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Solving Linear Rational-Expectations Models
by means of the (Generalized) Schur

Decomposition

Francisco J. Ciocchini ∗

Escuela de Economía
Universidad Católica Argentina

This Draft: July 28, 2011

Abstract

In these notes we show how to solve a large family of Linear Rational-
Expectations Models using the (Generalized) Schur Decomposition. The
solution method closely follows the one described by Klein (2000). After
developing the general method, we use it to solve a standard macroeco-
nomic model. We include a set of appendices in order to offer a self-
contained exposition.

Resumen
En estas notas mostramos cómo resolver una importante familia de

Modelos Lineales con Expectativas Racionales utilizando la Descomposi-
ción (Generalizada) de Schur. El método de solución sigue de cerca el
descripto por Klein (2000). Luego de desarrollar el método general, lo
utilizamos para resolver un modelo macroeconómico estándar. Incluimos
un conjunto de apéndices con el objeto de ofrecer una exposición auto-
contenida.

∗E-mail adress : f_ciocchini@uca.edu.ar.
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1 A Basic Linear Rational-Expectations Model

1.1 The Model

Consider the following model:

xt+1 = Axxxt +Axyyt + εt+1 (1)

Etyt+1 = Ayxxt +Ayyyt x0 given (2)

where t ∈ {0, 1, 2, ...} is the time period, xt is an nx × 1 vector of predeter-
mined variables, yt is an ny × 1 vector of nonpredetermined variables, εt+1
is an nx × 1 vector of exogenous i.i.d. shocks with zero means and constant
variance-covariance matrix Σε, and Axx, Axy, Ayx and Ayy are known matrices
of dimensions nx × nx, nx × ny, ny × nx and ny × ny, respectively.1 We use
Et to denote the conditional expectation E(· | Ωt), where Ωt is the information
set at time t. The information sets satisfy Ωt−1 ⊆ Ωt, and Ωt includes at least
current and past values of xt and yt. Notice that there is an initial condition
for predetermined variables but not for nonpredetermined ones.
Following Klein (2000), we call a variable predetermined, or backward-looking,

if: i) its one-period-ahead forecast error is exogenous; and ii) its initial value
is exogenously given.2 From (1) we see that the one-period-ahead forecast er-
ror of xt is xt+1 − Etxt+1 = εt+1, which is exogenous by assumption, and x0
is exogenously given. In other words, the value in t + 1 of a variable that is
predetermined at t is a function only of variables known at time t, plus the
impact of an exogenous shock that becomes known in t+1. The vector xt may
contain exogenous variables, like a serially correlated productivity level. Non-
predetermined variables, also called forward-looking or jump variables, differ
from predetermined variables in that their one-period-ahead forecast errors and
their initial values are endogenous. Unlike predetermined variables, the value
taken by a nonpredetermined variable in t+1 can be affected by the realization
of other endogenous variables in t+ 1.
We can combine equations (1) and (2) as follows:∙

xt+1
Etyt+1

¸
= A

∙
xt
yt

¸
+

∙
εt+1
0ny×1

¸
x0 given (3)

where A is the square matrix of dimension n ≡ nx + ny defined by:

A ≡
∙
Axx Axy

Ayx Ayy

¸
. (4)

1The law of motion for xt is sometimes written as xt+1 = Axxxt +Axyyt + Γηt+1, where
Γ is a known nx × nx matrix, and ηt+1 is an nx × 1 i.i.d. random vector with mean zero
and covariance matrix E{ηt+1η0t+1} = I (the nx × nx identity matrix). This is equivalent to
defining εt+1 ≡ Γηt+1 in (1). Then: Eεt+1 ≡ E{Γηt+1} = ΓE{ηt+1} = 0, andΣε ≡ E{[εt+1−
Eεt+1][εt+1 − Eεt+1]0} = E{εt+1ε0t+1} = E{Γηt+1η0t+1Γ0} = ΓE{ηt+1η0t+1}Γ0 = ΓIΓ0 = ΓΓ0.

2This is a generalization of the definition given by Blanchard and Kahn (1980), who define
a predetermined variable as one that has a given initial condition and satisfies xt+1 = Etxt+1
(i.e., εt+1 = xt+1 − Etxt+1 = 0 ∀t).
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1.2 A Simple Example: The Cagan Model

Suppose the real demand for money is given by:3

md
t − pt = −a(Etpt+1 − pt) (5)

where pt ≡ lnPt,md
t ≡ lnMd

t , Pt is the price level in period t,M
d
t is the nominal

money demand at the end of period t, and a > 0. That is, real money demand
depends negatively on expected inflation.4

Denote the money supply by M . From (5), and imposing the equilibrium
condition Mt =Md

t , we obtain:

pt = αEtpt+1 + (1− α)mt (6)

where mt ≡ lnMt, and α ≡ a
1+a ∈ (0, 1). Equation (6) shows that the (natural

log of the) price level in period t is a weighted average of the expected (natural
log of the) price level in period t+ 1 and the (natural log of the) money supply
in period t.
Money supply is exogenously determined by the monetary authority. Sup-

pose the natural log of money supply follows an AR(1) process:

mt+1 = ρmt + εt+1 (7)

where εt+1 is white noise and |ρ| < 1.
Equations (6) and (7) form a rational-expectations version of the Cagan

Model. These equations can be written in form (3) as follows:∙
mt+1

Etpt+1

¸
=

∙
ρ 0

−1−αα
1
α

¸ ∙
mt

pt

¸
+

∙
εt+1
0

¸
m0 given (8)

where mt is predetermined and pt is nonpredetermined. In this model, the
unique predetermined variable is exogenous. In more general models, there can
also be endogenous predetermined variables.

1.3 Some Remarks

A couple of remarks are in order.

Remark 1. The first-order form (3) may seem more restrictive than it really is.
Higher-order models with lagged variables or current expectations of variables
more than one period ahead can be reduced to first-order form (see Appendix

3This example closely follows the one in Söderlind (2001).
4This specification is obtained as a simplification of a money demand function of the form

Md
t

Pt
= L(

+
Yt,

−
it), where Y is real output and i is the nominal interest rate. From Fisher’s parity

condition we have: it ∼= rt+(Etpt+1− pt), where r is the real interest rate. Substituting this
expression into the money demand equation, and assuming that Y and r are constant, we can
write real money demand as a (negative) function of expected inflation.
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A for an example). Models with lagged expectations of present and future
variables can also be put in form (3) (see Appendix A for an example).5

Remark 2. One may wonder why we did not include constants Cx and Cy in
equations (1) and (2), respectively. Suppose we did. Then, as long as the matrix
I − A is invertible, we could eliminate the constants by rewriting all variables
as deviations from their nonstochastic steady-state values (see Appendix B).

2 Finding the solution to the Basic Model

2.1 Solving the Model using the Schur Decomposition

A solution to our problem is a sequence {xt, yt}∞t=0 of functions of variables
in Ωt that satisfies (3) for all possible realizations of these variables. We are
interested in nonexplosive solutions to (3), so we impose the following boundary
conditions:

lim
i→∞

|Etxt+i| <∞, lim
i→∞

|Etyt+i| <∞ (9)

Actually, we look for a recursive representation of the solution to (3). That
is, we want matrices M and C so that the solution satisfies:

xt+1 = Mxt + εt+1 (10)

yt = Cxt (11)

The solution method presented below follows closely the one described in
Klein (2000). The idea is to use the Schur Decomposition to reduce the original
system to a block-triangular system (with two blocks). Then we solve the new
system recursively, solving the second block first and then using this solution to
solve the first block.
Define the n× 1 vector:

wt ≡
∙
xt
yt

¸
(12)

Taking the conditional expectation of (3), and using (12), we can write:

Etwt+1 = Awt (13)

Now we triangularize A using the (Complex) Schur Decomposition (see Ap-
pendix C).6 That is, we find a complex unitary n× n matrix Z and a complex
upper triangular n × n matrix T such that A = ZTZH , where ZH is the con-
jugate transpose of Z (and then ZHZ = ZZH = I, where I is the identity

5Binder and Pesaran (1995) show how to reduce a linear system of expectational difference
equations with arbitrary leads and lags, and expectations taken with respect to information
available at different times, to a second-order canonical form. Klein (2000) shows how to
convert this second-order form into first-order form.

6Blanchard and Kahn (1980) decouple the system by means of the Jordan canonical form
of the matrix A. From a computational point of view the Schur Decomposition is better since
the Jordan decomposition tends to be numerically unstable. See Klein (2000), page 1406.
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matrix). This triangularization has the property that the diagonal elements of
T correspond to the eigenvalues of A.7 Moreover, it is possible to reorder both
T and Z such that the nθ eigenvalues with modulus smaller than one come
first, and the nδ eigenvalues with modulus higher than one come last (where
nθ + nδ = n).8 ,9 ,10 We can also partition T accordingly (recall that T is upper
triangular):

T =

∙
Tθθ Tθδ
0 Tδδ

¸
(14)

where Tθθ and Tδδ are upper triangular matrices of dimension nθ × nθ and
nδ × nδ, respectively.
Define the auxiliary variables:∙

θt
δt

¸
≡ ZH

∙
xt
yt

¸
(15)

where θt and δt are vectors of dimension nθ × 1 and nδ × 1, respectively.
From (12) and (13) we have:

Et
∙
xt+1
yt+1

¸
≡ A

∙
xt
yt

¸
(16)

Premultiplying by ZH and using A = ZTZH :

EtZH

∙
xt+1
yt+1

¸
≡ ZHZTZH

∙
xt
yt

¸
Using ZHZ = I and (15):

Et
∙
θt+1
δt+1

¸
≡ T

∙
θt
δt

¸
Finally, using (14) we obtain the block-diagonal system we were looking for:11

Et
∙
θt+1
δt+1

¸
≡
∙
Tθθ Tθδ
0 Tδδ

¸ ∙
θt
δt

¸
(17)

7They are also the eigenvalues of T itself, since T is triangular. Therefore, A and T have
the same eigenvalues.

8Recall that the modulus of a complex number w = a+ bi is given by
√
a2 + b2. For real

numbers the imaginary part is absent (i.e., b = 0) so we get
√
a2 = |a|.

9Eigenvalues with modulus smaller than one are called stable, and those with modulus
higher than one are called unstable. To avoid additional complicatios, we assume there are
no eigenvalues with modulus equal to one. Some authors refer to eigenvalues with modulus
smaller (higher) than one as eigenvalues that lie inside (outside) the unit circle. See Chapter
1 in Enders (1995) for an explanation.
10 If A is invertible, Etwt+1 = Awt can be rewritten as follows: wt = BEtwt+1, where

B = A−1. The eigenvalues of B are the reciprocal of the eigenvalues of A (if λ is an eigenvalue
of A, 1

λ
is an eigenvalue of B). Therefore, stable eigenvalues of A are unstable eigenvalues of

B, and viceversa.
11As ZH is invertible, knowledge of xt and yt is equivalent to knowledge of θt and δt; the

transformation does not affect the information set Ωt. Also, the existence and uniqueness of
a solution to (16) is equivalent to the existence and uniqueness of a solution to (17).
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Remark. As noted in Klein (2000), for the above representation we do not really
need that T is upper triangular; it is enough to have upper block triangularity.
This is why the Real Schur Decomposition can also be used to solve our problem
12

From the second block of (17) we get:

Etδt+1 ≡ Tδδδt (18)

Since the diagonal elements of Tδδ are the unstable eigenvalues, (18) implies
that the boundary condition (9) will be violated unless:13

δt = 0 ∀t (19)

From the first block (17) we obtain Etθt+1 ≡ Tθθθt. Combining this expres-
sion with (19) we get the following system:

Etθt+1 ≡ Tθθθt (20)

where an initial condition for θt is still to be found.
Premultiply (15) by Z, and use ZZH = I, to get:∙

xt
yt

¸
≡ Z

∙
θt
δt

¸
Partitioning Z conformably:∙

xt
yt

¸
≡
∙
Zxθ Zxδ
Zyθ Zyδ

¸ ∙
θt
δt

¸
(21)

where Zxθ, Zxδ, Zyθ, and Zyδ are matrices of dimension nx×nθ, nx×nδ, ny×nθ,
and ny × nδ, respectively.
Substituting (19) into (21) we get:

xt = Zxθθt (22)

yt = Zyθθt (23)

If Zxθ is invertible, we can use (22) to get:

θt = Z−1xθ xt (24)

Remark. A necessary condition for invertibility is that Zxθ is a square matrix,
that is, nθ = nx. Therefore, invertibility of Zxθ requires that the number of sta-
ble eigenvalues equals the number of predetermined variables (or, equivalently,
that the number of unstable eigenvalues equals the number of nonpredetermined
variables). When Zxθ has full rank we have rank(Zxθ) = min{nx, nθ}; in this
12See Golub and van Loan (1996), Theorem 7.4.1 (page 341), for a presentation of the Real

Schur Decomposition.
13 See Appendix D for a proof of this result.
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case, nx = nθ is sufficient for invertibility.14 Although not very common, it is
possible to have nθ = nx and Zxθ singular (see Appendix E for an example).

