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1. Introduction
The theory of affine connections is a classical topic in differential geometry, initially developped to
solve pure geometrical problems. It provides an extremely important tool to study geometrical structures
on manifolds and, as such, has been applied with great sources in many different settings. For affine
connections, a survey of the development of the theory can be found in [19] and references therein.
In [13], Garcı́a-Rio et al. introduced the notion of the affine Osserman connections. Affine Osserman
connections are well-understood in dimension two. For instance, in [5] and [13], the authors proved, in a
different way, that an affine connection is Osserman if and only if its Ricci tensor is skew-symmetric. The
situation is however more involved in higher dimensions where the skew-symmetry of the Ricci tensor
is a necessary (but not a sufficient) condition for an affine connection to be Osserman. The concept of an
affine Osserman connection has become a very active research subject. (See [6, 7, 8] for more details).

The aim of the present paper is to give examples of two families of affine Osserman connections
on 3 and 4 dimensional manifolds which are Ricci flat. Our paper is organized as follows. Section 1
introduces this topic. The section 2 contains some definitions and basic results we shall need. In section
3, we study the Osserman condition on a family of affine connection. The last section is devoted to the
study of Riemann extension that associates to an affine structure on a manifold a corresponding metric
of neutral signature on its cotangent bundle. It plays an important role in various questions involving the
spectral geometry of the curvature operator. (See [1, 2] for more informations).

2. Preliminaries
2.1. Affine manifolds
Let M be a m-dimensional smooth manifold and ∇ be an affine connection on M . Let us consider a
system of coordinates (u1, . . . , um) in a neighborhood U of a point p in M . In U , the connection is
given by

∇∂i∂j = Γkij∂k, (2.1)
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where
{
∂i = ∂

∂ui

}
1≤i≤m is a basis of the tangent space TpM and the functions Γkij(i, j, k = 1, · · · ,m)

are called the coefficients of the affine connection. The pair (M,∇) shall be called affine manifold.
We define a few tensor fields associated to a given affine connection ∇. The torsion tensor field T ,
which is of type (1, 2), is defined by

T (X,Y ) := ∇XY −∇YX − [X,Y ],

for any vector fields X and Y on M . The components of the torsion tensor T in local coordinates are

T kij = Γkij − Γkji.

If the torsion tensor of a given affine connection∇ vanishes, we say that∇ is torsion-free.
The curvature tensor field R, which is of type (1, 3), is defined by

R(X,Y )Z := ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,

for any vector fields X,Y and Z on M . The components in local coordinates are

R(∂k, ∂l)∂j =
∑
i

Rijkl∂i.

We shall assume that ∇ is torsion-free. If R = 0 on M , we say that ∇ is flat affine connection. It
is known that ∇ is flat if and only if around a point, there exists a local coordinates system such that
Γkij = 0 for all i, j and k.
We define the Ricci tensor Ric, of type (0, 2) by

Ric(Y,Z) = trace{X 7→ R(X,Y )Z}.

The components in local coordinates are given by

Ric(∂j , ∂k) =
∑
i

Rikij .

It is known, in Riemannian geometry, that the Levi-Civita connection of a Riemannian metric has sym-
metric Ricci tensor. But, this property is not true for an arbitrary affine connection which is torsion-free.
In fact, for property is closely related to the concept of parallel volume element (cf. [19] for more
details).
In a 2-dimensional manifold, the curvature tensorR and the Ricci tensor Ric are related by

R(X,Y )Z = Ric(Y, Z)X − Ric(X,Z)Y. (2.2)

For X ∈ Γ(TpM) and p ∈ M , we define the affine Jacobi operator JR with respect to X by JR(X) :
TpM −→ TpM such that

JR(X)Y := R(Y,X)X. (2.3)

for any vector field Y . The affine Jacobi operator satisfies JR(X)X = 0 and JR(αX)Y = α2JR(X)Y ,
for α ∈ R− {0} and X ∈ TpM .

2.2. The Riemann extension construction
Let N := T ∗M be the cotangent bundle of an m-dimensional manifold and let π : T ∗M → M be
the natural projection. A point ξ of the cotangent bundle is represented by an ordered pair (ω, p), where
p = π(ξ) is a point on M and ω is a 1-form on TpM . If u = (u1, . . . , um) are local coordinates on M ,
let u′ = (u1′ , . . . , um′) be the associated dual coordinates on the fiber where we expand a 1-form ω as
ω = ui′dui (i = 1, . . . ,m; i′ = i + m); we shall adopt the Einstein convention and sum over repeated
indices henceforth.

