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Abstract

In these notes we show how to solve a large family of Linear Rational-
Expectations Models using the (Generalized) Schur Decomposition. The
solution method closely follows the one described by Klein (2000). After
developing the general method, we use it to solve a standard macroeco-
nomic model. We include a set of appendices in order to offer a self-
contained exposition.

Resumen

En estas notas mostramos cémo resolver una importante familia de
Modelos Lineales con Expectativas Racionales utilizando la Descomposi-
cién (Generalizada) de Schur. El método de solucién sigue de cerca el
descripto por Klein (2000). Luego de desarrollar el método general, lo
utilizamos para resolver un modelo macroeconémico esténdar. Incluimos
un conjunto de apéndices con el objeto de ofrecer una exposicién auto-
contenida.

*E-mail adress: f ciocchini@uca.edu.ar.
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1 A Basic Linear Rational-Expectations Model
1.1 The Model

Consider the following model:

Tip1 = Agaty + Agyyr + €11 (1)
Eiyiyr = Ayaze+ Ayyys Zo given (2)

where t € {0,1,2,...} is the time period, z; is an n, x 1 vector of predeter-
mined variables, y; is an n, x 1 vector of nonpredetermined variables, €41
is an n, X 1 vector of exogenous i.i.d. shocks with zero means and constant
variance-covariance matrix 3., and Ay, Agy, Aye and Ay, are known matrices
of dimensions 1, X Ny, Ny X Ny, Ny X Ny and Ny X Ny, respectively.! We use
E; to denote the conditional expectation E(- | €;), where € is the information
set at time t. The information sets satisfy ;1 C Q, and §2; includes at least
current and past values of x; and y;. Notice that there is an initial condition
for predetermined variables but not for nonpredetermined ones.

Following Klein (2000), we call a variable predetermined, or backward-looking,
if: i) its one-period-ahead forecast error is exogenous; and i) its initial value
is exogenously given.? From (1) we see that the one-period-ahead forecast er-
ror of xy is wyy1 — Byxi11 = €ry1, which is exogenous by assumption, and xg
is exogenously given. In other words, the value in ¢ + 1 of a variable that is
predetermined at ¢ is a function only of variables known at time ¢, plus the
impact of an exogenous shock that becomes known in ¢ + 1. The vector x; may
contain exogenous variables, like a serially correlated productivity level. Non-
predetermined variables, also called forward-looking or jump variables, differ
from predetermined variables in that their one-period-ahead forecast errors and
their initial values are endogenous. Unlike predetermined variables, the value
taken by a nonpredetermined variable in ¢ + 1 can be affected by the realization
of other endogenous variables in ¢ + 1.

We can combine equations (1) and (2) as follows:

Ti4+1 —A Tt Et4+1 : 3
[ Eiyet1 } [ Yt } * [ 0n,x1 } o given 3)
where A is the square matrix of dimension n = n, + n, defined by:
A A
a=]dr A 4
[ Aya Ay @)

IThe law of motion for x; is sometimes written as 141 = Ayt + Azyyt + T4 q, where
I'is a known ng X ng matrix, and n;,; is an ng X 1 i.i.d. random vector with mean zero
and covariance matrix E{n,;17m;,,} = I (the ng x ng identity matrix). This is equivalent to
defining e¢41 = I'myy 1 in (1). Then: Beyy1 = B{Tn; 1} =TE{n,, 1} =0, and¥e = E{[e¢41—
Betra]leer — Berqa]'} = E{5t+1€;+1} = E{Fm+1né+1F’} = FE{Wt+1772+1}F, =TITI" =TT".

2This is a generalization of the definition given by Blanchard and Kahn (1980), who define
a predetermined variable as one that has a given initial condition and satisfies z¢4+1 = Etz41
(i,e., €t+1 = Tg4+1 — Erxey1 =0 Vt).



1.2 A Simple Example: The Cagan Model

Suppose the real demand for money is given by:3

my{ —py = —a(Byprr1 — pr) (5)

where p; = In P;, m¢ = In M, P is the price level in period ¢, M is the nominal
money demand at the end of period ¢, and a > 0. That is, real money demand
depends negatively on expected inflation.*

Denote the money supply by M. From (5), and imposing the equilibrium
condition M; = Mg, we obtain:

pr = aBypi1 + (1 — a)my (6)

where m; = In My, and o = % € (0,1). Equation (6) shows that the (natural
log of the) price level in period ¢ is a weighted average of the expected (natural
log of the) price level in period ¢ + 1 and the (natural log of the) money supply
in period t.

Money supply is exogenously determined by the monetary authority. Sup-
pose the natural log of money supply follows an AR(1) process:

Miy1 = PMy + Epp1 (7)

where €;41 is white noise and |p| < 1.
Equations (6) and (7) form a rational-expectations version of the Cagan
Model. These equations can be written in form (3) as follows:

Mi41 P 0 my Et+1 .
- g 8
[Etpm] {—1“ L Hpt%{ 0 } mo given  (8)

where m; is predetermined and p; is nonpredetermined. In this model, the
unique predetermined variable is exogenous. In more general models, there can
also be endogenous predetermined variables.

1.3 Some Remarks
A couple of remarks are in order.
Remark 1. The first-order form (3) may seem more restrictive than it really is.

Higher-order models with lagged variables or current expectations of variables
more than one period ahead can be reduced to first-order form (see Appendix

3This example closely follows the one in Soderlind (2001).

4This specification is obtained as a simplification of a money demand function of the form
%:d = (;;t, i¢), where Y is real output and 7 is the nominal interest rate. From Fisher’s parity
condition we have: i & ry + (Etps+1 — pt), where r is the real interest rate. Substituting this
expression into the money demand equation, and assuming that Y and r are constant, we can
write real money demand as a (negative) function of expected inflation.



A for an example). Models with lagged expectations of present and future
variables can also be put in form (3) (see Appendix A for an example).’

Remark 2. One may wonder why we did not include constants C, and Cy in
equations (1) and (2), respectively. Suppose we did. Then, as long as the matrix
I — A is invertible, we could eliminate the constants by rewriting all variables
as deviations from their nonstochastic steady-state values (see Appendix B).

2 Finding the solution to the Basic Model

2.1 Solving the Model using the Schur Decomposition

A solution to our problem is a sequence {z:,y:}$2, of functions of variables
in € that satisfies (3) for all possible realizations of these variables. We are
interested in nonexplosive solutions to (3), so we impose the following boundary
conditions:

llir(r)lo |Eizyi] < oo, Zll‘r(r}o By yi] < 00 9)

Actually, we look for a recursive representation of the solution to (3). That
is, we want matrices M and C so that the solution satisfies:

Tip1 = Mz +e (10)
yo = Cuay (11)

The solution method presented below follows closely the one described in
Klein (2000). The idea is to use the Schur Decomposition to reduce the original
system to a block-triangular system (with two blocks). Then we solve the new
system recursively, solving the second block first and then using this solution to
solve the first block.

Define the n x 1 vector:

wy = { Tt ] (12)

Yt

Taking the conditional expectation of (3), and using (12), we can write:
Etwt+1 = A’U}t (13)

Now we triangularize A using the (Complex) Schur Decomposition (see Ap-
pendix C).° That is, we find a complex unitary n x n matrix Z and a complex
upper triangular n x n matrix T such that A = ZT'Z" | where Z¥ is the con-
jugate transpose of Z (and then Z#Z = ZZH = I, where I is the identity

5Binder and Pesaran (1995) show how to reduce a linear system of expectational difference
equations with arbitrary leads and lags, and expectations taken with respect to information
available at different times, to a second-order canonical form. Klein (2000) shows how to
convert this second-order form into first-order form.

6Blanchard and Kahn (1980) decouple the system by means of the Jordan canonical form
of the matrix A. From a computational point of view the Schur Decomposition is better since
the Jordan decomposition tends to be numerically unstable. See Klein (2000), page 1406.



matrix). This triangularization has the property that the diagonal elements of
T correspond to the eigenvalues of A.” Moreover, it is possible to reorder both
T and Z such that the ny eigenvalues with modulus smaller than one come
first, and the ns eigenvalues with modulus higher than one come last (where
ng +ns =n).5? 1% We can also partition T accordingly (recall that T is upper

triangular):
| The Tos
T= { o ] (14)

where Tyg and Tss are upper triangular matrices of dimension ng X ng and
ns X ng, respectively.
Define the auxiliary variables:

0 H| Tt
=7 15
[ 0t } { Yt (15)
where 0; and ¢, are vectors of dimension ng x 1 and ng x 1, respectively.
From (12) and (13) we have:

NEIIE

Yt+1 Yt

Premultiplying by Z# and using A = ZTZ1 :

EtZH Te41 = ZHZTZH Tt
Yt+1 Yt

Using Z#Z = I and (15):

Oer1 | _ 0,
= |5 =75

Finally, using (14) we obtain the block-diagonal system we were looking for:!!

Orir | _ | Too Tos 01
E, = (17)
Ot41 0 T Ot
"They are also the eigenvalues of T itself, since T is triangular. Therefore, A and T have
the same eigenvalues.
8Recall that the modulus of a complex number w = a + bi is given by v/a2 4 b2. For real
numbers the imaginary part is absent (i.e., b = 0) so we get Va2 = |al.
9Eigenvalues with modulus smaller than one are called stable, and those with modulus
higher than one are called unstable. To avoid additional complicatios, we assume there are
no eigenvalues with modulus equal to one. Some authors refer to eigenvalues with modulus
smaller (higher) than one as eigenvalues that lie inside (outside) the unit circle. See Chapter
1 in Enders (1995) for an explanation.
107f A is invertible, Bywsy1 = Aw: can be rewritten as follows: w; = BEiwiy1, where
B = A~!. The eigenvalues of B are the reciprocal of the eigenvalues of A (if X is an eigenvalue
of A, % is an eigenvalue of B). Therefore, stable eigenvalues of A are unstable eigenvalues of
B, and viceversa.
11 As ZH is invertible, knowledge of ¢ and y; is equivalent to knowledge of 6; and d¢; the
transformation does not affect the information set Q¢. Also, the existence and uniqueness of
a solution to (16) is equivalent to the existence and uniqueness of a solution to (17).