Using (24) and the initial condition for xt we obtain:

θ0 = Z−1xθ x0 (25)

which provides an initial condition for system (20).
From (1) we have Etxt+1 = Axxxt + Axyyt, and then, εt+1 = xt+1 −

Etxt+1. Substituting (22) into the latter we get: εt+1 = Zxθθt+1−EtZxθθt+1 =
Zxθθt+1 − ZxθEtθt+1. Then:

εt+1 = Zxθ(θt+1 − Etθt+1) (26)

From (26) we get θt+1 − Etθt+1 = Z−1xθ εt+1, and then, θt+1 = Etθt+1 +
Z−1xθ εt+1. Substituting (20) into the last expression we obtain:

θt+1 = Tθθθt + Z−1xθ εt+1 (27)

Therefore, the nonexplosive solution to system (17) is given recursively by
(19), (27) and (25).
Now we want to go back to our original system in terms of xt and yt. Shift

(22) one period ahead and use (27) to get: xt+1 = Zxθθt+1 = Zxθ(Tθθθt +
Z−1xθ εt+1). Using (24) to eliminate θt, and rearranging: xt+1 = ZxθTθθZ

−1
xθ xt +

εt+1. Then:
xt+1 =Mxt + εt+1 (28)

where
M ≡ ZxθTθθZ

−1
xθ (29)

Analogously, substituting (24) into (23) we obtain: yt = ZyθZ
−1
xθ xt. Then:

yt = Cxt (30)

where
C ≡ ZyθZ

−1
xθ (31)

Equations (28) and (30), together with the initial condition x0, give the
recursive representation of the solution to (3). The vector of predetermined
variables evolves according to a VAR(1), and the vector of nonpredetermined
variables is a linear function of the one on predetermined variables.
Notice that M and C do not depend on Σε, the variance-covariance matrix

of εt. That is, certainty equivalence holds.

14Blanchard and Kahn make the full-rank assumption. See Blanchard & Kahn (1980), page
1307.
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2.2 Important Results

Assume Zxθ has full rank, and then rank(Zxθ) = min{nx, nθ}. From the previ-
ous analysis we conclude:

Result 1. (Blanchard and Kahn (1980), Proposition 1).
If the number of stable eigenvalues is equal to the number of predetermined

variables, i.e. nθ = nx, (or, equivalently, if the number of unstable eigenvalues
is equal to the number of nonpredetermined variables, i.e. nδ = ny), system (3)
has a unique nonexplosive solution.

Remark. The system may also have unstable solutions.

We also have the following results, that we present without a formal proof:

Result 2. (Blanchard and Kahn (1980), Proposition 2)
If the number of stable eigenvalues is smaller than the number of predeter-

mined variabes, i.e. nθ < nx (or, equivalently, if the number of unstable eigen-
values is bigger than the number of nonpredetermined variables, i.e., nδ > ny),
there is no solution satisfying both system (3) and the no-explosion condition
(9).

Remark. The system may also have unstable solutions.

Result 3. (Blanchard and Kahn (1980), Proposition 3).
If the number of stable eigenvalues is bigger than the number of predeter-

mined variabes, i.e. nθ > nx (or, equivalently, if the number of unstable eigen-
values is smaller than the number of nonpredetermined variables, i.e., nδ < ny),
there is an infinity of solutions satisfying both system (3) and the no-explosion
condition (9).

We can provide some intuition for the results above. For the first result, recall
that the full-rank assumption and nθ = nx imply that Zxθ is invertible. Then,
the unique solution to Zxθθ0 = x0 is θ0 = Z−1xθ x0. Hence, any vector of initial
conditions for the predetermined variables determines a unique vector of initial
conditions for the auxiliary variables, θ0. From (23) we know y0 = Zyθθ0. Hence,
θ0 induces a unique vector of initial values for the nonpredetermined variables,
y0. Another way to think about this result is as follows: our original system (see
(3)) has n equations and n variables, with n = nx + ny; accordingly, we need
n restrictions to pin down a unique solution; we have nx restrictions coming
from the initial condition for the predetermined variables, and nδ restrictions
coming from the stability conditions (recall (19)); therefore, the total number
of restrictions is nx + nδ; hence, nx + nδ = n requires nδ = n − nx = ny;
therefore, the stability conditions exactly pin down the initial values of the
nonpredetermined variables, y0. Notice that nδ = ny is equivalent to nθ = nx,
since n = nx + ny = nθ + nδ.
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When nθ < nx, the full-rank assumption implies: rank(Zxθ) = nθ < nx.
Hence, Zxθ has more rows than columns, and system Zxθθ0 = x0 has more
equations than unknowns. In this case, the system cannot be solved for arbitrary
initial vectors x0. Since y0 = Zyθθ0, we cannot solve for y0 either. In terms of
our original system, we have nx + nδ restrictions; but nθ < nx is equivalent to
nδ > ny, and then nx + nδ > nx + ny = n; therefore, we do not have enough
restrictions to pin down the initial values of the nonpredetermined variables, y0.
When nθ > nx, the full-rank assumption implies: rank(Zxθ) = nx < nθ.

Hence, Zxθ has fewer columns than rows, and system Zxθθ0 = x0 has fewer
equations than unknowns. In this case, the system has infinitely many solutions
for any initial vectors x0. In particular, nθ−nx components of θ0 can be chosen
arbitrarily. Since y0 = Zyθθ0, this implies that nθ − nx components of y0 can
be chosen arbitrarily. But nθ − nx = ny − nδ (since n = nx + ny = nθ + nδ).
Therefore, ny−nδ components of y0 can be chosen arbitrarily. This is consistent
with the fact that, for our original system, we have fewer restrictions than
unknowns: nx + nδ < nx + ny (recall that nθ > nx ⇔ nδ < ny).

For examples of Results 2 and 3 see Appendix F.

2.3 A Simple Example: Solving the Cagan Model

Let’s go back now to Cagan’s model, and suppose that ρ = 0.9 and α = 0.5.
Then, A in (8) becomes:

A =

∙
0.9 0
−1 2

¸
Using a computer, we find that the Schur decomposition of A gives:15

T =

∙
0.9 1
0 2

¸
, Z =

∙
−0.7399 0.6727
−0.6727 −0.7399

¸
, ZH =

∙
−0.7399 −0.6727
0.6727 −0.7399

¸
Notice that A is triangular, and then its eigenvalues coincide with its diagonal
elements. As required, T is upper triangular with the eigenvalues of A along the
diagonal, and the stable eigenvalue comes first. Also, Z is unitary, so ZH = Z−1.
In this particular example, both T and Z are real (and then ZH coincides with
the transpose of Z).
Partitioning T as in (14), and Z as in (21) we obtain:

Tθθ = 0.9, Tθδ = 1, Tδθ = 0, Tδδ = 2

Zxθ = −0.7399, Zxδ = 0.6727, Zyθ = −0.6727, Zxδ = −0.7399
Substituting into (29) and (31):

M ≡ ZxθTθθZ
−1
xθ = −0.7399× 0.9×

−1
0.7399

= 0.9

C ≡ ZyθZ
−1
xθ = −0.6727×

−1
0.7399

= 0.909

15As a companion to Klein (2000), Paul Klein developed a Matlab routine, solab.m,
that solves the type of models discussed in these notes. The code is available on line at
http://paulklein.se/newsite/codes/codes.php
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Finally, (28) and (30) give:16

mt+1 = 0.9mt + εt+1

pt = 0.9091mt

The Cagan Model is simple enough so that we can check the solution given
above by direct calculation.
From (6) we know: pt = (1 − α)mt + αEtpt+1. Iterating forward and ap-

plying the Law of Iterated Expectations we get:17 pt = (1−α)
PT

s=0 α
sEtmt+s+

αT+1Etpt+T+1. Letting T →∞, and imposing the condition lim
T→∞

αT+1Etpt+T+1 =
0, we get:

pt = (1− α)
∞X
s=0

αsEtmt+s

From (7) we know: mt+1 = ρmt + εt+1. Iterating forward we get: mt+s =
ρsmt +

Ps
i=1 ρ

s−iεt+i. Then:

Etmt+s = ρsmt

since Etρsmt = ρsmt and Etεt+s = 0 ∀s ≥ 1.
Substituting Etmt+s = ρsmt into the expression for pt we get: pt = (1 −

α)mt

∞P
s=0
(αρ)s. Then:

pt =
1− α

1− αρ
mt

since
∞P
s=0
(αρ)s = 1

1−αρ , because |αρ| < 1.

When α = 0.5 and ρ = 0.9, we get: 1−α
1−αρ =

0.5
0.55
∼= 0.9091, which coincides

with the result we found using the Schur Decomposition.

Remark. This simple model helps understand the problems that can arise when
there are eigenvalues with modulus equal to one. When ρ = 1, the solution for
the price level is pt = mt. From this expresion we get Etpt+s = Etmt+s = mt.
Then, lim

s→∞
|Etpt+s| = |mt| < ∞, which shows that the solution satisfies our

definition of stability. The problem, however, is that the conditional variance of
the price level diverges to infinity, unless εt = 0 ∀t (which would happen when
σ2ε = 0). We have: Vart{pt+s} =Vart{mt+s} =Vart{mt + εt+1 + εt+2 + ... +
εt+s} = sσ2ε →∞ as s→∞, unless σ2ε = 0.
16Money supply, the only predetermined variable of the model, is exogenous. Therefore,

the solution recovers the AR(1) process given in (7).
17When Ωt ⊆ Ωt+1 ∀t, the Law of Iterated Expectations establishes that Et{Et+spt+s} =

Etpt+s ∀s ∈ {1, 2, ...}.
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2.4 Impulse-Response Functions

Using the solution (28) and (30) we can trace the effects on x and y of a shock at
time t, i.e., we can derive the impulse-response functions. We start by writing
xt and yt as functions of current and past shocks.
From (28), and the initial condition, we get:

x1 =Mx0 + ε1
x2 =Mx1 + ε2 =M(Mx0 + ε1) + ε2 =M2x0 +Mε1 + ε2
x3 =Mx2 + ε3 =M(M2x0 +Mε1 + ε2) + ε3 =M3x0 +M2ε1 +Mε2 + ε3
...
xt =M tx0 +M t−1ε1 +M t−2ε2 + ....+Mεt−1 + εt
Then:

xt =M tx0 +
t−1X
i=0

M iεt−i (32)

where M0 = I.
Substituting (32) into (30) we obtain:

yt = CM tx0 +
t−1X
i=0

CM iεt−i (33)

From (32) and (33) we conclude that the impact of a shock in t, εt, on the
current and future values of x and y is:

Variable xt xt+1 xt+2 ... xt+j
Impact of a shock in period t εt Mεt M2εt ... M jεt

Variable yt yt+1 yt+2 ... yt+j
Impact of a shock in period t Cεt CMεt CM2εt ... CM jεt

(34)

2.5 Second Moments

From (28) we know: xt = Mxt−1 + εt. Iterating infinitely far into the past,
and imposing lim

s→∞
Msxt−s = 0, we get the MA(∞) representation for the time

series of the state vector:18

xt =
∞X
i=0

M iεt−i (35)

Remark. The condition lim
s→∞

Msxt−s = 0 follows from the fact that the eigenval-

ues of M are all smaller than one in modulus. Actually, lim
s→∞

Ms = 0⇔ all the

eigenvalues of M have modulus smaller than one (See Sydsæter et al. (2005),

18The same result can be obtained using the lag operator, L, defined by Lxt = xt−1 :
xt = Mxt−1 + εt ⇒ xt = MLxt + εt ⇒ (I −ML)xt = εt ⇒ xt = (I −ML)−1εt, where

(I −ML)−1εt =
∞

i=0
Miεt−i. Lag operators are discussed in Enders (1995), Chapter 1.
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Chapter 21, Result 21.7). And we know this condition holds because the eigen-
values of M coincide with the eigenvalues of Tθθ : Mx = λx ⇒ ZxθTθθZ

−1
xθ x =

λx⇒ Z−1xθ ZxθTθθZ
−1
xθ x = Z−1xθ λx⇒ TθθZ

−1
xθ x = λZ−1xθ x⇒ Tθθw = λw. We also

know that
∞P
i=0

M iεt−i is well defined. See Chapter 2 in Lütkepohl (2005) for a

good reference on these questions.

