Gray et al. 2015). 

The ABCB5 mRNA was also detected in sentinel metastatic lymph nodes in patients with 

recurrence (Suzuki et al. 2015).  

ABCB5 

The ABCB5 isoform topology do not corresponds to the canonical topology of ABC 

transporters. Moitra and colleagues predicted ABCB5β to have a TMD composed of six α-

helices flanked by two intracellular NBDs as it shown in the Figure 19, which is the unique 

feature of ABCB5β. Furthermore, the N-terminal NBD lacks Walker A motif (Moitra et al. 

2011). As shown by the Figure 19, the conventional half-transporters possess only one 

NBD, either on the N- or on the C-terminal region (Gillet et al. 2007). Yet, ABCB5β might 

form a dimer to create a functional transporter. Potential dimerization motifs were 

identified in its N-terminal region (Moitra et al. 2011). This isoform is expressed in healthy 

cells like testis, melanocytes, retinal pigment epithelium, in the brain barrier and the uterus 

(Chen et al. 2005; Frank et al. 2003, 2005; Huang et al. 2004; Langmann et al. 2003). It is 

also expressed in many cancer cells: melanoma, breast, liver (Cheung 2011), colorectal 

cancer (Wilson 2011) as well as carcinoma cells and leukemia (Frank 2005, Schatton 2008, 

Lehne 2009). 
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Figure 19: The topology of ABCB5β .The proposed model by Moitra and colleagues shows a topology of ABCB5β 

consisting of one TMD with 6 α-helices and two NBD located on the intracellular surface. The walker as is lacking in the 

NBD located on the N terminal side (Gillet, unpublished data) 

ABCB5was extensively studied in resistance in melanoma. It was found to be responsible 

for melanoma resistance to chemotherapeutic agent like doxorubicin, temozolomide, 

dacarbazine, vincristine, teniposide, paclitaxel, etoposide, and docetaxel in melanoma 

(Chartrain et al. 2012; Frank et al. 2005; Wilson et al. 2014; Zhang et al. 2016). Using 

shRNA against ABCB5 or an anti-ABCB5 monoclonal antibody in A375 and G3361, 

melanoma cells have been resensitized to multiple anticancer agents (Wilson et al. 2014). 

As previously mentioned, ABCB5 was identified as a marker of a subset of 

chemoresistant cells with stem cells properties (N. Y. Frank et al. 2005; X. Zhang et al. 

2016). Observing the role of melanoma stem cells in resistance, Zhang and colleagues went 

further and silenced ABCB5 using VPN20009-shABCB5, previously reported to 

specifically target and reduce the growth of cancer stem cells. No significant difference 

was observed comparing VPN20009-shABCB5 and VPN-scrambled in terms of tumoral 

growth and survival times. The combination of VPN20009-shABCB5 and chemotherapy 

cyclophosphamide led to a delay of tumor growth and to an increase of survival time in the 

B16F10 mouse model (X. Zhang et al. 2016).  



 

48 

ABCB5 was also studied for its role in resistance to kinase inhibitors. Vemurafenib 

(PLX4032) is an inhibitor of the mutant BRAF V600E. It increases the response of 

melanoma to treatment and survival rate (Bollag et al. 2012; Tsai et al. 2008). However, 

resistance to this treatment also appears and represents a major obstacle for patients with 

the mutation (Chapman et al. 2011; Bollag et al. 2010). Menon and colleagues showed an 

increase of the expression of ABCB5 in melanoma cells, which are resistant to vemurafenib 

(Menon et al. 2015). Furthermore, the study of Chartrain showed that the treatment with 

this anti-cancer agent leads to a selection of the cells expressing ABCB5 (Chartrain et al. 

2012). This suggests the role of ABCB5 in the development of resistance to vemurafenib. 

However, the results of Xiao et al. are less clear. They developed three resistant cell lines 

to vemurafenib and assessed the expression of ABCB5. ABCB5 was overexpressed in cells 

resistant to BRAF inhibitors SK-MEL-28PLXr and A2058PLXr but not in A375PLXr 

cells. However, the silencing of ABCB5 does not re-sensitive to treatment. ABCB5 may 

not be the mediator of resistance to vemurafenib. The overexpression of ABCB5 is 

associated with the activation of the p-ERK status, which may play an important role in 

melanoma resistance (Xiao et al. 2018).  

While many studies show the transport of anti-cancer agents by ABCB5, Keniya and 

colleagues showed that this isoform would not be able to confer drug resistance using yeast 

model. The cells expressing ABCB5 were not able to confer drug resistance alone (Keniya 

et al. 2014). This suggests that ABCB5 could dimerize to be functional.  

ABCB5 full-length 

While ABCB5has been in the spotlight, there exists another isoform corresponding to the 

typical topology of a full-sized transporter. The sequence of the full-length ABCB5 cDNA 

was identified, in 2004, by Chen and Gottesman. Then, based on this sequence, they 

constructed the full-length ABCB5 cDNA which was confirmed by the clone produced by 

the team of Sugimoto (Kawanobe et al. 2012). This isoform is very little characterized, 

known to be expressed in testicular tissue (Y. Frank 2009). 

From a phylogenetic point of view, Moitra and colleagues demonstrate that ABCB5 

evolves as a full-sized transporter. This suggests that the function of the protein has been 

maintained through mammalian evolution (Moitra et al. 2011). 
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The full sized ABCB5 has a conventional topology of ABC transporters with two NBDs 

and two TMDs, each containing 6 α-helices as shown in Figure 20 (Moitra et al. 2011). It 

contains 1257 amino acids and has molecular weight of 138kDa. This isoform of ABCB5 

is highly homologous to ABCB1 with a homology of 73%.  

 

Figure 20: The topology of the isoform ABCB5 full length. The topology of ABCB5 full-length corresponds to the 

typical topology of full ABC transporters with two nucleoid-binding domains and two transmembrane domains (Gillet, 

unpublished data). 

Several studies show that ABCB5 full length plays a role in resistance to anticancer agents 

in melanoma and demonstrate its transport functionality. Keniya and colleagues showed in 

Sacharomyces cerevisae that the ABCB5 full-length isoform was able to confer drug 

resistance to rhodamine 123, daunorubicin, tetramethylrhodamine, FK506, or clorgyline. 

They were not able to show an efflux activity of the transporter and thus suggested the drug 

sequestration in a subcellular organelle (Keniya et al. 2014). This goes in the same direction 

as the study of Chen suggesting the sequestration of the drug in melanosomes (Chen et al. 

2006). The transport function of ABCB5 was also shown by Kawanobe using the human 

cancer cell line HEK293. The full length transporter led to a higher resistance of 1,5 fold 

to doxorubicin and to 2 to 3 folds to paclitaxel and docetaxel (T. Kawanobe et al. 2012).  

2.4.2.3.Are other ABC transporters involved in melanoma resistance? 

The half-transporter ABCB8 leads to resistance to doxorubicin (3 to 4 folds) by comparison 

with the parental ABCB8- melanoma cell lines. ABCB8 is localized in the inner membrane 

of mitochondria and is involved in chemoresistance by protecting the mitochondrial DNA 

of cells from doxorubicin induced damages (Elliott and Al-Hajj 2009).  
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The transporter ABCC1 alone does not seem to be involved in melanoma resistance. 

Indeed, inhibitors of ABCCC1 had no effect on the viability of A375 melanoma cells after 

treatment with antineoplastic agents. However, ABCC1 and Glutathione-S-transferase Pi1 

(GSTP1) have a combined effect in resistance to etoposide. GSTP1 is the most studied form 

of Glutathione-S-transferase (GST) for its role in cancer resistance. The GSTs is a family 

of detoxification enzyme catalyzing the conjugation by the glutathione (GSH). While, the 

involvement of GST in resistance is still controversial, it seems that their expression must 

be combined with the expression of ABC transporters (Depeille et al. 2005). A link is well 

established between ABCC1 and the GSH. Indeed, The GSH-dependence of ABCC1 for 

transporting drug like vincristine was already shown (Cole 2014; Loe et al. 1998; Zaman 

et al. 1995). In the same family, ABCC2 is involved in resistance to cisplatin. Indeed this 

transporter is responsible for the decreased formation of platinum-DNA adducts and the 

decreased of the cell cycle at the G2 phase in melanoma cells resistant to cisplatin (Liedert 

et al. 2003). The subcellular localization of ABCC2 in melanoma cell is still unknown but 

this transporter was localized the nuclear envelope in the case of breast cancer (MacIejczyk 

et al. 2012) and the fallopian tube cancer (Halon et al. 2013) as well as in ovarian carcinoma 

also associated with cisplatin resistance (Surowiak et al. 2006). That is why we suggest its 

subcellular localization in the Figure 21. The transporters ABCB2 and ABCB3 are called 

“Antigen peptide Transporter” (respectively celled TAP 1 and TAP2). They were found to 

be down-regulated in the B16 melanoma cells. This is associated with a lack of tumor 

associated antigen processing, a low expression of MHC class1 and a decreased 

immunogenicity. Zhang and colleagues have shown that TAP1 expression restores the 

antigen presentation. This shows that ABC transporters can also play a role in resistance to 

immunotherapy (Q. J. Zhang et al. 2007).  

2.4.2.4.Specialized mechanism of resistance in melanoma 

In their review, Chen and colleagues proposed the ABC-M model. According to this model, 

the network of ABC transporters and melanogenic pathway (including melanosome 

biogenesis) is involved in the regulation of drug sensitivity of melanoma cells. The melanin 

intermediates are toxic for the melanocytes. These compounds are trapped in subcellular 

organelles like lysosomes, endosomes and melanosomes. In melanoma cells, the same 

mechanisms are used by the cell to trap the anticancer agent in subcellular organelles (K. 

G. Chen et al. 2009). 



 

51 

Melanoma cells may have developed a specific mechanism of drug resistance. Chen and 

colleagues demonstrated that resistance is due to the sequestration of the drug 

diaminedichloroplatinum II (CDDP) in melanosomes. This sequestration prevents the drug 

from going to the nucleus by comparison to non-melanoma cells. The sequestration of 

CDDP also has an impact on melanogenic pathway, on the increase of the tyrosinase 

activity and the intracellular pigmentation. They showed that the resistance level is more 

important in melanoma cells with a higher number of melanosomes (Chen et al. 2006).  

Several studies have suggested the involvement of ABCB5 in melanogenesis. Lin and 

colleagues genotyped melanoma samples on the 7p21.1 locus and identified three SNPs. 

One of them was associated with the red/non red hair color. This locus was genotyped in 

melanoma cell lines and they noticed a non-synonymous amino acid change K115E. 

Further functional studies showed that the E form is associated with a lower risk of 

melanoma. This correlates with lower ABCB5 transport capacity and higher melanogenesis 

(J. Y. Lin et al. 2013). Wilson and colleagues, injected ABCB5-expressing pigmented 

melanoma cells G3361 in NSG mice, and they observed a difference in pigmentation 

between the ABCB5 expressing and non-expressing cells. The ABCB5 non-expressing 

cells are associated with hyperpigmentation (Wilson et al. 2014). 

ABCB6 was also shown to be localized in melanosomes and lysosomes in MNT1 

melanoma cells. The silencing of ABCB6 led to the accumulation of multilamellar 

aggregates in pigmented melanosomes (Bergam et al. 2018). It was discovered by studying 

Dyschromatoses, which is a rare skin disorder characterized by small irregular hyper- and 

hypopigmented macules (Yadalla et al. 2013). 
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2.4.3. Involvement of ABC transporters in melanomagenesis 

While ABC transporters are mainly studied for their role in cancer resistance, they also play 

a role in cancer development. More and more studies showed the link between ABC 

transporters expression and the malignant properties of cancer cells. Indeed, the expression 

of these transporters has an impact on the proliferation, migration and invasion ability of 

the cancer cell. However, the underlying mechanisms remain to be fully understood. 

According to Fletcher and colleagues, they would exert this function by transporting 

endogenous metabolites or signaling molecules (Fletcher et al. 2016). In this section, we 

will focus on the role of ABC transporters in melanomagenesis.  

2.4.3.1.ABCB1 

The expression of ABCB1 was associated with malignant properties. Keshet et al. showed 

that the melanoma stem cells expressing ABCB1 are more tumorigenic than the ABCB1 

knockout cells (Keshet et al. 2008). Using transplantable hamster model, the expression of 

the transporter ABCB1 was found to be associated with less differentiated and more 

aggressive tumor cells (Witkowski JM et al. 2000). In vitro, the ABCB1-expressing M14 

melanoma cells were shown to be associated with an increase of the migration and the 

invasion ability of the cells by comparison with their ABCB1-knockout counterparts. Using 

transwell chambers, the wild-type cells showed a low capacity to go through filters, both 

in the presence and in the absence of the matrigel layer. The way they pass through the 

pores are different. The ABCB1- cells used the lamellar cytoplasmic extrusion, whereas 

the ABCB1+ cells elongated along the hole though globular process (this was observed by 

scanning electron microscopy). Molinari suggested that the interaction between ABCB1 

and CD44 was associated with this more aggressive phenotype (Molinari et al. 2005). The 

study of Colonne aimed to clarify the involvement of ABCB1 and CD44. They showed 

their colocalization in certain regions of the plasma membrane. ABCB1 and CD44 were 

observed outside of the cells and would use the same transport vesicles. While the adhesion 

capacity was identical between the ABCB1+ and their ABCB1- counterparts, they confirm 

the more invasive phenotype conferred by ABCB1 expression.  

They showed a link between ABCB1 and the MAPK pathway. The incubation with an 

antibody detecting ABCB1 induced the activation of ERK1/2 and p38. This activation led 

to a higher expression of metalloproteinase (MMP-2, MMP-3, and MMP-9) mRNAs 

(Colone et al. 2008).  
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2.4.3.2.ABCB5 

ABCB5, located in the plasma membrane, is highly expressed in several kind of cancers 

including melanoma (Cheung et al. 2011; Civenni et al. 2011; Kumar et al. 2013; Kupas et 

al. 2011; Linley et al. 2012; Schatton, et al. 2008). ABCB5was shown to be associated 

with tumoral progression, resistance and recurrence in malignant melanoma (Chartrain et 

al. 2012; Gazzaniga et al. 2010; Ma et al. 2010; Kupas et al. 2011; Setia et al. 2012; 

Schatton et al. 2008). 

ABCB5 is gradually expressed from the benign nevi to the invasive melanoma (Setia et 

al. 2012). The study of Gambichler confirmed it showing that the expression of ABCB5 is 

higher in primary melanoma, metastases and invaded lymph nodes than in nevi 

(Gambichler et al. 2016). Lin identified that a non-synonymous polymorphism (K115E) 

leads to a decrease of the transport function the transporter and a lower risk of melanoma 

(Lin et al. 2013).  

As previously mentioned, ABCB5 is considered as a marker of melanoma stem cell. This 

transporter is co-expressed with CD133 (N. Y. Frank et al. 2005). Isolating MSC expressing 

ABCB5 from melanoma tissues, Schatton and colleagues showed that these cells are more 

tumorigenic when they are xenotransplanted to mice. They have the capacity of self-

renewal and differentiation. The systemic administration of an antibody detecting ABCB5 

exerted tumor-inhibitory effects (Schatton et al. 2008). This shows that ABCB5is 

involved in tumor growth. Indeed, Wilson and colleagues silenced the expression of 

ABCB5 in melanoma cells A375 and G3361 and injected them in NSG mice. The rapidity 

of the tumor development was reduced in the cells non-expressing ABCB5. Furthermore, 

they give information about how ABCB5plays a role in the aggressiveness of melanoma. 

ABCB5 represses WFDC1, acting as a tumor suppressor, and induces the production of 

IL8, which promotes melanoma development. They showed that ABCB5 regulates WNT 

pathway and controls the secretion of IL1, an activator of IL8 (Wilson et al. 2014). Zhang 

and colleagues confirmed that ABCB5 plays a functional role in tumor growth. The 

injection of non-expressing ABCB5 cells leads to a reduction of the tumor initiating 

frequency and the tumor volume (X. Zhang et al. 2016). 
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The ABCB5isoform was also considered as a prometastatic factor. Indeed, the ABCB5+ 

melanoma cells have a higher metastatic potential in comparison with the ABCB5- cells, 

with a higher migration and invasion ability in vitro. In vivo, the silencing of ABCB5is 

associated with a decrease of the melanoma pulmonary metastases using xenograft mice. It 

was shown that the transporter ABCB5 activates NF-kB pathway through enhancing p65 

protein stability by ubiquitination (Wang et al. 2017). 

2.4.3.2.Are other ABC transporters involved in melanomagenesis? 

Other ABC transporters were suspected to be involved in melanomagenesis. According to 

the study of Monzani, the melanoma cells expressing ABCG2 have a higher tumorigenic 

potential (Monzani 2007). When injected in immunodeficient mice, the ABCG2+ 

subpopulation leads to a tumoral mass with a size twice as large as the tumor developed in 

the ABCG2- cells (Taghizadeh et al. 2010). Furthermore, the expression of ABCG2 was 

found to be correlated with melanoma progression. Indeed, the expression level of ABCG2 

was higher in stage IV patients than in stage III patients. Performing a multivariate analysis 

considering the age, the gender, the stage of the disease and M category (categories based 

on the dissemination of metastases). Speigl and colleagues showed that ABCG2 can be 

considered as an independent prognostic factor (Speigl et al. 2017). Lastly, we previously 

explained that TAP1 plays a role in the antigen processing and presentation. This 

transporter is often down regulated in B16F10 melanoma cell lines. This is associated with 

low surface expression of MHC class I. The down regulation of TAP may be responsible 

for the escape of the cancer cells to immunosurveillance (Zhang et al. 2007).
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Table 2: Summary table of the involvement of ABC transporters in melanomagenesis 

 Marker of melanoma stem cells Drug resistance Melanomagenesis 

ABCB1 Marker of MSC vitro (Keshet 2008). 

 

In the case of melanoma in the brain of mice, ABCB1 associated with 

the efficacy of paclitaxel (Joo KM. et al. 2008) 

Responsible for the limited distribution of trametinib in the brain 

(Vaidhyanathan et al. 2014) 

Resistance of tumor endothelial cells to paclitaxel (Akiyama et al. 