Remark. As noted in Klein (2000), for the above representation we do not really
need that T is upper triangular; it is enough to have upper block triangularity.

This is why the Real Schur Decomposition can also be used to solve our problem
12

From the second block of (17) we get:
Et6t+1 = T§§(5t (].8)

Since the diagonal elements of Tss are the unstable eigenvalues, (18) implies
that the boundary condition (9) will be violated unless:'?

5i=0 Vi (19)

From the first block (17) we obtain E;0;11 = Type8;. Combining this expres-
sion with (19) we get the following system:

E041 = The0: (20)

where an initial condition for 6; is still to be found.
Premultiply (15) by Z, and use ZZ% = I, to get:

=215 ]

Partitioning Z conformably:

Tt Za:H Zz6 et
= 21
[yt} [Zy@ Zyé]{‘st} 21)
where Zy9, Zys5, Zy9, and Zys are matrices of dimension n, xng, ng X ngs, ny Xng,

and ny X ng, respectively.
Substituting (19) into (21) we get:

Ty = Zx‘gat (22)
Yt = Zyget (23)

If Z,¢ is invertible, we can use (22) to get:
Ht = Zm_el.’lit (24)

Remark. A necessary condition for invertibility is that Z, is a square matrix,
that is, ng = n,. Therefore, invertibility of Z, requires that the number of sta-
ble eigenvalues equals the number of predetermined variables (or, equivalently,
that the number of unstable eigenvalues equals the number of nonpredetermined
variables). When Z,¢ has full rank we have rank(Z,9) = min{n,,ng}; in this

12Gee Golub and van Loan (1996), Theorem 7.4.1 (page 341), for a presentation of the Real
Schur Decomposition.
13See Appendix D for a proof of this result.



case, n, = ng is sufficient for invertibility.'* Although not very common, it is
possible to have ng = n, and Z,¢ singular (see Appendix E for an example).

Using (24) and the initial condition for z; we obtain:
0o = Zy o (25)

which provides an initial condition for system (20).

From (1) we have Eizi41 = Ages + Agyys, and then, ey = 2441 —
E:2:41. Substituting (22) into the latter we get: €141 = Zp90t41 — Bt Zp00:11 =
Zx90t+1 - ngEthH. Then:

€t41 = Zpo(Or41 — EiOip1) (26)

From (26) we get 9t+1 - Et9t+1 = Z;918t+1, and then, 0t+1 = Et9t+1 +
Z dfelstﬂ. Substituting (20) into the last expression we obtain:

Or+1 = Tpob; + Z;915t+1 (27)

Therefore, the nonexplosive solution to system (17) is given recursively by
(19), (27) and (25).

Now we want to go back to our original system in terms of z; and y;. Shift
(22) one period ahead and use (27) to get: @411 = Zpobip1 = Zro(Toob: +
delstﬂ). Using (24) to eliminate 6, and rearranging: x;1 = ZInggZ;(,lxt +
€t4+1- Then:

Tep1 = Mz + €441 (28)

where
M = Z.6Too 7,5 (29)

Analogously, substituting (24) into (23) we obtain: y; = Z,9Z,, x;. Then:
yr = Cmy (30)

where
C=2ZywZy (31)

Equations (28) and (30), together with the initial condition xy, give the
recursive representation of the solution to (3). The vector of predetermined
variables evolves according to a VAR(1), and the vector of nonpredetermined
variables is a linear function of the one on predetermined variables.

Notice that M and C do not depend on .., the variance-covariance matrix
of g;. That is, certainty equivalence holds.

14 Blanchard and Kahn make the full-rank assumption. See Blanchard & Kahn (1980), page
1307.



2.2 Important Results

Assume Z,¢ has full rank, and then rank(Z.9) = min{n,,ng}. From the previ-
ous analysis we conclude:

Result 1. (Blanchard and Kahn (1980), Proposition 1).

If the number of stable eigenvalues is equal to the number of predetermined
variables, i.e. ng = ng, (or, equivalently, if the number of unstable eigenvalues
is equal to the number of nonpredetermined variables, i.e. ns = n,), system (3)
has a unique nonexplosive solution.

Remark. The system may also have unstable solutions.
We also have the following results, that we present without a formal proof:

Result 2. (Blanchard and Kahn (1980), Proposition 2)

If the number of stable eigenvalues is smaller than the number of predeter-
mined variabes, i.e. ng < n, (or, equivalently, if the number of unstable eigen-
values is bigger than the number of nonpredetermined variables, i.e., ns > ny),
there is no solution satisfying both system (3) and the no-explosion condition

(9).
Remark. The system may also have unstable solutions.

Result 3. (Blanchard and Kahn (1980), Proposition 3).

If the number of stable eigenvalues is bigger than the number of predeter-
mined variabes, i.e. ng > n, (or, equivalently, if the number of unstable eigen-
values is smaller than the number of nonpredetermined variables, i.e., ns < ny),
there is an infinity of solutions satisfying both system (3) and the no-explosion
condition (9).

We can provide some intuition for the results above. For the first result, recall
that the full-rank assumption and ng = n, imply that Z,¢ is invertible. Then,
the unique solution to Z,90y = xq is Oy = Z;elavo. Hence, any vector of initial
conditions for the predetermined variables determines a unique vector of initial
conditions for the auxiliary variables, 6. From (23) we know yo = Z,96y. Hence,
0y induces a unique vector of initial values for the nonpredetermined variables,
Yo. Another way to think about this result is as follows: our original system (see
(3)) has n equations and n variables, with n = ng + ny; accordingly, we need
n restrictions to pin down a unique solution; we have n, restrictions coming
from the initial condition for the predetermined variables, and ng restrictions
coming from the stability conditions (recall (19)); therefore, the total number
of restrictions is n, + ns; hence, n, +ns = n requires ns = N — Ny = Ny;
therefore, the stability conditions exactly pin down the initial values of the
nonpredetermined variables, yo. Notice that ns = n, is equivalent to ng = n,
since n = ng, +ny = ng + ns.



When ng < n,, the full-rank assumption implies: rank(Z.g) = ng < n,.
Hence, Z,s has more rows than columns, and system Z,90y = xg has more
equations than unknowns. In this case, the system cannot be solved for arbitrary
initial vectors xo. Since yo = Z,900, we cannot solve for yo either. In terms of
our original system, we have n, + ng restrictions; but ng < n, is equivalent to
ns > ny, and then n, +ns > n, + ny = n; therefore, we do not have enough
restrictions to pin down the initial values of the nonpredetermined variables, yq.

When ng > n,, the full-rank assumption implies: rank(Z.g) = n, < ng.
Hence, Z,9 has fewer columns than rows, and system Z 90, = x¢ has fewer
equations than unknowns. In this case, the system has infinitely many solutions
for any initial vectors z. In particular, ng —n, components of 8y can be chosen
arbitrarily. Since yo = Zy90, this implies that ngy — n, components of yy can
be chosen arbitrarily. But ng —n, = ny, —ns (since n = ng +ny, = ng + ns).
Therefore, n, —ns components of yo can be chosen arbitrarily. This is consistent
with the fact that, for our original system, we have fewer restrictions than
unknowns: ng + ns < ng + ny (recall that ng > ng < ns < ny).

For examples of Results 2 and 3 see Appendix F.

2.3 A Simple Example: Solving the Cagan Model
Let’s go back now to Cagan’s model, and suppose that p = 0.9 and o = 0.5.
Then, A in (8) becomes:
09 0
-2 ]
Using a computer, we find that the Schur decomposition of A gives:

T_ 09 1 7 —-0.7399  0.6727 gH _ —-0.7399 —-0.6727
0 2 | | —0.6727 —0.7399 |’ | 0.6727  —0.7399

15

Notice that A is triangular, and then its eigenvalues coincide with its diagonal
elements. As required, T is upper triangular with the eigenvalues of A along the
diagonal, and the stable eigenvalue comes first. Also, Z is unitary, so Z7 = Z—1.
In this particular example, both 7' and Z are real (and then ZH coincides with
the transpose of 7).

Partitioning T as in (14), and Z as in (21) we obtain:

Tog = 09, Tos=1, T50=0, Tss =2
Zgg = —0.7399, Z,5=0.6727, Z,9 = —0.6727, Z,5 = —0.7399
Substituting into (29) and (31):

07309 ~
— 0.909

M Zw0TooZ,5 = —0.7399 x 0.9 x

0.7399

15As a companion to Klein (2000), Paul Klein developed a Matlab routine, solab.m,
that solves the type of models discussed in these notes. The code is available on line at
http://paulklein.se/newsite/codes/codes.php

C = ZywZ, =-0.6727x




Finally, (28) and (30) give:'6

miy1 = 09mt +€t+1
pr = 09091771,5

The Cagan Model is simple enough so that we can check the solution given
above by direct calculation.

From (6) we know: p; = (1 — a)m; + aEiprr1. Iterating forward and ap-
plying the Law of Iterated Expectations we get:'” p; = (1—a) Z?:o @*Bymyy s+
a1 Epsy7y1. Letting T — oo, and imposing the condition Tlim ot Eypy 71 =

— 00

0, we get:

oo
Pt = (]. — OZ) ZaSEtmt+s
s=0
From (7) we know: my11 = pmy + e141. Iterating forward we get: myys =
pimy + > iy p¥ sy Then:

Eimiys = PS my

since Eyp°*my = p®my and Eegqps =0 Vs > 1.

