Bachelor’s thesis

Information and Communications Technology
May 2020

Phan Hong Duc

REACT FRAMEWORK

— Concept and implementation

TURKU AMK

TURKU UNIVERSITY OF
APPLIED SCIENCES

BACHELOR’S THESIS | ABSTRACT
TURKU UNIVERSITY OF APPLIED SCIENCES
Information and Communication Technology

2020 | 45

Phan Hong Duc

REACT FRAMEWORK

- Concept and implementation

This thesis was conducted as research on React JS framework by participating the practical project with
named Tama web application and implementation the small project with named shopping cart. The
purpose of this thesis was to introduce and implement a small project in React JS.

This thesis discussion React JS concepts and their related specifications, such as JSX, state, props, events,
class component and Redux.

The implementation of Web application projects using React framework was demonstrated in a Shopping
cart and Tama web applications. Those projects also use a third party with named Redux to build a
complete web application. The result of this thesis was the creation of a shopping cart and Tama
application with Redux which were successfully deployed to the server.

KEYWORDS:

React, React Js, Redux, State, Props, Life cycle, Actions, Reducers, Stores, App, web application.

CONTENT

LIST OF ABBREVIATIONS (OR) SYMBOLS
1 INTRODUCTION

2 MAIN CONCEPTS
2.1 JSX and render method
2.2 State and Props and life cycle methods

3 ADVANCED CONCEPTS IN REACTJS

3.1 State and Props and life cycle methods
3.2 Context

3.3 Forwarding refs

3.4 Higher order component

3.5 Render props

4 COMPONENTS

4.1 Function component
4.2 Class Component
4.3 Styled component
4.4 Web component

5 REDUX

5.1 Managing state by Redux
5.2 State management tool
5.3 Store

5.4 Actions

5.5 Dispatch to props

5.6 Middleware

5.7 Reducer

6 IMPLEMENTATION
6.1 System requirements
6.2 Structure and run

6.3 Deployment

7 CONCLUSION

w

N © © 00 N N

13
13
14
15
16

18
18
20
21
22
23
24
26

28
28
28
43

47

REFERENCES

FIGURES

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10
Figure 11
Figure 12
Figure 13

Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.

Figure 36
Figure 37
Figure 38
Figure 39
Figure 40
Figure 41
Figure 42
Figure 43
Figure 44

JSXin JS file.

Render method in React JS project.

The props is called in component

The props is exchanged from parent component to child component
State is in constructor of AlbumPage component.

All life cycle methods. [3]

Non-splitting code vs splitting code. [4]

An example of the context in React.

An example of Refs.

. An example of Props proxy.

. An example of Inheritance Inversion.

.An example HOC.

. An example of render props.

An example function component in one React JS project.

An example of React class component.

An example of style component.

An example using web component in React JS.

Node tree to simulate the states in React project.

Update the state nodes without using Redux. [11]

Update state nodes using Redux. [11]

An example does not use Redux for managing global states in React.
An example creating store in React.

An example of the actions.

An example installing the mapDispatchToProps method.
Example of using the dispatchToProps method in React.

An example using Redux saga with generator functions.

Flow Redux in React Project. [11]

Shopping-cart App project structure.

Shopping Cart user interface of login and register.

Shopping Cart user interface in home-page.

User interface of the message notification.

User interface in cart.

User interface of the functionality of calculating the total of price.
Tama App project structure.

Interface login

User Interface

Create restaurant with some input fields

Main restaurant with some features, such as import and export
Main company interface with some features such as import and export
Create new company interface

Employees with some feature

Create new employee with some fields

48

OCONOOOOPRWDN

Figure 45 Change password and logout

Figure 46 Change Language

Figure 48 Create new user

Figure 49 Commits around the september 2019

Figure 50 Commit around 9.2019

Figure 51 Commit in 9.2019

Figure 52 Commit in 8.2019

Figure 53 Commit in 8.2019

Figure 54 Commits from the first time-7.2019(the starting time of the Tama React
Project)

Figure 55. Localhost on Chrome and console for debugging.
Figure 56. Run localhost with terminal of Visual code.
Figure 57. Github Pages for deploying in setting tab.

Figure 58. Deployment project.

38
38
39
40
40
41
41
42

42
43
44
45
46

LIST OF ABBREVIATIONS (OR) SYMBOLS

API
App
DOM
HTML
JS

JSX
NPM
Props

Application Program Interface
Application

Document Object Model
Hypertext Markup Language
JavaScript

JavaScript XML

Node Package Management
Properties

1 INTRODUCTION

One of the popular frameworks in Javascript, ReactlS can be built on many web
platforms on Windows 10, macOS, and mobile devices. In addition, ReactlS helps to
improve the performance of modern web states by compile source code to static HTML,
as well as a single page application.

Today, in the modern web application, the requirement of the user is very high, such as
how many minutes the App is loaded or the layout has to beautiful and easy to use.
Therefore engineers around the world have to work very hard to look for the solution
to improve the performance. And the single page application concept appears to help
improving the performance of the App, such as the App has only one page, instead of
multi pages, leading to help the App to load faster. Realizing that it is an inevitable
development of the application, Facebook engineers developed a new framework
named React, using the advantages of SPA.

React)S meets the requirements of the modern application, from improving the
performance of traditional web application as well, to meet a new approach of the
modern web application that separate frontend side with backend side, leading to
improve the performance of developers developing the application as well. Based on
this practical demand, the project has been carried out.

This thesis was done mainly by researching and using React JS framework and React
environment to develop ReactlS App, which is the one of the best framework in
Frontend side around the world.

The application focuses on the use of React)S and Redux to build the Shopping cart single
page application which is a requirement of a modern web application.

2 MAIN CONCEPTS

This chapter explains technologies related to main concepts of React framework, such
as JSX, state, props, and life-cycle methods. These are also understood as client side
rendering, since they affect a user’s interaction directly as client-side.

2.1 JSX and render method

JSX is a syntax that intended to be used by preprocessors to combine HTML code into
JavaScript standard object instead of using string concatenation to render Ul
components.
“Most people find it helpful as a visual aid when working with Ul inside the JavaScript
code. It also allows React to show more useful error and warning messages.” [1]. The
benefits from JSX includes:

e JSX makes easier and faster to write templates for user who are familiar with

HTML.

e The performance is faster while compiling code to JavaScript.
Figure 1 illustrates the JSX looks like when using in React framework. The code below is
an Album component is practical Tama App which has the JSX code inside render
method.

src > components > JS Album.js > ...
import React, { Component } from
import {Link} from 'react-router
- nthq
render() {
{item} = {name: '', images: [{url: ''}], id: ''};
item = .props.item !== ? .props.item : item

return (
className="co col-sm-3 md-3 col-1g-3"
v className: i
src={item.images[@].url} alt="{item.name} " className="img-responsive"
v className="
nk to={ n/${item.id}"} >{item.name}

}

export default A

Figure 1. JSX in JS file.

There are many methods and functions as external APl of React framework, such as
render, constructor. The constructor is a method that is automatically invoked during
the creation of an object from a class and in React framework, it can be used to bind
event handlers to the component and initialize the local state of the component. The
render method is provided by ReactDOM package and can be used to render to the
DOM. “ReactDOM.render() controls the contents of the container node you pass in. Any

existing DOM elements inside are replaced when first called. Later calls use React’s DOM
diffing algorithm for efficient updates. ReactDOM.render() does not modify the
container node (only modifies the children of the container). It may be possible to insert
a component to an existing DOM node without overwriting the existing children.” [2]
In React JS, render method is invoked after constructor executed. The method has
maximum three parameters:

e Element: the expected React element or JSX expression need to be rendered.

e Container: element contains the rendered element.

e Callback: the function will be invoked after the render is complete. This is an

optional parameter.

Figure 2 illustrates the render method in class component App of React JS. There is App
component in the Tama App, which has the render method.

developer-task.html Js SpotifyAxios.js Js App.js

src > components > JS App.js > ...
import React, { Component } from 'react';
import {
BrowserRouter as Router,
Route,
Switch
} from 'react-router-dom';

import routes from './../route-config';
import Title from './Title';
import Breadcrumb from './Breadcrumb';
{
render() {

return (

v className="container"

.showRoute(routes)}

Figure 2. Render method in React JS project.

2.2 State and Props and life cycle methods

When developing software applications, developers try to manage the flow of the
application as much as possible, especially performance. The application is a sequence

of instructions in a program, this is determined at run time by the input data and by the
control structures that developers used in the program. In React environment, there are
some React native APIs to help developers improve the applications’ performance such
as state, props and life cycle methods. State is what allows to create components that
are dynamic and interactive. When React sees an element representing a user-defined
component and passes JSX attributes, children to this component as a single object, in
React this object is called props. In application with many components, each component
has a lifecycle which developer can monitor and manipulate during its three main
phases: mouting, updating and unmounting.

After the initial render of the application, the condition for the next render is the props
or/and state changes. The props were identified by the caller of this component will be
included in “this.props”. In specific, the props were defined by the child tags within the
JSX expression, instead of within the tag itself are called this.props.children.