From (35) we can get the unconditional expectation of xt :

Ext = 0 (36)

Therefore, the unconditional variance-covariance matrix of xt satisfies:
Σx = E{(xt − Ext)(xt − Ext)0} = E{xtx0t}
Σx = E{(

P∞
i=0M

iεt−i)(
P∞

i=0M
iεt−i)

0}
Σx = E{

P∞
i=0M

iεt−i
P∞

i=0 ε
0
t−iM

0i} since M i0 =M 0i

Σx = E{
P∞

i=0M
iεt−iε

0
t−iM

0i +
PP∞

i6=j M
iεt−iε

0
t−jM

0j}
Σx =

P∞
i=0M

iE{εt−iε0t−i}M 0i +
PP∞

i6=j M
iE{εt−iε0t−j}M 0j

Then, using (36):

Σx =
X∞

i=0
M iΣεM

0i (37)

since E{εt−iε0t−j} = 0 ∀i 6= j.
We can further write:

Σx = Σε +
P∞

i=1M
iΣεM

0i = Σε +M(
P∞

i=1M
i−1ΣεM

0i−1)M 0

Σx = Σε +M(
P∞

i=0M
iΣεM

0i)M 0

Then:
Σx = Σε +MΣxM

0 (38)

From (30) we obtain: Eyt = E{Cxt} = CExt ⇒

Eyt = 0 (39)

Therefore, the unconditional variance-covariance matrix of yt satisfies:
Σy = E{(yt − Eyt)(yt − Eyt)0} = E{yty0t}
Σy = E{(Cxt)(Cxt)0} = E{Cxtx0tC 0}
Σy = CE{xtx0t}C0
Then:

Σy = CΣxC
0 (40)

There are different methods to obtain the solution to (38). One way is to
iterate on the following expression until convergence:

Σx,j = Σε +MΣx,j−1M
0 (41)

where the iteration could start by setting Σx,0 = 0 or Σx,0 = I.19

Alternatively, we can use the vec operator - that stacks the column vectors
of a matrix - to write:
19The speed of convergence can be increased using the so-called doubling algorithm. See

Chapter 4 in Uribe (2011) for a description.
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vec(Σx) = vec(Σε +MΣxM
0)

vec(Σx) = vec(Σε) + vec(MΣxM
0)

vec(Σx) = vec(Σε) + (M ⊗M)vec(Σx)
(I −M ⊗M)vec(Σx) = vec(Σε)
Then:

vec(Σx) = (I −M ⊗M)−1vec(Σε) (42)

where we have used vec(A + B) = vec(A) + vec(B), and vec(ABC) = (C0 ⊗
A)vec(B), with ⊗ denoting the Kronecker product operator.20

Remark 1. To get vec(Σx) from (42) we need to be sure that I −M ⊗M is
invertible, and this will be true if and only if the eigenvalues of I−M⊗M are all
different from zero (Sydsæter et al. (2005), Chapter 21, Result 21.6). We know
the eigenvalues of M ⊗M are products of the eigenvalues of M (Sydsæter et al.
(2005), Chapter 23, Result 23.10), and we have argued that all the eigenvalues of
M have modulus smaller than one. It follows that all the eigenvalues of M ⊗M
have modulus smaller than one. Now, the eigenvalues of I −M ⊗M are of the
form 1−λ, where λ is an eigenvalue M ⊗M . Since |λ| < 1, we know that 1−λ
cannot be zero. Hence, I −M ⊗M is invertible.

Remark 2. Even though (42) gives an exact formula for Σx, (41) may be pre-
ferred in applications, since computing (42) can be less accurate and slower,
especially when nx is large (since it is necessary to invert an n2x × n2x matrix).

Consider now the following variance-covariance matrix: E{xtx0t−j}, j > 0.
We have:
E{xtx0t−j} = E{(

P∞
i=0M

iεt−i)x
0
t−j}

E{xtx0t−j} = E{(
Pj−1

i=0 M
iεt−i +

P∞
i=j M

iεt−i)x
0
t−j}

E{xtx0t−j} = E{(
Pj−1

i=0 M
iεt−i +M j

P∞
i=j M

i−jεt−i)x
0
t−j}

E{xtx0t−j} = E{(
Pj−1

i=0 M
iεt−i +M j

P∞
k=0M

kε(t−j)−k)x
0
t−j}

E{xtx0t−j} = E{(
Pj−1

i=0 M
iεt−i +M jxt−j)x

0
t−j}

E{xtx0t−j} = E{(
Pj−1

i=0 M
iεt−i)x

0
t−j}+ E{M jxt−jx

0
t−j}

E{xtx0t−j} = E{
Pj−1

i=0 M
iεt−i

P∞
i=0M

iε(t−j)−i}+ E{M jxt−jx
0
t−j}

E{xtx0t−j} = M jE{xt−jx0t−j} (since the first term of the previous expression
contains only cross-products)
Then:

E{xtx0t−j} =M jΣx (43)

Also:
E{yty0t−j} = E{Cxt(Cxt−j)0} = E{Cxtx0t−jC 0}
E{yty0t−j} = CE{xtx0t−j}C0
Then:

E{yty0t−j} = CM jΣxC
0 (44)

20See Chapter 23 in Sydsæter et al. (2005) for definitions of the Kronecker product and the
vec operators, and a list their basic properties.
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3 A More General Model

3.1 The Model and its Solution

We generalize (3) as follows:

G

∙
xt+1
Etyt+1

¸
= A

∙
xt
yt

¸
+

∙
εt+1
0ny×1

¸
x0 given (45)

where G is an n×n, possibly singular, matrix. In terms of partitioned matrices
we get:∙

Gxx Gxy

Gyx Gyy

¸ ∙
xt+1
Etyt+1

¸
=

∙
Axx Axy

Ayx Ayy

¸ ∙
xt
yt

¸
+

∙
εt+1
0ny×1

¸
(46)

We assume that xt is predetermined, and therefore it has an exogenous one-
period-ahead forecast error ξt+1 ≡ xt+1 − Etxt+1.21
Based on information available at time t, we can take expectations of (45)

in order to get:

GEt
∙
xt+1
yt+1

¸
= A

∙
xt
yt

¸
(47)

or, more compactly,
GEtwt+1 = Awt (48)

Remark. The system presented in Klein (2000) and Blanchard and Kahn (1980)
is of the formGEtwt+1 = Awt+Dzt, where {zt} is a stable sequence of exogenous
random vectors of dimension nz × 1, and D is a known matrix of dimension
n× nz. In Appendix G we show how to rewrite this system in form (48) when
the exogenous random vectors follow a VAR(1).

Notice that if G were invertible, we could premultiply (47) by G−1 and
obtain a system in form (16). In this case we could solve the problem using the
Schur Decomposition, as explained earlier. If G is singular, this approach is not
possible, but we can still solve the problem applying the Generalized (Complex)
Schur Decomposition to the matrix pair (A,G) (see Appendix C). That is, we
find complex unitary n×nmatricesQ and Z, and complex upper triangular n×n
matrices S and T , such that A = QTZH and G = QSZH . The decomposition
is such that the generalized eigenvalues of (A,G) are of the form tii

sii
, where sii

and tii are the diagonal elements of S and T , respectively. Moreover, we can

reorder S, T , Q and Z such that the nθ generalized eigenvalues with
¯̄̄
tii
sii

¯̄̄
< 1

21Notice that, in this more general system, εt+1 is not the one-period-ahead forecast error of
xt. From the first block of (46) we get: Gxxxt+1+GxyEtyt+1 = Axxxt+Axyyt+εt+1. Taking
expectations conditional on period-t information: GxxEtxt+1+GxyEtyt+1 = Axxxt+Axyyt.
Subtracting the second expression from the first one: Gxx(xt+1 − Etxt+1) = εt+1. Then:
εt+1 = Gxxξt+1. Since Gxx may not be invertible, it is not generally possible to write
ξt+1 = G−1xx εt+1. We can still write ξt+1 = G∗xxεt+1, where G

∗
xx is a generalized inverse of

Gxx.
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come first, and the nδ generalized eigenvalues with modulus higher than one
come last (where nθ + nδ = n).
Define the auxiliary variables:∙

θt
δt

¸
≡ ZH

∙
xt
yt

¸
(49)

where θt and δt are vectors of dimension nθ × 1 and nδ × 1, respectively.
Premultiplying (47) by QH , and using A = QTZH and G = QSZH , we

get:22

QHQSEtZH

∙
xt+1
yt+1

¸
≡ QHQTZH

∙
xt
yt

¸
Using QHQ = I and (49):

SEt
∙
θt+1
δt+1

¸
≡ T

∙
θt
δt

¸
Partitioning S and T conformably with θt and δt we can write:∙

Sθθ Sθδ
0 Sδδ

¸
Et
∙
θt+1
δt+1

¸
≡
∙
Tθθ Tθδ
0 Tδδ

¸ ∙
θt
δt

¸
(50)

Notice that Sθθ is invertible: since Sθθ is triangular, its determinant is the
product of its diagonal elements; moreover, since all the generalized eigenvalues

with
¯̄̄
tii
sii

¯̄̄
< 1 are ordered first, sii cannot be zero for any i in this block;

therefore, |Sθθ| 6= 0, and Sθθ is invertible. Analogous reasoning shows that
Tδδ is also invertible. Matrix Sδδ, however, may not be invertible, since some
of its diagonal elements could be zero (corresponding to infinite generalized
eigenvalues). This will happen whenever G is singular and the matrix pair
(A,G) is regular (see Appendix C).

Remark. As noted in Klein (2000), for the above representation we do not really
need that S and T are upper triangular; it is sufficient to have upper block
triangularity. This is why the Generalized Real Schur Decomposition can also
be used to solve the system.23

From (50) we get:
SδδEtδt+1 ≡ Tδδδt (51)

Since the pair (Sδδ, Tδδ) contains the unstable eigenvalues, the system will vio-
late the no-explosion condition unless:24

22As QH is invertible, knowledge of xt and yt is equivalent to knowledge of θt and δt (the
transformation does not affect the information set Ωt). Hence, one system is equivalent to the
other.
23 See Golub and van Loan (1996), Theorem 7.7.2 (page 377), for a presentation of the

Generalized Real Schur Decomposition.
24 See Appendix D for a proof of this result.
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δt = 0 ∀t (52)

Substituting (52) into (50) we obtain: SθθEtθt+1 ≡ Tθθθt. Since Sθθ is
invertible, we get:

Etθt+1 ≡ S−1θθ Tθθθt (53)

where an initial condition for θt is still to be found.
Premultiplying (49) by Z, and using ZZH = I, we get:∙

xt
yt

¸
≡ Z

∙
θt
δt

¸
Partitioning Z conformably:∙

xt
yt

¸
≡
∙
Zxθ Zxδ
Zyθ Zyδ

¸ ∙
θt
δt

¸
(54)

where Zxθ, Zxδ, Zyθ, and Zyδ are matrices of dimension nx×nθ, nx×nδ, ny×nθ,
and ny × nδ, respectively.
Substituting (52) into (54) we get:

xt = Zxθθt (55)

yt = Zyθθt (56)

If Zxθ is invertible, we can use (55) to get:

θt = Z−1xθ xt (57)

Remark. As noted earlier, a necessary condition for invertibility is that nθ = nx.
Therefore, invertibility of Zxθ requires that the number of stable eigenvalues
equals the number of predetermined variables (or, equivalently, that the num-
ber of unstable eigenvalues equals the number of nonpredetermined variables).
When Zxθ has full rank, nx = nθ is sufficient for invertibility.