For each vector field X = Xi∂i on M , the evaluation map ιX(p, ω) = ω(Xp) defines on function on
N which, in local coordinates is given by

ιX(ui, ui′) = ui′X
i.

Afr. J. Pure Appl. Math.
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Vector fields on N are characterized by their action on function ιX; the complete lift XC of a vector
field X on M to N is characterized by the identity

XC(ιZ) = ι[X,Z], for all Z ∈ C∞(TM).

Moreover, since a (0, s)-tensor field on M is characterized by its evaluation on complete lifts of vec-
tors fields on M , for each tensor field T of type (1, 1) on M , we define a 1-form ιT on N which is
characterized by the identity

ιT (XC) = ι(TX).

Definition 2.1. Let (M,∇) be an affine manifold of dimension m. The Riemann extension ḡ of (M,∇)
is the pseudo-Riemannian metric of neutral signature (m,m) on the cotangent bundle T ∗M , which is
characterized by the identity

ḡ(XC , Y C) = −ι(∇XY +∇YX).

In the system of induced coordinates (ui, ui′) on T ∗M , the Riemann extension takes the form:

ḡ =

(
−2uk′Γ

k
ij Idm

Idm 0

)
, (2.4)

with respect to {∂u1 , . . . , ∂um , ∂u′
1
, . . . , ∂u′

m
}; here the indices i and j range from 1, . . . ,m, i′ = i+m,

and Γkij are the coefficients of the affine connection ∇ with respect to the coordinates (ui) on M . More
explicitly:

ḡ(∂ui , ∂uj ) = −2uk′Γ
k
ij , ḡ(∂ui , ∂u′

j
) = δji , ḡ(∂u′

i
, ∂u′

j
) = 0.

Let (M, g) be a pseudo-Riemannian manifold. The Riemann extension of the Levi-Civita connection
inherits many of the properties of the base manifold. For instance, (M, g) has constant sectional curva-
ture if and only if (T ∗M, ḡ) is locally conformally flat. However, the main applications of the Riemann
extensions appear when considering affine connections that are not the Levi-Civita connection of any
metric. We refer to Yano and Ishihara [21] for the proof of the following result:

Lemma 2.2. Let (M,∇) be an affine manifold. Let R̃ be the curvature operator of the Riemann exten-
sion (T ∗M, ḡ) and letR be the curvature operator of (M,∇). Then:

R̃hkji = Rhkji, R̃h
′

kji′ = −Rikjh, R̃h
′

kj′i = −Rjhik, R̃h
′

k′ji = −Rkhij ,

R̃h
′

kji = ua′
{
∇∂uh

Rakji −∇∂ui
Rakjh + ΓahtRtkji + ΓaktRtihj

+ΓajtRthik + ΓaitRtkjh
}
,

whereRδαβγ (respectively R̃δαβγ) denote the components ofR and R̃.

By Lemma, (T ∗M, ḡ) is locally conformally symmetric if and only if (M,∇) is locally symmetric.
Furthermore, (T ∗M, ḡ) is locally conformally flat if and only if (M,∇) is projectively flat. Any pro-
jectively flat pseudo-Riemannian manifold has constant sectional curvature. However, there are many
projectively flat affine connections. We have the following result:

Theorem 2.3. ( [13]) Let (M,∇) be a smooth torsion-free affine manifold. Then the following state-
ments are equivalent:

1. (M,∇) is affine Osserman.
2. The Riemann extension (T ∗M, ḡ) of (M,∇) is a pseudo-Riemannian Osserman manifold.

Afr. J. Pure Appl. Math.
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3. Affine Osserman manifolds

Let (M,∇) be a m-dimensional affine manifold, i.e., ∇ is a torsion free connection on the tangent
bundle of a smooth manifold M of dimension m. Let R be the curvature operator and JR(X) the
Jacobi operator with respect to a vector X ∈ TpM associated.

Definition 3.1. [14] One says that an affine manifold (M,∇) is affine Osserman at p ∈ M if the char-
acteristic polynomial of JR(X) is independent of X ∈ TpM . Also (M,∇) is called affine Osserman if
(M,∇) is affine Osserman at each p ∈M .