In figure 3 illustrates the AlbumPage component in Tama App which gets the props.

import Track from './../comp ts/Track';
import {actGoAlbum} from './ tions/index';

{
(props) {
(props);
.state = {
album:
tracks: []

componentWillMount(){
{match} = .props;
id = match.params.id;

. loadAlbum(id);

loadAlbum(id) {

.getAlbum(id).then((response) {
if(response !== &8 response.data !==

.setState({

album: response.data,

O H

.props.changeBreadcrumb(response.data.name, '/album/${response.data.id}");

render() {

Figure 3. The props is called in component

Figure 4 illustrates how to transfer the date through the props between parent and child
components.

J

showTracks (tracks){
xhtml = -
if(tracks !== &% tracks.length > @){
xhtml = tracks.map((track, index)=> {
return (

k key={index} item={track}
);

Figure 4. The props is exchanged from parent component to child component

Programmer can use the state to manage changing Ul by forcing render method
invoked. In React JS, state likes the internal date, and this date is only existed in the
component contains the state. When user defines state that should be a simple
Javascript object and state’s date specific may change during the time, and values which
are not used to render or data flow should be defined, and put into fields as a
component instance, instead of the state. Specially, this.state should not be changed
directly, because when setState is called then, it may replace the mutation that made
before, making this.State is a immutable value.

Figure 5 illustrates the state is initialized in the AlboumPage component in React.

(props)
(props);
.state = {

album:
tracks: []

Figure 5. State is in constructor of AlbumPage component.

Moreover, life cycle methods plays important roles in managing the flow of the React
application. There are many methods such as constructor, render,
getDerivedStateFromProps, shouldComponentUpdate.

Figure 6 shows all life cycle methods adjusts the flow of React application.

“Render phase”

Pure and has no side
effects. May be
paused, aborted or
restarted by React.

“Pre-commit phase”
Can read the DOM.

“Commit phase”
Can work with DOM,
run side effects,
schedule updates.

React version| 16.4 ¥| Language | en-US §

]

Mounting Updating
v
{ constructor New props setState() forceUpdate()
v v v v
[getDerivedStateFromProps
¥ ¥
shouldComponentUpdate }
fax
v
render
v
getSnapshotBeforeUpdate
React updates DOM and refs
componentDidMount componentDidUpdate

Unmounting

componentWillUnmount

Figure 6. All life cycle methods. [3]

3 ADVANCED CONCEPTS IN REACTJS

The React core team, along with the large contributors community, has done a great job
of upgrading every day the technology by releasing many small versions and fixing bugs,
including many advanced concepts. The main goal of the advanced concepts in ReactJS
is to solve outstanding issues, make the development easier for future product
development work, or to simply clean up the spaghettis code. Therefore, this chapter
describes the advanced concepts of React framework, such as code splitting to improve
the performance of the application or some advanced patterns such as Higher other
components or render props.

3.1 State and Props and life cycle methods

When the applications have been grown up day by day, leading to the bundle which uses
tools as Webpack, Rollup or Browserify of the application which was developer built will
grow too; it makes the app wasting more time to load, so the Code-splitting is a feature
to help to split the app to smaller and generate multiple bunbles which can be
dynamically loaded during the running time.

Code-Splitting can help developers load only things which are currently needed by the
users and make the app’s performance will be increased significantly thanks to reducing
the amount of code in the React app and do not load code which the users never use it.
In the figure 7 below, it depicts the disadvantage of non-splitting code. It will import all
of dependencies and the performance of the project is very slow because the project
needs to load many unnecessary libraries and dependencies.

Figure 7. Non-splitting code vs splitting code. [4]

Otherwise, the project just needs to load the necessary libraries and dependencies.
Therefore, in this case, the project does not need loading many unnecessary libraries
and dependencies, and the performance is improved much.

3.2 Context

Context in React Js has the scope that contains all data of parent component and the
children components can get and use. That means the parent component passing data
to component tree without having to pass props down child level will be provided by
context.

When looking at a typical React application, data will be passed from parent to child
throughout props, but sometimes having a problem for prop’s specific types as language
options language, Ul themes, so context is generated to share these values within the
components without having to pass props via tree’s all level.

Figure 8 illustrates how the data goes down from parent component. After the data
going down by using context, all children compoents can use the data by this.context
keyword. However, “If you only want to avoid passing some props through many levels,
component composition is often a simpler solution than context.” [4] In practical
development an application, developer prefer using composition in case going down the
data from parent to children components in React application.

rc > pages > Js AlbumPage.js > ©¢ ThemedButton

ThemeContext = .createContext('light');

{

render|(

return (
value="dark"

Toolbar() {

return

contextType = ThemeContext;
render|(
return <t theme={ .context}

Figure 8. An example of the context in React.

3.3 Forwarding refs

According to React documentation [5], refs are used to get references to a DOM node
or can be an instance of a component in a React application. ie refs will return to a node
that we refer to. Ref forwarding is an automatic technical to pass a ref via a component
to their children to make the component libraries can be re-used.

The common cases of ref forwarding: forwarding refs to DOM components, component
library maintainers, higher-order components, show a custom name in DevTools.

In figure 9, there is a ref generating a React ref as React.createRef and assign it to a ref
valuable, then passing this ref to <ButtonA ref={ref}> by determining that data as a JSX
attribute. After that React will pass the ref to prop as (props,ref) => the function inside
fordwardRef API will be a second argument. Finally, continuing pass the ref argument
downs to the button as <button ref={ref}> by determining it as a JSX attribute.

src > redux > sagas > auth.js
Const ButtonA= react.forwardRef((props, ref) => (
<button ref={ref} className="ButtonA">
{props.children}
</button>
Const ref = react.createRef();
<ButtonA ref = {ref} PressMe</ButtonA>

Figure 9. An example of Refs.

3.4 Higher order component

During developing one complex application, thought about the coding direction in React
to help the application is optimized, so how reuses component or code in other places
is very important. And, Higher order component (HOC) is created to reuse components
and optimize the application.
Besides, HOC does not modify or modify the input component, that pattern only inherits
the behavior of that component. The component is packaged in to receive all the props
of the container, with props that can be used to render the content that the project
needs. HOC is not related to how the data is used, from where, and the component that
is packaged is also not related to where the data is transmitted. There are some benefits
of HOC:

e Code reuse, logic and automated abstraction (bootstrap abstraction).

e Render Highjacking (Render Highjacking).

10

e Abstract (abstraction) and control (manipulation) State.
e Control Props.

In figure 10, there is Props Proxy method to show the HOC's render method will return
a React Element in which type is WrappedComponent.

src > redux > sagas > auth.js
ew seconds ago | 2 authors (You and others)
propsProxy = (WrappedComponent) => {
return class propsProxy extends React.PureComponent {
render() {
return <WrappedComponent {...this.props}/>
}

Figure 10. An example of Props proxy.

In figure 12, using the method Inheritance Inversion to show the HOC returns class
(Enhancer) inheritance WrappedComponent; Enhancer will extend
WrappedComponent rather than WrappedComponent extending certain Enhancer clas.
Leading to, the relationship between them will be reversed.

Inheritance Inversion allows the HOC to access the WrappedComponent instance
through this, which means that the HoC has access to the state, props, component
lifecycle hooks and even the render method.

11HOC (WrappedComponent : any) {

onds ago | 1 author (You)
Enhancer extends WrappedComponent {

render()
return super.render()

Figure 11. An example of Inheritance Inversion.

In figure 11 and figure 12 illustrate how the HOC looks like and used in the Taama App
to optimize the App by reusing components . The logProps will pass all props to all their

11

components which are wrapped, so that the output render will be the same. Then using
logProps to log all props which are passed to component as ButtonA, then passing refs
to the inside ButtonA component by react.forwardRef API. Besides, the
React.forwardRef gets props and ref parameters by render function and returns it to
React.

src > components App.j
import ButtonA from ‘./ButtonA’;
const ref = React.createRef();

Label="PressMe”
handlePress=
ref = {ref}

function logProps(WrappedComponent) {
class LogProps extends React.Component {
componentDidUpdate(prevProps)
console. log(‘old props : ', prevProps);
console. log(‘new props : ’, this.props);
}
render() { return <\ {.this.props} />; }
}
return LogProps;

}

function logProps(Component) {
class LogProps extends React.Component {
componentDidUpdate(prevProps)
console.log(‘old props : ', prevProps);
console.log(‘new props : ', this.props);

}

render() {
const {forwardRef,Jrest} = this.props;
return ref = {forwardedRef} {..rest} />;
}

}
Return React.forwardRef((props, ref) => {

Return {-props} forwardRef={ref}
H;
)

Figure 12.An example HOC.

One of the reasons HOCs are popular is because this technique uses the ES6 class (class)
from the beginning. Since React 16, the class is the default mechanism when building
components, completely replacing React.createClass () in previous versions. This makes
sense, since the class is already supported by most current browsers by default.
However, the use of HOCs also has limitations:
e HOCs are confusing: Using multiple HOCs for a component easily leads to the
situation of not knowing which HOC provided by this HOC.
e Duplicate name props: If there are two HOCs using the same name for the prop,
the codes will be overwritten.

