RIJKSINSTITUUT VOOR VISSERIJONDERZOEK Netherlands Institute for Fishery Investigations

Haringkade 1 - P.O. box 68 - 1970 AB IJmuiden - the Netherlands phone.: +31 2550 64646 - telex 71044 rivo nl

Department:

Aquaculture

bille

Report:

AQ 88-07

Final Report Release of Mullet Fry project In Fayoum Governorate, Egypt.

Author(s):

Drs. L.J.K. Kleijn

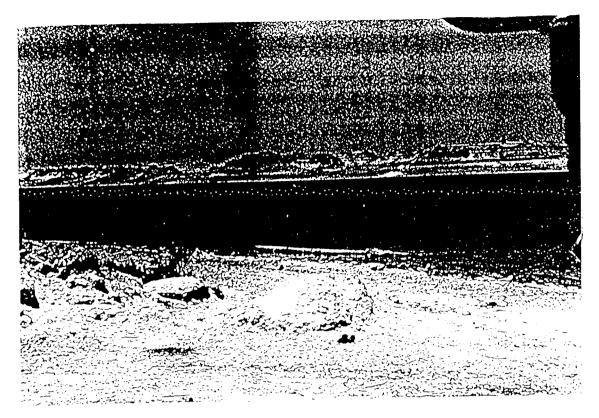
Project: Project leader Date of publishing: 104 Drs. R. Dijkema November 17th, 1988

This report has been made at the request of the Netherlands Ministry of Foreign Affairs, Directorate General Of International Cooperation, DAF/NF., under number 0239194.

The Management of the Netherlands Institute for Fishery Investigations accepts no responsibility for the follow-up damage as well as detriment originating from the application of operational results, or any other data acquired from the Netherlands Institute for Fishery Investigations from third party risks in connection with this application.

lable			da	tiona		1	
1.							
2.	Introduction						
3.	Methods						
	A. Dissolved oxygen (D.O.)						
	Β.	B. Temperature1					
	С.	C. Electric conductivity (Ec)1					
	D.	pH	· · · · · · · · · · · · · · · · · · ·			.13	
	E.	pH1 Transparency					
	Ĝ	Bottom pro	files			13	
	н Ц	Qualitativ	e coarse t	alankton		15	
	I.	Quantitativ	e coarse p	litative plank	cton	15	
	I. J						
4	•••						
4.							
	4.1		gy	••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	.17	
		4.1.1.					
			4.1.1.1.		oxygen		
			4.1.1.2.	Temperature.		.18	
			4.1.1.3.	Electric condu	uctivity	.19	
			4.1.1.4.	pH	-	.20	
			4.1.1.5.		/		
			4.1.1.6.		ature		
			4.1.1.7.		les		
		4.1.2.					
		4.1.2.	4.1.2.1.		oxygen		
			4.1.2.2.		охуден		
				Floatria cond	uctivity	22	
			4.1.2.3.				
			4.1.2.4.		••••••		
			4.1.2.5.		·		
			4.1.2.6.		ature		
			4.1.2.7.		les		
		4.1.3.					
			4.1.3.1.	Dissolved	oxygen	.27	
			4.1.3.2.	Temperature.		.27	
			4.1.3.3.		uctivity		
			4.1.3.4.		·····		
			4.1.3.5.		/		
			4.1.3.6.		ires		
			4.1.3.7.	Bottom profil	les	30	
		111FI					
	4.2				•••••••••••••••••••••••••••••••••••••••		
	4.2	4.2.1.					
		4.2.1.	-				
			4.2.1.1.		eries		
				4.2.1.1.1.	Length frequency		
				4.2.1.1.2.	Length/weight relations		
				4.2.1.1.3.	Mullet fry transport		
			4.2.1.2.	Plankton			
				4.2.1.2.1.	280 μ samples	.39	
				4.2.1.2.2.	60 μ samples		
		4.2.2.	Wadi Raya	an I	• • •	.41	
			4.2.2.1.	Fish and fish	eries	.41	
				4.2.2.1.1.	Length frequency		
				4.2.2.1.2.	Length /weight relations		
				4.2.2.1.3.	Mullet fry transport		
			4.2.2.2.	Plankton			
			7.2.2.2.	4.2.2.2.1.	280 μ samples		
				4.2.2.2.2.	60 μ samples	.42	

of contenter


.....

		4.2.3.	Wadi Rayan III lake44			
			4.2.3.1.	Fish and fisheries44		
				4.2.3.1.1. Length frequency		
				4.2.3.1.2. Length /weight relations44		
				4.2.3.1.3. Fry transport		
			4.2.3.2.	Plankton44		
				4.2.3.2.1. 280 μ samples44		
				4.2.3.2.2. 60 μ samples		
		4.2.4.				
5	Discu					
	5.1.	Limnolo	gy			
		5.1.1	Lake Qa	run49		
			5.1.1.1.	Dissolved oxygen49		
			5.1.1.2.	Temperature		
			5.1.1.3.	Electric conductivity		
			5.1.1.4	pH52		
			5.1.1.5.	Transparency52		
			5.1.1.6.	Air temperature		
			5.1.1.7.	Bottom profiles		
		5.1.2		yan I lake53		
			5.1.2.1.	Dissolved oxygen53		
			5.1.2.2.	Temperature53		
			5.1.2.3.	Electric conductivity		
			5.1.2.4.	pH54		
			5.1.2.5.	Transparency		
			5.1.2.6.	Air temperature		
			5.1.2.7.	Bottom profiles		
		5.1.3.		yan III lake55		
			5.1.3.1.	Dissolved oxygen		
			5.1.3.2	Temperature		
			5.1.3.3.	Electric conductivity		
			5.1.3.4.	pH56		
			5.1.3.5.	Transparency		
			5.1.3.6.	Air temperature		
			5.1.3.7.	Bottom profiles		
	<i>-</i>	5.1.4.	El Gameel.			
	5.2.	Biology				
		5.2.1.	Lake Qa	run		
			5.2.1.1.	Fish		
				5.2.1.1.1. Length frequency		
				5.2.1.1.2. Length / weight relation61		
				5.2.1.1.3. Mullet Fry Transport		
			5.2.1.2.	Plankton		
				5.2.1.2.1. 280 μ samples		
				5.2.1.2.2. 60 μ samples64		
		5.2.2.	Wadi Raya			
			5.2.2.1.	Fish and fisheries		
				5.2.2.1.1. Length frequency		
				5.2.2.1.2. Length/weight relation70		
			6 9 9 9	5.2.2.1.3. Mullet fry transport		
			5.2.2.2.	Plankton		
				5.2.2.2.1. 280 μ samples		
				5.2.2.2.2. 60μ samples		

.

-

		frequency74
		weight relation80
		fry transport83
	5.2.3.2.1. 280 μ	samples83
		mples83
5.2.4.		
5.2.5.	Fish species caught in the Wadi Ra	avan lakes85
5.2.6	Fish species caught in lake Qarun.	
5.2.7	Shrimp species found in lake Qaru	in85
6. References	····	
Appendix I Tables	Laka Qamm	1 - 27
	Lake Qarun Wadi Rayan I lake	1 - 27
	Wadi Rayan III lake	1 - 22
	El Gameel	1 - 3
Appendix II Maps		1 5
	Lake Qarun	1 - 13
	Wadi Rayan I lake	1 - 13
	Wadi Rayan III lake	1 - 12

Scenery of lake Qarun near "Shell" profile.

Returning from a survey on lake Qarun.

ABSTRACT.

A limnological and biological study in three different lakes of the Fayoum governorate (Egypt) was carried out, to establish their maximum sustainable yield and their environmental conditions.

Transports of mullet fry were monitored to obtain insight in the mortality during the transplantation from the Mediterranean to the Fayoum.

Fish and fisheries statistics were collected and results analyzed.

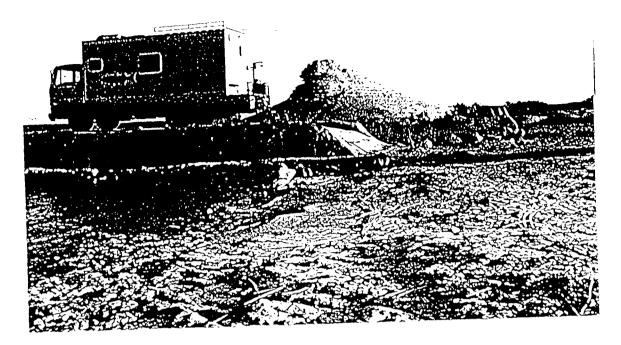
Overall conclusion was that too many fry are transplanted at the moment to Fayoum.

The survival rate of the fry during their transport is well within the acceptable limits.

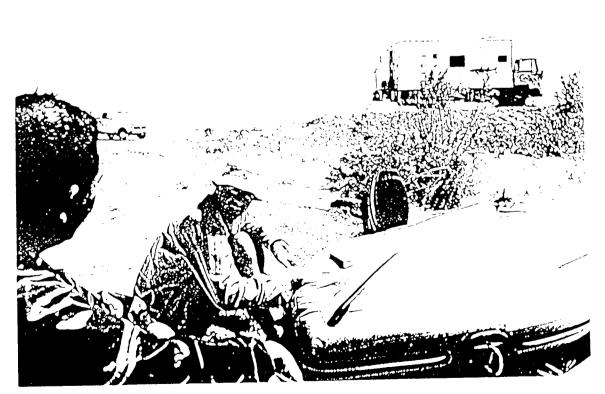
Some recommendations are given to improve the fisheries of the lakes and to ensure continuation of production.

Acknowledgements

The study was carried out through a grant from the Netherlands government, in their scheme of international cooperation. The RIVO (Netherlands Institute of Fisheries Research) was the executing agency, they worked in cooperation with the GAFRD (General Authority of Fish Resources Development) in Cairo. The fieldwork was carried out by mr. L.J.K.Kleijn, fishery biologist from the Netherlands together with mr.Magdi A.Saleh, veterinarian (biologist) from Egypt.


Plankton samples were analyzed by mrs. Gehan Embaby and mr. Magdi A. Saleh.

Water samples were analyzed by DRI (Drainage Research Institute, Cairo) and Ein Shams University in Cairo and by IWACO and ICW in the Netherlands.


The report was made by mr. L.J.K.Kleijn in cooperation with mr. F.Storbeck, who made the drawings and helped with the lay out. Mr K.Bijl was responsible for the financial supervision.

Mr. H.Bakkernes and mr. D. den Uijl constructed the tanks and watersupply system for the receiving station at El Gameel.

Mr.R.Dijkema had the overall supervision from the Netherlands side, his counterpart from the Egyptian side was mr. H.Barakat.

Camping site at Wadi Rayan I lake.

1. SUMMARY AND RECOMMENDATIONS.

Summary:

Short term aims of the project were:

a./To formulate a solution for the problem of fry mortality during transplantation. This proved, after monitoring a few transplantations, to be no problem at all, as the mortality rate was well within the acceptable limits. The mortality rates recorded, lay between 1 and 10%, the latter level occured only when the trucks were delayed and had to stay overnight in Cairo or Fayoum town and the aircompressor was not used. See chapters on mullet fry transport.

GAFRD staff and staff from the fishery cooperatives were trained to use the compressor during delays and how to handle and release the fry into the lakes.

b / To find the causes of and to formulate a solution for mortality of young mullets in nursery ponds. The mortality rate of young mullets in a nursery pond in lake Qarun proved to be between 25 and 35 %, which is a very acceptable level. See chapter 5.2.1.1.3. The mortality rates in the nursing ponds of the Wadi Rayan lakes have not been established properly because of the difficult local conditions, but it is to be expected to be much higher as the ponds were of poor construction, too small and the watersupply to irregular.

Acclimatization of the fry, when transplanted from the marine environment of the transport tanks to the fresh water environment of the Rayan lakes proved to be a delicate matter, for which responsible supervision will be indispensible.

c / To improve intermediate storage of mullet fry between capture and transportation, by installing a pilot scale storage facility. This storage facility was built in El Gameel, Port Said governorate. The fry production of the area proved to be of such a limited scale that no permission was obtained to use the facility to provide the Fayoum lakes with the needed fry. The available fry was needed for the fishponds in the province of Port Said. Practically all fry transplanted to the Fayoum came from El Girby, Damietta governorate. The existing facilities proved to be working satisfactory and the transfer of the pilot facilities to El Girby was a complicated matter, which could not be solved within the project period.

The pilot scale facilities proved to work satisfactory. There were some problems with the water supply as the site was build on an area where natural water had to be pumped from about 70 m distance and well water proved to be unsuitable.

d / To find a methology for monitoring the stock and catches of mullets in lake Qarun. This aim was included in an overall stock assessment of the three Fayoum lakes. See chapters on fish and fisheries. In order to be able to predict future production of the lakes a study was carried out into the limnological and biological features of the three Fayoum lakes. The following parameters were sampled : Dissolved oxygen (D.O.), temperature (t), electric conductivity (Ec), pH, transparency, air temperature and bottom profiles. See chapters on limnology. Beside these physical data the following biological data were collected: Quantitative plankton with a 280 μ townet, qualitative and quantitative plankton with a 60 μ net, see chapters on plankton and finally, length and length weight relations of the most important fish species.

The three lakes : Qarun, Wadi Rayan I and Wadi Rayan III, show distinctive characteristics.

surface	mean depth	volume	Ec a	verage production
in ha.	in m.	in m ³ x 10 ⁶	in mS/cm.	in kg/ha/year
23 000	4.6	1060	41.3	90-120
5 090	10.7	545	2.01	150-200
6 200*	11.8	730	5.14	40-50
7 700**	11.0	850		
	in ha. 23 000 5 090 6 200*	in ha. in m. 23 000 4.6 5 090 10.7 6 200* 11.8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

* is the situation at the moment

** is the situation when evaporation and inflow of drainage water are in balance

Dissolved oxygen is nearly always around full saturation at all depths.Except during summer, when in lake Qarun and in Wadi Rayan I lake, there is an oxycline below which anaerobic conditions prevail but only for a short period. Wadi Rayan III is still too poor in

organic material for an oxycline to occur, but during summer there is a slow decline in oxygen content with increasing depth.

The pH is on the alkaline side for all three lakes and is about 8.5 throughout the water column.

The temperatures vary according to season .The variances between the lakes are minimal.Summer temperature averages 27.5 °C, for autumn and spring this is 19.2 °C and during winter the temperature drops to 14.9 °C.The absolute minimum registered is 13.9 °C in lake Qarun and the absolute maximum was also recorded in lake Qarun and was 32.0 °C.For Rayan I these figures are 14.6 and 28.8 °C and for Rayan III 14.4 and 30.5 °C respectively.

Lake Qarun is a saline lake with a total dissolved salt level of 32.3 to 38.2 g/l.(The difference is caused by the difference of waterlevel). The saltload of the lake increases with about 500 kiloton per year, which corresponds with an increase of about 0.5 g/l per year. It is calculated that the critical level of about 50 g/l (when most of the species which occur in the lake will cease to reproduce ,to grow or will die)will be reached in the year 2008 at a lake level of -44 m.MSL, or in 2032 at a lake level of -43 m.MSL. When the salt extraction plant , which is supposed to remove about 250 kiloton per year, will become operational in 1990, than the critical stage at the different levels will be reached in the year 2026 or 2174 respectively.

From the original freshwater species only Tilapia zillii, Oreochromis niloticus, and O. aureus remain, the last two species only in areas where fresh water is drained into the lake. O.niloticus shows a stunted growth, they are in average about 15 % smaller than those from the other lakes. In 1928 grey mullet was introduced to replace the disappearing freshwater species. The yearly production of grey mullet varied from 88 ton in 1987/88 to 484 ton in 1985/86. The number of mullet fry stocked into lake Qarun varied from 137 000 in 1933 to 53 000 000 in 1985. There seems to be no relation between the number of fry released and the amount of fish caught (provided that the critical number of fry is stocked annually). The Maximum Sustainable Yield for grey mullet (mostlyLiza ramada and Mugil cephalus) of the lake is about 500 ton and for this an estimated 3 000 000 fry per year are needed. Fry has to be stocked every year as no spawning takes place in the lake. Other important species successfully introduced in the lake are; sole (Solea aegyptiaca) in 1938 and shrimp (Metapenaeus ssp and Penaeus ssp) in 1976.Less successful introductions have been seabass (Dicentrarchus labrax) and seabream (Sparus auratus). Total production of the lake is officially about 1 100 ton per year but when the unrecorded fish are added, than the production is likely to be 2 000 to 2 500 ton per year.(i.c. a production of 90-115 kg/ha/year). Which is the maximum sustainable yield of this lake with the available species. The result of stocking fry in nursery ponds, where lake water can be mixed with drainage water, is very promising. Extension of the existing ponds for full scale aquaculture seems to be feasible, provided that they are not fully dependable on lake water. The increasing salinity of the lake would shorten the usefulness of these ponds.

Dissolved oxygen of the water of the lake seems only during part of the summer, at some deeper points, to be below the critical level, but the shallowness of the lake and the frequent strong winds stir the watermass enough to guarantee a sufficient oxygen level through most of the year.

Wadi Rayan I lake is a more or less fresh water lake with a salt content of about 1.5 g/l. This lake is the most stable of the three lakes. There is a constant flushing with drainage water from the Fayoum. The lake came into being in 1974 when water was led into the depression. In 1980 the lake reached its maximum level and excess water started to flow to the next depression. (Wadi Rayan II and III).

The fish population of the lake consists of indigenous species ,which have come into the lake with the drainage water and of some introduced species. Of the latter, grey mullet are the most important .They thrive in this lake and account for about 50 % of the total catch. They are in average more than 15 % larger than those of the other lakes. The total yearly production of the lake is at the moment about 500 ton (officially), which means ,

when non recorded catches are added about 1 000 ton of fish.(a production of 200 kg/ha/year), which is a high yield for a natural lake.

The amount of fry released in Wadi Rayan I varied from 1 097 000 in 1984 to 20 170 000 in 1987. But here too the number of fry really needed to produce the maximum sustainable yield for this species is much less than the 20 million released in 1987. It is estimated that between 1 and 2 million will be enough to produce the 500 ton which the lake is capable to produce. Great care should be taken to acclimatize the fry properly when they are transferred from the saline water of the transport tanks to the fresh water of the lake. Although the fry seem to be very sturdy, the number lost by bad handling can be reduced with proper treatment.

Wadi Rayan I lake is the only one with an extensive phytoplankton bloom and with a dense growth of reed along its shores.

It is also the only one where a water current is detectable by measuring the Ec.

The introduction of grass carp, common carp and maybe freshwater prawns might increase the production of the lake as new niches will be occupied.

Wadi Rayan III lake is the most unstable of the Fayoum lakes. Water only started to flow into this depression in 1980 and the maximum level has not yet been reached. This level will de reached when the total surface of the lake induces an evaporation which will be in balance with the inflow of water. There is no other way for water to disappear or it would be by seepage to another depression nearby.

The water of this lake is brackish, the salt concentration of the lake is, at the moment, about 3 gram per liter, but because of the yearly influx of salts this salt level will raise with about 0.25 gram per liter per year in about 70 years marine fish will have to be introduced as several of the existing fresh water species will disappear. The total surface of the lake is thought to be 6 200 ha at the moment and the balance of inflowing water and evaporation will be reached when the lake has a surface of approximately 7 700 ha.

Fish production of this lake is the lowest of the three lakes, about 40 kg./ha./year., which is to be expected as the fertility of the soil is very low, and there is hardly any organic material available. This is most likely also the reason why there is no distinct oxycline in this lake during summer . In the future a raise in fish production can be expected to possibly 100 kg/ha/year this means, with a lake of 7 700 ha., a production of 770 ton. At the moment the same species are caught as in Rayan I, but in the future this will be different. In about 70 years the salinity will be between 15 and 20 gram per liter, which is the critical level for most of the existing species. After this period, marine fish will have to be introduced to replace the disappearing fresh water species. Grey mullet species

(Liza ramada, Liza aurata and Mugil cephalus) have been introduced since 1986 but obviously were present in the lake before that date (they were already caught during the 1985/86 season). There seems to be a possibility that they spawn naturally in the lake as local fishermen claim, this should be studied. The actual number of fry needed to produce the maximum sustainable yield may therefore be drastically reduced. It is anyhow thought that no more than 1.5 million fry are needed to produce the maximum sustainable yield of this species.

Recommendations:

In order to improve and or maintain the fish production of the three Fayoum lakes ,the following recommendations have been made :

a. Human efforts:

- 1. Responsible supervision will be necessary during the unloading of the fry transporttrucks, in particular at Wadi Rayan lakes, where acclimatization is needed, in order to minimize the mortality rate and to optimize the use of the available fry.
- 2. The permanent employment of a responsible and capable person, to collect statistical data on the fish catches at the landing sites, will provide better information. This person should visit every landing site at least once a month and record in detail catches and measure samples of the most important species.

b. Biological efforts:

I. With the perspective of maintaining and improving mullet catches;

3. The amount of mullet fry to be stocked in the three lakes can be reduced considerably, particularly for lake Qarun. For this lake it could be calculated, with almost certainty that 3 million fry will be enough to produce the maximum sustainable yield of 400t. of mullet from the lake.

4. The construction of fry collecting stations at the Mediterranean seems to be superfluous, with the existing system of distribution at El Mex, El Girby, El Raswa and other sites. It only promotes extra manipulation of the fry.

5. More research is advisable to determine the optimal time needed for the acclimatization of fry to their new environment.

6. Use the nursery enclosures and/or ponds of the Fayoum lakes as fishponds after fingerlings have been released. For example by keeping 10 % of the fingerlings, preferably the larger ones. These can be fished and marketed in December, after which the ponds have to be prepared again for the next fry transplantation.

First the enclosures should be leveled, enlarged and modified in such a way that the water depth will be between 0.7 and 1.5 m.. They should be constructed in such away that they can receive water by gravity and do not have to be dependent on waterpumps.

7. The statement from fishermen of Wadi Rayan III lake, that they saw mullet fry from their own stock, should be studied. Faouzi 1936 states that *Liza ramada* (El Zarka, claimed that it was *Liza saliens*), spawned in lake Qarun. In a deep (5 m) spot they found eggs and larvae. It might therefore be possible that grey mullet need to have water of a certain depth, in order to be able to spawn, this in combination with an influx of water with a lower salinity. This is the case in Wadi Rayan III, where the inflowing water has half the salinity of the lake water and the maximum depth is over 25 m..

II. With the perspective of inproving the fish production of the lakes in general;

8. Introduction of milkfish (*Chanos chanos*)in lake Qarun might improve production.

9. Introduction of silver carp in Wadi RayanI could improve production (may be milkfish and grass carp (*Ctenopharyngodon idella*) too).

10. Common carp (*Cyprinus carpio*) and grass carp could increase the fertility of Wadi Rayan III lake.

The introductions mentioned under 9, 10 and 11 are in a way harmless : If the experiment does not succeed, the termination of stocking would quickly halt the presence of these species in the lakes as they will not reproduce naturally in these waters.

11. The freshwater prawn *Macrobrachium rosenbergii*, might be cultured and/or stocked in the Wadi Rayan region.

12. Research should be carried out on the effect of predators, sea bass (*Dicentrarchus labrax*) for example, on the stocks of mullet and tilapias. In some cases the removal of predators has caused a negative effect on the fishery yield.

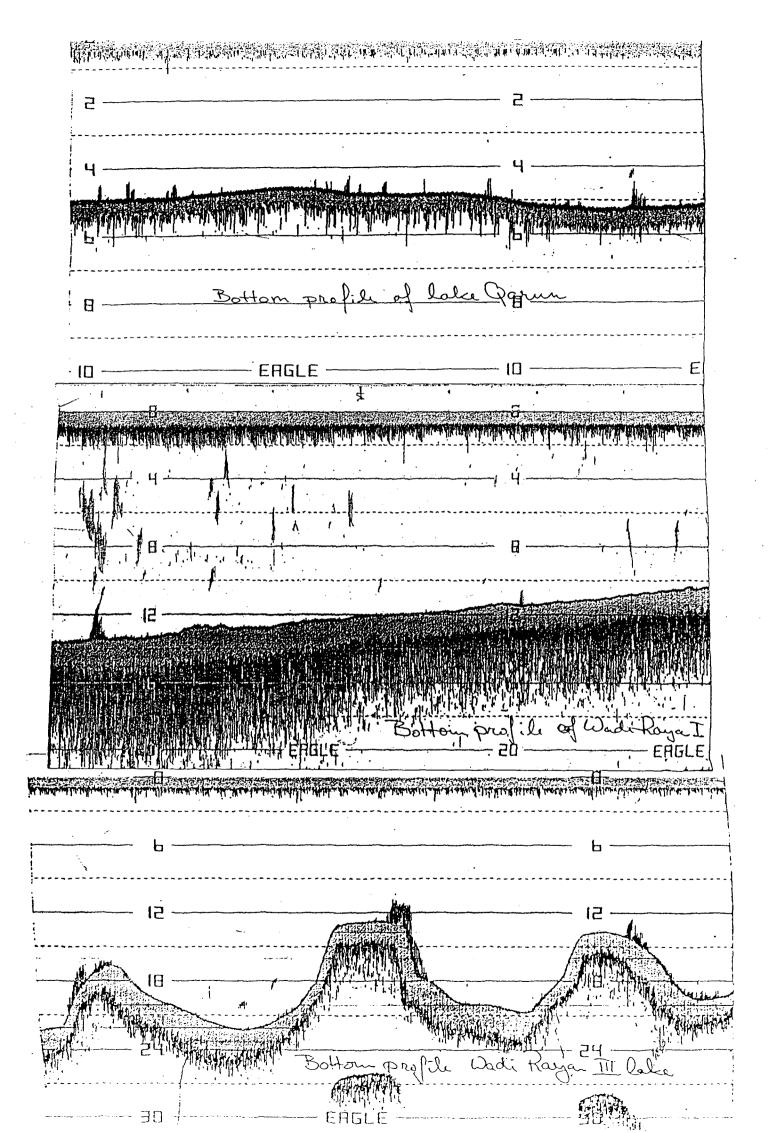
13. A study should be carried out to find a way to use the cockle, *Cerastoderma edule*, resources of lake Qarun (for example catching - and crushing them and use the meat as food for cultured species.

c. Technical efforts:

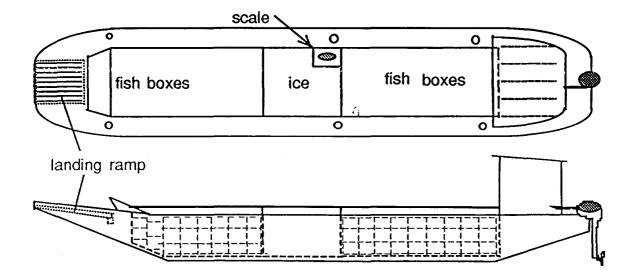
14. A fishfarm could be constructed at the northern end of Wadi Rayan III lake, feeding the ponds with water from the channel by gravity and using the drainage water from the fish pond for irrigation. An integrated semi-extensive fishfarm would be advisable, for example fish cum ducks or chickens.

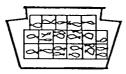
15. The construction of a small channel to let water from Wadi Rayan III to the next depression (south-east from the lake) could slow down and eventually stop the increase of salinity of this lake.

16. Special constructions in the different water outlets into the Mediterranean could improve the quality and the production of mullet fry .For example water wheels and special weirs.This also could improve the management of regulating the amount of fry caught versus the amount let through for natural stocking of the coastal lakes.


17. The construction of artificial reefs in lake Qarun, might have a positive effect on the fish production of the lake.

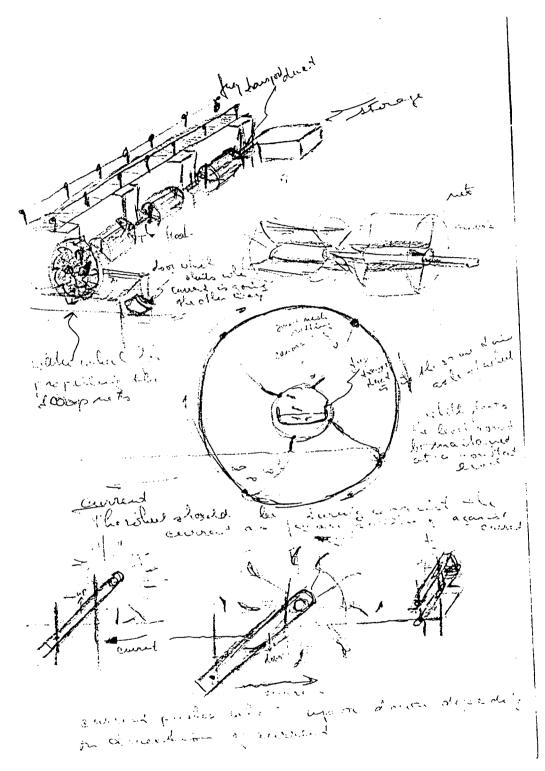
18. A transport boat, to collect the captured fish, carrying a supply of ice could possibly curb poaching to some extent. (see figure).


19. In order to explain the variations in salt levels of Wadi Rayan III lake, it will be necessary to install a gauge to monitor the water level.


20. It might be feasible to use the energy of the water current at the end of the tunnel and/or at the waterfall to produce electricity for an ice plant. It would be advisable to measure the levels of Wadi Rayan I and Wadi Rayan III. With the differences, and the amount of water flowing through, the available amount of energy can be calculated. (see sketch).

21. The effluent of the salt factory should be monitored as it might influence the salt composition of the lake. In particular the unwanted carbonates should not be disposed into the lake.

Suggestion for the layout of a transport vessel, to be used in the Wadi Rayan lakes.



L.oa = 16 m. L.wl = 14 m. B.oa = 2.9 m. B.wl = 2.8 m. Draft = 0.7 m. Carrying capacity 9 - 10 ton (6 ton fish + 3 ton ice). Displacement 20 - 25 ton. Engine 50 - 70 Hp (diesel). Fuel tank 150 l. Speed 12 km/hr.

Hold should be covered with an insulated lid, in order to keep the fish cool and to prevent water from entering the hold. Empty spaces around the hold should be filled with styrofoam, for insulation and for extra buoyancy.

Vessel is capable to land head on onto the beach for unloading.

A scale on board is to be used to ensure the fishermen that they will not be cheated.

.

2. INTRODUCTION

In the governorate of Fayoum there are three big water bodies, which are used for commercial fishing operations.

Lake Qarun, about 23 000 ha (55 000 feddan). This lake is all what is left of the historical (fresh water) lake Moeris, which in pharaoic times served as a buffer storage of Nile water. It now lays about 44 m below sea level. It is bordered in the North by the Western Desert and in the South by agricultural land of the Fayoum governorate. The lake is fed by drainage water from these agricultural lands. The only output of water from the lake is through evaporation, there is no known seepage. This has caused the lake to become saline, it now has a total dissolved salt level of about 36 ‰.

Lakes Wadi Rayan I, II and III (WR I,II and III) were created by diverting part of the drainage water of the Fayoum governorate into the Rayan depression. This happened in 1974 for WR I and 1980 for WR II and WR III. This diversion was necessary because of the increase of irrigation in the Fayoum and the limited water storage capacity of lake Qarun. Too much water inflow in lake Qarun would have led to flooding of precious agricultural lands with salt water. The two lakes have a surface of about 5 090 ha (12 000 feddan) and 6 200 ha (15 000 feddan) respectively.

Fish fry has been transplanted for many years to these lakes. Because of the decline of the local fish stocks, as result of the increase of salinity, other fish had to be introduced. In lake Qarun, this began in the 1920's with grey mullet. Some fish species only needed to be stocked once as they proved to be able to reproduce in such a way that they could be commercially fished without destroying the stocks. Examples are the sole, *Solea aegyptiaca* and several shrimp species of the genera *Penaeus* and *Metapenaeus*. But other species such as mullets, mainly *Liza ramada* and *Mugil cephalus* have to be restocked every year as their reproduction cycle requires special conditions which cannot be met in the lakes. Fry of these species have to be caught during their migration into the coastal lagoons and lakes. These migrations take place from November - January for *Mugil cephalus* and from January to April for *Liza ramada*.

The mullets were used as fish for transplants because of several reasons:

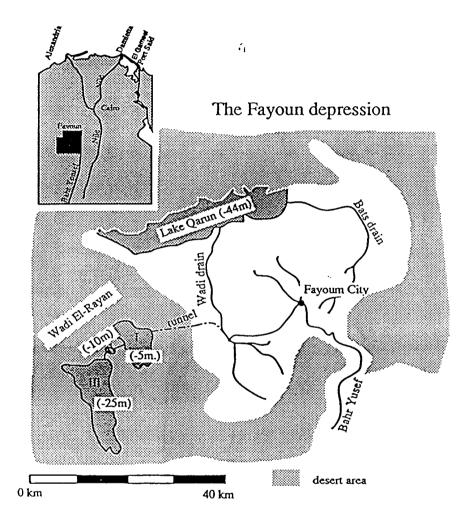
a) It is a well accepted fish by the Egyptian population.

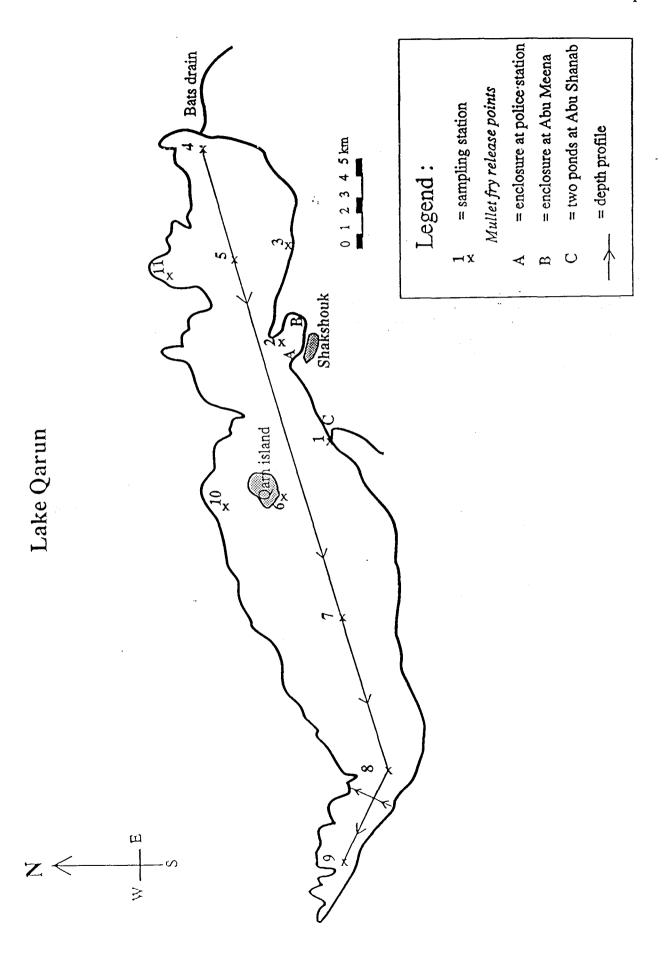
b) Fry is available.

c) They show good growth rates.

d) They are feeders of benthic organisms as well as feeders on phytoplankton and in young stages of zooplankton. In general they stand low in the foodchain.

e) Because of the fact that they do not reproduce in the lakes, they can be totally wiped out if they are not further wanted for whatever reason.


f) Little to no competition for food with the established fish population of the lakes.


In 1978/79 a project funded by the Netherlands Government started with the donation of two fish fry transport trucks and other materials plus some technical assistance to the IOF (Institute of Oceanography and Fisheries). This institute was at that time responsible for the transplantation of fry. In 1983 another organization took over this responsibility, namely the GAFRD (General Authority of Fish Resources Development).

In order to make the most economic use of the limited mullet fry stocks the "Release of Mullet Fry Project" was conceived in 1983 to search for ways of limiting the mortality during transport, which was considered to be too high, figures up to 90 % mortality were mentioned. Also the mortality during acclimatization and growing period up to their commercial capture had to be studied.

A fact -finding mission from the Netherlands was sent to Egypt, in 1983, for a possible follow up of the 1978/79 project. An agreement had been reached that the Netherlands Government would give further financial and technical aid to Egypt to study the mortality of mullet fry during various stages of transport and development. For this 2 more transport trucks with 1000 kg of netting material for enclosures and one fully equipped laboratory truck was donated with the service of a Netherlands fisheries biologist to carry out the research with help from Egyptian counterparts. The project finally started in January 1987 and lasted till the end of May 1988.

Situation map of the Project area.

· _..

3. METHODS

During the project seasonal surveys have been carried out in the three Fayoum lakes in order to establish the water quality and the available amount of phyto- and zooplankton. For these measurements 11 stations have been established in Lake Qarun (see map 1); 9 stations in Wadi Rayan I lake and 8 stations in Wadi Rayan III lake (see map 2). Fish samples were measured and weighed.

Stations were checked each season with an inflatable dinghy (Zephyr 204) with a 18 hp Mercury outboard engine.

For the limnological survey the following parameters were measured.

A.Dissolved oxygen (D.O.)

Dissolved oxygen levels were measured with a WTW OX1 91 meter with a WTW EOT 190 probe on a 10 m long cable. Oxygen was measured in % saturation and in p.p.m. at one meter intervals to 10 m depth, after this, samples were taken at 5 m intervals with a 1.51 Kenmerer water bottle and measured upon arrival on board with the WTW OX1 91 meter.

B.Temperature

Temperature was also measured, in ^oC, with the WTW OX1 91 meter at the same levels as the oxygen.

C.Electric conductivity (Ec)

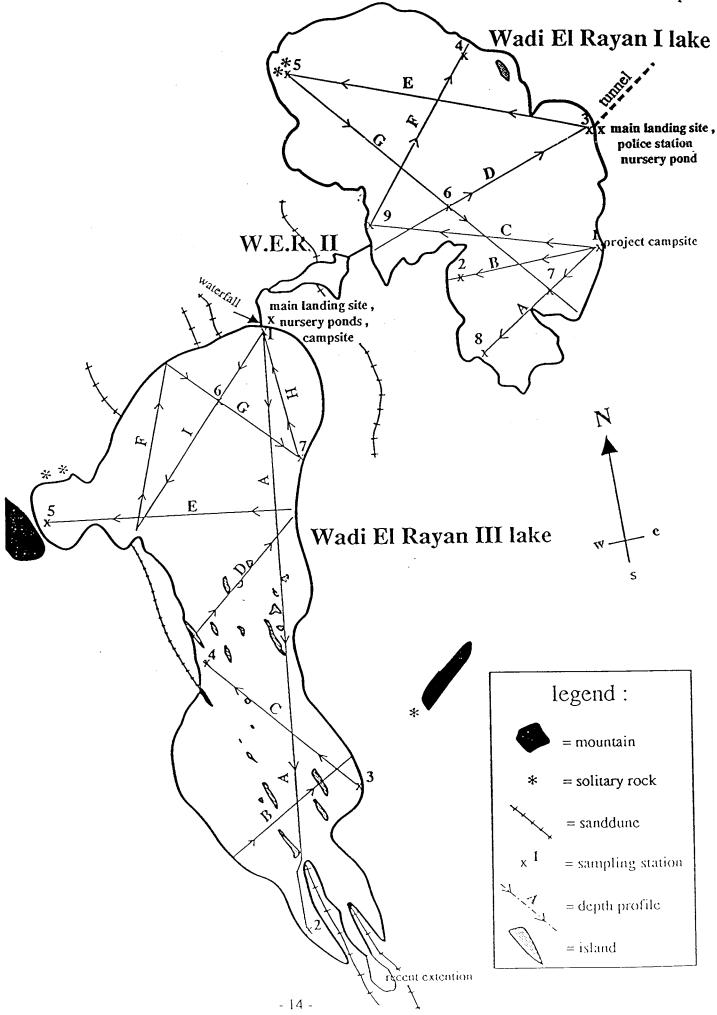
The Electric conductivity was measured with a WTW LF 91 meter. The water for these measurements was collected with the Kenmerer water sampler at 1, 3, 5, 10, 15, 20, 25 m depth. Surface water was measured directly.

D.pH

The pH was measured with a pocket pH meter from the same water samples as the Ec.

E.Transparency

Transparency was measured with the help of a secchi-disk. (\emptyset 30 cm.)


F.Air temperature

The air temperature was recorded at each station with a normal thermometer $(-10 - +50^{\circ}C)$.

G.Bottom profiles

Bottom profiles were made with an Eagle Mach I, fish/depth finder. Particularly the Wadi Rayan lakes have been surveyed this way as little data on, and no maps of these lakes could be traced.

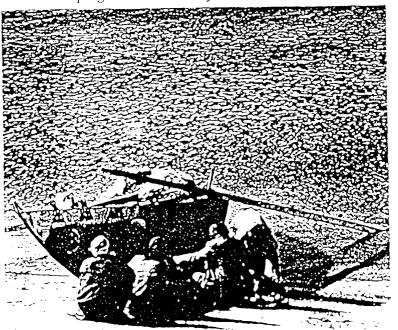
Map 2.

For the biological survey the following data were sampled

H.Qualitative coarse plankton

Qualitative coarse plankton was sampled by towing a conical $280 \,\mu$ mesh plankton net for about 50 m after termination of each station. Samples were preserved with formaldehyde. They were analyzed into main subdivisions, with an Olympus VMZ binoculair microscope, particularly zooplankton was observed this way.

I.Quantitative and qualitative plankton


Plankton samples for qualitative and quatitative analyses were sampled by filtering 801 of surface water through a ,60 μ mesh, conical plankton net. Samples were preserved with a phosphate buffered formaline, with a final concentration of 4 %. These samples were analyzed with the use of Leitz F13 compound stereo microscope. They were analyzed as detailed as possible with different taxonomic identification keys. The plankton was counted with the lackey drop microtransect counting method. 10 sub samples per sample were counted.

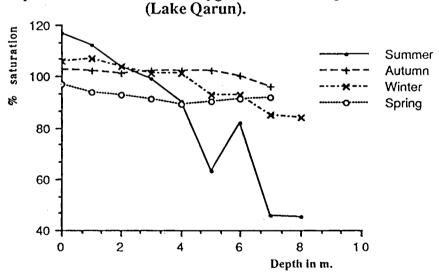
J.Fish

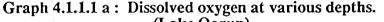
The most important commercials species were sampled. Fish from these samples were individually measured on a 53 cm long measuring board and weighed with a Sartorius scale (weighing range 5.0 kg, accuracy 1.0 gr).

Camping site at Wadi Rayan III lake.

4. RESULTS

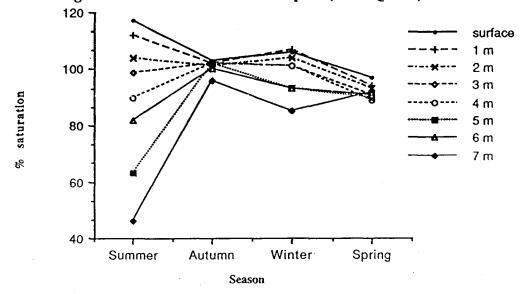
4.1. Limnology


Because of the different ages of the lakes the limnological parameters show great differences between the lakes.


4.1.1. Qarun lake

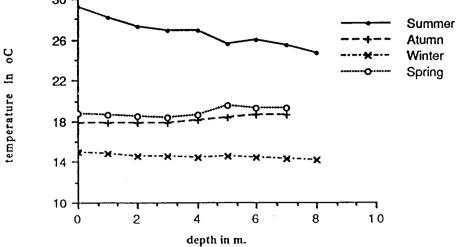
This lake is saline and becomes more so through the years, because of the yearly influx of about 500 000 tons of salt.

4.1.1.1. Dissolved oxygen


The D.O. levels are the highest during summer in the top 1m(North of the Qarn island and near the Bats drain)below this there is a rapid decline in oxygen content with increasing depth. During the other seasons there is much more uniformity throughout the water column. The lowest values of D.O. are normally found at station 1 (near the Wadi drain). (Table 4.1.1.1.a., graph 4.1.1.1.a. and maps 4.1.1.1.a.- b.)

Because of the lack of time and the stormy weather which prevailed in spring, not all the stations have been sampled during this period. But those stations sampled, show generally the lowest D.O. levels registered during this survey.

During summer there is the greatest diversity between the D.O. levels at various depths (73 %) while the least diversity exists during autumn (7 %), (spring 8 % and winter 23 %). (Graph 4.1.1.1.b.)


Graph 4.1.1.1 b : Variation in dissolved oxygen levels during various seasons at different depths.(Lake Qarun).

4.1.1.2. Temperature

Except during summer there is very little difference between surface temperatures and temperatures at 1m. depth (Table 4.1.1.2.a. and maps 4.1.1.2.a+b). Only during summer there is a big difference between surface water temperatures and bottom temperatures, maximal 6.5° C (at station 8, 5.1 m deep). During the other seasons the temperatures vary little down the water column. The maximum variance per station is 0.5° C in spring (station 7, 4,5 m deep) and 0.6° C in autumn (station 5, 3,6 m deep) respectively while during winter this figure is 1.1° C (at station 8, 5.0 m deep).(Table 4.1.1.2.b).

In general the water temperatures at the W. side of the lake are higher than those on the E. side. There is also an increase in temperature variation per m depth from the N.E. to the S.W. The smallest differences were found at station 11, where only 0.06° C per m depth was recorded (average depth during 4 seasons 3,4 m) while the highest differences (0.52 °C per m.) were found at station 8 (average depth during 3 seasons 4,5 m) The greatest average depth was recorded for station 10 with 7.5 m and here the temperature decline per m depth was 0.13° C (Map 4.1.1.2.c.). The temperature of the lake can increase rather fast, in 1 week during spring the temperature rose with more than 1° C, this caused the rise in the curve of temperature per depth for the spring. The stations with deeper water were sampled 1 week after the stations in the shallow areas (Graph 4.1.1.2.).

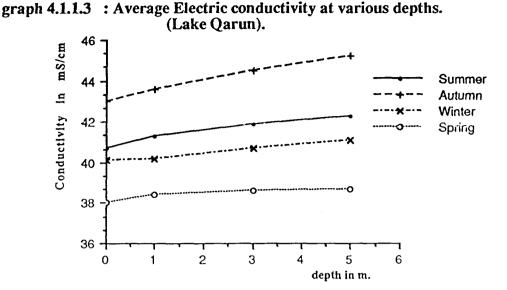
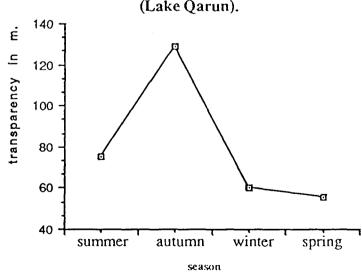


Table 4.1.1.2.b.			•
Maximal temperature	difference per	• station/season	(depth)

Station	Summer	Autumn	Winter	Spring
1	0 (1.2)		.5 (1.0)	
2	1.3 (2.5)	0 (2.1)	.8 (2.6)	.3 (2.5)
3	.3 (2.0)	.1 (2.5)	.2 (2.0)	·
4	1.3 (2.3)	.3 (2.0)	.5 (1.9)	.4 (2.8)
5	1.8 (3.7)	.2 (2.5)	.1 (4.0)	.6 (3.6)
6	6.3 (4.5)	.2 (4.7)	.6 (4.3)	.1 (5.1)
7	6.0 (6.5)	.5 (4.5)	.8 (7.2)	
8	6.5 (5.1)	.2 (3.5)	1.1 (5.0)	
9	4.5 (5.3)	.1 (3.3)	.8 (5.5)	
10	3.3 (7.5)	0 (6.9)	.5 (8.4)	.2 (7.1)
11	.1 (3.1)	.1 (3.1)	.2 (3.7)	.5 (3.6)
Average	2.9	.2	.6	.4
Max.	7.3	2.2	2.7	2.2

4.1.1.3. Electric conductivity

The Ec normally increases with the increase of depth (Graph 4.1.1.3.), particularly at station 4, this is very clear (Table 4.1.1.3.c. and map 4.1.1.3.d.), but here the Bats drain enters in the lake and the fresher water from the drain first gets on top of the salt water of the lake .This is also reflected in the average Ec content per station for surface and 1 m depth (Maps 4.1.1.3.a-b and table 4.1.1.3.a.) where it is clear that the eastern part of the lake is less salt than the western during spring.

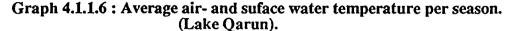

The Ec at surface level was the most uniform during summer and the most diverse during autumn. At 1 m depth the most constant seasons were winter and spring and the greatest diversity was again in autumn. The highest average Ec values were measured in autumn and the lowest during spring (Table 4.1.1.3.b and map 4.1.1.3.c.).

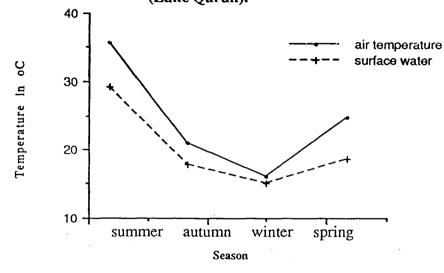
<u>4.1.1.4. pH</u>

The pH was rather constant throughout the whole survey and throughout the water column. The average for all stations during the whole time is 8.3. Due to problems with pH meters not all stations were sampled for pH during all the surveys (Table 4.1.1.4.).

4.1.1.5. Transparency

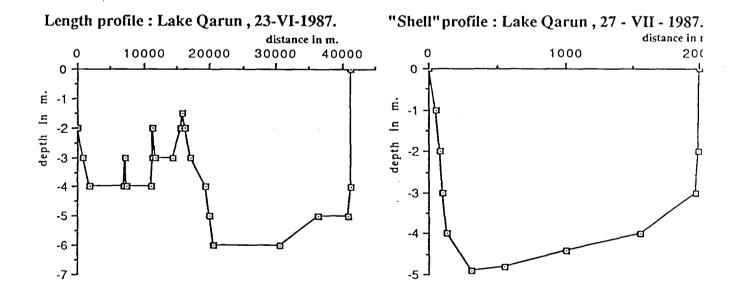
The transparency varied during the different seasons and ranged from 28 cm (in the summer at station 1) to 235 cm (during autumn at station 9). (Graph, table and map 4.1.1.5.)




Graph 4.1.1.5 : Average transparency per season. (Lake Qarun).

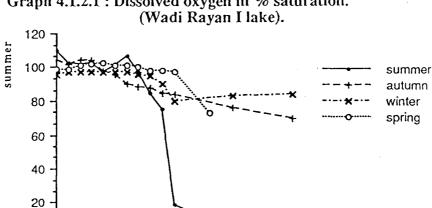
- 20 -

4.1.1.6. Air temperature


The air temperature varied considerably during the various surveys, depending on the time of the day, the rate of overcast and the windspeed etc. (Table and graph 4.1.1.6).

4.1.1.7. Bottom profiles

Two depth profiles have been made, one along the length axis of the lake ± 41.5 km and one of ± 2 km along one of the cross section the Shell Company was using for its geophysical study. Average depth along the length axis was 4.6 m and along the Shell cross section on the western side of the lake 4.09 m.



4.1.2. Wadi Rayan I lake

This lake was created in 1974 when the first drainage water from Fayoum was led through a tunnel of about 6 km into the Wadi Rayan depression. In 1980 the lake had more or less obtained its maximal level at -5 MSL and excess water flushed through a canal into Wadi Rayan III lake.

4.1.2.1. Dissolved oxygen

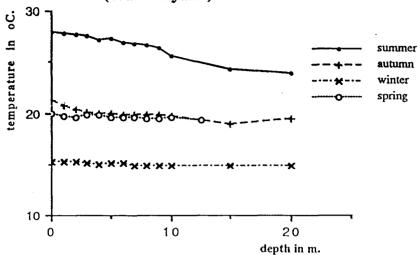
Only during summer there is a clear oxycline between 9 and 10 m, with more or less anaerobic water from 10 m downwards. The build up of this oxycline can be seen in the spring when there is a considerable drop in the oxygen level. During autumn and winter there is no oxycline, the D.O. level only decreases gradually with depth, average of 0.19 % per m during autumn and 0.06 % per m during winter. (Table 4.1.2.1., graph 4.1.2.1. and maps 4.1.2.1.a.-b.)

Graph 4.1.2.1 : Dissolved oxygen in % saturation.

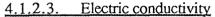
10

4.1.2.2. Temperature

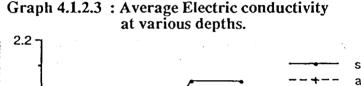
0

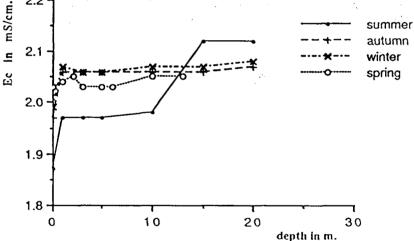

0

The oxycline is not covered by a clear thermocline as temperatures decrease gradually per depth during all seasons.


20

depth in m.


Maximum temperature recorded is 28.8 °C during summer and the minimum temperature recorded is 14.6 ^OC during winter. Maximal difference in temperature is therefore 14.2 °C. maximal difference per season is 5.0 °C during summer while the minimum difference was found during spring 0.9 °C. (Graph 4.1.2.2., tables 4.1.2.2.a-b and maps 4.1.2.2.a). The temperature fluctuation per m. depth varies from .16 °C during summer to .01 °C during winter (Table 4.1.2.2.b.).

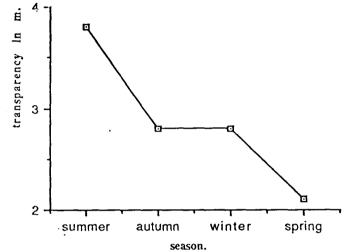


Graph 4.1.2.2: Average temperature at various depths. (Wadi Rayan I).

The Ec showed only during summer a sudden increase at more than 10 m depth. During the other seasons there was a much smaller and regular increase with depth increase (Graph 4.1.2.3.).

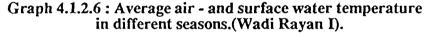
The average variation per m depth is 0.03 mS/cm. The only station that gave off values was station 3, where the drainage water from the Fayoum enters the lake. The pattern from the inflowing water can be traced down the southern end of the lake. The highest Ec levels were measured at station 9, the magnitude of difference is only .01 mS/cm (i.c. .01x .760 = .076 gr salt / 1). (Maps 4.1.2.3.a-d, tables 4.1.2.3.a-c)

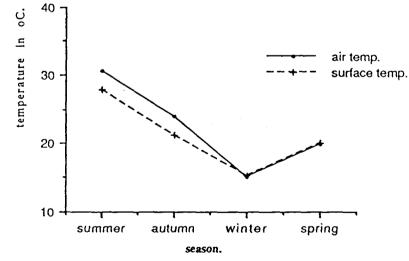
4.1.2.4. pН


The pH varies little, average between 8.5 and 8.6 only at the inlet of the Fayoum drainage water the pH is somewhat lower : 7.8.