Substituting Eyms = p®my into the expression for p; we get: p; = (1 —
o0
a)ms Y (ap)®. Then:
s=0

l—«

Y43 me

:17047

o0
since Y (ap)® = 1_1ap, because |ap| < 1.
s=0

When a = 0.5 and p = 0.9, we get: 11:(3,» = % 2 0.9091, which coincides
with the result we found using the Schur Decomposition.

Remark. This simple model helps understand the problems that can arise when
there are eigenvalues with modulus equal to one. When p = 1, the solution for
the price level is p, = m;. From this expresion we get Eipi1s = Eymyys = my.
Then, Sl:r{)lo |Eipiys| = |me] < oo, which shows that the solution satisfies our

definition of stability. The problem, however, is that the conditional variance of
the price level diverges to infinity, unless e; = 0 V¢ (which would happen when
02 = 0). We have: Vari{piis} =Vary{mi s} =Var{m; + 141 + €42 + ... +

Etrs} = 802 — 00 as 8§ — 00, unless o2 = 0.

16Money supply, the only predetermined variable of the model, is exogenous. Therefore,
the solution recovers the AR(1) process given in (7).

TWhen Q¢ C Qiy1 V¢, the Law of Tterated Expectations establishes that Be{Bitspi+s} =
Eipi4s Vs € {1,2, }



2.4 Impulse-Response Functions

Using the solution (28) and (30) we can trace the effects on  and y of a shock at
time ¢, i.e., we can derive the impulse-response functions. We start by writing
x; and y; as functions of current and past shocks.

From (28), and the initial condition, we get:
1 = Mz + €1
To = Mz + €9 :M(M.’Eo—i-z’:‘l) + €92 :M2$0+M61 + €92
3 =Mz +63 = M(MQI’O + Meq +62) +ée3 = M3$0 +M261 + Meg + €3

Ty = Mt:L'O + Mt_lgl + Mt_2€2 F e+ Meyg_1 44

Then: .
Ty = Mtxo + Z Mié‘t_i (32)
i=0
where M? = 1.
Substituting (32) into (30) we obtain:
t—1 A
Yy = OM'xy + Z CM'e;_; (33)
=0

From (32) and (33) we conclude that the impact of a shock in ¢, €, on the
current and future values of z and y is:

Variable Ty Tig1 Tit2 o Tigy
Impact of a shock in period ¢ e  Mey  M?e, ... Mg,
(34)
Variable Yt Y+l Yer2 o Yitg
Impact of a shock in period t Cey CMe;, CM3?s; ... CMeg,

2.5 Second Moments

From (28) we know: x; = Mxy_1 + &;. Iterating infinitely far into the past,

and imposing lim M®z;_s = 0, we get the MA(oco) representation for the time
s§—00

series of the state vector:'®

Ty = ZMiEtﬂ' (35)
i=0
Remark. The condition lim M?®z;_s = 0 follows from the fact that the eigenval-
§— 00
ues of M are all smaller than one in modulus. Actually, lim M*® =0 < all the

eigenvalues of M have modulus smaller than one (See Sydsater et al. (2005),

18The same result can be obtained using the lag operator, L, defined by Lx; = x¢_1 :
vt = Mz +et = x¢ = MLy +e¢ = (I — ML)xy = e = x¢ = (I — ML)*lst7 where

o5} .
(I - ML) le; = 3 M'ey_;. Lag operators are discussed in Enders (1995), Chapter 1.
i=0

10



Chapter 21, Result 21.7). And we know this condition holds because the eigen-
values of M coincide with the eigenvalues of Typy : Mx = Az = ngngZl_elx =
A\ = Zgngmngme_elx = Zx_elx\av = ngZx_elx = AZ;elaU = Tyow = Aw. We also
know that Y M'e; ; is well defined. See Chapter 2 in Liitkepohl (2005) for a

=0

good reference on these questions.

From (35) we can get the unconditional expectation of x :
Ex, =0 (36)

Therefore, the unconditional variance-covariance matrixz of x; satisfies:
=E{(z; — Bxy)(z;y — Bxy)'} = E{z.2}}
e} 7 o 7
=B{Q o M'er—i) (3 =g M'es—i)'} , ,
s =B{> 2 Mg > e, ;M"} since MY = M"
r = E{gzo MlEtfz‘g%_iM”/_"‘ > Zf%% le‘?'tfﬁ;_j]ylj} g
Y = Zi_:o M'E{e;—ici_i}M" + 3 Zi;éj M'E{e;—iey_;} MY
Then, using (36):

8

8

M MMM

Y, = Zi:o My M" (37)

since B{e;—ie;_;} =0 Vi # j.
We can further write:
Y =4+ Y0 M. M =%, + M(Y oo, MTIS MM
Yo =S4+ M2, M. MM’
Then:
Y, =%, + MY, M (38)

From (30) we obtain: Ey, = E{Cz,} = CEx; =

Therefore, the unconditional variance-covariance matrix of y; satisfies:
Yy = E{(y: — Bye)(yr — Bye)'} = E{wuys}
X, =E{(Cx)(Cx;)'} = B{Czxyz,C"}
Xy, = CE{zx}}C’
Then:
, =05, (40)

There are different methods to obtain the solution to (38). One way is to
iterate on the following expression until convergence:

Yo, =S+ MY, ;M 41
J J

where the iteration could start by setting ¥, 0 =0 or X, g = .19
Alternatively, we can use the vec operator - that stacks the column vectors
of a matrix - to write:

9The speed of convergence can be increased using the so-called doubling algorithm. See
Chapter 4 in Uribe (2011) for a description.
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vec(Xy) = vee(X. + ME, M)
vee(X;) = vec( c) +vec(ME, M)
vec(Xy) = vee(X:) + (M @ M)vec(X,)
(I — M ® M)vec(E,) = vee(Xe)
Then:
vee(X,) = (I — M @ M) tvec(X.) (42)

where we have used vec(A + B) = vec(A) + vee(B), and vec(ABC) = (C' ®
A)vec(B), with ® denoting the Kronecker product operator.?’

Remark 1. To get vec(X,) from (42) we need to be sure that I — M @ M is
invertible, and this will be true if and only if the eigenvalues of I — M ® M are all
different from zero (Sydsseter et al. (2005), Chapter 21, Result 21.6). We know
the eigenvalues of M ® M are products of the eigenvalues of M (Sydsaeter et al.
(2005), Chapter 23, Result 23.10), and we have argued that all the eigenvalues of
M have modulus smaller than one. It follows that all the eigenvalues of M @ M
have modulus smaller than one. Now, the eigenvalues of I — M ® M are of the
form 1 — A, where X is an eigenvalue M ® M. Since |A| < 1, we know that 1 — A
cannot be zero. Hence, I — M ® M is invertible.

Remark 2. Even though (42) gives an exact formula for 3,, (41) may be pre-
ferred in applications, since computing (42) can be less accurate and slower,
especially when n, is large (since it is necessary to invert an n2 x n2 matrix).

Consider now the following variance-covariance matrix: E{z;z}_;}, j > 0.
We have:

E{fftxifj} = E{(Zfio Milgtfim;fj} 4
E{ziz)_;} = E{(>7 2y Mies—i + iy Miei)zy_;}
E{w;_;} = E{(Z] ) Miey i+ M/ Z;)ij M e i)y}
E{ziz;_;} = B{(Y272, ! Mg + MJ_ Soheo MPe—jy—w)zi_;}
B{zz;_;} =B{(3 5 ! Mg+ Mz j)x_j}
E{wa,_;} = B{(X)2 leﬁt—i)fﬂfe_j} +B{M 2 jz;_;}
Bz} = B{}] g Meri 300 M-} + B{M ze_jz;_;}
E{zz;_;} = MIE{x;—j7;_;} (since the first term of the previous expression
contains only cross-products)
Then:
E{zr ;} = M?%, (43)
Also:

E{yiyi_;} = B{Cx(Cxy—;)'} = B{Cry}_;C"}
E{ytyg_j} = CE{actx;_j}C"
Then:

E{ywy;_;} = OM’%,C’ (44)

20See Chapter 23 in Sydsater et al. (2005) for definitions of the Kronecker product and the
vec operators, and a list their basic properties.
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3 A More General Model
3.1 The Model and its Solution

We generalize (3) as follows:
Tt4+1 Tt Et+1 .
G =A 45
[ Byt ] [ Yt ] * [ 0y, x1 ] o given (45)

where G is an n X n, possibly singular, matrix. In terms of partitioned matrices
we get:

Gao Gacy Tt41 _ Ay Axy Tt + Et+1 (46)
Gym ny Etyt+1 Aym Ayy Yt Ony x1
We assume that x; is predetermined, and therefore it has an exogenous one-
period-ahead forecast error &, | = 11 — Byaygq.?!

Based on information available at time ¢, we can take expectations of (45)
in order to get:

GE, [ Titl } = A[ e } (47)
Yt+1 Yt
or, more compactly,
GEtwt+1 = Awt (48)

Remark. The system presented in Klein (2000) and Blanchard and Kahn (1980)
is of the form GEyw; 11 = Awg+Dz;, where {z;} is a stable sequence of exogenous
random vectors of dimension n, X 1, and D is a known matrix of dimension
n X n,. In Appendix G we show how to rewrite this system in form (48) when
the exogenous random vectors follow a VAR(1).