2015). 

Expression associated with the increase 

of migration and invasive abilities 

(Colone et al. 2008; Molinari et al. 

2005). 

 

ABCC1 / Etoposide when combined to GSTP1 (Depeille et al. 2005). / 

ABCC2 Co-expression by a tumoral sub-

population expressing ABCB1 and B5 

(Keshet, G. I. 2008). 

Cisplatin (Ichihashi and Kitajima 2001; Liedert et al. 2003) / 

ABCB2  Downregulated in B16 melanoma cell lines suggesting an impact on 

immunotherapy (Q. J. Zhang et al. 2007) 

Suspected to be involved in the escape of 

immunosurveillance (Q. J. Zhang et al. 

2007) 

ABCB3  

ABCB5 Marker of MSC(Frank et al. 2005; Gerber 

et al. 2017; Schatton et al. 2008). 

 

doxorubicin, temozolomide, dacarbazine, vincristine, teniposide, 

paclitaxel, etoposide, and docetaxel (Chartrain et al. 2012; N. Y. Frank 

et al. 2005; Wilson et al. 2014; X. Zhang et al. 2016) 

Vemurafenib (Chartrain et al. 2012; Menon et al. 2015; Miletti-

gonzalez et al. 2005; Xiao et al. 2018).  

Involved in the acquisition of malignant 

properties (Schatton et al. 2008; S. Wang 

et al. 2017; Wilson et al. 2014; X. Zhang 

et al. 2016) 

ABCB5 full length  

 

/ 

Transport of chemotherapeutic agents  

rhodamine 123, daunorubicin, tetramethylrhodamine, FK506, or 

clorgyline, doxorubicin, paclitaxel and docetaxel (Keniya et al. 2014; 

Kawanobe et al. 2012). 

 

 

/ 

 

ABCB8 / Doxorubicin (Elliott and Al-Hajj 2009)  

ABCG2 Marker of MSC(Taghizadeh et al. 2010).  

/ 

Expression associated with tumorigenic 

potential (Monzani 2007; Taghizadeh et 

al. 2010) 
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Figure 21: Involvement of ABC transporters in melanoma resistance to treatment. Both ABCB5 isoforms were shown to 

be involved in resistance in the case of melanoma. ABCB5β has been in the spotlight for its role in the transport of many 

anticancer agents including paclitaxel, temozolomide, etoposide, etc. The ABCB5 full-length isoform was less 

characterized. It was shown to transport paclitaxel and docetaxel. ABCC2 was shown to reduce the formation of Platinum-

DNA adducts by cisplatin and ABCB8 protects the mitochondrial DNA from damage caused by doxorubicin. ABCC1 is 

associated with resistance to etoposide when it is combined with glutathione S transferase (GSTP1). Melanoma cells have 

a specialized resistance mechanism the sequestration of diaminedichloroplatinum II (CDDP) in melanosomes. ABC 

transporters may also be involved in this mechanism.
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PRELIMINARY RESULTS 

1. Explanation about the studied cohorts 

To identify somatic mutations in ABCB5, Gillet and colleagues analyzed the coding regions 

in human clinical melanoma samples. All of these were non-treated to avoid mutagenic 

effect of chemotherapeutic agents. For each patient, the exome of the cancer cell was 

sequenced regarding the corresponding normal DNA (blood cell). 

The first cohort analyzed of 54 clinical melanoma samples, from a previously published 

study by Gartner and colleagues, revealed that ABCB5 was mutated in 14,5% (p<0,001) of 

the melanoma samples (Gartner et al. 2013). This cohort revealed 10 mutations in the 

ABCB5 gene, including 8 non-synonymous mutations (Table 3). The in silico SIFT 

analysis was performed for these ten mutations. SIFT is a software which predicts if the 

amino acid substitution affects the protein function (Ng and Henikoff 2003). For these 

samples, mutations in ABCB5 were heterozygous. A validation was performed on six of 

these 10 mutations using digital PCR, which confirmed their presence at the RNA level.  

Afterwards, Gillet and colleagues extended the study to an additional cohort containing 99 

melanoma samples. They also reviewed the mutational data from published studies (Berger 

et al. 2012; Nikolaev et al. 2012; Stark et al. 2012), which were combined with exome data 

from The Cancer Genome Atlas (TCGA), resulting in 487 published melanoma samples. 

In summary, Gillet and colleagues showed that the gene ABCB5 was mutated in 13.75% 

of the 640 melanoma samples analyzed.  

Table 3: ABCB5 mutations in untreated clinical melanoma samples (results of Whole Exome, Whole Genome, and 

Sanger sequencing in a total of 54 samples). 

 

Samples Mutation Mutation type SIFT SCORE 

17T Q187* Non-synonymous / 

55T E520D Non-synonymous 0,21 

44T R587* Non-synonymous / 

83T V827I Non-synonymous 1 

12T I828I Synonymous 1 

83T S830F Non-synonymous 0 

105T L840L Synonymous 0,7 

32T S1184P Non-synonymous 0 

24T S1091F Non-synonymous 0,01 

55T Q1098* Non-synonymous / 
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2. Choice of the mutations 

Among the mutations presented in the Table 3, Gillet and colleagues decided to focus on 

4 mutations, 3 associated with low SIFT scores, S830F, S1091F and S1184P, and one stop 

mutation Q187*. SIFT takes into account the location where the change occurs and the type 

of amino acid change. The more deleterious effect will be observed for a SIFT value close 

to zero.  

These mutation were located on a 3D-predicted model by Dr.Xia (NIH, NCI, Bethesda, 

MD, USA) based on the sequence alignment of the full-length ABCB5 to the mouse 

ABCB1, for which experimental structures are known (Esser et al. 2017; Li et al. 2014). 

The mutation S830F is located in the transmembrane domain (TMD2) and the mutations 

S1091F, S1184P are located in the nucleotide-binding domain (NBD2) as we can see in the 

Figure 22. The mutations are located in two identified hot spots. 

 

Figure 22: Molecular model of ABCB5. An atomic model of 

ABCB5 was constructed based on the sequence alignment of 

the full-length ABCB5 to the mouse ABCB1 or P-

glycoprotein, for which an experimental structure is known in 

the absence of bound nucleotide. Ribbon diagram of the full-

length ABCB5 model is given with the N-terminal 

transmembrane domain or TMD1 colored in red and the C-

terminal TMD2 in cyan. The N-terminal NBD1 and the C-

terminal NBD2 are shown in yellow and green, respectively. 

The location of mutations studied are shown in this 3D-model: 

the residue S830 in the TMD2 is represented by a magenta 

ball model and the two residues in NBD2 are colored in 

orange. 
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3. Effect of the mutations on the activity of the transporter 

The results obtained by the SIFT prediction suggest a deleterious effect of the chosen 

mutations. Gillet and colleagues performed ATPase assays to determine whether these 

mutations alter the transporter activity. The mutants S830F, S1091F and S1184P ABCB5 

and WT ABCB5 were expressed in High Five insect cells with the same expression level 

(Figure 23A). The ATPase assays showed that these mutations resulted in a decrease in 

basal ATP hydrolysis by ABCB5 (Figure 23B). The loss of ABCB5 function due to these 

mutations suggests that ABCB5 might indeed play a role in the development of melanoma 

as a tumor suppressor gene.  

 

 

Figure 23: ATPase activity of ABCB5 WT, and 

mutants.  

A. ABCB5 WT and mutants were expressed in High 

Five insect cells and 30 µg isolated crude membrane 

proteins were run in a Nupage Tris-acetate gel along 

with a HiMark ladder. 1. ABCB5 WT, 2. ABCB5 

E1181Q mutant (non-functional transporter, - ctrl), 

3. Crude membranes (- ctrl), 4. ABCB5-FLAG 

Q187*, 5. ABCB5-FLAG S830F, 6. ABCB5-FLAG 

S1091F, and 7. ABCB5-FLAG S1184P. B. ATPase 

activity of ABCB5 WT and ABCB5 mutants 

(E1181Q, S830F, S1091F, S1184P) in High Five cell 

crude membranes was measured by endpoint Pi 

assay. WT and mutant ABCB5-specific ATPase 

activities were recorded as beryllium fluoride 

(BeFx)-sensitive ATPase activity. (Error bars denote 

SD or SE; n= 3). For the same expression level, we 

observe a decrease in the ATPase activity for the 

cells overexpressing ABCB5 mutants by comparison 

with the cells overexpressing ABCB5 WT.  
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OBJECTIVES OF THE THESIS 

In reviewing the literature, we observed that the isoform ABCB5β has been in the spotlight 

whereas its topology and function are still controversial. On the contrary, the isoform 

ABCB5 full length is little characterized. Its topology is very close to ABCB1, probably 

the most characterized ABC transporter, and corresponds to the typical topology of ABC 

transporters. The involvement of ABCB5 in melanoma resistance is developed on the page 

46 and its involvement in melanomagenesis on the page 53. Several studies showed the 

transport functionality of the ABCB5 full length isoform. While Kawanobe and colleagues 

showed its activity of transport in HEK293T cells (T. Kawanobe et al. 2012), Keniya 

showed it in yeast model (Keniya et al. 2014) and Gillet and colleagues using insect cells 

(unpublished data). In this thesis, we focused on the isoform ABCB5 full length.  

Preliminary results showed that ABCB5 was mutated in nearly 15% of the clinical 

melanoma samples analyzed. Four mutations were selected based on the SIFT score from 

in silico analysis. These mutations have a deleterious effect on the protein function as 

shown by the decrease of the ATPase activity of the transporter, which in turn will affect 

its transport activity. This suggests that ABCB5 full length plays a role in melanomagenesis 

as a tumor suppressor. While ABC transporters are mainly studied for their role in cancer 

drug resistance, an increased body of evidence indicates that they may be involved in 

tumorigenesis by their transport activity.  

The objective of this thesis was to investigate the involvement of ABCB5 in melanoma 

development and progression. To do so, the project was divided in three parts. The first one 

consisted of the in vitro study of the involvement of ABCB5 in the acquisition by the cell 

of malignant potential. The proliferation, migration and invasion abilities of melanoma 

cells overexpressing ABCB5 mutants were assessed. An alteration of these capacities 

would confirm the involvement of ABCB5 in vitro. The second axis of the project aimed 

to explore the role of Abcb5 in vivo, using transgenic mice. The involvement of ABCB5 in 

melanomagenesis would have an impact on melanoma incidence. Finally, the third part of 

this thesis had on purpose to investigate about the way of action of ABCB5 by determining 

its subcellular localization in melanoma cells.  



 

61 

RESULTS AND DISCUSSION 

1. Study of the implication of ABCB5 in Melanomagenesis and melanoma 

progression in vitro 

1.1. Objectives 

Since the ATPase assays showed that the ABCB5 mutations S830F, S1091F and S1184P 

resulted in a decrease in basal ATP hydrolysis, we wanted to further explore their impact 

on the acquisition of malignant properties in vitro. While the inactivation of tumor 

suppressor genes contributes to abnormal proliferation of tumor cells, our first aim was to 

determine the link between the expression of ABCB5 mutants and the proliferation ability 

of the cells. To do so, we aimed to perform a 2D proliferation test on plastic to have a first 

indication. Knowing that this test presents the disadvantage to be influenced by the ability 

of the cells to adhere to plastic, we also wanted to perform a soft agar colony formation 

assay. This assay provides information relating to the cells’ anchorage-independent 

proliferation ability, which is considered as a hallmark of carcinogenesis. 

Secondly, with the aim to investigate the role of ABCB5 in melanoma progression, we 

decided to assess the migration and the invasion of the melanoma cells expressing the 

different mutants using the Boyden chambers assay. 

1.2. Justification of the cellular model used 

Previously to the current study, Madigan and Gillet did explore the possible functional 

effects of ABCB5 mutations on cell growth of A375 and SK-Mel-28 melanoma cell lines 

(both expressing ABCB5 WT and mutated BRAFV600E). To do so, human melanoma cell 

lines were transduced to overexpress either WT ABCB5 or mutants of ABCB5 (Q187*, 

S830F, S1091F, S1184P). The proliferation rates on plastic of A375 WT ABCB5 and 

mutants were identical to parental cells. SK-Mel-28 cells overexpressing either the Q187* 

or S1184P mutant had significantly increased proliferation rates compared to parental cells 

and the cells expressing other ABCB5 mutants. Stable knockdown of ABCB5 in A375 cells 

had no effect on cell proliferation. In contrast, stable knockdown of ABCB5 in SK-Mel-28 

cells resulted in a significantly increased proliferation rate.  
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Anchorage-independent growth was next assayed using a standard soft agar assay. In all 

cell lines examined, colony numbers were not different, but colony sizes varied. In the 

A375 cell line, all four ABCB5 mutant cells formed significantly larger colonies compared 

to parental cells. Examining SK-Mel-28 cells, only the Q187* and S1184P mutant led to 

significantly larger colonies compared to parental cells. In both cell lines, stable 

knockdown of ABCB5 resulted in significantly larger colonies in soft agar. 

In both A375 and SK-Mel-28 cell lines, there was a slight trend toward increased invasion 

of the ABCB5 mutant cells, along with a trend toward reduced invasion in WT ABCB5 

cells. However, these trends were not significant. For both A375 and SK-Mel-28 cell lines, 

stable knockdown of ABCB5 resulted in a significant increase in invasive capacity, 

suggesting that ABCB5 transporter behaves as a tumor suppressor (see article in annexes). 

In this thesis project, we wanted to test the effect of the mutations on additional, perhaps 

more adequate cell models. To select them, further studies on the first set of 54 human 

melanoma samples analyzed were carried out. These studies showed mutations in the tumor 

suppressor CDKN2A gene and the NRAS oncogene in 62.5% and 75% of the samples, 

respectively, which had mutations in the ABCB5 gene. No mutation was found in the tumor 

suppressor PTEN gene, while the activating V600E mutation in the BRAF oncogene was 

found in 25% of the samples with a mutated ABCB5 gene.  

Therefore, we have chosen the 17T and 63T human melanoma cell lines, both harboring 

the activated mutant NRASQ61K. The 17T cell line also harbors the heterozygous nonsense 

mutant ABCB5Q187*, wild type BRAF, PTEN and CDKN2A. The 63T cell line carries WT 

ABCB5, WT BRAF, nonsense mutant PTENR130*, and knockout mutant CDKN2A.  

Human melanoma cell lines 17T and 63T were produced that stably overexpressed either 

WT ABCB5 or mutants of ABCB5 (Q187*, S830F, S1091F, S1184P).  
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1.3. Impact of the mutations on the proliferation, migration and invasion 

ability of human melanoma cell lines 

1.3.1. Proliferation test on plastic 

To investigate the possible effects of ABCB5 on melanoma cell growth, in vitro 

proliferation on plastic was first examined. Cells were seeded in a 96-well plate and the 

proliferation was assayed by MTT assay at 24 hour-time points.  

The 17T cells overexpressing ABCB5 mutants show a statistically highly significant 

increased proliferation rate compared to the cells overexpressing the wild-type ABCB5 

(Figure 24A). The impact of the ABCB5 mutations is lower in the 63T cells except for the 

mutation S1184P, for which the increase of the proliferation rate is highly statistically 

significant when compared to the 63T cells overexpressing ABCB5 wild-type (Figure 

24B).  

This proliferation assay indicates a difference in terms of proliferation capacity of the cells. 

Yet, in this assay the proliferation of the cells is influenced by their ability to adhere to 

plastic. To address this bias, anchorage-independent growth, which is considered as a 

hallmark of carcinogenesis, was next studied using a standard soft agar assay. 

 

Figure 24: Effects of ABCB5 mutations on proliferation of melanoma cells. (A) Proliferation rates of 17T cells were 

assayed over 3 days. All 17T cells overexpressing ABCB5 mutants had a significant increase of their proliferation rate 

compared to the ABCB5 WT overexpressing cells, for each time point. (B) Proliferation rates of 63T cells were measured 

at 0, 24, 48 and 72 hours post-seeding. The proliferation rate of the S1184P mutant only was found to be very highly 

statistically significant when compared to the parental WT 63T cells. *P<.05, **P<.01, ***P<.001,****P<.0001. n = 4. 

Values are the means  S.E.M. 
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1.3.2. Soft Agar colony formation assay 

The soft agar colony formation assay is an anchorage independent growth assay, considered 

as a hallmark of carcinogenesis. Indeed, transformed cells are able to proliferate without 

fixation on a substrate (Borowicz et al. 2014). To perform this assay, melanoma cells were 

seeded in an semi solid medium (0,33% Bacto-Agar RPMI media) on a layer of Bacto-

Agar (0,5%). After three weeks at 37°C, colonies were stained and counted. 

For both cell lines, colony number was significantly higher for cells expressing ABCB5 

mutants compared to the WT ABCB5-expressing cells. Again for this assay, we observed 

a greater effect for the 17T cell line (p<.0001 for each mutation except for the mutation 

S1091F for which p<.001) than for the 63T cell line (p<.0001 for S830F and S1091F, p<.05 

for the mutations Q187* and S1184P) (Figure 25). 