4.1.2.5. Transparency

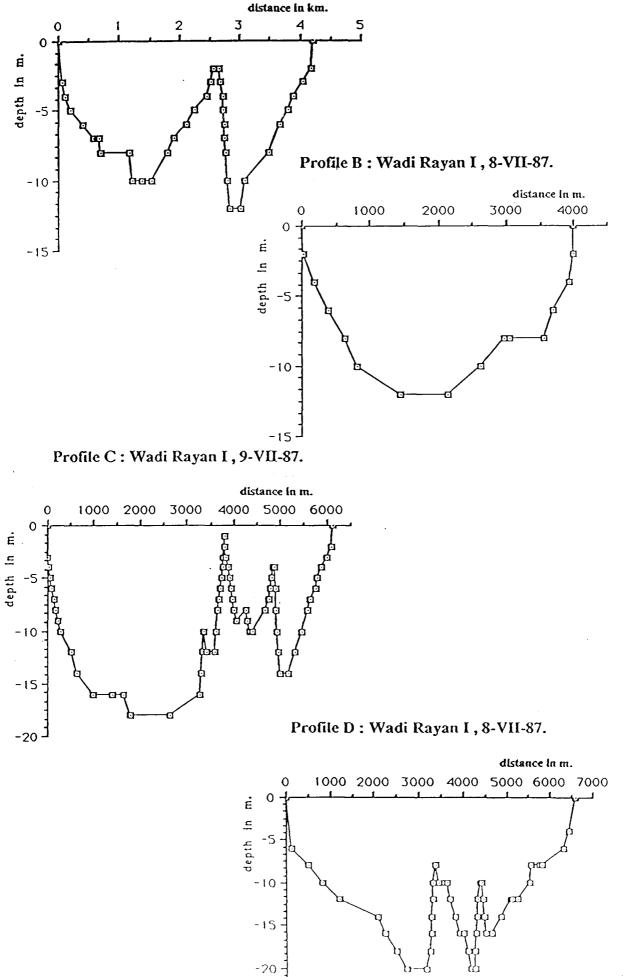
The transparency was the highest during summer, when the average visibility was 3.8 m. During autumn and winter the values were more or less the same at 2.8 m. The winter


figure is a bit strange as at that time there was a bloom of blue green algae. This bloom persisted into spring and by then the transparency had diminished to 2.1 m. The inflow from the tunnel provided water with a lot of silt and other material, here the transparency was only about 20 cm. (Table, map and graph 4.1.2.5.)

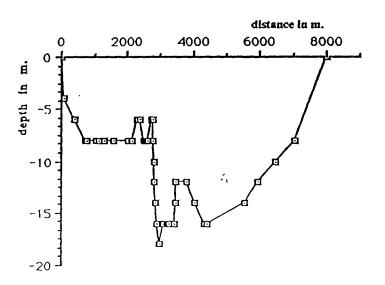


4.1.2.6. Air temperature

The air temperature varied considerably during each survey, which can be explained by time of the day, the rate over overcast, the amount of wind etc. (Table and graph 4.1.2.6.)

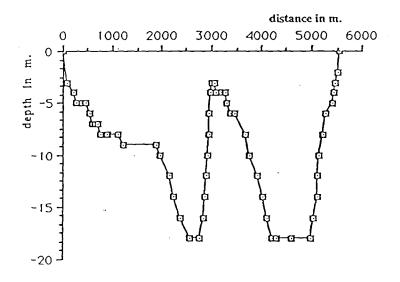


4.1.2.7. Bottom profiles


Seven depth profiles were made in Wadi Rayan I lake as to get an idea about the topography of the bottom. With this an average depth was calculated. The surface area was computed with help of satellite photographs. With these two parameters an estimate was made of the volume of the lake.

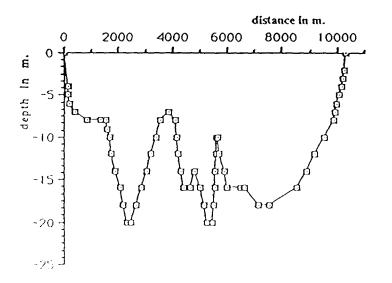
The accuracy of the profiles is not optimal as the speed of the dingy could not be controlled to such an extent that constant speed was obtained and wind drift could not be calculated. (Profiles A-G).

Profile A : Wadi Rayan I, 9-VII-87.



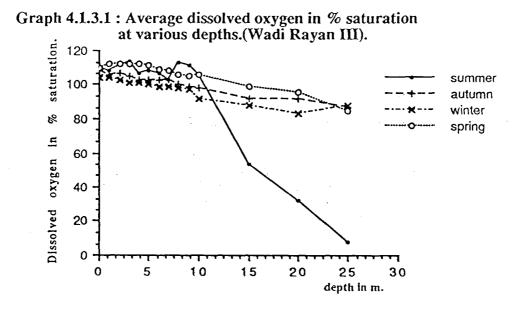
- 25 -




Profile E : Wadi Rayan I, 8-VII-87.

Profile F : Wadi Rayan I, 9-VII-87.

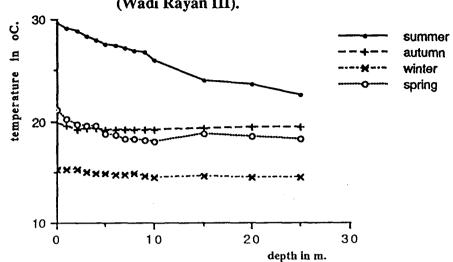
5



4.1.3. Wadi Rayan III lake

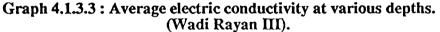
This lake is the newest of the Fayoum lakes. Water started flowing into the depression in 1980 and an equilibrium with the inflowing water and evaporation has not been reached yet. The lake is still growing. It is therefore extremely difficult to produce an accurate map. During the survey an area of about 20 ha was added at the southern end of the lake.

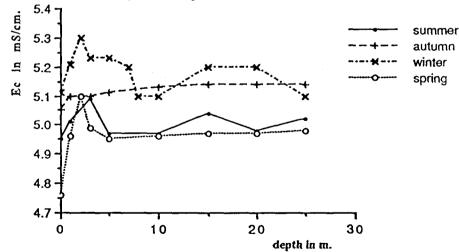
4.1.3.1. Dissolved oxygen

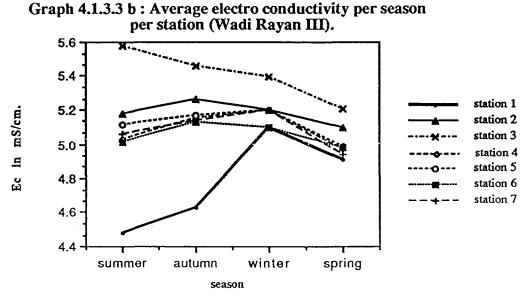

Only in summer there is something like an oxycline, but it is not such an outspoken one as in Wadi Rayan I. The saturation in the top 10 m is during all seasons more or less the same. This uniformity continues at greater depths for all seasons except for the summer, where values decrease rapidly. The average rate of decrease per m depth for autumn, winter and spring is 0.12% saturation. (Table, graph and map 4.1.3.1.)

4.1.3.2. Temperature

During summer there is a decline of .28 °C per m depth, during autumn and winter this is 0.03 °C and in spring there is a heating up of the surface water and this gives a decrease of .11 °C per m depth, this heating up is only for the top 3 m for the rest the decline is negligible.

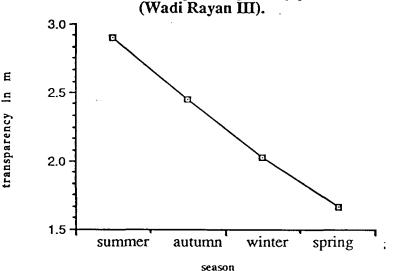

The maximum difference between seasons is 15 °C for the surface water and 8 °C at the bottom. Autumn and spring have about the same temperature levels. Maximum temperature recorded 30.5 °C at surface of station number 5 in June. Minimum temperature recorded 14.4 °C at bottom of station number 5 in February . (Graph 4.1.3.2., maps 4.1.3.2.a-b and tables 4.1.3.2.a-b)




Graph 4.1.3.2 : Average temperature at various depths. (Wadi Rayan III).

4.1.3.3. Electric conductivity

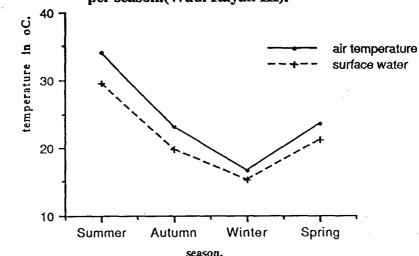
The Ec shows the greatest fluctuations during winter, which might have been caused by the way of measuring. The meter was not put on a very sensitive scale at that time. The measurements of summer were made with a too sensitive mode because of the unfamiliarity with the equipment The lake was most saline during the winter and the least saline during the spring, there was about 4% difference between winter and spring. When the seasons are compared per station than it seems clear that the newest inundated areas are the most salt (station 8) and that during the year the differences become smaller (stations 2 and 3). (Maps 4.1.3.3.a-d and graphs 4.1.3.3.a-b and tables 4.1.3.3.a-c)


The influx from water through the waterfall is reflected by the "fresher" water at station 1. The Ec of the water in the canal from WR II is 2.05 near the waterfall.

4.1.3.4. pH

The pH is between 8.4 and 8.6 for all stations and at all depths. Some lower recordings are most likely caused by malfunctioning of pH meter.

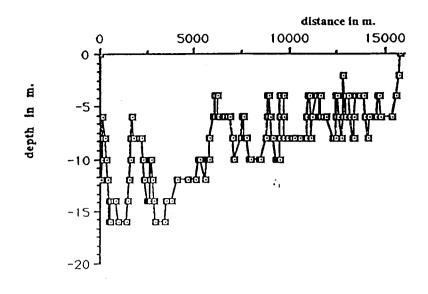
<u>4.1.3.5.</u> Transparency


The transparency decreases from summer till spring. This may find its origin in the increase of plankton organisms. The station with the most transparent water is station 6 where the average sight is over 3 m and the least was found in stations 2 and 3. (Table 4.1.3.5., map 4.1.3.5 and graph 4.1.3.5.)

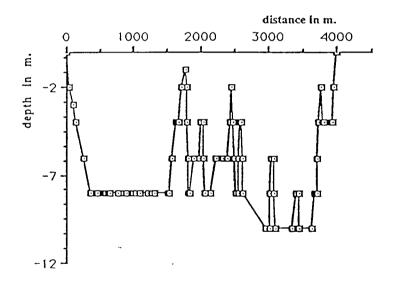
Graph 4.1.3.5 : Average transparency per season. (Wadi Rayan III).

4.1.3.6. Air temperatures

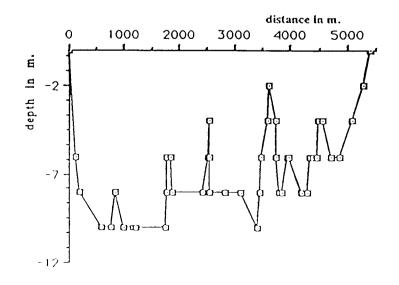
The air temperature varies considerably during the day, between early morning and midday there can be a difference of 13 °C. (Table +graph 4.1.3.6.)

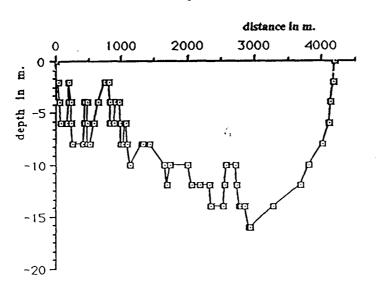

Graph 4.1.3.6 : Average air - and surface water temperature per season.(Wadi Rayan III).

4.1.3.7. Bottom profiles

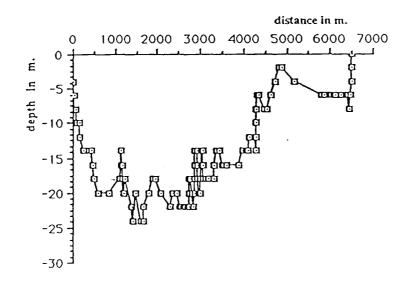

Nine bottom profiles were made in Wadi Rayan III lake as to get an idea about the topography of the bottom.(profiles A-I). A great problem with this lake is that there are no photographs available to give an idea about the actual shape and size of the lake. The satellite photographs studied are from July 1985 and the lake level has since risen by approximately 2 m, which particularly in the flat shallow areas can cause considerable expansion of the surface area. With the profiles an estimate has been made of the most likely surface area and the volume of the lake

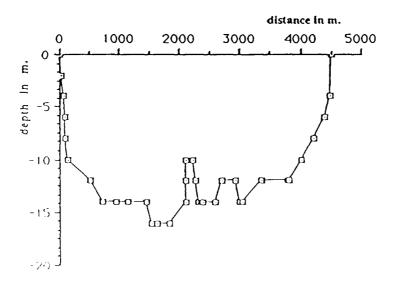
These profiles were made on the 20 th of July 1987.Between this date and the summer of 1988, the lake level has risen at least 50 cm..But as the waterlevels are not recorded it is not possible to give the actual changes.Other parameters used as constants such as boatspeed and course direction are not very accurate.This makes the calculation of the surface area and the volume only a rough estimate of the real situation.

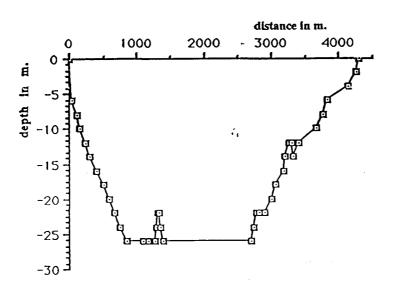

Profile A : Wadi Rayan III , 20-VII-87.



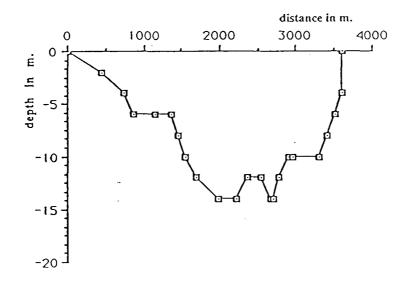
Profile B : Wadi Rayan III , 20-VII-87.

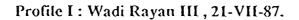

Profile C : Wadi Rayan III . 20-VII-87.

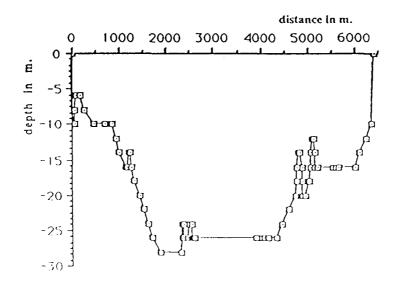



Profile D : Wadi Rayan III , 20-VII-87.

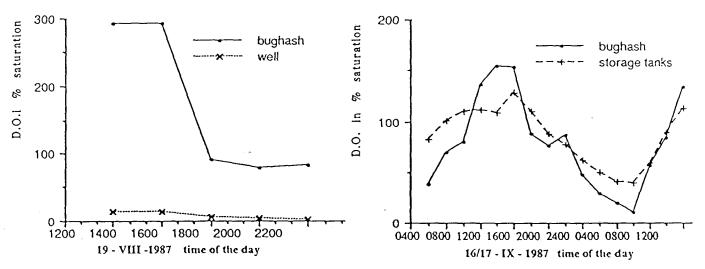
Profile E : Wadi Rayan III , 20-VII-87.


Profile F : Wadi Rayan III , 20-VII-87.

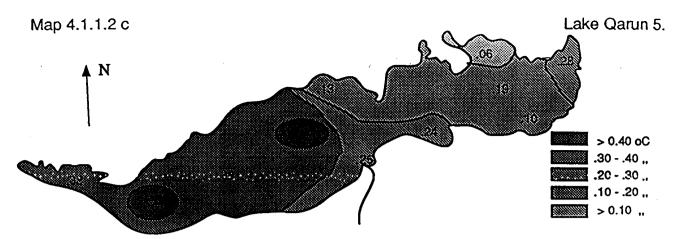




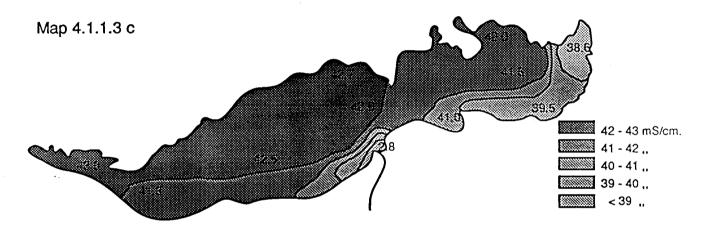
Profile G : Wadi Rayan III , 20-VII-87.



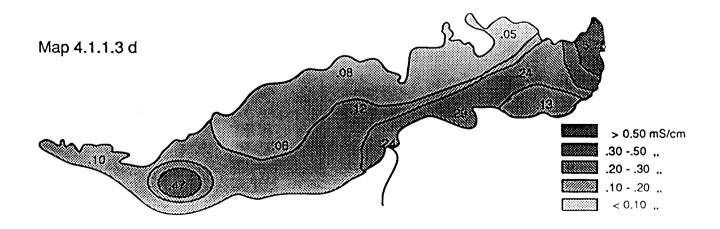
4.1.4.El-Gameel

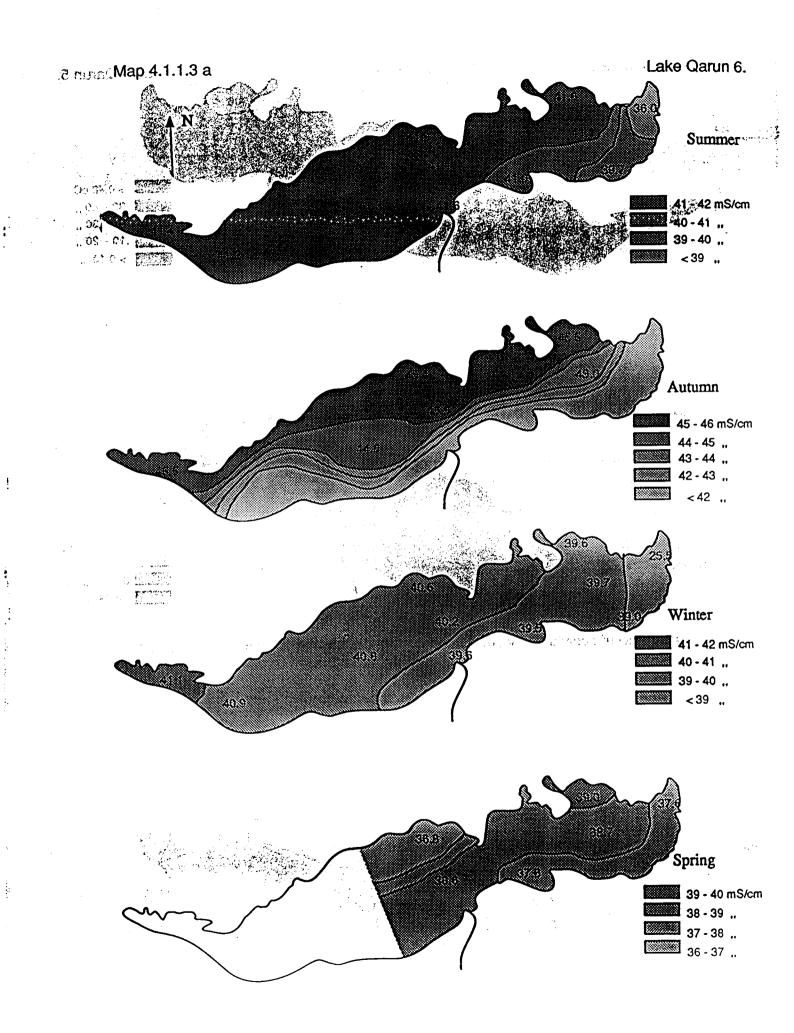

The water from the bughash was measured at 16 and 17 September 1987 for a period of 30 hours. At 2 hours intervals D.O., Ec and temperature were measured. The influence of tidal intrusion was clearly noted, but the brackish outflow prevailed during this time. Very little time has been spent on the study of the limnology as there were many other matters to be dealt with during the visits to El Gameel and as nearly all fry came from Damietta no importance was given to the site.(tables 4.1.4.a-c and graphs 4.1.4 a-cb) The lowest oxygen levels are found in the well water, the tanks showed the most constant high levels.Early morning samples of the bughash showed very low oxygen levels. Dissolved Oxygen , in % saturation , in water from the bughash , the storage tanks and the 3 m. deep well, at various times of the day.

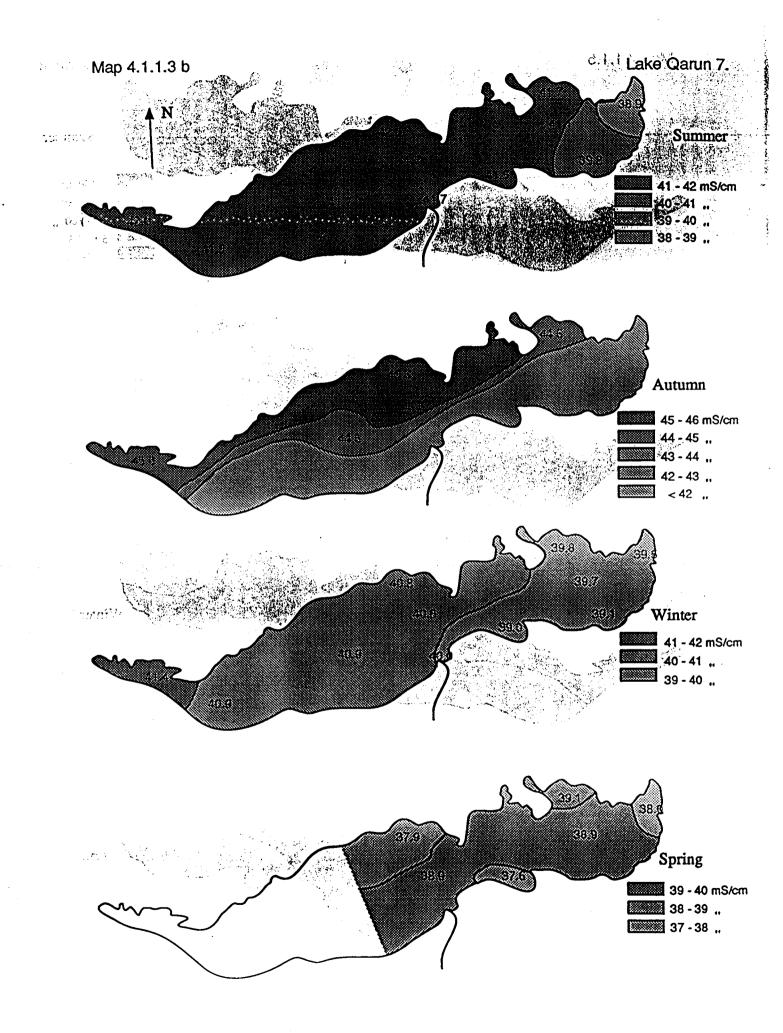
Graph 4.1.4 a : Dissolved oxygen in the water of the bughash, the storage tanks and the 3 meter deep well, at El Gameel at different hours of the day.

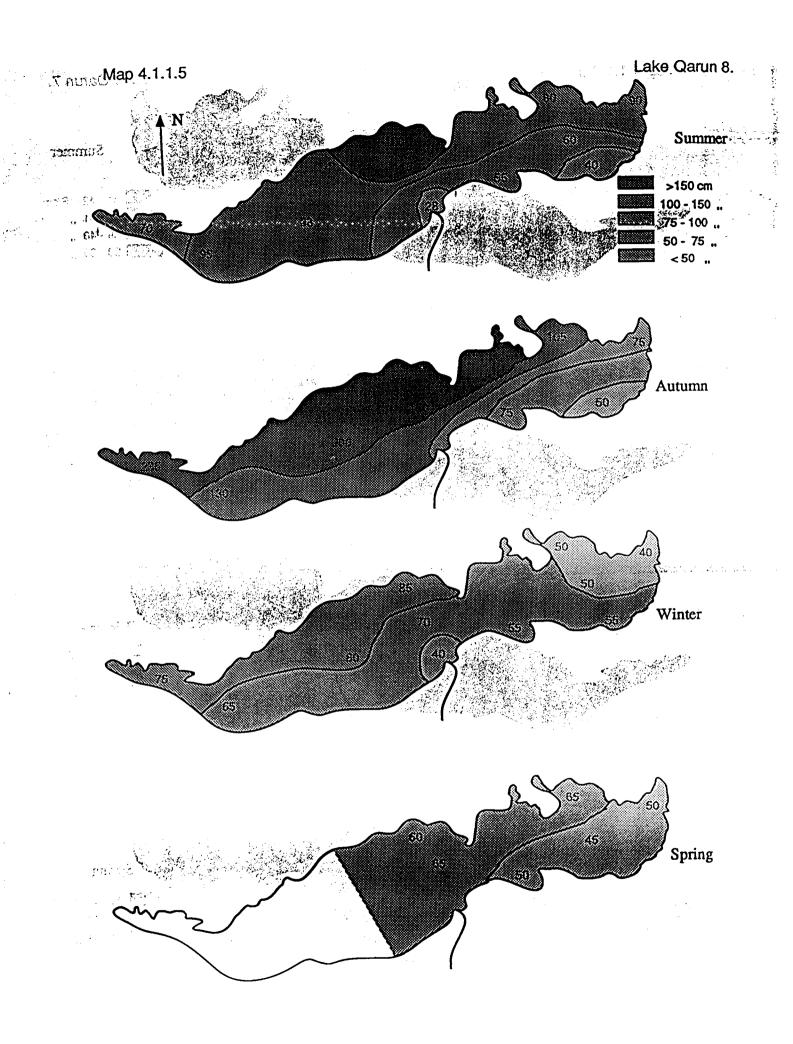


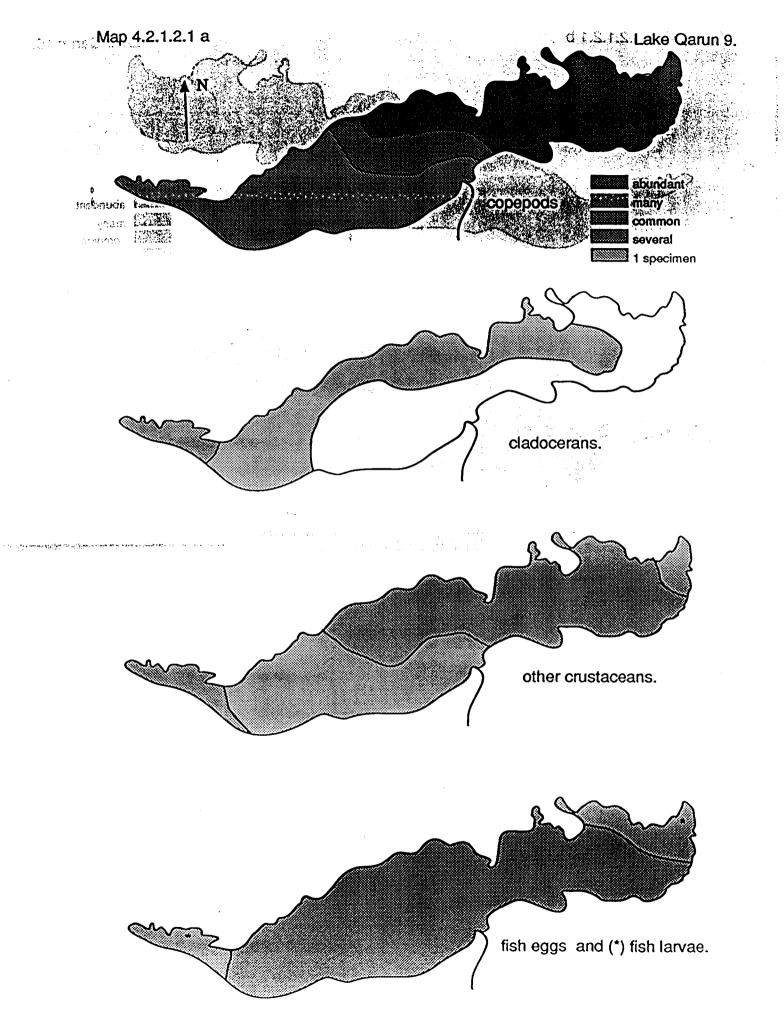
The greater variation in the tanks at 1000,1200 and 1400 hrs. is caused by the sunshine, some tanks were in the shade while others received direct sunshine. Water from the bughash shows the greatest variation and the highest temperatures. Water from the well had the most constant temperature.

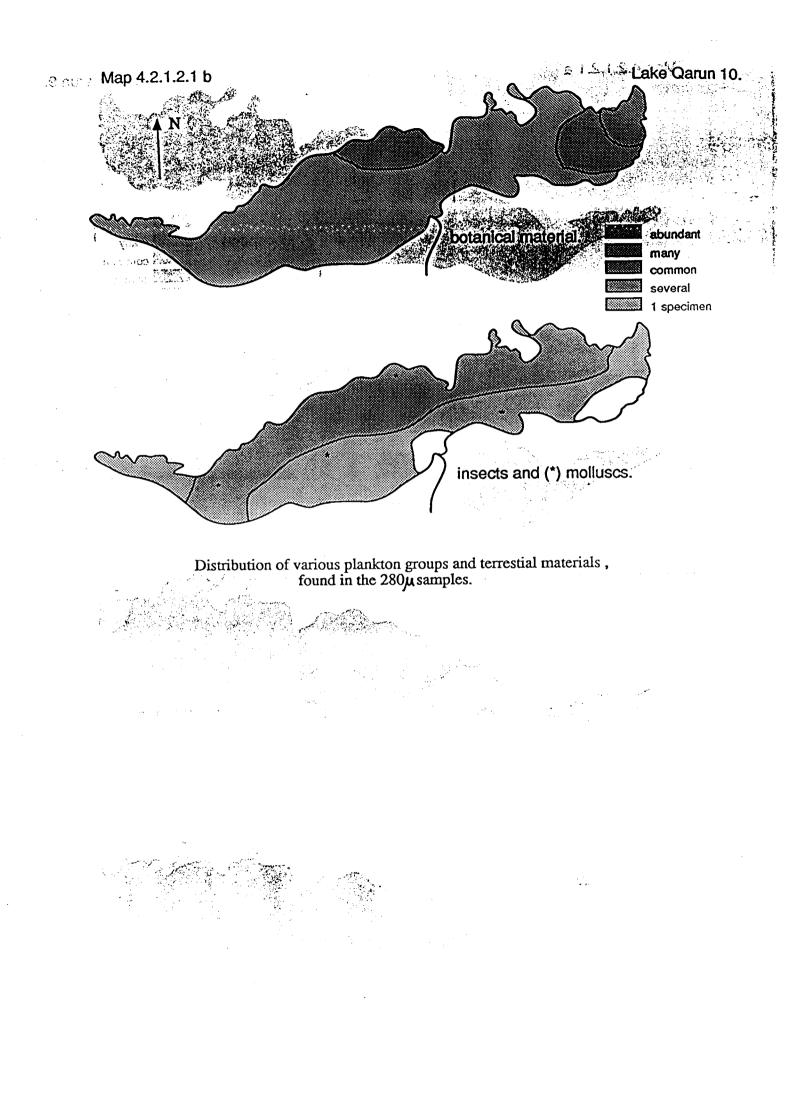

Water from the bughash is least salt and that from the well is the most salty, the latter however is also the most constant.

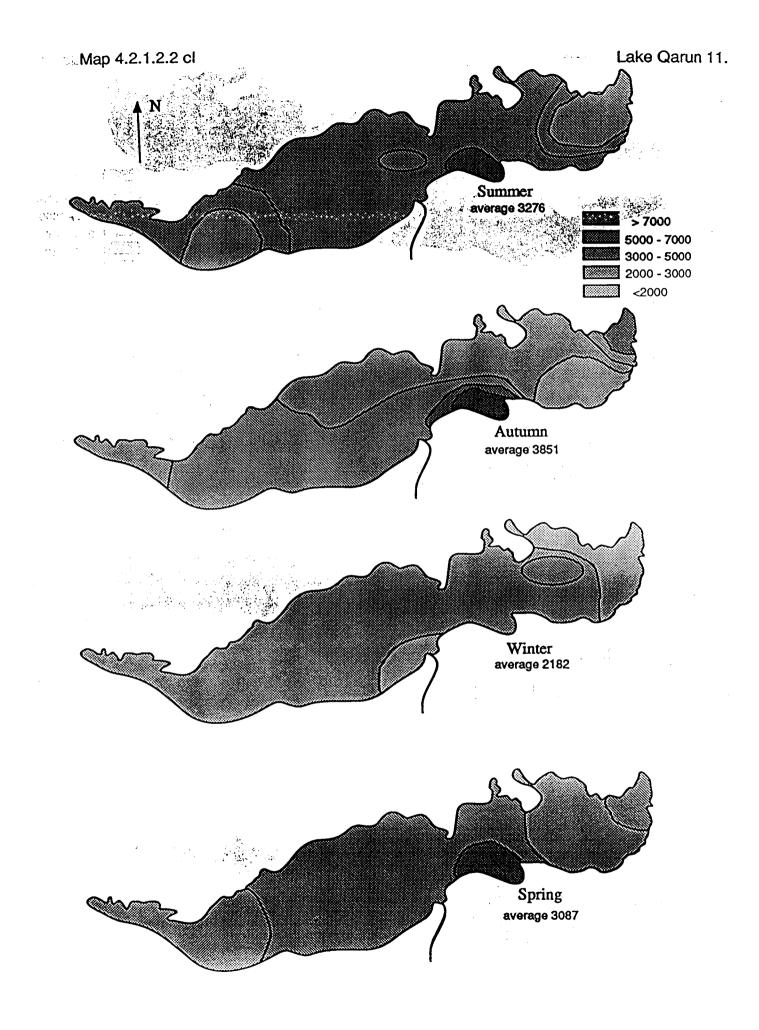

Average change in temperature, in oC, per meter depth (all seasons together).


Average electric conductivity, of all seasons and depths together (spring not included).

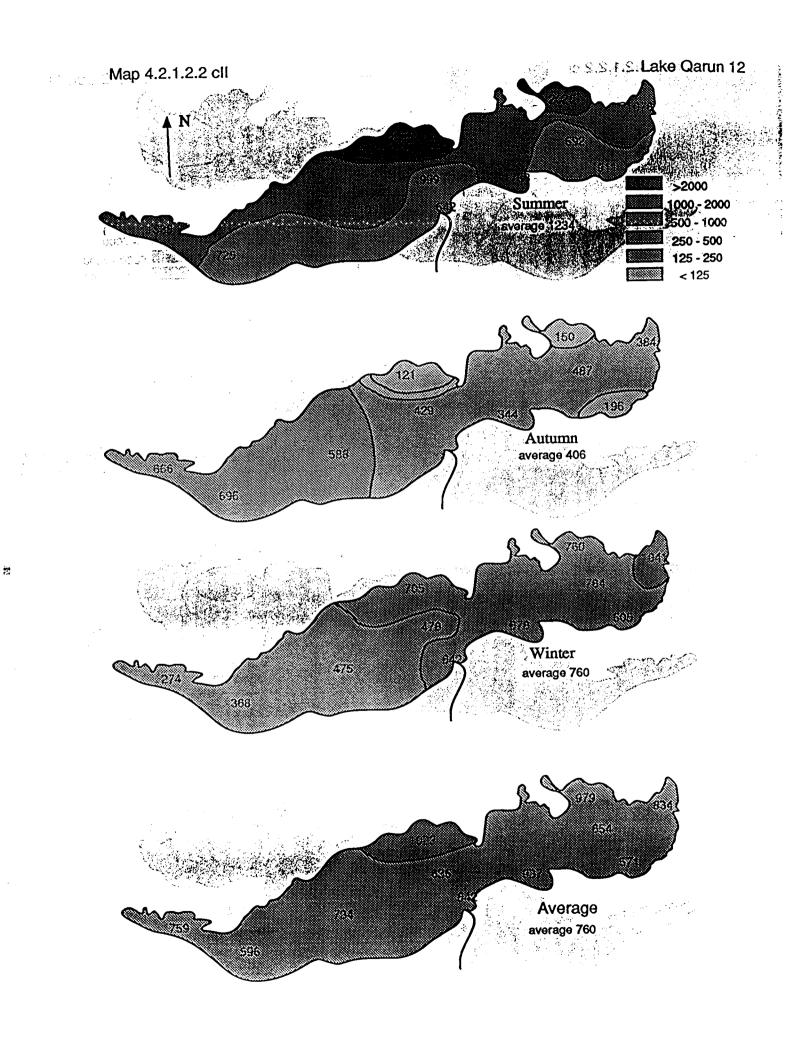

Average change in Ec, per m. depth (all seasons together).


Electric conductivity, in mS/cm, of surface water.

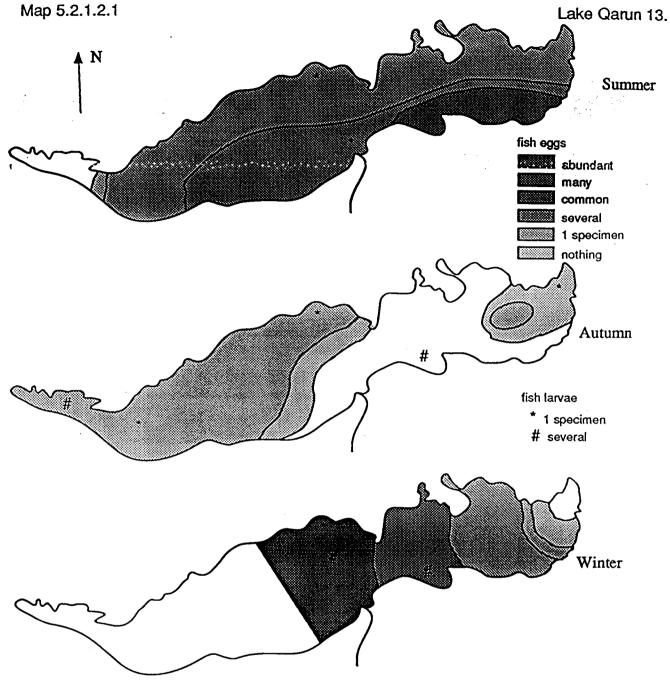

Electric conductivity, in mS/cm, at 1 meter depth.

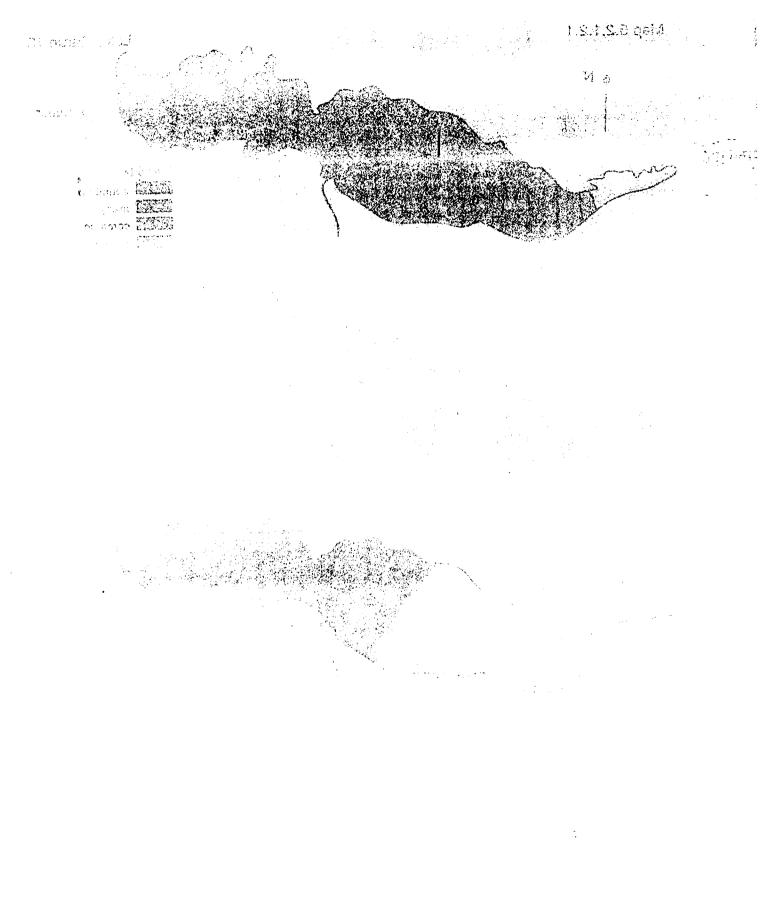


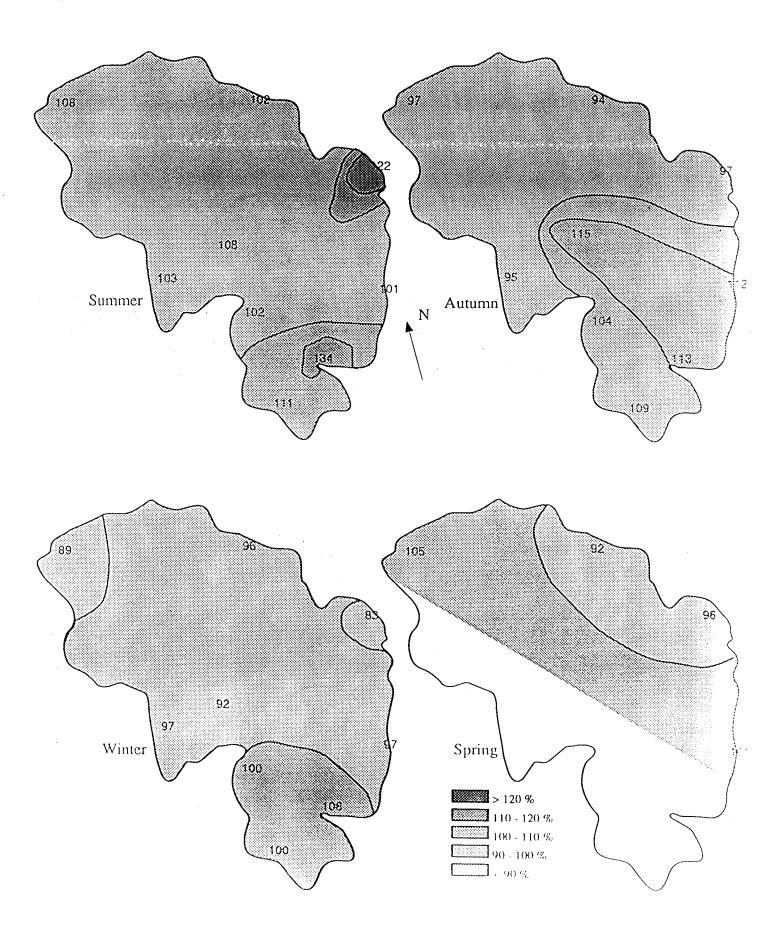
Transparency in cm

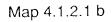


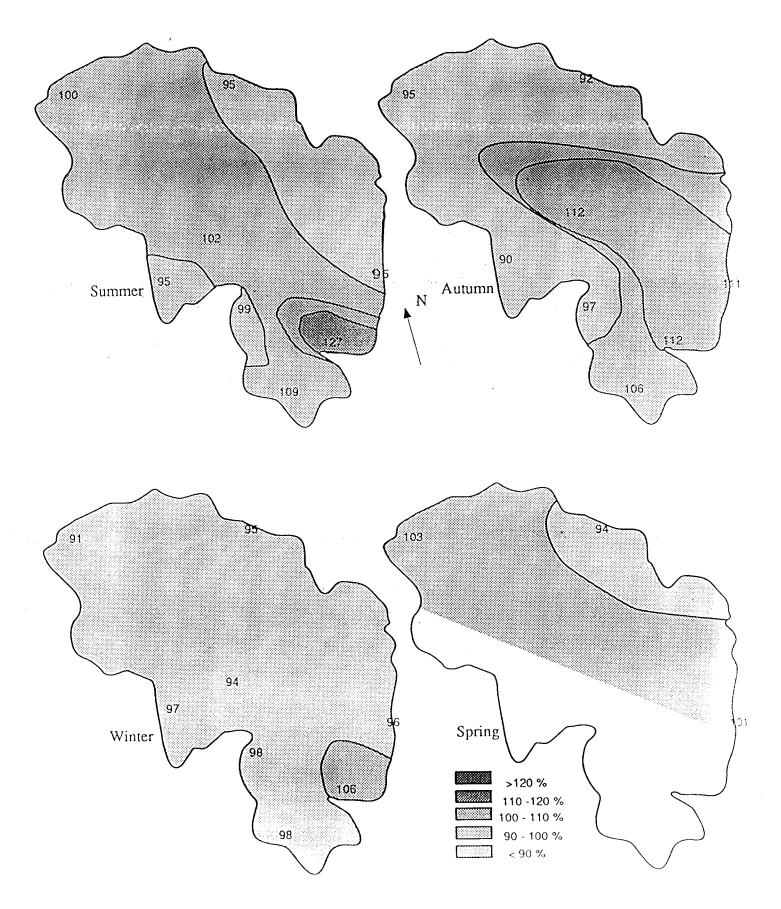
Distribution of various plankton groups found in the 280µ samples.



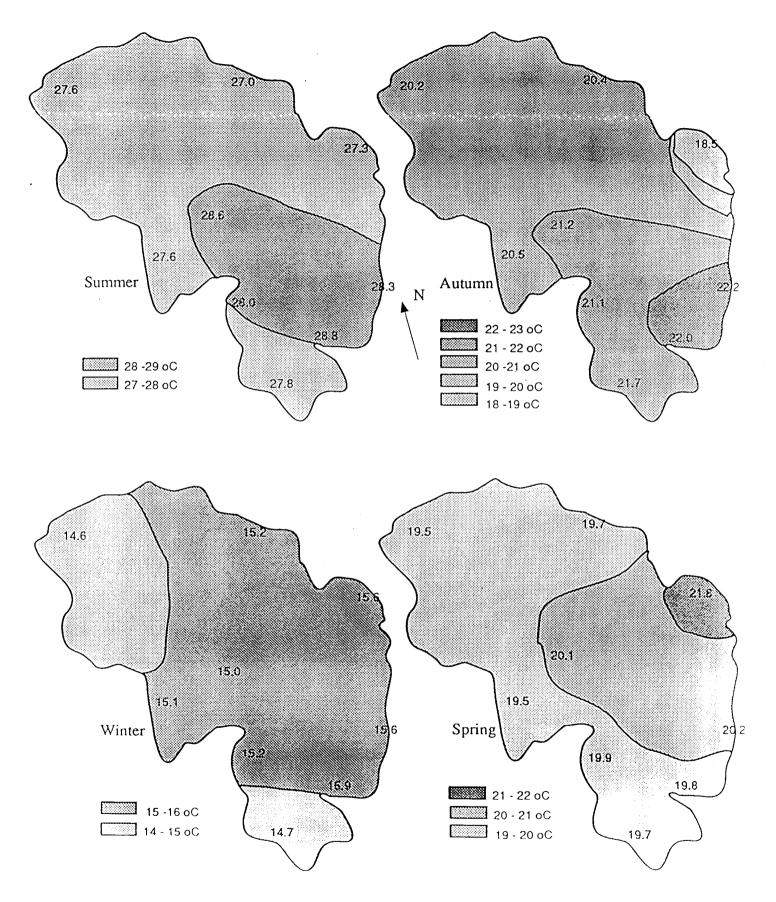

Distribution of plankton from 60 usamples in organisms per liter.


Zooplankton distribution in number of organisms per liter. (60µsamples)

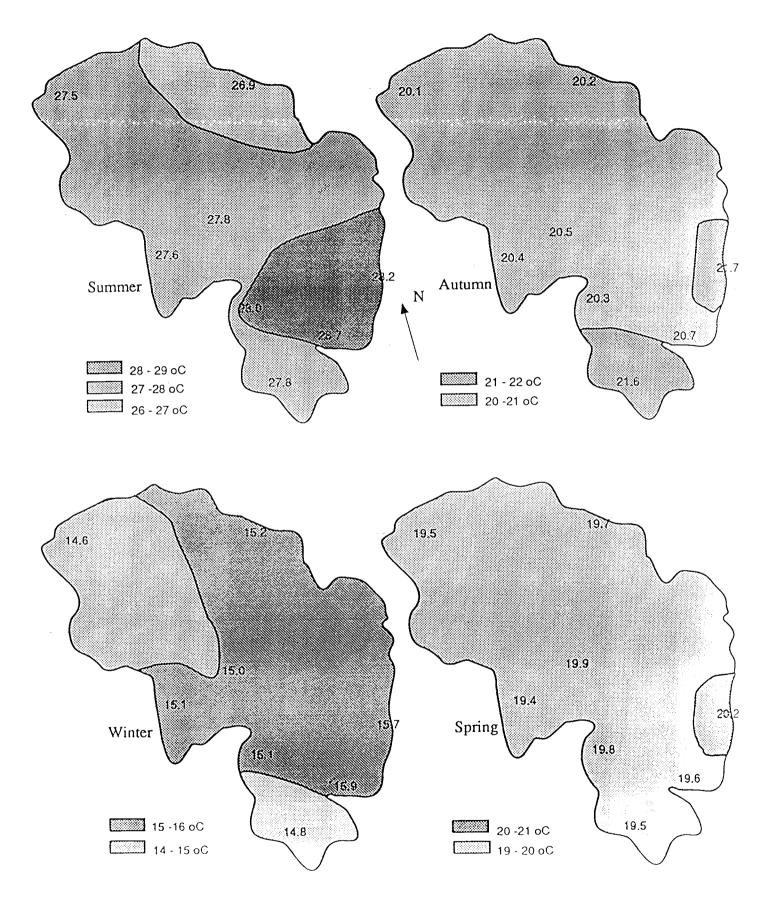

Distribution of fish eggs and larvae during different seasons.



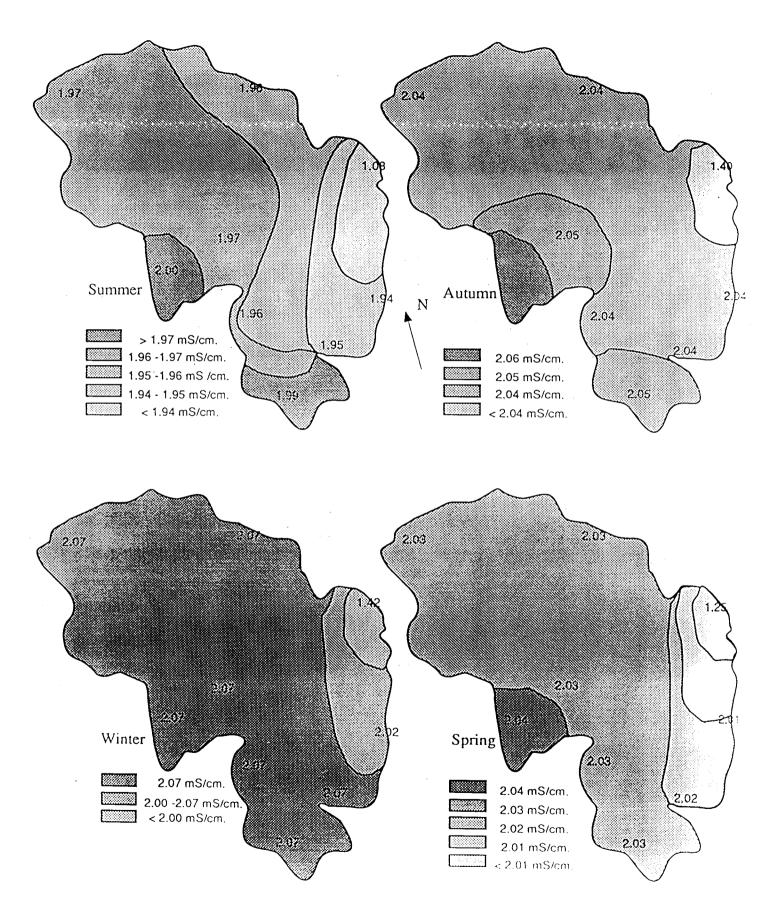
-



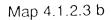
Dissolved oxygen, in % saturation, at surface level.

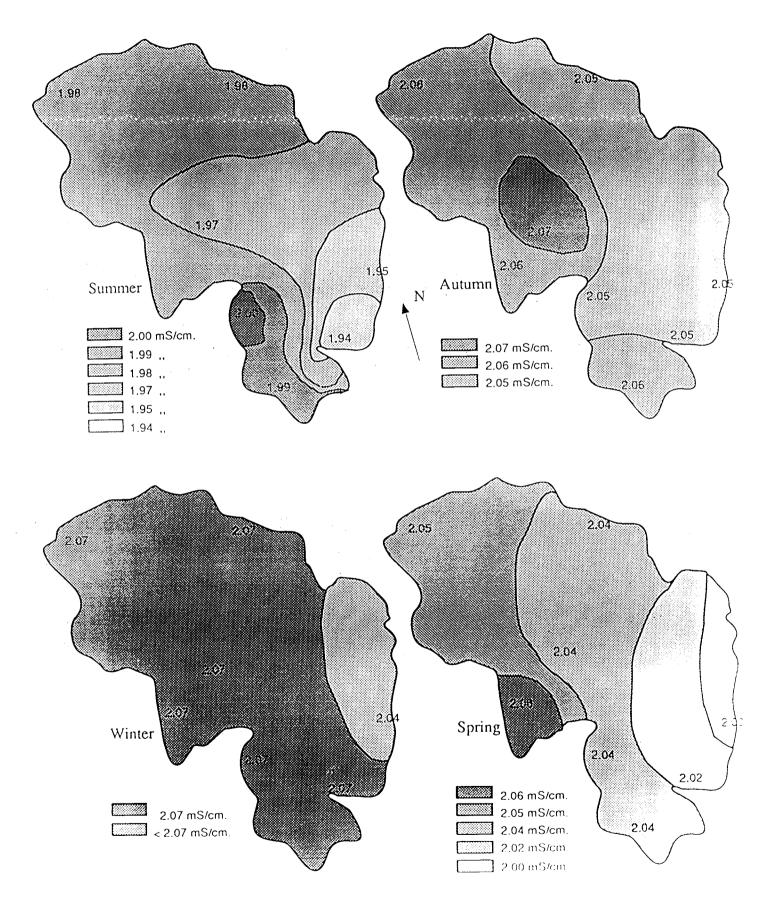


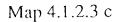
Dissolved oxygen in , % saturation , at 1 m. depth.