Notice that if G were invertible, we could premultiply (47) by G~! and
obtain a system in form (16). In this case we could solve the problem using the
Schur Decomposition, as explained earlier. If G is singular, this approach is not
possible, but we can still solve the problem applying the Generalized (Complex)
Schur Decomposition to the matrix pair (A, G) (see Appendix C). That is, we
find complex unitary n xn matrices @) and Z, and complex upper triangular nxn
matrices S and T, such that A = QTZ" and G = QSZH . The decomposition
is such that the generalized eigenvalues of (A, G) are of the form %LL, where s;;

and t;; are the diagonal elements of S and T, respectively. Moreover, we can
reorder S, T, @ and Z such that the ngy generalized eigenvalues with ‘i—;—‘ <1

2INotice that, in this more general system, ;11 is not the one-period-ahead forecast error of
z¢. From the first block of (46) we get: Geoxi41+GayEtyi+1 = Azt +Acyyi+er41. Taking
expectations conditional on period-t information: Gzz Etxi41+GoyEryi+1 = Aza®t + AxyYt-
Subtracting the second expression from the first one: Gz (zi41 — Etxt41) = €¢+1. Then:
€141 = Gzaz&yyq- Since Gzz may not be invertible, it is not generally possible to write
Eey1 = Graery1. We can still write &1 = Grp€ty1, where G, is a generalized inverse of

TT-
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come first, and the ngs generalized eigenvalues with modulus higher than one
come last (where ng + ns = n).
Define the auxiliary variables:

0 H| Tt
=7 49
[ O } { Ye 49)
where 0; and ¢, are vectors of dimension ng x 1 and ng x 1, respectively.

Premultiplying (47) by Q¥, and using A = QTZ" and G = QSZH, we
get:22

Yt+1 Yt

QY QSE, 2" { e ] = Q"Qrz" [ o }

Using Q7Q = I and (49):

Ht-i—l _ et
SEERA

Partitioning S and 7' conformably with 8; and J; we can write:
Seo  Ses 0141 Toe Ths 0
E = 50
[ 0 Sss ] ‘ [ Ot41 0 Tss Ot (50)

Notice that Sgg is invertible: since Sy is triangular, its determinant is the
product of its diagonal elements; moreover, since all the generalized eigenvalues

with ‘i—;—‘ < 1 are ordered first, s;; cannot be zero for any ¢ in this block;

therefore, |Spg| # 0, and Spg is invertible. Analogous reasoning shows that
Tss is also invertible. Matrix Sss, however, may not be invertible, since some
of its diagonal elements could be zero (corresponding to infinite generalized
eigenvalues). This will happen whenever G is singular and the matrix pair
(A, Q) is regular (see Appendix C).

Remark. As noted in Klein (2000), for the above representation we do not really
need that S and T are upper triangular; it is sufficient to have upper block
triangularity. This is why the Generalized Real Schur Decomposition can also
be used to solve the system.?3

From (50) we get:
S55Et6t+1 = T&;(St (51)

Since the pair (Sss, Tss) contains the unstable eigenvalues, the system will vio-

late the no-explosion condition unless:*

22As QH is invertible, knowledge of x; and y; is equivalent to knowledge of ; and &; (the
transformation does not affect the information set €¢). Hence, one system is equivalent to the
other.

238ee Golub and van Loan (1996), Theorem 7.7.2 (page 377), for a presentation of the
Generalized Real Schur Decomposition.

248ee Appendix D for a proof of this result.
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5, =0 Vi (52)

Substituting (52) into (50) we obtain: SggB:0;11 = Tpeb:. Since Spp is
invertible, we get:
Et0i+1 = Sy Toabs (53)

where an initial condition for 6; is still to be found.
Premultiplying (49) by Z, and using ZZ = I, we get:

=215 ]

Partitioning Z conformably:

Tt er Z:cé ot

= 54

[yt} [Zy(’ Zyt?]{‘st} (54

where Z,9, Zys, Zy9, and Zy5 are matrices of dimension n, X ng, ng X ngs, ny X ng,
and n, X ng, respectively.

Substituting (52) into (54) we get:
Ty = Zzget (55)
Yr = Zyoby (56)

If Z,p is invertible, we can use (55) to get:
Gt = Zw_gll't (57)

Remark. As noted earlier, a necessary condition for invertibility is that ng = n,,.
Therefore, invertibility of Z,s requires that the number of stable eigenvalues
equals the number of predetermined variables (or, equivalently, that the num-
ber of unstable eigenvalues equals the number of nonpredetermined variables).
When Z,4 has full rank, n, = ny is sufficient for invertibility.

Using (57) and the initial condition for z; we obtain:

o = Z_4 o (58)

x

which provides an initial condition for system (53).

The one-period-ahead forecast error of z; is §;,{ = @41 — w1, which is
exogenous by assumption. Using (55) we get: &, = Zy90i41 — By Zp90i 41 =
Zx90t+1 - ngEthH. Then:

Eer1 = Zao(Or11 — Erbiy1) (59)

From (59) we get 0t+1 — Et0t+1 = Z;91§t+1, and then, 9t+1 = Et0t+1 +
Z4'€,,1. Substituting (53) into the last expression we obtain:

0t+1 = Sg_ngGQet + Zw_elfu-l (60)
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Therefore, the nonexplosive solution to system (50) is given recursively by
(52), (60) and (58).

Now we want to go back to our original system in terms of x; and y;. Sub-
stituting (60) into (55) we obtain: T¢11 = Zp0ii1 = Zuo(Spy Toa0s + Zpp Erir)-
Using (57) to eliminate 6;, and rearranging: x;11 = Za;gSe_enggZ;@lxt + &4
Then:

T = Mz + &4, (61)

where
M = Z,0S,9 TooZ 5 (62)

Analogously, substituting (57) into (56) we obtain: y; = Zy9Z,, ;. Then:
yr = Cay (63)

where
C=ZuZ,y, (64)
Equations (61) and (63), together with the initial condition zg, give the
recursive representation of the solution to (45).

The Blanchard-Kahn resutls apply, with generalized eigenvalues taking the
place of (standard) eigenvalues. The calculation of impulse-response functions
and second moments apply as well, with the new definitions for matrices M and
C, and with 3¢ in place of ¥..%

3.2 A Simple Example

Consider the following simple model:

1
Ti41 = Z$t+yt+5t+1
1
U = 5331:

where €441 is white noise and z is given.

It is really easy to solve this model. Substitution of the second equation
into the first gives the recursive solution for the predetermined variable: x;y; =
%:Et + %:Et + Et41 =

3
Ti41 = th + €141

Hence, M = 3/4. The second equation is already in the required form, with
c=1/2.

25When G is invertible, we have Eep1 = G;acl€t+1- Then, 3¢ = Goiv.GhY.
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Now we can apply our general solution method to the model given above

and confirm that it provides the correct solution. We start by rewriting the
model in form (46):

1 0 Tt+1 o 1/4 1 Tt + Et+1
0 0 Etyt+1 1/2 -1 Yt 0
where G = { é 8 } and A = [ /4 1 ] Notice that G is singular.

1/2 -1

Using a computer we find that the Generalized Schur decomposition of A

gives:26
g 0.8944 —0.4472 | T — 0.6708 0.7826
o 0 0 ’ o 0 1.1180
0= -1 0| 7 — —0.8944  0.4472 . gH _ —0.8944 —0.4472
o o 1\’ | —0.4472 —0.8944 o 0.4472 —0.8944
Then
Sge = 0.8944, Sps = —0.4472, S5 =0
Tooe = 0.6708, Tys = 0.7826, Tss = 1.118
Zeo = —0.8944, Z,s =0.4472, Z,9 = —0.4472, Z,5 = —0.8944
Then, M = Zg;gSae ngZza = M = —0.8944 x 08944 x 0.6708 x 08944 =

M = 0.6708 =

0.8944 3
M="2
4

Also, C = ZyZ,) = C = —0.4472 x —5L0 =
1
=3

Moreover, from Gy, = 1 and ;41 = Gz.§; 1 We get:

§i41 = Et41

Then, 2411 = Mx; + &, and y; = Cx; become:

Tip1 = th + &1
1
Yt = §$t

which coincides with the solution we found earlier.

26We use the Matlab code developed by Paul Klein, solab.m, available at
http://paulklein.se/newsite/codes/codes.php
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4 A Rational-Expectations Macroeconomic Model

In this section we use the methods discussed above to solve a standard, infinite-
horizon, stochastic, Real Business Cycle (RBC) model.?"

4.1 The Model

There is a representative household with preferences over sequences of consump-
tion and leisure. In any period ¢t € {0,1,2, ...}, the household chooses consump-
tion (Cy), the supply of labor time (H;), and investment (I; = K41 —(1—0)Ky).
Total time available is normalized to one, so leisure time is 1 — H;. The house-
hold owns the capital stock (K3), which is rented to the representative firm.
The budget constraint of the household establishes that total expenditure in
consumption and investment must be financed with wages (w;H;) and the rents
from capital (r;K;).2® Therefore, household’s decisions can be represented by
the solution of the following utility-maximization problem:

max E 5~ "InCy + aln(1 — H,
{Ce,Hy, K132, Otgoﬁ [ ! ( o)
s.t. Ct + Kt+1 - (1 - 5)Kt = tht + ’I"th
Ky > 0 given

where we have assumed that preferences are time separable, with period utility
function U(C},1 — Hy) = InCy + aln(l — Hy), discount factor S € (0,1), and
a>0.

The representative firm’s production function is Cobb-Douglas:

Y, =NKPHT?, 6€(0,1)
Total factor productivity is stochastic and evolves as follows:
InAip1 =0 —9)InA+vyInA + €41

where v € (0,1), A > 0, and {e41},-, is a sequence of i.i.d. random variables
with mean zero and variance oZ.