Theorem 3.2. [14] Let (M,∇) be a m-dimensional affine manifold. Then (M,∇) is called affine Os-
serman at p ∈ M if and only if the characteristic polynomial of JR(X) is PJR(X)[λ] = λm for every
X ∈ TpM .

Corollary 3.3. We say that (M,∇) is affine Osserman if Spect{JR(X)} = {0} for any vector X .

Corollary 3.4. If (M,∇) is affine Osserman at p ∈ M then the Ricci tensor is skew-symmetric at
p ∈M .

The affine Osserman manifolds arise naturally as generalized affine plane wave manifolds [12] and was
a fruitful field of inquiry [9, 10, 11]. Also, affine connections with skew-symmetric Ricci tensor have
received attention in the literature [4].

3.1. Example of affine Osserman connection on a 3-manifolds

LetM be a three-dimensional manifold and∇ a smooth torsion free affine connection. Choose a system
(u1, u2, u3) of local coordinates in a domaine U ⊂ M such that the affine connection ∇ is determined
by the functions f1, . . . , f6 given by the formulas

∇∂1∂1 = f1(u1, u2, u3)∂1;
∇∂1∂2 = f2(u1, u2, u3)∂1;
∇∂1∂3 = f3(u1, u2, u3)∂1;
∇∂2∂2 = f4(u1, u2, u3)∂1;
∇∂2∂3 = f5(u1, u2, u3)∂1;
∇∂3∂3 = f6(u1, u2, u3)∂1.

(3.1)

A straighforward calculation from (3.1) shows that the non-zero components of the curvature tensor are
given by

R(∂1, ∂2)∂1 = (∂1f2 − ∂2f1)∂1

R(∂1, ∂2)∂2 = (f1f4 + ∂1f4 − f22 − ∂2f2)∂1

R(∂1, ∂2)∂3 = (f1f5 + ∂1f5 − f2f3 − ∂2f3)∂1

R(∂1, ∂3)∂1 = (∂1f3 − ∂3f1)∂1

R(∂1, ∂3)∂2 = (f1f5 + ∂1f5 − f2f3 − ∂3f2)∂1

R(∂1, ∂3)∂3 = (f1f6 + ∂1f6 − f23 − ∂3f3)∂1

R(∂2, ∂3)∂1 = (∂2f3 − ∂3f2)∂1

R(∂2, ∂3)∂2 = (f2f5 + ∂2f5 − f3f4 − ∂3f4)∂1

R(∂2, ∂3)∂3 = (f2f6 + ∂2f6 − f3f5 − ∂3f5)∂1.

Afr. J. Pure Appl. Math.
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The non-zero components of the Ricci tensor are given by

Ric(∂2, ∂1) = f1f4 + ∂1f4 − f22 − ∂2f1;

Ric(∂2, ∂2) = f1f4 + ∂1f4 − f22 − ∂2f1
Ric(∂2, ∂3) = f1f5 + ∂1f5 − f2f3 − ∂2f3
Ric(∂3, ∂1) = ∂1f3 − ∂3f1
Ric(∂3, ∂2) = f1f5 + ∂1f5 − f2f3 − ∂3f2
Ric(∂3, ∂3) = f1f6 + ∂1f6 − f23 − ∂3f3.

The skew-symmetry of Ricci tensor means that, in any local coordinates, we have:
Ric(∂1, ∂1) = Ric(∂2, ∂2) = Ric(∂3, ∂3) = 0
Ric(∂1, ∂2) +Ric(∂2, ∂1) = 0
Ric(∂1, ∂3) +Ric(∂3, ∂1) = 0
Ric(∂2, ∂3) +Ric(∂3, ∂2) = 0.

(3.2)

According (3.1) and (3.2), we have the following:

Proposition 3.5. The Ricci tensor of the affine connection ∇ defined in (3.1) is skew-symmetric if the
functions fi, i = 1, . . . , 6 satisfy the following partial differential equations:

∂1f2 − ∂2f1 = 0 ∂1f3 − ∂3f1 = 0

∂1f4 − ∂2f2 + f1f4 − f22 = 0

∂1f6 − ∂3f3 + f1f6 − f23 = 0

2∂1f5 − ∂2f3 − ∂3f2 + 2f1f5 − 2f2f3 = 0.

Proof. It follows from (3.1) and (3.2).