12

3.5 Render props

The render props are not a React API, but rather a technique for handling logical sharing
between React Components using prop with value as a function. In simple terms, render
props are a method with a similar purpose to the Higher Order Component method,
which helps to reuse logic across multiple components. Render Props are used to create
a very famous library in the React ecosystem, which is the React-Router. In essence, the
purpose is the ability to reuse state, methods of a component on another component
need to use the same state. However, the pattern uses the props for reusing the logic
code from one component then passing the business logic to another component. A
component with a render prop takes a function that returns a React element and calls it
instead of implementing its own render logic.

In figure 13, there is an example of render props in React which is used in the Taama
App. In the DemoRenderProps component, there is Childl component and that
component can manage the data of DemoRenderprops components but this component
still uses the same layout and when reusing the component in other places.

src > components App.js
class extends PureComponent {

render() {
const childl = this.props.childl;
return (

{child1}

);

}

}

class extends PureComponent {
constructor(props) {
super(props);
this.functionA = this.functionA.bind(this);
this.state = { data: @ }
}

const functionA => (event) {
this.setState({
data: this.state.data + 1;
};
}

render() {
return (
v style={{ height: width: ‘’300px }} onMouseMove={this.functionA }
{this.props.render(this.state)}

class F extends PureComponent {
render() {
return (

Welcome to the deme of render props
render={paraml (
childl={ paraml }
1}/>

Figure 13. An example of render props.

13

4 COMPONENTS

Component-based development is now a very popular way to build user interfaces (Ul)
and web applications. When engineers develop React project, components help saving
much time because those engineers do not need to build the the small Ul parts, such as
button, text field or top bar of the project. The developers just use the components and
combine the components to develop the layout. Modern framework as Angular, ReactJS
or VuelS are also base on components to use, so get more understand about
components to help using ReactlS easier.

4.1 Function component

In software development industry, there are two main ways to develop one software,
that are Object oriented programming(OOP) and functional programing. However,
Javascript developers, especially React developers prefer using functional programming
with React Hooks, that is a function component can contain state and handle business
logic [6]. A function component is a simple JavaScript function in which props are called
as an argument and return a React element.

The functional component is a JavaScript function, and can not use setState() keyword
here, so the function component is called stateless functional component and
absolutely, the function component does not have its own state. Besides, if need to have
a state in the component, there is a way to generate a class component or can initialize
state in the parent component and pass it down to the child component via props.
Moreover, there are some reasons why should use functional component in ReactlS:

e The component’s function makes developers easier to read and test, debug and
can be reusable; because functional components do not have state and lifecycle-
hook (functional component is a simple Javascript function).

e Improve performance because function component is shorter and can compile
quicker than class component.

e When using function component, there is no need to think how to split the
component to container component and normal Ul component.

In figure 14, there is the MediaCard function component used in the Tama App without
using state. That component only uses item, city, units. index and handleSetindex props
for re-render the component. This main functionality of the function component is that
contains Ul in the return method and gets data through props and render the data.

14

export default MediaCard({
item,
city,
units,
index = 0,
handelSetIndex = () {+
H Ao
classes = useStyles();

temp = ()
outPut = 0;
{ temlist } = item;
if (temlist) {
forEach(temlist, e
outPut = outPut + e.main.temp;
};
outPut = Math.floor(outPut / temlist.length);
}

return outPut;

return (

i className={classes.card}

onClick={() {
handelSetIndex(index);
}}

r title={city.name || ""} className={classes.temp}
1 className={classes.media} title="Contemplative Reptile"

lasses. temp}

{temp()} {units == "metric" ? "eC" : "oF"

Date: {item.date}

Figure 14. An example function component in one React JS project.

4.2 Class Component

There is a traditional component called class component. Class component uses the
syntax of ES6. The class component are more complex than the functional components
in that the class component also have: constructor, life-cycle, render () function and
state (data) management. Moreover, the class component requires extending from
Class Component as including extends component from React framework statement to
generate an inheritance to Class Component for accessing to Class Component function.
Besides, the class component also needs a render method to return React elements.

Figure 15 illustrates the React class component how looks like. Those code below is the
FormSearch component in the practical Tama React App. There are to have enough
mandatory methods, such as constructor, render, return and may have life cycle
methods, also the state to manage the render of application.

15

(props
(props);
.state = {
query: ‘'

};

handleChange = (event)
target = event.target;
value = target.type == ox' ? target.checked : target.value;
name = target.name;

.setState({
[name]: value

1H;

handleSearch = (event)
{query} = .state;
.props.changeQuery(query) ;
event.preventDefault();

handleClear = (event
.props.changeQuery("");
.setState({query: ''});
event.preventDefault();

handleKeyPress = (event
if(event.key === 'Enter'){
.handleSearch(event);
}
}

render()
query = (.state.query != '') ? .state.query : .props.query;

return (
onSubmit={ .handleSearch} className="form-inline"

ery} onKeyPress={ .handleKeyPress} onChange={ .handleChange} type='"text" className="form-control" pla

input-group-btr
onClick={ .handleSearch} type: on" Search
onClick={ .handleClear} type=" - Clear:

Figure 15. An example of React class component.
4.3 Styled component

Styled Component is introduced to write CSS code that has the local scope, it means that
CSS modules just affect a single component. Styled-Components is a library where
organizing and manage CSS code easily in React projects. The component was built with
the goal of keeping the styles of React components attached to the components
themselves. The compinent provides a clear and easy to use interface for both React
and React Native. The styled component not only changes the implementation of
components in React, but also the way of thinking in building styles for those
components.

In figure 16, the code defines animations in Tama App in outside company, the styled-
Components provides a mechanism to generate unique names for the keyframes in each
component, therefore there is no need to worry about whether the names of the
keyframes are duplicated or not. Moreover, there is customStyledComponent that is
defined by style component. When using styled component, it is easy to handle, and
change style of elements, in order to improve performance of project, React developers
do not need to use normal component to create simple component included only styles.

16

src > components > JS FormSearch.js > ‘©¢ Application

rotate360 = keyframes
from {
transform: rotate(@deg);

1
I

to {
transform: rotate(36@deg);

1
I

Rotate = styled.div
display: inline-block;
animation: rotate360} 2s linear infinite;
padding: 2rem 1lrem;
font-size: 1.2rem;

render() {
return (

Figure 16. An example of style component.

Moreover, using Styled Components, React developers are allowed to have following
profits:

e No pain maintenance: when maintaining an application, developers need to hunt
across hundreds files, even thousands files to find out which one affects a
component, it wastes a lot of developer’s time. But with Styled Component, the
file affects a component will be detected easily.

e No name bugs: Style Components just allow to use unique class names during
styling. That is why developers will not have the case two or more class names
have the same name when using Style Components in their application and the
critical bugs about class names are not the problem anymore.

e Automatically inject CSS: track all Styled Components to realize which
components are rendered in order to automatically inject their styles and do not
do anything else. It means the amount of necessary code that needs to be loaded
is the smallest.

e Dynamic styling: when adapting the styling of components usually are managed
manually by a lot of classes, but with Styled Components, that can be worked in
a simple way based on its props or a global theme.

4.4 Web component

Web components are a relatively new concept, it was only introduced by Alex Russel in
2011 [7] in a front-end workshop. Google has actively developed this technology with

17

the open source Polymer project, and promises to bring a breakthrough in Web
development. Web technology has been developing strongly, the complexity is
therefore increasing. This brings a lot of headaches for web developers, when the
number of components in a website is increasingly larger and more demanding.

Web components are a set of technology rules for building website components that
are packaged (separate from the rest of the application code) and reusable. Web
Components provide packaging to reuse components. Web Components often display
some compulsory APIs as video Web components can display play() and pause()
functions. Therefore there is to have to use ref to interact with the DOM node to access
the compulsory APIs of the Web Component.

Besides, a Web Component’s events can pass in a wrong way via a React render; so the
project should be manually attached handing events to address the events into a React
Components.

Basically web components use 3 technologies:

e Custom Elements: is a set of JavaScript APIs to allow the creation of custom web
components, such as the <my-todos> tag in the example above.

e Shadow DOM: is a collection of JavaScript APIs to attach a "shadow" DOM tree
to a DOM element, this DOM tree is managed separately and rendered
separately from the main DOM tree, so the component can be repackaged. To
use for different applications.

e HTML templates: Used to create templates from which to render on web pages.
This concept is relatively similar to some other frameworks like angular or

react.js.
src > components FormSearch.js >
class Search extends HTMLElement {
connectedCallback() {
const mountpoint = document.creatElement(‘span’);
this.attachShadow({ mode : ‘open’ }).appendChild(mountPoint);
const name = this.getAttribute(‘name’);
const url = ‘http://www.google/search?q=" + encodeURIComponent(name);
ReactDOM. render({name} , mountPoint);
}
}

customElemens.define(‘search’, Search);

I

Figure 17. An example using web component in React JS.