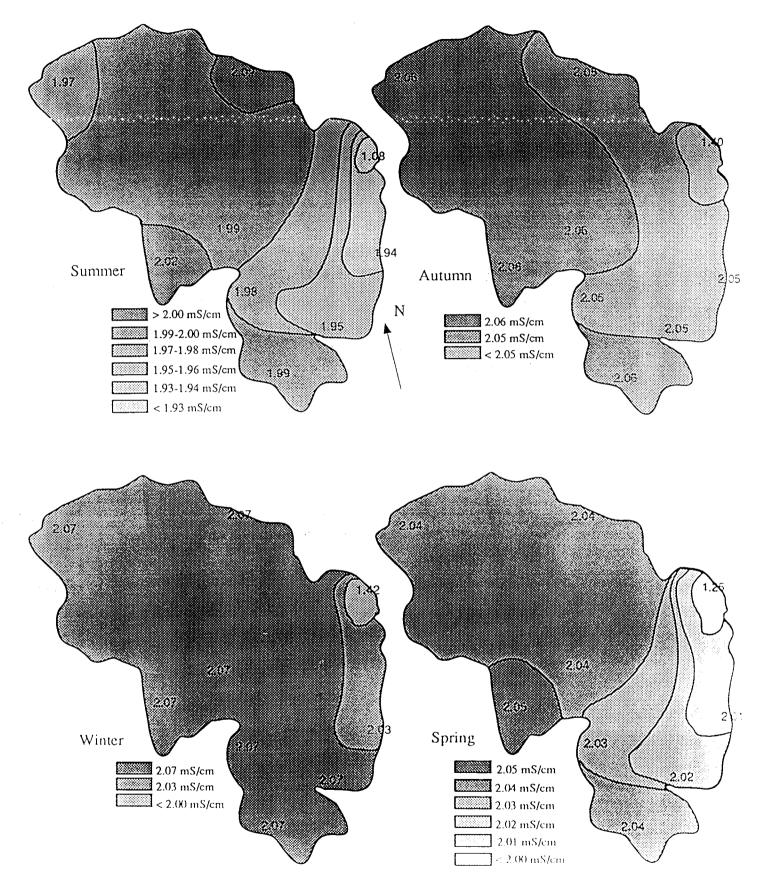


Temperatures at surface, in oC.

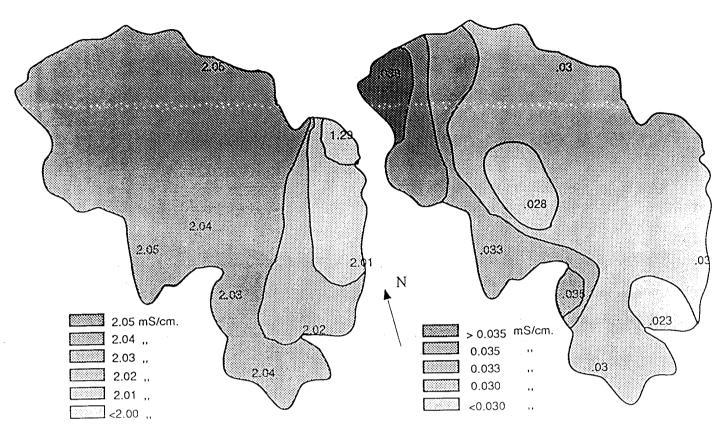

Wadi Rayan I. 4.


Temperatures at 1 m. depth , in oC.

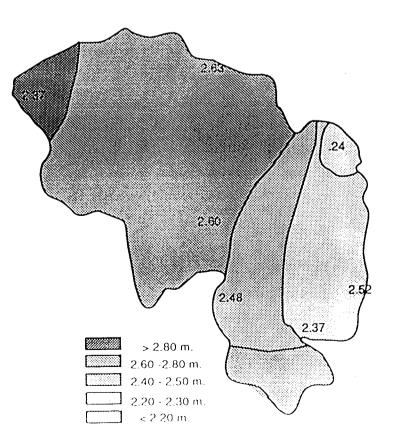

Electric conductivity in mS/cm., at the surface

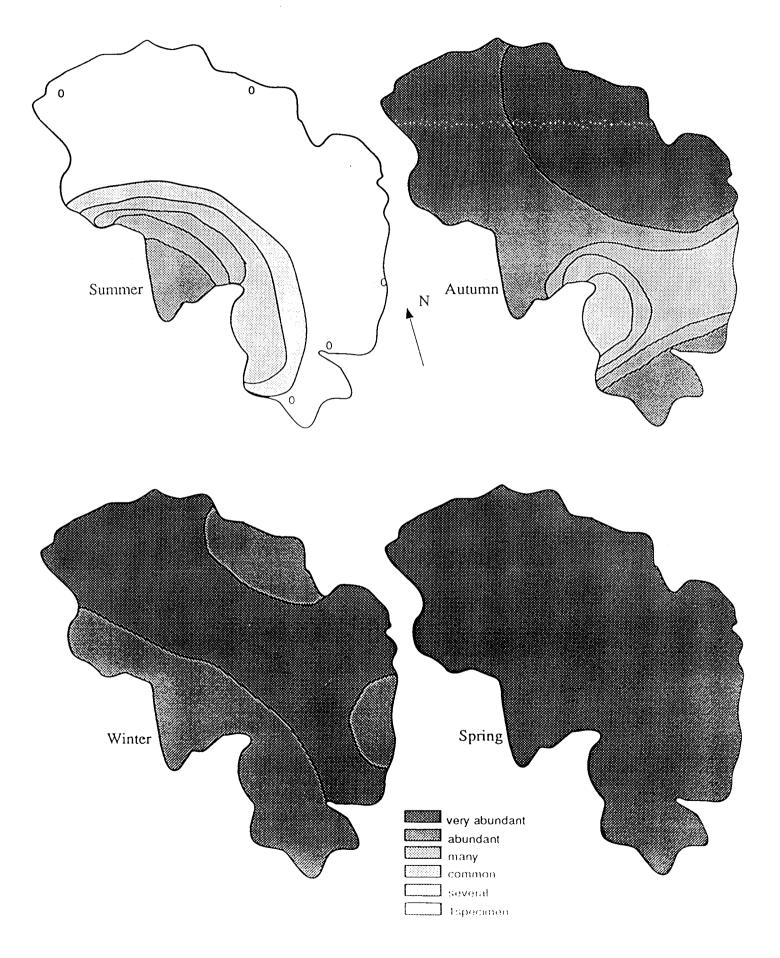


Wadi Rayan I. 6.



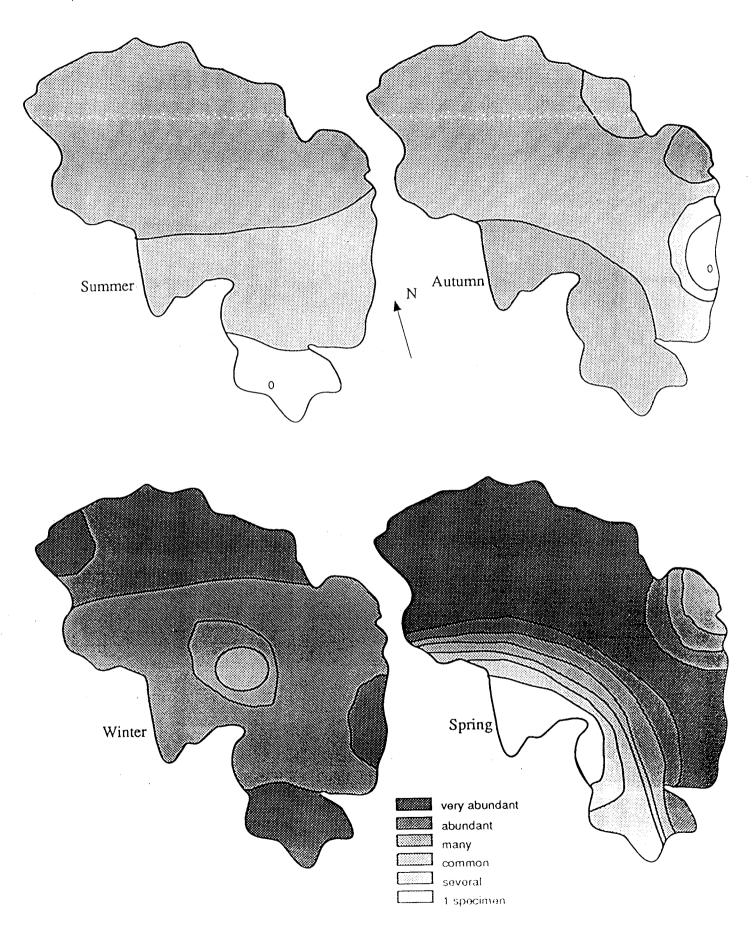
Electric conductivity, in mS/cm., at 1 m. depth.

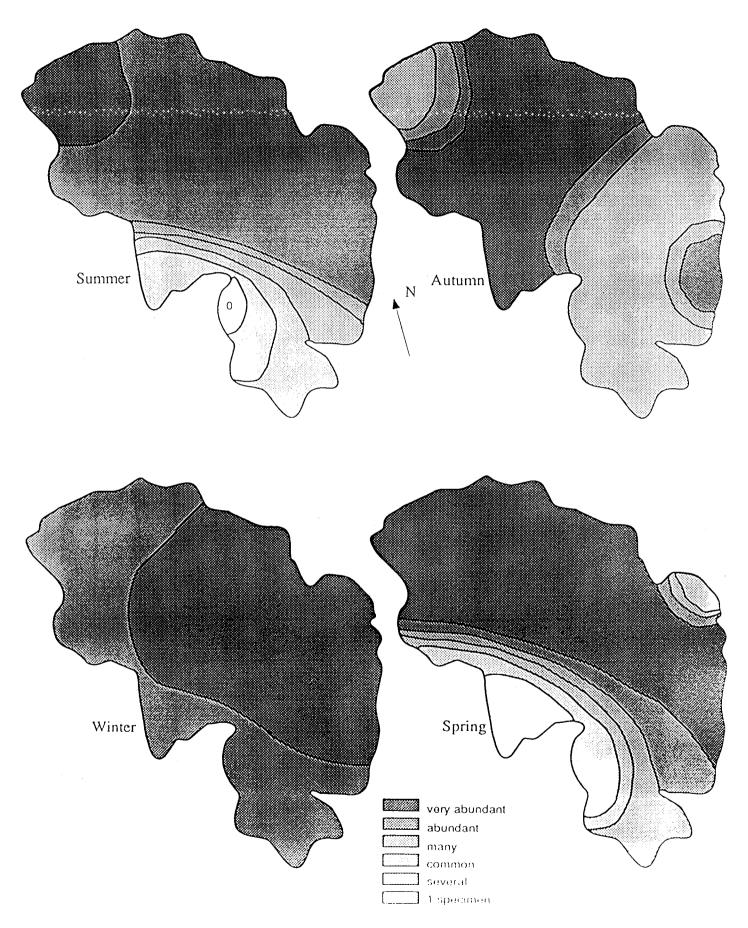

Average Ec for all depths per station per season



Average Ec for all measurements during all seasons.

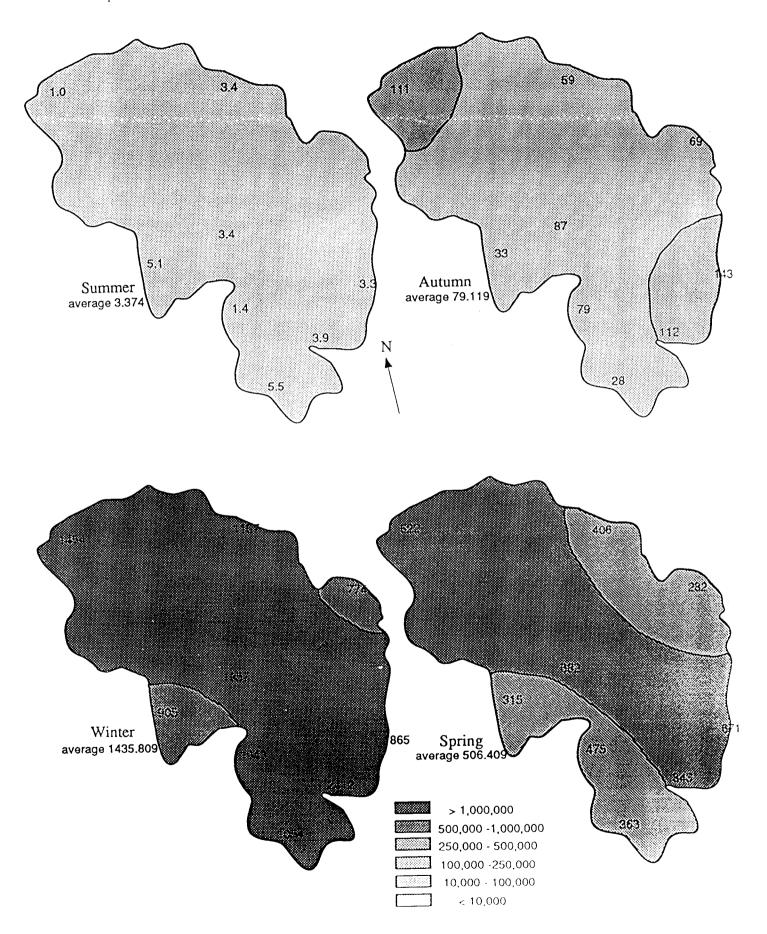
Average decrease of Ec per m. depth.

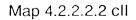


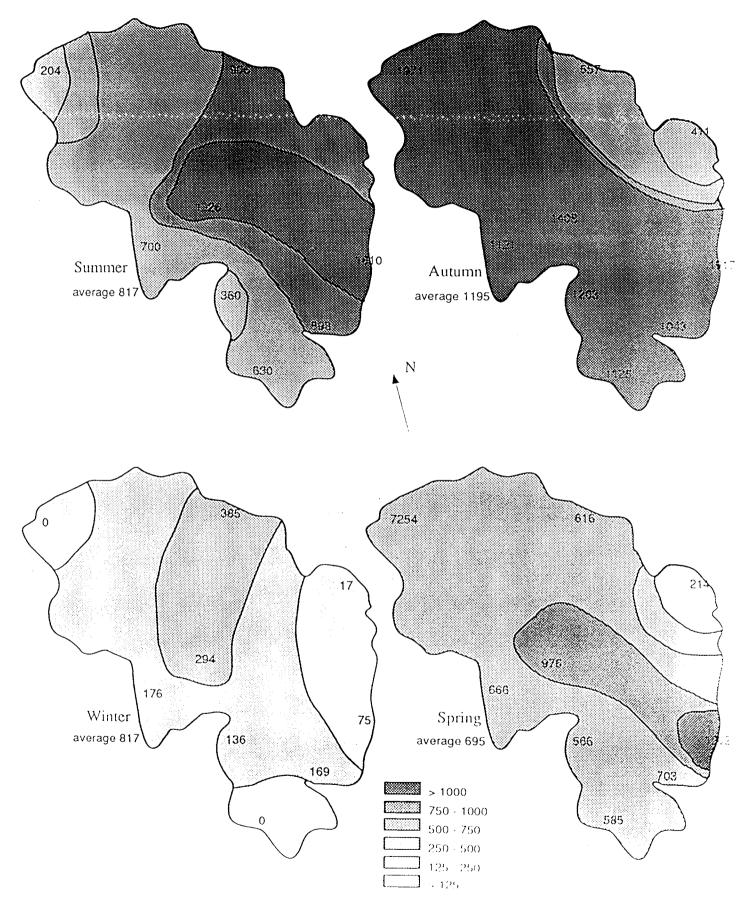

'~-

Wadi Rayan I. 10.

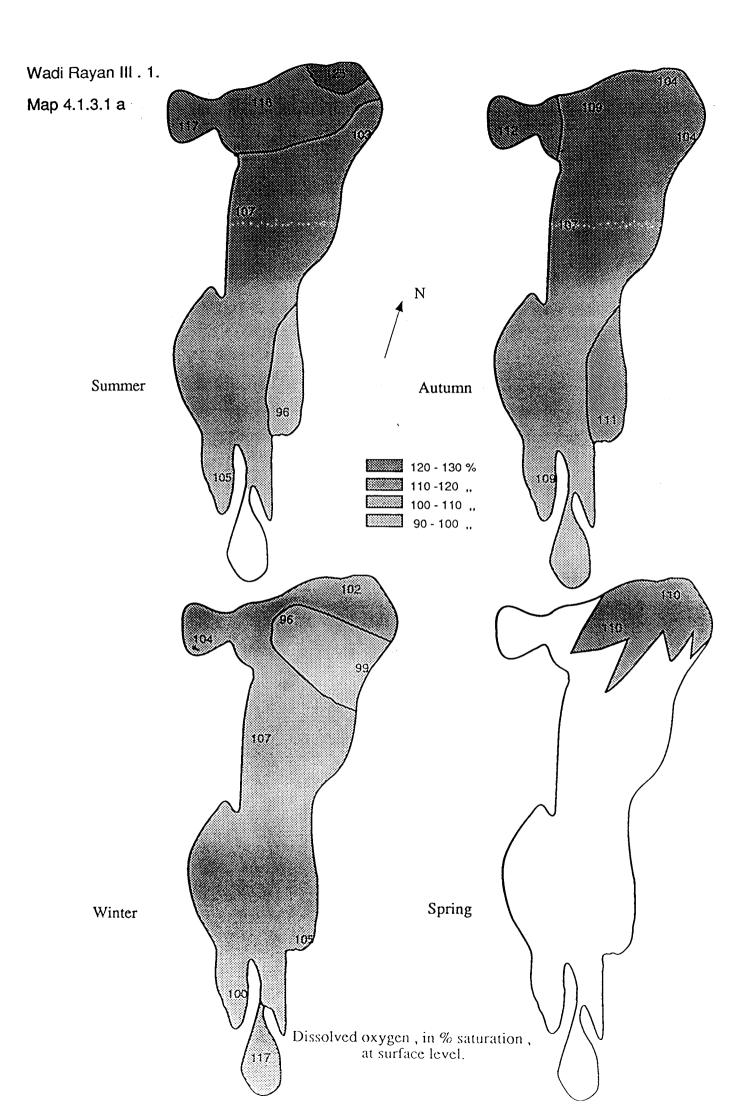
Distribution of the copepods from the 280μ samples.

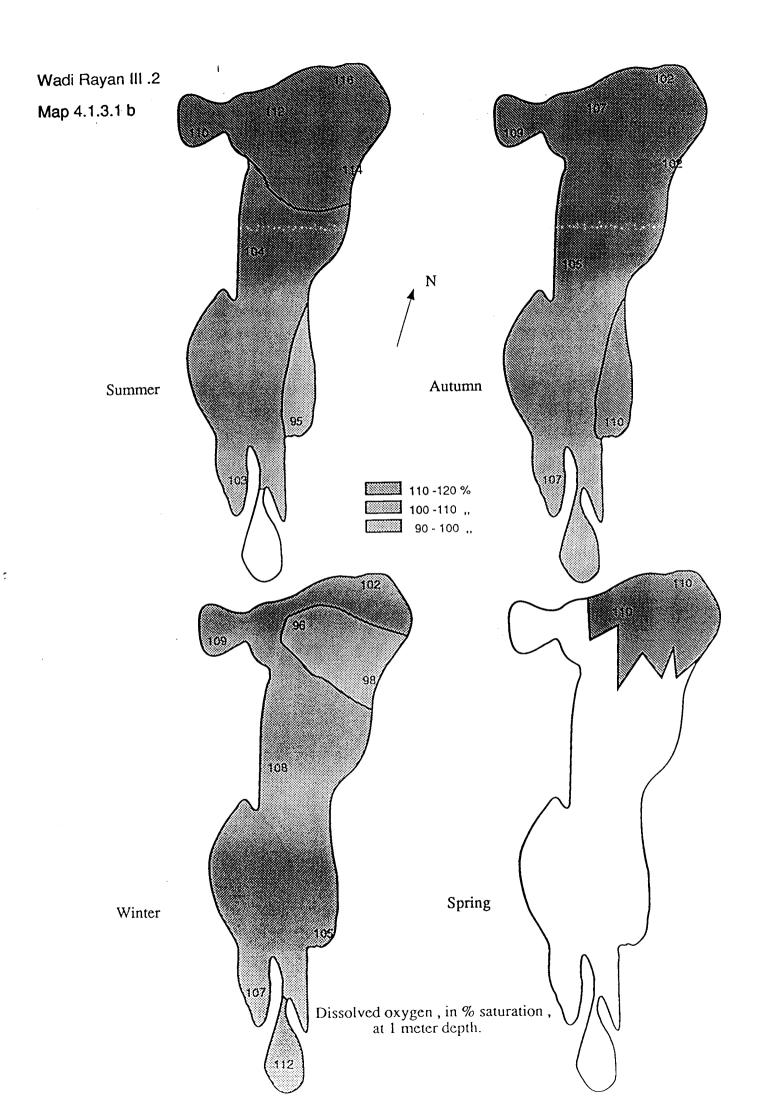


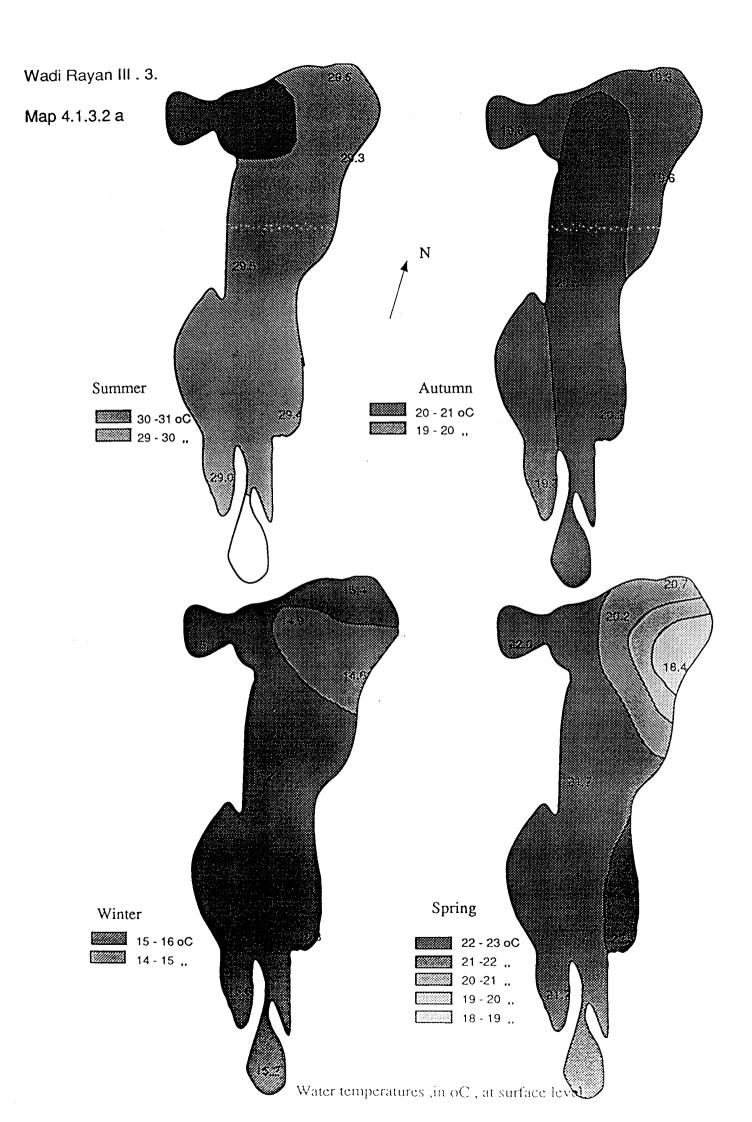

Distribution of the cladoceraits from the 280 samples

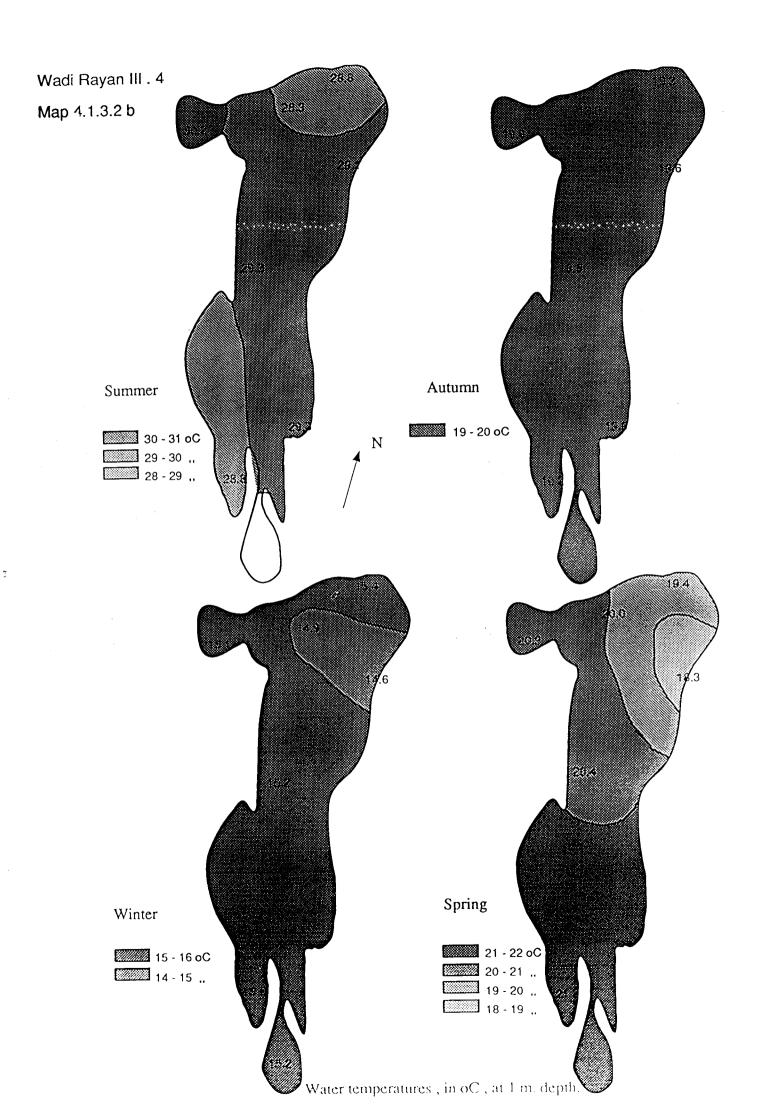

Map 4.2.2.2.2 cl.

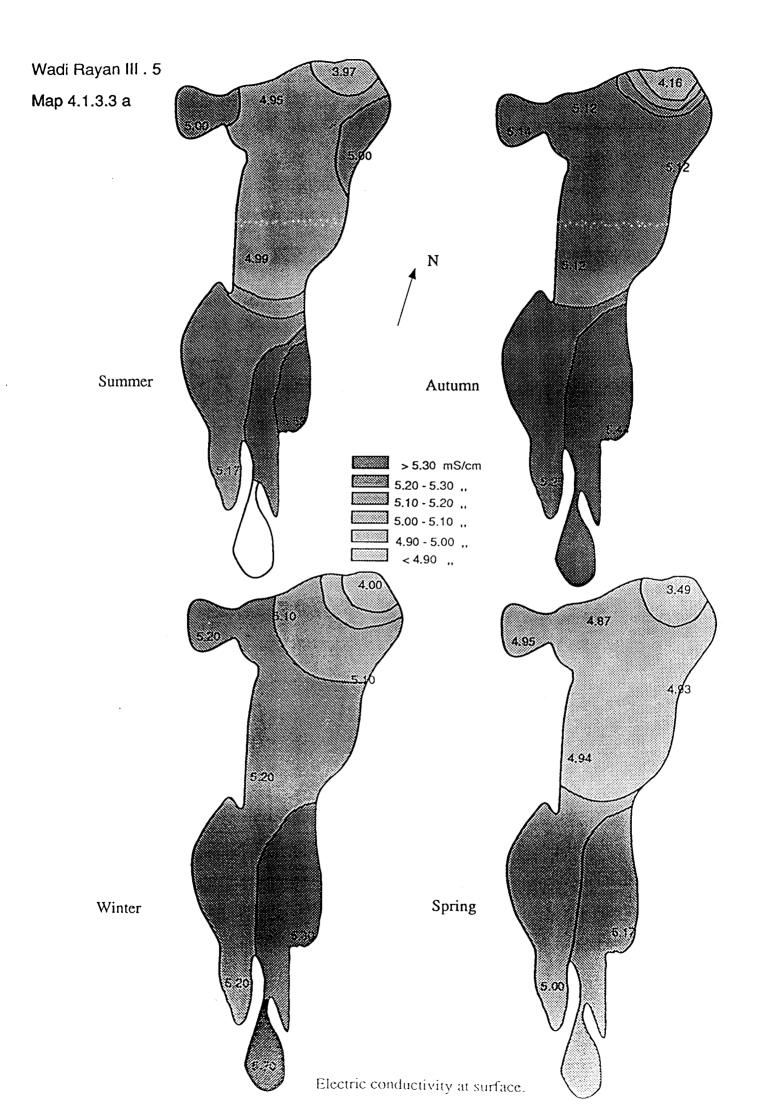
Wadi Rayan I. 12.

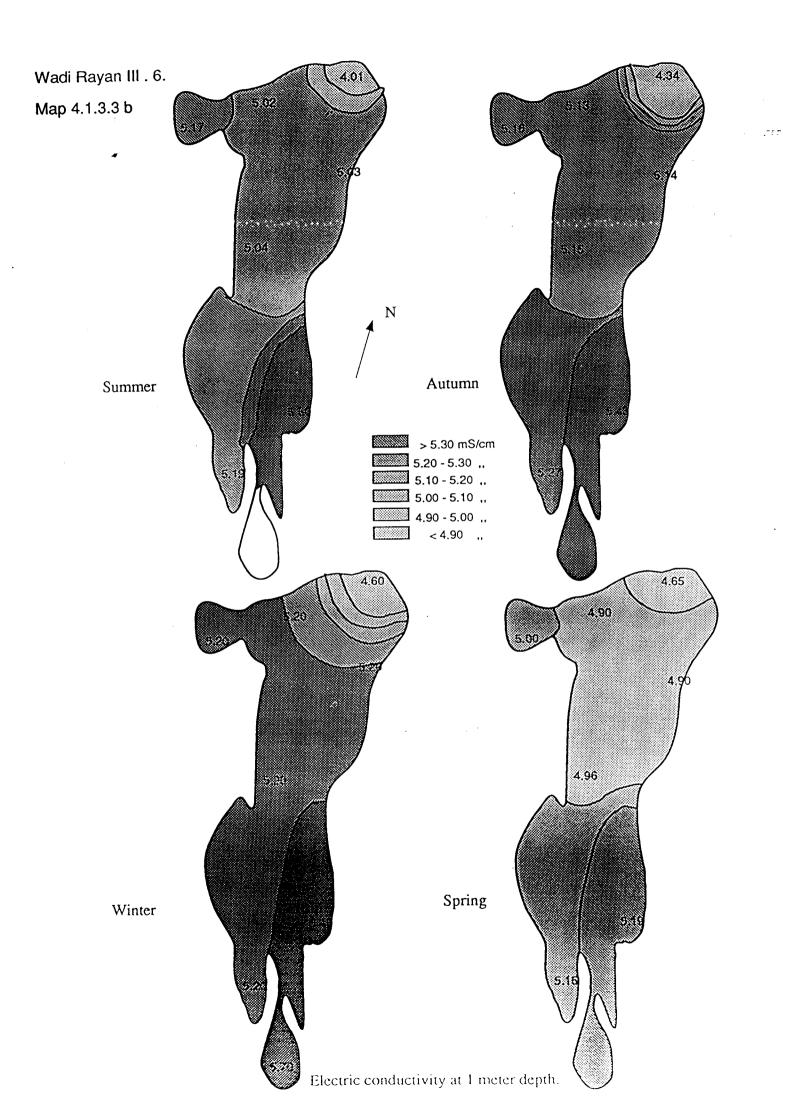

Plankton densities in number of organisms per liter. (60)usamples)

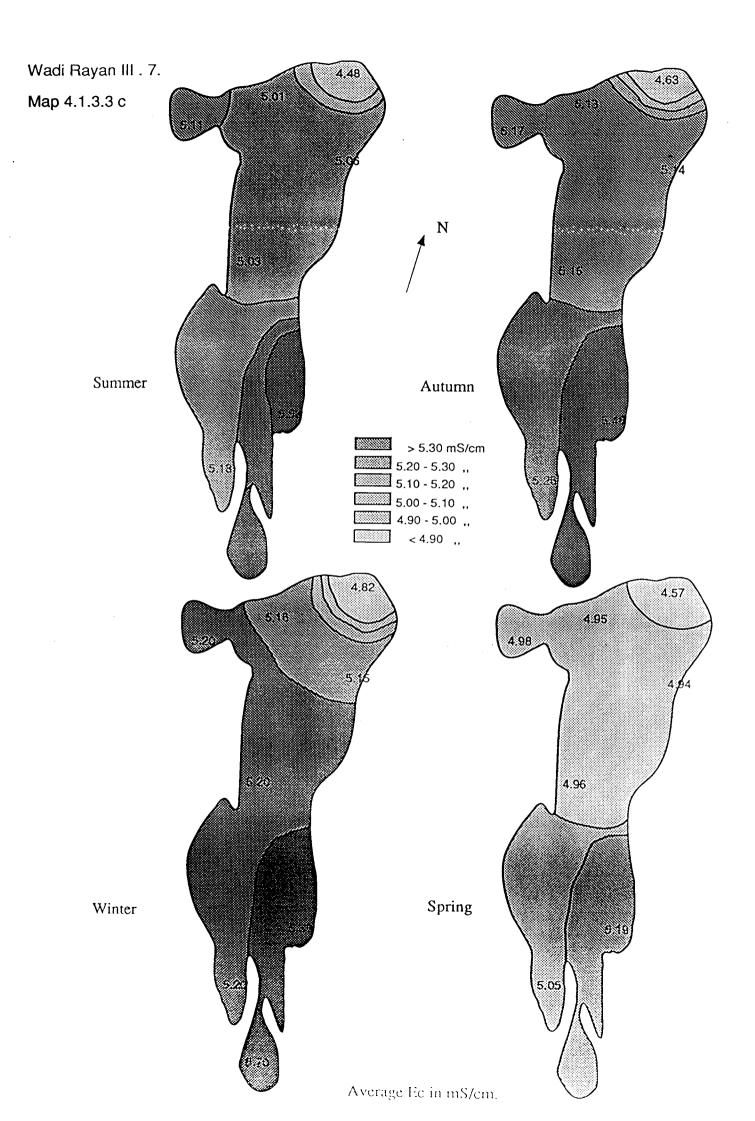


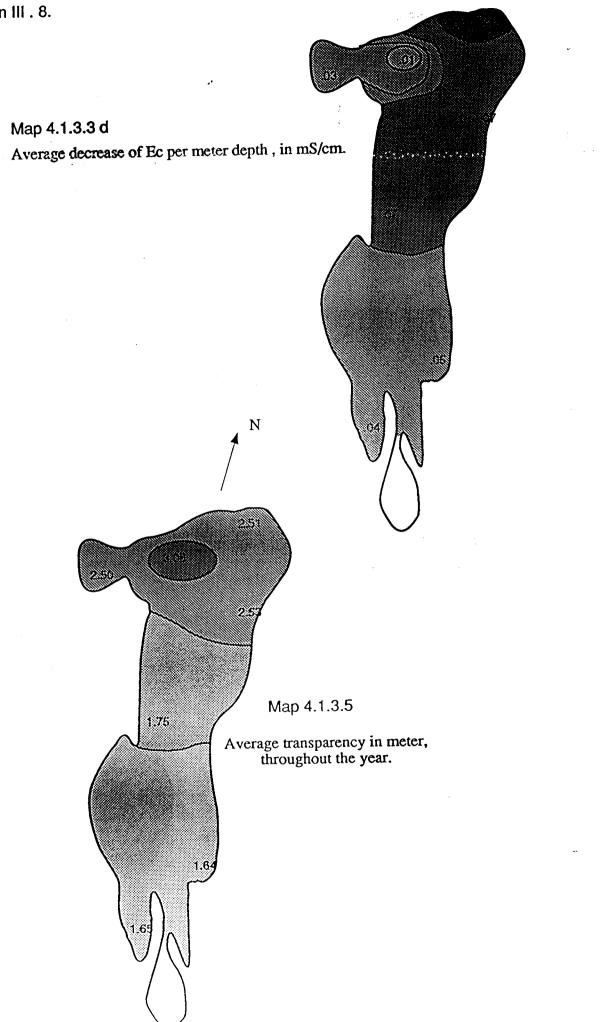


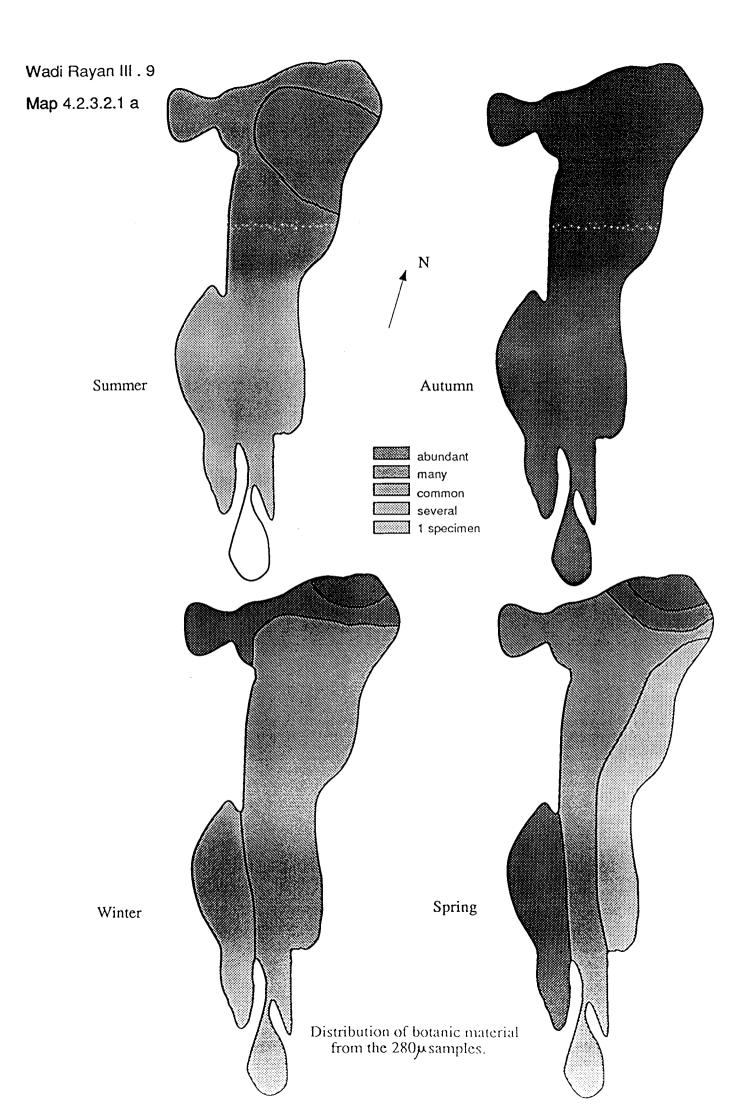

Plankton densities: of zooplankton only, in number of organisms per liter (60)asamples).

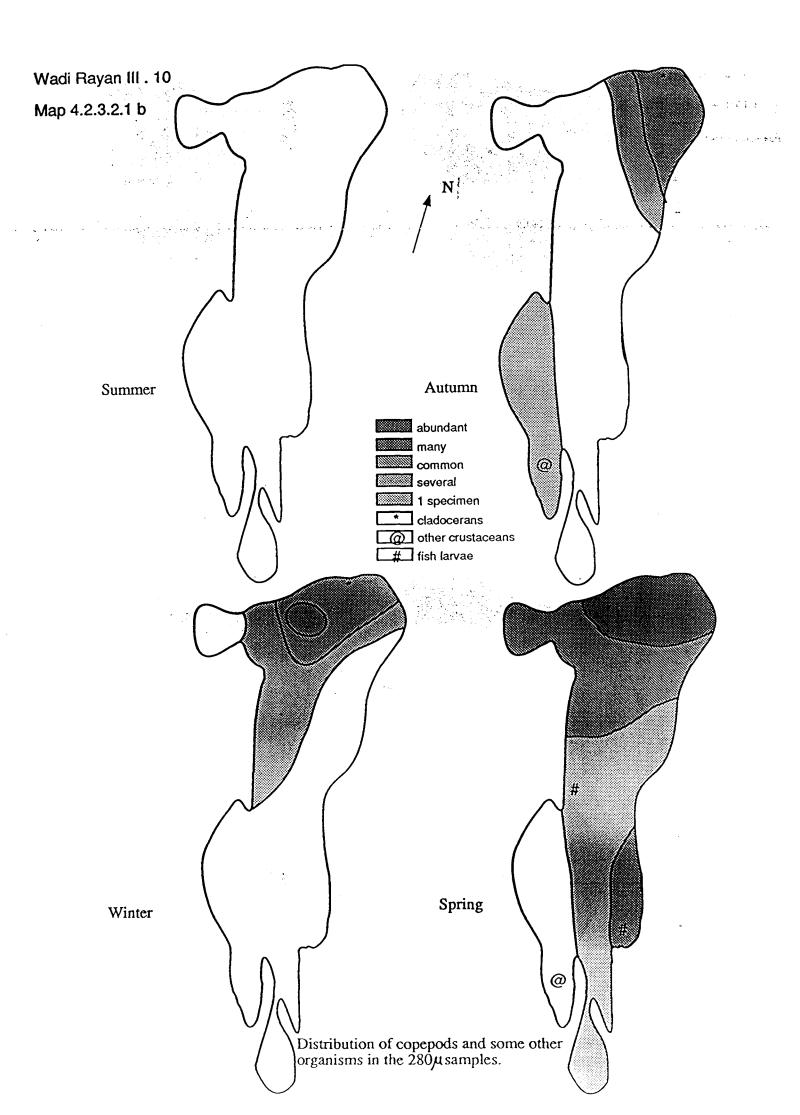


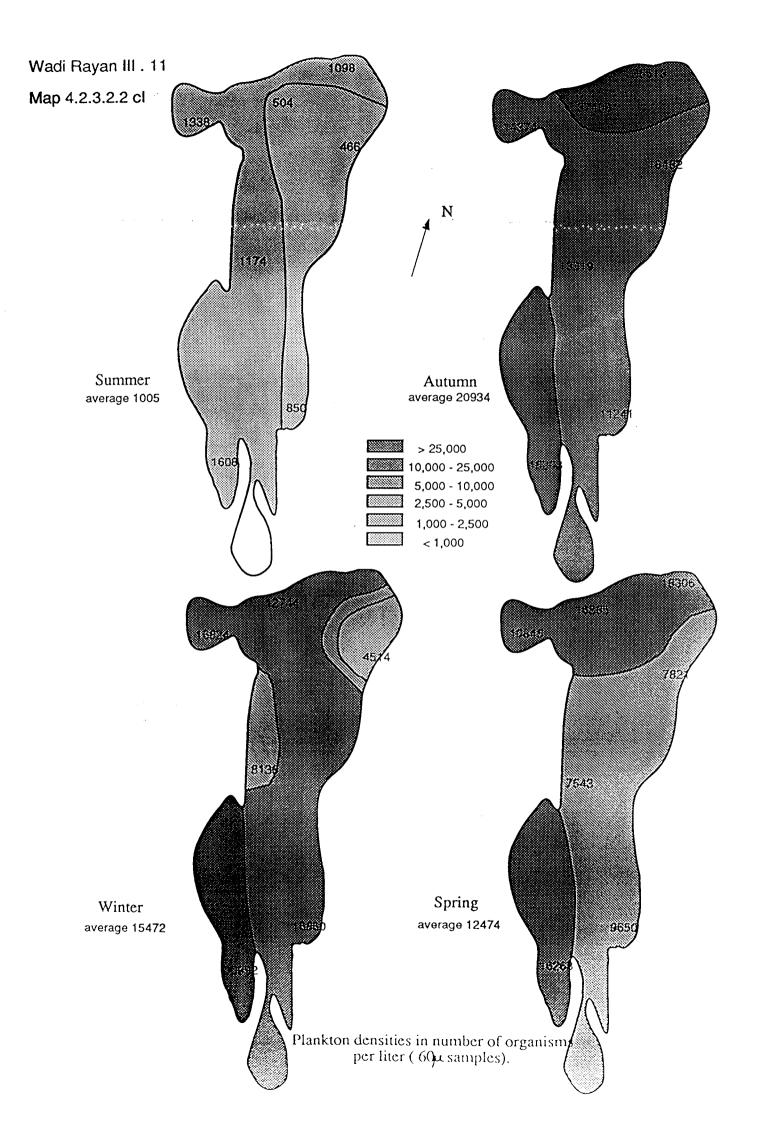












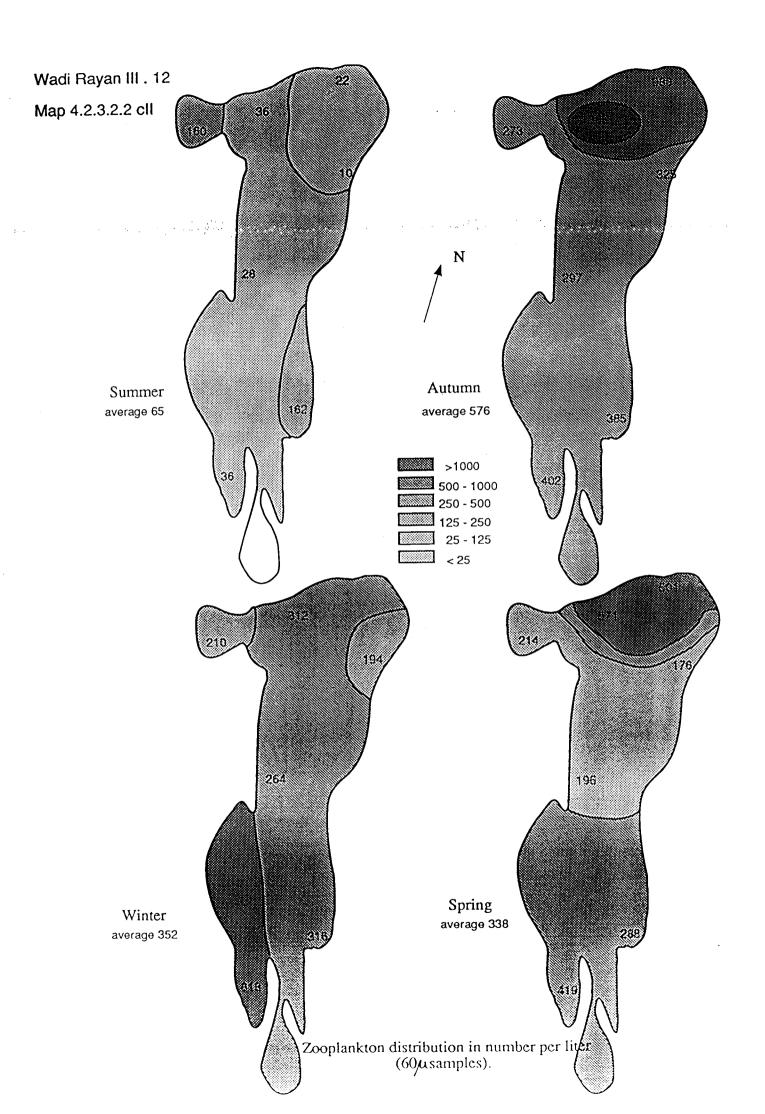


table 5.2.1.1.1.b. Length frequency of *Solea aegyptiaca* in cm groups.

length group in cm.	1958-60 El Zarka	1982-1983 IOF	1987-1988 own data
	nr %	nr %	nr %
10 11 12	$\begin{array}{cccc} 12 & .8 \\ 15 & 1.0 \\ 23 & 1.6 \end{array}$		2.2
12 13 14	37 2.6 64 4.4	22 4.2 30 5.8	11 1.0
15 16	99 6.9 96 6.7	36 6.9 42 8.1	25 2.2 68 6.1
17 18	173 12.0 241 16.7	38 7.3 29 5.6	151 13.5 221 19.7
19 20	248 17.2 223 15.5	32 6.2 36 6.9	223 19.9 167 14.9
21 22 23	93 6.5 43 3.0 24 1.7	30 5.8 22 4.2 21 4.0	93 8.3 53 4.7 38 3.4
23 24 25	$\begin{array}{cccc} 24 & 1.7 \\ 23 & 1.6 \\ 10 & .7 \end{array}$	24 4.6 29 5.6	29 2.6 16 1.4
26 27	4 .3	25 4.8 17 3.3	8.7 7.6
28 29	3 .2 5 .3 2 .1	19 3.7 22 4.2	5 .4 2 .2 2 .2
30 31 32	1 .1 1 .1	18 3.5 13 2.5 15 2.9	2 .2
32 33	1 .1 1 .1	15 2.9	
total average length	1441 18.1 ± 2.9	520 21.2 ± 5.4	1121 19.2 ± 2.5

Table 5.2.1.1.1.c

Average lenght of the four most important species from the three Fayoum lakes.(Jauary data not included).Lenght in cm. and (number of specimen)

	Liza ramada	Oreochromis niloticus	Oreochromis aureus	Tilapia zillii
Qarun	33.3±3.0(176)	17.9±2.2(85)	19.1±2.1(24)	15.9±2.0(38)
Rayan I	39.0±6.7(681)	23.4±6.4(491)	20.8±5.2(119)	17.7±2.7(51)
Rayan III	32.6±3.7(1041)	23.4±7.8(359)	17.8±4.0(243)	17.7±3.8(384)

Lake Qarun 24

Table 5.2.1.1.2.a

.

Length weight relation of the Solea aegyptiaca Chabanaud in gram per cm length group and the (Kf.)

length group in cm	ow	n data		data from El Zarka			
9			8.6	(1.18)			
10			9.2	(.92)			
11	20.0	(1.50)	10.7	(.80)			
12			12.9	(.75)			
13			18.5	(.84)			
14	30.0	(1.09)	21.9	(.80)			
15	47.1	(1.40)	26.8	(.79)			
16	47.9	(1.09)	33.7	(.82)			
17	53.4	(1.09)	40.4	(.82)			
18	60.0	(1.03)	48.9	(.84)			
19	70.1	(1.02)	54.0	(.80)			
20	78.5	(.98)	62.9	(.79)			
21	97.0	(1.05)	74.8	(.81)			
22	117.9	(1.11)	83.9	(.79)			
23	124.7	(1.02)	87.2	(.72)			
24	132.0	(.95)	104.8	(.76)			
25	174.0	(1.11)	101.3	(.65)			
26			96.5	(.55)			
27	182.5	(.93)	139.0	(.71)			
28	211.7	(.96)	148.5	(.68)			
29	225.0	(.92)					
30	327.5	(1.21)					
31			227.0	(.76)			
average weigh	t 76.1		49.7				
average Kf	1.09 ± .15		.79 ± .	11			

Table 5.2.1.1.3.a.

Mullet fry introduced in various years to lake Qarun in numbers x 1000.

Year	Mugil cephalus	Liza ramada	total	source
1928	20	0	20	Faouzi
1929	0	0	0	••
1930	0	0	0	••
1931	0	0	0	
1932			154	• •
1933			136	
1934			257	• •
1935			259	••
1971	955	200	1155	Ishak '82
1972	1329	1210	2539	
1973	1199	1226	2425	• •
1974	1098	1226	2324	• •
1975	3612	4452	8064	••
1976	1948	6107	8055	
1977	6065	8844	14909	
1978	0	14940	14940	••
1979	1608	5262	6870	El Bolock '83
1980	1280	26330	27610	••
1981	0	21183	21183	••
1982	500	21780	22280	GAFRD (coop)
1983	0	26000	26000	••
1984	7500	37000	44500	••
1985	18000	35000	53000	••
1986		52000	52000	
1987	0	48612	48612	••
1988	-	-	29618	••

Lake Qarun 26

Table 5.2.1.1.3.b.

Catch statics of grey mullet in tons

1929	0.2	Faouzi '36
1930	0.4	• •
1931	0.1	• •
1932	1.2	••
1933	2.8	• •
1934	42.3	• •
1935	341.7	• •
1962	452.	El Zarka '68
1963	285.	••
1964	288.	• •
1965	205.	• •
1966	125.	••
1967	136.	Ishak '81
1968	141.	
1969	130.	••
1976	303.	El Bolock '83
1977	244.	
1978	237.	
1979	382.	
1980	463.	
1981	212.	
1982	338.	
1983	365.	GAFRD (coop)
1985	184.	0111 (000p)
1985	299.	••
1986	484.	••
1987	222.	••
1988	88.	••
		••

Table 5.2.1.1.3.d Comparison of the number of fry released and the amount of fish caught.

year	A number of fry stocked x 1000	B catch 2 years after stocking in tons	C number of fish caught x 1000	A/B	C/A
1974	2324	303	1010	7.7	43.5
1975	8064	244	813	33.0	10.1
1976	8055	237	790	34.0	9.8
1977	14909	382	1273	39.0	8.5
1978	14940	463	1543	32.3	10.3
1979	6870	212	707	32.4	10.3
1980	27610	338	1127	81.7	4.1
1981	21183	365	1217	58.0	5.7
1982	22280	184	613	121.1	2.8
1983	26000	299	997	87.0	3.8
1984	44500	484	1613	91.9	3.6
1985	53000	222	740	238.7	1.4
1986	52000	88	293	590.9	.6

A/B = number of fry needed for the production of 1 ton of fish C/A = survival rate in %.

Table 4.1.2.