�

Corollary 3.6. [8] Let∇ be as (3.1). Assume that f2 = f3 = f5 = 0, then the Ricci tensor of the affine
connection (3.1) is skew-symmetric if and only if the coefficients of the connection (3.1) satisfy

f1(u1, u2, u3) = f1(u1), ∂1f4 + f1f4 = 0, and ∂1f6 + f1f6 = 0.

Proposition 3.7. Let (M,∇) be a 3-dimensional affine manifold with torsion free connection given by
(3.1). Then (M,∇) is affine Osserman if and only if the Ricci tensor is skew-symmetric.

Proof. Since the Ricci tensor of any affine Osserman connection is skew-symmetric. It follows
that we have the following necessary conditions for the affine connection (3.1) to be Osserman

∂1f2 − ∂2f1 = 0 ∂1f3 − ∂3f1 = 0 ∂1f4 − ∂2f2 + f1f4 − f22 = 0

∂1f6 − ∂3f3 + f1f6 − f23 = 0 2∂1f5 − ∂2f3 − ∂3f2 + 2f1f5 − 2f2f3 = 0.

Then, the matrix associated to the affine Jacobi operator can be expressed, with respect to the coordinate
basis, as

(JR(X)) =

 0 b c
0 0 0
0 0 0

 ,

Afr. J. Pure Appl. Math.
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with

b = α1α3

(
2∂2f3 − ∂3f1 − ∂1f5 − f1f5 + f2f3

)
+α2α3

(
∂2f5 − ∂3f4 + f2f5 − f3f4

)
+α2

3

(
∂2f6 − ∂3f5 + f2f6 − f3f5

)
;

c = −α1α2

(
∂2f3 − 2∂3f2 + ∂1f5 + f1f5 − f2f3

)
−α2

2

(
∂2f5 − ∂3f4 + f2f5 − f3f4

)
−α2α3

(
∂2f6 − ∂3f5 + f2f6 − f3f5

)
.

The characteristic polynomial of the affine Jacobi operator is now seen to be: PJR(X)[λ] = −λ3.
�

Example 3.8. One can construct examples of affine Osserman connections. The following connection
on R3 whose non-zero coefficients of the cofficients are given by ∇∂2∂2 = u2u3∂1 and ∇∂3∂3 =
(u2 + u3)∂1 is affine Osserman.

3.2. Example of affine Osserman connection on a 4-manifolds
In the following M denotes a four-dimensional manifold and ∇ a smooth torsion-free affine connec-
tion. Choose a system {u1, u2, u3, u4} of local coordinates in a domaine U ⊂ M such that the affine
connection ∇ is determined by the functions f1, . . . , f6 given by the formulas:

∇∂1∂1 = f1(u1, u2, u3, u4)∂4
∇∂1∂4 = f2(u1, u2, u3, u4)∂4
∇∂2∂2 = f3(u1, u2, u3, u4)∂4
∇∂2∂3 = f4(u1, u2, u3, u4)∂4
∇∂3∂3 = f5(u1, u2, u3, u4)∂4
∇∂4∂4 = f6(u1, u2, u3, u4)∂4.

(3.3)

The non-zero components of the curvature tensor are given by

R(∂1, ∂2)∂1 = −∂2f1∂4, R(∂1, ∂2)∂2 = (∂1f3 + f2f3)∂4;

R(∂1, ∂2)∂3 = (∂1f4 + f2f4)∂4, R(∂1, ∂2)∂4 = −∂2f2∂4;

R(∂1, ∂3)∂1 = −∂3f1∂4, R(∂1, ∂3)∂2 = (∂1f4 + f2f4)∂4;

R(∂1, ∂3)∂3 = (∂1f5 + f2f5)∂4, R(∂1, ∂3)∂4 = −∂3f2∂4;

R(∂1, ∂4)∂1 = (∂1f2 − ∂4f1 + f22 − f1f6)∂4, R(∂2, ∂4)∂1 = ∂2f2∂4

R(∂2, ∂3)∂2 = (∂2f4 − ∂3f3)∂4, R(∂2, ∂3)∂3 = (∂2f5 − ∂3f4)∂4

R(∂1, ∂4)∂4 = (∂1f6 − ∂4f2)∂4, R(∂2, ∂4)∂2 = (−∂4f3 − f3f6)∂4

R(∂2, ∂4)∂3 = (−∂4f4 − f4f6)∂4, R(∂2, ∂4)∂4 = ∂2f6∂4

R(∂3, ∂4)∂1 = ∂3f2∂4, R(∂3, ∂4)∂2 = (−∂4f4 − f4f6)∂4

R(∂3, ∂4)∂3 = (−∂4f5 − f5f6)∂4, R(∂3, ∂4)∂4 = ∂3f6∂4.