18

5 REDUX

Nowadays, when the requirements for Single Page Applications build in JS are more
complex, our code must manage more states than before. These states include the data
returned from the server and cached data, as well as the data created locally and does
not guarantee integrity compared to the server. In addition, the state used to manage
the Ul also increases the complexity as we need to manage which Routes are active,
which tabs are selected, Paginations.

Managing state clusters that are always changing is difficult. For example, one model
can update another model, then one view can update the above model, which means it
also updates the other model, and here when the second model updates, it can also
drag. Another view updates with it. At this point, we don't have a lot going on, losing
control of when, why, and how the state is updating. If the system has loose or
inconsistent code, it may be difficult to reproduce bugs, debug, or add new features.
Try to consider the case, there are new requirements from customers, which gradually
become popular when working in the front-end. For example, we have to control when
the component should update, server-side rendering, get data before advancing to
change routes, etc ... Now React developers are trying to manage an extremely complex
logic. magazines that have never been seen before.

There are two confusing concepts: "mutation and asynchoronicity". These 2 things are
very separate, but when mixed together, it is very difficult to understand. Libraries like
React have somewhat solved this, but only in the View, and the state containing the
data, so finding the solutions have to solve it ourselves. Redux is needed to solve it.

5.1 Managing state by Redux

Suppose having an application where the nodes shown in the figure represent a single
page application modeled as a tree-node model - in figure 18 [8]. Imagine the application
running by exchanging data between nodes, each node (subpage) contains a state and
child nodes receive data passed from parent to child.

19

Figure 18. Node tree to simulate the states in React project.

Suppose if there is an action on node d3 that is activated and the requirement to change
state d4 and c3 then the data stream will be transmitted from node d3 back to root node
a, then from node a again transmits data to the child node (figure 19 [9]):

e Update state for node d4: d3-c2-b1-a-b2-c4-d4.

e Update state for node c3: d3-c2-b1-a-b2-c3

0/0@
o6 BT
) \@ (o)

Figure 19. Update the state nodes without using Redux. [11]

For small problems (just using React JS without Redux), updating the state between
pages can be easy, but try to imagine a larger application with lots of branches and child

20

nodes. Back and forth between the pages become more complex, making the flow of
code difficult to read and debug.

Back to the above problem, in figure 20 [10], redux helps to map the Action from node
d3 to the Redux's store and then at c3 and d4 nodes just need to connect to the store
and update the changed data.

Figure 20. Update state nodes using Redux. [11]

5.2 State management tool

Most libs like React, Angular, etc are built in such a way that the components go to
internal management of their states without any external libraries or tools. Those
frameworks will work well for applications with few components, but as the application
gets larger, the management of states shared through components will turn into odd
jobs.

In an app where data is shared via components, it's easy to get confused so we can really
know where a state is live. Ideally, data in a component should live in only one
component. So sharing data through components will become more difficult.

For example, in react to share data through sibling components, a state must live in the
parent component. A method to update this state itself will be provided by the parent
component itself and pass as props to child components.

21

return \(
<div className="row">

{/* SEARCH : START x*/}
<Search onClickGo={this.props.onClickSearchGo}/>
{/* SEARCH : END */}

{/* SORT : START x/}

<Sort
onClickSort={this.props.onClickSort}
orderBy={orderBy}
orderDir={orderDir}

/>

{/* SORT : END */}

{/* ADD : START x/}

<div className="col-xs-5 col-sm-5 col-md-5 col-1g-5">
{ elmButton }

</div>

{/*x ADD : END %/}

</div>
);
}
Figure 21. An example does not use Redux for managing global states in React.

Now let's imagine that if a state must be shared between components quite far apart in
a tree component and this state must be passed from one component to another until
it reaches where it is called.

Basically, the state we are talking about must be lifted to the nearest parent component
and continue until it reaches the ancestral component containing all the components it
needs this state then pass this state down. This will make the state more difficult to
maintain and less predictable.

This makes the state management department in the app become messy as the app
becomes extremely complicated. That is why we need a state management tool like
Redux.

5.3 Store

Store is a large JavaScript object with many key-value pairs representing the current
state of the application. Unlike the state objects in React that are spread across different
components, we only have one store. Store provides application status and every time
the state updates, the view is reloaded. Store in Redux is like a human brain. The entire
state of the application is in this store.

There are main store’s responsibilities :

22

e Hold application state.

e Accessing state from getState().

e Updating state via dispatch(action).

e Sign-up listeners via subscribe(listener).

e Handling listeners do not sign-up via the return by subscribe(listener).
In figure 22, there is the store created by the createStore method and used in the Taama
App to manage reducers and middleware. After that, the reduxDevTool is imported to
the the store, in order to observe the changing of the states in redux store. Finally, using
the context with Provider helper API of react-redux to go down the store to the chidlren
components and those components can use the store directly.

src > JS index.js > [®] store
import React from 'react’;
import ReactDOM from 'react-dom';
import { Provider } from 'react-redux';
import { createStore } from '
import appReducers from '
import App from './compor
import registerServiceWorker from './registerServiceWorker';

store = createStore(
appReducers,
window.__REDUX_DEVTOOLS_EXTENSION__ && window.__REDUX_DEVTOOLS_EXTENSION_ ()

ReactDOM. render(
F store={store}

, document.getElementById('root'));
registerServiceWorker();

Figure 22. An example creating store in React.

5.4 Actions

Actions are contents of information transmitting data from the application to the store.
The store has actions as its only resource of information. Those actions are sent to the
store by the store.dispatch() method.

Actions are absolute JavaScript objects. There must be a type property which shows the
type of action being implemented. These types need to be identified as string constants.
When the app is big enough, it may need to be transferred into a different module. Apart
from type, engineers can decide how the structure of an action object is. Functions that
create actions are action creators. It is simple to combine it with the term “action.
Figure 23 illustrates that there are two actions: the first action is actLogin has two
parameters that are username and password and the payload is the object that contains

23

type, and username and password. Another action is actLogout and the payload is only
type.

src » actions > JS index.js > [€] actLogin
import as types from './../constants/ActionType';

export actLogin = (username, password) => {
return ({

type : types.USER_LOGIN,

username,

password

export actLogout = ()

r

return +{

type : types.USER_LOGOUT

Figure 23. An example of the actions.

5.5 Dispatch to props

In Redux, mapDispatchToProps method is used to dispatch actions to the store.
dispatch() method is a way to trigger a state change which is provided by Redux store,
to use this method, developers can use the syntax store.dispatch to dispatch an action.
The mapDispatchToProps method will be invoked as a first argument in dispatch
function, it will return a new function that invokes and passes an action object to Redux
store. The return of mapDispatchProps method needs to be a plain object.

In figure 24, there is a way to dispatch one method in React. After user created one
action, the action will go to reducer, then dispatching that action and the actGoAlbum
method is invoked. However, in figure 25, the dispatchToProps can be called through
the props like: “this.props.changeBreadcrumb”.

24

mapDispatchToProps = (dispatch, ownProps
return {
changEBreadcrumb: (name, to) => {
dispatch(actGoAlbum(name, to));

- },
ks

export default connect(, mapDispatchToProps) (A

Figure 24. An example installing the mapDispatchToProps method.

loadAlbum(id) {
S .getAlbum(id).then((response) => {
if (response !== && response.data !==
.setState({

album: response.data,

};

.props.changeBreadcrumb (
response.data.name,
“/album/${response.data.id}

H

;i

Figure 25. Example of using the dispatchToProps method in React.
5.6 Middleware

Middleware is the middle code between requests and responses. It receives requests,
executing corresponding commands on that request. Upon completion, it responds
(returns) or passes the delegated results to another Middleware in the queue.
Nowadays, modern Web frameworks use it as part of the application to connect other
parts. For web applications, using Middleware effectively helps us reduce the amount
of code that must be written in the application.

With the common thought is the bridge between user interaction and the system in Web
programming. The middleware will act as an intermediary between the request /
response and the logical handling within the web server.

Therefore, Middleware in the frameworks for Web applications (Laravel, Django, Rails,
ExpresslS ...), will be functions used to preprocess, filter requests before putting them
into logical processing or adjusting responses before send to user.

25

In Redux, the concept of middleware also exists and plays a similar role, but the problem
that middleware in redux solves differs from server-side. In Redux, middleware is the
layer between Reducers and Dispatch Actions. The position where the Middleware
operates is before the Reducers receive Actions and after an Action is dispatched ().
Middleware in Redux is best known for handling ASYNC Action - actions that are not
available as soon as an Action Creator is called, usually here are APl requests.
Currently, there are quite a lot of middleware libraries for Redux, especially using with
React, there are redux-thunk redux-saga and redux-observable and MobX. Each library
has its own method of solving side effects.
The requirements to understand some basic concepts like generator function. The
generator function is a function that has the ability to postpone execution while keeping
the context intact. It's a bit confusing, in simple words, the generator function is a
function that can pause before the function ends (unlike the pure function when called
will execute all the statements in the function), and can continue. keep running at
another time. It is this new function that helps solve the asynchronous, the function will
stop and wait for the async to finish running and then continue to execute.
Redux saga provides helper effect functions, which will return an effect object that
contains special information instructing Redux's middeware to perform other actions.
The helper effect functions will be executed in the generator function.
Some helpers in redux saga:

e takeEvery (): executes and returns the result of every called action.

e takelastest (): means that if we perform a series of actions, it will only execute

and return the result of the last action.

e take (): pause until the action is received

e put(): dispatch an action.

e call (): call function. If it returns a promise, pause the saga until the promise is

resolved.
e race (): run multiple effects simultaneously, then cancel all if one of them ends.