Using (57) and the initial condition for xt we obtain:

θ0 = Z−1xθ x0 (58)

which provides an initial condition for system (53).
The one-period-ahead forecast error of xt is ξt+1 = xt+1 − Etxt+1, which is

exogenous by assumption. Using (55) we get: ξt+1 = Zxθθt+1 − EtZxθθt+1 =
Zxθθt+1 − ZxθEtθt+1. Then:

ξt+1 = Zxθ(θt+1 − Etθt+1) (59)

From (59) we get θt+1 − Etθt+1 = Z−1xθ ξt+1, and then, θt+1 = Etθt+1 +
Z−1xθ ξt+1. Substituting (53) into the last expression we obtain:

θt+1 = S−1θθ Tθθθt + Z−1xθ ξt+1 (60)
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Therefore, the nonexplosive solution to system (50) is given recursively by
(52), (60) and (58).
Now we want to go back to our original system in terms of xt and yt. Sub-

stituting (60) into (55) we obtain: xt+1 = Zxθθt+1 = Zxθ(S
−1
θθ Tθθθt+Z−1xθ ξt+1).

Using (57) to eliminate θt, and rearranging: xt+1 = ZxθS
−1
θθ TθθZ

−1
xθ xt + ξt+1.

Then:
xt+1 =Mxt + ξt+1 (61)

where
M ≡ ZxθS

−1
θθ TθθZ

−1
xθ (62)

Analogously, substituting (57) into (56) we obtain: yt = ZyθZ
−1
xθ xt. Then:

yt = Cxt (63)

where
C ≡ ZyθZ

−1
xθ (64)

Equations (61) and (63), together with the initial condition x0, give the
recursive representation of the solution to (45).

The Blanchard-Kahn resutls apply, with generalized eigenvalues taking the
place of (standard) eigenvalues. The calculation of impulse-response functions
and second moments apply as well, with the new definitions for matricesM and
C, and with Σξ in place of Σε.25

3.2 A Simple Example

Consider the following simple model:

xt+1 =
1

4
xt + yt + εt+1

yt =
1

2
xt

where εt+1 is white noise and x0 is given.
It is really easy to solve this model. Substitution of the second equation

into the first gives the recursive solution for the predetermined variable: xt+1 =
1
4xt +

1
2xt + εt+1 ⇒

xt+1 =
3

4
xt + εt+1

Hence, M = 3/4. The second equation is already in the required form, with
C = 1/2.

25When Gxx is invertible, we have ξt+1 = G−1xx εt+1. Then, Σξ = G−1xxΣεG
−10
xx .
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Now we can apply our general solution method to the model given above
and confirm that it provides the correct solution. We start by rewriting the
model in form (46):∙

1 0
0 0

¸ ∙
xt+1
Etyt+1

¸
=

∙
1/4 1
1/2 −1

¸ ∙
xt
yt

¸
+

∙
εt+1
0

¸

where G =
∙
1 0
0 0

¸
and A =

∙
1/4 1
1/2 −1

¸
. Notice that G is singular.

Using a computer we find that the Generalized Schur decomposition of A
gives:26

S =

∙
0.8944 −0.4472
0 0

¸
; T =

∙
0.6708 0.7826
0 1.1180

¸
Q =

∙
−1 0
0 1

¸
; Z =

∙
−0.8944 0.4472
−0.4472 −0.8944

¸
; ZH =

∙
−0.8944 −0.4472
0.4472 −0.8944

¸
Then:

Sθθ = 0.8944, Sθδ = −0.4472, Sδδ = 0
Tθθ = 0.6708, Tθδ = 0.7826, Tδδ = 1.118

Zxθ = −0.8944, Zxδ = 0.4472, Zyθ = −0.4472, Zyδ = −0.8944

Then, M ≡ ZxθS
−1
θθ TθθZ

−1
xθ ⇒ M = −0.8944× 1

0.8944 × 0.6708×
1

−0.8944 ⇒
M = 0.6708

0.8944 ⇒
M =

3

4

Also, C = ZyθZ
−1
xθ ⇒ C = −0.4472× 1

−0.8944 ⇒

C =
1

2

Moreover, from Gxx = 1 and εt+1 = Gxxξt+1 we get:

ξt+1 = εt+1

Then, xt+1 =Mxt + ξt+1 and yt = Cxt become:

xt+1 =
3

4
xt + εt+1

yt =
1

2
xt

which coincides with the solution we found earlier.

26We use the Matlab code developed by Paul Klein, solab.m, available at
http://paulklein.se/newsite/codes/codes.php
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4 ARational-ExpectationsMacroeconomicModel
In this section we use the methods discussed above to solve a standard, infinite-
horizon, stochastic, Real Business Cycle (RBC) model.27

4.1 The Model

There is a representative household with preferences over sequences of consump-
tion and leisure. In any period t ∈ {0, 1, 2, ...}, the household chooses consump-
tion (Ct), the supply of labor time (Ht), and investment (It = Kt+1−(1−δ)Kt).
Total time available is normalized to one, so leisure time is 1−Ht. The house-
hold owns the capital stock (Kt), which is rented to the representative firm.
The budget constraint of the household establishes that total expenditure in
consumption and investment must be financed with wages (wtHt) and the rents
from capital (rtKt).28 Therefore, household’s decisions can be represented by
the solution of the following utility-maximization problem:

max
{Ct,Ht,Kt+1}∞t=0

E0
∞P
t=0

βt [lnCt + a ln(1−Ht)]

s.t. Ct +Kt+1 − (1− δ)Kt = wtHt + rtKt

K0 > 0 given

where we have assumed that preferences are time separable, with period utility
function U(Ct, 1 − Ht) = lnCt + a ln(1 − Ht), discount factor β ∈ (0, 1), and
a > 0.
The representative firm’s production function is Cobb-Douglas:

Yt = λtK
θ
tH

1−θ
t , θ ∈ (0, 1)

Total factor productivity is stochastic and evolves as follows:

lnλt+1 = (1− γ) lnλ+ γ lnλt + t+1

where γ ∈ (0, 1), λ > 0, and { t+1}∞t=0 is a sequence of i.i.d. random variables
with mean zero and variance σ2.
The firm generates output by hiring inputs in competitive markets, with the

aim of maximizing profits. Using the production function to eliminate output,
we can write the profit-maximization problem as follows:

max
Kt,Ht

λtK
θ
tH

1−θ
t − wtHt − rtKt

27We solve the standard model with divisible labor, as presented in Hansen (1985). This pa-
per also develops a model with indivisible labor that can be solved with the same methodology
presented here.
28The representative household owns the representative firm. Since profits will be zero, we

do not need to include them as part of the household’s income.
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The combination of constant returns to scale with competitive markets implies
that any solution of the profit-maximization problem must yield zero profits.
Given the stochastic process for total factor productivity, a competitive equi-

librium for this economy is a sequence of stochastic allocations {Ct, It, Ht,
Kt+1, Yt}∞t=0, and a sequence of stochastic prices {rt, wt}∞t=0, such that: (i) the
allocation of the household maximizes expected utility, given the sequence of
equilibrium prices; (ii) the allocation of the firm maximizes profits, given the
sequence of equilibrium prices; (iii) the sequence of prices clears all markets.
Market clearing requires that, at the equilibrium prices, the labor supplied by
the household coincides with the labor demanded by the firm, the capital sup-
plied for rent by the household coincides with the capital demanded by the firm,
and the output supplied by the firm coincides with the household’s demand for
consumption and investment.
After finding the first-order conditions for the utility and profit maximization

problems we can summarize the equilibrium conditions with the following set
of nonlinear stochastic dynamic equations:

lnλt+1 = (1− γ) lnλ+ γ lnλt + t+1

Kt+1 = It + (1− δ)Kt

Yt = λtK
θ
tH

1−θ
t

wt = (1− θ) YtHt

rt = θ Yt
Kt

Yt = Ct + It

aCt
1−Ht

= wt

1
Ct
= Et

n
β

Ct+1
(rt+1 + 1− δ)

o
The system above has 8 equations to solve for the evolution of 8 variables (λt,
Kt+1, Yt, Ct, It, Ht, rt, wt). The first and second equations are simply the laws
of motion for total factor productivity and the capital stock, respectively. The
third one is the production function. The fourth and fifth equations come from
the profit-maximization problem, and simply say that factor prices (in terms
of output) must equal their marginal products. The sixth equation imposes
market clearing in the output market.29 The seventh equation comes from the
utility-maximization problem, and establishes an intratemporal relation between
consumption and labor. It can be interpreted as a labor supply equation, where
Ht is an increasing function of wt, for given Ct. Finally, the eigth equation is

29We are also imposing equilibrium in factor markets, since we are using Ht (Kt) to denote
both the demand and supply of labor (capital).
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the standard Euler equation obtained from utility maximization. It establishes
the connection between current and future consumption that must be satisfied
by any optimal saving/consumption plan.

4.2 Log-linearization

Since the system displayed above is nonlinear, we cannot really use the solution
method described earlier. What we will do is take a log-linear approximation
of the model around its nonstochastic steady state. This will produce a linear
system that we can solve. The solution of this system will be an accurate
approximation of the solution to the original system as long as the equilibrium
allocations are close enough to the nonstochastic steady state.
We start by calculating the unique nonstochastic steady state of the model.

In this steady state there are no shocks (εt = 0 ∀t) and all variables are constant
(Xt+1 = Xt, for any variable X). Using an upper bar to denote steady state
quantities, we get:30

λ = λ

r =
1

β
− 1 + δ

w = (1− θ)λ

µ
θλ

r

¶ θ
1−θ

K =
θw

(a+ 1− θ)r − aθδ

I = δK

H =

µ
r

θλ

¶ 1
1−θ

K

Y =
r

θ
K

C = (
r

θ
− δ)K

Now we proceed to log-linearize the model around its nonstochastic steady
state (Appendix H describes the method of log-linearization). For any variable
X we define bXt ≡ lnXt − lnX, which measures the relative deviation of Xt

30This model is simple enough so that we can solve for the nonstochastic steady state
analytically. In more complicated models the steady state has to be found numerically.
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from X.31 Log-linearizing the original system we get (See Appendix H):

bλt+1 = γbλt + εt+1

bKt+1 = δbIt + (1− δ) bKt

0 = bλt + θ bKt + (1− θ) bHt − bYt
0 = bYt − bHt − bwt

0 = bYt − bKt − brt
0 = Y bYt − C bCt − IbIt
0 = bwt − H

1−H
bHt − bCt

Et bCt+1 − βrEtbrt+1 = bCt

The system above can be written in matrix form, as follows:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 −βr 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

bλt+1bKt+1

Et bYt+1
Et bCt+1

EtbIt+1
Et bHt+1

Etbrt+1
Et bwt+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ 0 0 0 0 0 0 0
0 1− δ 0 0 δ 0 0 0
1 θ −1 0 0 1− θ 0 0
0 0 1 0 0 −1 0 −1
0 −1 1 0 0 0 −1 0
0 0 Y −C −I 0 0 0

0 0 0 −1 0 −H
1−H 0 1

0 0 0 1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

bλtbKtbYtbCtbItbHtbrtbwt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t+1

0
0
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

31Recall that, when Xt is sufficiently close to X, lnXt − lnX ∼= Xt−X
X

.
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Let G denote the matrix on the left-hand side and A denote the matrix on
the right-hand side. Define the following column vectors:

xt ≡
" bλtbKt

#
, yt ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎣

bYtbCtbItbHtbrtbwt

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, εt+1 ≡

∙
t+1

0

¸

Then we can write:

G

∙
xt+1
Etyt+1

¸
= A

∙
xt
yt

¸
+

∙
εt+1
0

¸
which is a system in form (45).