The firm generates output by hiring inputs in competitive markets, with the
aim of maximizing profits. Using the production function to eliminate output,
we can write the profit-maximization problem as follows:

max AthHtl_e - tht - T'th

Ky, Hy

2TWe solve the standard model with divisible labor, as presented in Hansen (1985). This pa-
per also develops a model with indivisible labor that can be solved with the same methodology
presented here.

28 The representative household owns the representative firm. Since profits will be zero, we
do not need to include them as part of the household’s income.
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The combination of constant returns to scale with competitive markets implies
that any solution of the profit-maximization problem must yield zero profits.

Given the stochastic process for total factor productivity, a competitive equi-
librium for this economy is a sequence of stochastic allocations {Ci, Ir, Hy,
K11, Yi}32,, and a sequence of stochastic prices {rs, w;}72,, such that: (i) the
allocation of the household maximizes expected utility, given the sequence of
equilibrium prices; (ii) the allocation of the firm maximizes profits, given the
sequence of equilibrium prices; (iii) the sequence of prices clears all markets.
Market clearing requires that, at the equilibrium prices, the labor supplied by
the household coincides with the labor demanded by the firm, the capital sup-
plied for rent by the household coincides with the capital demanded by the firm,
and the output supplied by the firm coincides with the household’s demand for
consumption and investment.

After finding the first-order conditions for the utility and profit maximization
problems we can summarize the equilibrium conditions with the following set
of nonlinear stochastic dynamic equations:

InAip1 =1 =) InA+yInA +eqq
Kt—l—l = It + (1 — S)Kt
Y, = MK/HY

Wt = (1—6)%&

rt:9}—;‘t-
Y, =Ci+ 1y

aCy
T-H, — Wt

C% :Et{%(ﬁﬂ-l-l—@}

The system above has 8 equations to solve for the evolution of 8 variables (A,
K1, Y, Cy, I, Hy, 14, wy). The first and second equations are simply the laws
of motion for total factor productivity and the capital stock, respectively. The
third one is the production function. The fourth and fifth equations come from
the profit-maximization problem, and simply say that factor prices (in terms
of output) must equal their marginal products. The sixth equation imposes
market clearing in the output market.?? The seventh equation comes from the
utility-maximization problem, and establishes an intratemporal relation between
consumption and labor. It can be interpreted as a labor supply equation, where
H; is an increasing function of wy, for given C;. Finally, the eigth equation is

29We are also imposing equilibrium in factor markets, since we are using Hy (K) to denote
both the demand and supply of labor (capital).
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the standard Euler equation obtained from utility maximization. It establishes
the connection between current and future consumption that must be satisfied
by any optimal saving/consumption plan.

4.2 Log-linearization

Since the system displayed above is nonlinear, we cannot really use the solution
method described earlier. What we will do is take a log-linear approximation
of the model around its nonstochastic steady state. This will produce a linear
system that we can solve. The solution of this system will be an accurate
approximation of the solution to the original system as long as the equilibrium
allocations are close enough to the nonstochastic steady state.

We start by calculating the unique nonstochastic steady state of the model.
In this steady state there are no shocks (e; = 0 Vt) and all variables are constant
(Xi41 = X3, for any variable X). Using an upper bar to denote steady state
quantities, we get:3°

A= A
1
Fo— 2145
B
o\
T 0w

(a+1-0)T —abd

~il
I

>,
=

|
I
VRS
SRl
N———
1
=

Nl
[

o =

Now we proceed to log-linearize the model around its nonstochastic steady
state (Appendix H describes the method of log-linearization). For any variable
X we define X; = InX; — In X, which measures the relative deviation of X

30This model is simple enough so that we can solve for the nonstochastic steady state
analytically. In more complicated models the steady state has to be found numerically.
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from X.3! Log-linearizing the original system we get (See Appendix H):
Xt+1 = VXt + €41
K1 = 0L + (1 - 0)K,
0=X +0K; +(1—0)H, — Y,
0=Y, — H, —
0=Y, - K, — 7,
0=YY,-CC, —TI,
0= — =H, - C,
B:Ci1 — B = Gy

The system above can be written in matrix form, as follows:

(1.0 00 00 0 07/ A
010000 0 0 Kip1
00000O0O 0 0 B Vi
000O0O0O0 O O E.Crpn | _
000000 0 0 Eili1
000000 0 0 By,
000000 0 0 By
L0001 00 =47 0]|gg,, | A
[y 00 0 0 0 0 07[MN] [ean
0 1-6 0 0 & 0 0 0 K, 0
1 6 -1 0 0 1-6 0 0 v 0
o 0o 1 0 0 -1 o0 -1 o 0
0O -1 1 0 0 0 -1 0 ft+0
o 0 Y -C -T 0 0 0 e 0
o 0 0 -1 0 =Z o 1 M 0
1-H Tt
Lo 0o 0o 1 0 0 0 0]]|aq L O

31Recall that, when X; is sufficiently close to X, In X; — InX = XX;X
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Let G denote the matrix on the left-hand side and A denote the matrix on
the right-hand side. Define the following column vectors:

X ~
$t5|\’f‘|ayt5 {t\ ,€t+15[6t81}

Then we can write:

Ti41 Tt Et+1
G =A
|:Etyt+1:| |:yt]+[0]
which is a system in form (45).

4.3 Parametrization and Solution

To solve the model numerically we need to assign particular values to its parame-
ters. Following Hansen (1985) we set: § = 0.36, 8 = 0.99, § = 0.025, v = 0.95,
A=1,a =2, and o, = 0.00712.32 These figures imply: A\ = 1, 7 = 0.035,
w=2.37, K=11.43, H=0.301, Y = 1.114, I = 0.286, and C = 0.829.

From our previous analyisis we know the solution is of the form z;;1 =
Mz + &, and y; = Cx;.%3 Using a computer we get:3*

0.95 0
M= 0.1162 0.9528
1.4874  0.1932
0.3981  0.5660
C— 4.6468 —0.8879

0.7616 —0.2606
1.4874 —0.8068
0.7258  0.4538

32Hansen calibrates the model in order to match quarterly data for the US over the period
1955.Q3 - 1984.Q1.

33 Notice that Gpe = { Lo

0 1

1 0

0 1 }, and then G;xl = {

}. Then: &1 = Grgei41 gives:
ftf&fl = Et41-

4We use the Matlab code developed by Paul Klein, solab.m, available at
http://paulklein.se/newsite/codes/codes.php
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Then, x;y1 = Mx; + §;,; becomes:
Neg1 = 095X + £141
Kyy1 = 0.1162); + 0.9528K,
And y; = Cxy gives:
Y; = 14874\, + 0.1932K,
C; = 0.3981)\; + 0.5660K,
I, = 4.6468); — 0.8879K,
H, = 0.7616)\; — 0.2606K;
7 = 14874\, — 0.8068K,

@y = 0.7258)\; + 0.4538 K

The expressions above allow us to easily calculate the impulse response of
each variable to a technology shock. Assuming that in period 0 the economy is
in steady state and that a 1% technology shock occurs in period 1 (i.e., €; =1,
e, = 0 Vi > 2) we get the figures displayed below (for each variable, time is in
the horizontal axis and the %-deviation from the nonstochastic steady state is
in the vertical axis).
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Impulse Responses to a 1% Technology Shock
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Finally, we can use the formulas described earlier to obtain second moments
for all the variables. For example, using (42) and (40) we obtain the variance-
covariance matrix for the nonpredetermined and predetermined variables:

E _ [ O’i ONK _ 520 605
v oK) 0% 6.05 15.29

U%/ gy C oy’ OYH Oyr Oy w
ocy 0L ocr OcH Ocr OcCw
y, = | o o o7 o O Oh
OHY OHC OHI oy OHr OHw
oy Oy Opl OrH 0% Oy
Owy OwC Owl OwH Owr U%U

15.6 10.3 308 3.7 3.6 11.9 ]
103 84 157 13 —-08 9.0
30.8 15.7 744 105 16.2 20.2
3.7 13 105 17 3.0 20
36 —-08 162 3.0 6.9 06
119 9.0 202 20 06 99

Remark. One way of evaluating the performance of a model is to compare the
second moments generated by the model to empirical second moments obtained
from time-series data. In our RBC model there is no long-run growth. It is
not difficult to show, however, that our model is equivalent to one with con-
stant long-run growth where all variables have been normalized by the growth
component. Hence, if Z; grows in the long-run at rate g, we can define a new
variable, wy, as follows: z; = Z—Ozeﬁ In a balanced-growth path, Z; grows at rate
g, and then z; is constant at some value, Z. The relative deviation of z; from Z
is then: 2, = Inz —InZ = In(3Z45) —In%z = In Z; —In Zy — gt — InZ. This shows
that the model-generated second moments obtained above are comparable to
the second moments generated from data that has been linearly detrended (in
logs). Linear detrending, however, is not the only possibility. In particular, it
is standard among researchers to detrend macro variables using the Hodrick-
Prescott (HP) filter. In this case, it would be inappropriate to compare the
moments calculated above to their empirical counterparts. To do a meaningful
comparison one would first need to determine the mapping from the moments
of our "hatted" variables to the moments of HP-filtered data. For different ways
of doing this analytically, see Burnside (1999) and Uhlig (1999). Another possi-
bility is to generate simulated time series with the model, detrend the simulated
data using the HP filter, and then calculate the second moments of the filtered
simulated data. An advantage of the latter methodology is that, by simulat-
ing many time-paths for each variable, one can provide standard errors for the
estimated moments.
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5 Appendices
Appendix A

In this appendix we present an example to show how to reduce a higher-order
model to the first-order form given in (3). We also provide an example of a
model with lagged expectations that can be put in form (3).3°

Example 1. A higher-order model.
Consider the following model:

Yi+aY, o+ BEY; 10 =1, (65)

where 1, = pn,_; + v+ and v; is an exogenous white-noise process. We have
initial conditions for Y_o, Y_1, and 7.
The model can be rewritten as follows:

0 0 O

Nt+1 P 0 e v
Y 0 0 1 0 0 Yo 0
Y, =0 0 0 1 0 Yior |+ 0 (66)
E:Yi1 00 0 0 1 Y O
EoYi o 1 -20 -3 0| EYm 0
Define:
n, v, Vg1
= Yo |, yt:{EYt }, Et+1 = 0
Y, tYt41 0
Then:
i B ;7/,:-5-1 E _E Yii1 B EiYiia
t+1 = gle o Eip1Yire | | EYipo

where we have used the law of iterated expectations to write Ey{E;11Y; 12} =
EiYiyo.