26

Js auth.js
src > redux > sagas > JS auth.js) authFlow

authorize(payload, next, nextErr) {
response = yield call(fetchApi, {
uri: "/login",
params: payload,
opt: { method: "POST" },
loading:
i

if (response & response.accessToken) {
data = {
token: response.accessToken

b
AuthStorage.value = data;

yield put({
type: "LOGIN_SUCCESS",
payload: data

};

if (next == "function") {
next();

}

} else {

yield put({
type: "LOGIN_FAILED",
payload: response

H;

if (nextErr === "function") {
nextErr();

}

loginFlow() {
INFINITE =
while (INFINITE) {

{ payload, next, nextErr } = yield take("LOGIN_REQUEST");
authorizeTask = yield fork(authorize, payload, next, nextErr);
action = yield take([

"LOGOUT_REQUEST",

"LOGIN_FAILED",

REQUEST_ERROR

1;

if (action.type === "LOGOUT_REQUEST") {
yield cancel(authorizeTask);

}

Figure 26. An example using Redux saga with generator functions.

5.7 Reducer

Reducer indicates how the application’s state transforms in reply to actions transmitted
to the store. In Redux, every application’s state is saved as a single object..
When the state object has been decided, the reducer is written for the App. The actions
called a reducer since it is the kind of function being transferred to
Array.prototype.reduce(reducer,? initialValue). The reducer needs to be clear. These are
things that should not be done inside a reducer:

e Modify the arguments.

e Conduct side effects (API calls and routing transformation)

e Request non-pure functions..

27

In figure 27, it depicts the flow of redux. Firstly, user touches the view or layout on
browser and the action is born, then the actions goes to reducer and the application will
have the new states

-

API

94015

Actions

N

Figure 27. Flow Redux in React Project. [11]

28

6 IMPLEMENTATION

This chapter describes the implementation of shopping-cart application after enhancing
programming skill in practical Tama React project, and demonstrates how React JS can
help developer develops static HTML file and single page application. The
implementation contains development, the structure of project and deployment.

6.1 System requirements

These Appilcation require NodelS 10 and the NPM which can find more information at
https://nodejs.org.

Git is the Source Code Administration apparatus for managing changes of the source
code during developing the project. This instrument can be introduced by means of its
official site https://git-scm.com

6.2 Structure and run

Running on local

This project was created by command line: 'npx create react-app shopping-cart’. It is a
fully working React application that developer can continue developing locally. It has all
the necessary dependencies and files to run the project in “package.json’.

The project is a standard 'Node_modules’ pakage manager, so developer can import it
to the IDE of choice with the command: ‘'npm install name_dependency'.

In order to run from the command line, use 'npm start’ or ‘yarn start’ and open °
http://localhost:3000/" in browser, but making sure the project is installed node already.

29

Project structure of Shopping cart

> B .idea
> I8 docs
Vv g public
3 css
Mg font
& img
W s
% favicon.ico
S index.html
{} manifest.json
src
actions
components
constants
containers
reducers
App.css
App.js
% App.test.js
index.css

index.js

&% logo.svg

JS registerServiceWorker.js

® _gitignore

S index.html
package-lock.json
package.json
README.md

yarn.lock

Figure 28. Shopping-cart App project structure.

Figure 29 depicts the structure of Shopping cart Application project using React and
Redux. This structure contains source code of the project and configuration for
development and deployment:
e “public” folder contains the source code of the projet after compiling to static
HTML file and the project uses it to run the App.

30

“src” folder contains the main source of the project, before compiling the
source code.

“actions” folder contains the actions of Redux.

“components” folder is a place to contains the components of project. It only
handles layout of the project.

“containers” folders is a place to contains the logic code of the project. Itis a
place to connect to Redux store and bring the data to components.
“reducers” contains reducer of Redux.

“App.js” is a main source code file of project.

“index.js” is a root file of project.

“.gitignore” to ignore files and folders of project which developers do not
upload to Github server.

“pakage.json” contain dependencies and some command scripts of the
project.

“README.md"” is a first file developer should read. It is a file to guide how to
run and introduce all of things of the project.

Application user interface

Figure 30, in the right top there is a menu bar, it depicts the functionality related to
account, such as login, and log-out and register of the user.

& Tai Khoan ~|
Diing Ky
Dang Nhap

All Products

Diing Xudt

Ip 7 Plus Ip 6 Plus Ip 8 Plus

Very expensive Very less expensive Very more expensive

5008 Q 4508 Q 7008 Q

Figure 29. Shopping Cart user interface of login and register.

Figure 31 shows the home page of the Application with some items with theis
information, such as the name, the price of the items.

31

= Trang Chll & Tai Khodn ~

All Products

Ip 7 Plus Ip 6 Plus Ip 8 Plus
ki ik ikkk

Very expensive Very less expensive Very more expensive

5008 e 4508 e 7008 e

Figure 30. Shopping Cart user interface in home-page.

In figure 32, there is a notification to inform that buyer bought the items, or update the
item.

Ip X Plus
Jokrirk

Best expensive
9008 e

Update sucessfully !

Figure 31. User interface of the message notification.

In figure 33, the photo shows the information of the items added to the cart. The buyer
can update and remove the items.

32

Product Price Number Total

porss QD o W

©
s

Ip 8 Plus 70s (N 7008 -

(R

Ip 7 Plus 5008 1- 5008 n

bm
8 i

Figure 32. User interface in cart.

@’ Ip X Plus wos EEEIIED 45008 Ea

DELIVERY NEED HELP? INSTAGRAM PHOTOS
Store Delivery FAQ

Online Delivery Contact Us
Delivery Terms & Conditions Return Policy
Tracking Product Registration

Figure 33. User interface of the functionality of calculating the total of price.
Source code

The project developed and pushed to Github. There is the link:
https://github.com/hongduc-phan/React-Redux-shopping-cart
In figure 35, it shows the commits during developing the application.

33

Project structure of Tama

EXPLORER

> OPEN EDITORS
v TAMAA-MASTER
> .next
lang
lib
node_modules
pages
src
static
.babelrc
.editorconfig
.env
.env-default
.eslintrc.js
.gitignore
.prettierrc
GIT.md
next.config.js
package.json
README.md
JS routes.js

> OUTLINE
Figure 34 Tama App project structure.

Figure 36 depicts the structure of Tama Application project using React and Redux. This
structure contains source code of the project and configuration for development and
deployment:
e “public” folder contains the source code of the projet after compiling to static
HTML file and the project uses it to run the App.

34

e “src” folder contains the main source of the project, before compiling the

source code.

“static” folder contains the compile source code of project.

“pages” folder is a place to contains the pages of project.

“index.js” is a root file of project.

“.gitignore” to ignore files and folders of project which developers do not

upload to Github server.

e “pakage.json” contain dependencies and some command scripts of the
project.

e “README.md” is a first file developer should read. It is a file to guide how to
run and introduce all of things of the project.

Application user interface

L] ® Administrateur | Pass Tama'a X+

& C O @ localhost o % @ F & # @ 0 98 zZ ® =M

) Aiserdajreact-red. @ Node.Js Courses...

5 Vaadin B3 Vi-speak ES) lawer [E Nana 0 BuildaSimpleRes.. Deathbyathousa.. » ExpressJSCrash.. () full-stack-d-types.. @ Vapaanyt

Connexion

* Identifiant:

tincidunt.congue.turpi: i il.com

* Mot de passe:

Connexion Mot de passe oublié ?

Figure 35 Interface login

35

L] ® Administrateur | Pass Tama'a X+

< C @ @ localhost w @ 8 © 0 2 B zZ ®

B3 Vaadin B3 Vi-speak B lawer B Nana 0 BuildaSimpleRes.. & Deathbyathousa.. » ExpressJSCrash.. () full-stack-d-types.. @ Vapaanyt () Alserdajreact-red.. @ Node.JS Courses. »

Hi Admin !