 

Figure 25 : Effects of ABCB5 mutations on 

anchorage-independent growth of melanoma 

cells. A. All 17T ABCB5 mutant cells had a 

highly significant increase in number of 

colonies by comparison with the 17T 

ABCB5 WT cells. B. The 63T mutant cells 

only showed a highly significant increase in 

number of colonies for the mutations S830F 

and S1091F, while the effect was lower for 

the Q187* and S1184P mutations. *P<.05, 

**P<.01, ***P<.001, ****p<.0001. n=3. 

Values are the means  SEM. 
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1.3.3. Migration and invasion assay 

The role of ABCB5 in melanoma cell migration and invasion was then examined. To do 

so, cells were seeded in a Boyden chamber in serum-free medium. Cells tend to migrate 

through the pores to reach the other side of the membrane containing serum-enriched 

medium. In the invasion assay, cells must additionally digest the 3D-matrigel layer located 

at the bottom of the Boyden chamber to reach the lower compartment. After 24 hours, the 

cells were stained and counted. The 17T overexpressing ABCB5 mutants showed a higher 

migration ability for the mutations Q187* and S1091F, while the cells overexpressing 

ABCB5 S830F were not able to migrate through the pores of the Boyden chamber 

membrane (Figure 26A). The migration ability of 63T cells overexpressing ABCB5 

mutants was also affected and was significant for the mutations S830F, S1091F and S1184P 

(Figure 26B). Both 17T (Figure 26C) and 63T cells (Figure 26D) were not able to invade 

through the matrigel layer. 
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Figure 26: Effects of ABCB5 mutations on migratory and invasive abilities of melanoma cells. A. 17T ABCB5 Q187* 

and S1091F mutant cells showed a higher migration ability, while the ABCB5 S830F mutant cells was not able to migrate 

from the upper side of the Boyden chamber to the lower one. B. The migration ability of 63T ABCB5 mutant cells was 

also affected and was significant for the mutations S830F, S1091F and S1184P. C. The invasive ability of 17T ABCB5 

WT and mutant cells was assessed but no significant increase in invasion was observed. The p-values (student t test) are: 

0.4187 for Q187*, 0.5458 for S830F, 0.5856 for S1091F and 0.8927 for the mutation S1184P. D. The invasive ability of 

63T ABCB5 WT and mutant cells was assessed but no significant increase in invasion was observed, but for S830F 

mutation. The p-value (student t test) are: 0.0885 for Q187*, 0.0458 for S830F, 0.4291 for S1091F and 0.4215 for S1184P. 

*P<.05, **P<.01, ***P<.001,****p<.0001. n=3. Values are the means  SEM. 
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1.4. Discussion 

The expression of ABCB5 mutants Q187*, S830F, S1091F, S1184P in melanoma cells is 

associated with an increase of their proliferation ability. This was shown by the 

proliferation test and the soft agar colony formation assay. All 17T cells overexpressing 

ABCB5 mutants have a statistically highly significant increased proliferation rate 

compared with the WT ABCB5 cells (Figure 24). The impact of the ABCB5 mutations is 

lower in the 63T cells except for S1184P, for which the increase of the proliferation rate is 

highly statistically significant compared with the parental WT 63T cells. For both cell lines, 

colony number was significantly higher for cells expressing ABCB5 mutants compared 

with the WT ABCB5-expressing cells (Figure 25). 

The mutations were also associated with the migration ability of melanoma cells while the 

invasion ability is not affected, except for the 63T S830F mutant (Figure 26). 

1.4.1. The increase of proliferation is higher for the cell line 17T than for the cell line 63T 

The proliferation test on plastic and the soft agar colony formation assay showed that the 

proliferation ability of the cells is higher when the cells express ABCB5 mutants. A 

difference is observed between the cell lines 17T and 63T. Concerning the proliferation test 

on plastic, the effect is highly significant for the cell line 17T for each mutation, while there 

is no effect for the 63T cells (except for the mutation S1184P). While the effect is 

significant for the 63T in the soft agar colony formation assay, the effect observed is higher 

for the cell line 17T. This difference could be explained by an endogenous expression of 

ABCB5. Indeed, the 63T cells are wild type for ABCB5 whereas the 17T cells present the 

heterozygous non-sense mutation Q187*. We cannot exclude that this difference of effect 

could be due to a difference in terms of genetic background between the cell lines 63T and 

17T. While both are harboring NRASQ61K mutation, the 63T cells present two additional 

mutations: they have the mutation PTENR130* and are knock out for CDKN2A. We can 

hypothesize that the effect of the expression of ABCB5 mutants is less visible in this 

cellular model with other mutations of tumor suppressor genes. This could prevent us to 

observe the effect of ABCB5. However, the impact of these multiple mutations would be 

an increased proliferation of the cell line 63T. This is not the case; their proliferation rate 

is equivalent to that of 17T cells. Other unidentified factors can affect the proliferation 

ability of the cells. 
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1.4.2. Difference between the results of the proliferation test on plastic and soft agar 

colony formation assay 

While the results are consistent for the cell line 17T between the proliferation test and the 

soft agar colony formation assay (with a highly significant effect), the results are different 

between these two assays for the cell line 63T. No statistical effect is observed for the 

proliferation on plastic test (except for the mutation S1184P) whereas there is a significant 

difference in the colony formation assay for each mutation. Since the difference between 

these assays is that the proliferation test is influenced by the ability to adhere to plastic, we 

may hypothesize that the absence of effect could be related to this bias. We can consider 

the colony formation assay as more reliable. Soft agar colony formation assay, which 

remains a hallmark in cancer research, is one of the most reliable assay to assess the tumor 

suppressive function of a protein. This assay allows a quantitative assessment of cells 

tumorigenecity (Borowicz et al. 2014; Du and Zhao 2017; Horibata et al. 2015). The colony 

formation assay mimics the proliferation conditions in vivo whereas it is not the case in 2D 

monolayer culture. It allows a quantitative assessment of the tumorigenecity (Horibata et 

al. 2015). 

It is surprising to observe a striking difference between the results obtained for the S1184P 

mutation in 63T cells in the proliferation and soft agar colony formation assays. The 63T 

cells mutants S1184P presented the highest proliferative ability when they adhered to 

plastic whereas it is not the case in a semi-solid media. So far, we are still not able to explain 

this observation.  

1.4.3. Comparison between the studied mutations  

For the cell line 17T, the proliferation ability of the cells is identical for the different 

mutations. On the other hand, the proliferative ability of the 63T cells varies according to 

different mutations. 

The results of the soft agar colony formation assay for the cell line 63T showed a higher 

effect for the mutations S830F and S1091F. This does not seem to be related to the type of 

domains in which the mutated amino acid is present. Indeed, the mutations S830F and 

S1091F have different locations, respectively in the TMD2 and in the NBD2.  
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After the transduction, the expression level of ABCB5 was assessed by RT-qPCR. For the 

17T cell line, the ABCB5 S830F mutant was found to be 1.7 fold overexpressed when 

compared with its ABCB5 WT counterpart. The expression levels for the S1091F and 

S1184P mutants were found to be 1.6 and 1.3-fold overexpressed when compared to the 

ABCB5 WT expressing cells. For the 63T cell line, the ratio is higher for the mutations 

Q187* and S830F (1.5 and 3, respectively) and lower for the mutations S1091F and S1184P 

(0.80 and 0.27). This experiment was repeated but we did not manage to control this bias. 

This variation could explain the differences observed between the different mutants 

melanoma cells. This result is highly reproducible even if there is a variation in terms of 

expression level. Moreover, this experiment was performed on cellular population. This 

method reduced the heterogeneity, which could be explained using clones.  

1.4.4. The expression of ABCB5 mutants (Q187* and S1184P in 17T cells and Q830F 

and S1091F in 63T cells) increase the migration ability of cells when compared to 

the ABCB5 wild type counterparts. 

The results of the migration assay suggest the involvement of ABCB5 in the acquisition of 

melanoma cells migration capacity. 

The 17T cells expressing ABCB5 mutants Q187* and S1184P have a higher migration 

ability than the cells expressing ABCB5 wild type. The 17T cells expressing the mutants 

S830F are not able to migrate through pores of the Boyden chambers. We cannot explain 

why these cells are not able to migrate but the same mutation is associated to the highest 

migration ability for the cell line 63T. Thus, one may hypothesize that this absence of 

migration is not associated with the mutation (Figure 26). 

All the 63T cells expressing ABCB5 mutants have a higher migration ability than the 63T 

cell overexpressing ABCB5 wild type. The difference was statistically different for the 

mutations S830F and S1091F. The non-sense mutant Q187* is associated with the lowest 

migration ability. Again, this could be due to the compensation by the overexpression of 

other ABC transporters as it was suggested previously (Figure 26). Other ABC transporters 

were shown to be associated to the migration ability of cancer cells as explained in the next 

section. 

At this stage, we observed that mutations in ABCB5 increased the migration ability of the 

cells. The migration ability is an important factor for the metastases development. 
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1.4.5. Other ABC transporters are involved in tumorigenesis in vitro 

Several studies showed the involvement of ABC transporters in the acquisition of 

malignant potential. Recurrently, the expression of ABC transporters was shown to be 

associated with proliferation, migration and invasion abilities of cancer cells. However, the 

underlying mechanisms are often unknown. In this section, we reviewed the literature and 

discuss some experiments, which revealed the involvement of ABC transporters in 

tumorigenesis with a greater attention to ABCB1. Indeed, this transporter is very close to 

ABCB5 and some tracks have been explored about how this process happens. We also 

briefly develop ABCC4 and ABCG2.  

 

1.4.5.1. ABCB1 

Several studies showed that the expression of ABCB1 is associated with a more important 

tumorigenic potential. Already in 1999, Lehne has shown that the inhibitor of ABCB1, 

valspodar, provokes the arrest of the cell cycle and apoptosis in human leukemia cells 

(Lehne et al. 1999). This was confirmed by several studies in different cancer cell lines. In 

the case of colon cancer, the inhibition of the expression of ABCB1 by siRNA is associated 

with a decreased cell proliferation in vitro (Katoh et al. 2008).  
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In the case of breast cancer, silencing ABCB1 increased the migration of MCF7 cells when 

transwell migration and invasion assay were performed (Miletti-gonzalez et al. 2005). Co-

immunoprecipitation of ABCB1 and CD44, a receptor on the plasma membrane 

responsible for adhesion, motility and metastases development, was observed in the case 

of breast cancer and melanoma (Colone et al. 2008; Miletti-gonzalez et al. 2005). Colone 

and colleagues investigated the role of ABCB1 in the invasion phenotype of melanoma 

cells. ABCB1 and CD44 colocalized in the plasma membrane and were associated with a 

more invasive phenotype. This was shown using transwell chamber invasion assay. 

Moreover, Colone identified a link between ABCB1 and the MAPK pathway. During the 

passage through matrigel, the ABCB1 expressing M14 cells adopted a different behavior 

than the parental M14 cells. In the ABCB1 expressing cells, the activation of ERK1/2 and 

p38 leaded to an increase of the matrix metalloproteinase MMP2, MMP3 and MMP9 

mRNAs (Colone et al. 2008). Luciani and colleagues showed the interaction between 

ABCB1 and actin in human cell lines of lymphoid origin. Association of ABCB1 and actin 

could also explain the involvement of ABCB1 with the migration ability of these cells 

(Luciani et al. 2002). The interaction between plasma membrane and the cytoskeleton is 

involved in cell motility. 

In the case of carcinoma cells, the interaction between ABCB1 and the drug transported 

induced the “membrane ruffling”. This phenomenon, essential for cell motility is an 

indicator of the metastatic potential and is due to the activation of the PI3k pathway (Yang 

et al. 2002). The membrane ruffling is the formation of a membrane protrusion enriched in 

actin (Mahankali et al. 2011). 
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1.4.5.2. ABCC4 

ABCC4 has an impact on the migration ability of the cells by regulating the intracellular 

concentration of cyclic nucleotides, involved in cell migration. MEFS isolated from the 

mouse knock out for ABCC4 have a higher cAMP intracellular concentration and migrate 

faster than MEFS isolated from WT mice (Copsel et al. 2011; Sinha et al. 2013) These 

studies directly affect the probability of metastases development. Moreover, it was shown 

that F-actin was a downstream target of ABCC4, F-actin being involved in the formation 

of invadosomes (Kryczka et al. 2017; Sinha et al. 2016). The cancer associated fibroblasts 

play a crucial role in the invasion of many cancers including melanoma (Kryczka and 

Boncela 2018). Melanoma cells are able to recruit and activate fibroblasts (Flach et al. 

2011). The inhibition of the expression of ABCC4 in neuroblastoma and pancreatic cancer 

cells is associated with a decreased cell proliferation (Henderson et al. 2011; Zhang et al. 

2012). The silencing of ABCC4 also inhibits the proliferation of smooth cell muscle by 

cAMP independent signaling pathway (Copsel et al. 2011).  

1.4.5.3. ABCG2  

The down regulation of ABCG2 inhibits the migration and the invasion of pancreatic cancer 

cells (F. Wang et al. 2010). Chen identified that the silencing of ABCG2 expression leads 

to G0/G1 cell cycle arrest in the MCF7 and A549 cell lines. The silencing of ABCG2 is 

associated with the downregulation of cyclin D3 and p21. The expression of ABCG2 was 

also shown to be associated with the progression of the laryngeal squamous cell carcinoma. 

The silencing of ABCG2 inhibited tumor growth by regulating cellular proliferation and 

apoptosis. MAPK pathway regulates ABCG2. Indeed, inhibitors of MAPK pathway 

decreased the cellular proliferation and promote apoptosis by degrading endogenous 

ABCG2 (Xie et al. 2014). 

1.4.5.4. ABCC1, ABCA1 and ABCC7 

ABCC1 is implicated in the development of neuroblastoma. In vitro studies show that the 

inhibition of the ABCC1 expression is associated with an increase of apoptotic cells 

(Peaston et al. 2001). In cell lines overexpressing MYCN, the inhibition of ABCC1 

decreased the colony formation and the migration ability (Henderson et al. 2011).  
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ABCA1 seems to be involved in ovarian cancer and prostate cancer biology. Indeed, its 

expression is correlated with a higher proliferation and migration ability of the cell (Her et 

al. 2013; Sekine et al. 2010).  

The inhibition of the expression of ABCC7 is associated with the inhibition of the 

migration, invasion, proliferation and adhesion abilities in ovarian cancer (Xu et al. 2015). 

1.5. Conclusion 1 about the involvement of ABCB5 in Melanomagenesis in vitro 

ABCB5 seems to be involved in melanomagenesis as a tumor suppressor in vitro in human 

melanoma cells 17T and 63T both harboring the NRasQ61K activating mutations. Indeed, 

the cells overexpressing ABCB5 mutants Q187*, S830F, S1091F and S1184P showed a 

higher proliferation ability than cells overexpressing ABCB5 wild-type. This was shown 

by the proliferation test on plastic and by the soft agar colony formation assay. 

Furthermore, our results suggest that ABCB5 could also play a role in tumor progression. 

Indeed, inactivating mutations of ABCB5 leads to an increase of the migration ability of 

melanoma cells. However, no trend was observed for the invasive ability of the melanoma 

cells. The implication of ABCB5 in the migration ability suggests its involvement in the 

development of metastases. However, the underlying mechanism has yet to be unraveled.  

ABCB5 is not an isolated case among ABC transporters. Indeed, we discussed the case of 

several ABC transporters involved in the acquisition by the cells of malignant properties: 

ABCB1, ABCC1, C4, ABCG2, etc. While the precise mechanism is still unclear, we hold 

that ABC transporters may impact the organization of the cytoskeleton and the signaling 

pathways. The involvement of ABCB1 and ABCG2 in cancer biology was associated with 

the MAPK pathway. This seems to be a good option to pursue, knowing that this pathway 

play a key role in melanoma development. 
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2. Study of the implication of ABCB5 in melanomagenesis in vivo 

2.1. Objectives of the in vivo project 

While the in vitro results showed that the expression of ABCB5 mutants is associated with 

an increased ability of proliferation and migration of melanoma cells, the second step was 

to investigate the involvement of ABCB5 in melanomagenesis in vivo. 

This experiment had on purpose to assess the penetrance of Abcb5 using a reduced number 

of animals. We aimed to investigate the impact of the silencing of Abcb5 on tumor 

incidence. Knowing that carcinogenesis is the results of multiple genetic alterations, we 

aimed to combine the silencing of Abcb5 with other genetic alterations of oncogene/tumor 

suppressor genes. 

To do so, we decided to develop three transgenic mouse models (Abcb5TyrNRasQ61K, 

Abcb5TyrHRasG12V and Abcb5Ink4a/Arfflox/floxTyrCre) by crossing the mouse model knock 

out for Abcb5 (developed by Gillet and colleagues) and pre-existing mouse models. The 

explanations about the genetic constructs are provided on pages 76, 79 and 82. Among the 

three mouse strains, we aimed to compare the incidence of melanoma between the Abcb5 

knock out mice and the wild type mice. 

2.2. Justification of the murine model used 

As aforementioned, mutations in the NRAS gene are present in 20% of melanoma (Jakob 

et al. 2013). While NRas was mutated in 75% of melanoma samples mutated for Abcb5 

(see in the preliminary section), we hypothesized that the activated NRas and inactivated 

Abcb5 could act synergistically to lead to melanomagenesis.  

However, while the existing mouse model expressing NRasQ61K leads to the apparition of 

metastases (Ackermann J. et al. 2005), it would not allow to investigate the putative 

involvement of Abcb5 in the apparition of metastases.  

To determine the involvement of Abcb5 in melanoma progression, we aimed to determine 

the frequency of metastases apparition. To explore this, we used the model TyrHRasG12V 

that does not lead to the apparition of metastases in distant organs.  
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The rationale for using the Ink4a/Arfflox/floxTyrCre model is that, among the human melanoma 

samples mutated for ABCB5, 62,5% were also mutated for CDKN2a. This led us hypothesize 

that Abcb5 and Cdkn2a may act synergistically and provoke melanoma development. To 

answer this question, we have chosen the model Abcb5Ink4a/Arfflox/floxTyrCre. 

The mouse strain Abcb5TyrNRasQ61K spontaneously expresses the activated NRasQ61K while 

the mouse strains Abcb5TyrHRasG12V and Abcb5Ink4a/Arfflox/floxTyrCre need to be injected 

with 4-hydroxytamoxifen respectively to express the activated HRasG12V or to lose the 

expression of the p16 and p19 transcripts.  

As a negative control, four mice knock out for Abcb5 were injected with 4-hydroxytamoxifen 

and three with peanuts oil (used as vehicle). 

2.3. Results of the different mouse models 

2.3.1. The mouse strain knock out for Abcb5 

Gillet and colleagues developed the Abcb5 knockout mouse strain (unpublished data). It is 

characterized by excision of the exon 2. No change in melanoma prevalence was observed 

in the case of this mouse strain.  