Notice that xg = (19, Y_2,Y_1)" is given, and zy1 — Erxr 41 = €141 is exoge-
nous. Therefore, x; is a vector of predetermined variables.

Using the definitions given above, we can rewrite (66) in form (3) as follows:

Tt4+1 —A Tt Et+1
= +
[ Erye41 ] [ Yt } [ O2x1 ]
where A is the 5 x 5 matrix given in (66), x; is predetermined and y; is nonpre-
determined.

35We closely follow Examples B and D in Blanchard and Kahn (1980).
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Example 2. A model with lagged expectations
Consider the following model:
(Z) Yt = Ct + It + Gt with Gt+1 = ngt + €?+1.
(it) Cr=a(Y; +EYis1) +9; with 01 = pys + 7,4,
(ZZZ) It = B(Et}/t-&-l — Et—ln) + vy with Vi41l = PVt + 62’+1
where /., €7, ,, and €/, are i.i.d. zero-mean shocks, a, 3 > 0, Py P> Py €
(0,1), and Gy, g, vo, and E_1Y, are given. Notice that the third equation
includes the lagged expectation of a current variable.
Substituting (i7) and (4i) into (¢), and rearranging, we get:

1-— 1
° b i1y — —— (G +9¢ + v4) (67)

E.Y;. 1 = Y, E
t Y41 a+ﬁt+a+ﬁ ot B

Define: Xy =E;_1Y; = Xi11 = EYi41. Then we can write:

G Py 0 0 0 0 Gy Egﬂ
19t+1 0 Py 0 0 0 7915 Ef—i-l
Vi1 = 0 0 Pv 0 0 147 + 6,15/+1
X 1 1 _ 1 B l-a X 0
t+1 aJ{B aJer aJlrﬁ aJBrB ?Jrﬁ t
—
BeYiy 5% “arp wp wrp ers 4 LT 0 ¥
68
Define:
Gy i
— ﬁt =Y, — 6?+1
Ty = v y Yt = [ t] y  Et41 = v
+
X 0

Notice that g = (Go, Yo, v, Xo)' is given, and 41 —Eyxi 11 = (e, 1, Ef+1, €741,0)
is exogenous. Therefore, x; is a vector of predetermined variables.
We can rewrite (68) in form (3) as follows:

Tt+1 — Al Et+1
= +
|:Etyt+1] |:yt] [ 0 }
where A is the 5 x 5 matrix given in (68), x; is predetermined, and y; is non-
predetermined. Notice that A has two rows that are equal, and therefore is

singular.
Hence, we have managed to write a model with lagged expectations of a
current variable in form (3).
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Appendix B

In this appendix we show how to convert models of the form

Tt —C+ A Tt + Et+1

Byt Yt 0n, x1
into form (3), by redefining variables as deviations from their nonstochastic
steady-state levels.

In a nonstochastic steady state we have:
Assuming I — A is invertible, the expression above gives:36

< gl
< gl

HER

[;]:(I—A)_lc’

Define the deviations from the nonstochastic steady-state values as follows:
C/L'\t — Tt — T
U | | w0

] =C+A [ ; } from the original system we get:

|

Then, subtracting [

< 8l

_ Ti+1 B T —C+ A Tt + Et+1 _CO_A

| Bryra y Yt 0n,x1

[ w1 —T Ty T Et+1
_|=A - Z

_Etyt+1y] ([yt} {y])—i_{onyxl]

Ti41 - — A Ty —T Et+1
| E{yer — 7} } [ Yt —Y ] * { On, x1 ]

Then: R R
Tt41 —A Tt Et+1
A = —~ +
[ Eiyi1 } [ Yt } { 0n, x1 }

which is the expression we were looking for.

< 8l

30 The eigenvalues of I — A are of the form 1 — )\, where X is an eigenvalue of A. The
invertibility of I — A requires that the product of its eigenvalues be different from zero (since
the product of the eigenvalues is equal to the determinant): (1 — A1)(1 — A2)...(1 — An) # 0.
Hence, if A has at least one eigenvalue equal to one, I — A will be singular and the model will

not have a well-defined nonstochastic steady state (unless C' = 0, in which case T = 0 and
y=0).
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Appendix C

In this appendix we present the (Complex) Schur Decomposition and the Gen-
eralized (Complex) Schur decomposition.

C.1 (Complex) Schur Decomposition
We start with some definitions.

Definitions: Conjugate Transpose, and Unitary Matrix.
Let A denote an m X n matrix of (possibly) complex numbers:

aj; +but ap+biot ... a1p +bigi
Ao | et ba1i  aga + bt ... agn + bayt
Gm1 +bm1t Gm2 + b2t ... A+ bt

The conjugate transpose of A, denoted AH | is formed by transposing A and
replacing each element with its complex conjugate:

a1 — bt as1 — bt ... am1 — bt
AH a12 — b2l az2 —baai ... am2 — byt
A1p — blni a2n — bgni Amn — bmni

Notice that, if A is real, then A7 and A’ denote the same matrix (where A’
denotes the transpose of a real matrix).

A complex n x n matrix A is unitary if its conjugate transpose coincides
with its inverse, i.e., if AH = A~1. Therefore, when A is unitary, we have:

AAT = AH A = I, where I is the n x n identity matrix.

As an example, consider the following 2 X 2 matrix:

A:
11 1,1
3 "3t —3tal
Its conjugate transpose is:
11 1.1
2 "3t 2t 3l
A =
1 1; 11
2 73t T332t

It is easy to check that AA¥ = I, where I is the 2 x 2 identity matrix.
Therefore, A” = A~1, which shows that A is unitary.
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Definitions: Eigenvalues and Eigenvectors.

Let A be a (possibly complex) n x n matrix. A (possibly complex) scalar A
is an eigenvalue of A if it satisfies Az = Az, for £ # 0. The n x 1 (possibly
complex) vectors = # 0 that satisfy Az = Ax for a given A are called the (right)
eigenvectors of A (corresponding to A).

Remarks. Notice that Az = Az can be rewritten as follows: (A — AI)x = 0. For
a given A, this homogeneous system will have a nontrivial solution (z # 0) if
and only if |A — M| = 0. The determinant |A — AI| is an n-th order polynomial
in A, and is called the characteristic polynomial for A. Analogously, equation
|A — M| = 0 is called the characteristic equation for A. From the fundamental
theorem of algebra we know that the characteristic equation will have n roots.
These roots may be either real or complex numbers, and need not be all different.
For values of A\ different from the roots of |[A — AI| = 0, the only solution to
Ax = Az is * = 0. Therefore, there are n eigenvalues of A, which coincide
with the n roots of the characteristic equation. We also have the result that,
if A is a real matrix, then complex eigenvalues come in conjugate pairs. The
eigenvalues can be computed using the so called QR method (see Golub and
van Loan (1996)).

Theorem: (Complex) Schur Decomposition.
Let A be a complex n X n matrix. Then, there exists a complex, unitary n x n
matrix Z such that

ZHAzZ =T (69)

where T is a complex, upper triangular n X n matrix with the eigenvalues of
A in its diagonal. Furthermore, Z can be chosen so that the eigenvalues of A
appear in any order along the diagonal of T

Proof. See Golub and van Loan (1996), Theorem 7.1.3, page 313.

Remark 1. Premultiplying (69) by Z and posmultiplying it by Z# we obtain:
ZZHAZ7ZH = ZTZ" . Then:

A=2TZ" (70)
since ZZf = I, because Z is unitary.
Remark 2. Reordering the eigenvalues in the diagonal of T" requires that Z be

altered conformably so that (69) holds. This can be quite involved. Fortunately,
there is software available to do it.
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C.2 Generalized (Complex) Schur Decomposition

Definition: Generalized Eigenvalue Problem.

The generalized eigenvalue problem for a pair of (possibly complex) n x n ma-
trices (A, B) is the problem of finding the (possibly complex) scalar A and the
(possibly complex) n x 1 vectors  # 0 that satisfy Az = ABz. The values of A
that satisfy the equation are the generalized eigenvalues, and the corresponding
vectors & # 0 are the generalized (right) eigenvectors.

Remarks. We can rewrite Az = ABz as follows: (A— AB)z = 0 If there exists A
such that |A — AB| # 0, the matrix pair (A, B) is said to be regular; otherwise
it is called singular. If B is invertible, then the pair (A, B) is regular. In this
case, we can reduce the generalized eigenvalue problem to a standard eigenvalue
problem premultiplying Az = ABz by B~! to get B~! Az = Az, and the number
of generalized eigenvalues is exactly equal to n. If B is noninvertible and (A, B)
is regular, there are p finite generalized eigenvalues, and n—p infinite generalized
eigenvalues, where p is the degree of the polynomial |A — AB| (this includes the
possibility that p = 0, i.e., that there are no finite generalized eigenvalues).3”
Finally, if B is noninvertible and (A, B) is singular, then |A — AB| = 0 for
any A, and there is an infinite number of generalized eigenvalues. When B is
noninvertible, finding the generalized eigenvalues requires that the @Z method
is used instead of the aforementioned QR method (see Golub and van Loan
(1996)).