Paramétres > Utilisateur

Utilisateurs + Créer un utilisateur

D Email Prénom Nom

E Importer

& Télécharger une exemple de fichier

E Exporter
® Administrateur | Tama'a X+
® localhost * 08 @ 5 @ 0 9B zZ @ 5)
B3 Vvaadin 5 Vi-speak [lawer ES Nana @ Build a Simple Res. & Death by a thousa. » Express JS Crash.) full-stack-4-types. @ vapaanyt () Alserda/react-red @ Node.JS Courses. »

Hi Admin ! ° ®

Etablissements
Ajouter une etablissement

* Email:

Un email de réinitialisation du mot de passe sera envoyé automatiquement &
I'entreprise & la création du compte

Ajouter une etablissement

+
Upload

Informations sur le restaurant TS T

Description:

* Numéro de téléphone: +689

Figure 37 Create restaurant with some input fields

36

® ® Administrateur | Pass Tama'a X +

° SN)

5 Vaadin B Vi-speak B lawer B Nana © BuildaSimpleRes.. Deathbyathousa.. » ExpressJSCrash.. () full-stack-d-types.. @ Vapaanyt () Alserdajreact-red.. @ Node.JS Courses. »

€ > C 0 O localhost # @8 ®©®098 z

Hi Admin !

Toutes les etablissements

Toutes les etablissements Q + Ajouter une etablissement [¥] Rembourser
p¢ E Importer
>} Etablissement Email Adresse Solde
4, Télécharger un fichier modele

G Export

E Exporter

Figure 38 Main restaurant with some features, such as import and export

L ® Administrateur | Pass Tama'a X+
€ > C o localhost * © B 5 @ 0928 zZ ® = "N

B3 vaadin B Vi-speak B lawer [5 Nana © BuildaSimpleRes.. G Deathbyathousa.. » ExpressJSCrash.. () full-stack-d-types.. @ Vapaanyt () Alserda/react-red.. @ Node.JS Courses. »

Hi Admin ! o @
Sociétés
Toutes les sociétés Q + Ajouter une société Affoct
D Email Société Solde Solde dos stan = Importer
epmioyés
Export

Figure 39 Main company interface with some features such as import and export

37

® Administrateur | Pass Tama'a X +

= C O O localhost . " 5 ©®09° 8 7 &

B9 Veadin B3 Vi-speak B3 lawer B3 N @ BuildaSimpleRes.. & Deathbyathousa.. » ExpressJSCrash.. () full-stack-d-types.. @ Vapaanyt () Alserdafreact-red.. @ Node.JS Courses »

Hi Admin !

Société > Ajouter une société

Ajouter une société

Information * Email:

Un email de réinitialisation du mot de passe sera envoyé automatiquement &
I'entreprise & la création du compte

* Nom de la société:

Description:
2
Numéro de téléphone: +689
+689
Adresse:
L] ® Administrateur | Pass Tama'a X+
&€ > C O O localhost % OB & #0928 zZ ®)
B3 vaadin 5 Vi-speak [lawer [5 Nana @0 Build a Simple Res. & Death by a thousa. + Express JS Crash.) full-stack-4-types. @ Vapaanyt () Alserda/react-red. @ Node.JS Cours: »
Hi Admin ! °]
Employés
Toutes les employés Q + Ajouter un employé ® Affecter
Importer
D Employés Company Email Numeéro do Solde Last 5
Name téléphone Transaction
E Export

Figure 41 Employees with some feature

38

L] ® Administrateur | Pass Tama'a X+

< C O O localhost ¥ @B & 80008 7 &

B9 Vaadin [Vi-speak B2 lawer [BR Nana ©0 Build a Simple Res.. G Death by a thousa. » Express JS Crash.. () full-stack-4-types.. @ Vapaanyt () Alserda/react-red. @ Node.JS Courses. »

Hi Admin !

Employés > Ajouter un employé

Ajouter un employé
Information
* Email:
Un email de réinitialisation du mot de passe sera envoyé automatiquement & I'entreprise & la création du
compte
* Prénom:
* Nom:
* Numéro de téléphone: +689

Conditions de crédit

Figure 42 Create new employee with some fields

L] ® Administrateur | Pass Tama'a X =+

<« C O O localhost (I} # © 0o B zZ ®

B9 Vaadin B9 Vi-speak [3 lawer B3 Nana ©0 Build a Simple Res.. Deathbyathousa.. » Express JS Crash () full-stack-4-types.. @ Vapaanyt () Alserda/react-red.. @ Node.JS Courses...

Hi Admin !

Changer de mot de passe

oloyés > Ajouter un employé
Logout

Ajouter un employé

Information

* Email:

1in amail Aa réinitinlicrtinn dit mat da nacea carm anunud mitameticoamont & lantranrica & ln ardntion di

Figure 43 Change password and logout

L] ® Administrateur | Pass Tama'a X+

en &8s 098 z ® S

B3 Vaadin B3 Vi-speak B3 lawer B3 Nana ©0 Build aSimple Res.. & Death by a thousa. » ExpressJSCrash.. () full-stack-4-types.. @ Vapaanyt () Alserda/react-red. @ Node.JS Courses. »

< C O @ localhost

Hi Admin !

Create employee

Information

* Email:
Email password will be automatically generated and sent to the company's email when the account is

created

Figure 44 Change Language

39

L ® Administrateur | Pass Tama'a X +

<« C 0 O localhost B e 8OO0 21 z ® N I

B Vaadin S Vi-speak [lawer [Nana © Build a Simple Res. G Death by a thousa. » Express JS Crash.) full-stack-a-types. @ Vapaanyt () Alserdajreact-red. @ Node.Js Courses.

Créer un utilisateur

* First Name:
* Last Name:
tincidunt.congue.turpis+sadmin@gmail.com

* Password:

* Confirmer le mot de passe:

Figure 45 Create new user

Source code

The project developed and pushed to Github. There is the link:
https://bitbucket.org/phanhongduc/backoffice tama/src/develop/

40

phanhongphat / backoffice_tar X +

& C (@ @& bitbucket.org, b+ G Z ® 0 © B zZ ®

B Vaadin S Vi-speak [ES) lawer S5 Nana @ BuildaSimpleRes.. & Deathbyathousa.. » ExpressJSCrash.. () full-stack-d-types.. @ Vapaanyt () Alserdajreact-red.. @ Node.JS Courses.

: 8 c.crotfice Tama Phat Phan / Untitled project / BackOffice_Tama
Commits Clone
<> Source
+ Search commits Is Allbranches v
¢ Commits
Author Commit Message Date
§s Branches
1 @ AnhNguyen Phuong c87df28 M Merged in feature/newCondition (pull request #373) Approv... 2019-09-18
f9 Pull requests /
¢/ @ AnhNguyen Phuong 83cfoze fix conflict 2019-09-18
Q) Pipelines
¢/ @ AnhNguyen Phuong d8o3c14 Sample table 2019-09-18
B Downloads
4 8 Trung Tran Tien 2557175 update setting metadata 2019-09-18
BucketBoard
t @ AnhNguyen Phuong ce5c451 M Merged in feature/newCondition (pull request #372) ’ .. 2019-09-18
{3 Repository settings |
* AP} Anh Nguyen Phuong 2dce4e3 search/sort table 2019-09-18
t @ AnhNguyen Phuong e0526dc M Merged in feature/newCondition (pull request #371) c pproved-by: Tr... 2019-09-18
{ &) Anh Nguyen Phuong 4b673e0 M Merge branch 'develop' into feature/newCondition 2019-09-18
\
¢/ @ AnhNguyen Phuong bc6aeea fix bug layout 2019-09-18
Duc Phan Hong adbadde M Merged in feature/fixbugs--BO (pull request #370) fix bug create employee: duppli.. 2019-09-17
| T Phan 8d0de6b fix bug create employee: dupplicate the message after creating 2019-09-17
|
|
|

Figure 46 Commits around the september 2019

B9 Vaadin B9 Vi-speak [lawer [Nana ©0 Build a Simple Res.. &£ Death by a thousa. » Express JS Crash.) full-stack-d-types.. @ Vapaanyt () Alserdajreact-red.. @ Node.JS Courses.

It AP) Anh Nguyen Phuong 70efa35 M Merge branch ‘develop' into feature/company 2019-09-05
} I
u JS Backoffice_Tama < i. #9) Anh Nguyen Phuong 2a2aab9 Fix bug company 2019-09-05
|
Q | Duc Phan Hong 8e9766e M Merged in feature/BO (pull request #333) r f) 2019-09-05
<> Source '
+ t Phan fb6cf90 correct payload of transaction of project 2019-09-05
¢ Commits \
| AP Anh Nguyen Phuong 72e896b M Merged in feature/company (pull request #332)) \ A y 2019-09-05
39 Branches /
| Duc Phan Hong 60e61bb M Merged in feature/BO (pull request #331) : t 2019-09-05
T4 Pullrequests
#9) Anh Nguyen Phuong £311311 Fix bug company 2019-09-04
@ Pipelines
AP) Anh Nguyen Phuong la7dfbe M Merge branch 'develop' into feature/company 2019-09-04
[& Downloads \
AP) Anh Nguyen Phuong d83112c fix bug company 2019-09-04
BucketBoard
t Phan cbd9d4c integrate transactions api for company 2019-09-04
X Repository settings \
| A Anh Nguyen Phuong 78cd7ba M Merged in feature/company (pull request #330) fix bu y Ap| .. 2019-09-04
(@8 Anh Nguyen Phuong 099cb00 fix bug company 2019-09-04
Duc Phan Hong 95b6d15 M Merged in feature/fixbugs-BOT (pull request #329) x A V.. 2019-09-04
} ‘ Phan 10cbf15 remove type of transaction of credit history for company and restaurant roles 2019-09-04
|
|
i * Phan 6143ada correct data export of credit history 2019-09-04
|
|
1 . Phan 0c747e4 fixed bug transactions list 2019-09-04
|
| Duc Phan Hong 9071b74 M Merged in feature/fixbugs-BOT (pull request #328) r A 2019-09-04
Prev. Next