This mouse strain was used in our experiment as a control. Most mice knockout for Abcb5 

present relatively large and dark spots on the skin at macroscopic level. Histological 

sections revealed a slight melanocytic incontinence and few melanophages were identified 

in the dermis (Figure 27).  

 

Figure 27: Slight dark spots were observed on the skin of some mice knock out for Abcb5. Microspically, very few 

melanophages were identified. 
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2.3.2. The mouse strain Abcb5TyrNRasQ61K 

2.3.2.1. Description of genetic constructs 

The mouse strain Abcb5TyrNRasQ61K was developed in our laboratory by crossing the 

Abcb5 knockout mice with TyrNRasQ61K mice developed by Ackermann and colleagues 

(Ackermann J. et al. 2005). 

This mouse strain presents two genetic constructs. The first one will allow the excision of 

the exon 2 of the Abcb5 gene and the second one, the activation of TyrNRasQ61K. The latter 

is composed of the promoter of tyrosinase, followed by the NRas gene exhibiting the 

activating mutation Q61K and SV40pA, a polyadenylation signal. The expression of the 

activated NRasQ61K is under the control of the tyrosinase promoter (Figure 28). 

 

Figure 28: The mouse strain Abcb5TyrNRasQ61K contains two genetic constructs: the excision of the exon2 of Abcb5 and 

the transgene NRasQ61K under the control of the tyrosinase promoter. 

2.3.2.2. Results obtained with the mouse strain Abcb5TyrNRasQ61K  

The mice of the mouse strain Abcb5TyrNRasQ61K express spontaneously the activated 

oncogene NRasQ61K. Mice were genotyped and monitored during 18 months. 

The most prominent observation made on mice harboring NRasQ61K was an 

hyperpigmentation of the skin as already described by Ackermann and colleagues 

(Ackermann J. et al. 2005). In most mice of this model, an invasion of melanocytes in the 

dermis was observed. At the macroscopic level, we observed little dark spots on the skin. 

In tumors, melanocytes called “plump cells” and melanophages were observed. The plump 

cells are angular melanocytes with abundant cytoplasm densely pigmented. 
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In all mice, the invasion of lymph nodes was observed. At macroscopic level, no difference 

could be observed in other organs scrutinized. 

The mice of this mouse strain are divided in two groups: the mice knockout for Abcb5 and 

the mice wild type for Abcb5. We aimed to compare the tumor incidence between these 

groups. 

Seven mice knockout for Abcb5 were dissected. Among them, five mice (5/7) developed 

a tumor. Two tumors were sent to our collaborator specialized in anapathology Marianne 

Heimann. They were identified as melanoma. One mouse knockout for Abcb5 presented 

several tumors on the back. These tumors were melanotic. One tumor presented a melanotic 

part and an amelanotic part (Figure 29). 

In the Abcb5 wild type group, eleven mice were dissected. Five of them presented a 

cutaneous tumor. One tumor has been sent to our collaborator and the diagnosis of 

melanoma was confirmed. One eye was analyzed. At the level of the eyeball, there is a 

deposit of plump-like melanocyte in the choroid. It forms a lichenoid infiltrate throughout 

the posterior chamber.  

Five out of seven mice knockout for Abcb5 developed tumors, while the proportion is of 

5/11 for the mice wild-type for Abcb5. A fisher test, which aims to compare proportions, 

was performed. This statistical test did not reveal any significant difference (Table 4). 

Table 4: Contingency table of the apparition of cutaneous tumors for the mouse model Abcb5TyrNRasQ61K 

 KO Abcb5  WT Abcb5  

Tumor 5 5 10 

No tumor 2 6 8 

 7 11  
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Figure 29: This mouse knock out for Abcb5 and expressing the activated NRasQ61K present several melanotic tumors 

visible macroscopically (A). These tumors were stained with hematoxylin (B) and we distinguish a highly pigmented area 

where plump cells and melanophages were identified (C). Plump cells were also identified in the less pigmented area (D). 

All mice of this mouse strain present hyperpigmentation of the skin and most of them presented little darker spots on the 

skin (E). This reflect the invasion of plump cells in the dermis and hypodermis (F). 

2.3.3. The mouse strain Abcb5TyrHRasG12V  

2.3.3.1. Description of genetic constructs 

The mouse strain Abcb5TyrHRasG12V was obtained by crossing the mice Abcb5 knockout 

(Gillet and colleagues- unpublished data) and the mice carrying the TyrHRasG12V construct 

(Huijbers et al. 2006). 
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The mouse strain Abcb5TyrHRasG12V includes two genetic constructs (Figure 30). The first 

one to allow the deletion of the exon 2 of Abcb5 gene and the second carrying the Tyr-

RasP1A transgene. This one is composed of a gene CreERΔD flanked by two LoxP sites, 

followed by the mutated gene HRasG12V and by a gene coding for the tumor-specific antigen 

P1A. The entire second construct is under the control of the tyrosinase promoter. The 

transgene CreERΔD codes for the Cre recombinase fused to a mutated estrogen receptor. 

Without 4-OHT (4-hydroxytamoxifen) administration, the fused Cre-ER protein is 

sequestrated in the cytoplasm by the HSP90 chaperone. If 4-OHT is administrated, this ER 

receptor binds to 4-hydroxytamoxifen with high affinity and promotes the dissociation of 

Cre-ER from HSP90 (Lepper and Fan 2012). Then, the recombinase is able to translocate 

in the nucleus and to excise the sequence flanked by LoxP sites. In the case of this mouse 

strain, the recombinase will excise its own coding sequence allowing the expression of the 

activated HRasG12V.  

 

Figure 30: The mouse strain Abcb5TyrHRasG12V contains two genetic constructs. The first one is the deletion of the exon 

2 of Abcb5 and the second is the transgene Tyr-RasP1A that is under the control of tyrosinase promoter. This latter 

transgene, floxed by two LoxP sites, contains the gene of the recombinase CreERΔD coding for the recombinase Cre 

fused with a mutated estrogen receptor. This is followed by the mutated gene HRasG12V and by the gene of the tumoral 

antigen P1A. After administration of 4-hydorxytamoxifen, the Cre recombinase excises its own gene and allow the 

expression of the activated HRas G12V. 

2.3.3.2.  Results obtained with the mouse strain Abcb5TyrHRasG12V 

In the case of the mouse strain Abcb5TyrHRasG12V, injection with 4-hydroxytamoxifen is 

needed to induce the expression of the activated HRasG12V. Intraperitoneal injections were 

performed at the age of 7 weeks (four times at 48 hours interval, 2mg of 4-OHT) and mice 

were monitored during 18 months. Within this strain, mice are divided in two groups: the 

Abcb5 knockout and the Abcb5 wild type mice. 
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Nine mice knockout for Abcb5 were dissected. None of them developed skin tumors 

(Table 5). Two mice presented dark spots on the skin but histological sections revealed an 

inflammatory process. One mouse developed hepatoma and two mice presented a cellular 

mass at the intestinal level. This mass was analyzed histologically and represented a 

lymphomatous neoplastic infiltrate.  

Four Abcb5 wild type mice were dissected. None of them developed a melanoma 

(Table 5). Two of them presented dark and large spots on the skin, comparable to the spots 

observed in the Abcb5 knockout mice.  

Table 5 :Contingency table of the apparition of cutaneous tumors for the mouse model Abcb5TyrHRasG12V 

 Abcb5 KO Abcb5 WT 

Tumor 0 0 

No tumor 9 4 

 

Two mice developed tumors without 4-hydroxytamoxifen injection. The first one 

developed metastasized melanoma without injection of 4-hydroxytamoxifen. The skin 

tumor was melanotic and was confirmed as melanoma by our collaborator. Plump cells 

were observed in the dermis. Some melanocytes similar to plump cells were found in the 

liver in the portal region. In the brain, pigmented cells were found in the choroid (Figure 

31). The tumor that appeared in the second animal was identified as a schwannoma. 
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Figure 31: A mouse knock out for Abcb5 of the mouse strain Abcb5TyrHRasG12V develop melanoma without induction 

with 4-hydroxytamoxifen. The tumor was melanotic (A) and the skin of the mouse was highly pigmented (B). 

Inflammation was observed in the skin where plump cells and lymphocytes were identified (C, D). Melanocytes were 

observed in the liver in the portal region (E) and pigmented cells were found within the choroid plexus (F). 

 

2.3.4. The mouse strain Abcb5 Ink4a/Arf flox/floxTyrCre  

2.3.4.1. Description of genetic constructs 

The mouse strain Abcb5KO Ink4a/Arf flox/floxTyrCre has three genetic constructs : the one 

allowing the deletion of the exon 2 of Abcb5, the Tyr-Cre/ERT2-13Bos transgene (Dankort 

et al. 2009) and the gene Cdkn2a whose exons 2 and 3 are flanked by two loxP sites 

(Huijbers et al. 2006). The second construct was composed by a fusion gene CreERT2 under 

the control of the tyrosinase promoter and of its enhancer. This transgene codes for the Cre 

recombinase fused to a mutated estrogen receptor, selectively expressed in melanocytes 

(Figure 32). 
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Normally, Hsp90 sequestrates the recombinase Cre in the cytoplasm. Upon administration 

of 4-hydroxytamoxifen, Cre is able to excise the exons 2 and 3 of the Cdkn2a gene. As a 

reminder the gene CDKN2A encodes for two proteins: p16INK4a and p14ARF (p19ARF in the 

case of mice). The p16INK4 is formed by the expression of the exon 1α, exons 2 and 3, while 

p19 is formed from alternate splicing of the exon 1β with exons 2 and 3. Thus, the deletion 

of exons 2 and 3 leads to the silencing of the two transcripts. 

 

Figure 32: The mouse strain Abcb5KO Ink4a/Arf flox/floxTyrCre present three genetic constructs. The first one is the 

deletion of the exon 2 of Abcb5, the second one is the gene CreERT under the control of the promoter of the tyrosinase. 

The third one is the presence of loxP sites around the exon 2 and 3 of Cdkn2a gene. 

2.3.4.2. Results for the mouse strain Abcb5KO Ink4a/Arf flox/floxTyrCre  

In the case of the mouse strain Abcb5KOInk4a/Arfflox/floxTyrCre, injection with 4-

hydroxytamoxifen is needed to induce the deletion of the exon 2 and 3 of the Cdkn2a gene. 

Intraperitoneal injections were performed at the age of 7 weeks (four times at 48 hours 

interval, 2mg of 4-OHT) and mice were monitored during 18 months. Within this strain, 

mice are divided in two groups: the Abcb5 knockout mice and the Abcb5 wild type ones. 

Mice of this model did not present any pigmentation peculiarities in the skin. The ganglia 

was never pigmented. Mice of this mouse strain are divided in two groups. 

No melanoma development was observed in the group of eight mice knockout for Abcb5 

(Table 6). Three animals had dark spots on the skin but they were diagnosed as dermatitis. 

However, two animals developed other types of tumors. One mouse had a spleen tumor. 

Another mouse had a non-identified tumor, originating either from muscle tissue or from 

nerve sheath. 
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No mice in the group of four Abcb5 wildtype developed a melanoma (Table 6). One 

member of this group presented a tumor in the small intestine. This tumor was analyzed by 

our collaborator and was identified as a lymphoma. 

Table 6 : Contingency table of the apparition of cutaneous tumors for the mouse model Abcb5TyrHRasG12V 

 KO Abcb5 WT Abcb5 

Tumor 0 0 

No tumor 8 4 

 

2.4. Discussion 

The mice exclusively knockout for Abcb5, used as control, do not develop melanoma or 

other kinds of cancer. Among the mice Abcb5TyrNRasQ61K, the proportion of mice 

developing tumors is of 5/7 in the Abcb5 knockout group and of 5/11 in the Abcb5 wild 

type group. The tumors were confirmed to be melanoma by our collaborator anapathologist 

(Marianne Heimann). Among the nine mice knockout for Abcb5 of the mouse strain 

Abcb5TyrHRasG12V, we did not observed any cutaneous tumors. However, we observed 

one case of hepatoma and two lymphomas. For the same mouse strain, no tumor was 

observed for the group Abcb5 wild type. We observed the development of one melanoma 

and one schwanoma without 4-hydroytamoxifen induction. The results for the mouse strain 

Abcb5KO Ink4a/Arf flox/floxTyrCre showed one spleen tumor and one non-identified tumor 

over the eight mice corresponding to the knockout genotype. No melanoma was observed 

in the group of four Abcb5 wild type mice, while one lymphoma was observed. 

2.4.1. Tumor occurrence  

The fact that mice exclusively knockout for Abcb5 did not develop tumors does not mean 

that Abcb5 is not implicated in melanomagenesis. Indeed, tumorigenesis is a multistep 

process provoked by the “gain-of-function mutations in oncogenes and loss-of-function 

mutations in tumor suppressor genes”. 
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Many in vivo studies showing the implication of ABC transporters in tumorigenesis 

combined the expression of a given transporter with a mutated oncogene or tumor 

suppressor gene. For example to assess the involvement of ABCB1 as an oncogene in the 

case of intestinal cancer, Mochida and colleagues made use of a mouse model with a 

truncated mutation in the tumor suppressor gene APC (APCMin/+) (Mochida et al. 2003). 

The study of ABCC1 involvement in the development of neuroblastoma was performed in 

the mouse model expressing the oncogene MYCN (Th-MYCN mouse model of 

neuroblastoma) (Henderson et al. 2011). 

For the Abcb5TyrNRasQ61K mouse strain, an exact fisher test was performed to compare 

the tumor frequencies between the Abcb5 wild type/knockout groups. This test did not 

allow us to draw a conclusion, this is probably due to the low number of animals that we 

could include in the experiment. We could also compare the experimental occurrence 

observed in the group Abcb5 TyrNRasQ61K (5/7) with the occurrence of 30% reported by 

Ackermann for the TyrNRasQ61K mice (Ackermann J. et al. 2005). The occurrence tends to 

be higher in our hands but the number of animals studied did not allow us to draw a 

conclusion.  

In the case of the Abcb5TyrHRasG12V mouse strain, no melanoma was observed; neither 

for the group knockout for Abcb5, nor for the group expressing wild type Abcbb5. However, 

other cancers developed in the group of the mice knockout for Abcb5. One hepatoma and 

one lymphoma were confirmed. We cannot draw any conclusion at this stage of the 

experiment. It is worth mentioning that it was already shown in 1995 that the only alteration 

of HRasV12G is not sufficient for inducing a melanoma (Powell et al. 1995). 

The Abcb5KO Ink4a/Arf flox/floxTyrCre mouse strain did not show any melanoma 

development. Two tumors (one lymphoma and one unidentified tumor) appeared in the 

group of the mice knockout for Abcb5. One mouse wild-type for Abcb5 developed a 

lymphoma.  

Unfortunately, considering that tumor development was rarely observed, we cannot draw a 

conclusion at this stage. We started again this experiment with a number of 35 animals per 

group. 
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2.4.2. Development of tumors without induction with 4-hydroxytamoxifen 

The development of tumors by two mice of the group Abcb5TyrHRasG12V without 4-

hydroxytamoxifen induction can be due to the result of the leakiness of the inducible Cre 

system. This means that the recombinase Cre will be translocated in the nucleus without 

tamoxifen induction. A phenomenon of leakiness was observed for the mouse model 

BRafCAPtenloxPTyr::CreERT2 developed by Jaxon Laboratory. Indeed, this strain is known 

to develop melanoma without induction with tamoxifen (Hooijkaas et al. 2012). The 

spontaneous development of melanoma in the case of this mouse strain was also observed 

in our laboratory (unpublished data). Leakiness was also observed in other mouse models 

like RIP-CreER (Liu et al. 2010). Steim and colleagues revealed a leakiness phenomenon 

using the system Cre-ERT2/LoxP, performing a lineage tracking during fracture repair 

(Seime et al. 2015). However, in our case, the model of TyrHRasG12V would be associated 

with a minor leakiness because the proportion of mice developing tumors is low. To 

confirm it, the recombination should be confirmed in the tumors. 

2.4.3. Pigmentation of the skin 

In the mouse strain exclusively knock out for Abcb5, a very slight melanocytic 

incontinence was noticed. This could be the result of a role of the full-sized ABCB5 in 

melanogenesis while Chen suggests a role of ABCB5 α and β in Melanogenesis (K. G. 

Chen et al. 2009). 

The hyperpigmentation of the skin observed in the case of the mouse strain 

B5TyrNRasQ61K was also observed by Ackerman and colleagues. We noticed little very 

dark spots on the skin (Figure 29), a feature which was not described in the characterization 

of this mouse model. Microscopically, those dark spots are due to melanocytes found in the 

dermis. Melanophages observed in the dermis and the melanotic tumors were observed by 

Akermann (Ackermann J. et al. 2005).  

The tumor of the mouse Abcb5TyrHRasG12V developed without induction was melanotic. 

2.4.4. Lymph nodes 

The mice of the model Abcb5TyrNRasQ61K present invaded lymph nodes by pigmented 

melanocytes like it was described by Ackermann for the characterization of the mouse 

model Abcb5TyrNRasQ61K (Ackermann J. et al. 2005). 
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In the mouse model of Huijbers, they observed melanoma cells and melanophages in lymph 

nodes (Huijbers et al. 2006). In our hands, lymph node appeared to be healthy and no further 

analyzes were performed. 

2.4.5. Metastases 

Melanomas of the mouse strain Abcb5TyrNRasQ61K metastasized in distant organs. 

However, while Ackerman noticed metastases in lung and liver, these organs 

macroscopically did not show any peculiarities in our study. Only one mouse presented 

dark spots on the lung. These observations indicate that we should consider an investigation 

on multiple organs in the rest of this study. 

The absence of metastasis observed with the mouse strains Abcb5TyrHRasG12V and 

Abcb5Ink4a/Arfflox/floxTyrCre is consistent with the observation made by Huijbers and 

colleagues (Huijbers et al. 2006). 