Limnological features during different seasons at various depths

Average D.O. in % saturation

Summer Autumn Winter Spring	Surface 110 104 96 99	1 103 102 97 99	2 102 104 97 101	3 103 104 97 102	4 97 98 97 103	5 101 96 97 101	6 107 90 97 101	7 98 89 96 100	8 85 88 95 98	9 75 85 90 98	10 19 84 80 97	15 2 76 83	20 4 70 84	
Average	Average D.O. in p.p.m.													
Summer	8.7	8.2	8.2	8.3	7.8	8.1	8.7	8	6.8	6.4	1.5	0.2	0.3	
Autumn	9.5	9.4	9.5	9.7	9.2	8.9	8.5	8.4	8.2	8	7.9	6.7	6.2	
Winter Spring	9.8 9.1	10.0 9.3	10.0 9.4	10.0 9.5	10.0 9.6	10.1 9.5	10.0 9.6	9.9 9.4	9.9 9.2	8.9 9.2	8.8 9.1	8.4	8.9	
Average	temper	ature	in oC	к •									-	
<u> </u>	07.0	07.0	07 (07.5	27.1	07 0	26.0	047	244	264	25 (24.2		cl./m depth
Summer	27.9	27.8 20.7	27.6 20.3	27.5 20.1	27.1 19.9	27.3 19.9	26.8 19.8	26.7 19.8	26.6 19.8	26.4 19.8	25.6 19.7	24.2 18.9	23.8 19.4	0.21 0.09
Autumn Winter	21.2 15.2	15.2	15.2	15.1	19.9	19.9	19.0	19.8	19.8	19.8	19.7	14.9	19.4	0.09
Spring	20.0	19.7	19.6	19.8	19.8	19.6	19.5	14.9	19.4	19.4	19.5	14.7	14.7	0.02

Average Ec in mS/cm

	Surface	1	2	3	5	6	10	15	20	Total	n
Summer	1.87	1.97	-	1.97	1.97	-	1.98	2.12	2.12	1.96	37
Autumn	1.97	2.06	-	2.06	2.06	-	2.06	2.06	2.07	2.04	34
Winter	1.99	2.07	-	2.06	2.06	-	2.07	2.07	2.08	2.05	38
Spring	2.03	2.04	2.05	2.03	2.03	2.03	2.05	-	-	2.01	36

	Transparency in m	Air temp.in oC.
Summer	3.8	30.5
Autumn	2.8	23.9
Winter	2.8	15.1
Spring	2.1 - 1.9 (with st. 3)	19.9

.

Table 4.1.2.a.

Summer . 8/9-VII-87

D.O. in % saturation

$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
4 102 95 96 102 100 100 94 72 46 42 12 2 4* 4 19.2 69 4.2 9 1.3 7 101 101 101 109 109 109 109 109 109 109 108 9 4.3 1.7 7 1.0 11 107 98 85 75 19 2 4 4.6 1.7 7
5 108 100 98 95 70 6 104 17 9 13.7 7 134 127 128 126 117 110 115 113 99 80 29* 29 9.5 8 111 109 104 107 100 105 108* 108 5.1 9 103 95 94 1.7 7.7 7.5 19 2 4 D.O. in p.p.m. 1 8.1 7.5 7.5 7.7 7.7 7.5 7.5 7.5 5.2 3 9.7 4.8 7.6 7.8 8.2 8.3 8.1 7.8 8.0 9.8 8.6 1.4 0.6 13.7 4 8.1 7.6 7.8 8.9 9.8 8.8 8.6 1.4 0.6 13.7 7 10.6 10.0 10.2 9.2 8.8 7.8 8.6 8.1 1.7 7.4 1.7 7 1.6 1.0 10.2
6 108 102 104 107 110 111 109 109 104 17 9 13.7 7 134 127 128 126 117 110 115 113 99 80 29* 29 9.5 8 111 109 100 109 103 95 94*
7 134 127 128 126 117 110 115 113 99 80 29* 29 9.5 8 111 109 110 109 108* 113 99 80 29* 29 9.5 9 103 95 94* 94 1.7 108 5.1 9 101 103 102 103 97 101 107 98 85 75 19 2 4 D.O. in p.p.m. 1 8.1 7.6 7.8 7.7 7.7 7.5 7.5 7.5 5.2 3 9.7 7 7.7 7.5 7.5 7.5 5.2 5.7 4.2 6.6 4.5 2 8.1 7.8 7.7 7.7 7.5 7.5 7.2 5.7 4.2 6.6 1.3.7 7.5 5.2 3 9.7 10.6 10.0 10.0 10.2 9.2 8.8 8.6 1.4 0.6 13.7 1.7
8 111 109 10 109 109 108* 108 94 Average 110 103 102 103 97 101 107 98 85 75 19 2 4 D.O. in p.p.m. 1 8.1 7.5 7.5 7.2 6.7 6.6* 7.5 7.5 5.2 3 9.7 4 8.1 7.6 7.8 8.2 8.3 8.1 7.8 6 3.7 3.5 0.9 0.2 0.3* 0.3 19.2 5 8.6 8.1 7.8 7.7 7.5 5.7 4.2 9.5 5.7 4.2 9.5 5.7 4.2 9.5 5.7 4.2 9.5 5.7 4.2 5.7 4.5 6 3.7 3.5 0.9 0.2 0.3* 0.3 19.2 5.8 8.6 8.6 1.4 0.6 13.7 7.4 1.7 7.4 1.7 4.5 6 7 8 8.6 1.4 0.6 13.7 7.4 1.7 4.5
9 103 95 94* 1.7 Average 110 103 102 103 97 101 107 98 85 75 19 2 4 D.O. in p.p.m. 1 8.1 7.5 7.5 7.2 6.7 6.6* . 6.6 4.5 2 8.1 7.8 7.8 7.7 7.5 7.5 5.2 3 9.7 7.7 7.5 7.5 5.2 4 8.1 7.6 7.8 8.2 8.3 8.1 7.8 6 3.7 3.5 0.9 0.2 0.3* 0.3 19.2 5.7 4.2 6 6.6 4.5 8.7 4.2 9.6 8.8 8.6 1.4 0.6 13.7 7.4 2.2 9.5 8.7 7.4 1.7 7.4 1.7 7.4 1.7 7.4 1.7 1.4 1.7 1.7 1.4 1.7 1.7 1.4 1.7 1.7 1.7 1.7 1.5 1.5 1.5
Average 110 103 102 103 97 101 107 98 85 75 19 2 4 D.O. in p.p.m. 1 8.1 7.5 7.5 7.2 6.7 6.6* 7.5
D.O. in p.p.m. 1 8.1 7.5 7.5 7.2 6.7 6.6* 6.6 4.5 2 8.1 7.8 7.8 7.7 7.7 7.5 3 9.7 4 8.1 7.6 7.8 8.2 8.3 8.1 7.8 6 3.7 3.5 0.9 0.2 0.3* 0.3 19.2 5 8.6 8.1 7.8 7.7 5.6 6 8.5 8.3 8.4 8.4 8.7 8.9 9 8.9 8.8 8.6 1.4 0.6 13.7 7 10.6 10.0 10.0 10.2 9.2 8.8 9.2 9.2 7.9 7 2.2* 2.2 9.5 8 8.7 8.8 8.6 8.8 8.7 8.7* 7.4 1.7 Average 8.7 8.2 8.2 8.3 7.8 8.1 8.7 8 6.8 6.4 1.5 0.2 0.3 Temperature in oC Station Surface 1 2 3 4 5 6 7 8 9 10 15 20BottomDepth in m 27.6 4.5 2 7.6 7.4* 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.5 8 2 7.6 7.4* 7.4 7.7 7.7 7.7 7.7 7.5 7.1 7.7 7.5 7.1 7.4 1.7 7.4 1.7 7.4 1.7 7.4 1.7 7.4 1.7 7.4 1.7 7.4 1.7 7.5 7.5 7.1 7.4 1.7 7.5 7.5 7.1 7.4 7.5 7.5 7.1 7.4 7.5 7.5 7.1 7.4 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2 8.1 7.8 7.8 7.7 7.7 7.5 7.5 5.2 3 9.7 4 8.1 7.6 7.8 8.2 8.3 8.1 7.8 6 3.7 3.5 0.9 0.2 0.3* 0.3 19.2 5 8.6 8.1 7.8 7.7 5.6 5.7 4.2 6 8.5 8.3 8.4 8.7 8.9 9 8.9 8.8 8.6 1.4 0.6 13.7 7 10.6 10.0 10.2 9.2 8.8 9.2 9.2 7.9 7 2.2* 2.2 9.5 8 8.7 8.8 8.6 8.8 8.7 8.7* 8.7 8.7 5.1 7.4 1.7 Average 8.7 8.2 8.3 7.8 8.1 8.7 8 6.8 6.4 1.5 0.2 0.3 Temperature in oC Station Surface 1 2 3 2.6 7.7 27.6 7.8 9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
4 8.1 7.6 7.8 8.2 8.3 8.1 7.8 6 3.7 3.5 0.9 0.2 0.3* 0.3 19.2 5 8.6 8.1 7.8 7.7 5.6 5.7 4.2 6 8.5 8.3 8.4 8.4 8.7 8.9 9 8.9 8.8 8.6 1.4 0.6 13.7 7 10.6 10.0 10.0 9.2 8.8 9.2 9.2 7.9 7 2.2* 2.2 9.5 8 8.7 8.8 8.6 8.8 8.7 8.7* 7.4 1.7 9 8.2 7.6 7.4* 7.4 1.7 7.4 1.7 Average 8.7 8.2 8.3 7.8 8.1 8.7 8 6.8 6.4 1.5 0.2 0.3 Temperature in oC Station Surface 1 2 3 4 5 6 7 8 9 10 15 20BottomDepth in m 27.6<
58.68.17.87.75.65.74.268.58.38.48.48.78.998.98.88.61.40.613.7710.610.010.29.28.89.29.27.972.2*2.29.588.78.88.68.88.78.7*7.41.798.27.67.4*7.41.77.41.7Average8.78.28.28.37.88.18.786.86.41.50.20.3Temperature in oCStationSurface123456789101520BottomDepth in m 27.64.5128.328.228.027.827.727.6*27.327.327.327.327.3427.026.926.826.726.026.025.825.725.424.223.8*23.819.2527.627.527.227.225.825.725.424.223.8*23.819.2527.627.527.227.227.026.926.826.726.525.425.113.7728.828.728.328.127.927.727.627.427.327.026.9*26.925.825.725.424.223.8*23.8<
6 8.5 8.3 8.4 8.4 8.7 8.9 9 8.9 8.8 8.6 1.4 0.6 13.7 7 10.6 10.0 10.0 10.2 9.2 8.8 9.2 9.2 7.9 7 2.2* 2.2 9.5 8 8.7 8.8 8.6 8.8 8.7 8.7* 8.7 8.7 5.1 9 8.2 7.6 7.4* 7.4 7.4 1.7 Average 8.7 8.2 8.3 7.8 8.1 8.7 8 6.8 6.4 1.5 0.2 0.3 Temperature in oC Station Surface 1 2 3 4 5 6 7 8 9 10 15 20BottomDepth in m 1 28.3 28.0 27.8 27.7 27.6 27. 27.6 4.5 2 28.0 28.0 27.9 27.7 27.4 27.4 27.4 27.4 27.5 27.7 27.6 2.5 2.4
7 10.6 10.0 10.2 9.2 8.8 9.2 9.2 7.9 7 2.2* 2.2 9.5 8 8.7 8.8 8.6 8.8 8.7 8.7* 7.4 1.7 9 8.2 7.6 7.4* 7.8 7.8 8.6 6.4 1.5 0.2 0.3 Temperature in oC Station Surface 1 2 3 4 5 6 7 8 9 10 15 20BottomDepth in m 1 28.3 28.0 27.9 27.4 27.4 27.4 27.3 5.2 2 28.0 28.0 27.9 27.7 27.4 27.4 27.3 5.2 4 27.0 26.9 26.8 26.7 26.3 26.2 26.0 26.8 25.7 25.4 24.2 23.8* 23.8 19.2 5 27.6 27.5 27.2 25.8 25.7 25.4 24.2 23.8* 23.8 19.2 5 27.6
8 8.7 8.8 8.6 8.8 8.7 8.7* 8.7 5.1 9 8.2 7.6 7.4* 7.4 1.7 Average 8.7 8.2 8.2 8.3 7.8 8.1 8.7 8 6.8 6.4 1.5 0.2 0.3 Temperature in oC Station Surface 1 2 3 4 5 6 7 8 9 10 15 20BottomDepth in m 1 2 3 4 5 6 7 8 9 10 15 20BottomDepth in m 1 2 3 4 5 6 7 8 9 10 15 20BottomDepth in m 1 28.3 28.0 27.8 27.7 27.4 27.4 27.3 27.3 5.2 2 28.0 27.5 27.2 27.2 27.4 27.4 27.5 27.3 5.2 3 27.6 27.5 27.2 27.2
9 8.2 7.6 7.4* 7.4 1.7 Average 8.7 8.2 8.2 8.3 7.8 8.1 8.7 8 6.8 6.4 1.5 0.2 0.3 Temperature in oC Station Surface 1 2 3 4 5 6 7 8 9 10 15 20BottomDepth in m 1 28.3 28.2 28.0 27.8 27.7 27.6* 27.3 5.2 2 28.0 28.0 27.9 27.7 27.4 27.4 27.3 5.2 3 27.3 4 27.0 26.9 26.8 26.7 26.3 26.2 26.0 25.8 25.7 25.4 24.2 23.8* 23.8 19.2 5 27.6 27.5 27.2 27.2 25.8 26.7 26.5 25.4 25.1 13.7 7 28.8 28.7 28.3 28.1 27.9 27.7 27.6 27.4 27.3 27.0 26.0* 26.9
Average 8.7 8.2 8.2 8.3 7.8 8.1 8.7 8 6.8 6.4 1.5 0.2 0.3 Temperature in oC Station Surface 1 2 3 4 5 6 7 8 9 10 15 20BottomDepth in m 1 28.3 28.2 28.0 27.8 27.7 27.6* 27.3 5.2 3 27.3 28.0 27.9 27.7 27.4 27.4 27.3 5.2 3 27.3 27.2 27.2 25.8 27.5 27.2 27.8 27.5 27.2 27.8 25.8 25.7 25.4 24.2 23.8* 23.8 19.2 5 27.6 27.5 27.2 27.2 25.8 26.7 26.5 25.4 24.2 23.8* 23.8 19.2 5 27.6 27.8 27.3 27.2 27.0 27.0 26.9 26.8 26.7 26.5 25.4 25.1 13.7 6 28.6 27.8 27.8
Temperature in oC Station Surface 1 2 3 4 5 6 7 8 9 10 15 20BottomDepth in m 1 28.3 28.2 28.0 27.8 27.7 27.6* 27.3 5.2 2 28.0 28.0 27.9 27.7 27.4 27.4 27.3 5.2 3 27.3 3 27.3 5.2 27.3 5.2 27.3 5.2 4 27.0 26.9 26.8 26.7 26.3 26.2 26.0 26.0 25.8 25.7 25.4 24.2 23.8* 23.8 19.2 5 27.6 27.5 27.2 25.8 25.7 25.4 24.2 23.8* 23.8 19.2 5 27.6 27.8 27.3 27.2 27.0 27.0 26.9 26.8 26.7 26.5 25.4 25.1 13.7 7 28.8 28.7 28.3 28.1 27.9 27.8 27.4 27.3 27.0 26.0*
Station Surface 1 2 3 4 5 6 7 8 9 10 15 20BottomDepth in m 1 28.3 28.2 28.0 27.8 27.7 27.6* 27.3 5.2 2 28.0 28.0 27.9 27.7 27.4 27.4 27.3 5.2 3 27.3 4 27.0 26.9 26.8 26.7 26.3 26.2 26.0 26.0 25.8 25.7 25.4 24.2 23.8* 23.8 19.2 5 27.6 27.5 27.2 27.2 25.8 25.7 25.4 24.2 23.8* 23.8 19.2 5 27.6 27.5 27.2 27.2 25.8 25.7 25.4 24.2 23.8* 23.8 19.2 5 27.6 27.3 27.2 27.0 27.0 26.9 26.8 26.7 26.5 25.4 25.1 13.7 7 28.8 28.7 28.3 28.1 27.9 27.7 27.6 27.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3 27.3 4 27.0 26.9 26.8 26.7 26.3 26.2 26.0 26.0 25.8 25.7 25.4 24.2 23.8* 23.8 19.2 5 27.6 27.5 27.2 27.2 25.8 25.8 4.2 25.8 4.2 6 28.6 27.8 27.3 27.2 27.0 27.0 26.9 26.8 26.7 26.5 25.4 25.1 13.7 7 28.8 28.7 28.3 28.1 27.9 27.7 27.6 27.4 27.3 27.0 26.9 26.8 26.7 26.0* 25.4 25.1 13.7 7 28.8 28.7 28.3 28.1 27.9 27.7 27.6 27.4 27.3 27.0 26.0* 26.9 5 27.8 5.1 27.8 5.1 27.8 5.1 27.8 5.1 27.5 1.7 9 27.6 27.6 27.5 27.1 27.3 26.8 26.7 26.6 26.4 25.6 24.2 23.8
4 27.0 26.9 26.8 26.7 26.3 26.2 26.0 26.0 25.8 25.7 25.4 24.2 23.8* 23.8 19.2 5 27.6 27.5 27.2 27.2 25.8 25.8 25.8 4.2 6 28.6 27.8 27.3 27.2 27.0 27.0 26.9 26.8 26.7 26.5 25.4 25.1 13.7 7 28.8 28.7 28.3 28.1 27.9 27.7 27.6 27.4 27.3 27.0 26.9* 26.8 26.7 26.0* 26.0* 26 9.5 8 27.8 27.8 27.9 27.8 27.9 27.8* 27.8 5.1 27.5 1.7 9 27.6 27.6 27.5 27.1 27.3 26.8 26.7 26.6 26.4 25.6 24.2 23.8 Ec in mS/cm Transp. Air temp. pH Station Surface 1 3 5 10 15 20 Bottom (m) Av./station
5 27.6 27.5 27.2 25.8 25.8 4.2 6 28.6 27.8 27.3 27.2 27.0 27.0 26.9 26.8 26.7 26.5 25.4 25.1 13.7 7 28.8 28.7 28.3 28.1 27.9 27.7 27.6 27.4 27.3 27.0 26.9 26.8 26.7 26.5 25.4 25.1 13.7 7 28.8 28.7 28.3 28.1 27.9 27.7 27.6 27.4 27.3 27.0 26.0* 26 9.5 8 27.8 27.8 27.9 27.8 27.9 27.8* 27.8 5.1 27.5 1.7 9 27.6 27.6 27.5 27.1 27.3 26.8 26.7 26.6 26.4 25.6 24.2 23.8 Transp. Air temp. pH Station Surface 1 3 5 10 15 20 Bottom (m) Av./station
6 28.6 27.8 27.3 27.2 27.0 27.0 26.9 26.8 26.7 26.5 25.4 25.1 13.7 7 28.8 28.7 28.3 28.1 27.9 27.7 27.6 27.4 27.3 27.0 26.0* 26.9 26.0* 26.9 26.0* 26.9 26.0* 26.9 26.0* 26.9 26.0* 26.9 26.0* 26.9 26.0* 26.9 26.9 26.9 27.8 27.8 27.8 27.8 5.1 27.8 5.1 27.8 5.1 27.8 5.1 27.5 1.7 27.8 5.1 27.5 1.7 27.5 1.7 27.5 1.7 27.5 1.7 27.5 1.7 27.5 1.7 27.5 1.7 27.5 1.7 27.5 1.7 27.5 1.7 27.5 1.7 27.5 27.5 1.7 27.5 27.5 27.5 1.7 27.5 27.5 27.5 1.7 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5
7 28.8 28.7 28.3 28.1 27.9 27.7 27.6 27.4 27.3 27.0 26.0* 26 9.5 8 27.8 27.8 27.9 27.8 27.9 27.8* 27.8 5.1 9 27.6 27.6 27.5* 27.3 26.8 26.7 26.6 26.4 25.6 24.2 23.8 Average 27.9 27.8 27.5 27.1 27.3 26.8 26.7 26.6 26.4 25.6 24.2 23.8 Ec in mS/cm Transp. Air temp. pH Station Surface 1 3 5 10 15 20 Bottom (m) Av_/station
8 27.8 27.8 27.9 27.8 27.9 27.8 5.1 9 27.6 27.6 27.5 27.5 27.5 1.7 Average 27.9 27.8 27.5 27.1 27.3 26.8 26.7 26.6 26.4 25.6 24.2 23.8 Ec in mS/cm Transp. Air temp. pH Station Surface 1 3 5 10 15 20 Bottom (m) Av_/station
9 27.6 27.6 27.5 27.5 1.7 Average 27.9 27.8 27.6 27.5 27.1 27.3 26.8 26.7 26.6 26.4 25.6 24.2 23.8 Ec in mS/cm Transp. Air temp. pH Station Surface 1 3 5 10 15 20 Bottom (m) Av./station
Average 27.9 27.8 27.6 27.1 27.3 26.8 26.7 26.6 26.4 25.6 24.2 23.8 Ec in mS/cm Transp. Air temp. pH Station Surface 1 3 5 10 15 20 Bottom (m) Av./station
Ec in mS/cm Station Surface 1 3 5 10 15 20 Bottom (m) Av./station
Station Surface 1 3 5 10 15 20 Bottom (m) Av./station
1 1936 1953 1949 1937* 1937 4.5 1944 3.5 33.5 -
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3 1080 1080 - 31.2 7.8
4 1962 1975 1978 1984 1988 2120 2120* 2120 19.2 2018 3.6 33.5 -
5 1967 1982 1968 1978* 1978 4.2 1974 - 30.1 8.4
6 1970 1975 1970 1967 1995 - 2080 13.5 1993 - 32.4 -
7 1945 1942 1954 1951 1970* 1970 9.5 1952
8 1986 1990 1990 1989* 1989 5.1 1989 4.3 26 -
9 1992 2040 1.7 2016 - 30 -
Average
- st.3 1965 1974 1969 1970 1984 2120 2120 3.8 30.5 8.3
+ st.3 1867
Average of all measurements - st.3 = 1984 (n = 36) t = 12 = 1060 ($t = -27$)

+ st.3 = 1960 (n = 37) * are bottom values.

Wadi Rayan I 3.

Table 4.1.2.b

Autumn . 17-XI-87

D.O. in % saturation

Station 1	Surface	1 111 97	2 116 99	3 116 97	4 98*	5	6	7	8	9	10	15	20B	ottomD 111 98	epth in 3.1 3.9	m
2 3	104 97	97	99	97	20.									-	- 5.7	
4	95	92	88	88	87	86	85	85	85	85	82	76	70*	70	19.5	
5	97	95	95	94	94	92*			_					92	4.5	
6	115	112	111	108	105	103	95	93	91	85	85			80	11.5	
7	113	112	111	111	108	102								100 113	5.3 2.9	
8	109	106	107	113*										92	2.9 1.5	
9	95 104	90 102	92* 102	104	98	96	90	89	88	85	84	76	70	92	1.5	
Average		102	102	104	90	90	90	09	00	05	04	70	70			
D.O. in	. p.p.m.															
1	10	10.1	10.4	10.7										10.3	3.1	
2	9.4	9.0	9.2	9.0	9.2*								·.	9.2	3.9	
3	9.4													+	-	
4	8.8	8.6	8.2	8.2	8.1	8.0	8.0	8.0	7.9	7.9	7.8	6.7	6.2*	6.2	19.5	
5	9.1	8.9	8.9	8.8	8.8	8.6*					~ ~			8.6	4.5	
6	10.5	10.4	10.2	10.1	9.8	9.6	8.9	8.7	8.4	8.0	7.9			7.7	11.5	
7	10.1	10.3	10.3	10.3	10.0	9.5								9.3 10.5	5.3	
8	9.8 8.8	9.5		10.5*										8.5	2.9 1.5	
9 Average	ە.ە 9.5	8.4 9.4	8.5* 9.5	9.7	9.2	8.9	8.5	8.4	8.2	8.0	7.9	6.7	6.2	0.5	1.5	
Average	9.5	2.4	9.5	9.1	9.2	0.9	0.5	0.4	0.2	0.0		0.7	0.2			
Tempera	ature in	oC														
Station	Surface	1	2	3	4	5	6	7	8	· 9	10	15	20 I	Bottom	Depth	in m
1	22.2	21.7	21.0	20.5										20.4	3.1	
2	21.1	20.3	20.1	19.9	19.9*									19.9	3.9	
3	18.5				-					· • • –				-	-	
4	20.4	20.2	20.1	20	19.8	19.8	19.7	19.7	19.7	19.7	19.6	19.9	19.4*		19.5	
5	20.2	20.1	19.9	19.6		19.5*	10.0	10.0	10.0	10.0	19.8			19.5	4.5 11.5	
6 7	21.2 22.0	20.5 20.7	20.2 20.4	20.1 20.3	20.0 20.1	20.0 20.1	19.9	19.9	19.0	19.8	19.0			19.9 20.0	5.3	
8	21.7	20.7		20.3*	20.1	20.1								20.0	2.9	
9	20.5	20.4	20.3*											20.3	1.5	
Average	21.2	20.7		20.1	19.9	19.9	19.8	19.8	19.8	19.8	19.7	19.9	19.4	2010		
-																
Ec in r	nS/cm											Tran	sp. A	ir ten	np p	H
Station	Surface	1	3	5	10	15	201	Bottom	(m)	Avc.	/station					
1	2.04	2.05						2.05	3.1		.05	2.8		26.0		-
2	2.04	2.05	2.06					2.06	3.9		.05	2.3		25.0		-
3	1.4	0.05	.	<i>.</i> .	0.07	0.07	0.074	-	-		.40	0		18.0		-
4	2.04	2.05		2.04	2.06	2.06	2.07*		19.5		.05	3.0		21.5		-
5	2.04			2.07*	2.06			2.07	4.5		.06	2.8		23.0		-
6 7	2.05 2.04		2.06 2.05		2.06			2.05 2.06	11.5 5.3		.06 .05	2.5 2.9		27.0 26.5		-
8	2.04		2.05*	2.00				2.06	2.9		.05	2.9		25.0		-
9	2.05	2.06*						2.06	1.5		.00	2.)	-	23.0		-
Average	2.00							2.00		L				20.0		
- st 3	2.05	2.06	2.06	2.06	2.06	2.06	2.07					2.4	15	23.9		
+ st 3					1.97											
Average (of all stati	ions	- st		5 (33)											
* are bot	tom value:	s.	+ st	3 2.0	4 (34)											

* are bottom values.

Wadi Rayan I 4.

-

Table 4.1.2.c.

Winter . 23-II-88

DO in % saturation

stat. 1 2	surf. 97 100	1 96 98	2 97 100	3 97 99	4 97 99	5 97 97*	61i 96*	7	8	9	10	15	20	bottom (96 97	depth) 5.8 4.6
3 4 5	83 96 89	95 91	95 91	94 91	94 91	92	92	91	90	89	79	83	84*	84 89	19.5 4.1
6 7	92 108	94 106	93 106	3 109	93 108	93 106	94 107	91 106	92 104*	91	89			83 104 97	12.7 8 3.5
8 9 average	100 97 96	98 97 97	97 96* 97	98 97	97* 97	97	97	96	95	90	80	83	84	96	1.6
Ū															
DO in p	p.p.m.														
1 2 3	9.8 10.2 8.3	9.8 10.1	9.9 10.3	9.8 10.3	9.9 10.3	9.9 10.2*	9.8*							9.8 10.2	5.8 4.6
4	8.3 9.8	9.7	0.7	9.7	9.7	9.6	9.6	9.5	9.4	8.2	8.2	8.4	8.9*	8.9	19.5
5	9.3	9.6	9.6	9.5	9.5									9.2	4.1
6	9.5	9.7	9.6	9.5	9.6	9.6	9.6	9.3	9.5	9.5	9.3		•	8.6	12.7
7	10.8	10.7	10.9	11.2	11.0	11.1	10.9	11	10.8*					$10.8 \\ 10.1$	8.0 3.5
8 9	10.2 10.0	10.2 9.9	10.0 10.3*	10.2	10.1*									10.1	1.6
average	9.8	10.0	10.0	10.0	10.0	10.1	10	9.9	9.9	8.9	8.8	8.4	8.9	10.5	1.0
Tempera	ture in	oC													
1	15.6	15.7	15.7	15.7	15.6	15.6	15.6*							15.6	5.8
2	15.2	15.1	15.1	15.0		14.8*			•					14.8	4.6
3	15.6														
4	15.2		15.2	15.0		14.9	14.9	14.8	14.8	14.8	14.8	14.9	14.9*	14.9	19.5
5	14.6	14.6	14.7	14.7	14.7									14.7	4.1
6	15.0	15.0	15.0	15.0	15.0	15.0	14.9	14.9		14.8	14.8			14.8	12.7
7	15.9	15.9	15.9	15.7		15.3	15.0	14.9	14.9*					14.9	8.0
8 9	14.7 15.1	14.8 15.1	14.7 15.1*	14.6	14.6*									14.6 15.1	3.5 1.6
9 Av.	15.1	15.1	15.1*	15.1	150	15.1	15.1	14.9	14.8	118	14.8	14.9	14.9	13.1	1.0
ΛŸ.	13.2	13.2	19.2	13.1	190	13.1	13.1	14.9	14.0	14.0	14.0	14.7	14.7		
Conduct	ivity in	n mS/-	cm										Transp	air t	emp

Station 1	Surface 2.02	1 2.04	3 2.03	5 2.03	10	15	20	Bottom 2.03	Depth 5.8	Aver.Ec/Stat. 2.03	2.5	16.0
2	2.07	2.07	2.07	2.07*				2.07	4.6	2.07	2.8	16.0
3	1.42									1.42	-	14.0
4	2.07	2.07	2.06	2.06	2.06	2.07	2.08*	2.08	19.5	2.07	2.5	14.0
5	2.07	2.07	2.07					2.07	4.2	2.07	3.7	-
6	2.07	2.07	2.07	2.07	2.07			2.08	12.7	2.07	3.0	14.0
7	2.07	2.07	2.07	2.07				2.07	8.0	2.07	2.3	16.0
8	2.07	2.07	2.08*					2.08	3.5	2.07	2.8	15.0
9	2.07	2.07						2.07	1.6	2.07	-	
Average	1.99	2.07	2.06	2.06	2.07	2.07	2.08					
- St.3	2.06											

Wadi Rayan I 5.

Table 4	l.1.2.d.													
Spring	Spring . 20/21-IV-88													
DO in 9	DO in % saturation													
station 1 2	surface 101	1 101	2 101	3 101	4 101	5	6	7	8	9	10	15 20	bottom 100	depth 4.5
3 4 5 6 7	96 92 105	94 103	96 105	99 106	101 106	101	101	100	98	98	97		73 106	13.1 3.8
8 9 average	- - 99	99	101	102	103	101	101	100	98	98	97			
DO in	p.p.m.													
1 2	9.3	9.3	9.4	9.4	9.4								9.3	4.5
2 3 4 5 6	8.5 8.7 10	8.9 9.7	8.9 9.8	9.3 9.9	9.4 9.9	9.5	9.6	9.4	9.2	9.2	9.1		6.7 9.9	13.1 3.8
7 - 8 9	- -													
average	9.1	9.3	9.4	9.5	9.6	9.5	9.6	9.4	9.2	9.2	9.1			
Temp. i	n oC													
1 2 3	20.2 19.9 21.8	20.2 19.8	20.1	20.1 19.7	19.9	19.5	19.4*						19.9 19.4	4.5 6.0
4 5 6	19.7 19.5 20.1	19.7 19.5 19.9	19.8 19.5	19.7 19.6 19.9	19.7	19.7 19.7	19.6	19.5	19.4	19.4	19.3 19.7		19.3 19.6 19.7	13.1 3.8 12.5
7 8 9	19.8 19.7 19.5	19.6 19.5	19.4* 19.4*	19.7		19.5					17.4		19.4 19.4 19.4	6.2 2.1 2.1
Av.	20				19.8	19.6	19.5	19.5	19.4	19.4	19.5			
Ec in n	1S/cm											Transp). Air	temp.
Station 1 2 3 4 5 6 7 8 9	Surface 2.01 2.03 1.25 2.03 2.03 2.03 2.02 2.03 2.04	1 2.00 2.04 2.04 2.05 2.04 2.02 2.04 2.06	2 2.04* 2.06*		2.04	6 2.03*	2.04	Bottom 2.01 2.03 2.05 2.04 2.05 2.02 2.04 2.06	Depti 4.5 6.0 13.1 3.8 12.5 6.2 2.1 2.1	ιA	ver.Ec.sta 2.01 2.03 1.25 2.04 2.04 2.04 2.02 2.04 2.02	nt. 1.60 2.30 0.18 2.40 2.10 2.30 1.90 2.10 2.10		23.0 19.0 25.0 22.0 21.5 19.0 15.0 16.0 19.0
Avecrage + st.3	2.03 1.94		2.05		2.03	2.03	2.05					1.89		19.9

Average of all 35 measurements 2.03 (station 3 not included). * are bottom values.

Table4.1.2.1.D.O. in % saturation at surface and (1 m depth)

Station	Summer	Autumn	Winter	Spring	
1	101 (95)	112 (11)	97 (96)	191 (101)	
2	102 (99)	104 (97)	100 (98)	-	
3	112	97	83	96	
4	102 (95)	95 (92)	96 (95)	92 (94)	
5	108 (100)	97 (95)	89 (91)	105 (103)	
6	108 (102)	115 (112)	92 (94)	-	
7	134 (127)	113 (112)	108 (106)	-	
8	111 (109)	109 (106)	100 (98)	-	
9	103 (95)	95 (90)	97 (97)		
average	110 (103)	104 (102)	96 (97)	99 (99)	

Table 4.1.2.2.a.

Temperature in 'C at surface and (1 m)

Station	Summer	Autumn	Winter	Spring	
1	28.3 (28.2)	22.2 (21.7)	15.6 (15.7)	20.2 (20.2)	
2	28.0 (28.0)	21.1 (20.3)	15.2 (15.1)	19.9 (19.8)	
3	27.3	18.5	15.6	21.8	
4	27.0 (26.9)	20.4 (20.2)	15.2 (15.2)	19.7 (19.7)	
5	27.6 (27.5)	20.2 (20.1)	14.6 (14.6)	19.5 (19.5)	
6	28.6 (27.8)	21.2 (20.5)	15.0 (15.0)	20.1 (19.9)	
7	28.8 (28.7)	22.0 (20.7)	15.9 (15.9)	19.8 (19.6)	
8	27.8 (27.8)	21.7 (21.6)	14.7 (14.8)	19.7 (19.5)	
9	27.6 (27.6)	20.5 (20.4)	15.1 (15.1)	19.5 (19.4)	
average.	27.9 (27.8)	20.9 (20.7)	15.2 (15.2)	20.0 (19.7)	
on	.6 (.5)	1.1 (.6)	.4 (.4)	.7 (.2)	

Table 4.1.2.2.b.

Temperature decrease in 'C/m depth

Station	Summer	Autumn	Winter	Spring	
1	.16	.58	.02	.07	
2	.12	.31	.09	.08	
3	-	-	-	-	
4	.17	.05	.02	.04	
5	.42	.16	.02	.03	
6	.26	.12	.02	.03	
7	.27	.38	.13	.06	
8	.02	.48	.06	.14	
9	.06	.13	.00	.05	
average	.16	.07	.01	.02	

Station	Summer	Autumn	Winter	Spring	Average	
1	1.936 (1.953)	2.04 (2.05)	2.02 (2.04)	2.01 (2.00)	2.00 (2.01)	
2	1.964 (1.998)	2.04 (2.05)	2.07 (2.07)	2.03 (2.04)	2.03 (2.04)	
3	1.080 (-)	1.40 (-)	1.42 (-)	1.25 (-)	1.29 (-)	
4	1.962 (1.975)	2.04 (2.05)	2.07 (2.07)	2.03 (2.04)	2.03 (2.03)	
5	1.967 (1.982)	2.04 (2.06)	2.07 (2.07)	2.03 (2.05)	2.03 (2.04)	
6	1.970 (1.975)	2.05 (2.07)	2.07 (2.07)	2.03 (2.04)	2.03 (2.04)	
7	1.945 (1.942)	2.04 (2.05)	2.07 (2.07)	2.02 (2.02)	2.02 (2.02)	
8	1.986 (1.990)	2.05 (2.06)	2.07 (2.07)	2.03 (2.04)	2.03 (2.04)	
9	1.996 (-)	2.06 (2.06)	2.07 (2.07)	2.04 (2.06)	2.04 (2.05)	
Avecrage	1.867	1.97	1.99	1.94	1.94	
Aveerage-st3	1.965 (1.974)	2.05 (2.06)	2.06 (2.07)	2.03 (2.04)	2.03 (2.04)	

Table 4.1.2.3.a. Ec at surface and (1 m) in mS / cm.

Table 4.1.2.3.b. Average Ec over all depths Ec in mS/cm.

Station	Summer Autumn		Winter	Spring	Average
1	1.94	2.05	2.03	2.01	2.01
2	1.98	2.05	2.07	2.03	2.03
3	1.08	1.40	1.42	1.25	1.39
4	2.02	2.05	2.07	2.04	2.05
5	1.97	2.06	2.07	2.04	2.04
6	1.99	2.06	2.07	2.04	2.04
7	1.95	2.05	2.07	2.02	2.02
8	1.99	2.06	2.07	2.04	2.04
9	2.02	2.06	2.07	2.05	2.05
Total					
Aveerage	1.96(37)*	2.04(34)	2.05(38)	2.01(36)	2.01(145)
Average-st.3	1.98(36)	2.05(33)	2.06(37)	2.03(35)	2.03(141)

* nr of measurements

Table4.1.2.3.c.AverageEcvariationpermdepth

Station	on Summer		Winter	Spring	Average
1	.04	.03	.03	.02	.03
2	.07	.05	.00	.02	.035
3	-	-	•	-	-
4	.08	.02	.01	.01	.03
5	.03	.07	.00	.05	.038
6	.08	.02	.00	.01	.028
7	.03	.04	.00	.02	.023
8	.01	.03	.03	.05	.03
9	-	.00	.00	.10	.033
Avccrage	.05	.03	.01	.04	.033

Table4.1.2.5.Transparency in m.

Station	Summer	Autumn	Autumn Winter		Average
1	3.50	2.85	2.50	1.60	2.32
2	-	2.35	2.80	2.30	2.48
3	-	0.30	-	.18	.24
4	3.60	3.00	2.50	2.40	2.63
5	· •	2.80	3.70	2.10	2.87
6	-	2.50	3.00	2.30	2.60
7	-	2.90	2.30	1.90	2.37
8	4.30	2.90	2.80	2.10	2.60
9	-	-	-	2.10	
1+4+8	3.80	2.92	2.60	2.03	
Average					
+ st.3	-	2.45	-	1.89	
- st.3	3.80	2.76	2.80	2.10	

Table 4.1.2.6.

Air temperature in 'C

Station	Summer	Autumn	Winter	Spring
1	33.5	26.0	16.0	23.0
2	27.5	25.0	16.0	19.0
3	31.2	18.0	14.0	25.0
4	33.5	21.5	14.0	22.0
5	30.1	23.0	-	21.5
6	32.4	27.0	14.0	19.0
7	-	26.5	16.0	15.0
8	26.0	25.0	15.0	16.0
9	30.0	23.0	16.0	19.0
aveerage	30.5	23.9	15.0	19.9

Table4.1.2.7.Averagedepthperprofile

<i></i>	
profile	average depth
A	6.7 m
В	8.9 m
С	12.1 m
D	12.1 m
E	10.1 m
F	10.3 m
G	13.0 m
Average = Surface =	10.7 m
Surface =	5090 ha

Surface = 5090 haVolume= $5.44 \times 10^6 \text{ m}^3$

Table 4.2.2.1.3.

Fry transport from El Girby (Damietta) to Wadi Rayan I lake (predominantly grey mullet).

	water in transport tanks			ι	water in unloading areas			number of fry x 1000	number trucks loads	
date	Ec	t.	D.O.	pН	Ec	t.	D.O.	pН		
9-I-88	-	-	-	• -	-	-	-	• -	1200	3
12-I-88	-	-	+	-	-	-	-	-	1450	3
30-I-88	-	-	-	-	-	-	-	-	2500	3
2 <i>-</i> Ⅲ-88	32.1	11.8	9.4	8.2	3.2	12.2	11.6	8.7	2400	3
13-II-88	35.2	13.1	10.1	8.2	3.1	13.3	9.5	8.3	2400	3
24-II-88	36.2	14.9	(coop. truck	c)	3.2	18.4	-	-	200	1
24-11-88	37.3		(DAF trucks		3.2	18.4	-	-	2000	2
9-IV-88	-	-	`	-	-	-	-	-	30	1

Total number of fry unloaded in Wadi Rayan I lake

12,180,000

Table 4.2.2.2.1.

Plankton composition and distribution in the 280 μ samples

Station	1	2	3	4	5	6	7	8	9
Season	abcd	abcd	abcd	abcd	abcd	abcd	abcd	abcd	abcd
Botanic	o#•+	x x • +	- + + +	0+•+	0•++	x + + +	0+++	0 + • +	• • • +
Copepods	. 0 • +	.*#o	-*#*	x.•+	x x + +	xxx.	. x # +	o * • x	.*# o
Cladocerans	• + + +	0 X • X	- # + *	•+++	+*•+	•#+.	* # ••	x # • #	.+•.
Other crust.		0 0	-000	0000	χοοο	x o o o		x	0000
Fish larvae	0000	0000	-000	0000	0000	0000	0000	0000	0000
Fish eggs	0 0 0 0	0000	-0.0	χοοο	0000	0000	0000	0000	0000
Insects	00	0.X•	- x x x	0 * 0 X	. x x o	0 X X #	o x o *	o.#x	o*
Others	00*0	0000	- x x x			0 0 0 X	0 X O O	o x o o	
a = summer		- no sam	nla taka		*	mmon			
			-						
b = autumn			und in sam	ipie	# m				
c = winter		. 1 speci			• ab	undant			
d = spring		x several	I		+ ve	ery abunda	nt		

Table 4.2.2.2.2.a.

Systematic list of net plankton species collected during June 1987 - April 1988

Division: Cyanophyta (I) Order: Oscillatoriales (I) Family: Oscillatoriaceae (I) Genus: Oscillatoria (vaucher)				
1 O. princeps 2 O. limosa	6 7	175	18	-
(II) Genus: Lyngbya (Agardh) 3 L. martensiana	-	232	52	-
(III) Genus: Phormidium 4. P. mucicola	4	-	-	1600
Family: Nostocaceae				
(IV) Genus: Anabaena (Bory)5 A. circinalis(V) Genus: Nostoc	-	215	30	1050
6 N. mircroscopicum 7 N. pscinale	-	200 210	- 18	 -
(VI) Genus: Spirolina 8 S. platenensis	-		200	-
(VII) Genus: Nodularia 9 N. spurnigena	9	190	-	-
(II) Order: Chroococales				
Family: Chroococaceae (VIII) Genus: Merismopedia (Meyen)	1000			
10 M. tenuissima 11 M. glauca	1000 200	-	-	-
12 M. punctata 13 M. elegans	-	250	1400	-
(IX) Genus: Anacystis (Meneghini) 14 Anacystis sp.	1500	-	-	-
(X) Genus: Microcystis (Kutzing) 15 M. marginata	3800	6800	300	160
16 M. aerogenosa (XI) Genus: Chroococcus (Nageli)	200	700	157700	580840
17 C. minutus 19 C. turgidus	10	200 253	300	38
20 C. limneticus (XII) Genus: Coelosphaerium (Nageli)	-	279	900	-
21 C. kutzingianum 22 C. dubium	2500 315	- 169	1200 2400	210 460
23 A. pulchara (XIV) Genus: Holopedia	2000	120	80000	2000
24 H. dieteli	-	111	-	-
Division: Chlorophyta Class: Chlorophyceae (I) Order: Chlorellales Family: Chlorelaceae (I) Genus: Oocystis (Nageli)				
(I) Genus: Oocystis sp. (II) Genus: Ankistrodesmus (Corda)	-	-	-	280
26 A. falcatus (III) Genus: Sphaerocystis	-	1706	-	-
27 S. schroeteri	6	287	-	-

Wadi Rayan I 11

Family: Scendesmaceae				
(IV) Genus: Scendesmus (Meyen)				
28 S. dimorphus	3	-	-	- '
29 S. bijuga	-	44	-	-
30 S. acuminatus	-	110	-	-
31 S. quadricanda	-	15	-	-
32 S. obligus	-	-	33	-
(V) Genus: Actinastrum		- (i		
33 A. nanzschii	_	347	-	-
(VI) Genus: Coelastrum (Nageli)				
34 C reticulatum	60	218	-	-
35 C. microporum	-	209	178	1000
36 C. cambricum	-	139	-	-
(II) Order: Zygnematales				
Family: Zygnemataceae				
(VII) Genus: Zygnema (C.A. Agardh)				
37 Zygnema sp.	60	-	-	-
(VIII) Genus: Spirogyra (Link)				
38 S. azygospora	11	-	60	-
39 S. ionia	_	-	3	-
40 S. prolifica	-	-	132	-
41 S. Ahmedabadensis	-	-	99	500
(IX) Genus: Mougeotia				
42 M. scalaris	4	-	-	-
(X) Genus: staurastrum				
43 S. gracille	4	-	104	300
15. Of Bruche				
Family: Desmidiaceae				
(XI) Genus: Gonatozygon				
44 G. aculatum	29	187	103	10
(XII) Genus: Closterium				
45 C. gracile	-	-	-	1800
(XIII) Genus: Micrasterias (C.A. Agardh)				
46 Micrasterias sp.	4	-	-	-
~				
(III) Order: Chlorococcales				
Family: Hydrodictyacrae				
(XIV) Genus: Pediastrum (Meyen)				
47 P. clathratum	4	-	-	-
48 P. duplex	6	88	-	-
49 P. boryanum	4	112	-	-
50 P. ovatum	5	136	-	-
51 P. simplex	7	29	-	-
52 P. microporum	-	222	-	-
(IV) Order: Ocdogoniales				
Family: Oedogoniaceae				
(XV) Genus: Oedogonium (Link)		144		
53 O. undulatum	4	144	-	-
(V) Order: Volvocales				
Family: Volvocaceae				
(XVI) Genus: Volvox (Linnacus)				
54 V. aucus	11	_	17	_
J 1 1. auvus		-	17	
Family: Chlamidomonadaceae				
(XVII) Genus: Protococcus				
55 P. viridis	-	129	-	-

Wadi Rayan I 12

(VI) Order: Ulothrichales Family: Ulothricaceae (XVIII) Genus: Ulothrix (Kützing) 56 U. zonata	_	9	-	
(VII) Order: Tetrasporales Family: Palmellaceae (XIX) Genus: Palmella (Lyngbye)				
53 P. miniata	-	ú -	119	-
Division: Chrysophyta Class: Bacillariophyceae (I) Order: Pennales Suborder: Araphidinae Family: Diatomiaceae (I) Genus: Fragillaria				
58 F. copucina	15	107	-	-
59 F. cortonerais	-	334	-	-
(II) Genus: Synedra				
60 S. affinis	20	202	-	-
61 S. ulna	40	165	117	185
62 S. acus	-	143	134	-
(III) Genus: Asterionella				
63 A. gracillima	-	254	-	-
64 A. formosa	-	322	-	-
Suborder: Biraphidineae Family: Noviculaceae (IV) Genus: Novicula 65 N. pygmaea	8	-	-	1300
66 N. bacillum	-	72	-	1210
(V) Genus: Cymbella				
67 C. ventricosa	-	181	-	-
(VI) Genus: Amphora				
68 A. ovales	-	171	-	-
(VII) Genus: Anomoeneis				
69 A. sphaerophoca	-	116	-	-
Family: Nitzschiaceae (VIII) Genus: Nitzschia 70 N. synoidea	4	116	_	_
71 N. paradoxa	32	-	-	-
(IX) Genus: Cymbella				
72 C. ventricosa	-	181	-	-
(X) Genus: Gyrosigma				
73 G. acuminatum	4	-	33	-
Family: Tabellariaceac (XI) Genus: Tabellaria 74 T. fenestrata	28	-		-
Family: Epithemiaceae (XII) Genus: Epithemia 75 E. zebra	-	63	-	-
Family: Surirellaceae (XIII) Genus: Surirella 76 S. elegans 77 S. ovalis	4	174	-	-

· · · -

				wadi Kayai
Suborder: Monoraphidineae				
Family: Acananthaceae				
(XIV) Genus: Cocconis				
78 C. pediculus	4	-	-	-
Outon Controlog				
Order: Centrales Suborder: Coscinodiscineae				
Family: Coscinodisciaceae				
(XV) Genus: Melosira				
79 M. granulata	6	266	32	210
80 M. agussizzii	4	(74	-	-
81 M. islandica	-	-	17	-
(XVI) Genus: Cyclotella				
82 C. comta	7	-	17	300
83 C. meneghiana	-	182	-	-
Family: Surirellaceae				
(XVII) Genus: Campylodiscus	4	110		
84 C. hibernicus	4	116	-	-
Division: Pyrrhophyta				
Class: Dinophyceae				
(I) Order: Peridiniales				
(I) Genus: Peridinium (Ehrenberg)				
85 P. gatuneras	6	-	-	-
86 P. bipes	6	-	-	-
(II) Genus: Glenodinium				
87 G. berolinerse	9	-	-	-
Family: Ceratidae				
(III) Genus: Ceratium (Schrank)				
88 C. hirundinella	140	95	1763	1495
89 Certaium sp.	236	-	2073	500
(IV) Genus: Didinium	250		2012	200
90 D. balbiarii	-	28	-	-
(V) Genus: Sphaerodinium				
91 S. cinctum	60	-	-	-
Phylum: Nemathelminthes				
Class: Rotifera				
(I) Order: Monagonta				
Suborder: Ploima				
Family: Brachionidae				
(I) Genus: Brachiones 92, - B. bala	3	150		4
(II) Genus: Keratella	3	130	-	4
93 K. quadrata	6	30	176	2
94 K. vagla	18		170	2
(III) Genus: Ascomorpha	10			
95 A. ecaudis	7	169	3	-
Family: Asplanchnidae				
(IV) Genus: Polyarthra	20			
96 P. vulgaris	29	-	-	-
97 P. caryptera	4	-	-	-
Family: Synchaetidae				
(V) Genus: Synchaeta				
98 S. calva	3	-	-	-
99 S. pectinata	14	-	-	-
-				

.

				wan naya
Suborder: Flosculariaceae Family: Testudinellidae (VI) Genus: Hexarthra 100 H. intermedia 101 H. mira	68 91	-	- -	-
Family: Conochilidae (VII) Genus: Conochillus 102 C. unicornis	12	-	_	-
Phylum: Arthropoda Subphylum: Mandibulata Class: Crustacea Subclass: Branchiopoda (I) Order: Diplostraca Suborder: Cladocera Family: Bosminidae (I) Genus: Bosminopsis 103 B. deiterai	-	_	24	_
(II) Genus: Bosmina 104 B. longirostris 105 B. coregoni	6 4	101	27	-
Family: Daphniadae (III) Genus: Daphnia 106 D. rosea	-	62	15	-
 107 D. catwaba (IV) Genus: Ceriodaphnia 108 C. megalops (V) Genus: Moina 	-		15	-
109 M. brachiata Family: Sididaes	4	-	-	-
(VI) Genus: Diaphanosoma 110 D. brachyarum (VII) Genus: Sida	112	351	201	200
111 S. crystallina Family: Chydoridae	10	-	-	-
(IV) Genus: Alona 112 A. monocantha (V) Genus: Alonella	5	46	-	-
113 A. nana	-	72	-	-
Subclass: Copepoda Order: Cyclopeda Family: Cyclopeda Genus: Cyclops 114 C. fimbriatus	11	173	-	-
Order: Calanoida Family: Diaptomedae Genus: Diaptomus				
115 D. kenai 116 D. cyclopaid	9	141 115	-	13
117 D. siciloides 118 D. cannexus	-	138 176	-	20
119 D. miasiaipplensis Genus: Eudiaptomus	-	182	6	-
120 E. japonicus 121 E. gracillis	3 6	126 19	-	-

Order: Harpacticoida Family: Harpacticaidae Genus: Canthocamptus 122. - C. staphylinus 4 - - nauplius 47 184 24 70

Table 4.2.2.2.2.b.

Average plankton distribution of the 60 μ samples, per season in number of plankters per l. (and % of total) data obtained from Mr. Magdi Abas Saleh May 1988.

	Sum	mer	Autu	mn	Wir	nter	Spr	ing
Blue green algae	11846	(89.5)	11759	(51.7)	260456	(97.5)	586668	(98.4)
Green algae	240	(1.8)	3656	(16.1)	930	(.3)	3890	(.7)
Diatoms	204	(1.5)	4954	(21.8)	1516	(.6)	3205	(.5)
Dinoflagelates	457	(3.5)	123	(.5)	3836	(1.4)	1995	(.3)
Phytoplankton	12747	(96.3)	20492	(90.2)	266738	(99.8)	595758	(99.9)
Rotifers	266	(2.0)	349	(1.5)	183	(.1)	50	(.+)
Cladocerans	156	(1.2)	632	(2.8)	282	(.1)	203	(.+)
Copepods	71	(.5)	1254	(5.5)	24	(.+)	70	(.+)
Zooplankton	493	(3.7)	2235	(9.8)	489	(.2)	323	(.1)
Total plankton	13	,240	22,	727	267	,227	59	5,081

Without blue green algae:

	Summer	Autumn	Winter	Spring
Green algae Diatoms Dinoflagelates	240 (17.2) 204 (14.6) 457 (32.8)	3656 (33.3) 4954 (45.2) 123 (1.1)	930 (13.7) 1516 (22.4) 3836 (56.7)	3890 (41.3) 3205 (34.0) 1995 (21.2)
Phytoplankton	901 (64.6)	8733 (79.6)	6282 (92.8)	9090 (96.6)
Rotifers Cladocerans Copepods	266 (19.1) 156 (11.2) 71 (5.1)	349 (3.2) 632 (5.8) 1254 (11.4)	183 (2.7) 282 (4.2) 24 (.4)	50 (.5) 203 (2.2) 70 (.7)
Zooplankters	493 (35.4)	2235 (20.4)	489 (7.2)	323 (3.4)
Total	1,394	10,968	6,771	9,413

Table 4.2.2.2.2.c.