Fiure 47 Commit around 9.2019

41

. Phan cdcdfd2 changed new api transaction for restaurant 2019-09-03
JS BackOffice_Tama
, Phan 23e19aa M resolved conflit after pulling src cde from branch dev 2019-09-03
’ Phan 2193322 changed integrate api of credits sider 2019-09-03
< Source
’ Phan 1642002 change integrate api of transaction 2019-09-03
¢ Commits
& Anh Nguyen Phuong 1220¢7 M Merge branch 'develop' into feature/company 2019-09-03
158 Branches ‘
Anh Nguyen Phuong 1556201 fix bug company 2019-09-03
19 Pull requests ® o N o v
4 8 Trung Tran Tien f5fe590 update new code 2019-09-03
© Pipelines
@ AnhNguyenPhuong cba7dda M Merged in feature/company (pull request #326) Fix bug company y: Trung Tras trung tran@kyanon.digital 2019-09-03
[Downloads
. Phan d77c0al change params api of employee parts in BOC 2019-09-03
BucketBoard 9e P plofemploy
Anh Nguyen Phuon 8042869 Fix bug company 2019-09-03
O Ropositony setin. | @ Annnouyen Phuong 9 compary
Phan cf33e0b integrate new api for employee parts 2019-09-03
¢+ 3 TrungTrin Saa%0de update code 2019-09-02
+ $ TrungTrn 77bca00 convert class compoent to function compoent 2019-09-02
Anh Nguyen Phuong 2bf718f M Merged in feature/company (pull request #326) Fix bug pany Approved-by g trung.tran@kyanon.digital 2019-08-31
[& Anh Nguyen Phuong 1575dde M Merge branch 'develop' into feature/company 2019-08-30
@ AnhNguyen Phuong 0edaf79 Fix bug company 2019-08-30
@® ‘ongsuiBao ad7ed14 M Merged in feature/fixbug-byLong (pull request #324) Fixbu ¢ o eset Passwos wpany yee, 2019-08-30
® ‘ongsuiBo a738999 M Merge branch ‘develop' into feature/fixbug-byLong 2019-08-30
Phan 8020d6a add loading to buttons after clicking 1 feature/fixbugs-BO 2019-08-30
4| @ vongsuiBao Oacalce Fixbug to sync confirm popup at Reset Password of Company, Employee, Restaurant Details 2019-08-30
Phan 82dafof refactor code of create employee I» feature/fixbugs-B0 2019-08-30
Phan 96405 fixed bugs click affect btn many times to dupplicate users on tables 1» feature/fixbugs-BO 2019-08-30
1 % Trung Tran Tien 3795168 M merge code from develop 2019-08-30
Phan 68d37ad fixed component Numericinput 1» feature/fixbugs-80 2019-08-30

Figure 48 Commit in 9.2019

38| Backoffice Tama 4 Bdc Phan Héng af382c4 M Merged in feature/fixbugs-BO (pull request #323) Feature/fixbugs by: Trung Tran Tien trung.tran@kyanon.digital 2019-08-30
@ AnhNguyenPhuong 92a7cac M Merged in feature/company (pull request #322) Fix bug company y en trung.tran@kyanon.digital 2019-08-30
K=o @ ‘Longsuisao fe2d47b M Merged in feature/fixbug-byLong (pull request #321) Add cursor o Bread over A nTient.. 2019-08-30
$ Commits @ AhNguyenPhuong fe3cé42 Fixbug company 2019-08-30
Iy Branches Phan 419712a removed affect btn of employee list 2019-08-30
T3 Pullrequests Phan 307adbc moved the affect/refund buttons to outside the 3 dots(more button) 2019-08-30
O Pipelines ; Trung Tran Tien 88b2aef M Merge branch ‘develop’ of https://bitbucket.org/kyanondigital/tamaa-backend-ui into develop 2019-08-30
B Downiosds [% Trung Tran Tien db125b6 fix style header 2019-08-30
e t| @ Longsuisao 3edaSe3 M Merge branch develop into feature/fixbug-byLong 2019-08-30
€3 Repository settin... N . Long Bui Bao 8120000 Add cursor to Breadscumb, TableRow:hover 2019-08-30
¢+ $ TrungTedn €a52143 update with props with out state 2019-08-29
+ #) Anh Nguyen Phuong 967a7fe M Merged in feature/company (pull request #320) ion A by: T n Tien trung.tran@kyanon.digital 2019-08-29
1 A% Anh Nguyen Phuong 2cd10e4 M Merge branch ‘develop’ of https://bitbucket.org/kyanondigital/tamaa-backend-ui into develop 2019-08-29
¢ |1l @ AnhNguyen Phuong aebf2f7 Fix condition 2019-08-29
. (fc Phan Héng 47b0daf M Merged in feature/fixbugs-BO (pull request #319) " 0 App by: Trun trung.tran@kyanon.digital 2019-08-29
¢+ 3 TungTrin 0cb2715 fix merge code 2019-08-29
1 3 TrungTrEn a66b099 M merge code 2019-08-29
(Phan d0abdsd fixed bug affection 2019-08-29
Phan 4bdcd2e fixed bugs create employee and affect 2019-08-29
Phan dBaeS8d M Merge branch 'develop’ into feature/fixbugs-BO 2019-08-29
Phan a49de@7 feature search: empty input to return to list 2019-08-29
% Trung Tran Tien be2086b add loading export file 2019-08-29

Anh Nguyen Phuong 85af4c8 M Merged in feature/company (pull request #318) F m y

yanon.digital 2019-08-29

Figure 49 Commit in 8.2019

42

@ AnhNguyenPhuong 4b2821b Fixlogic island/city 2019-08-29
BackOffice_Tama

4 Phan 53fdc81 fix layout create-employee to sync with others 2019-08-29
Soukce AnhNguyenPhuong 49a9cb3 Fix phone number display 2019-08-29
Commits AP Anh Nguyen Phuong e6543be M Merge branch 'develop’ into feature/company 2019-08-29
Branches 8% Anh Nguyen Phuong de2ee0l Fix bug company 2019-08-29
FoAreaes 4 Phan bbf8a32 fixlayout create-employee to sync with others 2019-08-29
Pipelines Buc Phan Héng edlcc3c M Merged in feature/fixbugs-BO (pull request #317) 0 a trung.tran@kyanon.digital 2019-08-29
Downloads it Phan ded30ef fixed bugs 2019-08-29

BucketBoard i ® ‘LongBuiBao afc6fle M Merged in feature/fixbug-restaurants (pull request #316) abel at [2019-08-
Repository setin. (% Trung Tran Tien 33felle fix issue 2019-08-29
. Phan 9889db4 M Merge branch ‘develop’ into feature/fixbugs-BO 2019-08-29
‘ Phan bcOIbIf fixed bug file employee s 2019-08-29
Difc Phan Héng 5148bec M Merged in feature/fixbugs-BO (pull request #315) Feature ¢ Al U trung.tran@kyanon.digital 2019-08-28
} Phan d7b9f4c resolved confit 2019-08-28
. Phan 09055c1 M resolved conflit 2019-08-28
. Phan ae1d565 fixed bugs 2019-08-28
I @® Lonosuisao 65fe311 Fixbug label at Create Restaurant, Update but not complete export arcode restaurant 2019-08-28
' Long Bui Bao 7ed4229 M Merged in feature/fixbug-restaurants (pull request #314) Feal Trung T trung.tran@k... 2019-08-28
|| Bitc Phan Héng 51a957a M Merged in feature/fixbug-removes-CSVFeatures (pull request #312) r tion A y tru.. 2019-08-28
fi | 8 Trung Tran Tien bsSel7e M Merged in feature/sider-sroll (pull request #313) scrc v n.digita 2019-08-28
i % Trung Tran Tien 472881 scroll sider bar 2019-08-28
4 Phan cfebact moved input number to left 2019-08-28
I @ Lonosuisao 456eel7 Update features about islands & cities 2019-08-28