Among the mice of the model Abcb5TyrHRasG12V, one mouse developed tumors and 

metastases without induction with 4-hydroxytamoxifen. Metastases were located in the 

liver and the brain (in the choroid plexus). While Huijbers and colleagues did not observe 

the development of metastasis in the model combining the activated mutation of HRasG12V 

and the silencing of Cdkn2a, they did when they injected tumor cells with these genetic 

alterations in SCID mice. The metastases developed in the lung, the liver and the adrenal 

glands. Their hypothesis is that a step is missing in their model: the passage of the cancer 

cells to the blood circulation. In our study, metastases were observed in the model 

Abcb5TyrHRasG12V for one Abcb5 knockout mouse. If this is observed in other mice, we 

could hypothesize the implication of Abcb5 in the metastases development. Regarding the 

in vitro results, we could imagine the implication of Abcb5 in the acquisition by the cells 

of a higher migration ability.  

2.4.6. Apparition of different types of cancers 

The occurrence of cancers non-identified as melanoma is surprisingly high in the mouse 

model Abcb5TyrHRasG12V and Abcb5 Ink4a/Arfflox/floxTyrCre. 
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2.4.6.1. Lymphoma 

One mouse Abcb5Ink4a/Arfflox/floxTyrCre and one mouse Abcb5TyrHRasG12V developed 

lymphoma. Lymphoma is a blood cancer developing from lymphocytes, which can 

originate from the B cells, T cells or from natural killer cells (E. N. Mugnaini 2018) . In the 

mouse model of Chin, the loss of the expression of Ink4a/Arf is not inducible. In this case, 

they observed lymphoma and fibrosarcoma (Chin et al. 1997). However, in our model, the 

genetic alterations are exclusively expressed in melanocytes because this is under the 

control of the tyrosinase promoter. To check this, we could detect the expression of the 

activated HRasG12V or the deletion of exon 2 and 3 in the Cdkn2a gene in the lymphoma 

cells.  

There is an association between these malignancies. Some patients with non-Hodgkin's 

lymphoma develop subsequently melanoma (or non-melanoma skin cancer). This 

association would be due to the commonly shared genetic aberration (Brewer 2010). Lam 

and colleagues confirmed that patients surviving from non-Hodgkin lymphoma have a 

greater risk of developing melanoma. The underlying mechanisms remain unclear even if 

their data would indicate the role of T-cells dysfunction (Lam et al. 2015).  

2.4.6.2. Schwannoma 

In our study, we observed a particularly high number of schwannomas, tumors originating 

from Schwann cells. 

One of the mouse strain Abcb5 Ink4a/Arfflox/floxTyrCre developed a schwanoma as well as 

one mouse of the Abcb5TyrHRasG12V strain without induction.  

Studies show that there exists a link between melanocytes and Schwann cells. Both 

originate from neural crest (Woodhoo and Sommer 2008) and there are evidence showing 

that precursors of Schwann cells differentiate into melanocytes (Cichorek et al. 2013). Van 

Raamsdonk and colleagues point that melanocytes and Schwann cells exhibit some 

plasticity particularly in the process of transformation. Van Raamsdonk and colleagues 

claim that melanoma can show some histopathological features of glial of neural 

differentiation. The study of Fullen and Huttenbach showed that melanocytic nevi can 

follow schwannian differentiation (Fullen et al. 2001; Huttenbach et al. 2002).  
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However, Murali and colleagues describe melanotic schwannoma as rare, representing 1% 

of schwanomas (Murali et al. 2010). Melanotic schwannoma express tyrosinase and 

Pmel17, which are markers of melanocytes. They also contain melanosomes (Arvanitis 

2010; Boyle et al. 2009). While these markers of melanocytes are also expressed in 

schwannoma cells, the distinction between melanoma and schwannoma appeared to be 

difficult. However, it is possible to determine if the tumor cell presents the recombination. 

Huijbers, using the same mouse model, also observed the development of tumors described 

as Malignant Peripheral Nerve Tissue (MPNST). He developed arguments suggesting their 

melanocytic origins. The first one is that, in humans, MPNST are associated with 

neurofibromas or neurofibromatosis, while these kinds of lesions were not observed in its 

mouse model. Secondly, he also observed that tumors identified as pigmented melanomas 

presented areas of Schwann cell differentiation (Huijbers et al. 2006). 

2.4.6.3. Studies showing the involvement of ABC transporters in melanomagenesis in 

vivo 

Other ABC transporters were shown to be involved in tumorigenesis. 

The expression of ABCB1 was shown to be associated with the aggressiveness of tumors 

using transplantable hamster melanoma (Witkowski JM et al. 2000). The silencing of 

ABCB1 in a mice xenograft tumor formation assay, inhibited tumor expansion (Katoh et 

al. 2008). Mochida and colleagues showed that ABCB1 was involved in tumorigenesis in 

the case of intestinal cancer. They silenced the expression of ABCB1 in the mouse model 

APCMIN/+ (Mochida et al. 2003) .  

 

ABCG2 was shown to be associated with a reduced median latency of breast tumor using 

the mouse model BCRA1 mutated (Zander et al. 2012). 

The inhibition of ABCC1 in the hMYCN transgenic mouse model inhibits the development 

of neuroblastoma. They observed a statistically significant delay in tumor progression. The 

oncogene MYCN is frequently expressed in case of neuroblastoma (Henderson et al. 2011). 
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2.5. Conclusion 2 and perspectives 

At this stage, we cannot draw a firm conclusion on the involvement of Abcb5 in 

melanomagenesis in vivo. However, this pilot study paves the ground for further 

experiment on a larger set of mice  

At first, as the frequency of the tumors is low, it shows us the need to increase the number 

of animals included in the experiment. It is now pursued with 35 mice per group.  

Secondly, we should proceed to a systematic organ removal for each dissections. This is 

crucial to investigate the role of Abcb5 in the development of metastases. The 

immunohistochemistry with Antibodies recognizing Pmel17, TIRP1 or MART1 should 

definitively validate the diagnostic of melanoma. 

The validation of the recombination should be performed. In the case of the mouse model 

Abcb5 Ink4a/Arf flox/floxTyrCre, a PCR with three primers will be performed with DNA 

extracted from the tail and the tumor. Two primers are flanking the loxP site downstream 

of exon 3 and one additional primer is located upstream the other loxP site. The size of the 

PCR product will be different if the recombination takes place. Without recombination, the 

size of the PCR product will be of 350bp and of 427bp if the recombination takes place 

(Ackermann J. et al. 2005). 

In the case of the Abcb5TyrHRasG12V mouse strain, the expression of the transgene Tyr-

RasP1A will be validated by southern blot on the DNA fragment isolated from the tumor 

cell lines and from the tail, digested with EcoRV and hybridized with P1A probe. The 

observation of the transgene at the size of 3,5kb will confirm the recombination.  
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3. Study of the subcellular localization of the transporter ABCB5 in 

melanoma Cells 

3.1. Objective of the study of the subcellular fractionation 

As previously described, our in vitro results point the involvement of ABCB5 in 

melanomagenesis. If this study is confirmed in vivo, it will be of paramount importance to 

assess the molecular mechanism underlying the role of ABCB5 in melanomagenesis. The 

subcellular localization of any given protein is classically an important step towards the 

elucidation of its function. With this idea in mind, we decided to start the exploration of the 

intracellular localization of ABCB5 in A375 melanoma cells. A375 appeared to be an 

adequate cellular model because these cells constitutively express ABCB5 and are non-

pigmented. 

Two main approaches can be used to study the subcellular distribution of any given protein. 

One approach relies on the use of microscopy and co-localization studies performed by 

immunofluorescence. Alternatively, a biochemical approach can be used, based on 

subcellular fractionation by ultracentrifugation. Typically, the aim of the subcellular 

fractionation is to use a fractionation protocol giving rise to characterized subcellular 

fractions specifically enriched in given organelles. From there, it becomes possible to 

compare the distribution profile of any protein of interest to the distribution profiles of 

resident proteins of the classical classes of organelles. The main asset of such biochemical 

approach is the fact that it can be monitored through a rigorous bookkeeping and is easily 

prone to quantitative measurements. On the other hand, if the protein of interest cannot be 

detected through the measurement of its biological activity, establishing its distribution 

requires the availability of a quality antibody leaving no doubt about its specificity. 

With this idea in mind, we decided to start the first steps of the biochemical analysis of 

ABCB5 subcellular localization in A375 melanoma cells, hence to establish a protocol of 

fractionation allowing the recovery of subcellular fractions suitable to discriminate between 

the distributions of the major subcellular compartments: nuclei, mitochondria, lysosomes, 

endoplasmic reticulum, plasma membrane and cytosol.  
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3.2. Results of Subcellular fractionation 

The protocol used for the fractionation of the A375 cells by differential sedimentation was 

adapted from the method described by de Duve and colleagues (de Duve et al. 1955). Its 

principle is to break open the plasma membrane to obtain a so-called "homogenate" hence 

a suspension of organelles with minimal leakage of their soluble protein content. This 

homogenate is then submitted to several steps of centrifugations at increasing centrifugal 

forces (increasing g x min). At each step, pellets are collected, which allow the recovery of 

subcellular structures characterized by their decreasing sedimentation coefficients (Figure 

33). 

When applied to murine liver, this method gives rise to 5 fractions. The first fraction to 

sediment is the nuclear fraction (N), enriched in nuclei but containing also some intact cells 

and large size fragments of the plasma membrane, while the supernatant is the cytoplasmic 

extract (E). This latter fraction is then further fractionated, which gives rise to the "heavy 

mitochondrial fraction" (M) containing the bulk of mitochondria, lysosomes and 

peroxisomes, the "light mitochondrial fraction" (L) enriched in lysosomes and peroxisomes 

and the microsomal fraction (P) containing microsomes, hence small size vesicular 

structures formed during the homogenization of the plasma membrane, Golgi and 

endoplasmic reticulum. This fraction also contains small size vesicular structures belonging 

to the family of endo-lysosomes. The last fraction (S) is the final supernatant containing 

the cytosol and all the subcellular structures with a coefficient of sedimentation such that 

they do not sediment at the centrifugal force used to obtain the P pellet. 



 

92 

 

 

Figure 33: Simplified scheme of the 

subcellular fractionation protocol. The 

first centrifugation of the homogenate 

at 6.103.g.min will give the nuclear 

fraction (N) and the supernatant is the 

cytoplasmic extract (E). This one 

undergoes a series of centrifugation at 

higher and higher speed giving the 

heavy mitochondrial fraction (M) at 

30.103.g.min the light mitochondrial 

fraction (L) at 250.103.g.min, and the 

microsomal fraction at 3000.103.g.min. 

The soluble fraction (S) contains all cell 

component non-sedimentable at the 

speed of 3000.103.g.min. LPS and PS 

are supernatants containing the 

corresponding fractions. 

 

 

3.2.1. Distribution profile of marker proteins 

The behavior of cells with respect to homogenization and fractionation can differ greatly 

from cell type to cell type. Our first goal was therefore to establish a method 

(homogenization and fractionation) suitable to A375 cells, that would give rise, as much as 

possible, to the clear-cut distributions profiles that have been extensively characterized in 

liver (de Duve et al. 1955). In order to establish the distribution profiles of subcellular 

structures, we mainly relied on measurements of enzymatic activities of well characterized 

"marker enzymes". We assayed acid beta-galactosidase (lysosomes), alkaline alpha-

glucosidase (endoplasmic reticulum), alkaline phosphodiesterase (plasma membrane), 

cytochrome oxidase (mitochondria) and lactate dehydrogenase (cytosol). Moreover, we 

assessed the distribution of nuclei through a western blotting detection of histone H1 by 

loading the same amount of protein for each fraction. The western blot signal was 

quantified using the software Image J. 
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The distribution profiles of these markers were presented as histograms (Figure 34) in 

which the Y-axis represents the relative specific activity (the ratio of the relative activity 

measured in the fraction to its relative protein content) and the X-axis represents the 

cumulative percentages of proteins in the 5 fractions. Plotted this way, the histograms 

provide a clear view of two important parameters: the height of each rectangle represents 

the enrichment of the protein in the fraction, while its surface indicates the relative activity 

(the percentage of activity recovered in the fraction relative to the total activity present in 

the homogenate). These percentages are presented in the tables next to histograms. 

When a protein is detected by wester blotting as in the case of histone H1, the same 

procedure applies except that the enrichment factor is assessed through the measurement 

of a "relative specific signal intensity" instead of the relative specific activity used for the 

marker enzymes. The quantification of the signals obtained by western blotting allowed us 

to establish a distribution profile of the nuclei. 

 As stated previously, an asset of such biochemical approach is that it can give rise to 

quantitative measurements and a strict bookkeeping follow-up. For each assay, a recovery 

was calculated, comparing the activity recovered in the whole cell (E+N) to the sum of the 

activities measured in the 5 subcellular fractions (N+M+L+P+S). Credits were given to any 

distribution provided the percentage of recovery of the marker protein was found between 

80 and 120 %. The lysosomal marker enzyme -galactosidase was mainly detected in 

fractions M, L and P while the relative specific activity showed the highest enrichment of 

lysosomes in fraction L. Alkaline -glucosidase was most abundant in the P fraction 

(41,66%) which also showed the the highest enrichment of this enzyme present in the 

endoplasmic reticulum. The distribution profile of the plasma membrane marker alkaline 

phosphodiesterase was similar to that of -glucosidase with an enrichment in the P fraction. 

Around 6% of alkaline phosphodiesterase was found in the P fraction. The distribution 

profile of plasma membrane and endoplasmic reticulum were thus very similar under these 

conditions of fractionation. The mitochondrial marker enzyme cytochrome oxidase was 

enriched in M and L fractions while these two fractions contained the bulk of the activity 

(51,5 % in M, 25,3 % in L). Lactate dehydrogenase, representing the cytosol, was, as 

expected, mainly present in fraction S (79,5 %). The western blot, allowing the detection 

of histone H1, confirmed that the nuclei were mainly recovered in the N fraction (relative 

abundance of 8%) with an enrichment of 6x over the homogenate.
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Figure 34: Distribution profiles were obtained by the assay of different marker enzymes in the fractions N,M,L,P and S. Distribution profiles are presented in histogram. The X-axis is the protein 

percentage and the Y-axis is the specific relative activity (SRA).The beta-galactosidase is a marker enzyme of the lysosomes (A), the alkaline alpha-glucosidase of the endoplasmic reticulum (B), 

the alkaline phosphodiesterase of the plasma membrane (C), the cytochrome oxidase of the mitochondria (D) and the lactate dehydrogenase of the cytosol (E). Histone H1 was detected in the 

fractions by western blot, the same amount of protein was loaded and the signal was quantified using the software Image J (F).
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3.2.2. Distribution profile of ABCB5 

To determine the distribution profile of ABCB5, the transporter was detected by western 

blotting using the polyclonal antibody from Rockland (Limerick, USA). The same amount 

of proteins was loaded for each fraction. As a control, we used crude membranes prepared 

from ABCB5-transfected High 5 cells (Hi5 ABCB5 CTL+) and their counterpart mock-

transfected cells (Hi5 CTL-). The insect cells were transfected and the membranes prepared 

by Gillet JP. Crude membrane of A375cells were also loaded.  

We observed a strong signal in the nuclear (N) and microsomal (P) fractions, at the size of 

approximately 140 kDa, corresponding to the size of ABCB5 full-length. This signal is 

stronger in the nuclear fraction than in the microsomal one. The western blotting was 

performed by loading the same amount of proteins for each fraction. Thus, the signals 

observed in the different fractions, and quantified using Image J software, represent the 

enrichment of the protein over the homogenate. As in the case of marker proteins, the 

results were presented as an histogram (Figure 35). The distribution profile showed the 

presence of the protein in fractions N and P, with the highest enrichment in the former. The 

abundance was also higher in the nuclear fraction (67,9 % vs 23,7 % in the microsomal 

fraction). 

It should be noted that we also detected a signal at the size of around 90 kDa in the 

microsomal fraction and in the crude membrane of the A375 cells.  
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Figure 35 : ABCB5 was detected by 

western blot using the polyclonal antibody 

of Rockland. At the size of the isoform full 

length, we observed a signal in the nuclear 

and microsomal fraction (A). The intensity 

of the signal was quantified using the 

program Image J and allow to obtain the 

histogram of the distribution profile of 

ABCB5 full length. The percentage of 

proteins is presented in the X-axis and the Y-

axis is the specific relative signal. The height 

of the rectangle represents the enrichment of 

ABCB5 in the fraction, which is higher in 

the nuclear fraction than the microsomal 

fraction. 

 

3.3. Validation of the polyclonal antibody of Rockland 

The Rockland antibody recognized ABCB5 full length in Hi5 insect cells. We observed a 

band in the Hi5 insect cells with ABCB5 full-length construct while this band was not 

present in their counterpart mock-transfected cells (Figure 36). 

We wanted to validate the results obtained and confirm that the bands observed at the size 

of 138 kDa in A375 fractions correspond to ABCB5 full length. We have done it to by two 

ways. First, a western blot was performed with the cancer cell lines MCF7, KB31, H1299, 

showing a low expression level of ABCB5 mRNA in terms of RT-qPCR. By western 

blotting, the band was present at the size of +/- 140kDa with the same intensity (Figure 36). 

The second way was a western blot with the cell line 63T used for the first part of the 

project. The first band corresponds to the 63T cells transduced to overexpress ABCB5 wild 

type. This band disappeared in the 63Tcells expressing the ABCB5 mutants Q187*, a non-

sense mutation.  
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Figure 36: A. The Rockland antibody detect ABCB5 in insect cells transfected to overexpress ABCB5 (Hi5ABCB5 

CTL+) showing the specificity of the antibody. In human cells, a signal is observed in the cell lines MCF7, KB31 and 

H1299 associated with low expression of ABCB5 mRNA. B. The first band corresponds to the 63T cells transduced to 

overexpress ABCB5 wild type. This band disappeared in the 63Tcells expressing the ABCB5 mutants Q187*, a non-

sense mutation. 