4.3 Parametrization and Solution

To solve the model numerically we need to assign particular values to its parame-
ters. Following Hansen (1985) we set: θ = 0.36, β = 0.99, δ = 0.025, γ = 0.95,
λ = 1, a = 2, and σ = 0.00712.32 These figures imply: λ = 1, r = 0.035,
w = 2.37, K = 11.43, H = 0.301, Y = 1.114, I = 0.286, and C = 0.829.
From our previous analyisis we know the solution is of the form xt+1 =

Mxt + ξt+1 and yt = Cxt.33 Using a computer we get:34

M =

∙
0.95 0
0.1162 0.9528

¸

C =

⎡⎢⎢⎢⎢⎢⎢⎣
1.4874 0.1932
0.3981 0.5660
4.6468 −0.8879
0.7616 −0.2606
1.4874 −0.8068
0.7258 0.4538

⎤⎥⎥⎥⎥⎥⎥⎦

32Hansen calibrates the model in order to match quarterly data for the US over the period
1955.Q3 - 1984.Q1.

33Notice that Gxx =
1 0
0 1

, and then G−1xx =
1 0
0 1

. Then: ξt+1 = G−1xx εt+1 gives:

ξt+1 = εt+1.
34We use the Matlab code developed by Paul Klein, solab.m, available at

http://paulklein.se/newsite/codes/codes.php
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Then, xt+1 =Mxt + ξt+1 becomes:

bλt+1 = 0.95bλt + εt+1

bKt+1 = 0.1162bλt + 0.9528 bKt

And yt = Cxt gives:

bYt = 1.4874bλt + 0.1932 bKt

bCt = 0.3981bλt + 0.5660 bKt

bIt = 4.6468bλt − 0.8879 bKt

bHt = 0.7616bλt − 0.2606 bKt

brt = 1.4874bλt − 0.8068 bKt

bwt = 0.7258bλt + 0.4538 bKt

The expressions above allow us to easily calculate the impulse response of
each variable to a technology shock. Assuming that in period 0 the economy is
in steady state and that a 1% technology shock occurs in period 1 (i.e., 1 = 1,
t = 0 ∀t ≥ 2) we get the figures displayed below (for each variable, time is in
the horizontal axis and the %-deviation from the nonstochastic steady state is
in the vertical axis).
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Impulse Responses to a 1% Technology Shock
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Finally, we can use the formulas described earlier to obtain second moments
for all the variables. For example, using (42) and (40) we obtain the variance-
covariance matrix for the nonpredetermined and predetermined variables:

Σx =

∙
σ2λ σλK
σKλ σ2K

¸
=

∙
5.20 6.05
6.05 15.29

¸

Σy =

⎡⎢⎢⎢⎢⎢⎢⎣
σ2Y σY C σY I σYH σY r σY w
σCY σ2C σCI σCH σCr σCw
σIY σIC σ2I σIH σIr σIw
σHY σHC σHI σ2H σHr σHw

σrY σrC σrI σrH σ2r σrw
σwY σwC σwI σwH σwr σ2w

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣
15.6 10.3 30.8 3.7 3.6 11.9
10.3 8.4 15.7 1.3 −0.8 9.0
30.8 15.7 74.4 10.5 16.2 20.2
3.7 1.3 10.5 1.7 3.0 2.0
3.6 −0.8 16.2 3.0 6.9 0.6
11.9 9.0 20.2 2.0 0.6 9.9

⎤⎥⎥⎥⎥⎥⎥⎦

Remark. One way of evaluating the performance of a model is to compare the
second moments generated by the model to empirical second moments obtained
from time-series data. In our RBC model there is no long-run growth. It is
not difficult to show, however, that our model is equivalent to one with con-
stant long-run growth where all variables have been normalized by the growth
component. Hence, if Zt grows in the long-run at rate g, we can define a new
variable, wt, as follows: zt ≡ Zt

Z0egt
. In a balanced-growth path, Zt grows at rate

g, and then zt is constant at some value, z. The relative deviation of zt from z
is then: bzt ≡ ln zt− ln z = ln( Zt

Z0egt
)− ln z = lnZt− lnZ0−gt− ln z. This shows

that the model-generated second moments obtained above are comparable to
the second moments generated from data that has been linearly detrended (in
logs). Linear detrending, however, is not the only possibility. In particular, it
is standard among researchers to detrend macro variables using the Hodrick-
Prescott (HP) filter. In this case, it would be inappropriate to compare the
moments calculated above to their empirical counterparts. To do a meaningful
comparison one would first need to determine the mapping from the moments
of our "hatted" variables to the moments of HP-filtered data. For different ways
of doing this analytically, see Burnside (1999) and Uhlig (1999). Another possi-
bility is to generate simulated time series with the model, detrend the simulated
data using the HP filter, and then calculate the second moments of the filtered
simulated data. An advantage of the latter methodology is that, by simulat-
ing many time-paths for each variable, one can provide standard errors for the
estimated moments.

25



5 Appendices

Appendix A

In this appendix we present an example to show how to reduce a higher-order
model to the first-order form given in (3). We also provide an example of a
model with lagged expectations that can be put in form (3).35

Example 1. A higher-order model.
Consider the following model:

Yt + αYt−2 + βEtYt+2 = ηt (65)

where ηt = ρηt−1 + νt and νt is an exogenous white-noise process. We have
initial conditions for Y−2, Y−1, and η0.
The model can be rewritten as follows:⎡⎢⎢⎢⎢⎣

ηt+1
Yt−1
Yt

EtYt+1
EtYt+2

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣

ρ 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1
β −α

β 0 − 1
β 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

ηt
Yt−2
Yt−1
Yt

EtYt+1

⎤⎥⎥⎥⎥⎦+
⎡⎢⎢⎢⎢⎣

νt+1
0
0
0
0

⎤⎥⎥⎥⎥⎦ (66)

Define:

xt ≡

⎡⎣ ηt
Yt−2
Yt−1

⎤⎦ , yt ≡
∙

Yt
EtYt+1

¸
, εt+1 ≡

⎡⎣ νt+1
0
0

⎤⎦
Then:

xt+1 =

⎡⎣ ηt+1
Yt−1
Yt

⎤⎦ , Etyt+1 = Et
∙

Yt+1
Et+1Yt+2

¸
=

∙
EtYt+1
EtYt+2

¸

where we have used the law of iterated expectations to write Et{Et+1Yt+2} =
EtYt+2.
Notice that x0 = (η0, Y−2, Y−1)

0 is given, and xt+1−Etxt+1 = εt+1 is exoge-
nous. Therefore, xt is a vector of predetermined variables.
Using the definitions given above, we can rewrite (66) in form (3) as follows:∙

xt+1
Etyt+1

¸
= A

∙
xt
yt

¸
+

∙
εt+1
02×1

¸
where A is the 5× 5 matrix given in (66), xt is predetermined and yt is nonpre-
determined.

35We closely follow Examples B and D in Blanchard and Kahn (1980).
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Example 2. A model with lagged expectations
Consider the following model:
(i) Yt = Ct + It +Gt with Gt+1 = ρgGt + εgt+1.
(ii) Ct = α(Yt + EtYt+1) + ϑt with ϑt+1 = ρϑϑt + εϑt+1.
(iii) It = β(EtYt+1 − Et−1Yt) + νt with νt+1 = ρννt + ενt+1
where εgt+1, ε

ϑ
t+1, and ενt+1 are i.i.d. zero-mean shocks, α, β > 0, ρg, ρϑ, ρν ∈

(0, 1), and G0, ϑ0, ν0, and E−1Y0 are given. Notice that the third equation
includes the lagged expectation of a current variable.
Substituting (ii) and (iii) into (i), and rearranging, we get:

EtYt+1 =
1− α

α+ β
Yt +

β

α+ β
Et−1Yt −

1

α+ β
(Gt + ϑt + νt) (67)

Define: Xt ≡ Et−1Yt ⇒ Xt+1 = EtYt+1. Then we can write:⎡⎢⎢⎢⎢⎣
Gt+1

ϑt+1
νt+1
Xt+1

EtYt+1

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣

ρg 0 0 0 0
0 ρϑ 0 0 0
0 0 ρν 0 0

− 1
α+β − 1

α+β − 1
α+β

β
α+β

1−α
α+β

− 1
α+β − 1

α+β − 1
α+β

β
α+β

1−α
α+β

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

Gt

ϑt
νt
Xt

Yt

⎤⎥⎥⎥⎥⎦+
⎡⎢⎢⎢⎢⎣

εgt+1
εϑt+1
ενt+1
0
0

⎤⎥⎥⎥⎥⎦
(68)

Define:

xt ≡

⎡⎢⎢⎣
Gt

ϑt
νt
Xt

⎤⎥⎥⎦ , yt ≡ [Yt] , εt+1 ≡

⎡⎢⎢⎣
εgt+1
εϑt+1
ενt+1
0

⎤⎥⎥⎦
Notice that x0 = (G0, ϑ0, ν0,X0)

0 is given, and xt+1−Etxt+1 = (εgt+1, εϑt+1, ενt+1, 0)0
is exogenous. Therefore, xt is a vector of predetermined variables.
We can rewrite (68) in form (3) as follows:∙

xt+1
Etyt+1

¸
= A

∙
xt
yt

¸
+

∙
εt+1
0

¸
where A is the 5 × 5 matrix given in (68), xt is predetermined, and yt is non-
predetermined. Notice that A has two rows that are equal, and therefore is
singular.
Hence, we have managed to write a model with lagged expectations of a

current variable in form (3).
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Appendix B

In this appendix we show how to convert models of the form∙
xt+1
Etyt+1

¸
= C +A

∙
xt
yt

¸
+

∙
εt+1
0ny×1

¸
into form (3), by redefining variables as deviations from their nonstochastic
steady-state levels.
In a nonstochastic steady state we have:∙

x
y

¸
= C +A

∙
x
y

¸
Assuming I −A is invertible, the expression above gives:36∙

x
y

¸
= (I −A)−1C

Define the deviations from the nonstochastic steady-state values as follows:∙ bxtbyt
¸
≡
∙
xt − x
yt − y

¸

Then, subtracting
∙
x
y

¸
= C +A

∙
x
y

¸
from the original system we get:

∙
xt+1
Etyt+1

¸
−
∙
x
y

¸
= C +A

∙
xt
yt

¸
+

∙
εt+1
0ny×1

¸
− C −A

∙
x
y

¸
∙

xt+1 − x
Etyt+1 − y

¸
= A

µ∙
xt
yt

¸
−
∙
x
y

¸¶
+

∙
εt+1
0ny×1

¸
∙

xt+1 − x
Et{yt+1 − y}

¸
= A

∙
xt − x
yt − y

¸
+

∙
εt+1
0ny×1

¸
Then: ∙ bxt+1

Etbyt+1
¸
= A

∙ bxtbyt
¸
+

∙
εt+1
0ny×1

¸
which is the expression we were looking for.

36The eigenvalues of I − A are of the form 1 − λ, where λ is an eigenvalue of A. The
invertibility of I −A requires that the product of its eigenvalues be different from zero (since
the product of the eigenvalues is equal to the determinant): (1− λ1)(1 − λ2)...(1− λn) 6= 0.
Hence, if A has at least one eigenvalue equal to one, I −A will be singular and the model will
not have a well-defined nonstochastic steady state (unless C = 0, in which case x = 0 and
y = 0).
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Appendix C

In this appendix we present the (Complex) Schur Decomposition and the Gen-
eralized (Complex) Schur decomposition.