Prav Nawt i

Figure 50 Commit in 8.2019

. Phat Phan / Untitled project / BackOffice_Tama
E JS Backoffice_Tama .
Commits Clone
+ USRS Search commits 9 Allbranches v
¢ Commits
Author Commit Message Date
§s Branches
Phan 776c97b finished employees Transactions 2019-07-08
19 Pull requests
Phan 95377€5 finish Ul of All-Employees of employee part 2019-07-07
© Pipelines
2 3 Trung Trén 9f2ctfb save 2019-07-06
B Downloads
@ ‘ongBuiswo 7236535 [Not completed) Implement create form for Restaurant 2019-07-05
== BucketBoard
Phan 3048016 employees List 2019-07-05
{3 Repository settin... R
Phan 81d0928 M Merge branch ‘develop' into feature/employeesList: pull Ple N xplain t e 2019-07-05
3 Trung Trén 6614305 login page init 2019-07-05
@ ‘ongBuibao 537e401 Add Search, Create, More option to Restaurants List 2019-07-05
3 Trung Trén 8e76¢62 M merge code and rename file employee: 2019-07-05
& Trung Trén 3fd39ed merge conflicts)
3 TungTrén d39%d M merge conflic 2019-07-05
Long Bui Bao 0@bc19 M Merged in feature/restaurants/list (pull request ff i € s 2019-07-05
Phan 5feadde M Pull and merge branch ‘develop' into featurefemployeesList 2019-07-05
3 Trung Trén 59¢2249 update file env 2019-07-04
@ ‘ongBuiso 312515 [MinorFix] Rename route from ‘restaurant’ to ‘resturants' for standard 2019-07-04
. Long Bui Bao da3fcla Complete left menu with predefined routes 2019-07-04
Phan c561a67 get list employees. 2019-07-04
@ wngsuiso a7¢6999 Remove column Action (Don't have in wireframe) 2019-07-04
@ ‘ongsuiso b4geb1d Add item Restaurant in left menu with list of restaurants 2019-07-04
€ 3 TungTén 91bf7ba first commit 2019-07-03

Figure 51 Commits from the first time-7.2019(the starting time of the Tama React
Project)

43

6.3 Deployment

Running the application in the local server

After developing successfully and during developing it, the project always runs in local
server for debugging and developing. This command runs of the project in local server
is “npm start” is introduced in README.md. After running the command, the project is
running and the requirement for seeing the project looks like is to open the browser,
such as Chrome and type https://localhost: 3000.

C O © localhost

B9 Veadin B Vi-speak B3 lawer

B3 Nana

» (1) React Project. JUNIOR DEVELOP... » (1) 2. JAVA9 Featu Practice Speaking. niversity trainee... The Hub | Web de.

= & Tai Khoan ~

All Products

Ip 7 Plus Ip 6 Plus

Very expensive

5008 ° 4508 o

-} ==}
Figure 52. Localhost on Chrome and console for debugging.

44

PLORER Js indexjs

~ OPEN EDITORS src > IS
X Js

v REACT-REDUX-SHOPPING-CART

™ actions

& components

store = createStore(appReducers, devToolsEnhancer:

J5 Headerjs
5 M

document . getElenentById
rserviceWorker();

TERMINAL
Compile warnings.

. /src/components/Pre

Line 2: 'Product' is defined but nev
/src/components/CartIten.
Line 5: U ructor
Search for the ki
To ignore, add

> OUTLINE
> TIMELINE
NPM SCRIPTS
TOMCAT SERVERS.
JETTY SERVERS

MAVEN PROJECTS

Figure 53 Run localhost with terminal of Visual code.

Build the application for deployment

After developing successfully, the project is deployed in Github server. This is the link
for deployment the project in Github: https://hongduc-phan.github.io/React-Redux-
shopping-cart/

45

& @ github.com 08500008

B Vi-speak 5 lawer £5 Nana » (1) React Project JUNIOR DEVELOP... » (1) 2. JAVAS Featu Practice Speaking. University trainee... The Hub | Web de. Web developer int.. @ #Seasonwork

still be able to be restored

GitHub Pages

GitHub Pages is designed to host your personal, organization, or project pages from a GitHub repository.

v Your site is published at https://hongduc-phan.github.io/React-Redux-shopping-cart/
Source
Your GitHub Pages site is currently being built from the gh-pages branch. Learn more.

gh-pages branch ~

Theme Chooser
Select a theme to publish your site with a Jekyll theme. Learn more.

Choose a theme

Custom domain
Custom domains allow you to serve your site from a domain other than hongduc-phan. github. io. Learn

more.
Enforce HTTPS
— Required f te because you are using the default domain (hongduc-phan. github. io
HT s a layer of encryption that prevents o ing on or tampering with traffic

When your site will only be serv Learn more.

~

Figure 54. Github Pages for deployihé in setting tab.

46

C @ O NotSecure | hongduc-phan.github.io

5 Vaadin £5 Vi-speak 5 lawer [E5 Nana » (1) React Project. JUNIOR DEVELOP. » (1) 2. JAVA9 Featu. Practice Speaking. University trainee... The Hub | Web de. Web developer int.. @ #Seasonwork

= Trang Chd

All Products

Ip 7 Plus Ip 6 Plus Ip 8 Plus
Tk Tk 1000 ¢ ¢
i Very expensive Very less expensive Very more expensive

5008 ° 4508 ° 7008 °

Figure 55. Deployment project.

47

7 CONCLUSION

The main goal of the thesis was to study and use React Js Framework to implement
React project Web App through participating the practical Tama React project and
implementation the shopping cart application. Base on simple examples, theoretical
concepts, and advanced concepts, the thesis shows anything from basic to advanced
knowledge related to reactlS.

Even though React has not been popular in most of the web applications nowadays
because in recent years, having many popular frameworks are released to compete with
ReactJS as VuelS, Angular; Besides understanding both the basic and profound concepts
of ReactlS is a treasure key to use that in other flatforms as React Native in mobile
development.

React framework introduces a modern approach to develop web applications with single
page application concept. The React is being supported and standardized and it is not
an overstatement to conclude that the framework might be the future of web
application development.

48

REFERENCES

[1] Facebook, "React," 2020. [Online]. Available: https://reactjs.org/docs/introducing-
jsx.html. [Accessed 11 June 2019].

[2] Facebook, "React," Facebook, 2020. [Online]. Available:
https://reactjs.org/docs/react-
dom.html?fbclid=IwAROVSqPAQDrIH2i66dLNeUNGG_nd18AsYndOUfc280QdaE-
XXI--7C9HIu8. [Accessed 19 20 2019].

[3] M. Hamedani, "Programmingwithmosh," 2015. [Online]. Available:
https://programmingwithmosh.com/javascript/react-lifecycle-
methods/?fbclid=IwAR1xo0JDi3mR-
Td9sq9kkwHBWS5rQzH_cchEV8G1kRiIQETBAV5DT6Y9bbV5mw. [Accessed 12 7
2019].

[4] QED42, "QWDA42," 2020. [Online]. Available: https://www.ged42.com/blog/code-
splitting-in-react?fbclid=IwAROLVnaptYEg_7-
Ec3sEdgFOQV49phoASt)7YtDMtY22RwQF _nqgr8tWIwuU. [Accessed 12 6 2019].

[5] Facebook, "React," Facebook, 2020. [Online]. Available:
https://reactjs.org/docs/context.html. [Accessed 11 June 2019].

[6] Facebook, "React," Facebook, 2020. [Online]. Available:
https://reactjs.org/docs/forwarding-refs.html. [Accessed 13 June 2019].

[7] Facebook, "React," Facebook, 2020. [Online]. Available:
https://reactjs.org/docs/hooks-state.html. [Accessed 19 July 2019].

[8] CBS, "CBS, cast," CBS, 2020. [Online]. Available:

https://www.cbs.com/shows/swat/cast/215705/. [Accessed 3 August 2019].

[9] Insights, "Insights, innovatube," Insights, 07 March 2016. [Online]. Available:
https://insights.innovatube.com/redux-th%E1%BA%ADt-1%C3%A0-
%C4%91%C6%A1N-gi%E1%BA%A3N-ph%E1%BA%A7Nn-1-76a3fa2c31ab. [Accessed
19 August 2019].

[10 . Insights, Insights, 07 March 2016. [Online]. Available:

] https://insights.innovatube.com/redux-th%E1%BA%ADt-1%C3%A0-
%C4%91%C6%A1N-gi%E1%BA%A3N-ph%E1%BA%A7Nn-1-76a3fa2c31ab. [Accessed
19 August 2019].

[11 Viblo, "Viblo Asia," 2020. [Online]. Available: https://viblo.asia/p/redux-co-ban-
] m68200JdZkG?fbclid=IwAR3q7zySCM54vS395wfuLEk3VRVT71tvOEOE2ZwWvpaO1Sv
AChy4jrhmAf6s. [Accessed 5 6 2019].

[12 Insight, "Insight," Insights, 07 March 2016. [Online]. Available:

] https://insights.innovatube.com/redux-th%E1%BA%ADt-1%C3%A0-
%C4%91%C6%A1N-gi%E1%BA%A3N-ph%E1%BA%A7Nn-1-76a3fa2c31ab. [Accessed
19 August 2019].

[13 DevTo, "Devto," 2020. [Online]. Available: https://dev.to/oahehc/redux-data-flow-

] and-react-component-life-cycle-11n?fbclid=IwAROwtIgCTWuQimDh100qlpZ-
S4HJoPQOcq_-Oix_zFg10ON5SeDef ItKwl4. [Accessed 6 1 2020].

49