3.4. Discussion 

The specific aim of this part of the project was to obtain some information about the 

intracellular localization of ABCB5. We first applied a subcellular fractionation procedure 

by differential centrifugation of the homogenate of A375 cells. The distribution profiles of 

the main subcellular compartments were shown to be quite specific except for the 

endoplasmic reticulum and plasma membrane both showing a very similar microsomal 

profile. The Rockland antibody was used to detect ABCB5 in the different fractions. A 

strong signal was observed in the N and P fractions at the size of 140kDa and in the P 

fraction at the size of 90kDa.  

3.4.1. Conditions of fractionation 

The distributions obtained informs us about the conditions of fractionation and demonstrate 

that the protocol used is suitable for this cell line. To evaluate this, the distribution profile 

of the lysosomal marker enzyme -galactosidase is interesting because the lysosomal 

membrane is very sensitive to homogenization. The low percentage of -galactosidase 

recovered in the nuclear fraction (6,5%) indicates that only a very low fraction of the cell 

population, if any, remained intact after homogenization. On the other hand, the distribution 

of -galactosidase also demonstrates that the homogenization conditions were not too harsh 

because the percentage of this soluble lysosomal protein recovered in the S fraction is very 

low (4,9%). 
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Globally, the distribution profiles obtained are quite similar to the distribution of organelles 

obtained in rat liver by de Duve (described on page 92) and indicate that future works 

requiring subcellular fractionation of A375 cells could take advantage of this protocol.  

3.4.2. Validation of the antibody 

The Rockland antibody recognizes ABCB5. Indeed, a signal was observed in the insect 

cells transfected to overexpress ABCB5, while this signal was absent in the negative 

control. Results obtained with the melanoma cell line 63T go in the same direction. Indeed, 

while a band was observed at 140kDa in the 63T cells transduced to overexpress ABCB5 

wild type, this band attenuates significantly when the 63T cells were transduced with the 

mutant Q187*, a non-sense mutation.  

However, in our attempt to validate this antibody in human cells, we also performed a 

western blot with the MCF7, KB31 and H1299 cell lines with a low expression level of 

ABCB5. In western blot, the intensity of the signal was identical between the cell line A375 

expressing ABCB5 and the cell lines with low expression level.  

We cannot rule out that the antibody recognizes another protein with a similar size. In order 

to fully validate this antibody, mass spectrometry will be performed on digested proteins 

isolated from a silver stained polyacrylamide gel. The development of a reliable negative 

control should also be required to validate the antibody. In this purpose, the CRISPR-Cas9 

is being developed in the laboratory to generate an ABCB5 KO melanoma cell line. 

Actually, two cell lines are being engineered. A first one, which will not express any 

ABCB5 transcript isoforms. The entire gene being removed. To date, we obtained a 

heterozygous cell line for the ABCB5 knockout. A second engineered cell line, which is 

homozygous for the ABCB5β knockout, allowed us to determine that the antibody can 

detect the ABCB5β isoform at the expected size of 90 KDa. 
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3.4.3. Presence of ABCB5 full length in the nuclear and microsomal fraction 

3.4.3.1. Interpretation of the distribution profile of the signal at 140 kDa 

Classically, when using analytical subcellular fractionation, the intracellular localization of 

a protein is inferred from the comparison between its distribution among the different 

fractions and the distributions of known marker proteins of subcellular organelles. Here, 

regarding the distribution of the signal observed at 140kDa, one should be very careful and 

keep in mind that the identification of this signal as ABCB5 full length needs further 

validation.  

The distribution profile of the signal at 140kDa presents the highest enrichment in the 

nuclear fraction N and in the microsomal fraction P. This profile is completely different 

from the distribution profile of the -galactosidase, marker enzyme of the lysosomes. This 

would exclude a lysosomal localization of ABCB5. We can also exclude the location 

ABCB5 in mitochondria because the distribution profile of the cytochrome oxidase is also 

completely different with the majority of the enzyme recovered in M and L fractions. The 

same reasoning can be applied to the lactate dehydrogenase distribution profile excluding 

the presence of ABCB5 in the cytosol.  

Considering the distributions of alkaline -glucosidase, alkaline phosphodiesterase and 

histones H1 is less straightforward. The distribution profile of ABCB5 exhibits two strong 

signals in fractions N, where the bulk of nuclei are recovered, and in the microsomal 

fraction P containing most of the plasma membrane and endoplasmic reticulum 

microsomes. Hence we cannot exclude the possibility that ABCB5 would exhibit some 

mixed localization, in the nucleus and in the endoplasmic reticulum and/or the plasma 

membrane.  

Based on these results we are left with two possibilities. Either the distribution profile of 

ABCB5 is indicative of a mixed localization, or ABCB5 is located in some organelle whose 

distribution has not been assessed by the panel of marker proteins that we selected. 

3.4.3.2. Other ABC transporters were found in the nucleus 

It may seem surprising to detect ABCB5 in the nucleus. However, leaning into literature, 

we found that several ABC transporters were localized in the nuclear envelope, in particular 

ABCB1, which is very close to ABCB5. 
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ABCB1 was primarily located in the plasma membrane, which is associated with the 

classical “MDR phenotype”. However, it was also detected in the nuclear envelope. 

ABCB1 was detected in the nucleus for the first time in 1995 by Baldini (Baldini N et 

al.1995). It was also localized in the nuclear envelope of rat brain cells (Babakhanian et al. 

2007). Szaflarski and colleagues showed the expression of ABCB1 in the resistant cell line 

LoVo as well as its implication in the efflux of doxorubicin from nucleus to cytoplasm 

(Szaflarski et al. 2013). 

ABCC1 was also shown to be located in the nucleus in mucoepidermoid carcinoma (Cai et 

al. 2011) and ABCC2 in breast cancer (MacIejczyk et al. 2012) and non-Hodgkin's 

lymphomas (Szczuraszek et al. 2009). 

While the transporter ABCG2 is generally localized in the plasma membrane, the studies 

of Bhatia and Habicht et al. showed its localization in the nucleus of glioblastoma cells 

(Habicht et al. 2013; Bhatia et al. 2012).  

3.4.3.3. Other ABC transporters were localized in the microsomal fraction 

The distribution profile of the protein signal at 140kDa suggests the presence of ABCB5 in 

the microsomal fraction. This fraction was shown to be enriched in fragments of plasma 

membrane and endoplasmic reticulum (Figure 35).  

Considering that many ABC transporters are located in the plasma membrane, the presence 

of ABCB5 in the microsomal fraction is not surprising. However, the band observed in the 

P fraction could also correspond to other organelles. Indeed, some ABC transporters were 

shown to be located in the endoplasmic reticulum and in the Golgi apparatus. 

The ABCB1, ABCG2, ABCA1 transporters and the transporters associated with antigen 

processing (ABCB2 and ABCB3 so called TAP transporters) were shown to be located in 

the endoplasmic reticulum (Fu et al. 2004; Ifergan et al. 2005; Karttunen et al. 2001; 

Krishnamachary and Center 1993; Yamauchi et al. 2015).  

The microsomal fraction should also be enriched in fragments of the Golgi apparatus, 

whereas this assumtpion be confirmed using a protein marker of this organelle. ABCB1 

was detected in breast cancer cell lines and inhibitors of this transporter decreased the 

sequestration in Golgi apparatus (Merlin et al. 2000). According to Molinari, ABCB1 was 

also detected in Golgi apparatus in melanoma cell lines, while this transporter is not 

expressed in the plasma membrane (Molinari A et al. 2002).  
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Going further into the interpretation of the microsomal distribution and in particular trying 

to discriminate between a residence of ABCB5 in the plasma membrane, in the 

endoplasmic reticulum, in the Golgi apparatus (or in endosomes, see bellow) would require 

to sub-fractionate the fraction P by using several orthogonal methods of separation such as 

isopycnic centrifugation on various density gradients. 

3.4.4. Presence of ABCB5β in the microsomal fraction 

As mentioned in the introduction, there exists several isoforms of ABCB5. The most 

studied isoform is ABCB5β. While the topology of ABCB5β is controversial and does not 

correspond to the typical topology of a half-transporter, it has been studied for its role in 

drug resistance and was identified as a marker of melanoma initiating cells (N. Y. Frank et 

al. 2005). 

Since data obtained in the laboratory after completion of our experiments confirmed that 

the Rockland antibody specifically recognizes ABCB5β in human melanoma cells, the 

distribution profile of this isoform can be considered as reliable.  

One band at the size of 90kDa, corresponding to ABCB5β, was observed in the microsomal 

fraction (P) (Figure 35). This isoform is enriched in the microsomal fraction P. Considering 

the distribution profiles of the marker enzyme tested, this result could point a localization 

of ABCB5β in the plasma membrane or in the endoplasmic reticulum.  

However, one should take into account that the P fraction most likely contains the 

microsomes formed during the homogenization of the Golgi and some vesicular structures 

of the endo-lysosomal system, such as endosomes and melanosomes. Again, discriminating 

between such putative localizations of the ABCB5β form would require to further 

fractionate the microsomal fraction P and to measure the distribution profiles of marker 

proteins of the organelles of interest. 

The distribution profile of ABCB5β obtained is compatible with a location in the plasma 

membrane. This conclusion would be consistent with the results obtained by Frank and 

colleagues. Indeed, their studies showed a surface plasma membrane localization for this 

protein (N. Y. Frank et al. 2003).   
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3.5. Conclusion 3 and perspectives 

The results of fractionation obtained showed us that A375 melanoma cells behaved quite 

typically. Indeed, the organelles distribution observed is similar to the distribution observed 

by de Duve fractionation of rat liver (de Duve et al. 1955). 

While it is necessary to further validate the Rockland antibody, the distribution profile of 

ABCB5 full length showed an enrichment in the nuclear and the microsomal fractions. This 

distribution appears to be comparable to that of other transporters. Other avenues can be 

explored to confirm the localization of ABCB5 full length in the nucleus. The efflux of 

doxorubicin from nucleus to cytoplasm could be observed by fluorescence microscopy. 

ABCB5 was shown to transport doxorubicin in insect cells (Gillet and colleagues, 

unpublished data) and in HEK293T transfected to overexpress ABCB5 full length. This 

experiment would require a ABCB5 knockout cell line. The identification of the organelles 

in the microsomal fraction expressing ABCB5 full length requires sub-fractionation steps.  

We showed the enrichment of the beta isoform in the microsomal fraction. This result is 

compatible with a plasma membrane localization suggested by Frank and colleagues. A 

isopycnic gradient of the P fraction followed by the detection of marker proteins in the sub 

fractions would confirm us the localization in the plasma membrane.  

While melanoma are highly resistant to chemotherapy, melanoma cells could have a typical 

resistance mechanism. Chen hypothesizes that a mechanism of resistance would be the 

sequestration of the drug in melanosomes (K. G. Chen et al. 2009). It would be interesting 

to determine the distribution of these organelles. 
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DISCUSSION 

1. Mutations in the ABCB5 gene appear to be cancer driver mutations. 

The ABCB5 gene was mutated in 13,75% of the 640 melanoma samples analyzed. Such a 

high mutation rate suggests that cells harboring ABCB5 mutations are selected. This means 

that these mutations contribute to cancer initiation and/or progression. The observed ratio 

between the non-synonymous to synonymous of 3,7:1 is higher than the ratio predicted for 

non-selected passenger mutations, which is of 2,5:1 (Sjoblom et al. 2006). Together, these 

data indicate that mutations in ABCB5 gene are cancer diver mutations and should 

contribute to melanomagenesis.  

2. We have chosen to focus on four mutations: Q817*, a non-sense 

mutation, and three missense mutations S830F, S1184P and S1091F 

The first two cohorts of melanoma analyzed allowed us to identify 10 mutations: 3 non-

sense mutations (Q187*, R587* and Q1098*), 5 missense mutations (E520D, V827I, 

S830F, S1184P and S1091F) and 2 synonymous mutations (I828I and L840L) (Table 3). 

Among the three non-sense mutations, we have chosen to focus on Q187*, potentially 

leading to the shortest gene product. However, the study of the other non-sense mutations 

could also be interesting, especially the R587* mutation. Indeed, this mutation was present 

in 3/640 melanoma samples (information that we did not have at the early stage of the 

study). 

To assess the impact of the missense mutations, the in silico analysis SIFT score was 

performed. SIFT (Sorting Intolerant From Tolerant) is a prediction tool relying solely on 

sequence homology. It allows to obtain a score between 0 and 1. This score predicts if a 

missense change would alter the protein function. A score below 0.05 suggests a deleterious 

effect. We have chosen the mutations associated with the lowest values. Mutation S830F 

and S1184P are associated with a null SIFT score and S1091F with a score of 0.01. By 

contrast, the non-synonymous mutations E520D and V827I, were associated with scores 

higher than 0.05 (respectively 0.21 and 1). The synonymous mutations I828I and L840L 

were associated with the values of 1 and 0.7 respectively. This means that these 

synonymous mutation are predicted to have no impact on ABCB5 function.  
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We are well aware that the choice of the mutations is based on a prediction tool. Obviously, 

no conclusion on the real impact of these mutations on ABCB5 function can be drawn 

based on the SIFT analysis. We could have enriched this analysis by using another software 

like Polyphen-2, taking into account the domains and the three-dimensional structure. 

Other software exist such as Align-GVGD, Hansa, MAPP, MutPred, PROVEAN, etc.  

A study of Flanagan and colleagues showed that the main limitation of SIFT and Polyphen 

was their low specificity (respectively of 13 and 16%) (Flanagan et al. 2010). It is important 

to keep in mind that these prediction tools are only prioritizing changes with higher 

probability to alter the protein function. These data must be interpreted with caution. That 

is why we generated experimental data to support or refute the effect on function associated 

with the missense mutations.  

In this regard, we could also have studied synonymous mutations. Kimchi-Sarfaty and 

colleagues demonstrated that SNP leading to the same amino acid can alter the protein 

structure and function of ABCB1. Their hypothesis is that a rare codon affects the 

cotranslationnal folding and the insertion of ABCB1 in the membrane (Kimchi-Sarfaty et 

al. 2007). Tsai an colleagues suggest that this phenomenon could be explained by a long 

ribosomal pause times-scales, which may lead to an alternate folding pathway (Tsai et al. 

2008). 
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3. Are those mutations in ABCB5 observed in melanoma associated with a 

gain of function or with a loss of function? 

3.1. ABCB5 mutations are distributed throughout the gene. 

The mutational pattern of a gene observed in cancer cells may help to determine if the 

disease is associated with a gain or a loss of function of the protein. Mutations in tumor 

suppressor genes, usually associated with loss of function, are often dispersed along the 

length of the gene. By contrast, oncogene activating mutations have specific locations, 

leading to the activation of the protein (Vogelstein et al. 2013). In our case, the mutations 

are dispersed along the gene (Figure 1 –JID annexed) suggesting that loss of function of 

ABCB5 contribute to tumorigenesis. However, we observed two sites where mutations 

occur recurrently (at amino acids 587 and 830). The Vogelstein’s 20:20 rule indicates that 

a gene is predicted to be an “oncogene if 20% of all missense mutations occur at a single 

position in the sequence” (Baeissa et al. 2016). In our case, we observed a lower percentage: 

6,7% and 8,3% are corresponding to the amino acid 587 and 830, respectively. 

Overall, the distribution of mutations that we observed in the ABCB5 gene is more typical 

of a tumor suppressor gene. However, this is only a prediction requiring experimental 

validation. 

3.2. The ABCB5 gene mutations are heterozygous. 

The mutations in the ABCB5 gene were found to be heterozygous. Nevertheless, we 

observed that overexpression of ABCB5 mutants led to an increase of the proliferation 

ability of melanoma cells, when compared to overexpression of ABCB5 wild type. A soft 

agar colony formation assay was performed in 17T and 63T melanoma cells and showed 

an increase of the proliferation ability in both cell lines for all the mutants. The migration 

ability was also shown to be increased for the Q187* and S1184P ABCB5 mutants in the 

17T cells and for the S830F and S1091F ABCB5 mutants in the 63T cells. The silencing 

of ABCB5 in the melanoma cells A375 and SK-Mel-28 using shRNA leads to an increase 

in terms of the size of colonies. All the experiments were performed in biological and 

technical triplicates, and the results were reproducible. Overall, the in vitro data indicate 

that ABCB5 has a tumor suppressor function whereas the mutations were heterozygous in 

melanoma cells. 
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More than forty years ago, Knudson coined the two-hit model, in which homozygous loss 

of function mutations of tumor suppressor genes are necessary to confer a selective 

advantage to cancer cells (Knudson 1971). However, there are now sufficient evidence that 

support a role for both complete and partial tumor suppressor inactivation in the 

tumorigenesis process. 

First, we may hypothesize haploinsufficiency. This means that the inactivation of only one 

allele can have a selective advantage for the cell. Indeed, it that been shown that 

heterozygous mutations of tumor suppressor genes can contribute to tumorigenesis by 

conferring an intermediate phenotype (Santarosa and Ashworth 2004). Many tumor 

suppressor genes exhibit haploinsufficiency. For example, this was observed for p53. The 

study of Venkatachalam and colleagues showed that the loss of both p53 alleles is not 

required for tumorigenesis. Indeed, the heterozygous mice p53+/- also develop tumors, but 

at a later stage in their life by comparison with the homozygous p53-/- mice. The 

heterozygosity leads to an intermediate phenotype (Venkatachalam et al. 1998). The tumor 

suppressor 27kip1 was also shown to be haploinsufficient for tumor suppression. Both p27-

/- and p27+/- lead to tumor development in multiple tissues (Fero et al. 1998). TGFbeta 

was also shown to be haploinsufficient for tumor suppression. However, TGFbeta is a 

secreted protein functioning as a non-cell autonomous fashion (Tang et al. 1998). We 

cannot exclude that ABCB5 may also have a non-cell autonomous function. 

Haploinsufficiency is also the case of other tumor suppressor genes such as Apc, BRCA1/2, 

Cdkn1a/1b/2c, Pten, etc. Other examples are given in the review of Payne and Kemp 

(Payne and Kemp 2005). Haploinsufficiency can be tissue specific and context dependent. 