C.1 (Complex) Schur Decomposition

We start with some definitions.

Definitions: Conjugate Transpose, and Unitary Matrix.
Let A denote an m× n matrix of (possibly) complex numbers:

A =

⎡⎢⎢⎣
a11 + b11i a12 + b12i ... a1n + b1ni
a21 + b21i a22 + b22i ... a2n + b2ni

... ... ... ...
am1 + bm1i am2 + bm2i ... amn + bmni

⎤⎥⎥⎦
The conjugate transpose of A, denoted AH , is formed by transposing A and

replacing each element with its complex conjugate:

AH =

⎡⎢⎢⎣
a11 − b11i a21 − b21i ... am1 − bm1i
a12 − b12i a22 − b22i ... am2 − bm2i

... ... ... ...
a1n − b1ni a2n − b2ni ... amn − bmni

⎤⎥⎥⎦
Notice that, if A is real, then AH and A0 denote the same matrix (where A0

denotes the transpose of a real matrix).

A complex n × n matrix A is unitary if its conjugate transpose coincides
with its inverse, i.e., if AH = A−1. Therefore, when A is unitary, we have:
AAH = AHA = I, where I is the n× n identity matrix.

As an example, consider the following 2× 2 matrix:

A =

⎡⎣ 1
2 +

1
2 i

1
2 +

1
2 i

1
2 −

1
2 i −

1
2 +

1
2 i

⎤⎦
Its conjugate transpose is:

AH =

⎡⎣ 1
2 −

1
2 i

1
2 +

1
2 i

1
2 −

1
2 i −

1
2 −

1
2 i

⎤⎦
It is easy to check that AAH = I, where I is the 2 × 2 identity matrix.

Therefore, AH = A−1, which shows that A is unitary.
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Definitions: Eigenvalues and Eigenvectors.
Let A be a (possibly complex) n × n matrix. A (possibly complex) scalar λ
is an eigenvalue of A if it satisfies Ax = λx, for x 6= 0. The n × 1 (possibly
complex) vectors x 6= 0 that satisfy Ax = λx for a given λ are called the (right)
eigenvectors of A (corresponding to λ).

Remarks. Notice that Ax = λx can be rewritten as follows: (A−λI)x = 0. For
a given λ, this homogeneous system will have a nontrivial solution (x 6= 0) if
and only if |A− λI| = 0. The determinant |A− λI| is an n-th order polynomial
in λ, and is called the characteristic polynomial for A. Analogously, equation
|A− λI| = 0 is called the characteristic equation for A. From the fundamental
theorem of algebra we know that the characteristic equation will have n roots.
These roots may be either real or complex numbers, and need not be all different.
For values of λ different from the roots of |A− λI| = 0, the only solution to
Ax = λx is x = 0. Therefore, there are n eigenvalues of A, which coincide
with the n roots of the characteristic equation. We also have the result that,
if A is a real matrix, then complex eigenvalues come in conjugate pairs. The
eigenvalues can be computed using the so called QR method (see Golub and
van Loan (1996)).

Theorem: (Complex) Schur Decomposition.
Let A be a complex n× n matrix. Then, there exists a complex, unitary n× n
matrix Z such that

ZHAZ = T (69)

where T is a complex, upper triangular n × n matrix with the eigenvalues of
A in its diagonal. Furthermore, Z can be chosen so that the eigenvalues of A
appear in any order along the diagonal of T .

Proof. See Golub and van Loan (1996), Theorem 7.1.3, page 313.

Remark 1. Premultiplying (69) by Z and posmultiplying it by ZH we obtain:
ZZHAZZH = ZTZH . Then:

A = ZTZH (70)

since ZZH = I, because Z is unitary.

Remark 2. Reordering the eigenvalues in the diagonal of T requires that Z be
altered conformably so that (69) holds. This can be quite involved. Fortunately,
there is software available to do it.
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C.2 Generalized (Complex) Schur Decomposition

Definition: Generalized Eigenvalue Problem.
The generalized eigenvalue problem for a pair of (possibly complex) n× n ma-
trices (A,B) is the problem of finding the (possibly complex) scalar λ and the
(possibly complex) n× 1 vectors x 6= 0 that satisfy Ax = λBx. The values of λ
that satisfy the equation are the generalized eigenvalues, and the corresponding
vectors x 6= 0 are the generalized (right) eigenvectors.

Remarks. We can rewrite Ax = λBx as follows: (A−λB)x = 0 If there exists λ
such that |A− λB| 6= 0, the matrix pair (A,B) is said to be regular ; otherwise
it is called singular. If B is invertible, then the pair (A,B) is regular. In this
case, we can reduce the generalized eigenvalue problem to a standard eigenvalue
problem premultiplying Ax = λBx by B−1 to get B−1Ax = λx, and the number
of generalized eigenvalues is exactly equal to n. If B is noninvertible and (A,B)
is regular, there are p finite generalized eigenvalues, and n−p infinite generalized
eigenvalues, where p is the degree of the polynomial |A− λB| (this includes the
possibility that p = 0, i.e., that there are no finite generalized eigenvalues).37

Finally, if B is noninvertible and (A,B) is singular, then |A− λB| = 0 for
any λ, and there is an infinite number of generalized eigenvalues. When B is
noninvertible, finding the generalized eigenvalues requires that the QZ method
is used instead of the aforementioned QR method (see Golub and van Loan
(1996)).

Theorem: Generalized (Complex) Schur Decomposition.
Let A and B be complex n × n matrices. Then, there exist complex, unitary
n× n matrices Q and Z such that

QHAZ = T (71)

QHBZ = S (72)

where S and T are complex, upper triangular n × n matrices. The diagonal
elements of T divided by the diagonal elements of S, tii

sii
, are the generalized

eigenvalues of the matrix pair (A,B). If sii 6= 0 and tii 6= 0, the generalized
eigenvalue is finite; if sii = 0 and tii 6= 0, the generalized eigenvalue is infinite
(by convention);38 if sii = 0 and tii = 0, the matrix pair (A,B) is singular and
there is an infinity of generalized eigenvalues. Furthermore, the pairs (sii, tii)
can be arranged in any order.

Proof. See Golub and van Loan (1996), Theorem 7.7.1, page 377.

37There is some abuse of language in allowing generalized eigenvalues to become infinite.
Strictly speaking, they have to belong to the complex field. Therefore, a situation with no
finite eigenvalues would be described as one in which the set of generalized eigenvalues is
empty.
38 See the previous footnote.
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Remark 1. Premultiplying (71) and (72) by Q, and posmultiplying them by
ZH , we get:

A = QTZH (73)

B = QSZH (74)

since Z and Q are unitary.

Remark 2. Reordering the pairs (sii, tii) requires to reorder Q and Z con-
formably. This can be complicated, but there is software available to do it.

Remark 3. To get some intuition why the Generalized Schur Decomopositon
works, suppose S turns out to be invertible. From the generalized eigenvalue
problem for the matrix pair (A,B) we have: Ax = λBx. Using (73) and (74)
we obtain: QTZHx = λQSZHx. Premultiplying both sides by QH we get:
TZHx = λSZHx. And then: Tw = λSw, where w ≡ ZHx. Premultiplying by
S−1 we get: S−1Tw = λw. This expression shows that λ is an eigenvalue of
S−1T . Since S is upper triangular, S−1 is also upper triangular, with diagonal
elements 1

sii
. Since T is upper triangular, S−1T is upper triangular, with di-

agonal elements, tii
sii
. Recall that the eigenvalues of an upper triangular matrix

coincide with its diagonal elements. Therefore, tiisii are the eigenvalues of S
−1T .

Hence, we have shown that the generalized eigenvalues of the matrix pair (A,B)
are the diagonal elements of S−1T , tii

sii
.

Remark 4. From the theorem above we know that, if sii = 0 and tii = 0, the
matrix pair (A,B) is singular. Therefore, if (A,B) is nonsingular (i.e., regular),
we cannot have sii = 0 and tii = 0.

Appendix D

In this appendix we show that (18) implies that the boundary condition (9) is
violated unless δt = 0 for each t.

From (18) we have:
(i) Etδt+1 = Tδδδt
Then:
Et+1δt+2 = Tδδδt+1
Then:
Et{Et+1δt+2} = EtTδδδt+1
Etδt+2 = TδδEtδt+1, using the law of iterated expectations:
Then:
(ii) Etδt+2 = (Tδδ)2δt, using (i).
If we keep iterating forward we obtain:

Etδt+s = (Tδδ)sδt (75)
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Since Tδδ is an upper-triangular matrix with diagonal elements tii, (Tδδ)s is an
upper-triangular matrix with diagonal elements τ ii = (tii)s. Also, since |tii| > 1,
we get: |τ ii| = |tii|s > 1.
We can rewrite (75) as follows:⎡⎢⎢⎣

Etδ1t+s
Etδ2t+s
.....

Etδnδt+s

⎤⎥⎥⎦ =
⎡⎢⎢⎣
(t11)

s τ12 ... τ1nδ
0 (t22)

s ... τ2nδ
... ... ... ...
0 0 0 (tnδnδ)

s

⎤⎥⎥⎦
⎡⎢⎢⎣

δ1t
δ2t
.....
δnδt

⎤⎥⎥⎦ (76)

where τ ij , the typical nondiagonal element of (Tδδ)s, is a function of the elements
of Tδδ (including powers of its diagonal elements).
From (76) we get:

Etδ1t+s = (t11)sδ1t + τ12δ2t + τ13δ3t + ...+ τ1nδδnδt
Etδ2t+s = (t22)sδ2t + τ23δ3t + ...+ τ2nδδnδt
.....
Etδnδ−1t+s = (tnδ−1nδ−1)sδnδ−1t + τnδ−1nδδnδt
Etδnδt+s = (tnδnδ)sδnδt

(77)

Since |tnδnδ |s > 1, the last line in (77) implies that Etδnδt+s explodes when
s→∞, unless δnδt = 0. Using this into the previous line we get: Etδnδ−1t+s =
(tnδ−1nδ−1)

sδnδ−1t. Then Etδnδ−1t+s explodes when s → ∞, unless δnδ−1t =
0. If we keep doing this, we conclude that, for any i ∈ {1, 2, ..., nδ}, Etδi t+s
explodes when s→∞, unless δit = 0. Therefore, Etδt+s explodes when s→∞,
unless δt = 0.
We know from (20) that, when δt = 0, Etθt+1 = Tθθθt. Recall that the

diagonal elements of Tθθ have modulus smaller than 1. Therefore, a procedure
analogous to the one given above, allows us to conclude that Etθt+s does not
explode as s→∞.
From (21) we know xt = Zxθθt + Zxδδt and yt = Zyθθt + Zyδδt. Then:

Etxt+s = ZxθEtθt+s + ZxδEtδt+s and Etyt+s = ZyθEtθt+s + ZyδEtδt+s. There-
fore, Etxt+s and Etyt+s will explode as s → ∞ if Etδt+s does, violating the
boundary condition (9).