Total number of plankton organisms per liter water, taken from the 60 μ net samples, per season and station (zooplankton only). Data obtained from Mr. Magdi Abas Saleh just after each analysis.

Station	Summer	Autumn	Winter	Average
1	3,304 (1610)	143,265 (1917)	1,865,396 (75)	670655 (1201)
2	1,420 (360)	79,352 (1203)	1,343,456 (136)	474743 (566)
3		69,191 (411)	773,722 (17)	281638 (214)
4	3,418 (906)	59,332 (557)	1,156,593 (385)	406448 (616)
5	982 (204)	110,649 (1971)	1,454,386 (0)	522006 (725)
6	3,378 (1226)	86,562 (1408)	1,957,158 (294)	682366 (976)
7	3,888 (898)	111,567 (1043)	2,412,128 (169)	84528 (703)
8	5,480 (630)	28,425 (1125)	1,054,311 (0)	362739 (585)
9	5,114 (700)	33,451 (1121)	905,117 (176)	314561 (666)
Average	3373 (817)	80199 (1195)	1435807 (139)	506409 (695)

Table 5.2.2.1.1.a.

Length frequency of Liza ramada (Risso) in numbers and (% of total)

length	November	December	January	February	Total
group					
in cm					
25			1 (.5)		1 (.1)
26					
27					
28		1 (.3)	6 (2.7)	1 (.5)	8 (.9)
29			6 (2.7)	3 (1.4)	9 (1.0)
30		1 (.3)	15 (6.8)	5 (2.3)	21 (2.3)
31		7 (2.0)	14 (6.4)	9 (4.1)	30 (3.3)
32	11 (10.2)	12 (3.4)	41 (8.7)	14 (6.5)	78 (8.7)
33	15 (13.9)	36 (0.1)	25 (1.4)	30 (3.8)	106 (11.8)
34	16 (14.8)	53 (4.9)	26 (1.9)	38 (7.5)	133 (14.8)
35	28 (25.9)	30 (8.4)	24 (1.0)	25 (1.5)	107 (11.9)
36	11 (10.2)	14 (3.9)	11 (5.0)	19 (8.8)	55 (6.1)
37	6 (5.6)	10 (2.8)	8 (3.7)	14 (6.5)	38 (4.2)
38	1 (1.0)	2 (.6)	3 (1.4)	3 (1.4)	9 (1.0)
39	2(2.0)		5 (1.4)		2 (.2)
40	2 (2.0)	7 (2.0)			7 (.8)
40	1 (1.0)	11 (3.1)	3 (1.4)		15 (1.7)
42	1 (1.0)	15 (4.2)	5 (2.3)	2 (.9)	22 (2.4)
42	3 (3.0)	14 (3.9)	5 (2.3)	4 (1.8)	26 (2.9)
43			- (/		
44	3 (3.0)	19 (5.3) 31 (8.7)	1 (.5)	3(1.4)	26 (2.9)
			4 (1.8)	3 (1.4)	38 (4.2)
46	4 (4.0)	12 (3.4)	2 (.9)	3 (1.4)	21 (2.3)
47	1 (1.0)	16 (4.5)	3 (1.4)	9 (4.1)	29 (3.2)
48	2 (2.0)	19 (5.3)	4 (1.8)	6 (2.8)	31 (3.4)
49	1 (1.0)	12 (3.4)	2 (.9)	7 (3.2)	22 (2.4)
50		12 (3.4)	5 (2.3)	6 (2.8)	23 (2.6)
51	1 (1.0)	5 (1.4)		2 (.9)	8 (.9)
52	1 (1.0)	8 (2.2)	3 (1.4)	2 (.9)	14 (1.6)
53		1 (.3)	1 (.5)	6 (2.8)	8 (.9)
54		4 (1.1)		1 (.5)	5 (.6)
55	1 (1.0)	4 (1.1)			5 (.6)
56			1 (.5)	1 (.5)	2 (.2)
76	. .			1 (.5)	1 (.1)
Totalnumber	108	356	219	217	900
average lenght	36.5 ± 4.9	40.5 ± 6.6	35.3 ± 5.8	37.7 ± 7.1	38.1 ± 6.7

Table 5.2.2.1.1.c.

Length frequency of Oreochromis niloticus in numbers and (%) of total.

length group	November	December	January	February	Total
in cm					
1 1			2 (1.3)		2 (.3)
11		3 (2.9)	2 (1.3)		3 (.5)
12 13		3 (2.9) 3 (2.9)	3 (2.0)		6 (.9)
13	1 (1.3)	3 (2.9) 3 (2.9)	3 (15.4)	1 (.3)	28 (4.4)
14	I (1.5)	3 (2.9)	51 (34.2)	6 (1.9)	60 (9.4)
16	1 (1.3)	1 (1.0)	22 (14.8)	16 5.1)	40 (6.2)
17	1 (1.3) 1 (1.3)	4 (3.9)	9 (6.0)	28 (8.9)	42 (6.6)
18	2 (2.7)	5 (4.9)	5 (3.4)	35 (11.1)	47 (7.3)
19	2 (2.7)	7 (6.9)	2 (1.3)	45 (14.3)	56 (8.7)
20	2 (2.7) 2 (2.7)	5 (4.9)		45 (14.3)	52 (8.1)
20	2(2.7) 2(2.7)	12 (11.8)		24 (7.6)	38 (5.9)
22	4 (5.3)	8 (7.8)	2 (1.3)	16 (5.1)	30 (4.7)
22	6 (8.0)	3 (2.9)	2 (1.3) 2 (1.3)	12 (3.8)	23 (3.6)
23	8 (10.7)	2 (1.9)	1 (.7)	7 (2.2)	18 (2.8)
24	6 (8.0)	2 (1.9) 2 (1.9)		11 (3.5)	19 (3.0)
25	2 (2.7)			7 (2.2)	9 (1.4)
20	2 (2.7)	1 (1.0)		6 (1.9)	9 (1.4)
28	6 (8.0)	1 (1.0)	2 (1.3)	5 (1.6)	14 (2.2)
29		7 (6.9)	2 (1.5)	8 2.5)	15 (2.3)
30	6 (8.0)	6 (5.9)		6 (1.9)	18 (2.8)
31	4 (5.3)		2 (1.3)	9 (2.9)	15 (2.3)
32	2 (2.7)	5 (4.9)	3 (2.0)	6 (1.9)	16 (2.5)
33	2 (2.7)	4 (3.9)	1 (.7)	2 (.6)	9 (1.4)
34	3 (4.0)	4 (3.9)		3 (1.0)	10 (1.6)
35	4 (5.3)	6 (5.6)	2 (1.3)	8 (2.5)	20 (3.1)
36	2 (2.7)	1 (1.0)	2 (1.3)	2 (.6)	7 (1.1)
37	2 (2.7)	4 (3.9)	2(1.3)	1 (.3)	9 (1.4)
38	2 (2.7)		4 (2.7)	2 (.6)	8 (1.2)
39			2(1.3)	2 (.6)	4 (.6)
40	2 (2.7)	1 (1.0)	2(1.3)		6 (.9)
41	1 (1.3)	1 (10)	4 (2.7)		6 (.9)
42				1 (.3)	1 (.2)
43					
44			- 1	(.7) -	1 (.2)
total	75	102	149	314	641
-	127.5 ± 6.2	24.6 ± 7.5	19.3 ± 8.4	22.0 ± 5.5	22.5 ± 7.2

Table5.2.2.1.1.d.Average lenght of Oreochromis niloticusper yearclass,own data from WadiRayan I compared with data from IOF from lake Qarun

yearclass	Ι	П	III	IV	V+	average (n)
own data 87/88	15.1	20.6	29.9	34.7	39.0	22.5 (641)
IOF 82/83	8.2	10.6	14.1			11.0 (166)

Table 5.2.2.1.1.e.

Length frequencies for *Oreochromis aureus* and *Tilapia zillii* in numbers and (%) of total

length group in cm	Oreochrom	is aureus	s aureus Tilapia zillii							
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	n=120 (52.9) 13.5 cm n=78 (34.4) 19.9 cm n=16 (7.0) 25.6 cm 13 31.3 cm	$\begin{array}{ccccc} 7 & (4.2) \\ 13 & (7.9) \\ 3 & (19.5) \\ 43 & (26.2) \\ 22 & (13.4) \\ 11 & (6.7) \\ 9 & (5.5) \\ 8 & (4.9) \\ 6 & (3.7) \\ 3 & (1.8) \\ 5 & (3.0) \\ 3 & (1.8) \\ 2 & (1.2) \end{array}$	n=117 (71.3) 13.5 cm n=34 (20.7) 17.3 cm n=13 (7.9) 21.3 cm.						
34 total average length	3 (1.3) 227 1.76 ± 5.3		164 14.9 ± 2.6							

Table 5.2.2.1.2.a.

Length, weight relation of *Liza ramada* (Risso) Average weight in gram per length group and (Kf)

length group in cm	November	December	January	February	Total
25			375 (2.40)		375 (2.40)
26		- -	-		
27			-		
28		201 (.92)	227 (1.03)	229 (1.04)	224 (1.02)
29			221 (.91)	193 (.79)	212 (.87)
30		192 (.71)	239 (.89)	203 (.75)	228 (.84)
31		215 (.72)	264 (.89)	207 (.69)	236 (.79)
32	249 (.76)	250 (.76)	286 (.87)	223 (.68)	264 (.81)
33	281 (.78)	267 (.74)	314 (.87)	248 (.69)	275 (.77)
34	309 (.79)	296 (.75)	363 (.92)	272 (.69)	304 (.77)
35	324 (.76)	324 (.76)	364 (.85)	295 (.69)	326 (.76)
36	349 (.75)	351 (.75)	381 (.82)	340 (.73)	353 (.76)
37	391 (.77)	402 (.79)	438 (.86)	365 (.72)	394 (.78)
38	411 (.75)	455 (.83)	575 (1.05)	354 (.65)	456 (.83)
39	500 (.84)	-			500 (.84)
40		544 (.85)			544 (.85)
41	572 (.83)	603 (.87)	608 (.88)		602 (.87)
42		612 (.83)	650 (.88)	590 (.80)	619 (.84)
43	710 (.89)	648 (.82)	765 (.96)	603 (.76)	669 (.84)
44	642 (.75)	715 (.84)	725 (.85)	660 (.77)	709 (.83)
45		790 (.87)	831 (.91)	836 (.92)	798 (.88)
46	844 (.87)	844 (.87)	913 (.94)	761 (.78)	839 (.86)
47	850 (.82)	923 (.89)	908 (.87)	833 (.80)	891 (.86)
48	914 (.83)	996 (.83)	938 (.85)	868 (.78)	959 (87)
49	1087 (.92)	1050 (.89)	938 (.80)	934 (.79)	1004 (.85)
50		1144 (.92)	1051 (.90)	1117 (.89)	1117 (.89)
51	1186 (.89)	1203 (.91)		1066 (.80)	1167 (.88)
52	1339 (.95)	1291 (.92)	1342 (.95)	1042 (.74)	1270 (.90)
53		1379 (.93)	1450 (.97)	1209 (.81)	1261 (.85)
54		1538 (.98)		1271 (.81)	1484 (.94)
55	1554 (.93)	1729 (1.04)			1694 (1.02)
56			1425 (.81)	1298 (.74)	1362 (.78)
76				4750 (1.08)	4750 (1.08)
total	108	356	219	217	900
average weight	411.0	600.9	425.4	457.3	504.7
average Kf	.83 ± .07	.85 ± .08	.96 ± .30	.78 ± .10	.91 ± .28

table 5.2.2.1.2.b. Length weight relation of *Oreochromis niloticus* average weight in gram per length group and(Kf)

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	length group	November	December	January	February	Total		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•••							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						• •		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				180.0 (2.62)				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						164.2 (1.77)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					191.3 (1.80)	195.5 (1.84)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					218.1 (1.79)			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		224.5 (1.62)	251.0 (1.82)	300.0 (2.17)	224.6 (1.62)	231.7 (1.68)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		271.5 (1.74)	254.0 (1.63)		282.3 (1.84)	275.9 (1.77)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		286.5 (1.63)			328.1 (1.87)	318.9 (1.81)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27	388.5 (1.97)	348.0 (1.77)		358.7 (1.82)	364.1 (1.85)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28	403.0 (1.84)	435.0 (1.98)	450.0 (2.05)	397.4 (1.81)	410.0 (1.87)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29		454.4 (1.86)		474.4 (1.95)			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30	509.8 (1.89)	513.8 (1.90)					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31	566.0 (1.90)		725.0 (2.43)	558.9 (1.88)	· · ·		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32	663.0 (2.02)	643.0 (1.96)		• • •			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33	717.0 (2.00)	668.5 (1.86)		· · /			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34	760.7 (1.94)	741.0 (1.89)	· · ·	· · ·			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35	803.4 (1.87)	818.8 (1.91)	987.5 (2.30)				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37	920.0 (1.82)			• •			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38	· · ·			• • •	• . •		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39	· · ·						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40	1293.0 (2.02)	1286.0 (2.01)	• •				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	41	• •						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
44 - - 1750.0 (2.05) - - 1750.0 (2.05) total 75 102 149 314 641					1345.0 (1.81)	1343.0 (1.01)		
total 75 102 149 314 641		- -		1750 0 (2.05)		1750 0 (2.05)		
average weight 449.1 359.9 274.1 237.7 292.0		, 5	102	149	514	041		
	average we	ight 449.1	359.9	274.1	237.7	292.0		
average Kf 1.85 ± 0.16 1.87 ± 0.09 2.43 ± 0.59 1.86 ± 0.09 2.04 ± 0.42	average Kf	1.85 ± 0.16						

Table 5.2.2.1.2.c.

Length weight relations for all *Oreochromis aureus* and *Tilapia zillii* measured, average weight in gram per 1 cm length group and (Kf).

length group in cm	Oreochromis aureus	Tilapia zillii
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34	$\begin{array}{c} 25.0 & (2.50) \\ 53.6 & (4.03) \\ 47.2 & (2.73) \\ 58.7 & (2.67) \\ 71.1 & (2.59) \\ 84.4 & (2.50) \\ 90.0 & (2.20) \\ 96.0 & (1.95) \\ 108.1 & (1.85) \\ 130.7 & (1.91) \\ 144.9 & (1.81) \\ 163.7 & (1.77) \\ 189.9 & (1.78) \\ 224.5 & (1.85) \\ 248.5 & (1.80) \\ 301.0 & (1.93) \\ 309.7 & (1.76) \\ 374.5 & (1.90) \\ 477.5 & (2.18) \\ 428.0 & (1.75) \\ 630.3 & (2.33) \\ 562.8 & (1.89) \end{array}$	$\begin{array}{c} 32.9 & (2.47) \\ 41.9 & (2.42) \\ 50.1 & (2.28) \\ 56.0 & (2.04) \\ 67.6 & (2.00) \\ 71.7 & (1.75) \\ 100.3 & (2.04) \\ 98.5 & (1.69) \\ 132.5 & (1.93) \\ 155.0 & (1.94) \\ 168.0 & (1.81) \\ 178.0 & (1.67) \\ 209.0 & (1.72) \end{array}$
total average weight average Kf	227 144.1 2.16 ± 0.50	164 72.0 1.98 ± 0.26
Average Kf: November December January February	$\begin{array}{r} 1.76 \ \pm \ 0.10 \\ 1.86 \ \pm \ 0.20 \\ 2.68 \ \pm \ 0.61 \\ 1.87 \ \pm \ 0.13 \end{array}$	$\begin{array}{r} 1.74 \ \pm \ 0.13 \\ 1.74 \ \pm \ 0.15 \\ 2.25 \ \pm \ 0.21 \\ 1.80 \ \pm \ 0.10 \end{array}$

Table 4.1.3.

Limnological features during different seasons at various depths

Average DO in % saturation

Summer Autumn Winter Spring	Surface 110 108 104 110	1 108 106 104 112	2 111 107 103 112	3 114 105 101 112	4 107 103 101 112	5 108 103 100 111	6 107 103 99 109	7 103 103 99 108	8 113 100 98 106	9 111 99 97 105	10 106 98 92 106	15 53 92 88 99	20 32 92 83 96	25 8 87 88 85	
Average	e DO in	ı p.p.	m.												
Summer Autumn Winter Spring	Surface 8.5 10.2 10.7 10.1		2 8.7 10.2 10.7 10.6	3 9 10 10.5 10.6		5 8.7 9.8 10.4 10.6			8 9.1 9.5 10.1 10.2	9 9.1 9.5 10.1 10.1	10 8.8 9.3 9.7 10	15 4.5 8.8 9.1 9.3	20 2.8 8.4 8.7 8.7	25 0.7 8.5 8.9 8.5	
Average	e tempe	rature	in o	c.											
Summer Autumn Winter Spring	Surface 29.6 19.8 15.2 21.1	15.2 20.2	19.2 15.2 19.7	3 28.3 19.3 15.0 19.5	19.3	19.2 14.8	19.1 14.7	19.1 14.7		-	10 25.9 19.2 14.5 18.0	19.3	20 23.6 19.4 14.5 18.5	19.4 14.5	
Average	Ec in	mS/c	m												
Summer Autumn Winter Spring	Surface 4.95 5.05 5.11 4.76		2 5.30 5.10	3 5.09 5.10 5.23 4.99		7 - 5.20 -	8 - 5.10 -	5.13 5.10	15 5.04 5.14 5.20 4.97	20 4.98 5.14 5.20 4.97	25 5.02 5.14 5.10 4.98	5. 5. 5.	of all 03 10 18 93	(n) mea (32) (31) (33) (37)	surements
Average	Ec in	mS/c	m (al	l stati	ons -	st.1)						Tra	nsp.	in m.	Air temp.
Summer Autumn Winter Spring	Surface 5.11 5.20 5.26 4.98	5.22 5.30	3 5.16 5.23 5.45 5.01	5 5.05 5.16 5.27 4.97	10 4.97 5.13 5.10 5.01	15 5.04 5.14 5.20 4.97	20 4.98 5.14 5.20 4.97	25 5.02 5.14 5.10 4.98	Ave o 5.1 5.2 5.2 4.9	4 .0 .7	i)measu (27) (26) (27) (32)		S	2.90 2.45 2.03 1.67	34.1 23.1 16.6 23.5

Wadt Papers (H.).

Wadi Rayan III 2

.....

Table	4.1.3.a.																
	Summer ⁶ . 20/21-VII-87																
Summe	er¦. 20/2	21-VI	[-87											: · ·	an Lint to se	• . •	
DO in	% satur	ation	÷.,	Ο.	. I		C.		1.41	3						$\tau = \frac{1}{2} T$	
station	surface	1	2	3	274	5	- 6	.7	8	9	10	15	20	251	ottom	(depth)	
1	125	116	113	119	113	115	114		113*						113	8.5	
2	105	103*													103	1.0	
3	96	95	97	98	84*										84	4.0	
4	107	104	105	122											121	3.3	
5	117	110	106	117	104	101	95	85*							85	6.8	
6	116	112	110	108	109	109	110	111	112	108	106	53	32	8		25.2	
7	103	114	119	122	125*	100	107	102	112		104	52	20	8	125	3.5	
average	110	108	111	114	107	108	107	103	113	111	106	53	32	8			
DO in	p.p.m.																
1	9.6	9.2	10.2	9.5	9.2	9.2	9.2	9.2	9.2	9.2*					9.2	8.5	
2	8.1	8.2*													8.2	1.0	
3	7.4	7.4	7.5	7.6	6.5*										6.5	4.0	
4	8.2	8.1	8.2	9.6											9.5	3.3	
5	9	8.4	8.2	9.2	8.2	8.1	7.7	6.7*							6.9	6.8	
6	8.9	8.9	8.8	8.5	8.8	8.7	8.8	8.9	9	8.9	8.8	4.5	2.8	• 0:7	0.6	25.2	
7	8	8.8	9.2	9.6	9.9*				0.1	0.1			• •	07	9.9	3.5	
average	8.5	8.4	8.7	9	8.6	8.7	8.6	8.3	9.1	9.1	8.8	4.5	2.8	0.7			
T		~														·· .	
remper	ature of	<u> </u>													1947 8	•••	• •
1	29.5	28.8	28.0	27.1	27.0	27.0	27.0	26.9	26.7	26.7*					26.7	8.5	
2	29.0	28.8				• •			,						28.8	1.0	
3	29.4	29.3	29.2	29.1	28.8*										28.8	4.0	
4	29.5	29.3	29.0	28.6			5	;							28.5	3.3	
5	30.5	30.2	29.5				27.6		* <u>,</u> ,	. S.	• •				27.2	6.8	
6	30.0	28.3	27.9	27.8		27.6	27.5	27.3	27	26.6	25.9	24.0	23.6	22.6		25.2	
7	29.3	29.1	29.0	28.4	28.3*										28.3	3.5	
Av.	29.6	29.1	28.8	28.3	27.9	27.5	27.4	27.1	26.9	26.7	25.9	24.0	23.6	22.6			
Ec in	mS/cm												Tra	ansp.	Air ten	np. pH	
Station	Surface	1	3	5	10	15	20	25	Bottor	n (m)		.Ec/sta	ation				
1	3.97		4.71	4.82					4.88	(8.5)		.48		2.6	33.0	8.4-8.5	
2	5.17	5.19	*						5.19	(1.0)		.18		> 1	-	8.4	
3	5.53		5.57						5.62	(4.0)		.58		1.8	-	8.4	
4	4.99		5.06*						5.06	(3.3.)		.03		2.2	33.8	8.4	
5	5.04		5.09	5.10				.	5.14	(6.8)		.11		3.0	36.1	-	
6	4.95		4.99	5.00	4.97	5.04	4.98	5.02		(25.2)		.01		4.5	34.5		
7	5.00	5.03	5.10						5.09	(3.5)) 5	.06		3.3	33.0	8.5	
8	C 10	E • <i>I</i>	5 05	4.07	6.04	4.00	6 00							2.9	34.1	-	
Av.5.11					5.04												
Average	of all mea	sureme			5.14 (1												
			(τ 3(.1)	5.03 (r	u = 32	,										

Wadi Rayan III 3.

. .

.•

Table 4	4.1.3.b.															÷	
Autumn	. 24-2	KI-87															15 J.Y
Average	D.O. i	n %	satura	ation											20 ° - 1	$\mathbf{v}_{ij}^{i} = v_{ij}^{ij} + \varepsilon_{1}^{ij}$	11. J. I.
Station Su	104	2 102	3 101	4 99	5 98	6 98	7 99	8 98	9 98	~10 98	15 96*	20	25]	Bottom 96	(99.5)	• • •
2 3 4 5	109 111 107	107 110 105	116 109 108 108	113 107	107	107	107	110							115 112 108	(2.2) (3.4) (2.2)	
5 6 7	112 109 104	109 107 102	105 103	105 100	104	104	102		101	100	99	92	92	87	112 85 105	(7.1) (26.7) (3.4)	
Average	108	106	107	• 105	103	103	103	103	100	99	98	92	92	87			
D.O. in	p.p.m	•															
1 2 3 4	9.9 10.4 10.4 10.0	9.7 10.3 10.4 10.0	10.3	9.4 10.8	9.3	9.3	9.4	9.4	9.4	9.4	9.2*				9.2 11.1 10.7 10.4	(9.5) (2.2) (3.4) (2.2)	
5 6 7	10.5 10.2 9.9	10.3 10.1 9.8		10.3 9.9 9.6	10.3 9.9	10.3 9.8	10.3 9.7	10.3 9.7	10.7 9.6	9.5	9.4	9.8	8.4	8.5	10.7	(7.1) (26.7) (3.4)	
Average	10.2	10.1	10.2	10.0	9.8	9.8	9.8	9.9	9.5	9.5	9.3	8.8	8.4	8.5			
Tempera	ature in	oC.															
1 2 3 4	19.3 19.3 20.2 20.5	19.2 19.9	19.3 18.5 19.3 18.9	19.3 18.9	19.2	,192	19.2	19.2	19.1	19.1	19.1				19.1 18.5 18.8 18.8	(9.5) (2.2) (3.4) (2.2)	
5 6 7	19.8 20.0 19.6		19.3 19.9 19.3		18.9 19.7				19.3	19.3	19.3	19.3	19.4	19.4		(7.1) (26.7) (2.4)	
Average	19.8		19.2		19.3	19.2	19.1	19.1	19.2	19.2	19.2	19.3	19.4	19.4	18.8	(3.4)	
Ec in m	nS/cm													Tran	sp A	irtemp	
Station 1	Surface 4.16	1 4.34	3 4.57	5 5.01	10 5.08*	15	20	25		n (m) (9.5)	Average 4.63		tation		2.5	22	
2 3 4		5.27 5.48 5.15	5.47*						5.26 5.47	(2.2) (3.4) (2.2)	5.26 5.46 5.15	5 5			2.05 1.85 2.2	23.5 21.5 22.5	
5 6 7	5.12 5.12	5.13 5.14	5.17 5.13 5.16*	5.12					5.21 5.12	(7.1)	5.17	7 3		:	3.15 3.1 2.3	23.5 23 26	
Av st 1 Av.+ st 1	5.20 5.05	5.22 5.10	5.23 5.10	5.16 5.11	5.13 5.11	5.14	5.14	5.14		. /							
Average for	or all me	asurem	ents - s	station	1 = 5.2	0 (n =	26)										

Average for all measurements - station 1 = 5.20 (n = 26) Average for all measurements + station 1 = 5.10 (n = 31) * are bottom values.

 $\mathcal{F} = \left\{ \left\{ \left\{ \left\{ i \in \mathcal{F}_{g_{1}}^{(i)} \right\} : i \in \mathcal{F}_{g_{2}}^{(i)} \right\} \right\} : i \in \mathcal{F}_{g_{2}}^{(i)} \right\} \right\}$

Wadi Rayan III 4

Table 4	4.1.3.c.									•						
Winter	9-XII	-87														
D.O. in	% sati	uratio	n													
Station 6 5 Average Av.+febr.		1 100 108 104 104	2 101 107 104 103	3 99 110 105 102	4 99 107 103 102	5 96 106 101 100	6 98 98 99	7 95 95 98	8 95 95 97	9 95 95 96	10 96 96 94	15 92 92 90	20 91 91 87	25 92 92 90	Bottom 93 108	(m) (25.5) (5.4)
D.O. in	p.p.m	•														
6 5 Average Av.+febr.		9.7 10.5 10.1 10.6	10.1	9.6 10.9 10.3 10.4		10.6 10.0	9.5			9.3 9.3 9.7	9.4 9.4 9.6		8.6 8.6 8.7	8.7	8.7 10.7	(25.5) (5.4)
Tempera	ature in	oC.														
6 5 Average Av.+febr.	18.3 18.6		18.2 18.3	18.3 17.7 18.0 16.0	17.5 17.9	17.4 17.9		18.2	18.2	18.2	18.2	18.3	18.4	18.2	18.3 17.4	(25.5) (5.4)
Ec in mS/	cm													Transp). Air tem	ıp. pH
Station 6 5	Surface 5.03 5.11		3 5.09 5.17	5.10 5.17*			5.11	5.15		n (n (25.5 (5.4		.of all .10 .15		3.3 3.2	21.0	8.3-8.4 8.5
Av. Av.+febr.		5.26		5.22		5.10 5.15		5.15 5.13						3.25 2.27	20.8 17.4	8.5

Average of all 13 measurements 5.1

:

Wadi Rayan III 5.

Table 4.1.3.d.

Winter . 15/16-II-88

and the second second

20 60

. -

.

D.O. in	w % satu	ration	1											e cit.	anarra 1	a K
Station	Surface	1	2	3	4	5	6	7	8	9	10	15	20	25 Bottom	(depth)	
1	102	102	102	100	100	99	98	98	98*	: -	<i>:</i>			· 98	(8.0)	, .
2	100	100	99*											99	(1.8)	
3	105	105	105	104	103	101*								101	(4.6)	
4	107	108												107	(1.3)	
5	104	109	101	103	104	104	104	104						103	(7.2)	
6	96	96	97	97	97	96	96	95	97	97	92	88	83	88* 88	(25.0)	
7	99	98*												98	(0.7)	
8	117	112	116*											116	(2.1)	
Äv.	104	104	103	101	101	100	99	99	98	97	92	88	83	88		

Temperature in oC.

1	15.4 15.4 15.7 15.5	15.3 15.2 15.1 1	5.1 15.1*	15.1 (8.0)
2	15.6 15.6 15.6*			15.6 (1.8)
3	15.3 15.3 15.3 15.2	15.0 14.9*		14.9 (4.6)
4	15.2 15.2			15.1 (1.3)
5	15.1 15.1 14.6 14.5	14.4 14.4 14.4 1	4.4	14.4 (7.2)
6	14.9 14.9 14.9 14.8	14.8 14.7 14.6 1	4.6 14.6 14.6 14.5 14.6 14.5 14.5*	14.5 (25.0)
7	14.6 14.6*			14.6 (0.7)
8	15.2 15.2 15.2*			15.2 (2.1)
Average	15.2 15.2 15.2 15.0	14.9 14.8 14.7 1	4.7 14.9 14.6 14.5 14.6 14.5 14.5	

Ec in mS/cm.

Station Surf	face 1	2	3	5	7	8	10	15	20	25	Be	ottom	(depth)	Av./per stat	ion
1	4.0	4.6	5.0	5.1	5.1		5.1*					5.1	(8.0)	4.82	
2	5.2	5.2	5.2*									5.2	(1.8)	5.2	
3	5.3	5.4		5.4	5.4*							5.4	(4.6)	5.38	
4	5.2	5.2*										5.2	(1.3)	5.2	
5	5.2	5.2		5.2	5.2	5.2*						5.2	(7.2)	5.2	
5	5.1	5.2		5.2	5.2			5.1	5.2	5.2	5.1*	5.1	(25.0)	5.16	
7	5.1	5.2*										5.2	(0.7)	5.15	
8	5.7	5.7	5.7*									5.7	(2.1)	5.7	
Avst.1	5.26	5.30	5.45	5.27	5.27										
Average	5.10	5.21	5.30	5.23	5.23	5.20	5.10	5.10	5.20	5.20	5.10				
Average of	all mea	sureme	nts - st	ation 1	= 5.27	(n = 2)	27)								

* are bottom values.

pН										Transp. A	ir temp.
Station	Surface	1	3	5	10	15	20	25Bott	tom(depth)		
1	-								0.5 (1.0)		
2	8.5	8.6							8.5 (1.8)	2.55	18
3	8.5	8.5	8.6						8.5 (4.6)	1.6	14
4	8.5								8.5 (1.3)	1.85	17
5	8.5	8.5	8.5	8.5					8.5 (7.2)	1.3	18
6	8.4	8.5	8.5	8.5	8.4	8.4	8.5	8.5*	8.5* (25.0)	2.45	17
7	8.5*								8.5* (0.7)	<.7	13
8	8.5	8.6	8.6*						8.6* (2.1)	2.05	18
Av.	8.5	8.5	8.6	8.5	8.4	8.4	8.5	8.5		2.03	16.6

Wadi Rayan III 6.

1

Table 4.1.3.e.

λαγ**λ**, ζ. Στο κοιγγο. Γ

sa manan a mu

Spring 13/14-IV-88

D.O. in % saturation

	e de la seta				•		i		Ţ.	••		41				
Station	Surface												20	25	Bottom	(depth)
1	110	113	114	111	111	108	108	106	103	100	103				93	(10.2)
2	-															
3	-															
4	-															
5	-										100	•	0.0	06+	0.5	(04.6)
6	110	110	110	113	113	113	110	110	109	109	108	99	90	82*	83	(24.5)
7		110	110	110	110	111	100	100	106	105	106	00	06	95		
Average	110	112	112	112	112	111	109	108	100	102	100	39	.90	00		

Temperature in oC.

1	20.7	19.4	18.6	18.5	18.3 18.2	18.1	18 17.9	17.9	17.8		18.3	(10.2)
2	21.9	21.2	21.1*								21.1	(2.0)
3	22.5	22.0	-	21.7	21.4*						21.4	(4.1)
4	21.7	20.4	-	20	20.0*						20.0	(4.3)
5	22.0	20.3	-		19.7	19.4	19.3*				19.3	(6.2)
6	20.2	20.0	19.3	18.9	18.8 18.6	18.5	18.4 18.4	18.3	18.2	18.7 18.5	18.3*18.3	(24.5)
7	18.4	18.3	-	18.2*							18.2	(2.5)
Average	21.1	20.2	19.7	19.5	19.6 18.7						18.3	
e e					1	5 A	= = = = = = =	2		1		

Ec in mS/sec.

:

Station	Surface	1	2	3	4	5	10	15	20	25	Bottom (m)	Av.Ec/station
1	3.49	4.65		4.90	;	4.90	4.91*	1. 3.	1	1	4.91 (10.2)	4.57
2	5.00	5.05	5.10*							· · ·	5.10 (2.0)	5.05
3	5.17	5.19		5.2	05.21	ŧ.					5.21 (4.1)	5.19
4	4.94	4.96		4.97	4.97	r i					4.97 (4.3)	4.96
5	4.95	5.00		4.98	-	4.98					4.99 (6.2)	4.98
6	4.87	4.90		4.94		4.96	5.01	4.97	4.97	4.98*	4.98 (24.5)	4.95
7	4.93	4.94		4.94	*		:	1.12			4.94 (2.5)	4.94
Average	4.98	5.01	5.10	5.01	5.09	4.97	5.01	4.97	4.97	4.98		
+ st.1	4.76	4.96		4.99		4.95	4.96					

Average of all stations (- st.1) 4.99 (32) (+ st.1) 4.93 (37)

Transparency in m.	Air temp.in	oC.	
2.4 1.3 1.05 1.3 1.45 2.2 2.0	32.0 21.0 24.0 22.0 23.0	< พ.ศ. 1867 (วิธีชัยชัยชัย	- t t <u>t</u>
1.67	23.5		

÷.

Table 4.1.3.1.

D.O.in	% sat	uration	at va	rious s	season	s per st	ation	at suri	ace an	(d(1 m)	
Station		Summer		Autumn		Winter		Spring			
1 0 2 3 4 5 6 7 Average	125 105 96 107 117 116 103 110	(116) (103) (95) (104) (110) (112) (114) (108)	104 109 111 107 112 109 104 108	(102) (107) (110) (105) (109) (107) (102) (106)	102 100 105 107 104 96 99 104	(102) (100) (105) (108) (109) (96) (98) (104)	110 110 110	(113) (113) (110) (112)			

Table 4.1.3.2.a. Temperature per station per season at surface and (1 m)

Station	Summer		Au	tumn	W	inter	Spring		
1	29.5	28.8)	19.3	19.3)	15.4	15.4)	20.7	19.4)	
2	29.0	28.8)	19.3	19.2)	15.6	15.6)	21.9	21.2)	
3	29.4	29.3)	20.2	19.9)	15.3	15.3)	22.5	22.0)	
4	29.5	29.3)	20.5	19.8)	15.2	15.2)	21.7	20.4)	
5	30.5	30.2)	19.8	19.8)	15.1	15.1)	22.0	20.3)	
6	30.0	28.3)	20.0	19.9)	14.9	14.9)	20.2	20.0)	
7	29.3	29.1)	19.6	19.6)	14.6	14.6)	18.4	18.3)	
8	-	-	-	-	15.2	15.2)	-		
aveerage	29.6	29.1)	19.8	19.6)	15.2	15.2)	21.1	20.2)	
σ _n	.5	.5)	.4	.3)	.3	.3)	.1.3	1.1)	

Table4.1.3.2.b.Averagedecreaseoftemperaturetemperaturepermdepth.

Station	Summer	Autumn	Winter	Spring
1	.33	.01	.08	.28
2	.20	.36	.00	.40
3	.15	.41	.09	.27
4	.30	.77	.08	.40
5	.49	.17	.10	.44
6	.31	.02	.02	.08
7	.29	.24	.00	.08
Average per m				
depth	.28	.03	.03	.11
Absolute difference between	8.2 °C	2.0 °C	1.2 [•] C	4.7 [°] C

all

stations

_

5.01)

5.18)

÷

Table 4 Ec value	4.1.3.3.4 So at va	a. rious st	ations	of cur	face s	nd (1	- (19025) m)	opus sec	197-16	MALINE	800 5428	.0.C
	_					inter	Spr	• •		a sa sa		a da antesa da antes Antesa da antesa da an
Station		nmer		umn 4.34)			3.49	4.65)				
1 <u>6</u>	3.97	4.01)	4.16		4.0	4.6)		•	hele a		titi k	•
2 ,	5.17	5.19)	5.25	5.27)	5.2	5.2)	5.00	5.05)	6.6 1	490	105	4.
3	5.53	5.60)	5.44	5.48)	5.3	5.4)	5.17	5.19)		124	A G	ŕ
4	4.99	5.04)	5.12	5.15)	5.2	5.2)	4.94	4.96)	¶.cn		101	
5	5.00	5.17)	5.14	5.16)	5.2	5.2)	4.95	5.00)	153 F	441123	517	
6	4.95	5.02)	5.12	5.13)	5.1	5.2)	4.87	4.90)		1		
7	5.00	5.03)	5.12	5.14)	5.1	5.2)	4.93	4.94)				

4.76

4.98

(4.96)

5.01)

ALLER H. P. L. P. L. Tabla 41220

5.7)

5.21)

5.30)

5.7

5.10

5.26

Table 4.1.3.3.b. Average Ec in mS/cm

4.95

5.11

8

÷

Average

-st.1

	4.82	4.57		
1 4.48 4.63		4.57		
2 5.18 5.26	5.20	5.05		
3 5.58 5.46	5.38	5.19		
4 5.03 5.15	5.20	4.96		
5 5.11 5.17	5.20	4.98		
6 5.01 5.13	5.16	4.95		
7 5.06 5.14	5.15	4.94		
8	5.70	- .		
Average +1 5.03 (32)* 5.10 (31)	5.18 (33)	4.93 (37)		
Average -1 5.14 (27) 5.20 (26)	5.27 (27)	4.99 (32)		Ŷ i

* Between brackets, number of measurements

where a reasonable of the second second second

Table 4.1.3.3.c. Average Ec increase per m depth per station.

-

5.05

5.20

-

5.10)

5.22)

Station	Summer	Autumn	Winter	Spring
1	.11	.10	.14	.14
2	.02	.09	.00	.05
3	.03	.12	.02	.01
4	.02	.23	.00	.01
5	.01	.10	.00	.01
6	.01	.00	.00	.01
7	.03	.12	.14	.00
8	-	-	.00	-
Average	.03	.11	.04	.03

Wzdi Kzyan III 10

Wadi Rayan III 9

	Ca 5.2	Mg 7.34	Na 33.3	K .78		HCO3 5.64	18.16			•	÷.
{			5.62		et end and						
* in mS ** in me		-	5.02			ing a start and a start and a start a s Start a start a Start a start a	- 13) - 134	< : ; , ; ,	an san Na Marina San Na	2013 - N. 1945 - N. 1947 -	
Salts are:		13 5	.64 meq/	I							
	NaCl	- 22.		L							
	CaCl2	-									
	NaSO4 CaSO4										
Calculate	d Ec w	ith the e	quation: A	Ecc:	$=\frac{\text{Si}}{\sum_{\text{cat}}} a(\Sigma)$	cat) ^b					
	~					outy					
					_		2) 0.0424	407	- 453		
Ec NaHO	203	- 5	5.64/46.62	x	0.1001	150 (46.62			= .453 = 2.543	•	
	203	- 5 - 22.8			0.1001		2) 0.948	3705	= .453 = 2.543 = .549		
Ec NaHO Ec NaCl	203 4	- 5 - 22.8 - 5	5.64/46.62 32/46.62	x x	0.1001 0.1350 0.1350	150 (46.62 698 (46.6	52) 0.948 52) 0.920	3705)797	= 2.543		
Ec NaHO Ec NaCl Ec NaSO	203 4	- 5 - 22.8 - 5	5.64/46.62 32/46.62 .62/46.62	x x x	0.1001 0.1350 0.1350	150 (46.62 598 (46.6 598 (46.6	52) 0.948 52) 0.920	3705)797)67	= 2.54 3 = .549	•	
Ec NaHC Ec NaCl Ec NaSO Ec CaSO	203 4 4	- 5 - 22.8 - 5 - 12.	5.64/46.62 32/46.62 .62/46.62 54/46.62	x x x x	0.1001 0.1350 0.1350	150 (46.62 598 (46.6 598 (46.6	52) 0.948 52) 0.920 52) 0.820	3705)797)67	= 2.543 = .549 = .847		
Ec NaHC Ec NaCl Ec NaSO Ec CaSO	203 4 4	- 5 - 22.8 - 5 - 12.	5.64/46.62 82/46.62 .62/46.62 54/46.62 54/46.62	x x x x	0.1001 0.1350 0.1350 0.1340	150 (46.6) 598 (46.6 598 (46.6 590 (46.6	i2) 0.948 i2) 0.920 i2) 0.820 Ec tota	3705 0797 067 al	= 2.543 = .549 = .847		
Ec NaHC Ec NaCl Ec NaSO Ec CaSO Conversion	203 4 4	- 5 - 22.8 - 5 - 12.	5.64/46.62 82/46.62 .62/46.62 54/46.62 54/46.62 to m gran	x x x x x 1/1. x	0.1001 0.1350 0.1350 0.1340	150 (46.65 598 (46.6 598 (46.6 500 (46.6	i2) 0.948 i2) 0.920 i2) 0.820 Ec tota 104.20	8705 9797 967 al	= 2.543 = .549 = .847		
Ec NaHC Ec NaCl Ec NaSO Ec CaSO Conversion Ca++ Mq++	203 4 4	- 5 - 22.8 - 5 - 12. n meq/1 20.04 12.15	5.64/46.62 82/46.62 .62/46.62 54/46.62 to m gran	x x x x x 1/1. x x	0.1001 0.1350 0.1350 0.1340 5.2 7.34	150 (46.65 598 (46.6 598 (46.6 500 (46.6 500 (46.6	i2) 0.948 i2) 0.920 i2) 0.820 Ec tota 104.20 98.19	8705 9797 967 al	= 2.543 = .549 = .847		
Ec NaHC Ec NaCl Ec NaSO Ec CaSO Conversion Ca++ Mq++ Na+	203 4 4	- 5 - 22.8 - 5 - 12. n meq/1 20.04 12.15 22.93	5.64/46.62 82/46.62 .62/46.62 54/46.62 to m gran 25 98	x x x x x 1/1. x x x x	0.1001 0.1350 0.1350 0.1340 5.2 7.34 33.3	150 (46.65 598 (46.6 598 (46.6 500 (46.6 500 (46.6	 i2) 0.948 i2) 0.920 i2) 0.820 Ec tots 104.20 98.15 736.89 	8705 9797 667 al 98 99	= 2.543 = .549 = .847		
Ec NaHC Ec NaCl Ec NaSO Ec CaSO Conversion Ca++ Mq++ Na+ K+	203 4 4	- 5 - 22.6 - 5 - 12. n meq/1 20.04 12.15 22.93 39.10	5.64/46.62 82/46.62 .62/46.62 54/46.62 to m gran 25 98 2	x x x x x x x x x x x x x x	0.1001 0.1350 0.1350 0.1340 5.2 7.34 33.3 .78	150 (46.65 598 (46.6 598 (46.6 500 (46.6 500 (46.6	 i) 0.948 i) 0.920 i) 0.820 i) Ec tota i) 104.20 i) 98.19 i) 736.89 i) 30.50 	8705 9797 667 al 98 99 95 90	= 2.543 = .549 = .847		
Ec NaHC Ec NaCl Ec NaSO Ec CaSO Conversion Ca++ Mq++ Na+ K+ CO3	203 4 4	- 5 - 22.6 - 5 - 12. n meq/1 20.04 12.15 22.93 39.10 30.00	5.64/46.62 82/46.62 .62/46.62 54/46.62 to m gran 25 98 2 46	x x x x x 1/1. x x x x x x	0.1001 0.1350 0.1350 0.1340 5.2 7.34 33.3 .78	150 (46.65 598 (46.6 598 (46.6 500 (46.6 500 (46.6	2) 0.948 2) 0.920 2) 0.820 Ec tota 104.20 98.19 736.89 30.50	8705 9797 667 al 98 99 95 90 -	= 2.543 = .549 = .847		
Ec NaHC Ec NaCl Ec NaSO Ec CaSO Conversion Ca++ Mq++ Na+ K+ CO3 HCO3-	203 4 4	- 5 - 22.6 - 5 - 12. n meq/1 20.04 12.15 22.93 39.10 30.00 61.01	5.64/46.62 82/46.62 .62/46.62 54/46.62 to m gran 25 98 2 46 72	x x x x x 1/1. x x x x x x x x	0.1001 0.1350 0.1350 0.1340 5.2 7.34 33.3 .78 5.64	150 (46.65 598 (46.6 598 (46.6 500 (46.6 500 (46.6 = = =	2) 0.948 2) 0.920 2) 0.820 Ec tots 104.20 98.19 736.89 30.50 	8705 9797 667 al 98 99 95 90 77	= 2.543 = .549 = .847		
Ec NaHC Ec NaCl Ec NaSO Ec CaSO Conversion Ca++ Mq++ Na+ K+ CO3	203 4 4	- 5 - 22.6 - 5 - 12. n meq/1 20.04 12.15 22.93 39.10 30.00	5.64/46.62 82/46.62 .62/46.62 54/46.62 to m gran 25 98 2 46 72 88	x x x x x 1/1. x x x x x x	0.1001 0.1350 0.1350 0.1340 5.2 7.34 33.3 .78	150 (46.65 598 (46.6 598 (46.6 500 (46.6 500 (46.6 = = = =	2) 0.948 2) 0.920 2) 0.820 Ec tota 104.20 98.19 736.89 30.50	8705 9797 667 al 98 99 95 90 - 7 7 33	= 2.543 = .549 = .847		•

Table 4.1.3.5. Transparency in cm.

Station	Summer	Autumn	Winter	Spring	Average
1	260	250	255	240	251
2	-	205	160	130	165
3	180	185	185	105	164
4	220	220	130	130	175
5	300	315	240	145	250
6	450	310	245	220	306
7	330	230	-	200	253
8	-	-	205	-	205
Average	290	245	203	167	-

,

Wadi Rayan III 10

Table4.1.3.6.Air temperature

Batter wells and the second press and the Bart Clarks

		-										
Station	Su	mmer	Au	tumn	W		Sp	ring		-	·····	• • •
1	tem	p. time	temp	. time	temp	, time	temp.	time				
1	33.0	12.45	22.0	15.45	18.0	16.00	32.0	13.45	$\langle F_{i} \rangle$	s ser e	, -	
2	-	10.45	23.5	11.00	14.0	09.35	21.0	09.35				
2 3	-	09.40	21.5	11.50	17.0	10.10	24.0	09.55				
4	33.8	11.50	22.5	12.20	18.0	12.30	22.0	10.30				
5	36.1	13.40	23.5	13.15	18.0	13.10	23.0	10.55				
6	34.5	11.15	23.0	14.30	17.0	14.00	-	14.45				
7	33.0	12.15	26.0	10.20	13.0	08.50	19.0	08.30				
8	-	-	-	-	18.0	11.35	-	-				
Average	34.1		23.1		16.6		23.5					
% of water surf.tem.	115%		117%		109%		111%					

Table4.1.3.7.Table average depth per profile

Profile	Depth	
A	8.2 m 7.0 "	
B C	7.4 "	
D E	9.6 " 13.5 "	
F	12.3 "	
G H	18.7 " 8.3 "	el de la constante de la const La constante de la constante de
I	19.8 "	

.

Average -	11.8 m
Surface -	6 200 ha
Volume -	$730 \times 10^6 \text{ m}^3$

Wadi Rayan III 11

.

.

Table 4.2.3.1.3. Fry transport from El Girby (Damietta) to Wadi Rayan III lake (predominantly grey mullet)

		water in transport tanks				water in unloading areas			number of fry x 1000	truck
Date	Ec	t.	D.O.	pН	Ec	t.	D.O.	p.H		
7-XII-87	32.2	15.6	10.3	• -	2.9	16.6	11.2	• -	200	1
24-I-88	29.8	11.6	5.0	8.1	2.6	11.9	11.3	8.6	2200	2
27-I-88	29.4	11.9	5.8	8.2	2.7	-	-	-	2400	2
17-II-88	36.9	12.8	8.9	8.1	2.7	15.5	· _	-	1000	1
Subtotal o	f fry w	uloaded i	in pond							5,800,000
17-II-88	36.7	12.9	8.6	8.1	5.1	15.7	-	-	1000	1
22-II-88	37.1	14.1	10.0	8.1	5.2	18.4	-	-	2000	2
4-IV-88									30	1
Subtotal fr	y unlo	aded in e	enclosure							3,000,000
Total num	ber of i	fry releas	sed in Wad	i Rayan	III lake					8,800,000

Table 4.2.3.2.1. Plankton composition and distribution in the 280 μ samples.

....

Station	1	2	3	4	5	6	7
Season	abcd	abcd	abcd	abcd	abcd	abcd	abcd
Botanic	x •••	x • x #	x • * x	x • * *	x•#*	* • * *	*•*x
Copepods	o x x #	0.00	0 0 0 X	00	000*	o o * #	охо.
Cladocerans	0 X X #	0000	0000	0000	0000	0 0 0 X	0000
Other crust.	000#	0.0X	0.00	000.		0000	0000
Fish larvae	000#	0000	0 0 0 X	οοοχ	0000		0000
Fish eggs	000#	0000	0000	0000	0000	000 0	0000
Insects	x # o *	x o * *	00.*	oxo.	oox.	o#.•	00x#
Others	00X#	0.00	0000	0000	0 0 X 0	0000	0 0 X 0
a = summer	o	= not fou	nd		# many		
b = autumn	•	= 1 speci	men		• abunda	nt	
$\mathbf{c} = \mathbf{winter}$	x	= several					
d = spring	*	= commo	n				

Wadi Rayan III 11

Wadi Rayan III 12

Table 4.2.3.2.2.a. Systematic list of net plan	kton specie	s collecte	edduring	June 1987	- April 1988
¢.					
Division: Cyanophyta and muse Order: Oscillatoriales		Superson .		an antek Tar Stataar e	
		(gear 19344314.143	÷ •:	a an a crega ar re	
	the Cor	۰. ۲	off In		2000 - 20
(I) Genus: Oscillatoria (vaucher)	6				
1 O. formosa 2 O. limosa	43	75	. 67	51	
3 O. princeps	8	15	. 07	51	
(II) Genus: Lyngbya (Agardh)	o	-			
	4		_	-	
4 L. contorta	4	161	-	_	
5 L. birgei	4	101	-	-	
(III) Genus: Plectonema	2				
6 P. comasiniana	3	-	-	-	
Family: Nostocaceae					
(IV) Genus: Anabaena (Bory)	00	160	1//	121	
7 A. circinalis	98	150	144	121	
8 A. spiroides	8	-	-	-	
(V) Genus: Anabaenopsis	10				
9 A. elenkinii	19	-	-	-	· · ·
(VI) Genus: Nostoc	95		17	30	
10 N. lanchia	25	111	. 43	50	
(VII) Genus: Spirolina					
11 S. platensis	3	-	-	-	
(VIII) Genus: Spirotaenia	1997 - 1999 -	, 귀구성구	e en el Sala de Calendaria.	• * •	· · · · ·
12 Spirotaenia sp.	3	е с _к у ¹	 	-	Letter Car
(IX) Genus: Nodularia		0.00			
13 N. spumigena 14 N. miror	27 26	0.0 m 90	20°	16	
(X) Genus: Aphanizonemon					
15 A. flosaquae	102	-	- · · · ·	-	
16 A. gracille	-	66			
(II) Order: Chroococales					
Family: Chroococaceae	$\lambda_{2}=\lambda_{1}^{-1}$:	
(XI) Genus: Merismopedia (Meyen)	$(1-\frac{1}{2})^{-1} = (1-\frac{1}{2})^{-1}$				
17 M. elegans	260	1179	438	192	
18 M. punctata	550	1735	255	432	
19, - M. glauca	465	1088	-	-	
20 M. tenuissima	510	-	-	-	
(XII) Genus: Chroococcus (Nageli)					
21 C. giganticus	3	174	42	7	
22 C. limneticus	35	210	795	180	
(XIII) Genus: Microcystis (Kützing)					
23 M. viridis	-	1350	2316	893	
(XIV) Genus: Polycystis					
24 P. incerta	400	15309	12113	7863	
(XV) Genus: Anacystis (Meneghini)		10047			
25 Anacystis sp.	150	-	-	-	
(XVI) Genus: Coelosphaerium (Nage		-			
26 C. dubium	4	-	-	-	
(XVII) Genus: Gomphospheria		-	-	-	
	4		96	30	
27 G. aponina	4	-	90	00	
(XVIII) Genus: Aphanocapsa 28 A. pulchara			1463		
20 n. puicitata	-	-	1403	-	

							1
			117	di Daman T	IT 19		-
· · · · · · · · · · · · · · · · · · ·			Wa	adi Rayan I	u 15 genetik ternikistet		
Division: Chlorophyta Class: Chlorophyceae		1		and and a second se Second second second Second second	chullessel specifi kan 18 a sta O (f.) Baada a cabada 2		
(I) Order: Chlorellales Family: Chlorelaceae (I) Genus: Ankistrodesmus (Corda)	. 1	· *			ologi (n. 1944) 1. anito de mistro 2. anito de mistro		-
29 A. falcatus (II) Genus: Oocystis (Nageli)	3	-	-	- ,	andel second (1) Alexander (1)	-	
30 O. lacustris	•	54 .	-		er z Tryan Italia Anta		
Family: Scendesmaceae (I) Genus: Scendesmus (Meyen) 31 S. dimorphus		38	_				
32 S. quadricauda	-	54	-	-			
(II) Order: Zygenematales Family: Zygnemataceae (IV) Genus: Spirogyra (Link)							
33 S. azygospora 34 S. abmedabadensis	4	34 38	-	2 2			
(V) Genus: Mougeotia 35 M. scalaris	-	-	12	_			
Family: Desmidiaceae							
(VI) Genus: Gonatozygon 36 G. aculatum	21	97	71	32			
(VII) Genus: Hyalotheca 37 H. mucosa	11	-	- -	-			
(VIII) Genus: Closterium (Nitzsch) 38 C. acerosum	4	_	13	6			
39 C. calosporum 40 C. rectimarginatum	-	19 33	-	-			-
(III) Order: Ulvales		55	-	-	a 1987) Tarihi a sa s		
(III) Older: Olvales Family: Schizomeridaceae (IX) Genus: Schizomeris (Kützing) 41 S. leibleinii	3	-	· _	-			
(IV) Order: Oedogoniales Family: Oedogoniaceae (X) Genus: Oedogonium (Link)							
42 O. crassum	10	-	-	-			
 (V) Order: Ulothrichales Family: Microsporaceae (XI) Genus: Microspora (Thuret) 43 H. willeana 	3	91	-	-			
 (VI) Order: Chlorococcales Family: Hydrodictyaceae (XII) Genus: Pediastrum (Meyen) 44 P. simplex 		-	6	-	. ÷		
(VII) Order: Volvocales Family: Volvocaceae (XIII) Genus: Volvox (Linnaeus) 45 Volvox sp.	3	_	_	-			
Family: Phacotaceae (XIV) Genus: Phacus		20	-				
46 P. acuminata	4	30	-	8			

.