The non-zero components of the Ricci tensor are given by

Ric(∂1, ∂1) = ∂1f2 − ∂4f1 + f22 − f1f6, Ric(∂1, ∂2) = ∂2f2,

Ric(∂1, ∂3) = ∂3f2, Ric(∂2, ∂2) = −∂4f3 − f3f6,
Ric(∂2, ∂3) = −∂4f4 − f4f6, Ric(∂3, ∂2) = −∂4f4 − f4f6,
Ric(∂3, ∂3) = −∂4f5 − f5f6,Ric(∂4, ∂1) = ∂1f6 − ∂4f2,
Ric(∂4, ∂2) = ∂2f6, Ric(∂4, ∂3) = ∂3f6.

Afr. J. Pure Appl. Math.
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Proposition 3.9. The Ricci tensor of the affine connection ∇ defined in (3.3) is skew-symmetric if the
functions f2 and f6 has the form

f2 = f(u1, u4) and f6 = f(u1, u4)

and fi, i = 1, . . . , 6 satisfy the following partial differential equations:

∂1f2 − ∂4f1 + f22 − f1f6 = 0 ∂4f3 + f3f6 = 0

∂4f5 + f5f6 = 0 ∂1f6 − ∂4f2 = 0 ∂4f4 + f4f6 = 0.

Now, if X =
∑4
i=1 αiX

i is a vector fields on a four-dimensional affine manifold (M,∇), then the
affine Jacobi operator heve the following form:

JR(X)∂i = α2
1R(∂i, ∂1)∂1 + α1α2R(∂i, ∂2)∂1 + α1α3R(∂i, ∂3)∂1

+ α1α4R(∂i, ∂4)∂1 + α1α2R(∂i, ∂1)∂2 + α2
2R(∂i, ∂2)∂2

+ α2α3R(∂i, ∂3)∂2 + α2α4R(∂i, ∂4)∂2 + α1α3R(∂i, ∂1)∂3

+ α2α3R(∂i, ∂2)∂3 + α2
3R(∂i, ∂3)∂3 + α3α4R(∂i, ∂4)∂3

+ α1α4R(∂i, ∂1)∂4 + α2α4R(∂i, ∂2)∂4 + α3α4R(∂i, ∂3)∂4

+ α2
4R(∂i, ∂4)∂4

and the matrix associated is given by

(JR(X)) =


0 0 0 0
0 0 0 0
0 0 0 0
a1 a2 a3 0

 ,

where

a1 = −α1α2∂2f1 − α1α3∂3f1 + α2
2(∂1f3 + f2f3)

+2α2α3(∂1f4 + f2f4) + α2
3(∂1f5 + f2f5)

a2 = α2
1∂2f1 − α1α2(∂1f3 + f2f3) + α2α3(∂2f4 − ∂3f3)

−α1α3(∂1f4 + f2f4) + α2
3(∂2f5 − ∂3f4)

a3 = α2
1∂3f1 − α1α2(∂1f4 + f2f4)− α2

2(∂2f4 − ∂3f3)

−α1α3(∂1f5 + f2f5)− α2α3(∂2f5 − ∂3f4)

It is easy to see that the characteristic polynomial of the affine Jacobi operator is PJR(X)[λ] = λ4. We
have the following result:

Proposition 3.10. Let (M,∇) be a 4-dimensional affine manifold with torsion free connection given by
(3.3). Then (M,∇) is affine Osserman if and only if the Ricci tensor is skew-symetric.