A second hypothesis, which could explain heterozygous mutations in tumor suppressor 

genes, is the existence of a negative dominant effect. This means that a mutation in one 

allele results in an altered gene product, which affects the function of the wild-type gene 

product. In this case, the heterozygous mutations can give a survival advantage by 

comparison with homozygous mutations. For example, it is the case for the tumor 

suppressor gene GRIN2a in melanoma. The mutant GRIN2a inhibits the tumor suppressive 

phenotype of wild type GRIN2a in melanoma. Somatic mutations in GRIN2a gene results 

in a loss of complex formation between wild type GRIN1 and wild type GRIN2a (Prickett 

et al. 2014).  
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The hypothesis of a dominant negative effect seems less likely because this phenomenon 

is usually described for multimeric proteins. This is not the case of ABCB5 full length. 

Indeed, its topology corresponds to the typical topology of full ABC transporters, which 

are monomeric proteins (see introduction page 48). However, we cannot exclude that the 

mutated ABCB5 will have a dominant negative effect on the wild type ABCB5. In Figure 

25, we observed that the non-sense mutation Q187* does not correspond to the highest 

effect by comparison with the other mutations. This could be explained by dominant 

negative effect caused by the ABCB5 mutant S1184P, S1091F and S830F, which could not 

take place in the case of the short truncated protein Q187* ABCB5. To address this 

possibility, it could be interesting to investigate whether this truncated protein is expressed. 

The addition of a tag on the N terminal side to the truncated protein would allow its 

detection by western blot. If this protein is not detected, we may hypothesize that either this 

protein or the RNA is unstable. RNA extraction from ABCB5 Q187* mutant cells, followed 

by the cDNA synthesis, its sequencing and the assessment of the ABCB5 mutant expression 

level would allow us to have an idea of the RNA stability. 

The possibility of the dominant negative could also concern the beta isoform of ABCB5. 

Indeed, the mutations S830F, S1091F and S1184P are common for both beta and full length 

isoforms. We cannot exclude that ABCB5 beta could act as follows: the mutant 

ABCB5beta would dimerize with the WT ABCB5beta, preventing ABCB5beta function. 

However, no study showed that ABCB5beta would be a tumor suppressor. By contrast, 

studies of the group of Frank showed that it would contribute to tumorigenesis as an 

oncogene (Schatton et al. 2008). Assessing the effect of ABCB5 mutants S830F, S1091F 

and S1184P on the proliferation, migration and invasion abilities of melanoma cells would 

also be an interesting. We cannot exclude that ABCB5 isoforms have completely different 

functions. For example, it is the case for Tapp73, acting as a tumor suppressor, while 

ΔNp73 displays oncogenic properties (Rufini et al. 2011).  

To determine if heterozygosity could be sufficient to induce a growth advantage, we could 

use the CRISPRCas9 technique to obtain ABCB5 +/- and -/- cells. After obtaining cell lines, 

we could compare their ability to proliferate and migrate. If the ABCB5 +/- cells display 

increased proliferation ability when compared to the WT cells, we could conclude that the 

heterozygosity would be sufficient to confer a phenotype. 
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The development of the cell line knock out for ABCB5 (-/-) would also be an interesting 

tool to complete our in vitro observations and confirm that the silencing of ABCB5 leads 

to an increase of the proliferation ability. Indeed, we have data obtained on the melanoma 

cell lines A375 and SK-Mel-28 (harboring BRAFV600E mutation), which were transduced 

with ABCB5-shRNA. We observed in soft agar colony formation assays a higher number 

of colonies larger than 400µm and 200µm, respectively. Unfortunately, we did not manage 

to reproduce the transduction with shRNA for the cell lines 17T and 63T. Another strategy 

to study the impact of these mutations would be the introduction of the Q187*, S830F, 

S1091F and S1184P mutations by CRISPR Cas9. However, this method includes the bias 

of the variability between the clones. This experiment should be performed on several 

independent clones. It is also possible to insert loxP sites around the ABCB5 gene and to 

add tamoxifen with the advantage that we can perform it on a cell population.  

Main results agree for a loss of function and suggest that ABCB5 has a tumor suppressor 

function. 

4. How ABCB5 could be involved in melanomagenesis?  

At this stage, the mechanisms underlying the increase of the proliferation and migration 

abilities observed for mutated ABCB5 cells compared with ABCB5 wild type expressing 

cells are still unknown. The contribution of ABC transporters to cancer biology was shown, 

so far, to be due to the transport of metabolites and signaling molecules (see page 70). 

To understand how ABCB5 could be involved in tumorigenesis, it may be important to 

expand the definition of the tumor suppressor. There are three main types of tumor 

suppressor genes: the gatekeepers, the caretakers and the landscapers.  



 

109 

The gatekeepers are known to control the cellular proliferation by encoding protein 

associated with the cell cycle. The APC, CDKN1B and Rb proteins are examples of 

gatekeepers. Caretakers are also called stability genes, promoting tumorigenesis when they 

are mutated. They are responsible for repairing mistakes made during normal DNA 

replication or induced by exposure to mutagens. Caretakers can be also responsible for the 

process involving large portion of chromosomes such as those responsible for mitotic 

recombination and chromosomal segregation. Inactivation in caretakers lead to genomic 

instability and mutations in other genes that occurs at higher rate. All the genes will be 

affected including oncogenes and tumor suppressor genes. Only mutations in 

oncogenes/tumor suppressor genes lead to an increase of the net cell growth ( Kinzler and 

Vogelstein 1997; Vogelstein and Kinzler 2004). The third kind of tumor suppressors, called 

the landscapers, are responsible to create an environment controlling cellular proliferation 

(Stratakis 2003).  

It seems unlikely that ABCB5 could be a gatekeeper, having a direct impact on the cell 

cycle. However, we can hypothesize that ABCB5 has an indirect impact on the cell cycle. 

For example, ABCB5 could transport a substrate having an impact on a gatekeeper or on a 

molecule involved in a pathway leading to melanomagenesis (MAPK, PI3K/Ak, Rb and 

p53 pathways, developed in page 17 of the introduction). For example, we could 

hypothesize that ABCB5 could transport a substrate inhibiting CDK4/6, HDM2 or PI3K, 

etc. However, these actions can be very diverse and concern all the molecules involved in 

the cell cycle. We could investigate whether there is a link between ABCB5 and the 

pathway leading to melanomagenesis by correlation studies between ABCB5 expression 

and the detection of the phosphorylated proteins of the MAPK pathway. Using antibodies 

recognizing the phosphorylated proteins, Colone and colleagues established a link between 

ABCB1 and the MAPK pathway (Colone et al. 2008). We could also use inhibitors of the 

MAPK pathway, which could have an impact on the ABCB5 expression. This approach 

performed in the case of the transporter ABCG2 (Xie et al. 2014). We could hypothesize 

that ABCB5 can efflux out of the cell a negative regulator of the proliferation, which will 

limit the cellular growth of the other cells. If this transporter is located in a subcellular 

organelle, it could sequestrate a positive regulator of the cell cycle. In both cases, a 

defective transport due to the mutations would increase cell proliferation. 
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ABCB5 might also act as a caretaker by transporting a molecule having a role in the 

maintain of the genome stability. However, in this case, we should have observed genomic 

instabilities when ABCB5 is mutated.  

We also may hypothesize that ABCB5 acts as a landscaper. Indeed, we could envision that 

ABCB5 efflux a compound out of the cell having an impact on the microenvironment, 

preventing uncontrolled proliferation. This hypothesis supposes a localization of ABCB5 

in the plasma membrane. However, the subcellular localization of this transporter remains 

to be precisely resolved. The determination of the subcellular localization and the study of 

its substrates are crucial. 

It is not always possible to classify the tumor suppressor gene in distinct categories. Some 

can act as a gatekeeper and as a caretaker. It is the case of p53, which regulates the cell 

cycle and is involved in DNA repair (Rubbi and Milner 2005).  

 

The in vitro results showed that the increase of proliferation was higher using cell lines 

with NRASQ61K background (17T and 63T) than with cell lines with a BRAFV600E 

background (A375 and SK-Mel-28). This could be due to a link between NRAS and 

ABCB5 that could be further investigated. 

Kondo and colleagues showed that the cells transfected to overexpress ABCB5 are more 

resistant to buthionine sulfoximine (BSO) than the control cells. BSO is an inhibitor of the 

GCL, an enzyme implicated in the biosynthesis of the glutathione (GSH). They also showed 

a higher GSH content in the cells expressing ABCB5 when compared to the control cells 

and that GSH was not a substrate of ABCB5. In their experiment, they showed that BSO 

and GSH are not transported by ABCB5. GSH being a tripeptide of glutamic acid, cysteine 

and glycine, they measured the amino acid content of the cells and observed a higher 

cellular content of glutamic acid in the ABCB5 transfected cells. Their results suggest the 

possible effect of ABCB5 on the cellular amino acid content (Kondo et al. 2015). 

GSH has several functions including detoxification and elimination of the reactive oxygen 

species, but is also responsible for the detoxification of xenobiotics and of some 

endogenous compounds. These are electrophiles, which form conjugates with GSH 

(Traverso et al. 2013).  
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These data support the role of ABCB5 as a tumor suppressor. Indeed, GSH is involved in 

the detoxification of the reactive oxygen species commonly known to lead to cancer. 

However, ROS play a dual role in cancer. Moderate ROS contribute to the increase of 

cellular proliferation and survival by activating signaling pathways, while excessive 

accumulation of ROS results to cell death (Bansal and Simon 2018). GSH also plays a dual 

role in cancer. On one hand, the detoxification of carcinogen leads to protection against 

cancer (Jakóbisiak et al. 2003). On the other hand, in many tumors, the increased GSH level 

is associated with the cell cycle progression and with a higher proliferation rate (Traverso 

et al. 2013). The link between the GSH status and cell growth was established in melanoma. 

The GSH content regulates the metastatic behavior (Carretero et al. 1999). So far, the 

mechanism of how GSH modulates cellular proliferation remains speculative (Traverso et 

al. 2013). 

 

ABCB5 seems to perturb the redox homeostasis in the HEK-293 cells. However, the study 

of Kondo does not explore the effect of the higher GSH cellular content on the cellular 

growth. To address this question, we could investigate if the expression of ABCB5 in 17T 

and 63T melanoma cells affect the cellular content in GSH. We could also explore this for 

the ABCB5 mutants Q187*, S1184P, S1091F and S830F. 
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5. The in vivo study of the involvement of ABCB5 in melanomagenesis 

The use of animal models is crucial to understand how cancers develop. In our project, we 

have chosen to use the mouse model, which is commonly used to study melanoma. So far, 

the genetically engineered mouse models were very useful to characterize 

melanomagenesis. Both in human and mice, melanocytes are originating from neural crest. 

Many mouse models have been developed. Mouse models are adequate to study the 

initiation of the tumor (Pérez-Guijarro et al. 2017). Transgenic mouse models allow 

studying the frequency of melanoma development as well as the apparition of metastases 

and there was pre-existing models to our study. Indeed, the team of Van den Eynde had 

developed the inducible mouse model with the expression of HRasG12V and the deletion of 

the exon 2 and 3 of the gene Cdkn2a (Huijbers et al. 2006). We also relied on the 

construction developed by Ackermann and colleagues, which is the spontaneous expression 

of NRASQ61K(Ackermann J. et al. 2005). However, the mouse model presents limitations. 

Indeed, there are differences in terms of the morphology of the skin between human and 

mice, which can affect the initiation of melanoma. The human and murine melanocytes do 

not share the same localization. The murine melanocytes are exclusively present in the hair 

follicle and at the bottom of the hair follicle (Pérez-Guijarro et al. 2017).  

 

The zebrafish model is also used to study melanoma. Xenograft of human cells can be used 

as well as transgenic models. The zebrafish have melanocytes called melanophores, in 

which the melanin is accumulated by contrast with human in which the melanin is 

transferred to keratinocytes (Kauffman 2016). It is possible to observe tumoral progression 

because tissues are transparent (Mione and Trede 2010). A zebrafish harboring the mutation 

NRASQ61K was developed by Dovey and colleagues. The tumors described are very similar 

to human tumors (Dovey et al. 2009). The zebrafish model allows studying mutagenesis. 

Indeed, N-ethyl-N-nitrosourea induces punctual mutations in zebrafish (Grunwald and 

Streisingert 1992). In the way to pursue the investigation of ABCB5 involvement in 

melanomagenesis, we could introduce the mutations Q187*, S830F, S1184P and S1091F 

in Abcb5 gene in zebrafish. This model has allowed identifying several tumor suppressors 

such as ptena, ptenb, apc, mlh1, msh2, msh6, brca2 ou tp53 (Völkel et al. 2018). 
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CONCLUSION 

ABCB5 is an ATP-binding cassette (ABC) transporter, known to be expressed in 

pigmented cells, and associated with low-level resistance in melanoma. While ABC 

transporters are mainly studied for their role in drug resistance, many studies show that they 

also play a role in tumorigenesis. ABCB5 was identified as the sixth most frequently 

mutated gene in melanoma (Krauthammer et al. 2015). Meanwhile, Gillet and colleagues 

provide a more systematic analysis of the nature and function of these mutations. The 

exome sequencing of 640 clinical melanoma samples revealed that ABCB5 was mutated in 

nearly 15% of cases. This percentage suggests this gene to be a cancer “driver” gene and 

the distribution of the mutations throughout the gene would evoke a priori a loss of 

function. Moreover, the 3,7:1 ratio of non-synonymous on synonymous mutations is higher 

than the ratio predicted by Sjobolm and colleagues for non-selected passenger mutations, 

which is of 2,5:1 (Sjoblom et al. 2006). We aimed to investigate the role of ABCB5 in 

melanomagenesis. Among the recurrent mutations identified, four were selected, 

representative of the mutation pattern and associated with low SIFT scores: Q187*, S830F, 

S1091F and S1184P. At biochemical level, these mutations were associated with a decrease 

in basal ATP hydrolysis.  

Two melanoma cell lines (17T and 63T), harboring NRASQ61K mutations, were stably 

transduced to overexpress ABCB5 mutants (ABCB5Q187*, ABCB5S830F, ABCB5S1091F and 

ABCB5S1184P). The overexpression of these mutants has an impact on the cellular 

proliferation, by comparison with the cells overexpressing the wild type ABCB5. The 

proliferation test on plastic showed a highly significant increase of the growth ability, for 

the 17T cell line and for the 63T expressing the mutant S1184P. Because this latter assay 

is biased by the ability of the cells to adhere to plastic, we additionally performed the 

anchorage-independent soft agar colony formation assay. This one showed a significant 

effect for both cell lines and each mutation. The soft agar colony formation assay being a 

hallmark, we can definitively conclude that these ABCB5 mutants lead to an increase of 

proliferation ability. The anchorage independent growth was also increased when the 

expression of ABCB5 was silenced using shRNA in melanoma cell lines A375 and SK-

Mel-28.  
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In order to determine if ABCB5 is involved in melanoma progression, we also assess the 

migration and invasion ability by performing Boyden chambers assay. These tests revealed 

a significant increase in the proliferation ability for the 17T cells expressing the mutant 

Q187* and S1184P and for the 63T cells expressing the mutants S830F and S1091F. By 

contrast, the invasion test did not show any trend. These results suggest that mutations in 

the ABCB5 gene could have an impact on melanoma progression through the migration 

ability.  

The in vitro data showed that the expression of ABCB5 mutants and the silencing of its 

expression increase the proliferation and migration ability of melanoma cells. These 

observations, combined with the distribution of the mutations throughout the gene, suggest 

that ABCB5 act as a tumor suppressor. However, this contradicts the “two-hits” model of 

Knudson because the identified mutations were heterozygous. We made two assumptions: 

haploinsufficiency and the dominant negative effect. Further experiments like the CRISPR 

Cas9 would allow us to assess the impact of heterozygosity.  

Mice experimental results would allow investigating whether ABCB5 acts as a tumor 

suppressor in vivo. In addition to the ongoing study, it also appears important to assess the 

impact of heterozygosity in mice. In this project, we performed a pilot study to assess the 

penetrance of the gene Abcb5 using three mouse models: Abcb5TyrNRasQ61K, 

Abcb5TyrHRasG12V and Abcb5Ink4a/Arfflox/floxTyrCre. For each mouse strain, we compared 

the tumor occurrence between wild type (WT) and knock out (KO) Abcb5 mice. Among 

the mice Abcb5TyrNRasQ61K, five out of seven (5/7) KO mice and five out of eleven (5/11) 

WT mice developed melanoma. The proportion of tumor development is slightly higher in 

the KO group. This study is currently carried on with a larger number of mice to allow us 

to draw a conclusion. For the other two mouse strains, which are tamoxifen inducible 

model, no melanoma developed but other cancers appeared. In the KO mice of the model 

Abcb5TyrHRasG12V, we observed one hepatoma and one lymphoma. Among the mouse 

strain Abcb5Ink4a/Arfflox/floxTyrCre, we observed one spleen tumor and one lymphoma. 

Considering the low tumor occurrence, this experiment is currently underway with more 

animals.  
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The mechanisms underlying the involvement of ABCB5 in the proliferation and migration 

ability of the cell remains to investigate. We could hypothesize that ABCB5 would 

transport a signaling molecule, or a molecule having an impact on a signaling molecule, 

involved in pathway associated with melanomagenesis. While the clinical human 

melanoma samples mutated for ABCB5 gene were very frequently mutated for NRAS (75%) 

and CDKN2A (62,5%), ABCB5 could have an impact on several pathways such as the 

MAPK, PI3K/Akt, retinoblastoma or p53 pathways. The determination of its subcellular 

localization is crucial for going further on the study of ABCB5 function.  

This thesis allowed optimizing the conditions of de Duve fractionations of the melanoma 

cell line A375. Performing western blot, we observed an enrichment of this transporter in 

the nuclear and the microsomal fraction. However, further validations of the Rockland 

antibody are still needed. The western blot signal should be confirmed as corresponding to 

ABCB5 and further experiment could precise the subcellular localization. The presence of 

ABCB5 in the nucleus cannot be ruled out. Indeed, other transporters were localized in the 

nuclear envelope like ABCB1 and ABCC1 (Szczuraszek 2009; Szaflarski et al. 2013). The 

microsomal fraction contains fragments of plasma membrane, Golgi apparatus and 

endoplasmic reticulum. In order to identify the organelle enriched in ABCB5, we should 

perform the subfractionation of this fraction by using several orthogonal methods of 

separation, such as isopycnic centrifugation on various density gradients. 