Theorem: Generalized (Complex) Schur Decomposition.
Let A and B be complex n X n matrices. Then, there exist complex, unitary
n X n matrices @) and Z such that

Q"AZ =T (71)
Q"Bz = S (72)

where S and T are complex, upper triangular n x n matrices. The diagonal
elements of T divided by the diagonal elements of S, %7 are the generalized
eigenvalues of the matrix pair (A, B). If s; # 0 and t;; # 0, the generalized
eigenvalue is finite; if s;; = 0 and t;; # 0, the generalized eigenvalue is infinite
(by convention);*® if s;; = 0 and t;; = 0, the matrix pair (A, B) is singular and
there is an infinity of generalized eigenvalues. Furthermore, the pairs (s;;,t;;)
can be arranged in any order.

Proof. See Golub and van Loan (1996), Theorem 7.7.1, page 377.

37There is some abuse of language in allowing generalized eigenvalues to become infinite.
Strictly speaking, they have to belong to the complex field. Therefore, a situation with no
finite eigenvalues would be described as one in which the set of generalized eigenvalues is
empty.

38See the previous footnote.
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Remark 1. Premultiplying (71) and (72) by @, and posmultiplying them by
ZH  we get:

A = QrTzH" (73)
B = QszH" (74)

since Z and @ are unitary.

Remark 2. Reordering the pairs (s, t;;) requires to reorder @ and Z con-
formably. This can be complicated, but there is software available to do it.

Remark 3. To get some intuition why the Generalized Schur Decomopositon
works, suppose S turns out to be invertible. From the generalized eigenvalue
problem for the matrix pair (A, B) we have: Ax = ABz. Using (73) and (74)
we obtain: QTZ"x = AQSZM"x. Premultiplying both sides by QY we get:
TZHz = \SZHz. And then: Tw = ASw, where w = Z”z. Premultiplying by
S7! we get: S™'Tw = Aw. This expression shows that A is an eigenvalue of
S~IT. Since S is upper triangular, S~! is also upper triangular, with diagonal

elements é Since T is upper triangular, S~'T is upper triangular, with di-

agonal elements, % Recall that the eigenvalues of an upper triangular matrix
tis

coincide with its diagonal elements. Therefore, are the eigenvalues of S~!7.
Hence, we have shown that the generalized eigenvalues of the matrix pair (A, B)
are the diagonal elements of S~'T, éﬁ

Remark 4. From the theorem above we know that, if s;; = 0 and ¢; = 0, the
matrix pair (A, B) is singular. Therefore, if (A, B) is nonsingular (i.e., regular),
we cannot have s;; = 0 and t;; = 0.

Appendix D

In this appendix we show that (18) implies that the boundary condition (9) is
violated unless ¢; = 0 for each ¢.

From (18) we have:
(4) Bdip1 = T550:
Then:
Eiy10442 = Ts60¢41
Then:
Ei{Ei110i42} = By T550:41
Eidiyo = TssEidp11, using the law of iterated expectations:
Then:
(ZZ) Et5t+2 = (T55)25t, using (’L)
If we keep iterating forward we obtain:

Et5t+s == (T&S)S(St (75)
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Since Tys is an upper-triangular matrix with diagonal elements ¢;;, (Tss)® is an
upper-triangular matrix with diagonal elements 7;; = (¢;;)°. Also, since |t;;] > 1,
we get: |7u| = |tul® > 1.

We can rewrite (75) as follows:

Eid1tys (t11)*  T12 o Ting 01t
Eidotys _ 0 (t22)® . Tan, Ot (76)
Et5n5t+s 0 0 0 (tnans)s 571575

where 7;;, the typical nondiagonal element of (T5)*, is a function of the elements
of Tys (including powers of its diagonal elements).
From (76) we get:

E0114s = (t11)%01¢ + 712021 + T1303¢ + oo + T1nsOnst

Eidot4s = (t22)°02¢ + T2303¢ + ... + TonsOnst

..... (77)
Et6n5—1t+s = (tn5—1n5—1)85n5—1t + Tn,5—17156n5t

Et6n5t+s = (tn(;n(;)s(sngt

Since [tnsns|® > 1, the last line in (77) implies that E;d,,¢+s explodes when
§ — 00, unless d,,; = 0. Using this into the previous line we get: E¢fp,—1t45 =
(tns—1ns—1)°0ns—1t- Then Eidp, 1145 explodes when s — oo, unless d,;-1: =
0. If we keep doing this, we conclude that, for any i € {1,2,...,n5}, Bd; 145
explodes when s — oo, unless d;; = 0. Therefore, E;d; s explodes when s — oo,
unless d; = 0.

We know from (20) that, when d; = 0, Ef:11 = Tppb;. Recall that the
diagonal elements of Tyg have modulus smaller than 1. Therefore, a procedure
analogous to the one given above, allows us to conclude that E.0;.s does not
explode as s — o0.

From (21) we know x; = Zz90: + Z350: and y = Zyeby + Zy56;. Then:
EtxtJrs = ZIHEtetJrs + Zz5Et6t+s and Etyt+5 = ZyGEtetJrs + Zy(iEt(stJrs- There-
fore, Bixiys and Biypis will explode as s — oo if Eidsqs does, violating the
boundary condition (9).

For the more general model of Section 3, equation (51) gives: Ss5E:d41 =
Ts56¢. Since Sss may not be invertible, we cannot write Eid;y1 = S(;;IT(;(;(% (in
this case the analysis would be exactly as above). We know, however, that Tss is
invertible. Therefore, we can premultiply (51) by T5_51 to get: T(;_(SIS(;(;Et(SHl =
d;. Notice that Té_élS&; is an upper-triangular matrix with diagonal elements

that satisfy

shows that E;d;ys explodes as s — oo, unless d; = 0 Vt.

%u‘ < 1. Therefore, a reasoning similar to the one done before,
i
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Appendix E

In this appendix we give an example of a model in which the number of stable
eigenvalues coincides with the number of predetermined variables but Z,¢ is not
invertible.??

Consider the following model:

Tig1 2 0 Ty E¢41
= + 78
e S A o
where z; is predetermined and y; is nonpredetermined.
Applying the Schur Decomposition we obtain:

em [2 07 _J0 -1][05 1[0 1
A=217 :[1 0.5}_[1 oHo 2“—1 0}

Notice that there is one stable eigenvalue (0.5). Hence, the number of stable
eigenvalues coincides with the number of predetermined variables. However,

from
Z:|:Zx9 Zac&]:|:0 1]

Zyo  Zys 1 0
we obtain Z,9 = [0], which is a singular 1 x 1 matrix. Therefore, even though
the number of stable eigenvalues coincides with the number of predetermined
variables, Z.p is not invertible. Hence, we cannot apply Result 1 in Section 2
to conclude that there is a unique stable solution. Actually, it is easy to see
that a solution to (78) has to be unstable. From the first equation we obtain:
Te41 = 24 + €¢41. lterating forward we get: x4, = Vg, + Zf;& 2i6t+j,i.
Then: Eyziy; = 224, Then: lim |[Eyxsqj| = oo, unless z; = 0. In particular,

J—0o0

lim |Eoz;| = oo, unless zp = 0.
J—0o0

In terms of the transformed system (17), the problem is that the noninvert-
ibility of Z,¢ does not allow us to invert x; = Z,90; (see (22)) in order to get
0; = Z;elxt. This, in turn, prevents us from using the initial condition x( to
get a unique initial condition, 6y, for the stable auxiliary variable. Without this
initial condition, we cannot solve (17) uniquely.

39The example is taken from Klein (2000).
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Appendix F
In this appendix we exemplify Results 2 and 3 in Section 2.

A model with no stable solutions.

Consider the Cagan Model again, but assume that p > 1 . Then, we have one
predetermined variable (m;) and two unstable eigenvalues (p and <)%, Money
supply evolves according to m;11 = pm; + €441. Iterating forward and taking
expectations we get: Eym; s = p®my. Since p > 1, }E& [Bimiys| = co.

We can also show that the price sequence explodes. Keeping the assumption
that p > 1 and a € (0,1), asume ap € (0,1) (i.e,, p < Z). In this case, the

solution for p; coincides with the one given in the text: p; = 1’°‘pmt. Then:

11—«
Pros = ToasMirs = Eiprrs = 1 Bimuss = Eeprys = 1oa5p°my. Then,
lim |[Bypsis| = oo, unless m; = 0.4
§— 00
Hence, the system has no stable solution. This exemplifies Result 2 in Section
2.

A model with an infinite number of stable solutions.
Following Soderlind (2001), we modify equation (6) of the Cagan model as
follows:

Pt = ozEtle -+ my, a > 0. (79)

The money supply equation (7) remains the same. We can write the system in
matrix form as follows:

[ ET;Z:I ] = { _p% g ] [ Zt } + [ Etgl } mg given (80)
where m; is predetermined, p; is nonpredetermined, and |p| < 1.

Since A is triangular, its eigenvalues coincide with its diagonal elements.
Suppose o > 1. Then, both eigenvalues, p and é, are stable. Therefore, we
have a model with two stable eigenvalues and only one predetermined variable.

Iterating forward on m;11 = pmy + €141 we get: Eymyys = p®my. Iterating
forward on (79), using Eym;ys = p*m; and the law of iterated expectations, we
get: pr = [L+ (ap) + (ap)® + ... + (@p) |y + " ' Eyprira.

Suppose |ap| < 1and let T — oco. Imposing the condition TIEI;O o Eypiiry1 =

0 we get the stable solution:

1
S l-ap

*

Py

40Recall that A is upper triangular and then its eigenvalues coincide with its diagonal
elements, p and é Recall, also, that a € (0,1).