Wadi Rayan III 14

Wadi Rayan III 13			W	adi Rayar	n III 14
Division: Chrysophyta					
Class: Bacillariophyceae				1.32	# 19 A # 2 / 19 A # 2 / 2
(I) Order: Pennales		,			1. 1. 化化化化化化化化化化化
Suborder: Araphidinae					
Family: Diatomiaceae					
(I) Genus: Fragillaria				. 50	an an anna a stàite an taona an taona an taona an an anna an anna an anna an anna an an
47 F. construens	54	163	53	78	1: 13:16) .A = 12
(II) Genus: Synedra		9.4 1		••••••••••	Soft parties (1974)
48. – S. tabulata	5 5 ~ Č	•	-	-	and all a fear the
49 S. affinis		63	-	6	
50 S. ulna	8	102	19	7	
(III) Genus: Diatoma					
51 D. elongatum	12	73	-	16	
52 D. valgara	129	-	-	-	
Family: Achnanthaceae					
(IV) Genus: Achnanthes			•		
53 A. lancedata	6	-	-	-	
Suborder: Biraphidineae					
Family: Naviculaceae					
(V) Genus: Navicula	4	70	18	9	
54 N. placentula	4	78	10	9	
55 N. distans	4	70	-	-	
56 N. gastrum	-	70	-	-	
(VI) Genus: Amphora	4		3	. 3	
57 A. ovalis	4	-	2	· 3	
(VII) Genus: Anomoeneis	,				
58 A. sphaerophora	4	-	-		
(VIII) Genus: Gyrosigma	,	40	0	6	
59 G. attenuatum	4	49	9	o .	and the second
(IX) Genus: Stouroneis		00			
60 S. anceps	12	80	-	-	
(X) Genus: Bacillaria	•	055			· • •
61 B. paradoxa	9	256	-	, s ⁻	
Family: Epithemiaceae					
(XI) Genus: Epithemia		126			
62 E. zebra	-	136	-	-	
Family: Surirellaceae					· · ·
(XII) Genus: Surirella					
63 S. ovalis	-	68	_	16	
64 S. robusta	-	59	-	17	
65 S. elegans	-	52	-	-	
Family: Tabellariaceae					
(XIII) Genus: Tabellaria					
66 T. fenestrata	5	-	-	-	
	-			*	
(II) Order: Centrales					an an Arthony an Arthony and Arthony an
Suborder: Coscinodiscineae					•
Family: Coscinodisciaceae					
(XIV) Genus: Melosira					
67 M. islandica	4	-	-	-	
68 M. varians	4	29	-	-	
69 M. granulata	-	81	12	7	
(XV) Genus: Cyclotella					
70 C. eutzingians	6	_	-	-	-
71 C. comta	3	59	3	6	
72 C. meneghiniana	50	111	-	36	
D		-			

Family: Surinellaceae (XVI) Genus: Campylodiscus 73 C. hibernicus - Division: Pyrthophyta Class: Dinophyceae Order: Peridiniales Genus: Peridinium (Ehrenberg) 74 P. platinum 8 Genus: Glenodinium 75 G. berolinense 12 Phylum: Nemathelminthes Class: Rotifera	155 a 1 3		adi Rayan (50042 29	Sugerdan Marina Funity Fostalined Sy Gener Haussian St. A. Dunstan Sc. M. Dunstan Sc. M. Dunstan
Family: Surinellaceae (XVI) Genus: Campylodiscus 73 C. hibernicus - Division: Pyrthophyta Class: Dinophyceae Order: Peridiniales Genus: Peridinium (Ehrenberg) 74 P. platinum 8 Genus: Glenodinium 75 G. berolinense 12 Phylum: Nemathelminthes	155 i		adi Rayan (50042 29	III 15 mil. 2001 in 2000 if doubter of viting a druc off man (2000) in an and in (2000) in a set of the main off off off off main off off off off
Family: Surinellaceae (XVI) Genus: Campylodiscus 73 C. hibernicus-Division: Pyrrhophyta Class: Dinophyceae Order: Peridiniales Genus: Peridinium (Ehrenberg) 74 P. platinum 6enus: Glenodinium 75 G. berolinense8Phylum: Nemathelminthes12	1	1 -	ອະນອດແ ແລະນັ້ນ 29 ລ	Sugerdan Marina Funity Fostalined Sy Gener Haussian St. A. Dunstan Sc. M. Dunstan Sc. M. Dunstan
(XVI) Genus: Campylodiscus 73 C. hibernicus-Division: Pyrrhophyta Class: Dinophyceae Order: Peridiniales Genus: Peridinium (Ehrenberg) 74 P. platinum 8 Genus: Glenodinium 75 G. berolinense8Phylum: Nemathelminthes12	1	-	يند 29 ج	Parising Tornary Tornarian (A) General House (A) General House (A) General (A)
73 C. hibernicusDivision: Pyrrhophyta Class: Dinophyceae Order: Peridiniales Genus: Peridinium (Ehrenberg) 74 P. platinum 75 G. berolinense8 Genus: Glenodinium 75 G. berolinense12 Phylum: Nemathelminthes	1	I -	29 🤞	incarranta de Circo Saltas de Lico Cara de Estaviones Caraterinte de Lico Caraterinte de Lico
Division: Pyrrhophyta Class: Dinophyceae Order: Peridiniales Genus: Peridinium (Ehrenberg) 74 P. platinum 8 Genus: Glenodinium 75 G. berolinense 12 Phylum: Nemathelminthes	1	-		si en
Class: Dinophyceae Order: Peridiniales Genus: Peridinium (Ehrenberg) 74 P. platinum 8 Genus: Glenodinium 75 G. berolinense 12 Phylum: Nemathelminthes		; _	-	с ним — сдал формал Саманари (Эс. 292 -
Class: Dinophyceae Order: Peridiniales Genus: Peridinium (Ehrenberg) 74 P. platinum 6 Genus: Glenodinium 75 G. berolinense 12 Phylum: Nemathelminthes		-	-	-26 8. 1999 -
Class: Dinophyceae Order: Peridiniales Genus: Peridinium (Ehrenberg) 74 P. platinum 6 Genus: Glenodinium 75 G. berolinense 12 Phylum: Nemathelminthes		-	-	
Order: PeridinialesGenus: Peridinium (Ehrenberg)74 P. platinum8Genus: Glenodinium75 G. berolinense12Phylum: Nemathelminthes		-	-	
Genus: Peridinium (Ehrenberg)74 P. platinum8Genus: Glenodinium75 G. berolinense12Phylum: Nemathelminthes		-	-	
74 P. platinum8Genus: Glenodinium75 G. berolinense12Phylum: Nemathelminthes		-	-	
Genus: Glenodinium75 G. berolinense12Phylum: Nemathelminthes		-	-	
75 G. berolinense 12 Phylum: Nemathelminthes	3			3
Phylum: Nemathelminthes	3			
		. -	-	
Olassa Datifana				
(I) Order: Monogonta				
Suborder: Ploima				
Family: Brachionidae				
(I) Genus: Brachiones				
76 B. plicatilis -	60	30	43	
77 B. pala -	41	20	29	
78 B. rubens -	162	-	-	
79 B. havanaensis -	162	42	48	
(II) Genus: Keratella				
80 K. valga -	9 8	43	71	
81 K. hiemalis -	102	78	84	
82 K. surrulata -	67	-	-	
83 K. testuda -	93	-	- `	
84 K. qudrata -	63	63	50	· .
- 85 K. cochlearis	-	80	-	
86 K. serrularis -	74	-	-	· ·
Family: Asplanchnidae				$ \mathcal{T}_{i}(\mathbf{y}_{i}) = \mathcal{T}_{i}(\mathbf{y}_{i}) $
(III) Genus: Polyarthra				
87 P. vulgaris 4	40	197	23	
(IV) Genus: Asplanchna				
88 A. priodonta -	36	-	-	
•				
Family: Lecanidae				
(V) Genus: Monostyla (Licane)				
89 M. Iunaris -	5	-	-	
Family: Synchaetidae				
(VI) Genus: Synchaeta				
90 S. pectinata 11	-	-	-	
Family: Trichocercidae				
(VII) Genus: Trichocerca				
91 T. cylindrica 3	-	-	-	
-				
Family: Lindidae				
(VIII) Genus: Lindia				
92 L. pallida -	-	53	-	
-				
Family: Notommatidae				
(IX) Genus: Scaridium				
93 S. longicaudum 3	-	-	-	

Ward Earmin IT 15

Wadi Rayan III 16

:

Suborder: Flosculariaceae Family: Testudinellidae (X) Genus: Hexarthra 94 H. intermedia 95 H. mira (XI) Genus: Filinia 96 F. brachiata	3 (C) 19 4	58	128	2012 (1891, 12) - (1892) 2022 (2021) (2022) - 2022 (2022) - 23 38 - 2022 (2022) - 23	. .
				ni ansa i aing pagan 1 - Antonikus ang pagan 1 - Antonikus ang pagan	
Phylum: Arthropoda Subphylum: Mandibulata Class: Crustacea Subclass: Copepoda (I) Order: Cyclopeda					
Family: Cyclopedae (I) Genus: Cyclops 97 C. fimbriatus	4	58	29	11	
 (II) Order: Calanoida Family: Diaptomedae (II) Genus: Diaptomus 98 D. siciloides 99 D. pygmaeus 100 D. kenai (III) Genus: Eudiaptomus 101 E. gracilis 	4 4 -	40 18 39	12 2	10 12	
Nauplius of Cyclops Nauplius of Diaptonus	5 -	78 33	25 . 11	15 7	
Subclass: Branchiopoda (I) Order: Diplostraca Suborder: Cladocera Family: Daphniadae (I) Genus: Daphnia 102 D. pulex	-	39	-	and state and a second s	
Family: Sididae (II) Genus: Diaphanosoma 103 D. brachyarum	30	50	41	30	
Family: Bosminidae (III) Genus: Bosminopsis (104 B. deitersi	-	-	34	-	

Table 4.2.3.2.2.b.

Average plankton distribution of the 60 μ samples per season in number of plankters per l. and (% of total). Data obtained from Mr. Magdi Abas Saleh May 1988.

•		 State of the second seco	in a tribun dari	
	Summer	Autumn	Winter	Spring
Blue green algae	2807 (83.7)	21488 (84.6)	17831 (94.3)	9635 (90.4)
Green algae	66 (2.0)	607 (2.4)	102 (.5)	50 (.5)
Diatoms	400 (11.9)	1787 (7.0)	117 (.6)	426 (4.0)
Dinoflagelates	20 (.6)	103 (.4)	14 (.1)	16 (.2)
Phytoplankton	3293 (98.2)	23985 (94.5)	18064 (95.5)	10127 (95.0)
Rotifers	42 (1.3)	1061 (4.2)	734 (3.9)	371 (3.5)
Cladocerans		80 (.3)	34 (.2)	54 (.5)
Copepods	17 (.5)	266 (1.0)	79 (.4)	112 (1.1)
Zooplankton	59 (1.8)	1407 (5.5)	847 (4.5)	537 (5.0)
Total plankton	3352	25392	18911	10664
Without blue gr	een algae:			
Green algae	66 (12.1)	607 (15.5)	102 (9.4)	50 (4.9)
Diatoms	400 (73.4)	1787 (45.8)	117 (10.8)	426 (41.4)
Dinoflagelates	20 (3.7)	103 (2.6)	14 (1.3)	16 (1.6)
Phytoplankton	486 (89.2)	2497(64.0)	233 (21.6)	492 (47.8)
Rotifers	42 (7.7)	1061 (27.2)	734 (68.0)	371 (36.1)
Cladocerans		80 (2.0)	34 (3.1)	54 (5.2)
Copepods	17 (3.1)	266 (6.8)	79 (7.3)	112 (10.9)
Zooplankton	59 (10.8)	1407 (36.0)	847 (78.4)	537 (52.2)
Total	545	3904	1080	1029

Table 4.2.3.2.2.c.

.

Total number of plankton organisms per liter water taken from the 60 μ samples per season and per station (zooplankton only). Data obtained from Mr. Magdi Abas Saleh just after the analysis.

Station	Summer	Autumn	Winter	Average
1	1098 (22)	35513 (980)		18306 (501)
2	1608 (36)	16203 (402)	30992 (818)	16268 (419)
3	850 (162)	11241 (385)	16860 (316)	9650 (288)
4	1174 (28)	13319 (297)	8136 (264)	7543 (196)
5	1338 (160)	14374 (273)	16824 (210)	10845 (214)
6	504 (36)	37408 (1366)	12744 (312)	16885 (571)
7	466 (10)	18482 (325)	4514 (194)	7821 (176)
Average	1005 (65)	20934 (576)	15472 (352)	12474 (338)

Wadi Rayan III 18

1 220

1. 1

Table 5.2.3.1.1.a.

A Contraction of the second sec

Length frequency of Liza ramada in numbers and (%) of total.

-		·			1
length	November	December	January	February	Total
group				•	•
in cm					
21			4 (1.7)		4 (.3)
22		1 (.2)	6 (2.5)		7 (.5)
23			20 (8.3)		20 (1.6)
24		4 (.7)	25 (10.4)		29 (2.3)
25		6 (1.1)	21 (8.8)	1 (.8)	28 (2.2)
26	1 (.3)	9 (1.6)	7 (2.9)	3 (2.3)	20 (1.6)
27	4 (1.1)	18 (3.2)	7 (2.9)	÷ -	29 (2.3)
28	11 (3.1)	42 (7.6)	10 (4.2)	·5 (3.8)	68 (5.3)
29	16 (4.5)	49 (8.8)	12 (5.0)	16(12.3)	93 (7.3)
30	39 (11.0)	64 (11.5)	22 (9.2)	19(14.6)	144(11.2)
31	38 (10.7)	55 (9.9)	26 (10.8)	20(15.4)	139(10.9)
32	57 (16.0)	49 (8.8)	21 (8.8)	14(10.8)	141(11.0)
33	42 (11.8)	58 (10.5)	12 (5.0)	23(17.7)	135(10.5)
34	53 (14.9)	51 (9.2)	11 (4.6)	10 (7.7)	125 (9.8)
35	43 (12.1)	42 (7.6)	10 (4.2)	7 (5.4)	102 (8.0)
36	28 (7.9)	26 (4.7)	7 (2.9)	6 (4.6)	67 (5.2)
37	13 (3.7)	11 (2.0)	3 (1.3)	3 (2.3)	30 (2.3)
38	4 (1.1)	10 (1.8)	1 (.4)	1 (.8)	16 (1.2)
39	1 (.3)	12 (2.2)	1 (.4)	1 (.8)	15 (1.2)
40		6 (1.1)	2 (.8)		8 (.6)
41	1 (.3)	5 (.9)	4 (1.7)	1 (.8)	11 (.9)
42	3 (.8)	14 (2.5)	2 (.8)		19 (1.5)
43	1 (.3)	11 (2.0)	1 (.4)	- :	13 (1.0)
44		6 (1.1)			6 (.5)
45		1 (.2)			1 (.1)
46		3 (.5)	1 (.4)		4 (.3)
47		1 (.2)	3 (1.3)		4 (.3)
48	1 (.3)		1 (.4)		2 (.2)
49		1 (.2)			1 (.1)
total	356	555	240	130	1281
average leng	th 32.9 ± 2.8	32.7 ± 4.4	27.9 ± 8.8	31.8 ± 2.7	32.1 ± 4.3
					•

ł

• .

Wadi Rayan III 19

Wall Rayan III 20

Table 5.2.3.1.1.b.

L'ength, frequency, of *Oreochromis aureus* from in numbers and (%) of total per 1 cm length group.

į

length group	November	December	Tanuary January	February	Total	2.4%, 1.24.
in cm						
12		2 (1.0)	1 (3.6)		3 (1.1)	
13		15 (7.2)			15 (5.6)	
14	4 (11.8)	36 (17.3)	7 (25.0)	÷ -	47 7.3)	
15	5 (14.7)	33 (15.9)	1 (3.6)		39 4.4)	
16	3 (8.8)	20 (9.6)	2 (7.1)		25 (9.2)	
17	3 (8.8)	18 (8.7)			21 (7.7)	
18	1 (2.9)	16 (7.7)	1 (3.6)		18 (6.6)	
19	2 (5.9)	17 (8.2)	2 (7.1)		21 (7.7)	
20	3 (8.8)	11 (5.3)	1 (3.6)		15 (5.5)	
21	2 (5.9)	12 (5.8)	2 (7.1)		16 (5.9)	
22	1 (2.9)	2 (1.0)			3 (1.1)	
23	1 (2.9)	6 (2.9)	1 (3.6)		8 (3.0)	
24		6 (2.9)	1 (3.6)		7 (2.6)	
25	1 (2.9)	5 (2.4)			6 (2.2)	
26	6 (17.6)	5 (2.4)	3 (10.7)		14 (5.2)	
27		3 (1.4)	1 (3.6)		4 (1.5)	
28	2 (5.9)			·	2 (.7)	
29			2 (7.1)		2 (.7)	
30			3 (10.7)	·	3 (1.1)	
31		1 (.5)			1 (.4)	
32		1 (.5)			1 (.4)	
	16. i .			17		
total	34	209	28	-	271	
average length	19.7 ± 4.6	17.5 ± 3.9	20.5 ± 6.0		18.1 ± 4.4	

Wall Ray model in

Wadi Rayan III 20

. '

Tabel 5.2.3.1.1.c.

and that sugar

Length frequency of Sarotherodon galilaea in numbers and (%) of total

•

length group	November	December	January	February	Total	65999 + X
in cm						
10	_		- 2 (1.2)		2 (.5)	
11	-		- 28 (16.3)		28 (6.4)	
12	1 (.	6) 2 (2.3			81(18.6)	
13	2 (1.			1 (4.0)	41 (9.4)	
14	4 (2.			10 (40.0)	31 (7.1)	
15	1 (.			5 (20.0)	18 (4.1)	
16	5 (3.	•		2 (8.0)	18 (4.1)	
17	18 (11.		3) 4 (2.3)	j	29 (6.7)	
18	12 (7.	4) 12 (16.0)) 3 (1.7)	1 (4.0)	28 (6.4)	
19	27 (16.	6) 15 (20.0))	1 (4.0)	43 (9.9)	
20	30 (18.	4) 4 (5.3	3)	1 (4.0)	35 (8.0)	
21	23 (14.	1) 4 (5.3	5)	3 (12.0)	30 (6.9)	
22	12 (7.	4) 2 (2.1	/)	·	14 (3.2)	
23	7 (4.)	3) 1 (1.3	5)	1 (4.0)	9 (2.1)	
24	5 (3.			· ·	5 (1.1)	
25	1 (.	6) 2 (2.3	/)	· ·	3 🗋 (.7)	
26	6 (3.			·	7 (1.6)	
27	6 (3.)	7) 1 (1.3	s) <u>-</u>		7 (1.6)	
28	-	- 2 (2.3	/) _{(11) (11)}		2 (.5)	
29	2 (1.	2) -	- 197661-2		2 (.5)	
30	-			τĊ. i		:
31	-		• •	(C.)		-
32	1 (.	6) 1 (1.3	9) ₂₀	ogr	2 (.5)	6.00
total	163	75	172	25	435	
average length	20.2 ± 3	.2 1.84 \pm 3.8	12.6 ± 1.5	16.1 ± 2.9	16.6 ± 4.4	

Wadi Rayan III 21

World Rayan III 22

Table 5.2.3.1.1.d.

والرجاب فيحجم شغار

the second frequency of Oreochromis niloticus in numbers and (%) of total. Highest

11 12 13 14 15 16 17	7 (1	(.8) (3.1) (5.5)	1 1 2 3	(1.4) (1.4) (2.9)	8 14	(1.0) (7.6) (13.3)	-	-		(.2) (1.9)	
13 14 15 16 17	4 7 15 (1	(3.1)	1 2	(1.4)	14		-	-			
14 15 16 17	4 7 15 (1	(3.1)	2			(13.3)	-				
15 16 17	4 7 15 (1	(3.1)	-	(2.9) -	14			-		(3.2)	
16 17	7 (1		- 3	-		(13.3)		(9.2)		(6.9)	
17	7 (1		3		5	(4.8)		(2.9)		(5.6)	
	15 (1	(5.5)		(4.3)	1	(1.0)		(9.2)		(5.0)	
• •			•	-	-	-	10	(6.1)		(3.7)	
18			5	(7.2)	2	(1.9)		(3.7)		(6.0)	
19		11.0)	2	(2.9)	· 3			(5.5)		(6.0)	
20	22 (1		5	(7.2)	5	(4.8)		(8.0)		(9.7)	
21		10.2)	6	(8.7)		(3.8)		(5.5)		(6.9)	
22		(8.7)	6	(8.7)		(5.7)		(2.5)		(5.8)	
23		(4.7)	6	(8.7)	6	(5.7)	5	(3.1)		(5.0)	
24		(3.9)	3	(4.3)	4	(3.8)	. 1	(.6)		(2.8)	
25		(4.7)	3	(4.3)	-	-		(1.8)		(2.6)	
26		(1.6)	2	(2.9)	2	(1.9)	4	(2.5)	10	(2.2)	
27	1	(.8)	1	(1.4)	-	-	1	(.6)	3	(.6)	
28	1	(.8)	1	(1.4)	-	-	4	(2.5)	6		
29	1	(.8)	. 1	(1.4)	-	-		(3.7)		(1.7)	
30	1	: (.8)	2	(2.9)	2	(1.9)		(1.2)	7		
31		-	1	(1.4)	1	(1.0)	8	(4.9)		(2.2)	
32	-	-	1 -	(1.4)	·· 1			(3.7)	8		1.1
33		-	-	-		(4.8)	4	(2.5)		(1.9)	
34	1	(.8)	2	(2.9)		(3.8)		(1.8)		(2.2)	
35	1	(.8)	-		2	(1.9)		(3.1)		(1.7)	
36	-	-	5	(7.2)				(1.8)		(2.2)	
37	1	(.8)	-					(1.2)	4	(.9)	
38	1	(.8)	1	(1.4)	. 2	(1.9)	2	(1.2)		(1.3)	
39	1	(.8)	1	(1.4)		(4.8)	-	-		(1.5)	
40	-	-	2	(2.9)	3	(2.9)	-	-	5		
41		(3.1)	2	(2.9)	2	(1.9)	1	(.6)		(1.9)	
42		(2.4)	1	(1.4)	-	-	-	-	4	(.9)	
43		(2.4)	1	(1.4)	-	-	-	-	4	(.9)	
44 45	-	-	2	(2.9)	-	-	-	-	2	(.4)	
	1	(.8)	-	-	-	-		-	1	(.2)	
46	-	-	-	-	-	-	1	(.6)	1	(.2)	
47 48	- 1	(.8)	-	-	-	_	_		1	(.2)	
-0	L	(.0)	-	-	-	-	-	-	I	(.2)	
total	12	7	6	9	10	5	16	3		464	
average leng			26.0 :			± 9.5		± 7.5		± 8.2	

Wedd Bayen HI Ch

Wadi Rayan III 22

Table 5.2.3.1.1.e.

a state all

• • •

the second

4.9

•...;

Length frequency of Tilapia zillii sin numbers and (1%) of total/susport uigue.

length group in cm	November	Vis: December	ए) क्लिओ January	rodans February	™Total*	dig ati 17 gung
9			1 (.5)		1 (.2)	
10			6 (3.2)		6 (1.1)	
11		2 (.8)	10 (5.4)		12 (2.1)	
12	1 (.9)	5 (2.1)	42 (22.6)	2 (7.1)	50 (8.8)	
13		35 (14.5)	53 (28.5)	5 (17.9)	93 6.3)	
14	. -	44 (18.2)	39 (21.0)	5 (17.9)	88 5.4)	
15	2 (1.9)	26 (10.7)	10 (5.4)	6 (21.4)	44 (7.7)	
16	5 (4.6)	29 (12.0)	12 (6.5)	5 (17.9)	51 (8.9)	
17	4 (3.7)	21 (8.7)	4 (2.2)		29 (5.1)	. *
18	15 (13.9)	15 (6.2)			30 (5.3)	
19	15 (13.9)	16 (6.6)	1 (.5)		32 (5.6)	
20	16 (14.8)	13 (5.4)	1 (.5)	1 (3.6)	31 (5.4)	
21	19 (17.6)	12 (5.0)	1 (.5)	2 (7.1)	36 (6.3)	
22	13 (12.0)	4 (1.7)	1 (.5)	2 (7.1)	23 (4.0)	. •
23	7 (6.5)	10 (4.1)	2 (1.1)	·	19 (3.3)	
24	1 (.9)	4 (1.7)	1 (.5)	·	7 (1.2)	
25	5 (4.6)	3 (1.2)			8 (1.4)	
26	1 (.9)	2 (.8)			3 (.5)	
27	1 (.9)				1 (.2)	
28	1 (.9)	. · · -· · ·	- (P. 1996		1 (.2)	
29			1 (.5)		1 (.2)	
30		s de - re -	1 (.5)	Shire -	1 (.2)	
31	1 (.9)	·	-16 g 🖬 🦾		1 · (.2)	×
32	- ' -		and a state of the state of th	ZC 1 C	•	
33			-			
34	1 (.9)	1 (.4)			2 (.4)	
total	108	242	186	28	570	
average length	20.4 ± 3.1	16.6 ± 3.5	13.7 ± 2.8	÷ 15.5 ± 2.9	16.4 ± 4.0	

* 6 specimen from July included

A CARAGE STAN

.

Wadi Rayan III 23

Table 5.2.3.1.2.a.

Table	5.2.3.1.2.a.			; ;		a Stational and	
Length (Kf).	weight relatio	n of <i>Liza ran</i>	nada sper len	gth group of	1-cm in gra	ms and and	ž
		8203	VILLAR'	and the second	the second second	的要求要	
length group in cm	November	December	January	February	Total		
21			92.5 (1.00)		92.5 (1.00)		
22		70.0 (.66)	105.0 (.99)		100.0 (.94)		
23			105.3 (.87)		105.3 (.87)		
24		101.8 (.74)	124.6 (.90)		121.5 (.88)		
25		114.5 (.73)	138.8 (.89)	128.0 (.82)	133.2 (.85)		
26	146.0 (.83)	123.9 (.70)	137.9 (.78)	149.0 (.85)	133.7 (.76)		
27	160.0 (.81)	144.7 (.74)	165.7 (.84)		151.9 (.77)		
28	166.5 (.76)	161.1 (.73)	188.5 (.86)	183.0 (.83)	167.7 (.76)		
29	184.7 (.76)	180.7 (.74)	222.9 (.91)	204.2 (.83)	190.9 (.78)		
30	205.4 (.76)	199.7 (.74)	243.6 (.90)	220.8 (.82)	210.7 (.78)		
31	226.0 (.76)	224.1 (.75)	259.0 (.87)	250.2 (.84)	234.9 (.79)		
32	246.2 (.75)	256.1 (.78)	288.1 (.88)	271.2 (.83)	258.4 (.79)		
33	270.6 (.75)	275.7 (.77)	320.8 (.89)	301.1 (.84)	282.4 (.79)		
34	305.0 (.78)	305.0 (.78)	350.9 (.89)	298.3 (.76)	308.6 (.79)		
35	319.6 (.75)	338.5 (.79)	363.5 (.85)	356.3 (.83)	334.6 (.78)		
36	355.4 (.76)	366.5 (.79)	385.7 (.83)	384.5 (.82)	365.7 (.78)		
37	384.1 (.76)	394.7 (.78)	408.3 (.81)	388.0 (.77)	390.8 (.77)		
38	428.8 (.78)	415.4 (.76)	400.0 (.73)	401.0 (.73)	416.9 (.76)		
7. s. t. Y. tata 1. t. t	502.0 (.85)	456.3 (.77)	450.0 (.76)	512.0 (.86)	462.6 (.78)	:	
40		486.5 (.76)	525.0 (.82)		496.1 (.78)		
41	578.0 (.84)	502.0 (.73)	643.8 (.93)	688.0 (1.00)	577.4 (.84)		
42	605.7 (.82)	577.6 (.78)	700.0 (.94)		594.9. (.87)	en e	
43	589.0 (.74)	627.6 (.79)	700.0 (.88)	· · · · ·	625.5 (.79)		
44		643.2 (.76)			643.2 (.76)		
45		732.0 (.80)			732.0 (.80)		
46		732.3 (.75)	800.0 (.82)		749.2 (.77)		
47		804.0 (.77)	775.0 (.75)		782.3 (.75)		
48	751.0 (.68)		750.0 (.68)		750.5 (.68)		
49		9170 (.78)		· · ·	917.0 (.78)		
total n	356	555	240	130	1281		
average wei	•	284.1	248.7	271.3	272.5		
average Kf	.77± .04	.76 ± .03	.86 ± .07	.83 ± .06	.80 ± .06		

1 - 2 • 1 • 1 • 1 • 1 • 1 194

è,

Table 5.2.3.1.2.b.

.

Length weight, relation; of Oregchromis; aureus, in gram per cm. group and the (. Kf)

1

length	November	December	January	Total	
group in cm	- :) 4	e vegende r	e tra istana (
12		29.5 (1.71)	50.0 (2.89)	36.3 (2.10)	
13		36.8 (1.68)		36.8 (1.68)	
14	44.3 (1.61)	45.6 (1.66)	75.0 (2.73)	49.9 (1.82)	
15	52.8 (1.56)	56.4 (1.67)	75.0 (2.22)	56.4 (1.67)	
16	66.0 (1.61)	67.6 (1.65)	100.0 (2.44)	70.0 (1.71)	
17	83.7 (1.70)	84.2 (1.71)		84.1 (1.71)	
18	103.0 (1.77)	98.1 (1.68)	150.0 (2.57)	101.3 (1.74)	
19	124.5 (1.82)	118.3 (1.72)	150.0 (2.19)	121.9 (1.78)	
20	140.7 (1.76)	144.6 (1.81)	175.0 (2.19)	145.8 (1.82)	
21	182.0 (1.97) -	160.7 (1.74)	225.0 (2.43)	171.4 (1.85)	
22	179.0 (1.68)	203.0 (1.91)	i san ing ing ing ing ing ing ing ing ing in	195.0 (1.83)	
23	178.0 (1.46)	217.0 (1.78)	300.0 (2.47)	222.5 (1.83)	
24		252.0 (1.82)	300.0 (2.17)	258.9 (18.7)	
25	292.0 (1.87)	268.8 (1.72)	- <u>-</u> -	272.7 (1.75)	
26	344.8 (1.96)	337.2 (1.92)	400.0 (2.28)	353.9 (2.01)	
27		313.3 (1.59)	475.0 (2.41)	353.8 (1.80)	
28	435.0 (1.98)			435.0 (1.98)	
29			600.0 (2.46)	600.0 (2.46)	
30		<u>.</u>	678.3 (2.51)	678.3 (2.51)	
31	, - , -	608.0 (2.04)	i de la companya de l La companya de la comp	608.0 (2.04)	
32		623.0 (1.90)	이지 않는 것같은 일부가 있다. - 중기에는 바람 관람이 있는	623.0 (1:90)	14.54
total n	34	209 ¹⁸	(22) 28	271	2.7
average weigh		106.5	(142) 265.5 [130.3	12.30
average Kf	$1.75 \pm .16$	$1.76 \pm .11$	$2.43 \pm .20$	$1.90 \pm .22$	

Wadi Rayan III 25

•

•.

Table 5.2.3.1.2.c.

i e tel e lui e l

de entre

シート とうにはんがなるなななる ちょうちょうせい

Length w	weight relation of Sarotherodon galilaea in gram pericm group and the						
(11).	: :		<u>Electrica</u>	isternasti	and the second second	. Estal	
length	November	December	January	February	Total	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i$	

	5.5	· · ·	j 1 tufolasi.	tori vina addi		
length	November	December	January	February	Total	
group			•	•		
in cm						
10.			40.0 (4.00)		40.0 (4.00)	
11			39.8 (2.99)		39.8 (2.99)	
12	30.0 (1.71)	33.5 (1.94)	47.3 (2.74)		46.7 (2.70)	
13	36.5 (1.66)	40.7 (1.85)	56.4 (2.67)	42.0 (1.91)	53.9 (2.45)	
14	42.8 (1.56)	47.5 (1.73)	71.2 (2.59)	44.4 (1.62)	55.8 (2.03)	
15	56.0 (1.66)	59.5 (1.76)	79.2 (2.35)	54.4 (1.61)	64.5 (1.91)	
16	70.0 (1.71)	77.3 (1.89)	116.7 (2.85)	66.0 (1.61)	80.6 (1.97)	
17	85.3 (1.74)	87.8 (1.79)	112.5 (2.29)		89.7 (1.83)	
18	105.7 (1.81)	106.0 (1.82)	141.7 (2.43)	112.0 (1.92)	109.9 (1.88)	
· 19	126.5 (1.84)	124.8 (1.82)		110.0 (1.60)	125.5 (1.83)	
20	145.0 (1.81)	133.2 (1.67)		153.0 (1.91)	143.9 (1.80)	
21	161.8 (1.75)	163.3 (1.76)		167.3 (1.81)	162.6 (1.76)	
22	201.4 (1.89)	185.5 (1.74)			199.1 (1.87)	
23	232.4 (1.91)	215.0 (1.77)	` - -	194.0 (1.59)	226.2 (1.86)	
24	275.4 (1.99)				275.4 (1.99)	
25	315.0 (2.02)	313.0 (2.00)	°		313.7 (2.01)	
26	350.0 (1.99)	349.0 (1.99)			349.9 (1.99)	
27	386.8 (1.97)	335.0 (1.70)		·	379.4 (1.93)	
28	n na siya ka 🛓	450.0 (2.05)			450.0 (2.05)	
29	492.5 (2.02)				492.5 (2.02)	
30						
31	·	- ¹⁹⁶ -	_			
32	693.0 (2.11)	637.0 (1.94)			665.0 (2.03)	
total n	163	75	172	25	435	
average weigh	nt 164.4	129.8	55.1	78.4	110.3	
average Kf	$1.84 \pm .14$	$1.84 \pm .11$	2.77 ± .49	$1.73 \pm .14$	$2.14 \pm .51$	

• • • •

γ.

. • 1

Table 5.2.3.1.2.d.

Length weight relation of Oreochromis niloticus in gram per length group and (Kf)

Length group in cm	November	December	January	February	Total
11			35.0 (2.63)		35.0(2.63)
12		30.0 (1.74)	48.1 (2.78)	_ ·_	46.1(2.67)
13		36.0 (1.64)	54.3 (2.47)		53.1(2.42)
14	41.0 (1.49)	37.0 (1.35)	67.9 (2.47)	52.7 (1.92)	58.0(2.11)
15			77.0 (2.28)	60.0 (1.78)	63.3(1.88)
16	79.0 (1.93)	66.7 (1.63)	75.0 (1.83)	70.8 (1.73)	71.9(1.76)
17	92.3 (1.88)			90.2 (1.84)	91.1(1.85)
18	111.4 (1.91)	98.6 (1.69)	150.0 (2.57)	109.5 (1.88)	111.5(1.91)
19	128.4 (1.87)	134.5 (1.96)	158.3 (2.31)	133.9 (1.95)	133.8(1.95)
20	151.0 (1.89)	145.2 (1.82)	175.0 (2.19)	154.2 (1.93)	153.9(1.92)
21	168.5 (1.82)	166.5 (1.80)	200.0 (2.16)	170.3 (1.84)	172.6(1.86)
22	185.3 (1.74)	181.5 (1.70)	219.2 (2.15)	212.0 (1.99)	198.2(1.86)
23	225.3 (1.85)	211.4 (1.74)	241.7 (1.99)	229.8 (1.89)	226.9(1.86)
24	233.8 (1.69)	255.0 (1.84)	283.8 (2.05)	242.0 (1.75)	254.7(1.84)
25	294.5 (1.88)	306.0 (1.96)		265.7 (1.70)	290.2(1.86)
26	352.5 (2.01)	340.5 (1.94)	275.0 (1.56)	299.5 (1.70)	313.4(1.78)
27	439.0 (2.23)	375.0 (1.91)		375.0 (1.91)	396.3(2.01)
28	418.0 (1.90)	377.0 (1.72)		406.8 (1.85)	403.7(1.84)
29	433.0 (1.78)	482.0 (1.98)		452.3 (1.85)	453.6(1.86)
30	546.0 (2.02)	546.0 (2.02)	612.5 (2.27)	499.5 (1.85)	551.7(2.04)
31		610.0 (2.05)	575.0 (1.93)	553.9 (1.86)	561.6(1.89)
32		616.0 (1.88)	650.0 (1.98)	635.5 (1.94)	634.9(1.94)
33			745.0 (2.07)	646.8 (1.80)	701.4(1.95)
34	734.0 (1.87)	799.5 (2.03)	867.5 (2.21)	743.3 (1.89)	803.3(2.04)
35	821.0 (1.91)		1000.0 (2.33)	789.2 (1.84)	845.9(1.97)
36	•, •	985.2 (2.11)	1075.0 (2.30)	851.3 (1.82)	963.0(2.06)
37	1076.0 (2.12)	-	975.0 (1.92)	995.0 (1.96)	1010.3(1.99)
38	1096.0 (2.00)	1188.0 (2.17)	1162.5 (2.12)	949.0 (1.73)	1084.5(1.98)
39	1100.0 (1.85)	1281.0 (2.16)	1292.0 (2.18)		1263.0(2.13)
40		1349.0 (2.11)	1386.7 (2.17)		1371.8(2.14)
41	1358.5 (1.97)	1304.5 (1.89)	1477.5 (2.14)	1367.0 (1.98)	1373.9(1.99)
42	1619.3 (2.19)	1374.0 (1.85)			1558.0(2.10)
43	1436.7 (1.81)	1755.0 (2.21)			1516.3(1.91)
44		1618.5 (1.90)		·	1618.5(1.90)
45	1741.0 (1.91)				1741.0(1.91)
46				1750.0 (1.80)	1750.0(1.80)
47			-		
48	971.0 (.88)				971.0 (.88)
total n	127	69	105	163	464
average w		473.1	383.1	281.8	342.5
average Kf		1.89 ± .19	2.19 ± .26	1.85 ± .08	1.96 ± .27

ŝ

Table 5.2.3.1.2.e.

Length weight relation of Tilapia zillii, in grains per cm length group and (Kf)

Length group in cm	November	December	January	February	Total
9			25.0 (3.43)		25.0 (3.43)
10			24.2 (2.42)		24.2 (2.42)
11		21.0 (1.58)	37.5 (2.82)		34.8 (2.61)
12	25.0 (1.45)	29.8 (1.72)	45.5 (3.63)	28.5 (1.65)	42.8 (2.48)
13		35.5 (1.62)	56.9 (2.59)	32.0 (1.46)	47.5 (2.16)
14		42.6 (1.55)	66.5 (2.42)	44.4 (1.62)	53.3 (1.94)
15	52.0 (1.54)	54.2 (1.61)	75.0 (2.22)	50.8 (1.51)	58.4 (1.73)
16	63.2 (1.54)	62.6 (1.53)	97.5 (2.38)	66.6 (1.63)	71.3 (1.74)
17	84.5 (1.72)	77.4 (1.58)	106.3 (2.16)		82.4 (1.68)
18	103.3 (1.77)	97.5 (1.67)			100.4 (1.72)
19	121.1 (1.77)	118.6 (1.73)	150.0 (2.19)		120.8 (1.76)
20	146.9 (1.84)	140.1 (1.75)	175.0 (2.19)	136.0 (1.70)	144.6 (1.81)
21	165.0 (1.78)	161.3 (1.74)	200.0 (2.16)	148.5 (1.60)	164.2 (1.77)
22	191.8 (1.80)	182.3 (1.71)	300.0 (2.82)	172.0 (1.62)	193.9 (1.82)
23	203.3 (1.67)	199.3 (1.64)	300.0 (2.47)		220.3 (1.81)
24	301.0 (2.18)	249.3 (1.80)	350.0 (2.53)		271.3 (1.96)
25	262.4 (1.68)	272.3 (1.74)			266.1 (1.70)
26	324.0 (1.84)	321.5 (1.83)			322.3 (1.84)
27	380.0 (1.93)				380.0 (1.93)
28	419.0 (1.91)				419.0 (1.91)
29			650.0 (2.67)		650.0 (2.67)
30			650.0 (2.41)		650.0 (2.41)
31	522.0 (1.85)				522.0 (1.85)
32			-		
33			-		
34	605.0 (1.54)	767.0 (1.95)			686.0 (1.75)
total n	108	242	186	28	570
average weigh	t 161.5	88.3	72.5	66.2	97.1
average Kf	$1.75 \pm .17$	$1.69 \pm .11$	$2.56 \pm .41$	1.60 ± .07	$2.03 \pm .42$

Table 5.2.3.1.2.f Condition factor (Kf) from the most important species of the two Rayan lakes (january data not included)

	Liza	Oreochromis	Oreochromis	Tilapia
	ramadaniloticus	aureus	zillii	•
Wadi Rayan I	.81±.09	1.85±.13	1.85±.15	1.77±.13
Wadi Rayan III	.87±.05	1.87±.19	$1.76 \pm .13$	1.70±.14

 $\int dx = \exp \left(\frac{1}{2} \frac{1}{2}$

to be course fore one and mount of . This sparse is accurate and an antiparticles

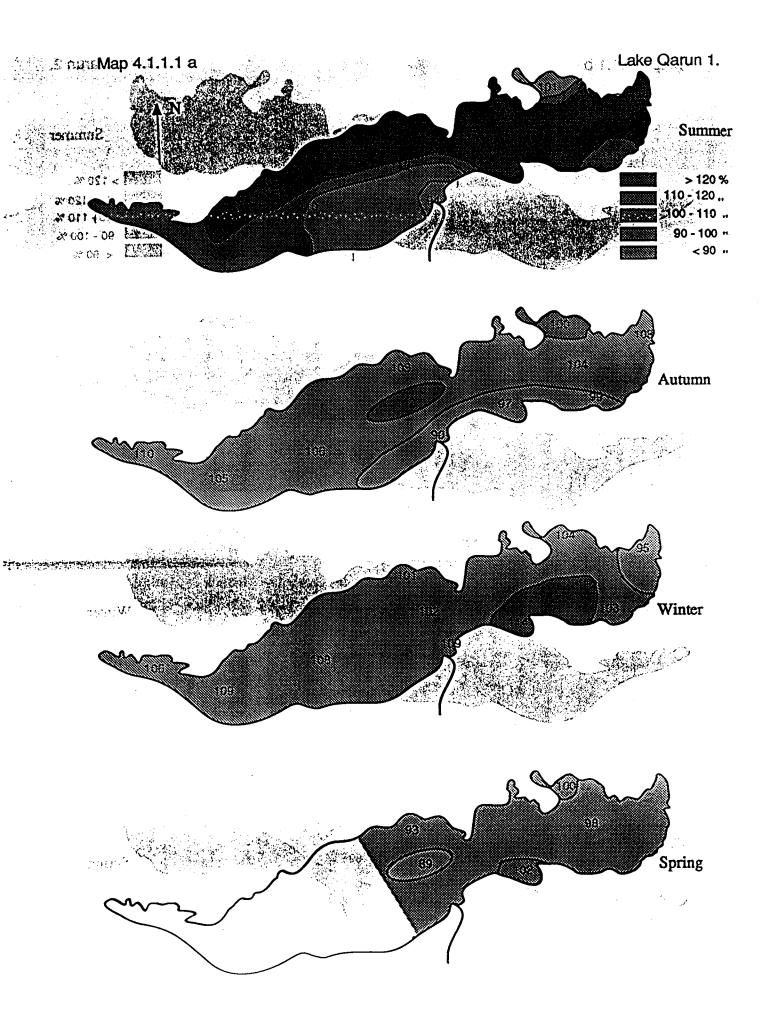
	NUT T	ate test	generation and the	চ নটালচ নচনির্ব	rtogana li San s

		t. antik	1
	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		2.2
Ň	and the second		<i>t</i> .,
			:

.

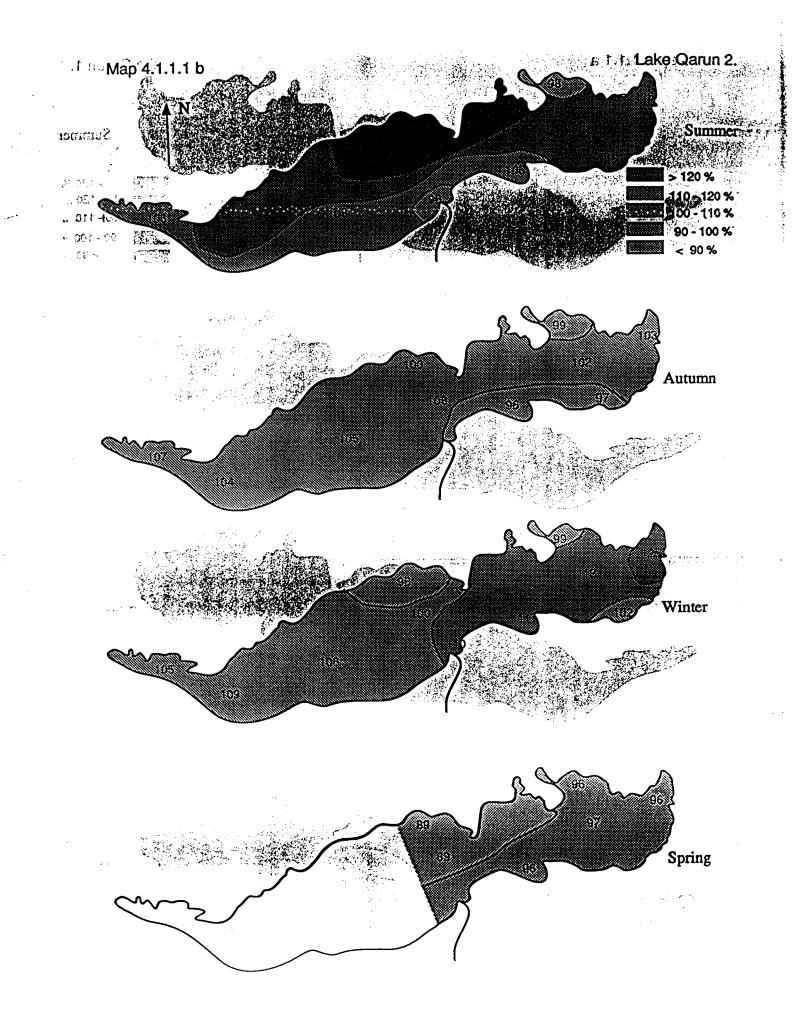
Appendix II : Maps.

....

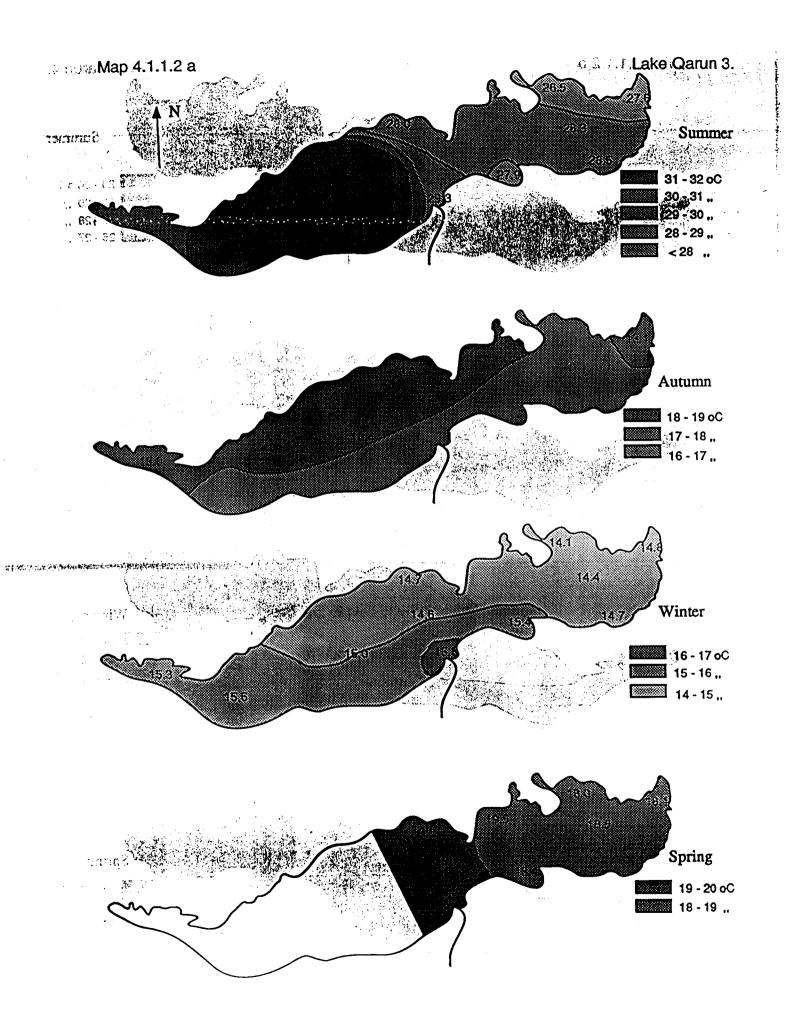

· 0

•

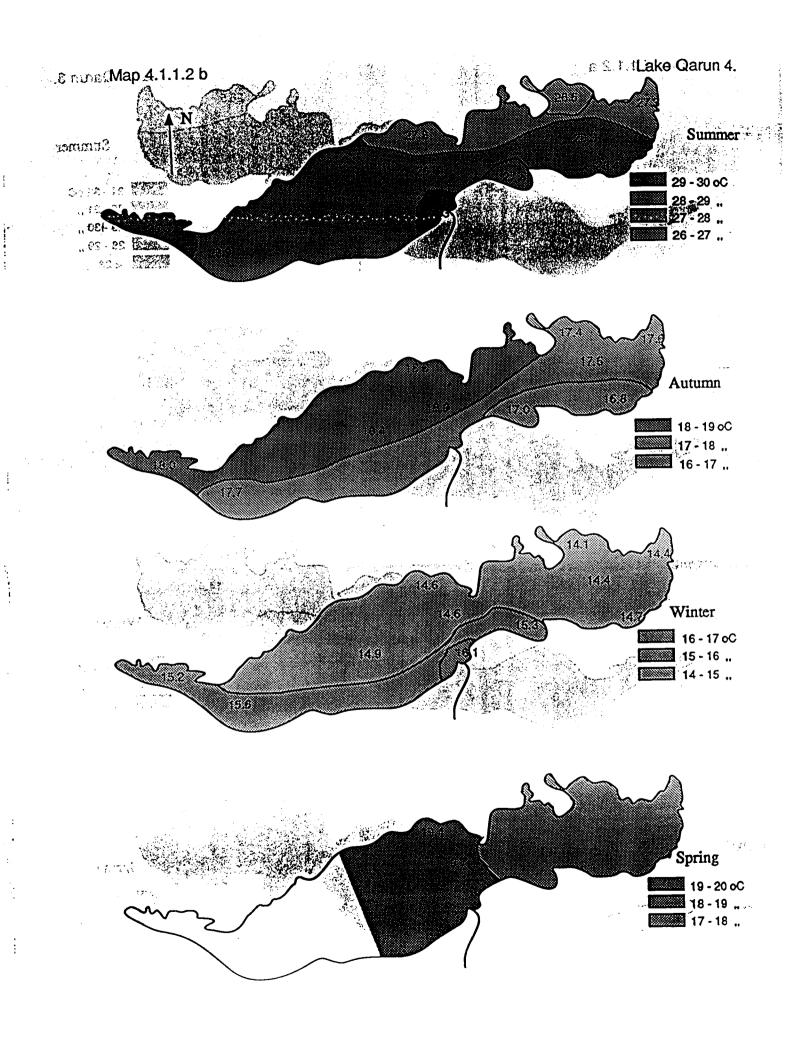
and the second secon

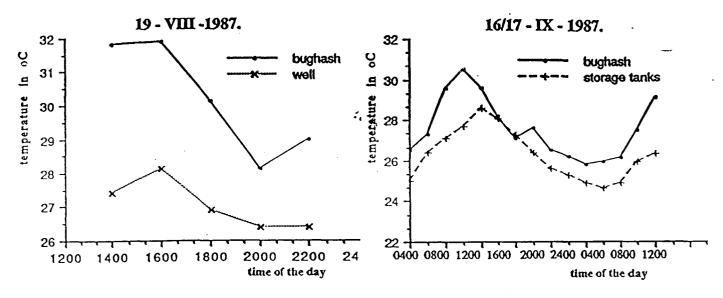

1

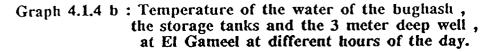
;



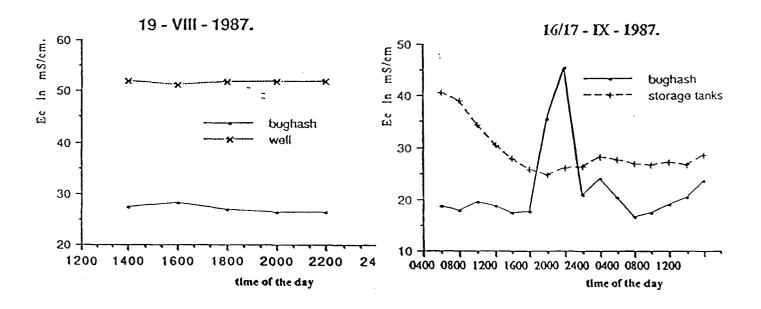
an die Kageurin bestiening in die independent der


Dissolved oxygen, in % saturation, at surface level.