For the more general model of Section 3, equation (51) gives: SδδEtδt+1 =
Tδδδt. Since Sδδ may not be invertible, we cannot write Etδt+1 = S−1δδ Tδδδt (in
this case the analysis would be exactly as above). We know, however, that Tδδ is
invertible. Therefore, we can premultiply (51) by T−1δδ to get: T−1δδ SδδEtδt+1 =
δt. Notice that T

−1
δδ Sδδ is an upper-triangular matrix with diagonal elements

that satisfy
¯̄̄
sii
tii

¯̄̄
< 1. Therefore, a reasoning similar to the one done before,

shows that Etδt+s explodes as s→∞, unless δt = 0 ∀t.
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Appendix E

In this appendix we give an example of a model in which the number of stable
eigenvalues coincides with the number of predetermined variables but Zxθ is not
invertible.39

Consider the following model:∙
xt+1
Etyt+1

¸
=

∙
2 0
1 0.5

¸ ∙
xt
yt

¸
+

∙
εt+1
0

¸
(78)

where xt is predetermined and yt is nonpredetermined.
Applying the Schur Decomposition we obtain:

A = ZTZH ⇒
∙
2 0
1 0.5

¸
=

∙
0 −1
1 0

¸ ∙
0.5 −1
0 2

¸ ∙
0 1
−1 0

¸
Notice that there is one stable eigenvalue (0.5). Hence, the number of stable

eigenvalues coincides with the number of predetermined variables. However,
from

Z =

∙
Zxθ Zxδ
Zyθ Zyδ

¸
=

∙
0 −1
1 0

¸
we obtain Zxθ = [0], which is a singular 1 × 1 matrix. Therefore, even though
the number of stable eigenvalues coincides with the number of predetermined
variables, Zxθ is not invertible. Hence, we cannot apply Result 1 in Section 2
to conclude that there is a unique stable solution. Actually, it is easy to see
that a solution to (78) has to be unstable. From the first equation we obtain:
xt+1 = 2xt + εt+1. Iterating forward we get: xt+j = 2jxt +

Pj−1
i=0 2

iεt+j−i.
Then: Etxt+j = 2jxt. Then: lim

j→∞
|Etxt+j | = ∞, unless xt = 0. In particular,

lim
j→∞

|E0xj | =∞, unless x0 = 0.
In terms of the transformed system (17), the problem is that the noninvert-

ibility of Zxθ does not allow us to invert xt = Zxθθt (see (22)) in order to get
θt = Z−1xθ xt. This, in turn, prevents us from using the initial condition x0 to
get a unique initial condition, θ0, for the stable auxiliary variable. Without this
initial condition, we cannot solve (17) uniquely.

39The example is taken from Klein (2000).
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Appendix F

In this appendix we exemplify Results 2 and 3 in Section 2.

A model with no stable solutions.
Consider the Cagan Model again, but assume that ρ > 1 . Then, we have one
predetermined variable (mt) and two unstable eigenvalues (ρ and 1

α)
40 . Money

supply evolves according to mt+1 = ρmt + εt+1. Iterating forward and taking
expectations we get: Etmt+s = ρsmt. Since ρ > 1, lim

s→∞
|Etmt+s| =∞.

We can also show that the price sequence explodes. Keeping the assumption
that ρ > 1 and α ∈ (0, 1), asume αρ ∈ (0, 1) (i.e., ρ < 1

α). In this case, the
solution for pt coincides with the one given in the text: pt = 1−α

1−αρmt. Then:
pt+s =

1−α
1−αρmt+s ⇒ Etpt+s = 1−α

1−αρEtmt+s ⇒ Etpt+s = 1−α
1−αρρ

smt. Then,
lim
s→∞

|Etpt+s| =∞, unless mt = 0.41

Hence, the system has no stable solution. This exemplifies Result 2 in Section
2.

A model with an infinite number of stable solutions.
Following Söderlind (2001), we modify equation (6) of the Cagan model as
follows:

pt = αEtpt+1 +mt, α > 0. (79)

The money supply equation (7) remains the same. We can write the system in
matrix form as follows:∙

mt+1

Etpt+1

¸
=

∙
ρ 0
− 1

α
1
α

¸ ∙
mt

pt

¸
+

∙
εt+1
0

¸
m0 given (80)

where mt is predetermined, pt is nonpredetermined, and |ρ| < 1.
Since A is triangular, its eigenvalues coincide with its diagonal elements.

Suppose α > 1. Then, both eigenvalues, ρ and 1
α , are stable. Therefore, we

have a model with two stable eigenvalues and only one predetermined variable.
Iterating forward on mt+1 = ρmt + εt+1 we get: Etmt+s = ρsmt. Iterating

forward on (79), using Etmt+s = ρsmt and the law of iterated expectations, we
get: pt = [1 + (αρ) + (αρ)2 + ...+ (αρ)T ]mt + αT+1Etpt+T+1.
Suppose |αρ| < 1 and let T →∞. Imposing the condition lim

T→∞
αT+1Etpt+T+1 =

0 we get the stable solution:

p∗t =
1

1− αρ
mt (81)

40Recall that A is upper triangular and then its eigenvalues coincide with its diagonal
elements, ρ and 1

α
. Recall, also, that α ∈ (0, 1).

41Recall that, to find the solution pt = 1−α
1−αρmt, we imposed the condition

lim
T→∞

αT+1Etpt+T+1 = 0. This condition still holds, even though the price sequence explodes.

We have: αT+1Etpt+T+1 = αT+1 1−α
1−αρEtmt+T+1 = αT+1 1−α

1−αρρ
T+1mt = (αρ)T+1

1−α
1−αρmt.

Then: lim
T→∞

αT+1Etpt+T+1 = lim
T→∞

(αρ)T+1 1−α
1−αρmt = 0, since αρ ∈ (0, 1).
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However, (81) is not the only stable solution. Consider an expression of the
form:

pt = p∗t + bt (82)

where bt is a “bubble”. Substituting (82) in both sides of (79) we get:
p∗t + bt = αEt(p∗t+1 + bt+1) +mt
1

1−αρmt + bt =
α

1−αρEtmt+1 + αEtbt+1 +mt
1

1−αρmt + bt =
αρ
1−αρmt + αEtbt+1 +mt

1
1−αρmt + bt =

1
1−αρmt + αEtbt+1

bt = αEtbt+1
Then:

Etbt+1 =
1

α
bt (83)

Hence, for any sequence of random variables {bt} that satisfies (83), we get
a solution in form (82). Since α > 1, (83) shows that the bubble is stable.
Therefore, (82) gives an infinite number of stable solutions. This exemplifies
Result 3 in Section 2.
To see what is going on in terms of the transformed system (17), recall from

(22) that: xt = Zxθθt. In our example, xt = mt, Zxθ is 1 × 2, and θt is 2 × 1.
Then we can write: mt = [z1 z2]

∙
θ1t
θ2t

¸
. For t = 0 we get: m0 = z1θ10+ z2θ20.

Therefore, given the initial condition m0, we can choose an infinite number
of initial conditions θ0 (i.e., any pair of values for θ10 and θ20 that satisfies
m0 = z1θ10 + z2θ20). Hence, system (17) has an infinite number of stable
solutions.

Remark. When α < 1, (83) shows that the bubble is unstable. In this case,
choosing bt = 0 ∀t gives the unique stable solution. In other words, when α < 1,
the number of stable eigenvalues coincides with the number of predetermined
variables, and Result 1 in Section 2 applies.
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Appendix G

In this appendix we show how to reduce the system GEtwt+1 = Awt + Dzt
to another system of the form GEtwt+1 = Awt, when the exogenous random
vectors zt follow a VAR(1): zt+1 = Nzt + ut with Eut = 0 and E{utu0t} = Σu.

We start with the system:

GEtwt+1 = Awt +Dzt

Etzt+1 = Nzt

which can be written in matrix form as follows:∙
I 0
0 G

¸ ∙
Etzt+1
Etwt+1

¸
=

∙
N 0
D A

¸ ∙
zt
wt

¸
The expression above can be written in form (48) as follows:

eGEt ewt+1 = eA ewt

where eG ≡ ∙ I 0
0 G

¸
, eA ≡ ∙ N 0

D A

¸
, ewt ≡

∙
zt
wt

¸

Partitioning G, A, D and w we can write:⎡⎣ I 0 0
0 Gxx Gxy

0 Gyx Gyy

⎤⎦⎡⎣ Etzt+1
Etxt+1
Etyt+1

⎤⎦ =
⎡⎣ N 0 0

Dx Axx Axy

Dy Ayx Ayy

⎤⎦⎡⎣ zt
xt
yt

⎤⎦
The expression above can be written in form (47) as follows:" eGxx

eGxyeGyx Gyy

# ∙
Etext+1
Etyt+1

¸
=

" eAxx
eAxyeAyx Ayy

# ∙ ext
yt

¸
where

eGxx ≡
∙
I 0
0 Gxx

¸
, eGxy ≡

∙
0

Gxy

¸
, eGyx ≡

£
0 Gyx

¤
eAxx ≡

∙
N 0
Dx Axx

¸
, eAxy ≡

∙
0

Axy

¸
, eAyx ≡

£
Dy Gyx

¤
and the new vector of predetermined variables is

ext ≡ ∙ zt
xt

¸
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Appendix H

In this appendix we describe the method of log-linearization and then we use it
to log-linearize the RBC model presented in Section 4.

H.1 Log-linearization42

Consider the expression yt = f(xt), where f is a differentiable function, and
let y = f(x) be its steady-state value. We want to approximate the log-deviation
ln yt − ln y with a linear function of the log-deviation lnxt − lnx, for values of
xt close to x.
From yt = f(xt) we get: ln yt = ln f(xt). We can rewrite this as follows:

ln yt = ln f(e
lnxt) ≡ g(lnxt). Now we take a first-order Taylor approximation

of g(lnxt) around lnx :

g(lnxt) ∼= g(lnx) + g0(lnx)(lnxt − lnx)

Using g(lnxt) ≡ ln f(elnxt) we get:

ln f(elnxt) ∼= ln f(elnx) +
1

f(elnx)
f 0(elnx)elnx(lnxt − lnx)

We can rewrite the expression above as follows:

ln f(xt) ∼= ln f(x) +
x

f(x)
f 0(x)(lnxt − lnx)

= ln f(x) + ef (x)(lnxt − lnx)

where ef (x) ≡ x
f(x)f

0(x) is the elasticity of the function f evaluated at x.
Recalling that yt = f(xt) we get the expression we were looking for:

ln yt − ln y ∼= ef (x)(lnxt − lnx)

Defining byt ≡ ln yt − ln y and bxt ≡ lnxt − lnx we get:
byt ∼= ef (x)bxt

Notice that we can write: bxt ≡ lnxt − lnx = ln
¡
xt
x

¢
= ln

¡
1 + xt−x

x

¢
.

For values of xt sufficiently close to x we know that ln
¡
1 + xt−x

x

¢ ∼= xt−x
x (this

follows from a first-order Taylor approximation ofm(xt) ≡ ln
¡
1 + xt−x

x

¢
around

x). Then: bxt ∼= xt−x
x . Therefore, we can write:

yt − y

y
∼= ef (x)

xt − x

x

42An alternative approach to log-linearization is presented in Uhlig (1999).
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In fact, we can derive the previous expression directly. First, write yt =

f(xt) = eln f(xt). Then: yt
y = eln f(xt)

eln f(x)
= eln f(xt)−ln f(x) ≡ h(xt). A first-order

Taylor approximation of h(xt) around x gives:

h(xt) ∼= h(x) + h0(x)(xt − x)

Using h(xt) ≡ eln f(xt)−ln f(x) we get:

eln f(xt)−ln f(x) ∼= e0 + e0
1

f(x)
f 0(x)(xt − x)

= 1 +
x

f(x)
f 0(x)

xt − x

x

= 1 + ef (x)
xt − x

x

Finally, using eln f(xt)−ln f(x) = yt
y we obtain: yt

y
∼= 1 + ef (x)

xt−x
x ⇒ yt

y − 1 ∼=
ef (x)

xt−x
x ⇒

yt − y

y
∼= ef (x)

xt − x

x

which is what we wanted to show.
The previous expression suggests a simple way of log-linearizing yt = f(xt)

through differentiation. Start by taking the natural logarithm: ln yt = ln f(xt).
Then totally differentiate, evaluating all derivatives at their steady-state levels:
dyt
y = f 0(x)

f(x) dxt ⇒
dyt
y = x

f(x)f
0(x)dxtx ⇒

dyt
y = ef (x)

dxt
x . Finally, interpret dxt

as xt − x and dyt as yt − y. Similarly, we can directly differentiate yt = f(xt)

to get dyt = f 0(x)dxt, and then divide by y = f(x) to obtain: dyt
y = f 0(x)

f(x) dxt.