Example 3.11. The following connection on R4 whose non-zero coefficients of the cofficients are given
by ∇∂1∂4 = (u1 + u4)∂4 and ∇∂4∂4 = (u1u4)∂4 is affine Osserman

4. Pseudo-Riemannian Osserman manifolds
Let (M, g) be a pseudo-Riemannian manifold of signature (p, q) and R be the curvature tensor of the
Levi-Civita connection. If (M, g) is Riemannian and if it is flat or it is local rank one symmetric space,
then the set of local isometries acts transitively on the unit sphere bundle S(M, g). Conversely, the
eigenvalues of the Jacobi operator JR are constant on the unit sphere bundle S(M, g). Robert Osserman
[20] wondered if the converse holds; later authirs called this problem the Osserman conjecture. Works of
Chi [3], of Gilkey et al. [15] and of Nikolayevsky [16, 17] show that any complete and simply connected
Osserman manifold of dimension m 6= 16 is a rank-one symmetric space; the 16-dimensional setting is

Afr. J. Pure Appl. Math.
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exceptional and the situation is still not clear in that setting although there are some partial result due,
again, to Nikolayevsky [18]. In the Lorentzian setting, it is known [14], that a Lorentzian Osserman
manifold has constant sectional curvature; the geometry of such manifolds is very special.
Let S±(M, g) := {X ∈ TM : g(X,X) = ±1} the pseudo-sphere unit bundles. One says that a
pseudo-Riemannian manifold (M, g) is Osserman if the eigenvalues of JR are constant on the pseudo-
sphere unit bundles S±(M, g). It is known that there exist pseudo-Riemannian Osserman manifolds
which are neither flat, nor local rank one symmetric spaces ([14]).

Example 4.1. Let M = R4 with usual coordinates {u1, u2, u3, u4}. Then

g = u1u3du
1 ⊗ du1 + adu1 ⊗ du2 + bdu1 ⊗ du3 + adu2 ⊗ du1

+u2u4du
2 ⊗ du2 + bdu2 ⊗ du4 + bdu3 ⊗ du1 + bdu4 ⊗ du2

define a pseudo-Riemannian Osserman metric on R4 of signature (2, 2) at the points where u1 = 0 or
u1u

2
3 − 3bu3 + bu1 = 0.

Next we will use the Riemann extension to exhibit a pseudo-Riemannian Osserman metrics of signatures
(3, 3) and (4, 4).

1. Let (u1, u2, u3) be the local coordinates on a 3-dimensional affine manifold (M,∇). We expand
∇∂i∂j =

∑
k f

k
ij∂k for i, j, k = 1, 2, 3 to define the Christoffel symbols of ∇. Let ω = u4du1 +

u5du2 + u6du3 ∈ T ∗M : (u4, u5, u6) are the dual fiber coordinates. The Riemann extension is
the pseudo-Riemannian metric ḡ on the cotangent bundle T ∗M of neutral signature (3, 3) defined
by setting

ḡ(∂1, ∂4) = ḡ(∂2, ∂5) = ḡ(∂3, ∂6) = 1,

ḡ(∂1, ∂1) = −2u4f
1
11 − 2u5f

2
11 − 2u6f

3
11,

ḡ(∂1, ∂2) = −2u4f
1
12 − 2u5f

2
12 − 2u6f

3
12,

ḡ(∂1, ∂3) = −2u4f
1
13 − 2u5f

2
13 − 2u6f

3
13,

ḡ(∂2, ∂2) = −2u4f
1
22 − 2u5f

2
22 − 2u6f

3
22,

ḡ(∂2, ∂3) = −2u4f
1
23 − 2u5f

2
23 − 2u6f

3
23,

ḡ(∂3, ∂3) = −2u4f
1
33 − 2u5f

2
33 − 2u6f

3
33.

Let consider the affine Osserman connection given in the example (3.8). Its Riemann extenxion ḡ
on R6 is define by:

ḡ =


0 0 0 1 0 0
0 −u4u2u3 0 0 1 0
0 0 −2u4(u2 + u3) 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 . (4.1)

The pseudo-Riemannian metric (4.1) is Osserman of signature (3, 3).
2. Let (u1, u2, u3, u4) be the local coordinates on a 4-dimensional affine manifold (M,∇). We ex-

pand ∇∂i∂j =
∑
k f

k
ij∂k for i, j, k = 1, 2, 3, 4 to define the Christoffel symbols of ∇. Let

ω = u5du1 + u6du2 + u7du3 + u8du4 ∈ T ∗M : (u5, u6, u7, u8) are the dual fiber coordi-
nates. The Riemann extension is the pseudo-Riemannian metric ḡ on the cotangent bundle T ∗M

Afr. J. Pure Appl. Math.
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of neutral signature (4, 4) defined by setting