The identification of tumor suppressors have therapeutic applications. Indeed, targeting 

tumor suppressors may represent promising therapies. Strategies were developed for p53. 

For example, it is possible to reactivate the expression of the wild type p53 or to selectively 

kill p53 mutant tumor cells (Morris et al. 2015).  

This shows the importance of studying tumor suppressor genes. It is crucial to investigate 

the potential link between ABCB5 and pathway associated with the proliferation and 

cellular survival as well as studying the function of this transporter. After establishing the 

potential pathway linked with ABCB5, this one could be considered as a target. 
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MATERIAL AND METHODS 

1. Cell Culture  

The human melanoma cell lines 17T and 63T were cultured in RPMI media supplemented 

with 10% Fetal Clone Serum, 1% penicillin/streptomycin, 1% L-Glut and HEPES (Life 

Technologies, Carlsbad, CA). The human melanoma cell lines A375, H1299 and KB31 

were cultured in MDEM media supplemented with 10% Fetal Bovine Serum and 1% 

penicillin/streptomycin. Cells were maintained at 37C in a humidified atmosphere of 5% 

CO2. 

2. Lentiviral ABCB5 Wildtype and Mutated ABCB5 Production  

Lentiviral ABCB5-FLAG tag plasmid DNA’s (ABCB5-FLAG tag WT - M01, ABCB5-

FLAG Q187* - M02, ABCB5-FLAG S830F - M03, ABCB5-FLAG S1091F - M04 and 

ABCB5-FLAG S1184P - M05) were supplied by the Protein Expression Laboratory 

Cloning and Optimization Group (Frederick National Laboratory for Cancer Research, 

MA). The HEK293T cells were co-transfected with the lentiviral envelope plasmid 

(pMD2.G, Addgene number 12259), the lentiviral packaging plasmid (psPAX2, Addgene 

number 12260), and one of the five lentiviral ABCB5-FLAG tag plasmid to generate 

lentivirus particles. The melanoma cell lines were infected with these lentivirus particles to 

overexpress either ABCB5 wild-type or one of the four mutated ABCB5. Cells were 

selected using 5 g/mL puromycin. Sequencing was performed to assess the presence of 

WT or mutated ABCB5.  

3. Proliferation Assay 

4,500 cells per well of 17T and 63T cells were seeded into 96-well plates in complete RPMI 

media. At 24-hour time points (0, 24, 48 and 72 hours), growth media was removed and 

replaced with complete RPMI media solution containing a working concentration of 0.5 

mg/mL MTT and incubated for 3 hours. Media with MTT was removed and cells were 

solubilized in DMSO. Absorbance was measured at 570 nm on a SpectraMax i3 plate reader 

(Molecular Devices, San Jose, CA). 
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4. Soft Agar Colony Formation Assay  

Per well of a 24-well plate, 4,000 cells (17T, 63T), for all cell lines mutants, were suspended 

in 0.33% Bacto-Agar (Sigma-Aldrich, Saint-Louis, MO), diluted in complete RPMI media. 

This layer was plated on top of a layer of 0.5% Bacto-Agar, diluted in complete RPMI 

media. Plates were maintained at 37C in a humidified atmosphere of 5% CO2 for 3 weeks. 

Colonies were stained using 2mg/mL MTT for 3 hours, and then counted. 

5. Transwell Migration and Matrigel Invasion Assay 

12,5 × 103 cells for 17T and 63T cell lines were suspended in serum-free RPMI and pipetted 

into a Transwell insert (BD Biosciences, San Jose, CA) to assess their migration ability. 

The insert was placed into a well of a 24-well plate containing complete RPMI media and 

incubated for 24 hours at 37C in a humidified atmosphere of 5% CO2. The same 

manipulation was performed for the invasion assay with a Biocat Matrigel Invasion 

chamber. The inserts were washed with PBS (to remove the non-migrating and non-

invading cells from the interior of the inserts) and stained using a Hema3 staining kit (Fisher 

Scientific, Waltham, MA). The migrating and invading cells were counted under a light 

microscope and the percent invasion was calculated by the ratio between the mean number 

of invading cells and the mean number of migrating cells.  

6. Statistical Analysis  

Data analysis was done by an unpaired Student’s t test or Welch’s t test when samples have 

unequal variances. Values are the means  S.E.M. P values < 0.05 were considered 

statistically significant. Statistics and graphing were done using Prism software (GraphPad, 

La Jolla, CA). 

7. Mice genotyping 

7.1.DNA extraction 

The DNA was extracted from mice ear-tip, lysed with 200µl of lysis buffer (100mM Tris 

HCl pH 8,8, 500mM KCl, 10% Tween20) with the action of proteinase K, at 95°C during 

5 minutes and overnight at 55°C. The centrifugation at 15000g during 5 minutes was 

performed twice, at first in isopropanol and in a second time in ethanol 70%. The DNA was 

then suspended in water. 
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7.2. Amplification of the gene WT or mutant Abcb5 alleles 

The amplification of the WT or mutant Abcb5 alleles was performed using the forward 

primer 5’-GTTAACTCCAACTCTCAGCTAAG-3’ and the reverse primer 5’-

CTCAACAATTTCTATAGCAATTACC-3’ (final concentration of 500nM). The PCR 

program includes the heating at 94°C during 3 minutes, 29 cycles -30 seconds at 94°C, 30 

seconds at 55°C and 45 seconds at 72°C- and heating at 72°C during 3 minutes. An 

amplicon size of 512bp would be associated with the wild-type genotype, while the size if 

112bp indicated the excision of the exon 2 of Abcb5. 

7.3. Amplification of the Ink4a/Arfflox/flox allele 

To amplify the Ink4a/Arfflox/flox allele, the forward primer 5’-

CCTGACTATGGTAGTAAAGTGG-3’ and the reverse primer 5’-

ACGTGTATGCCACCCTGACC-3’ (final concentration of 1µM) were used. The PCR 

program consists of 3 minutes at 94°C, 35 cycles of 94°C – 40 seconds, 60°C for 30 seconds 

and 72°C for 50 seconds, followed by 2 minutes at 72°C. The size of the amplicon was of 

280bp for the wild-type allele and the size of 350bp indicates the presence of loxP sites 

flanking the exon 2 and 3 of Cdkn2a.  

7.4. Amplification of the allele transgeneTyrCreERT2 

To amplify the transgene TyrCreERT2, a PCR with the primers 5’- 

GCGGTCTGGCAGTAAAAACTATC-3’ and 5’- GTGAAACAGCATTGCTGTCACTT-

3’ at a final concentration of 500mM was performed. This PCR includes an internal control 

using two additional primers, 5’- CTAGGCCACAGAATTGAAAGATCT-3’ and 5’- 

GTAGGTGGAAATTCTAGCATCATCC-3’. The PCR program consists of 3 minutes at 

94°C, 35 repetitions of -30 seconds at 94°C, 1 minute at 51,7°C et 1 minute à 72°C- 

followed by 2 minutes at 72°C. The amplicon corresponding to the transgene appeared at 

the size of 100bp, while the size corresponding to the internal control corresponds to 324bp. 
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7.5. Amplification of the transgene TyrHRas  

The amplification of the transgene TyrHRas was performed using the forward primer 5’- 

AACTGCAGTGGGCAGGTAAGTATCAAGG-3’ and 5’-

CGCATAACCAGTGAAACAGC-3’ at a final concentration of 1µM. The PCR program 

was the heating at 94°C during 3 minutes followed by 35 cycles of -40 seconds at 94°C, 30 

seconds at 60°C, 50 seconds at 72°C- and 2 minutes at 72°C. The amplicon has the size of 

586bp. 

7.6. Amplification of the transgene TyrNRas  

The amplification of the transgene TyrNRas using the forward primer 5’- 

AACTGCAGTGGGCAGGTAAGTATCAAGG-3’ and the reverse prime 5’- 

CGCATAACCAGTGAAACAGC-3’ at the concentration of 1µM was performed. The 

PCR program is 4 minutes at 94°C, 35 cycles of -94°C during 30 seconds, 30 seconds at 

58°C, 30 seconds at 72°C- and 5 minutes at 72°C. The amplicon is visible at the size of 180 

bp. 

8. Dissolution and administration of 4-hydroxytamoxifen 

The injections of 4-hyrdocytamoxifen were performed for the 

Abcb5Ink4a/Arfflox/floxTyrCre and Abcb5TyrHRasG12V mouse strains. 

The dissolution of 4-hydroxytamoxifen to a concentration of 10mg/ml is a critical step. 

100µl of ethanol was added at 10mg of 4-hydroxytamoxifen without vortexing the tube. 

This one was sonicated until the solution became clear. At that moment, 900µl of 45°C pre-

heated peanuts oil was added to this tube, directly vortexed. The dissolved 4-

hydroxytamoxifen was kept at the temperature of 37°C until its administration. The 8 weeks 

old mice received an intraperitoneal injection of 2mg 4-hydroxytamoxifen. This injection 

was performed four times with 2-days interval. 
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9. Mice monitoring 

After injection, mice were monitored during 18 months or until the tumor reached a size of 

0.5 cm3. At this moment, the mice were sacrificed by cervical dislocation and dissected. 

Tumors or other remarkable organs were fixed with 4% paraformaldehyde and embedded 

in paraffin. They were sent to our collaborator Marianne Heimann who performed sections 

and hematoxylin staining. 

10. Cell fractionation 

Differential centrifugation was performed according de Duve and colleagues (de Duve et 

al. 1955) with the modifications proposed by Remacle and colleagues. The de Duve 

fractionation scheme allows the separation of the different organelles in six different 

fractions from the cell homogenate. The fraction E corresponds to the cytoplasmic extract 

excluding nucleus, the fraction N is the nuclear fraction, M the heavy mitochondrial 

fraction, L the light mitochondrial fraction, and P the microsomal fraction. The last 

supernatant corresponds to the cytosolic fraction S (de Duve et al. 1955). The A375 

melanoma cells have undergone a differential centrifugation according to the de Duve 

protocol. Each step of this experiment was performed at 4°C to keep maintain the enzymatic 

activity. The cells were rinsed two times with sacharose 0,25M. Cells were scraped and 

mechanically homogenized in ice cold 0,25M sucrose by 15 passages in dounce 

homogenizer. The homogenate was centrifuged at 6.103.g.min. The pellet was rinsed with 

sucrose, homogenized and centrifuged again at the same speed. This second centrifugation 

gives the nuclear fraction (N), which is the pellet resuspended in saccharose and 

homogenized again by 5 dounce passages. The supernatant of these two centrifugations are 

pooled and correspond to the cytoplasmic extract (E). For the next steps, the ultracentrifuge 

Beckman L7-35 was used and a Beckmann rotor 50Ti. For each centrifugation, the duration 

was determined based on the volume. The cytoplasmic extract (E) is centrifuged at 

30.103.g.min, the pellet obtained was washed with sucrose 0,25M and centrifuged again at 

the same speed. The pellet obtained corresponds to the M fraction. The supernatant 

obtained after these two centrifugations were pooled and centrifuged at 250.103.g.min. 

Again, this centrifugation was repeated to obtain the pellet corresponding to the L fraction. 

The centrifugation of the remaining supernatant at 3000.103.g.min allowed obtaining the 

pellet corresponding to P fraction (resuspended in sucrose and centrifuged once more) the 

supernatant, which is S fraction. 
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11. Enzymatic assay 

11.1. Dosage of beta-galactosidase 

The substrate of beta-galactosidase 4-MU-β-D-galactopyranoside (Carl Roth, Karlsruhe, 

Germany), was stored at -20°C in DMSO (50mM) was dissolved at 5mM in citrate buffer 

(50mM citric acid monohydrate, 50 mM tri-sodium citrate deshydrate) at pH4,5 and 

containing 0,05% of triton-100 (Promega, Madison, WI, USA).The different diluted 

fractions were added to this substrate solution. After 7 hours of incubation at 37°C, the 

reaction was stopped by the addition of glycine NaOH 0,1M pH 10,3. The absorbance was 

measured at 495 nm using fluorimeter VersaFluor™ (BioRad, Hercules, CA, USA).  

A blank was used for this experiment. The fraction sample was replaced by sacharose 

0,25M. For each fraction, two dilutions were used. 

11.2. Dosage of alkaline alpha-glucosidase  

The substrate of alkaline alpha-glucosidase, 4-MU-Alpha-D-glucopyranoside, was freshly 

prepared before performing the assay. It was dissolved in a solution at 37°C in 50% ethanol 

at 3,38mg/ml. The diluted fractions were incubated with a glycin buffer 0,1M at pH9 and 

0,05% of Triton-X-100 (Promega, Madison, WI, USA). After an incubation of 4 hours, the 

reaction was stopped by the addition of a solution of glycine-NaOH 0,1M at pH 10,3. The 

fluorescence was measured at 495nm using fluorimeter VersaFluor™ (BioRad, Hercules, 

CA, USA). A blank was used for this experiment for which the fraction sample was 

replaced by saccharose 0,25M. For each fraction, two dilutions were used. 

11.3. Dosage of alkaline phosphodiesterase 

The activity of alkaline phosphodiesterase was measured using its substrate “Thymidine 5” 

monophosphate p-nitrophenyl ester sodium salt” (Sigma-Aldrich, MO, USA). The 

substrate was dissolved in a solution of glycine buffer 0,1M pH 9,6, 4mM of zinc acetate 

and 0,1M NaOH to obtain a final concentration of substrate of 1,6mM. The diluted fraction 

were added to this substrate solution and incubated at 37°C until this solution turned yellow. 

The reaction was then stopped by adding NaOH 0,1M and the absorbance was measured at 

400nm using a spectrophotometer Lambda 10 (PerkinElmer, Waltham, MA, USA). A 

blank was used for this experiment. The fraction sample was replaced by sacharose 0,25M. 

For each fraction, two dilutions were used. 
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11.4. Dosage of cytochrome oxydase 

The activity of the cytochrome oxidase was measured using its substrate « Cytochrome c 

from equine heart » (Sigma-Aldrich, Saint-Louis, MO, USA). The substrate solution must 

be freshly prepared before the assay. The substrate was dissolved (final concentration of 

0,27mg/ml) in a solution 0,03M phosphate buffer pH7,4 (NaH2mgO4.2H2O 0,5 M ; 

Na2HPO4 0,5 M (Carl Roth, Karlsruhe, Germany)), 1mMM of EDTA pH 7,4. The fractions 

were diluted in a solution of phosphate buffer 1mM pH 7,4 (NaH2PO4.2H2O 0,5 M ; 

Na2HPO4 0,5 M) (Carl Roth, Karlsruhe, Germany), 1 mM d’EDTA pH7,4 (Carl Roth, 

Karlsruhe, Germany) and Triton X-100 0,04% (Promega, 29 Madison, WI, USA). The 

addition of ferrocyanure to substrate solution (oxidized cytochrome) and of dithionite 

(reduced cytochrome) was useful to calibrate the spectrophotometer. The zero corresponds 

to the completely oxidized cytochrome, while the absorbance value of the reduced substrate 

solution should be around 0,36 using spectrophotometer Lambda 10 (PerkinElmer, 

Waltham, MA, USA). 50µl of the fraction was added to 1ml of the substrate solution and 

the absorbance at 550 nm was measured during 30 seconds. The measure was performed 

in triplicate for each sample and underwent a logarithmic transformation. 

11.5. Dosage of lactate deshydrogenase  

The activity of the lactate deshydrogenase was measured by using its substrate: the pyruvic 

acid (Sigma-Aldrich, MO, USA). The substrate solution contain pyruvic acid 1,25mM, 

63mM Tris (Carl Roth, Karlsruhe, Germany). In cuvettes containing 800µl of this solution, 

100µl of fractions were added and 100µl of NADH (Sigma-Aldrich, MO, USA). The 

absorbance was measured during 3 minutes at 340 nm using a spectrophotometer Lambda 

10 (PerkinElmer, Waltham, MA, USA). 

11.6. Western blot 

For ABCB5 detection in western blot, the fractions and homogenates were diluted in 

Laemmli’s sample buffer containing 100 mM of DTT and heated at 37°C for 20 minutes. 

15 µg of proteins were loaded and separated by SDS-PAGE. The separated proteins were 

electrophoretic ally transferred onto a polyvinylidene fluoride membrane (PVDF) 

membrane (Bio-Rad, CA, USA) at 110mV during 1 hour. The blotted membrane was 

blocked during 25 minutes, with 10% fat-free milk in in PBS containing 0,01% Tween 20. 
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 The protein of interest was detected by incubation overnight with the Rockland antibody 

(Limerick, USA) 1,29x10-3 μg/μl diluted in BS/Tween 0.1% containing 0.2% fat-free milk. 

The membrane was then washed three times with PBS containing 0,01% Tween 20. The 

bound antibodies were detected using perroxidase-conjugated anti-rabbit Ig secondary 

antibody 8,3x10-5μg/μl) (Dako, Glostrup, Denmark) followed by ECL detection system. 

The membrane was incubated for 5 minutes in SuperSignal West Pico Chemiluminescent 

Substrate (ThermoFisher Scientific, MA, USA). The revelation was performed using 

Amersham HyperfilmTM ECL (GE Healthcare, Fairfield, USA) and an imager Fujifilm FPM 

100A Desktop Processor (Fujifilm, Minato-ku, Tokyo, Japan). 

For the detection of histone H1, the same procedure was used. The primary antibody was 

used at the concentration of 2x10-4 μg/μl (Thermo Fisher Scientific, MA, USA) and the 

secondary mouse-Ig antibody at 8,3x10-5μg/μl (Dako, Glostrup, Denmark). 

11.7. Quantification of western blot results 

The intensity of the western blot signals of ABCB5 and histone H1 were quantified using 

the Image J software. In the distribution profile of ABCB5 and histone H1, the intensity of 

the signal corresponds to the Y-axis “the relative specific signal”.  
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