Multiplying and dividing the right-hand side by x we get: dyt
y = xf 0(x)

f(x)
dxt
x ⇒

dyt
y = ef (x)

dxt
x .

A similar procedure works for multivariate functions, yt = f(x1t, x2t, ..., xnt).
In this case we get:

byt ∼= ef,1(x)bx1t + ef,2(x)bx2t + ...+ ef,n(x)bxnt
where ef,i(x) is the partial elasticity of f with respect to its i-th argument,
evaluated at x.

In stochastic models, we usually have expressions of the form

yt = Et{f(xt+1)}

Taking natural logarithms we get: ln yt = lnEt{f(xt+1)}. Now we make the
approximation lnEt{f(xt+1)} ∼= Et{ln f(xt+1)} to get:43

ln yt ∼= Et{ln f(xt+1)}
43 Sin ln(·) is a strictly concave function, we know from Jensen’s Inequality that

lnEt{f(xt+1)} > Et{ln f(xt+1)}.
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Since ln y = ln f(x), the expression above gives: ln yt − ln y ∼= Et{ln f(xt+1)}−
ln f(x)⇒

ln yt − ln y ∼= Et{ln f(xt+1)− ln f(x)}
Using ln f(xt+1) ∼= ln f(x) + ef (x)(lnxt+1 − lnx) we can rewrite the expression
above as follows: ln yt − ln y ∼= Et{ef (x)(lnxt+1 − lnx)}⇒

byt ∼= ef (x)Et{bxt+1}
H.2 Log-linearizing the RBC model

The law of motion for total factor productivity is lnλt+1 = (1−γ) lnλ+γ lnλt+
t+1, and λ = λ. Then:

bλt+1 ≡ lnλt+1 − lnλ
= (1− γ) lnλ+ γ lnλt + t+1 − lnλ
= γ(lnλt − lnλ) + t+1

= γbλt + t+1

Notice that this case does not require any approximation. The same is true for
the production function and the two first-order condtions for the firm: Yt =
λtK

θ
tH

1−θ
t , wt = (1− θ) YtHt

, and rt = θ Yt
Kt
. Taking natural logs and subtracting

the log of the steady-state values we get:

bYt = bλt + θ bKt + (1− θ) bHtbwt = bYt − bHtbrt = bYt − bKt

From Kt+1 = It + (1− δ)Kt we get dKt+1 = dIt + (1− δ)dKt. Dividing by
K = I

δ we get:
dKt+1

K
= δ dIt

I
+ (1− δ)dKt

K
⇒

bKt+1 = δbIt + (1− δ) bKt

From Yt = Ct + It we get dYt = dCt + dIt. Dividing by Y we get: dYt
Y
=

1
Y
dCt +

1
Y
dIt. Then: dYt

Y
= C

Y
dCt
C
+ I

Y
dIt
I
⇒ bYt = C

Y
bCt +

I
Y
bIt ⇒

Y bYt = C bCt + IbIt
From aCt

1−Ht
= wt we get: ln a + lnCt − ln(1 −Ht) = lnwt. Differentiating

we get: dCt
C
+ 1

1−H dHt =
dwt
w ⇒

dCt
C
+ H

1−H
dHt

H
= dwt

w ⇒

bCt +
H

1−H
bHt = bwt
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From 1
Ct
= Et{ β

Ct+1
(rt+1 + 1− δ)} we get: − lnCt = lnEt{ β

Ct+1
(rt+1 + 1− δ)}.

Approximating the log of the expectation with the expectation fo the log we get:
− lnCt

∼= Et {lnβ − lnCt+1 + ln (rt+1 + 1− δ)}. Differentiating (and dropping
the approximation sign): −dCt

C
= Et{−dCt+1

C
+ 1

r+1−δdrt+1}. Since
1

r+1−δ = β

we get: −dCt
C

= Et{−dCt+1
C

+ βdrt+1} ⇒ −dCt
C

= Et{−dCt+1
C

+ βr drt+1r } ⇒
− bCt = Et{− bCt+1 + βrbrt+1}⇒

Et bCt+1 − βrEtbrt+1 = bCt

41



6 References
Binder, M. and Pesaran, H. (1995). "Multivariate Rational Expectations Mod-
els and Macroeconometric Modelling: A Review and Some New Results." In
Pesaran, H. and Wickens, M. (eds.), Handbook of Applied Econometrics: Macro-
economics, Oxford, Basil Blackwell, pp. 139-187.

Blanchard, O. and Kahn, C. (1980). "The Solution of Linear Difference Models
under Rational Expectations," Econometrica, Vol. 48 No. 5 (July), pp. 1305-
1311.

Burnside, Craig (1999). "Real Business Cycle Models: Linear Approximation
and GMM Estimation," mimeo, Duke University. Available at:
http://ideas.repec.org/c/dge/qmrbcd/76.html.

Enders, Walter (1995). Applied Econometric Time Series, John Wiley & Sons,
Inc.

Golub, G. and van Loan, C. (1996). Matrix Computations, 3rd. Edition, The
Johns Hopkins University Press.

Hansen, Gary (1985). "Indivisible Labor and the Business Cycle," Journal of
Monetary Economics, Vol. 16, No. 3 (November), pp. 309-327.

Klein, Paul (2000). "Using the Generalized Schur Form to Solve a Multivari-
ate Linear Rational Expectations Model," Journal of Economic Dynamics and
Control, Vol. 24, No. 10 (September), pp. 1405-1423.

Lütkepohl, Helmut (2005). New Introduction to Multiple Time Series Analysis,
Springer.

Söderlind, Paul (2001). Lecture Notes for Monetary Policy, mimeo, Stockholm
School of Economics. Available at
http://home.datacomm.ch/paulsoderlind/Courses/OldCourses/MonAll.pdf

Sydsæter, K., Strøm, A. and Berck, P (2005). Economists’ Mathematical Man-
ual, Fourth Edition, Springer.

Uhlig, Harald (1999). "A Toolkit for Analysing Nonlinear Dynamic Stochastic
Models Easily," in Ramon Marimon and Andrew Scott (eds.), Computational
Methods for the Study of Dynamic Economies, Oxford: Oxford University Press,
pp. 30-61.

Uribe, Martín (2011). Open Economy Macroeconomics, mimeo, Columbia Uni-
versity. Available at: http://www.columbia.edu/~mu2166/lecture_notes.html.

42



 
Facultad de Ciencias Económicas 
 
Escuela  de Economía “Francisco Valsecchi” 
 
 
Documentos de Trabajo 
 
Nº 1: Millán Smitmans, Patricio, “Panorama del Sector de Transportes en América 

Latina y Caribe”, Noviembre de 2005. 
 
Nº 2: Dagnino Pastore, José María; Servente, Ángeles y Casares Bledel, Soledad,“La 

Tendencia y las Fluctuaciones de la Economía Argentina”, Diciembre de 2005. 
 
Nº 3: González Fraga, Javier A.,  “La Visión del Hombre y del Mundo en John M. 

Keynes y en Raúl Prebisch”, Marzo de 2006. 
 
Nº 4: Saporiti de Baldrich, Patricia A., “Turismo y Desarrollo Económico”, Abril de 2006 
 
Nº 5: Kyska, Helga, y Marengo, Fernando, “Efectos de la Devaluación sobre los 

Patrimonios Sectoriales de la Economía Argentina”, Mayo de 2006 
 
Nº 6: Ciocchini, Francisco, “Search Theory and Unemployment”, Junio de 2006 
 
Nº 7: Ciocchini, Francisco, “Dynamic Panel Data. A Brief Survey of Estimation Methods”, 

Junio de 2006. 
 
Nº 8: Molteni, Gabriel, “Desempleo y Políticas del Mercado Laboral. Análisis 

internacional de políticas públicas: Algunos casos exitosos”, Julio de 2006. 
 
Nº 9: Gentico, Fernando, “Duración de los Sistemas de Tipo de Cambio: Bretton Woods, 

un punto de inflexión”, Agosto de 2006. 
 
Nº 10: O’Connor, Ernesto, “Algunas Consideraciones acerca de la Eficiencia del IVA en 

la Argentina”, Septiembre de 2006. 
 
Nº 11: Millán Smitmans, Patricio, “Modernización del Estado e Indicadores de 

Desempeño del Sector Público”, Octubre de 2006.  
 
Nº 12: Resico, Marcelo, “Las Reformas Económicas y la Modernización del Estado”, 

Noviembre de 2006. 
 
Nº 13: Díaz, Cecilia, “Universidades Indianas del Período Colonial”, Noviembre de 2006. 
 
Nº 14: Dagnino Pastore, José M., “Los Efectos Económicos de la Promoción Regional”, 

Marzo de 2007. 

Pontificia Universidad Católica Argentina 
“Santa  María  de  los  Buenos  Aires” 



 
Nº 15: Valsecchi, Francisco, “La Reconstrucción de la Ciencia Económica sobre el 

Fundamento Ético-Cristiano”; “El Sentido de la Escuela de Economía de la 
Universidad Católica Argentina”. Prólogo de Patricio Millán, Junio de 2007. 

 
Nº 16: Ciocchini, Francisco y Molteni, Gabriel, “Medidas alternativas de la pobreza en el 

Gran Buenos Aires 1995-2006”, Julio de 2007. 
 
Nº 17: Sabater, Javier, “ El financiamiento de la Educación Superior. Propuestas para 

Argentina”, Julio de 2007. 
 
Nº 18: Rodríguez Penelas, Horacio, “Aportes del Cardenal Wyszynski en la gestación 

de Laborem Exercens. El tema de la espiritualidad del trabajo”, Agosto de 2007. 
 
Nº 19: Giordano, Osvaldo, “La Reforma de los seguros sociales en la Argentina”, 

Septiembre de 2007. 
 
Nº 20: Saporosi, Claudia, “Paralelo entre la crisis de 1890 y la de 2001 en Argentina”, 

Octubre de 2007. 
 
Nº 21: Millán Smitmans, Patricio, “La necesidad de nuevas Políticas Públicas para 

disminuir las desigualdades regionales de la Argentina”, Diciembre de 2007. 
 
Nº 22: Rubio, Alberto, “La trama del presente”, Febrero de 2008. 
 
Nº 23: García Bossio, Horacio, “Génesis del Estado desarrollista latinoamericano: el 

pensamiento y la praxis política de Helio Jaguaribe (Brasil) y de Rogelio Frigerio 
(Argentina)”, Abril de 2008. 

 
Nº 24: Carballo, Carlos Alberto, “La política monetaria en los tiempos de la Caja de 

Conversión”, Mayo de 2008. 
 
Nº 25: Llosas, Hernán, “Reformas en el sistema presupuestario de los Estados Unidos 

de Norteamérica”, Junio de 2008. 
 
Nº 26: Dagnino Pastore, José María, “La riqueza en (y de) Argentina”, Agosto de 2008. 
 
Nº 27: Coria, María Marta, “Eficiencia técnica de las universidades de gestión estatal 

en Argentina”, Noviembre de 2008. 
 
Nº 28: Ciocchini Francisco J., Gabriel R. Molteni y M. Elena Brenlla, “Análisis de la 

Autopercepción de Felicidad en la Argentina, 2005-2007”, Febrero de 2009. 
 
Nº 29: Martiarena, Ana,  “La Empresa y sus alianzas intersectoriales en pos de la 

inclusión sociolaboral”, Marzo de 2009. 
 
Nº 30: Villanueva, Javier, “El Desarrollo Económico en Juan Bautista Alberdi”, Mayo de 

2009. 
 
Nº 31: Oberst, Tomás, “El Pensamiento del Dr.Carlos Moyano Llerena. Hacia un 

Desarrollo basado en Valores”, Julio de 2009. 
 
Nº 32: García-Cicco, Javier y Roque Montero, “Modeling Copper Price: A Regime-

Switching Approach”, Febrero de 2011. 



Nº 33: Landro, Alberto y González, Mirta, “Acerca de los ‘Fundamentos de la Teoría de 
la Probabilidad’ de A. N. Kolmogorov”, Marzo de 2011. 

 