Dissolved oxygen, in % saturation, at 1 meter depth.



Temperatures, in oC, at surface.


Temperatures, in oC, at 1 meter depth.

Water from the bughash is least salt and that from the well has the highest salt content, the latter however is also the most constant.

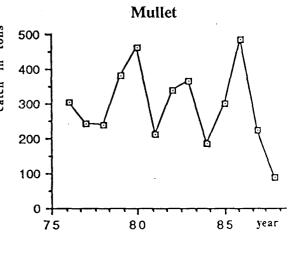
Graph 4.1.4 c : Electric conductivity of the water of the bughash, the storage tanks and the 3 meter deep well, at El Gameel at different hours of the day.

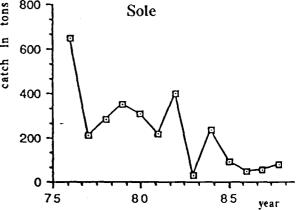
Local fishermen cleaning their nets.

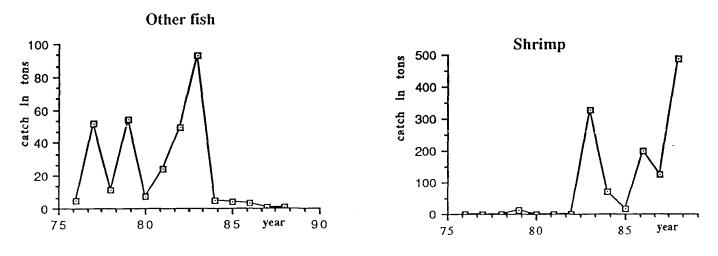
The decision Polar III also

4.2. Biology

The biological measurements and determinations, carried out during this project are:


- a. Measuring and weighing fish.
- b. Sampling plankton, qualitatively with a 280 μ net and qualitatively/quantitatively with a 60 μ net.
- c. Observing fish fry during transport and after releasing them in enclosures.


4.2.1. Lake Qarun


4.2.1.1. Fish and fisheries.

Although reliable catch statistics are virtually lacking, the following table 4.2.1.1. and graph 4.2.1.1. have been compiled from literature and data obtained from the fishermen's cooperative.

4.2.1.1.1. Length frequency

From the most important species length frequencies have been recorded. 176 Liza ramada (grey mullet) have been measured and their distribution has been compared with the data found by the IOF during their 1982/83 study. 1121 Solea aegyptiaca (sole) have been measured and their distribution compared with length frequency data mentioned by El Zarka and by IOF. From the tilapia species, 79 Tilapia zillii, 85 Oreochromis niloticus and 24 O. aureus have also been measured.

4.2.1.1.2. Length/weight relations

L/w measurements have only been taken from 377 soles. These data have been compared with information of 345 soles given by El Zarka.

4.2.1.1.3. Mullet fry transport

During the period of the project 29,968,000 fry have been transplanted, 29,618,000 were supposed to be mullet fry. The actual numbers are considerably lower, maybe only 20 % of the amount given. This is because the counting in El Girby (Damietta) is deliberately higher than in reality in order to get higher prices for their stocks. So about 6 million fry have been transplanted to lake Qarun. During transport the mortality rate was about 5 % or less, at least, those which were transported with the DAF trucks. An important reason for this might be the low temperatures during the transport season 10.7 - 15.4 $^{\circ}$ C. This fry was released in areas with temperatures between 13.9 and 17.6 $^{\circ}$ C.

The fry have been released in three different areas:

a. Enclosure in a not used harbor at police station of Shakshouk (± 0.4 ha = ± 1 feddan).

b. Enclosure in the Abu Meema bay near IOF station (± 1.5 ha = ± 4 feddan).

c. Two ponds at Abu Shanab (1.8 and 1.4.ha = \pm 4.5 and 3.5 feddan respectively)

See table 4.2.1.1.3. for amounts and environmental conditions, during transplants.

From the first two areas the fry escaped rapidly into the lake as the enclosures were not sufficiently anchored and protected against the stormy weather which prevailed after the stocking.

The fry released in the ponds showed good growth and healthy behavior patterns.

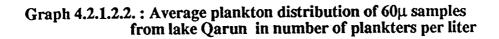
4.2.1.2. Plankton

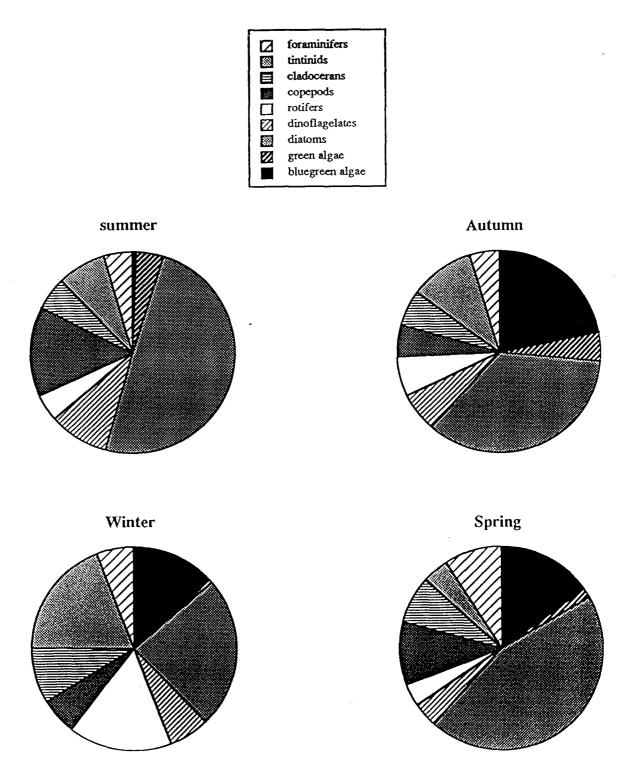
The groups were:

4.2.1.2.1. 280 µ samples

The 280 μ samples have been analyzed into seven groups and a rough estimate has been made of the abundance of the available plankters.

- a. botanic material
 - b. copepods
 - c. cladocerans
 - d. other crustaceans
 - e. fish larvae and fish eggs
 - f. insects
 - g. molluscs


Qualification was: o not observed, . 1 specimen, x several specimen, * common, # many, • abundant and + very abundant.


The results are shown in table 4.2.1.2.1. and maps 4.2.1.2.1.a-f.

4.2.1.2.2. 60 μ samples

The 60 μ samples have been analyzed into species level as far as possible and their number per liter has been recorded. In total 153 species belonging to 99 genera, 51 families and 20 orders have been identified (see table 4.2.1.2.2.a.).

In table 4.2.1.2.2 b and graph 4.2.1.2.2. the number of organisms of the 10 main plankton groups are given per season.

In table 4.2.1.2.2.c. and maps 4.2.1.2.2.c. the total number of plankton organisms per liter are given per station and season.

4.2.2. Wadi Rayan I

4.2.2.1. Fish and fisheries

Fisheries statistics of the lake are rather basic and unreliable. It is thought that 50 to 60 % of the catch is not recorded, but is smuggled away and sold on the black market.

Length frequency 4.2.2.1.1.

For the length frequency study 900 Liza ramada; 640 Oreochromis niloticus; 227 O. aureus; 164 Tilapia zillii; 17 Sarotherodon galilaeus; 3 Sardinella ssp; 2 Barbus bynni; 2 Mugil cephalus and 1 Lates niloticus were measured. But only from the first 4 species length curves have been made.

4.2.2.1.2. Length /weight relations

All the specimen measured from W.R. have also been weighed. Length/weight curves have been drawn for Liza ramada, Oreochromis niloticus, O. aureus and Tilapia zillii.

4.2.2.1.3. Mullet fry transport

During the project 12,180,000 fry have been transported from El Girby to Wadi Rayan I. All fry have been released in a shallow area of about 1.2 ha., which was excavated and protected from the lake by a stone wall. Water had to be pumped into this pond reguarly in order to maintain the required level. Prior to stocking the area had to be cleared from reed and weed. The growth of these plants was supposed to be kept under control until the fingerlings would be released into the lake.

It took 5 to 6 hours to acclimatize the fry from the water of the transport tanks to their new environment.

Table 4.2.2.1.3. gives the amount of fry and the environmental conditions during transplantations.

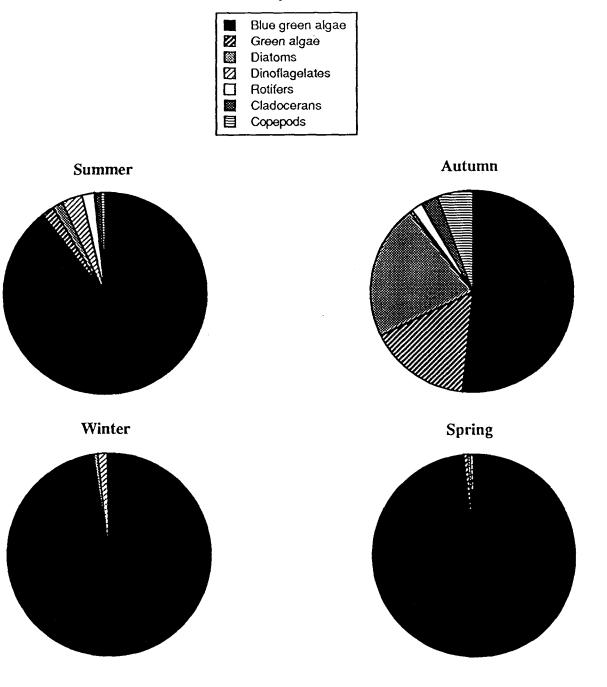
4.2.2.2. Plankton

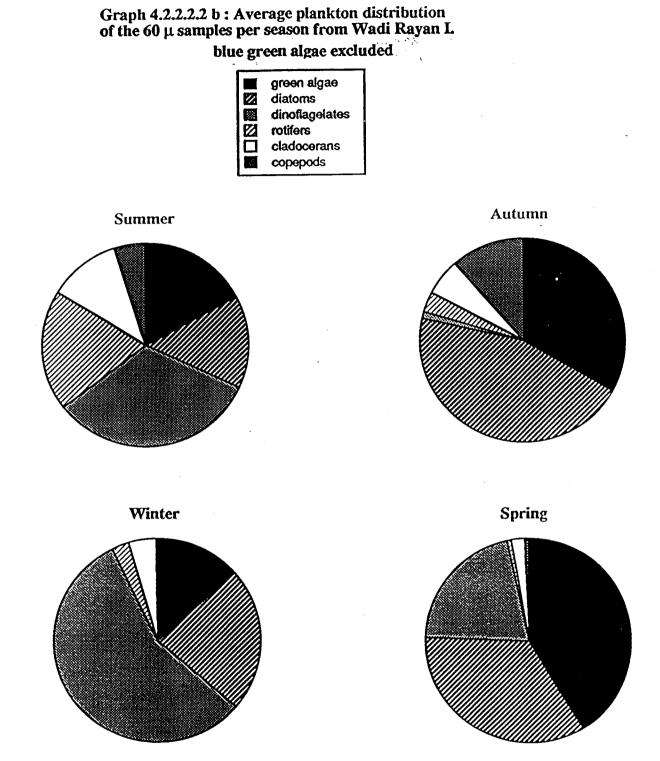
4.2.2.2.1. $280 \,\mu$ samples

The 280 µ samples have been analyzed into seven groups and a rough estimate has been made of the abundance levels of these groups. The groups are:

- a. botanic material
- b. copepods
- c. cladocerans
- d. other crustaceans
- e. fish larvae and eggs
- f. insects
- g. others

Qualification is: o not found, 1 specimen, x several specimen, * common, # many, abundant, + very abundant.


The results are shown in table 4.2.2.2.1. and maps 4.2.2.2.1. a-c.


4.2.2.2.2. $60 \,\mu$ samples

The 60 µ samples have been analyzed into species level as far as possible and their number per liter were recorded. In total 122 species, belonging to 75 genera, 35 families and 20 orders, have been identified (Table 4.2.2.2.2.a). In table 4.2.2.2.2 b and graphs 4.2.2.2.2.a-b. the number of organisms of the main

plankton groups are given per season and as % of total number.

Graph 4.2.2.2.2 a : Average plankton distribution of the 60μ samples from Wadi Rayan I lake.

In table - and map 4.2.2.2.2.c. I and II the total number of plankton organisms per liter are given per season and station.

4.2.3. Wadi Rayan III lake

4.2.3.1. Fish and fisheries

The first fisheries in the lake were carried out in 1983, but no statistics have been found. The only available statistics are from the 85/86 season.

÷:. .

54

•

4.2.3.1.1. Length frequency

For the length frequency study 1281 Liza ramada; 570 Tilapia zillii; 464 Oreochromis niloticus; 435 Sarotherodon galilaeus; 271 Oreochromis aureus; 16 Liza aurata and 15 Mugil cephalus have been measured. Length frequency curves have been made for all, but the last two species.

4.2.3.1.2. Length /weight relations

From the specimen from which the length was measured also the weight was recorded, which is shown in the length/ weight curves.

4.2.3.1.3. Fry transport

During the project 8,830,000 mullet fry have been transplanted to W.R. III lake. They were released in two different locations: 5,800,000, in an earthen pond of 1/2 ha. and 3,030,000, more or less directly into the lake, as the enclosure in which they were supposed to be kept was not functioning and the fry disappeared directly into the lake. It took about 5 - 6 hours to transfer the fry from the transport tanks to their new environment. A sudden change of salinity and/or temperature can be fatal for the fry. table 4.2.3.1.3 gives the amount of fry and environmental conditions during transplantations.

4.2.3.2. Plankton

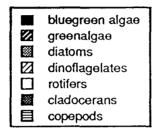
۴

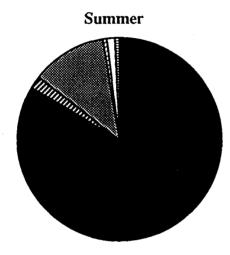
4.2.3.2.1. 280 µ samples

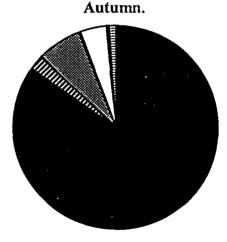
The 280 μ samples have been analyzed into seven groups and a rough estimate was made of the abundance of these groups.

The selected groups are: a. botanic material

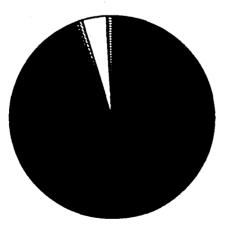
- b. copepods
- c. cladocerans
- d. other crustaceans
- e. fish eggs and larvae
- f. insects
- g. others

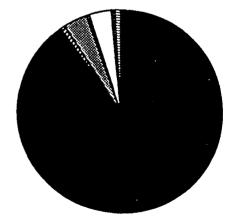

The levels of occurrence are: o is not found, . 1 specimen, x several, * common, # many, • abundant and + very abundant. The result are shown in table and graph 4.2.3.2.1.a -b.

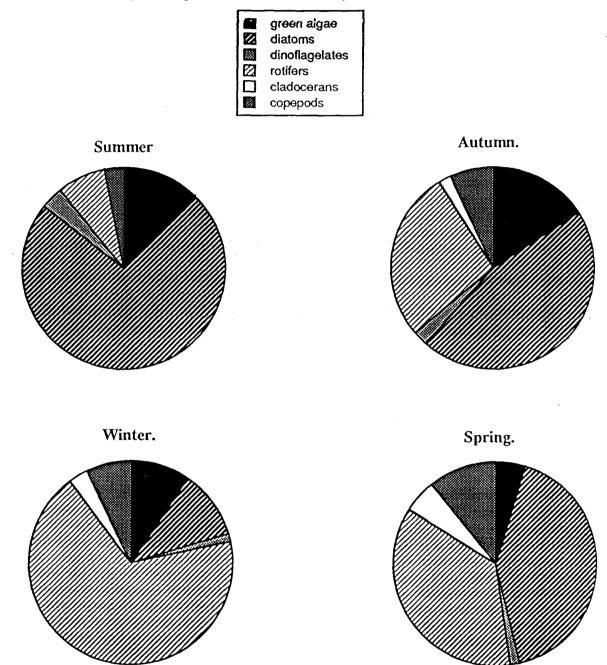

4.2.3.2.2. $60 \,\mu$ samples


The 60 µ samples have been analyzed into species level as far as possible and their number per liter were recorded. In total 104 species, belonging to 67 genera, 35 families and 17 orders have been identified (Table 4.2.3.2.2.a.). In table 4.2.3.2.2 b and graphs 4.2.3.2.2.a-b. the number of organisms of the main

plankton groups are given per season as % of the total number.


Graph 4.2.3.2.2.a : Average plankton distribution of the 60 µ samples, from Wadi Rayan III lake.





Spring.

Graph 4.2.3.2.2.b : Average plankton distribution of the 60 μ samples blue green algae excluded (Wadi Rayan III lake).

In table 4.2.3.2.2.c. and maps 4.2.3.2.2.c. I and II, the total number of plankton organisms per liter are given per season and station.

4.2.4. El Gameel

Seven batches of grey mullet fry (total 78 000) were used in an experiment to test the fish receiving station in El Gameel. 72 000 fry came from the New Gameel collecting site \pm 12 km from the station (transported in aerated tanks with truck, max. 25 000 fry per 750 l.,transport time 15 min.), 6 000 fry were caught near the station at old Gameel collecting site and brought to the station in plastic buckets. All fry reached the station in good health. The fry composition was 87 % grey mullet and 13 % other species. From these 13 %, 23% were *Gammarus* ssp., 53 % ribbon fish (*Lepidopus caudatus*?) and the rest were silverside (*Atherina boyeri*), half beaks (*Hemiramphus far*), sole, mackerel (*Scomber* ssp) and sea bass (*Dicentrarchus labrax*). Jellyfish were also abundant. The grey mullet fry weighed $0,6 \pm 0,08$ gr and were 19.5 \pm 1.16 mm. long.

The water of the tanks was obtained from the bughash and first pumped in a 3 m³ overhead tank. The conductivity varied between 45,1 and 48,5 mS/cm (average 46.5 \pm 1.16). Oxygen concentration varied between 10.5 and 1,8 mg/l and the water temperature varied between 11.9 - 20.4 °C. Transparency was between 22 and 30 cm.

Water was led continually into the fry tanks from the overhead tank, which had to be filled every 35 minutes as the submersible pump gave too much water for continuous operation. An outlet at about 50 cm above the bottom of the fry tanks was covered with fine mesh netting to prevent the fry from escaping. Jellyfish and other material such as algae caused occasional clogging, Heavier materials concentrated on the bottom of the tanks.

One experiment was carried out with 53 000 fry in one tank and a control tank without fish.

And for the other experiment these 53 000 fry and a supplementary 25 000 fry were transported to lake Qarun in different concentrations per transport tank.

Experiment 1

On day 1, 13 000 fry were transported from New Gameel to the station in water of 45.3 mS/cm, 17 °C and D.O. of 130 % saturation. They were stocked in a tank with water of 46.6 mS/cm, 16.3 °C and a D.O. of 96 % saturation. After 20 hours the fry were observed. The fry were swimming in a natural way in circkels and showed no stress. There was no mortality. The D.O. in the tank had dropped to 67 % saturation and the temperature to 12.6 °C., 28.5 hours after the first introduction 12 000 fry were added to the tank. After 4 hours the D.O. concentration had dropped to 56 %, but the fry did not show any stress. A third batch of fry, 28 000, was added about 40 hours after the first fry were introduced. In total 53 000 fry were at that moment in the tank. After 1 hour the D.O. level had dropped to 36 % saturation, the fry started to swim near the surface and in the area of the water inflow. After 1 more hour the D.O. level had further dropped to 20 % and now all the fry were swimming at the surface. Compressed air was led into the tank and after 1 hour the D.O. level had risen to 32 %. 1 hour later the D.O. level reached 41 % and after another 2 hours, the D.O. level was 56 % and now the fry was swimming around in their normal way. During the period of low oxygen levels all ribbon fish and mackerel fry had died, while no mortality was observed with the other species.

The oxygen levels in the control tank, where no aeration took place, show the same pattern as shown in 4.1.4.

The temperature in the tank with fry was always higher than in the control tank. (table 4.2.4)

Table 4.2.4.

Temperature differences between tanks with fry and without fry.

Time	17 ⁰⁰	1800	1900	06 ⁰⁰
Temp fry tank	15	14.8	14.7	11.8
Temp control tank	13	12.6	11.9	10.0

Experiment 2

This experiment was carried out to determine the survival rate of the fry during their transplantation from the Mediterranean to the Fayourn.

The 53 000 fry from experiment 1 with an additional 25 000 fry were transported with one DAF truck to Qarun, this operation took 7 hours.

The stocking rates per transport tank (each with about 750 l of water) was as follows: tank 1, 25 000 fry; tank 2, 20 000 fry; tank 3, 15 000 fry; tank 4, 10 000 fry and in tank 5, 8 000 fry.

The mortality upon arrival in Qarun was 230 dead in tank 1 (0.9%); 270 dead in tank 2 (1.4%); 180 dead in tank 3 (1.2%) and no dead in tank 4 and 5 (0% mortality).

During transport there was no aeration except for tank 1, where after 2 hours the fry showed stress and the compressor was used for 45 minutes to provide some extra oxygen.

5 DISCUSSION

5.1. Limnology

In general it can be said that lake Qarun, and Wadi Rayan I lake are more or less in equilibrium and are eutrophic, while Wadi Rayan III lake is not yet stabilized and is oligotrophic.

5.1.1 Lake Qarun

5.1.1.1. Dissolved oxygen


From the data collected it becomes clear that the oxygen level is only during the summer near the bottom lower than 50% saturation. However, there is no real threat that this will cause fish mortalities. During the other seasons the oxygen levels are near full saturation at all levels. The shallowness of the lake plus the frequent strong winds cause enough turbulence to avoid the build up of an oxycline for a prolonged period.

5.1.1.2. Temperature

The absolute maximum registered was 32 °C at the surface of station 6 during summer and the absolute minimum recorded was 13.8 °C at the surface of station 8 during winter. For the species of fish which live in the lake, these temperatures are well within their range and there are no problems to be expected from extreme temperatures on the survival and growth of the fish.

5.1.1.3. Electric conductivity

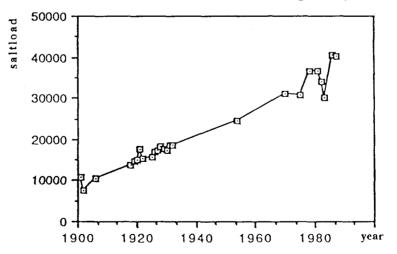
The measured Ec varied considerably during the various measuring dates. This was mainly caused by the difference in water level of the lake. The total salt load of the lake remains more or less the same, see table and graph 5.1.1.3.1.

Table 5.1.1.3.1.

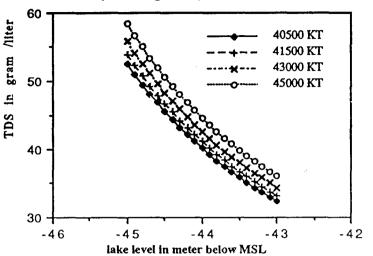
date	nr of measurements	Bc	TDS**	lake level***	Salt load	
		in mS/cm	in g/l	in m.s.l.	in kiloton	
22/23- VI	39	41.3	34.6	- 43.35	40344	
2 - VII	4 (E side of lake)	42.4*	35.5	- 43.51	40065	
13- VIII	1 (Shakshouk)	45.3*	38.0	- 43.60	42028	
5- X	2 (Shakshouk)	45.6*	38.2	- 43.75	40874	
10/11- XI	34	43.8	36.7	- 43.68	39269	
28- XII	7 (E side of lake)	41.2*	34.5	- 43.34	40310	
7/10- Ⅱ	41	40.4	33.9	- 43.23	40504	
6/12- IV	21(W+middle of lake)	38.5*	32.3	- 43.065	39871	
Average of	149 measurements	41.3	34.6	-43.36	40408 ±756	

Measured Ec and the total saltload of lake Qarun.

Values are the adjusted figures. E side values are multiplied with .98 the Shakshouk figures with 1.05 and the W+ middle of lake with 1.003 in order to get an average which counts for the whole lake.


** The conversion factor from Ec to Total Dissolved Salts (T.D.S.) was calculated with the help of the results of the analysis of water samples by the Drainage Research Institute and the Ein Shams University in Cairo, and by IWACO and the ICW in The Netherlands. In these Institutions the anion and cation concentrations were established. At the DRI, some samples were evaporated and the residue weighed. From all these data the conversion factor has been established to be 0.838. The equation becomes TDS = 0.838 Ec.

*** The equation of the calculation of the water volume of the lake to the lake level is taken from the Fayoum Water and salt Balance model project technical note 21 (Dec. 1987). Volume = 11570 + 240 x lake level in meters MSL.


When the salt content of the lake is compared with data from earlier recordings than it becomes clear that there is a steady increase of the amount of salt in the lake throughout the years, salt load is given in kilotons. (see graph and table 5.1.1.3.2.) At the moment the yearly increase is about 500 kiloton. The lake level has an important influence on the TDS level of the water.

(Graph and table 5.1.1.3.3.)

Graph 5.1.1.3.2 : Total saltload of lake Qarun through the years.

Graph 5.1.1.3.3 : Saltconcentrations at various lake levels and saltloads (Lake Qarun).

A fluctuation of 50 cm causes a difference from 2.7 till 9.7 g/l. in salinity of the water. When the salt factory will become operational the yearly increase of the salt load will be reduced. This factory is scheduled to produce in the beginning of the 1990's 247 kiloton of salt (MgSO4, Na₂SO4, KCl, NaCl and MgO). The yearly influx of salts with the drainage water is about 500 kiloton. At the moment this results in a yearly increase of the TDS of about .5g/l with the fully operational salt factory this will be .25 g/l.

If we take a TDS of 50 g/l as the critical level for most of the fish living in lake Qarun and assume that the lake level will not drop below -44 meters MSL, this would mean a salt load of 50 500 kiloton, and this will be reached in the year 2026 when the salt factory becomes operational in 1990. When the salt extraction will not take place, this level will be reached in 2008. If water level can be kept at -43.5 m than the critical point will be reached, with a saltload of 56 500 kiloton, in 2050, with salt factory or 2020 without salt extraction. At a level of -43 m. these figures will be 62 500 kiloton and this will be reached in 2174 and 2032 respectively. A good water management will extent the productivity of the lake for many years.

A comparison of the anion and cation distribution of the lake water with previous recordings (table 5.1.1.3.4.) shows a more or less equal composition, except for the amount of SO4. The sulfates seem to be the main source of the increase of the salt load.

5.1.1.4 pH

The water of lake Qarun seems to be well buffered and very small variations of pH can be observed. The pH levels are on the alkaline side but this will not affect the fish population of the lake.

5.1.1.5. Transparency

Transparency can be an indicator for the productivity of a lake : the more plankton (food) the lower the transparency. Other factors that influence the transparency are the wave and wind action. Particularly during winter and spring long lasting strong winds often with sand and dust, caused the transparency to decrease. The winds are prevailing from the north and wave action, specially on the shallow southern and eastern areas, causes a lot of silt to be stirred into the water and thus decreasing the transparency.

5.1.1.6. Air temperature.

Air temperatures change during the daytime Early morning measurements and measurements at about noon, can differ over 10 °C during summer. After 15.00 hrs the air temperature. tends to drop rapidly. There is a close relation between the average air temperature and the average surface water temperatures. (see graph 4.1.1.6.)

5.1.1.7. Bottom profiles

The depth profiles show that the eastern end of the lake is shallow, average depth 3.3 m. There is a ridge of about 1.5 m near Abuksa. The western end is deeper and has a more regular bottom, average depth 5.2 m. The bottom looks suitable for trawling, on the other hand trawling might induce overfishing. With the gears used, the fish have enough chances to escape.

5.1.2 Wadi Rayan I lake

Wadi Rayan I lake is a fresh water lake with a total dissolved salt content of about 1.5 g/l. The salinity of this lake is most likely to remain at this level, as there is a constant flushing of the lake. Fresh drainage water from Fayoum flows into the lake and the outflow goes through a canal to Wadi Rayan II and Wadi Rayan III lakes.

5.1.2.1. Dissolved oxygen

Dissolved oxygen shows only during summer a clear oxycline at about 10 m, below which there is hardly any oxygen available to support life. But this is only relatively short time and will probably not effect the carrying capacity of the lake. At the top 8 m, the oxygen levels are always about full saturation. They range from ca. 8 gram O2 per liter during summer to ca. 10 gram O2 per liter during winter.

5.1.2.2. Temperature

The temperature range at the surface is from 28.8 oC maximum ,to 14.6 °C minimum . Which is a difference of 14.2 °C, which is considerable lower than the 17.9 °C difference in lake Qarun. But Wadi Rayan I. lake has more protection in the form of an extensive reed collar around the lake and the greater depth also provides a greater buffer. This stability in temperature is an advantage for fish growth, providing the available species do not need temperature shocks for their propagation etc. The north and north east have as a rule the lowest temperatures, which might be explained by the fact that these are the shallowest parts of the lake. The average decrease of temperature per m. depth is maximal 0,21 °C in the SE part, while it is only 0,06 °C at the outlet of the lake, which is not very deep.

5.1.2.3. Electric conductivity

The pattern of the Ec values shows, particularly for the surface values and the average values for all depths combined, a clear flow from the tunnel inlet along the south east coast and then to the north (see maps 4.1.2.3.). The differences are however minimal. The total average of all 145 measurements gives an Ec of 2,01 mS/cm which is, when the normal conversation factor of 0,670 is taken, 1.35 gram salt per liter. This value is about the same as the value of the drainage water which is led into lake Qarun, but the drainage water from the tunnel drain has an average Ec of 1.29 mS/cm i.c. a TDS content of 0.86 g/l. Average inflow is 250 x 10^{6} m³ water with a salinity of 0.86g/l, this gives a yearly salt influx of 215 kiloton. Outflow is inflow - evaporation, which is about 90 x 10^6m^3 per year, i.e. $250 - 90 = 160 \times 10^6 \text{m}^3$ per year. This water has a salinity of 1,35 g/l and the discard of salt is hence about 216 kiloton per year. The lake will remain a fresh water lake (slightly brackish if fresh water is defined as water with a salt level below 0.5 g/l). If the drainage water will reach the same salt level as the drainage water of lake Oarun i.c. 1.35 g/l, than the yearly salt influx will be 337.5 KT and when the outflow will remain the same, than the salt level of this lake will raise till 2.1 g/l, which still is well in the tolerance range of the fish species in the lake. The higher salt levels during autumn and winter are caused by the decrease of water inflow, which is clearly seen in map 4.1.2.3.c.

5.1.2.4. pH

The pH level is on the alkaline side, which will not give any problems with the productivity of the lake.

5.1.2.5. Transparency

The degree of transparency seems to be reflected by the flow of the drainage water which flows along the SE side of the lake to the cape just S. from the cattle station and is than pushed to the north till it hits the next cape. (map 4.1.2.5.) The lowest transparencies correspond with the lowest salt concentrations.

5.1.2.6. Air temperature

There is a strong correlation between the air temperature and the surface water temperature. (see graph 4.1.2.6.)

5.1.2.7. Bottom profiles

When the critical 10 m.line of the oxycline during summer is drawn in the depth profile, it becomes obvious that a big part of the bottom surface of the lake will become useless to support live which needs oxygen.But this is only happening for a short time and the overturn which occurs during autumn mixes the water column so that during most of the time there is no thread of toxic water.Particular during winter and spring when most fish spawn there is no problem with the water

5.1.3. Wadi Rayan III lake

Wadi Rayan III lake is not yet stabilized and real stability will never be achieved as this lake will become more saline throughout the years and it will have a fluctuating lake level depending on the amount of incoming water and water evaporation at any given time. We have the situation of an oligotroph lake.

5.1.3.1. Dissolved oxygen

The outspoken oxycline which occurs in summer in W.R. I, is not so clear in W.R. III although the lake has even deeper points. Down to more than 15 m the oxygen saturation is still over 50% (4.5 mg/m³.) during summer. The oxygen levels are nearly always near 100% saturation in the first 10 m. In summer this is a little over 8 mg/m³ and in winter over 10 mg/m³ O₂/l. This lack of oxycline might be explained by the low amount of organic material in the water, this will most likely change in the future and an oxycline will occur for at least part of the year.

5.1.3.2 Temperature

The temperature extremes at surface measured during the survey are $30.5 \, {}^{\circ}\text{C}$ in summer and 14.6 ${}^{\circ}\text{C}$ in winter. This is a difference of 15.9 ${}^{\circ}\text{C}$, which lays between the W.R. I and lake Qarun values. There is a very little growth of reed around the lake as the water is still rising and the reeds have not enough time to settle properly. The influence of the sun.on the shallow parts of the lake is not dampened by reed. The range does not cause any problems for the fish species in the lake. In general there seems to be a good mixing of the water column as the temperature remains very constant throughout the water column.

5.1.3.3. Electric conductivity

The Ec values for Wadi Rayan III lake are at the moment about double the values of Wadi Rayan I. The influence of wadi Rayan I. The influence of Wadi Rayan II lake on the water quality is not known, but is thought to be of little importance.

The yearly inflow of drainage water into the Rayan depression is about $250 \times 10^6 \text{m}^{3*}$. The equilibrium between evaporation and inflow will be reached when the total surface of the Wadi Rayan lakes is about 130 km², assuming that the evaporation rate for the area is 1928 mm per year ^{**}. Wadi Rayan I lake has a surface of 51 km² and Wadi Rayan II is 2 km² which leaves 77 km² for Wadi Rayan III lake. This situation has not yet been reached. When this balance between evaporation and inflow is reached, there will be fluctuations in the lake level, depending on the monthly inflow and on the seasonal variations in the evaporation.

* This figure is obtained from a DRI report 1987 (see table 5.1.3.3.1.)

** This figure is obtained from v.d. Linden 1984 (see table 5.1.3.3.2.)

^{*} This figure is obtained from a DRI report 1987 (see table 5.1.3.3.1.)

^{**} This figure is obtained from v.d. Linden 1984 (see table 5.1.3.3.2.)

Table 5.1.3.3.1.

Annual drainage into Wadi Rayan depression

1983	249 x 10 ⁶ m ³
1984	211 x "
1985	258 x "
1986	272 x "
Average abo	1000 m^{-3} 100 m^{-3}

Table 5.1.3.3.2.

Annual evaporation in mm/year for Wadi Rayan region

1973	1928 mm/year
1974	1887 "
1975	1908 "
1976	1987 "
Average	1928 mm/year

When the lake has reached this surface and we estimate the mean depth to be about 11 m than the volume of the lake will be about $850 \times 10^6 \text{m}^3$. The yearly influx of salt will be, as seen in chapter 5.1.2.3. about 215 kiloton. This means a yearly increase of the salinity with 0.25 g/l. The lake has, at the moment, a salinity of 2 g/l. Because of the gradual increase, most of the fresh water species which occur in the lake at the moment will survive for another 50 to 70 years, but then *Lates niloticus*, *Oreochromis niloticus*, *Clarias gariepinus*, *Labeo nilotica*, *Barbus bynni* and some other species will have problems with their survival or with their reproduction. With the slow change in salt concentration of the lake, the existing fish species will have time to adapt themselves to higher salt levels than they normally would be able to stand. A TDS level of 15 to 20 g/l is thought to be the critical salt level for most of the species occurring in the lake, after this they will show problems with reproduction and growth. Marine fish will have to be introduced by than. Sole can be introduced when the salinity is over 10 g/l. (Fonds 1975). Soles were successfully introduced in lake Qarun when the salinity was about 20 g/l.

If a small channel could be made to the next depression, S.E. from the lake, than the increase of salinity could be stopped. The salt level would than be determined by the surface area of the lake. See table;

surface area	evaporation	rest (outflow)	final salinity
in ha	in m ³ x 10 ⁶	in m ³ x 10 ⁶	in g/l
6500	125	35	6.1
7000	135	25	8.6
7500	145	15	14.3
8000	154	6	35.8

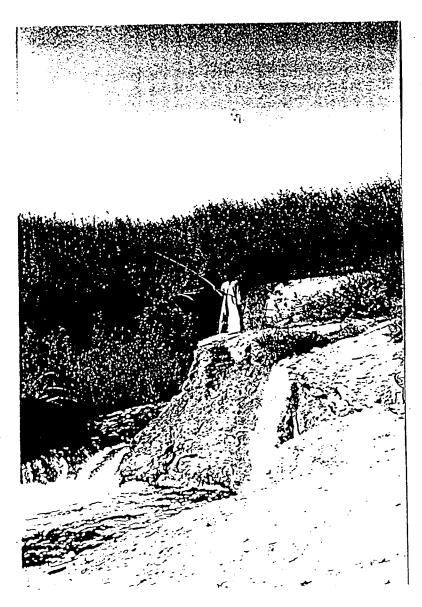
5.1.3.4. pH

The pH level of W.R. III lake is about the same as from W.R. I

5.1.3.5. Transparency

The transparency is the lowest in the southern part of the lake. This is most likely caused by wave action in the still unsettled area where many sand dunes are slowly disintegrating into the lake through wave action and seepage.

5.1.3.6. Air temperature


The air temperature and the surface water temperature are closely related. Air temperature is between 9 and 15% higher.

5.1.3.7. Bottom profiles

The bottom profiles show a rugged pattern with many submerged ridges. It is to be expected that these will become less pronounced in the future due to wave and current action on the not too stable soils. These consist of mostly sands and sandy silts with gypsum.

5.1.4. El Gameel

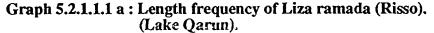
The observation made in El Gameel shows that the water from the bughash is brackish most of the time, but during rising tide an influx from sea water takes place. The normal diurnal variations in D.O. are only disrupted during the rising tide. The buffering effect of the sea water becomes noticeable. When the station would be used for storing fry until transport, it should be born in mind that acclimatization has still to be carried out when the fry come to their final destination, at least when they have to live in a fresh water environment. Water from the 3 m. deep well proved to be less suitable for use in the tanks as it was anaerobic but more seriously ,contained too much NH4 (ammonia) to support life.

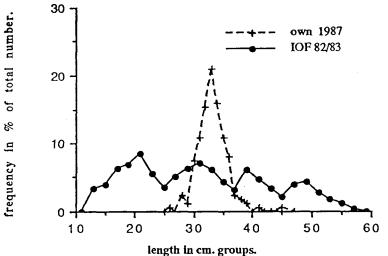
Waterfall at water inlet of Wadi Rayan III lake.

5.2. Biology

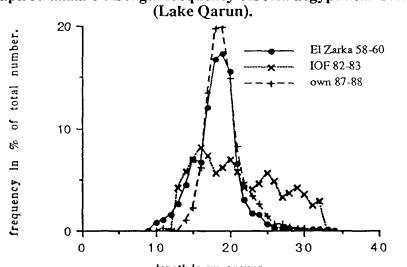
5.2.1. Lake Qarun

5.2.1.1. Fish

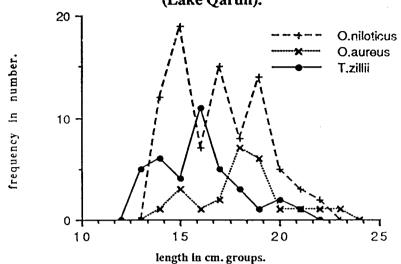

The total production of lake Qarun averages 1 794 tons over the 37 years mentioned in the table 4.2.1.1. The decline during the 1970 and 1980's is partially to be blamed on the poaching and withholding fish from the official market. The most popular species for smuggling are mullet, because when the fish go back in quality, they still can be salted and sold. Further the soles, because they are strong fish and take much longer to spoil. Shrimp are not so much smuggled, as they spoil too quickly. It is thought that about 50 % of the fish caught are traded though the official channels. This would mean that at least the figures from the cooperative should be doubled. If that is done than the averages becomes 2 680 tons per year (116 kg/ha.), which is a more acceptable yield of the lake with its unbalanced fish population .There are hardly any predators to use the available annual protein sources such as zoo plankton (mainly copepods), and small fish such as silversides which are probably not fully exploited. The composition of fish species in the catch has changed, because of the increase in salinity. *Lates niloticus* and most tilapias and all catfishes have disappeared. Other species have been introduced from the sea. Grey mullet has been introduced in 1928, sole in 1938.


Silversides were introduced unintentionally in about 1960 and eel (Anguila anguila) also by accident with the mullet from early on, as the glasseel come to the shore at the same time as Liza ramada fry. Sea bass (Dicentrarchus labrax) and sea bream (Sparus auratus) have also been introduced to the lake with the mullet fry. But in 1970 an official trial has been made to introduce sea bream, but so far they have not become a substantial part of the catch.

Fishing season is from 30 June till 1 April. There is an additional closed season for sole during December and January, when they are spawning. There are over 500 rowing boats licenced to fish in the lake.


5.2.1.1.1. Length frequency

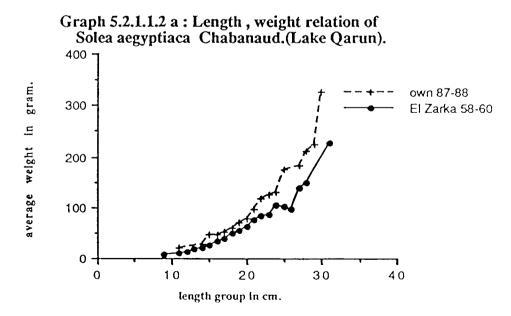
The length frequency curves of *Liza ramada* (table +graph 5.2.1.1.1.a) shows that the catch consists of practically 1 year class only, with an average length of about 33 cm. The curve of the length frequency distribution given by IOF in their 1985 report shows 4 distinct year classes, but it is not known how they obtained their sample.


Length frequency curves of *Solea aegyptiaca* (table and graph 5.2.1.1.1.b) from own data compared with data from El Zarka (1963) and the IOF report of 1984 show that the data from El Zarka from the catches 1958 - 1960 are very similar to the data obtained during the study. The catch consists virtually of one year class only. There is a wide range in length distribution, but no distinct peaks can be distinguished. The curve of the IOF data shows 5 clear peaks, which might represent year classes, but it is unclear how they obtained this sample, it looks a bit too good. The length frequency distribution curves of the three samples taken during this study show all the same pattern, predominantly 1 year class and some vague peaks which may be older year classes.

Graph 5.2.1.1.1 b : Length frequency of Solea aegyptiaca. Chabanaud. (Lake Oarun).

length in cm. groups.

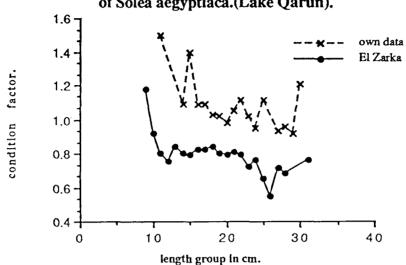
Length frequency curves of tilapia species from lake Qarun do not give much information as the samples are too small.(graph 5.2.1.1.1.c).


Graph 5.2.1.1.1 c : Length frequencies of three tilapia species. (Lake Qarun).

A comparison of the average length of the different species of the three lakes is given in table 5.2.1.1.1.c.From this it seems that the environment for *Liza ramada* is most favorable in Wadi Rayan I lake. This might be caused by the difference in salinity or by the ban on the use of a deep trammelnet. For *Oreochromis niloticus* and *Tilapia zillii* the growth rate in lake Qarun is the lowest,(stunted growth ?),*Oreochromis aureus* grows best in Wadi Rayan I.

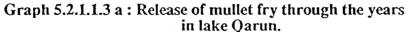
In general it can be said that the conditions in Wadi Rayan I are the most favorable for the four mentioned species, while the conditions in lake Qarun are the poorest.

5.2.1.1.2. Length / weight relation


Only for Solea aegyptiaca length/weight relation have been established. These data have been compared with the data of El Zarka (1963) (see graph and table 5.2.1.1.2 a).

The difference could be explained by the fact that the sample of 1988 was taken in the beginning of February when all fish are with ripe gonads. But also by the fact that these data have been collected by the same person into measured fish in January in the Rayan

lakes, see the variations of this month's data with the data from other months in chapters 5.2.1.2.2. and 5.2.1.3.2.


Because of this the condition factor (Kf) for our own data are on the high side when compared with those from El Zarka and those found in literature (Graph 5.2.1.1.2 b).

Graph 5.2.1.1.2 b : Condition factor (Kf) per cm. lenght group of Solea aegyptiaca.(Lake Qarun).

5.2.1.1.3. Mullet Fry Transport

Mullet were first transplanted to lake Qarun in 1928, 20 000 fry of *Mugil cephalus*. In 1931, the second year with transplantation operations, not only *Mugil cephalus* but also *Liza ramada* was transplanted to lake Qarun. From 1931 yearly transplantations took place. The first shipments were monitored carefully till 1931 to see whether there would be spawning, but no eggs and larvae have been seen. But from the later shipments the presumed *Liza ramada* spawned and reproduced. Later investigators claim that these were not *Liza ramada* but *Liza saliens*. But from experience it turned out that yearly stocking is necessary in order to maintain a catch of mullet. Table and graph 5.2.1.1.3.a. show the number of mullet fry that have been transplanted during various years.

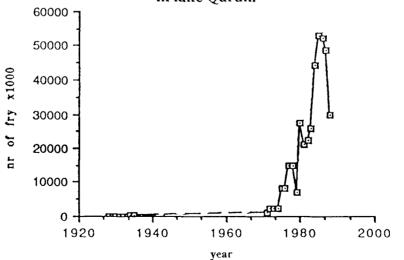
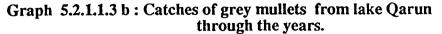
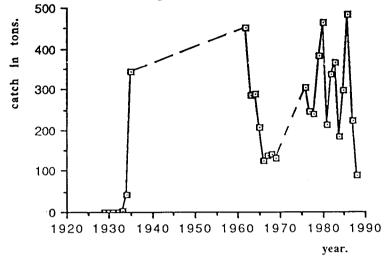




Table and graph 5.2.1.1.3.b. show the amount of grey mullets caught during the various years as mentioned by different authors.

From the figures given by Faouzi ('36) and the weight per year class calculated by the IOF in 1984 the following could be calculated (see table 5.2.1.1.3.c).

Table 5.2.1.1.3.c.

	nr of fry transplanted	year class	catch weight	% of original
1928	20.000*			
1929		I	181 kg*	at average weight 110 gr** = 1645 fish = 8,2 %
1930		Π	427 kg*	at average weight 265 gr** = 1611 fish = 8,1 %
1931		Ш	52 kg*	at average weight 574 gr** = 91 fish = $,5\%$
1932	154.000	IV		at average weight 1070 gr** = 1079 fish = 5,4 %
1933		v	2792 kg*(of	which 1389 kg for year class I) =
				1403 kg at 1581 gr **/fish = 888 fish = 4.4 %
				total = 5314 fish = 26,5 % survival
Total ca	tch		3217 kg Av	verage weight 605 gr

Total catch * Faouzi 1936 ** IOF 1984

This is a high survival rate, particularly when it is known that the number of predators i.e. nileperch and catfish were quite abundant in those years, which might give an indication on the relatively low influence of predators on the mullet stock.

If this is applied for later stockings and catch rates than the survival rates have dropped drastically down to about 6 % and the average weight has declined to about 300 gram.

Mullet catch in 1935 was 342 tons, which is about the average amount recorded for the last 12 years, but the stocking rates have increased from an average of \pm 200.000 fry in the beginning of the 30's to over 28,000,000 per year during the last 12 years.

From the last 12 years it becomes obvious that there is no relation between stocking rate and catch. When we consider that most of the fish are caught 2 years after their transplantation, than the following table can be drawn from the available statistics of lake Qarun since 1974. When we take an average weight of 300 gram per fish than we can calculate the number of fish caught. With these parameters we can calculate the number of fry needed to produce 1 ton of fish and the survival rate.

From these figures it seems that the sustainable yield for mullet of lake Qarun is about 350 tons per year and that this is only related to a minimal amount of fry released. The total nr. of fry needed for optimal stocking, might not necessary to be more than 3 million per year (actual counting) i.c. between 10 and 20 million by the El Girby counting. Which means that only 12 truck loads at the right time would be sufficient. The right time might be influenced by the availability of special plankters in the lake at the time of stocking, in order to have the right food available. More research will be needed to investigate this properly.

From Magdi A.Saleh the following information was received:

The fry that was stocked in the pond at Abu Shanab ,from February till April,were released from these ponds on the third of June. The fingerlings had reached an average length of 7.8 cm.(range 5.6-9.2 cm.). The 1 000 fry stocked separately in a net enclosure $(2 \times 2 \text{ m.})$ in one of the ponds in February, produced 769 fingerlings with an average length of 11.65 cm. The size of the fry during transplantation was about 2 cm. The survival rate during and nursing has been about 65 %, which shows that the transportation and stocking in enclosures are not the limiting factor for the mullet production.

5.2.1.2. Plankton

5.2.1.2.1. 280 µ samples

From table and graph 4.2.1.2.1. it is obvious that copepods are the main group of zooplankton and that they are more dominant in the eastern side of the lake than the western part, this is the same during all seasons. With fish eggs and fish larvae there is a different pattern during the various seasons, see map 5.2.1.2.1.

In summer most fish eggs are found in the S.E. while no eggs were found in the western part, fish larvae were only found in the central part of the lake. During winter most eggs were found in the western part, but nowhere in great quantities. Fish larvae were found spread all over the lake, and during spring fish eggs were abundant in the central part of the lake and their numbers decreased to the east, no samples from the west during this period. Fish larvae were only found in the central part of the lake. The fish larvae and eggs have not been identified, but they belonged to various species. Cladocerans were mostly found during winter in the western part of the lake.

5.2.1.2.2. 60 µ samples

From table 4.2.1.2.2.a. it becomes clear that the most dominant group during all seasons were the diatoms with an average of 2 525 specimens per liter divided over 39 species. The most common species were *Microcystys* sp. (832) and *Bacillaria paradox* (525). The most common genus was *Coscinodiscus* (935). The most common species of the zooplankters was *Globigerinoides conglobata*, a foraminifer, while the most common genera were *Tintinnopsis* (211), *Favella* (162), *Bosmina* (147), *Cyclopis* (128) and *Brachionus* (125).(between brackets the number of organisms per liter).

From table and graph 4.2.1.2.2.b. it can be seen that the phytoplankton, zooplankton ratio is roughly 2:1, when numbers are considered, except during winter, when they are more or less equal. The fluctuation in numbers per liter varies from 8 046 during autumn to 2 613 during winter for the phytoplankters. During spring there is about the same amount of plankton as in winter. With zooplankters, summer, autumn and winter show more or less the same amount while during spring they show a decrease of more than 50% This can have two reasons:

a. The sharp decrease of phytoplankton in winter does not provide enough food for the zooplankton.

b. The increasing number of fish larvae that feed on the zooplankton.

The distribution of plankton in the lake (map 4.2.1.2.2.c.) shows that the most fertile area is the bay of Shakshouk. Both far ends of the lake seen to be the least productive, except during autumn when the eastern part is quite productive, which is most likely caused by the water inflow through the Bats drain, why there is such a low productivity at this point during summer is not clear. The yearly closure of the drainage system in January is most likely the cause of the low productivity during winter throughout the lake, this together with the low temperatures and the periods with overcast conditions.

5.2.2. Wadi Rayan I

In 1974 Wadi Rayan I lake was created by letting drainage water from the Fayoum, through an 8 km long tunnel, into the Wadi Rayan depression. It took until 1980 until the lake was fully filled. By this time excess water from the lake flowed through a man -made channel into Wadi Rayan II lake and further to Wadi Rayan III lake. The water level of W.R.I. is stable at about -5 m MSL. The lake will remain a fresh water lake. There is a dense growth of reed around the lake, and it has a rich plankton population.

5.2.2.1. Fish and fisheries

From the beginning of the lake fish have been transplanted into the lake to speed up natural stocking of the lake. One of the most important transplants were the grey mullet because of their food habits and high acceptance by the local population. Their introduction started in the autumn of 1980. Other fish that have been introduced intentionally are common carp, in 1983,1984 and 1985. Unintentionally, some species have been introduced with the mullet fry like Atherina sp, Dicentrarchus labrax and maybe others. Naturally came into the lake: Bagrus bayad, Clarias gariepinus, Barbus bynni, Lates niloticus, Oreochromis aureus, Oreochromis niloticus, Sarotherodon galilaeus, Tilapia zillii and various other species.

Fisheries statistics of the lake are rather basic and unreliable. It is thought that 50 to 60 % of the catch is not recorded. There is a well-organized smuggling system, which takes the fish from the lake to the black market in Fayoum, but also to Cairo.

Table 5.2.2.1.a. gives the available statistics. Data from before 1984 are not available, there has been a lot of political manipulation before the GAFRD in 1983 became the authorized authority to deal with the fish resources of the lake.

Table 5.2.2.1.a.

Catch statistics of Wadi Rayan I lake in tons

year mu	llet tilapia	carp	sea bass	catfish	labeo	nile perch	others	total
84/85+ 117.	618.	17.	-	-	-	-	68.	820.
84/85* 116.	966 617.606	.015	.282	3.085	52.513	10.646	-	801.113
84/85** 39.	96 360.25	.01	.19	3.17	14.73	5.75	-	424.06
85/86* 138.	573 271.972	.481	.464	2.680	10.032	7.713	-	431.915
85/86**157.	994 274.248	.480	1.663	8.986	10.037	5.778	-	459.186
86/87**145.	122 182.030	.154	.393	2.312	10.980	.378	-	341.3690
86/87* 62.	34 92.43	.09	.09	2.35	4.06	4.95	-	166.31
87/88 243.	21 158.47	.14	.04	3.31	-	9.40	6.70	421.27

+, * and ** are different sources at the GAFRD**

 \Diamond = data from 1987 missing, only 1986 part of the season.

When 50 % of catch is not recorded than the average catch comes between 800 and 1000 ton per year, which is between 150 and 200 kg./ha.

Fishing season in W.R. I lake is from 1/2 November till beginning of May. Fishing is being carried out with 95 unmotorized vessels.