ḡ(∂1, ∂5) = ḡ(∂2, ∂6) = ḡ(∂3, ∂7) = ḡ(∂4, ∂8) = 1,

ḡ(∂1, ∂1) = −2u5f
1
11 − 2u6f

2
11 − 2u7f

3
11 − 2u8f

4
11,

ḡ(∂1, ∂2) = −2u5f
1
12 − 2u6f

2
12 − 2u7f

3
12 − 2u8f

4
12,

ḡ(∂1, ∂2) = −2u5f
1
12 − 2u6f

2
12 − 2u7f

3
12 − 2u8f

4
12,

ḡ(∂1, ∂3) = −2u5f
1
13 − 2u6f

2
13 − 2u7f

3
13 − 2u8f

4
13,

ḡ(∂1, ∂4) = −2u5f
1
14 − 2u6f

2
14 − 2u7f

3
14 − 2u8f

4
14,

ḡ(∂2, ∂2) = −2u5f
1
22 − 2u6f

2
22 − 2u7f

3
22 − 2u8f

8
22,

ḡ(∂2, ∂3) = −2u5f
1
23 − 2u6f

2
23 − 2u7f

3
23 − 2u8f

4
23,

ḡ(∂2, ∂4) = −2u5f
1
24 − 2u6f

2
24 − 2u7f

3
24 − 2u8f

4
24,

ḡ(∂3, ∂3) = −2u5f
1
33 − 2u6f

2
33 − 2u7f

3
33 − 2u8f

4
33,

ḡ(∂3, ∂4) = −2u5f
1
34 − 2u6f

2
34 − 2u7f

3
34 − 2u8f

4
34,

ḡ(∂4, ∂4) = −2u5f
1
44 − 2u6f

2
44 − 2u7f

3
44 − 2u8f

4
44.

Let consider the affine Osserman connection given in the example (3.11). Its Riemannian extenx-
ion ḡ on R8 is define by:

ḡ =



0 0 0 −2u8(u1 + u4) 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 −2u8u1u4 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0


(4.2)

The metric (4.2) is Osserman of signature (4, 4)

The affine Osserman connections are of interest, not only in the affine geometry, but also in the study
of the pseudo-Riemannian Osserman metrics since they provide some nice examples of Osserman man-
ifolds whose Jacobi operators have non-trivial Jordan normal form and which are not nilpotent. It has
long been a task in this field to build examples of Osserman manifolds which not nilpotent and which
exhibited non-trivial Jordan normal form. We will refer [1, 2] and references therein for more informa-
tion.

References
[1] E. Calviño-Louzao, E. Garcı́a-Rio, P. Gilkey and R. Vázquez-Lorenzo, The geometry of modified Riemannian

extensions, Proc. R. Soc. A 465 (2009), 2023-2040.
[2] E. Calviño-Louzao, E. Garcı́a-Rı́o, P. Gilkey and R. Vázquez-Lorenzo, Higher-dimensional Osserman metrics

with non-nilpotent Jacobi operators, Geom. Dedicata 156 (2012), 151-163.
[3] Q S. Chi, A curvature characterization of certain locally rank-one symmetric spaces, J. Differ. Geom., 28

(1988), 187-202.
[4] A. Derdzinski, Connections with skew-symmetric Ricci tensor on surfaces, Results Math. 52 (2008), 223-245.
[5] A. S. Diallo, Affine Osserman connections on 2-dimensional manifolds, Afr. Dispora J. Math., 11 (2011), (1),

103-109.
[6] A. S. Diallo, The Riemann extension of an affine Osserman connection on 3-dimensional manifold, Glob. J.

Adv. Res. Class. Mod. Geom., 2 (2013), (2), 69-75.
[7] A. S. Diallo and M. Hassirou, Examples of Osserman metrics of (3, 3)-signature, J. Math. Sci. Adv. Appl., 7

(2011), (2), 95-103.

Afr. J. Pure Appl. Math.



10 Mouhamadou Hassirou, Boubacar Moundio, Issa Ousmane Toudou

[8] A. S. Diallo and M. Hassirou, Two families of affine Osserman connections on 3-dimensional manifolds, Afr.
Diaspora J. Math., 14 (2012), (2), 178-186.

[9] A. S. Diallo, P. G. Kenmogne and M. Hassirou, Affine Osserman connections which are locally symmetrics,
Glob. J. Adv. Res. Class. Mod. Geom., 3, (2014), (1), 1-6.
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