41Recall that, to find the solution p; = —==%m;, we imposed the condition
l—ap
Tlim oTH1Ep; 11 = 0. This condition still holds, even though the price sequence explodes.
— 00
1— 1— 1—
We have: a1 Eypyyryq = o711 175pEtmt+T+1 = aT+117—(3ppT+1mt = (ap)T*! 1,;pmt~

Then: lim o Ht1Bpsyiry1 =

: T+1 1l—a — <
im Tlgnoo(ap) T—apmt =0, since ap € (0,1).
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However, (81) is not the only stable solution. Consider an expression of the
form:

Pt =p; + bt (82)

where b; is a “bubble”. Substituting (82) in both sides of (79) we get:
Pi 4 be = o (pfyy + brya) +my

Toap MU + by = 17—O;pEtmt+1 + aEBbi 1 + my
17—1apmt + b = %{%ﬁmt + aEthl -+ my
ﬁmt —+ bt = 1_—1apmt =+ aEtth
by = alB¢bi11
Then: 1
Etbt+1 = Ebt (83)

Hence, for any sequence of random variables {b;} that satisfies (83), we get
a solution in form (82). Since o > 1, (83) shows that the bubble is stable.
Therefore, (82) gives an infinite number of stable solutions. This exemplifies
Result 3 in Section 2.

To see what is going on in terms of the transformed system (17), recall from
(22) that: x; = Z,p0;. In our example, s = my, Zz9 is 1 x 2, and 6; is 2 x 1.
014
02
Therefore, given the initial condition mg, we can choose an infinite number
of initial conditions 6y (i.e., any pair of values for 61y and Oz that satisfies
mo = 21010 + 22020). Hence, system (17) has an infinite number of stable
solutions.

Then we can write: m; = [z1 22] [ ] . For t = 0 we get: mg = 21010 + 22020.

Remark. When a < 1, (83) shows that the bubble is unstable. In this case,
choosing b; = 0 Vt gives the unique stable solution. In other words, when o < 1,
the number of stable eigenvalues coincides with the number of predetermined
variables, and Result 1 in Section 2 applies.
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Appendix G

In this appendix we show how to reduce the system GEiw;y1 = Aw; + Dz
to another system of the form GE;w;y; = Awg, when the exogenous random
vectors z; follow a VAR(1): z¢41 = Nzt + up with Buy = 0 and E{wui} = X,

We start with the system:

GEtwt+1 = Awt + DZt

]Et Zt+1  — NZt

which can be written in matrix form as follows:
I 0 EtZt+1 _ N 0 Zt
0 G Ethl - D A Wy
The expression above can be written in form (48) as follows:

GEy Wy 41 = AWy,

~ I 0 T _ N O ~ Zt
d=[o 6] a=[5 3] ==[2]

Partitioning G, A, D and w we can write:

where

I 0 0 Et Zt4+1 N 0 0 Zt
0 Ga:a: Ga:y EtxtJrl = -D:v Azz A:vy Tt
0 Gyw ny Etyt+1 Dy A'ux Ayy Yt

The expression above can be written in form (47) as follows:

éa::v éwy Etzﬂrl _ %:v:v ANa:y Et
Gyz Gy Eeyrrr | | Ay Ay Yt
where
~ I 0 ~ 0 ~
Gee = {0 Gm}’ GmyE[Gw], GyZE[O ny]
~ N 0 ~ 0 -~
Ape = [ D, A, ] , Agy = [ A, } , Ay = [ D, Gy ]

and the new vector of predetermined variables is
~ Zt
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Appendix H

In this appendix we describe the method of log-linearization and then we use it
to log-linearize the RBC model presented in Section 4.

H.1 Log-linearization*?

Consider the expression y; = f(x;), where f is a differentiable function, and
let g = f(T) be its steady-state value. We want to approximate the log-deviation
Iny; — Iny with a linear function of the log-deviation Inz; — InT, for values of
x; close to T.

From y; = f(x:) we get: Iny; = In f(z;). We can rewrite this as follows:
Iny; = In f(e?*) = g(Inx;). Now we take a first-order Taylor approximation
of g(Inz;) around In7 :

g(nzy) =2 g(InT) + ¢'(InT)(Inx; — InT)
Using g(Inz;) = In f(e™®*) we get:

1
f(enT)

We can rewrite the expression above as follows:

In f(elnzt) o lnf(elni) + f/(elnx) 1nz<1n$t IHT)

Inf(z;) = Inf(z)+ %f’(f)(lnzt —In7T)
= Inf(Z) +ef(T)(Inzy — In7T)

where e¢(T) = % 1/(T) is the elasticity of the function f evaluated at 7.
Recalling that y; = f(z:) we get the expression we were looking for:

Iny, —Iny = ef(T)(Inzy — InZ)
Defining 4; = Iny; — Ing and Z; = Inz; — InT we get:

~

U = ef(T)7y

Notice that we can write: Z; = Inzy — InT = In (%) = In(1+ M)
For values of z, sufficiently close to T we know that In (1 + £=2) = 2L (this
follows from a first-order Taylor approximation of m(x;) = In (1 Lt ) around

T). Then: T; & == Therefore, we can write:

ytiyge (E)‘rtiE
7 Tz

42 An alternative approach to log-linearization is presented in Uhlig (1999).
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In fact, we can derive the previous expression directly. First, write y; =

flze) = €lnf(zt) Then: % = /(@)= f(@) = p(x;). A first-order

Taylor approximation of h ( ¢) around T gives:
h(z:) = h(T) + I'(T) (2, — T)

Using h(z;) = e /(@)= f@) we get:

QIF

eln flxe)—Inf(Z) o~ 60 + e0 1 f/(j) (wt _ E)

f@)
T T — T
f(@)
_ .’Et—f
=1
+er(@)—
Finally, using e f(z:)=In f(z) — % we obtain: % > 1+ ey (T) 22 1=
ef(T) =T =
Yt =Y o Tt T
7 = ep(T)—

which is what we wanted to show.

The previous expression suggests a simple way of log-linearizing y; = f(x¢)
through differentiation. Start by taking the natural logarithm: Iny, = In f(xy).
Then totally differentiate, evaluating all derivatives at their steady-state levels:

y f((;) dxy = d G = (%) (@)% = %L = ef(T)%t. Finally, interpret dz
as x; — T and dy; as y: — Y. Similarly, we can directly differentiate y; = f(x¢)

to get dy; = f'(Z)dxs, and then divide by 7 = f(T) to obtain: % = J}/g)) dz;.

Multiplying and dividing the right-hand side by T we get: dy _ TL ? dzy -
U= ep(T) %

A similar procedure works for multivariate functions, y; = f(z1, Zat, ..., Tnt)-
In this case we get:

U Zep1(T)Z1 + ef2(T)Tot + ... + €50 (T)Ths

where ey ;(T) is the partial elasticity of f with respect to its i-th argument,
evaluated at 7.

In stochastic models, we usually have expressions of the form

yr = Ee{f(z141)}
Taking natural logarithms we get: Iny; = InE{f(z:41)}. Now we make the
approximation In By {f(z¢11)} = Ee{ln f(z441)} to get:?3
Iny; 2 Be{ln f(z441)}

438in In(-) is a strictly concave function, we know from Jensen’s Inequality that
InBe{f(zt+1)} > Bef{ln f(zs41)}-
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Since Ing = In f(T), the expression above gives: Iny; — Ing = B.{In f(xs11)} —
In f(Z) =

Iny: — Iny 2 E{ln f(2441) — In f(T)}
Using In f(z441) = In f(Z) + €4(Z)(In 441 — InT) we can rewrite the expression

above as follows: Iny; — Iny = E{es(ZT)(Inzip1 —In7)} =

U = ef(T)E{Tr41}

H.2 Log-linearizing the RBC model

The law of motion for total factor productivity is In Ap1 = (1— Y InA+vyIn A+
€t4+1, and A = A. Then:

/):tﬂ = InAyg — In X
= (I-=9)InA+ylni+eq1 —InA
= Y(lnAs —InX) + €41
= ’YXt + €141
Notice that this case does not require any approximation. The same is true for
the production function and the two first-order condtions for the firm: Y; =

MECHT? w, = (1-60) 2 7, and 1y = H—L Taking natural logs and subtracting
the log of the steady—state values we get

wy, = Y, —H
o= Y- K

From K11 = I + (1 — §) K¢ we get dK; 1 = dI; + (1 — §)dK;. Dividing by

72 dK.
Kzéweget It(“ 5%+(1—5)%¢=>

Kip1 =00+ (1 - 0)K;
From Y; = C, + I, we get dY; = dC; + dI,. Dividing by Y we get: % =
%dct + %dlt. Then: % = g% + é% = f/t = g@ + %ft =
YY,=CC, +1I,

From “C;fl = w; we get: Ina + InCy — In(1 — H;) = Inw;. Differentiating

acy _1_ = dw o 4G
we get: “F- + HdHt = = 5 T

=
=
sls
I

C, +
YT H
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From C% = Et{%+1 (req1+1—9)} weget: —InC; = lnEt{%+l (req1 +1-=9)}
Approximating the log of the expectation with the expectation fo the log we get:
—InC; 2B {Ilnf —InCty1 +In(rs11 + 1 — 9)}. Differentiating (and dropping
the approximation sign): —% = Et{—&gfl + ﬂﬁd?ﬂt+1}' Since TLS =4

dcy dcy —dry
we get: —%ﬁ = B {—=F= + Bdri1} = —% = B f{-——F= + pr—==} =

*ét = Et{—@ﬂ + 67?75_;'_1} =

E/Cit1 — SrE41 = Ch
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