The sustainable yield can be theoretically calculated with a formula given by Ryder 1957. This formula is $Y(ield) = 14.3136 \text{ MEI} \cdot 0.4681$ in kg./ha./year.

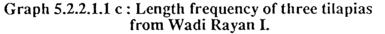
MEI = Morpho Edaphic Index and can be the electric conductivity, in μ S/cm, of a water body divided by the mean depth of this water body. In our case MEI = 2010/10.7 = 187.85, with this the yield is 166 kg./ha./year. The total surface of the lake is 5090 ha., which means a total production of 845 ton per year. This would mean that the actual production is close to the maximum sustainable yield of the lake.

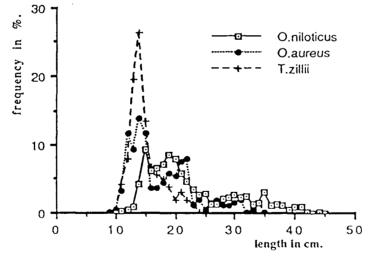
5.2.2.1.1. Length frequency

From table and graph 5.2.2.1.1.a. it becomes clear that for *Liza ramada*, the main part of the catch consists of 1 year class. In this case year class II (66% of the catch), the rest of the catch are fish from older year classes. The year class distribution is roughly 66% year class II; 16% year class III; 13% year class IV and 5% year class V and older.

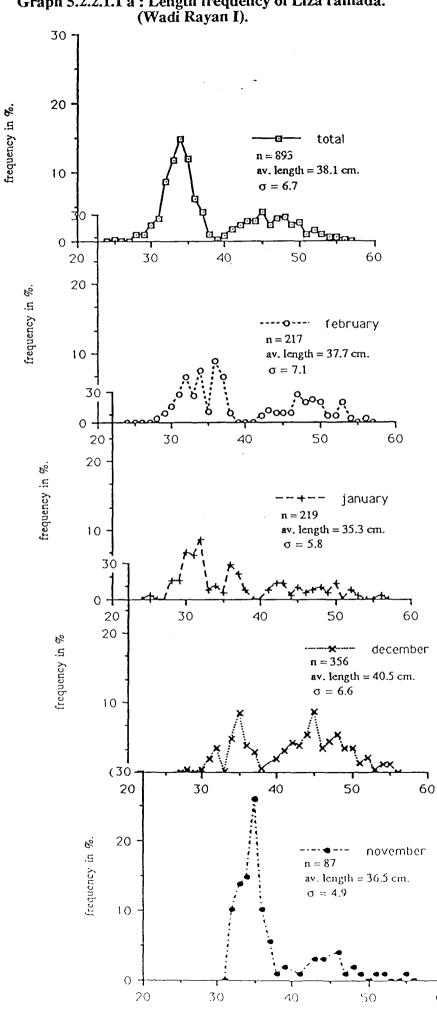
The average length per year class is about the same as mentioned in the IOF (1984) report about lake Qarun (see table 5.2.2.1.1.b.).

Table 5.2.2.1.1.b.

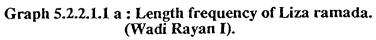

Average length of Liza ramada in cm per year class


Year class	I	Π	ш	ΓV	V+
own data	25.0	33.7	43.4	48.3	53.6
IOF	21.2	30.7	41.5	52.7	64.2

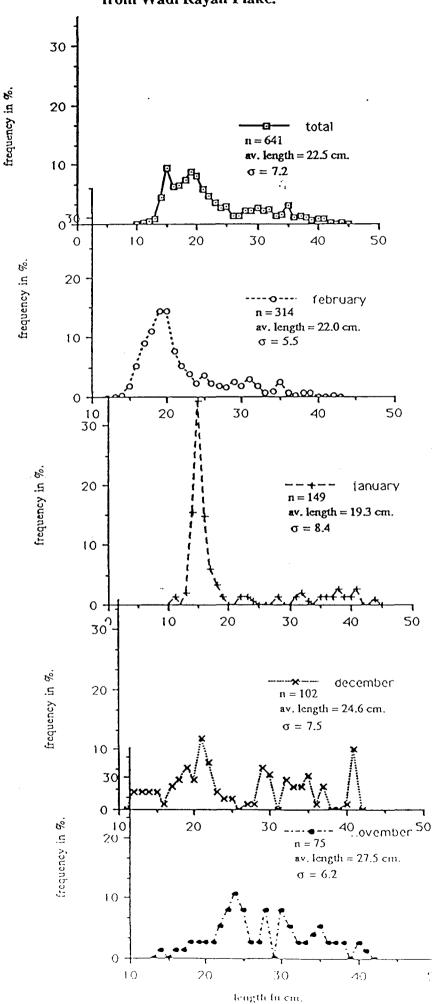
In table 5.2.2.1.1.c and graph 5.2.2.1.1.b.the length frequency of *Oreochromis niloticus* is depicted. Here the main catch seems to exist of two year classes (A and B).

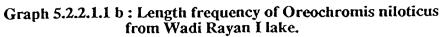

The year class distribution is roughly 25 % year class A; 49 % year class B; 14 % year class C; 6 % year class. D and 5 % year class E and older. When year class A corresponds with year class II of the IOF report than the average length per year class is considerable higher than the figures given in the IOF report for Qarun.(table 5.2.2.1.1.d) This is most likely to be explained by the marginal living conditions for this tilapia species in lake Qarun.

In table 5.2.2.1.1.e. and graph 5.2.2.1.1.c. length frequencies are given for Oreochromis aureus and Tilapia zillii.

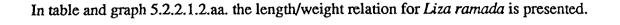


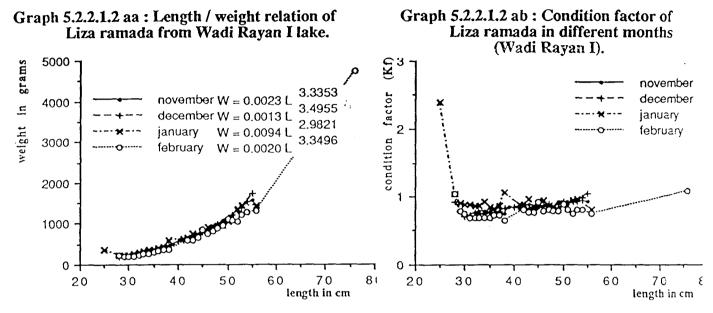
With O. aureus 4 year classes might be distinguished and for T. zillii. three The catch of O. aureus seems to be spread over a few classes while the catch of T. zillii is dominated by one year class




length in cm.

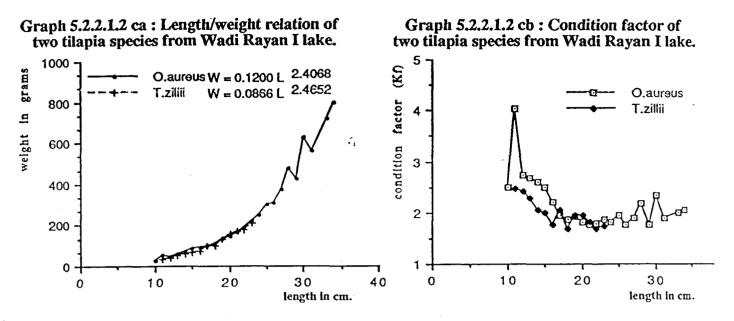
٦


60



50

5.2.2.1.2. Length/weight relation



The weight values of the January sample are probably too high, or the length values are 2 cm too small, whwn compared with the values from the other months, these data have been obtained by another observer who used a less accurate scale and measuring board. The Kf values of November and December are higher than those of February, which is to be expected as the fish were all ripe and full of gonads during November and December, while most were spent in February, graph 5.2.2.1.2 ab.In December 35 ripe fishes had an average Kf value of .88 while the unripe females and all the males had a Kf value of .80. For *Oreochromis niloticus* the length/weight relation is given in table and graph 5.2.2.1.2.ba. Here the same observation can be made for the high weight values in January. Particularly in the lower weight ranges, the effect of the less accurate balance can be noticed. The other three months show the same pattern as can be seen in the Kf values graph 5.2.2.1.2 bb.

The same can be said about Oreochromis aureus and Tilapia zillii (table 5.2.2.1.2 c and graphs 5.2.2.1.2 ca-cb)

5.2.2.1.3. Mullet fry transport

All fry designated for W.R. I lake, 12.8 million, have been released in an 1.2 ha pond. This pond is an area adjacent to the lake and separated by a stone wall. The bottom was roughly excavated with a bulldozer. The result is a very shallow pond with a tendency to get overgrown with reeds and aquatic weeds. In order to have at least some depth of water, water has to be pumped into the pond from the lake. But due to malfunctioning of several pumps, this adding of water was very irregular and the water level has often been very low. For the amount of fry released into this pond there was little evidence of their presence in the pond. Beside mullet fry there seemed to be a big population of tilapia species, which were breeding in the pond. No work was carried out to keep the reeds and weeds under control.

It will be difficult to release the surviving fingerlings into the lake as the outlet is hardly under water. Great improvements will be necessary to make optimal use of the stocked fry and the total number of fry could than be reduced. When the fry is well treated during the stay in the pond(s) than 1 - 2 million fry will be sufficient (actual counting) to produce about 300 ton of mullet per year. Adult fish have an average weight of 500 gr in W.R. I and about 280 gr in lake Qarun and W.R. III lake.

Another advantage that could be obtained from better acclimatization ponds, is that they could be used for fish culture during the months after the fingerlings have been released into the lake. The official number of fry released into the lake are:

Year	1980-1982	1983	1984	1985	1986	1987	1988
nr x 1000							
nr of Mullet fry	?	?	1 097	37 211	16 000	20 170	12 180
carp fry	?	2 000	4 000	?	-	-	-

5.2.2.2. Plankton

5.2.2.2.1. 280 µ samples

In general the plankton samples were rich. In summer the samples consisted mainly of zooplankton but later with the bloom of *Microcystis* and other blue green algae the samples contained lots of botanic material which often clogged the net. The predominant zooplankton organisms were Cladocerans, mainly from the species *Diphanosoma brachyurum*. Copepods were only abundantly found in the spring samples, but they were not found in the western part of the lake near the outlet. Fish larvae have not been observed in the samples and only twice in the 35 samples, some fish eggs have been found. Summer was the poorest season and spring the richest.(maps 4.2.2.2.1 a-c).

5.2.2.2.2. $60 \,\mu$ samples

From table 4.2.2.2.2.a. it can be seen that blue green algae were the dominant group in the 60 μ samples, during the bloom in winter and spring over 97 % of the total number of plankton organisms were blue green algae. Most are from the family *Chroococaceae*. The main species is *Microcystis aerogenosa*, which produces big colonies, which sometimes formed a mat on the surface at the leeside of the lake.

The main zooplankton group in the 60 μ samples were the Copepods and they were mainly caught in autumn, which is not in accordance with the results from the 280 μ samples. It is possible that because of the enormous amount of the blue green algae, during winter and spring, the samples had to be diluted to such an extent that the distribution of other organisms was not in perspective. Particular the *Diphanosoma*, which are quite transparent can be overlooked easily in the enormous mass of blue green algae.

The heavier, torpedo shaped, copepods might thus be over represented in comparison with the cladocerans.

The ratio phytoplankton : zooplankton is 9 : 1 in autumn when the amount of zooplankton was the highest. During the other seasons this ratio is much higher (see table 4.2.2.2.2.b.). This is caused by the great amount of the blue green algae. When the number of zooplankton organisms, during the different seasons are compared then there is not much difference between the seasons except during autumn when there are 4x the number of zooplankters found during the other seasons.

The increase of the importance of phytoplankton in the total amount of plankton, can be seen in graph 4.2.2.2.a-b The plankton distribution found during the various seasons is shown in table 4.2.2.2.2.c. and maps 4.2.2.2.cl-cII The total amount of plankton organisms is highest in winter, but this is due to the *Microcystis* bloom, the lowest numbers are found in summer. But when the zooplankton is taken separately than the highest number of zooplankters is found during autumn and the lowest during winter. The figures for spring are not available per station.

5.2.3. Wadi Rayan III lake

The Wadi Rayan III lake only became a lake in 1980 when the first water ran through a channel between W.R. I lake and the depression. In the about 4 km long channel is a small lake W.R. II which has not been part of the survey, as it was rather difficult to reach because of the dense and extended growth of reeds and not commercial important because of its small size. There are several water falls and rapids in the channel. The difference in water level between lake I and lake III is thought to be about 15 m. at the moment. The deepest point of lake III is over 25 m. this means that in 1980, 40 m difference existed between the surface of W.R. I and W.R. III. This lake is still not in equilibrium. The inflow though the channel and the rate of evaporation are not balanced yet. The level is still raising, which makes it difficult for the reeds to get a good hold and vegetation around the lake is scanty in comparison to lakes I and II. There are numerous little islands, old sand dune ridges which eventually will disappear through wind and wave action. Because of the desert climate very little organic material was available in the soil and therefore the lake is still oligotroph.

5.2.3.1. Fish and Fisheries

The scarcity of statistics makes it impossible to give any information on the state of the fisheries. The only data available are given in table 5.2.3.1.

Table 5.2.3.1.

Catch statistics from Wadi Rayan III lake for the season 1985-1986 in tons.

	mullet	tilapia	carp	sea bass	sea bream	cat fish	nile perch	others	total
*	40.	40.	+	-	-	-	-	54.	134.
**	9.878	28.026	.014	2.068	-	.535	-	.95	40.616 !
***	4.0	40.0	.02	5.6	0.006	.112	.741	-	50.817

*, ** and *** are various sources at the GAFRD.

+ is less than 1 t.

! seems to be catch of the 1986 part of the season only.

Catch statistics from W.R. III lake for the year 1986 in tons (1/2 season 85/86 + 1/2 season 86/87).

mullet	tilapia	carp	sca bass	labco	nile perch+bagrus	clarias	total
48.169	44.467	.196	7.164	.052	23.453	.285	123.786

The fishing season in this lake is from 15 November till the 1st of May. There are 45 unmotorized vessels operating in the lake.

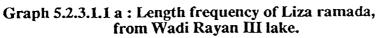
When the sustainable yield is calculated with the MEI method of Ryder, than the total production of the lake could be 1500 ton (240 kg./ha.).But at the moment this is a far cry from the actual catches. This can be caused by the following causes : a/ because of the unstable conditions, the formula is not explicable.b/ the formula is only usable up to special salt concentrations above which other factors have to be included in the calculations.

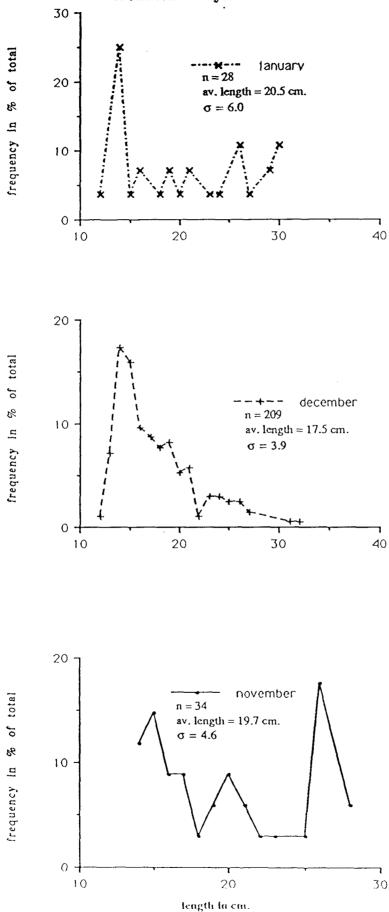
5.2.3.1.1. Length frequency

From the length frequency table and graph 5.2.3.1.1.a. for *Liza ramada* 4 year classes can be distinguished. The average length per year class (y.cl.) is about the same as seen in 5.2.2.1.1., year class I = 24.0 cm; y. cl. II = 32.1 cm; y. cl. III = 42.2 cm and y. cl. IV = 47.0 cm. The catch is predominantly from the year class II, 87.3 %.

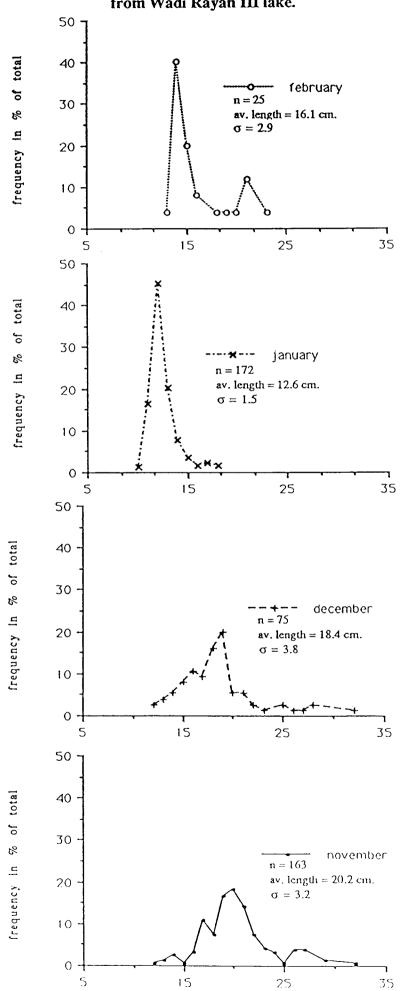
Length frequency distributions of the tilapia species are given in tables and graphs 5.2.3.1.1.a-e.

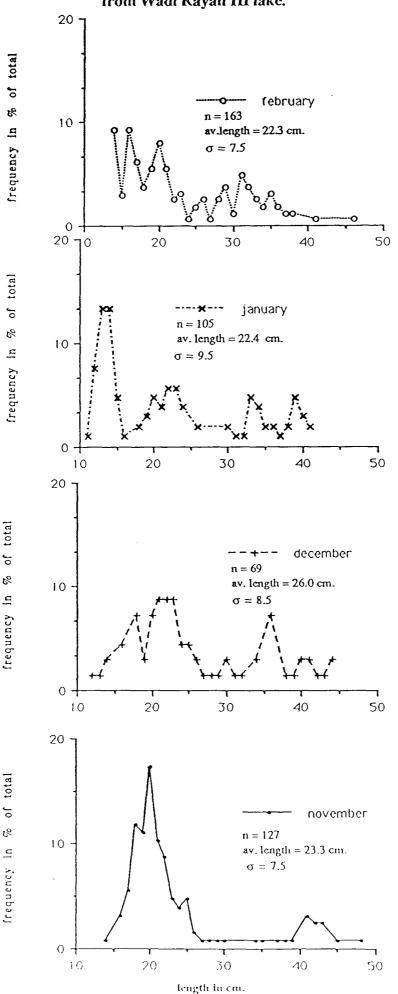
From these data it is possible to differentiate 4 year classes for each species. Table 5.2.3.1.1.f. shows the average length per year class and the percentage of the total catch per year class for the species. Most of the tilapia caught, are from year class A and B.


When we compare year class A etc with the average length per year class given in the IOF report than year class A corresponds with year class III. This would mean that either year class I and II are too small to be caught with the gear used or that the living conditions in lake Qarun are that marginal that the fish is stunted in their growth. Even if we assume that the length measurements taken by the IOF are standard length, while during this study total length was used, which makes a difference of about 20 %, the IOF values are much lower than the results of the present Wadi Rayan study. There is not much difference between the length distribution of the two Wadi Rayan lakes. *Oreochromis niloticus* are the biggest of the tilapias and *Tilapia zillii* are the smallest.

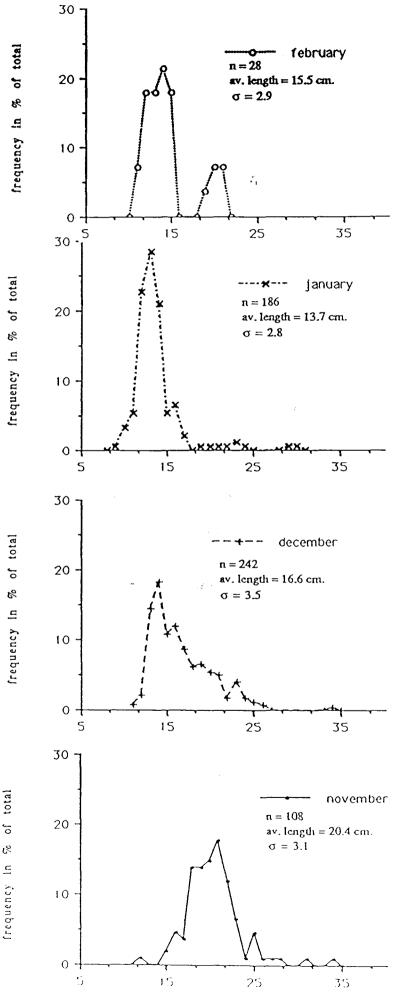

Table 5.2.3.1.1.f.

Average length per year class and (%) in total catch for each of the Tilapia species from Wadi Rayan III lake, compared with data from IOF


Oreochromis niloticus O.aureus Sarotherodon galilaea Tilapia zillii	Year class A 14.5 (24.4) 15.1 (58.7) 12.6 (46.2) 13.8 (63.9)	Year class B 21.0 (49.6) 19.7 (23.2) 19.3 (48.7) 20.2 (32.5)	Year class C 32.3 (17.0) 25.0 (15.5) 26.8 (4.6) 26.1 (3.3)	Year class D 40.7 (9.1) 30.1 (2.6) 32.0 (.5) 34.0 (.4)	average(nr) 23.1 (464) 18.1 (271) 16.6 (435) 16.4 (570)
IOF data	Y cl I	Y. cl.II	Y. cl. III	Y. cl. IV	average(nr)
O.niloticus	8.2 (44.0)	10.6 (28.3)	14.1 (18.7)	19.1 (9.0)	11.0 (166)
T. zillii	9.5 (32,7)	12.7 (27.3)	15.5 (21.3)	20.3 (18.8)	13.7 (352)



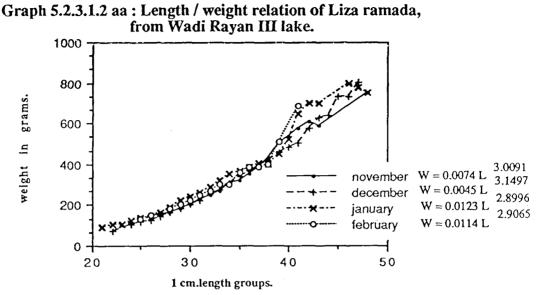
Graph 5.2.3.1.1 b : Length frequency of Oreochromis aureus, from Wadi Rayan III lake.



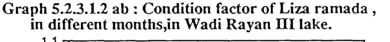
length In cm.

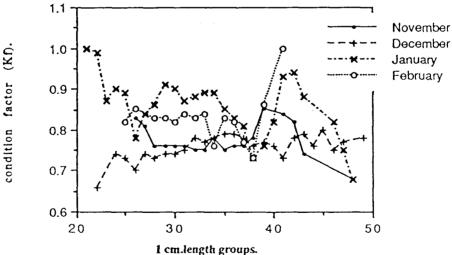
Graph 5.2.3.1.1 c : Length frequency of Sarotherodon galilaea, from Wadi Rayan III lake.

Graph 5.2.3.1.1 d : Length frequency of Oreochromis niloticus, from Wadi Rayan III lake.

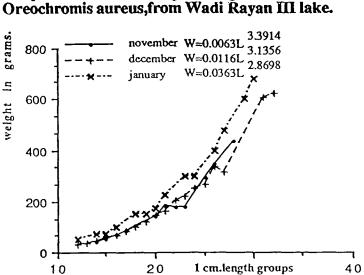


length la cm.

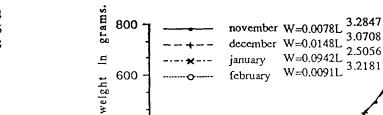

Graph 5.2.3.1.1 e : Length frequency of Tilapia zillii, from Wadi Rayan III lake.

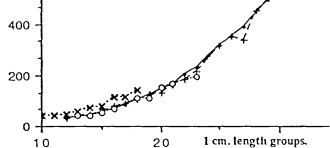

5.2.3.1.2. Length/weight relation

The length/weight relation for Liza ramada is presented in graph and table 5.2.3.1.2.aa.



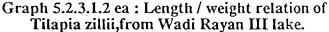
When the data are compared with those from Wadi Rayan I than it appears that the Kf values of the Wadi Rayan III fishes are lower than those of Wadi Rayan I. Except for the values of February, for which at the moment no explanation can be found. The lower Kf is most likely caused by the poorer living conditions in Wadi Rayan III, much less food available (see chapter or plankton), graph 5.2.3.1.2 ab.

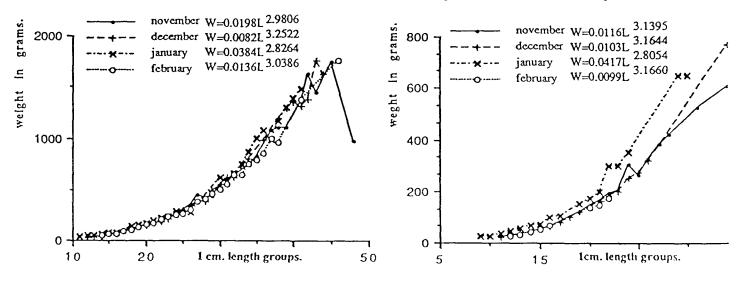


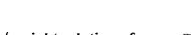

Length/weight relations for the tilapia species are given in tables 5.2.3.1.2.b-e and graphs 5.2.3.1.2 ba-ea. Here are the data from January unacceptable, which proves that it will be necessary to have qualified and trained people to collect the statistical data.(see chapter 5.2.2.1.2.)

Graph 5.2.3.1.2 ba : Length / weight relation of

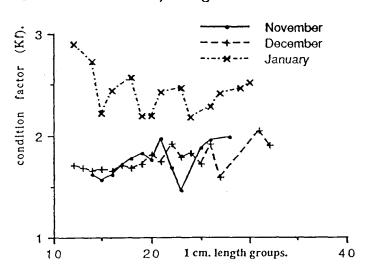
Graph 5.2.3.1.2 da : Length / weight relation of Oreochromis niloticus, from Wadi Rayan III lake.

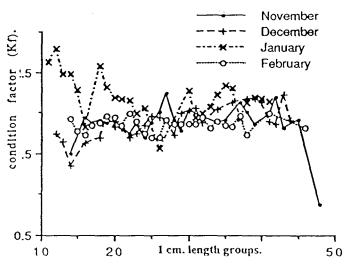




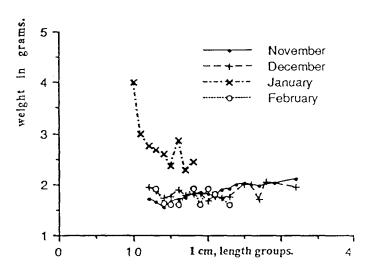

Graph 5.2.3.1.2 ca : Length / weight relation of

Sarotherodon galilaea, from Wadi Rayan III lake

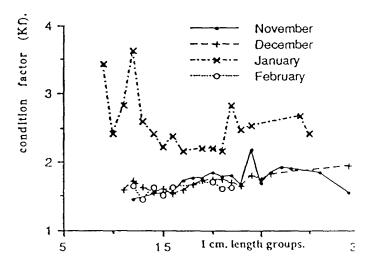

3.2847



Here too the Kf values are lower than those found in Wadi Rayan I except for Oreochromis niloticus which seem to thrive in this lake.(table 5.2.3.1.2.f) Graphs 5.2.3.1.2 bb-eb show the Kf values of the four tilapia species



Graph 5.2.3.1.2 bb : Condition factor of Oreochromis aureus, during different months.


Graph 5.2.3.1.2 db : Condition factor of Oreochromis niloticus, during different months.

Graph 5.2.3.1.2 cb : Condition factor of Sarotherodon galilaea, during different months.

Graph 5.2.3.1.2 eb : Condition factor of Tilapia zillii,during different months.

5.2.3.1.3. Mullet fry transport

From the 8 830 000 fry that have been transported to Wadi Rayan III, 5 800 000 have been released in an earthen pond of about 1/4 ha. Even when we consider that only 20 % of this number is the actual number released, this amount is too high for the size of the pond. From regular visits to the pond it became obvious that the survival rate in the pond was very low, but there are no exact figures to prove this.

3 000 000 fry have been transplanted into an enclosure in the lake. But due to bad construction of this enclosure the fry escaped directly into the lake.

The first mullet fry was officially released in 1983 but from the statistics it is clear that mullet has arrived in the lake through the canal from Wadi Rayan I lake.Officially in 1986 6 000 000 and in 1987 7 500 000 fry were released into the lake.

According to the fishermen there seems to be spawning of mullet in the lake. This might be an error as young silversides were shown to us, as being mullet fry. But it still would be advisable to study this statement, and if the mullets spawn, try to figure why this happens here.

It might be that ripe mullets from Wadi Rayan I come into Wadi Rayan III where the difference in salinity, the depth of the water and the temperature are enough to trigger of the spawning.

Beside the mullet fry one other fish has been introduced in the lake, in 1986 1/2 million grass carp were released.

5.2.3.2. Plankton

5.2.3.2.1. 280 µ samples

In general the plankton samples caught, were poor to very poor and the material obtained from the $280 \,\mu$ net was mainly terrestrial and blue green algae of the genus Lyngbya and/or Oscillatoria. There seems to be an increase of zooplankton through the time, with a maximum in spring (see map 4.2.3.2.1.b.).

5.2.3.2.2. 60 μ samples

From table 4.2.3.2.2.a. it can be seen that here too the blue green algae are the main group of plankton organisms, 84 to 94% of the total number of plankton belongs to this group. The main order is that of the *Chroococcales* and the main genus is *Polycystis*.

Zooplankton forms about 5% of the total catch and the main group is the *Rotifera* with the main genus *Keratella*..Cladocerans are hardly found (see table 4.2.3.2.2.b and graphs 4.2.3.2.2 a-b).

The northern and south western part seem to be the most productive areas of the lake (table 4.2.3.2.2.c. and maps 4.2.3.2.2.c.I and II). For spring there are no figures available per station.

The most productive season is autumn. This goes for phytoplankton as well as for zooplankton. Summer is the poorest season.

5.2.4. El Gameel

From the results of the experiment with the stocking prior to transportation the following observations can be made:

- a. A constant water flow through a 1/2 inch tap provides enough oxygen to sustain 25 000 fry in a 1.5 m^3 tank for a longer period.
- b. Regular checking of the flow system is needed, because of possible clogging of the system.
- c. Regular cleaning of the bottom of the tanks will be necessary in order to prevent a build up of possible toxic rotting material.
- d. Greater numbers of fry (up to about 50 000) can be kept in the tanks when they are aerated with compressed air.
- e. The collection of fry, from the storage tanks, for further transport ,proved to be rather complicated.
- f. The mortality of the fry proved to be very low. There were 160 dead fry out of the 53 000 fry stored for 20 -72 hours (0.3 % mortality).

During the transport of fry, from El Gameel to lake Qarun, in tanks with about 750 l water, the mortality was negligible, between 0 and 1.4 %. From the results of the experiment with different stocking rates during transportation from El Gameel to lake Qarun it can be seen that the mortality is very low even with the highest stocking densities. There seems to be no need for aeration during the 7 hours trip. With aeration probably higher numbers can be transported.

5.2.5. Fish species caught in the Wadi Rayan lakes.

	Scientific name	English name	Local name
1.	Oreochromis niloticus (L)	tilapia	boulti abied *
2.	O. aureus (Steindacher)	**	boulti *
3.	Sarotherodon galilaeus (L)	1 1	boulti mawlawi
4.	Tilapia zillii Gervais	**	boulti akhdar *
5.	Cyprinus carpio (L)	common carp	?
6.	Ctenopharyngodon idella (Valerencianes)		?
7.	Labeo nilotica Forskal	nile carp	?
8.	Barbus bynni Forskal	barbel	?
9.	Sardinella ssp.	sardinella	raya
10.	Mugil cephalus L.	flathead grey mullet	bouri **
11.	Liza ramada (Risso)	thinlip grey mullet	tobar **
12.	Liza aurata (Risso)	golden grey mullet	halili **
13.	Atherina boyeri (Risso) = A. mochon	silverside	bisaria
14.	Atherina ssp.	11	**
15.	Aphanius dispar (Rüppell)	tooth carp	?
16.	A. fasciatus Nando	11	?
17.	<i>Clarias gariepinus</i> (Burchell) = C. lazera	sharptoothed catfish	?
18.	Bagrus bayad (Forskal)	catfish	bayad
<u>19</u> .	B. docmac (Forskal)	17	11
20.	Bagrus ssp.	**	11
21.	Synodontis schall (Block)	?	?
22.	Dicentrarchus labrax (L)	European seabass	karus
23.	D. punctatus (Block)	spotted seabass	11
24.	Sparus auratus (L)	gilthead seabream	denis
25.	Hemiramphus far (Forskal)	halfbeak	abu mingar
	Lates niloticus (L)	nile perch	laffash
27.	Haplochromis ssp.	cichlid	?
5.2.6			
<u>J.2.0</u>	Fish species caught in lake Qarun		
	Scientific name	English name	Local name
1.	Solea aegyptiaca Chabanaud	Egyptian sole	samak musa
2.	Mugil cephalus L.	flathead grey mullet	bouri **
3.	Liza ramada (Risso)	thinlip grey mullet	tobar **
4.	L. aurata (Risso)	golden grey mullet	halili **
5.	L. saliens (Risso)	leaping grey mullet	garan **
6.	Tilapia zillii Gervais	tilapia	boutli akhdar *
7.	Oreochromis niloticus (L.)	••••••••••••••••••••••••••••••••••••••	boulti abied *
8.	O. aureus (Steindacher)	**	boulti *
9.	Dicentrarchus labrax (L.)	European seabass	karus
10.	Sparus auratus L.	gilthead seabream	denis
11.	Anguila anguila L.	cel	hanesh
12.	Atherina boyeri ((Risso) = A. mochon	silverside	bisaria
13.	Gobius ssp.	goby	abu kirsh
14.	Hemiramphus far (Forskal)	half beak	abu mingar
	erally no distinction between the species al		ava minga
	nerally no distinction between species big		small ones tobar

** generally no distinction between species, big fish are called bouri and small ones tobar

5.2.7 Shrimp species found in lake Qarun (source Ishak et al 1980)

1. Penaeus keraturus (Forskal) triple grooved shrimp

2.	P. japonicus	kuruma prawn	41
3.	Metapenaeus monoceros	speckled shrimp	11
4.	M. stebbingi	peregrine shrimp	41

6. REFERENCES

	Baluyut,E.A.,1983	Stocking and introduction of fish in lakes and reservoirs in the ASEAN countries. FAO Fish.Tech.Pap. (236) 82 p.
	D.R.I. 1987.	The Salt Balance of Lake Qarun. FWSB technical note No 1, pp 58 + 7 annex.
	D.R.I. 1987.	Monthly Water balances of the Fayoum depression. FWSB technical note 12 (draft), pp 25 + 3 annex.
	D.R.I. 1987	The salt Balance of Lake Qarun FWSB technical note No 21, 5p
	El Zarka, S., 1963.	Acclimatization of Solea vulgaris (Linn.) in Lake Qarun, Egypt. J. Cons. perm. int. Explor. Mer, 28 (1) 126-136.
. •	El Zarka, S., 1968.	Rehabilitation of the fisheries of an inland saline lake in the United Arab Republic. Stud. Rev. Gen. Fish Counc. Medit., 35: 21-43.
	El Zarka, S. and H.M.	El Sedfy, 1970. The biology and fishery of <i>Mugil saliens</i> (Risso) in Lake Qarun U.A.R. Bull. Inst. Ocean. Fish, 1: 1-26.
	Faouzi, H., 1936.	Successful stocking of Lake Qarun with Mullets (<i>Mugil cephalus</i> Linn.) and (<i>M. capito</i> Cuv. & Val.) from the Mediterranean sea. Int. Rev. ges. Hydrobiol. 33, (5/6) 434-9.
	Fonds,M. 1975	The influence of temperature and salinity on growth of young sole, Solea solea L. 10 th.EMBS Vol 1 p.109-125.
	I.O.F., 1984.	Investigation of level and effects of pollutants in saline lakes and littoral marine environments Inland waters Lake Qarun studies. Report No IV, p 200.
	Ishak, M.M. and S.A.	Abdel Malek, 1980. Some ecological aspects of Lake Qarun, Fayoum, Egypt.Part 1. Physio-chemical environment.

Hydrobiologia, 74: 173-178.

Ishak, M.M., A.A. Alsayes and F.A. Abdel Razek, 1980. Bionomics of *Penaeus kerathurus* transplanted into Lake Qarun, Egypt. Aquaculture, 21: 365-374.

Ishak, M.M., S.A. Abdel Malek and M.M. Shafik, 1982. Development of Mullet fisheries (Mugilidae) in Lake Qarun, Egypt. Aquaculture, 27: 251-260.

Meshal,Amin H. 1977 The problem of the salinity increase in lake Qarun (Egypt) and a proposed solution. J.Cons.int.Explor.Mer,37(2) : 137-143.

Oren, O.H. (Edit) 1981. Aquaculture of Grey Mullets. I.B.P. 26,Cambridge Univ. Press., 507 p.

Pullin, R.S.V. and R.H. Lowe - Mc. Connell (ed) 1982. The Biology and Culture of Tilapias. ICLARM Conference Proceedings 7, 432 p.

Roest, C.W.J. 1983.	Mannual, short term measurements programme Inst. for land and
	water management research.
	Reuse of drainage water project report. 1, p. 89 + 8 annex.

- Ryder,R.A.et al,1974 The morpho edaphic index,a fish yield estimator-review and evaluation" J.Fish.Res.Board.Canada Vol 31 no 5 p663-688.
- Sadek, Sherif 1984 Developpement de l'aquaculture en Egypte-Référence à la ferme de Reswa (Port Said). thesis 120p.
- Streble,H. 1985 Das Leben im Wassertropfen:Microflora und microfauna des Süsswasers. Kosmos, Naturführer.

White-Young & Partners (1975-76). Exploitation of salts from Lake Qarun. El Nasr Salines Co., Egypt. Appendix I : Tables.

Table 4.1.1. Lake Qarun. Limnological features during different seasons at various depths

Average DO in % saturation													
	Surf	1	2	3	4	5	6	7	8				
Summer	117	112	104	99	90	63	82	46	45				
Autumn	103	102	101	102	102	102	100	96	-				
Winter	106	107	104	101	101	93	93	85	84				
Spring	97	94	93	91	89	90	91	92	-				
Average	Average temperature in .C												
	Surf	1	2	3	4	5	6	7	8				
Summer	29.2	28.2	27.3	26.9	26.8	25.6	26	25.4	24.7				
Autumn	17.8	17.8	17.8	17.8	18.1	18.4	18.6	18.6	-				
Winter	15	14.9	14.6	14.6	14.5	14.6	14.4	14.3	14.2				
Spring	18.7	18.6	18.5	18.4	18.6	19.5	19.3	19.3	-				

Average Ec in mS/cm

	Surf	1	3	5
Summer	40.7	41.3	41.9	42.3
Autumn	43.0	43.6	44.5	45.2
Winter	40.1	40.2	40.7	41.1
Spring	38.0	38.4	38.6	38.7

Ec measurements by date, lake level, TDS (= Ec x 0.808) and total salt load

Date	nr	Ec	lake level	TDS gr/l	total salt load of the lake x106 ton
22/23-VI	39	41.3	-43.35	33.4	38.724
27-VII	4	42.9	-43.51	34.7	38.271
13-VIII	1	43.0	-43.60	34.8	37.401
5- X	2	43.3	-43.75	35	38.027
10/11-XI	34	43.8	-43.68	35.4	36.422
28-XII	7	42.2	-43.34	34.1	38.806
7/10-II	41	40.0	-43.23	32.4	37.749
4/12-IV	21	38.4	-43.1	31	38.006

	Transparency in m.	Air temp.
Summer	0.75	35.7
Autumn	1.3	20.9
Winter	0.6	16.1
Spring	0.56	24.7

Lake Qarun 2.

Table 4.1.1.a.

Lake Qarun 22/23-VI-87

D.O. in % sa	aturation
--------------	-----------

Station	Surface	1	2	3	4	5	6	7	8	Bottom	Depth in m	
I	94	96	2	2		2	Ŭ		-	98	1.2	0.28
2	127	106	97	92*						92	2.5	0.55
3	110	115	110*							110	2.0	0.40
4	133	116	75							26	2.3	0.90
5	121	115	108	99	90*					90	3.7	0.60
6	118	125	116	103	91	35*				35	4.5	1.10
7	110	108	106	100	92	84	80	33*		33	6.5	0.98
8	120	117	112	102	94	51				48	5.1	0.95
9	112	106	103	89	74	58				43	5.3	0.70
10	136	130	120	114	100	88	83	58	45*	45	7.5	1.00
11	101	98	96	95*						95	3.0	0.80
Average	117	112	104	99	90	63	82	46	45			0.75

Temperature in oC .

Air temp.

Transparency

1	29.3	29.3							29.3	1.2	32.0
2	27.9	27.8 26.	8 26.6*						26.6	2.5	34.0
3	28.5	28.4 28.	2*						28.2	2.0	36.0
4	27.6	27.3 26.	3						26.0	2.3	29.9
5	28.3	28.3 27.	9 27.4	26.5*					26.5	3.7	-
6	32.0	28.4 27.	0 26.7	26.3	25.7	k			25.7	4.5	41.3
7	31.9	28.2 27.	4 27.1	26.8	26.8	26.8	25.9*		25.9	6.5	37.3
8	31.4	28.9 28.	3 27.9	27.8	24.9				24.9	5.1	38.3
9	30.1	29.3 28.	0 27.6	26.2	25.6				25	5.3	39.8
10	28.0	27.8 26.	3 25.8	25.7	25.2	25.2	24.9	24.7*	24.7	7.5	35.5
11	26.5	26.5 26.	5 26.4*						26.4	3.0	33.0
Average	29.2	28.2 27.	3 26.9	26.8	25.6	26.0	25.4	24.7			

Ec in mS/cm

Station	Surface	1	3	5	Bottom	Depth in m	Aver. Ec/station
1	41.6	41.7*	-	-	41.7	1.2	41.7
2	41.0	41.5	41.7*	-	41.7	2.5	41.4
3	39.7	39.8		-	39.8	2.0	39.8
4	36.0	38.9	-	-	39.6	2.3	38.2
5	41.1	41.1	-	41.7*	41.7	3.7	41.3
6	41.1	41.7	42.0	42.0*	42.0	4.5	41.7
7	41.3	41.7	41.9	41.9	42.0	6.5	41.8
8	41.2	41.5	41.9	42.4*	42.4	5.1	41.8
9	41.4	42.0	42.2	42.8*	42.8	5.3	42.1
10	41.9	42.0	42.2	42.2	42.3	7.5	42.1
11	41.6	41.7	41.5*	-	41.5	3.0	41.6
Average	40.7	41.3	41.9	42.3			

Average 40.7 41.3 41.9Average of all measurements 41.3 (n = 39)

* are bottom values.

Lake Qarun 3.

Transparency

Table 4.1.1.b.

Autumn 9/12-XI-88

D.O. in % saturation

Station	Surface	1	2	3	4	5	6	7	8	Bottom	Depth in m	
1	90											
2	97	96	96							96	2.1	0.74
3	99	97	97	97*						97	2.5	0.5
4	108	103	99*							99	2	0.75
5	104	102	102	96	96*					96	3.5	-
6	112	108	108	108	107	104*				104	4.7	1.6
7	106	105	104	102	102	104*				104	4.5	2
8	105	104	104	104	106*					106	3.5	1.3
9	110	107	103	107						109	3.3	2.35
10	103	100	100	100	100	99	100	96*		96	6.9	-
11	100	99	99	98						100	3.1	1.05
Average	103	102	101	102	102	102	100	96				1.29

.

Temperature in oC Air temp.

Station	Surface	1	2	3	4	5	6	7	Bottom Depth in m	
1	17.1								•	21.0
2	17.0	17.0	17.0						17.0 2.	.1 18.5
3	16.8	16.8	16.7	16.7*					16.7 2.	.5 20.0
4	18.1	17.6	16.8*						17.8 2.	.0 20.0
5	17.6	17.6	17.6	17.5	17.5*				17.5 2	.5 21.0
6	18.9	18.9	18.9	18.8	18.7	18.7*			18.7 4.	.7 22.0
7	18.4	18.4	18.4	18.2	17.9	17.9*			17.9 4.	.5 23.0
8	17.8	17.7	17.4	17.6	17.6*				17.6 3.	.5 22.0
9	18.0	18.0	17.9	17.9					17.9 3.	.3 21.0
10	18.6	18.6	18.6	18.6	18.6	18.6	18.6	18.6*	18.6 6.	.9 20.0
11	17.5	17.4	17.4	17.4					17.4 3.	.1 21.5
Average	17.8	17.8	17.8	17.8	18.1	18.4	18.6	18.6		20.9

Ec in mS/cm

Station	Surface	1	3	5	Bottom	Depth in m	Aver.Ec/station
1	2.5					•	2.5
2	41.0	41.9			42.0	2.1	41.6
3	39.6	39.6	40.3*		40.3	2.5	39.8
4	40.2	43.8			44.4	2.0	42.8
5	43.0	43.0	44.7*		44.7	3.5	43.6
6	45.5	45.5	45.5	45.5*	45.5	4.7	45.5
7	44.6	44.6	44.7	44.9*	44.9	4.5	44.7
8	41.0	42.0	44.9*		44.9	3.5	42.6
9	45.5	45.6	45.5*		45.5	3.3	45.5
10	45.4	45.3	45.3	45.3	45.4	6.9	45.3
11	44.5	44.6	44.6*		44.6	3.1	44.6
Average	43.0	43.6	44.5	45.2		-	

Average of all measurements station 1 excluded 43.8 (n = 34) * are bottom values

Lake Qarun 4.

Table 4.1.1.c

Winter. 7/10-II-88

D.O. in % saturation

Transparency

Station	Surface	1	2	3	4	5	6	7	8	Bottom	Depth in m.	
1	109	110*	-	_						110	.1	0.4
2	114	111	100	94*						94	2.6	0.55
3	103	102	100*							100	2	0.55
4	95	125	106*							106	1.9	0.4
5	112	113	113	109	104*					104	4	0.5
6	102	100	99	92	88					83	4.3	0.7
7	108	106	106	103	103	101	97	80		78	7.2	0.8
8	109	109	110	109	109	73*				73	5	0.65
9	106	105	106	105	104	103	89*			89	5.5	0.75
10	101	96	96	94	94	93	92	89	84	82	8.4	0.85
11	104	103	102	103	102*					102	3.7	0.5
Average	106	107	104	101	101	93	93	85	84			0.6
Tempera	ature oC	ц -										Air temp.
1	16.6	16.1*								16.1	1.0	17.5
2	15.4	15.3	14.6	14.6*						14.6	2.6	16.0
3	14.7	14.7	14.5*							14.5	2.0	16.0
4	14.8	14.4	14.3*							14.3	1.9	15.0
5	14.4	14.4	14.3	14.3	14.3*					14.3	4.0	15.5
6	14.6	14.6	14.5	14.3	14.0					13.9	4.3	19.0
7	15.0	14.9	14.8	14.7	14.7	14.6	14.4	14.2		14.2	7.2	-
8	15.6	15.6	15.4	15.3	15.2	14.5*				14.5	5.0	16.0

			1 110	* * * * *								
8	15.6	15.6	15.4	15.3	15.2	14.5	*			14.5	5.0	16.0
9	15.3	15.2	15.2	15.2	15.1	15.0	14.5*			14.5	5.5	16.0
10	14.7	14.6	14.5	14.5	14.4	14.4	14.3	14.3	14.2	14.2	8.4	16.0
11				14.0						13.9	3.7	14.0
Average	15.0	14.9	14.6	14.6	14.5	14.6	14.4	14.3	14.2			16.1
B-												

Ec in mS/cm

Station	Surface	1	3	5	Bottom	Depth in m	Aver.Ec/station
- 1	39.6	40.0*			40	- 1	39.8
2	39.5	39.8	40.4*		40.4	2.6	39.9
3	39.0	39.1			39	2	39.0
4	25.5	39.5			39.7	1.9	34.9
5	39.7	39.7	40.0		40.1	4	39.9
6	40.2	40.6	41.0		40.8	4.3	40.7
7	40.8	40.9	40.9	40.9	40.9	7.2	40.9
8	40.9	40.9	40.9	41.2*	41.2	5	41.0
9	41.4	41.4	41.4	41.5*	41.5	5.5	41.4
10	40.6	40.8	40.8	40.9	40.9	8.4	40.8
11	39.6	39.8	39.9		39.9	3.7	39.8
Average4	40.1						

Average.-4 40.1 average +4 38.8 40.2 40.7 41.1

Average of all measurements: - surface st 4.40.4 (n = 40) + surface st 440.0 (n = 41)

* are bottom values.

Lake Qarun 5.

Table 4.1.1.d.

Spring 6/12-IV-88

DO in	% satura	tion									T	ransparency
Station	Surface	1	2	3	4	5	6	7	8	Bottom	Depth in m	
1	-											-
2	102	96	97	95*						95	2.5	0.5
3	-											-
4	98	96	94	83*						83	2.8	0.5
5	98	97	95	91	82*					82	3.6	0.45
6	89	89	89	89	89	88				86	5.1	0.65
7	-											-
8	-											-
9	-											-
10	93	89	90	90	91	92	91	92*		92	7.1	0.6
11	100	96	95	95	94*					94	3.6	0.65
Average	97	94	93	91	89	90	91	92				0.56
-												

Temperature in oC

1												
2	18.4	18.4	18.1	18.1*					18.1	2.5	2.5	
3	-										-	
4	18.1	17.9	17.8	17.7*					17.7	2.8	27	
5	18.5	18.5	18.3	18.2	17.9*				17.9	3.6	25	
6	19.7	19.7	19.7	19.6	19.6	19.6			18.5	5.1	21	
7	-										-	
8	-										-	
9	-										-	
10	19.5	19.4	19.4	19.4	19.3	19.3	19.3	19.3*	19.3	7.1	23	
11	18.0	17.8	17.6	17.6	17.5*				17.5	3.6	27	
Average	18.7	18.6	18.5	18.4	18.6	19.5	19.3	19.3			24.7	

Ec in mS/cm

Station	Surface	1	3	5	Bottom	Depth in m	Aver.Ec/station
1	-					-	
2	37.6	37.6	37.7*		37.7	2.5	37.6
3	-						
4	37.5	38.0	38.8*		38.8	2.8	38.1
5	38.7	38.9	39.4*		39.4	3.6	39.0
6	38.6	38.9	39	39.0*	39	5.1	38.9
7	-						
8	-						
9	-						
10	36.8	37.9	38.1	38.3	38.4	7.1	37.9
11	39.0	39.1	39.1*		39.1	3.6	39.1
Average	38.0	38.4	38.6	38.7	38.7		
Average fo	or all measu	rements 3	8 A (n - 21)				

Average for all measurements 38.4 (n = 21) * is value for bottom.

Air temp.

Table	4.1	.1.1.a.					
D.O. in	%	saturation	at	surface	and	(1	m)

Station	Summer	Autumn	Winter	Spring
1	94 (96)	90 (-)	109 (110)	
2	127 (106)	97 (96)	114 (111)	102 (96)
3	110 (115)	99 (97)	103 (102)	
4	133 (116)	108 (103)	95 (125)	98 (96)
5	121 (115)	104 (102)	112 (113)	98 (97)
6	118 (125)	112 (108)	102 (100)	89 (8)
7	110 (108)	106 (105)	108 (106)	
8	120 (117)	105 (104)	109 (109)	
9	112 (106)	110 (107)	106 (105)	
10	136 (130)	103 (100)	101 (96)	93 (89)
11	101 (98)	100 (99)	104 (103)	100 (96)
Average	117 (112)	103 (102)	106 (107)	97 (94)

Table 4.1.1.2.a.

Temperature in ^oC at surface and (1 m)

Station	Summer	Autumn	Winter	Spring
1	29.3 (29.3)	17.1 (-)	16.6 (16.1)	
2	27.9 (27.8)	17.0 (17.0)	15.4 (15.3)	18.4 (18.4)
3	28.5 (28.4)	16.8 (16.8)	14.7 (14.7)	
4	27.6 (27.3)	18.1 (17.6)	14.8 (14.4)	18.1 (17.9)
5	28.3 (28.3)	17.6 (17.6)	14.4 (14.4)	18.5 (18.5)
6	32.0 (28.4)	18.9 (18.9)	14.6 (14.6)	19.7 (19.7)
7	31.9 (28.2)	18.4 (18.4)	15.0 (14.9)	
8	31.4 (28.9)	17.8 (17.7)	15.6 (15.6)	
9	30.1 (29.3)	18.0 (18.0)	15.3 (15.2)	
10	28.0 (27.8)	18.6 (18.6)	14.7 (14.6)	19.5 (19.4)
11	26.5 (26.5)	17.5 (17.4)	14.1 (14.1)	18.0 17.8)
Greatest differ	5.5 (2.8)	2.1 (2.1)	2.5 (2.0)	1.7 (1.9)
Average	29.2 (28.2)	17.8 (17.8)	15.0 (14.9)	18.7 (18.6)
σ _n	1.8 (.8)	.6 (.6)	.7 (.6)	.7 (.7)

Table4.1.1.2.c.Average temperature decrease per m/station (rank order)

Station	Summer	Autumn	Winter	Spring	Average
1	0.00 (11)	-	0.50 (1)	-	.25
2	.52 (6)	0.00 (9)	.31 (2)	.12 (4)	.24
3	.15 (9)	.04 (6)	.10 (8)	-	.10
4	.57 (5)	.15 (1)	.26 (3)	.14 (2)	.28
5	.49 (7)	.08 (4)	.03 (11)	.17 (1)	.19
6	1.40 (1)	.09 (3)	.14 (6)	.02 (6)	.41
7	.92 (3)	.11 (2)	.11 (7)	-	.38
8	1.27 (2)	.06 (5)	.22 (4)	-	.52
9	.85 (4)	.03 (7)	.15 (5)	-	.38
10	.44 (8)	0.0 (9)	.06 (9)	.03 (5)	.13
i 1	.03 (10)	.03 (7)	.05 (10)	.14 (2)	.06

Table	4.1.1.3.a.									
Ec in r	nS/cm.per	season	and	per	station	at	surface	and	(1	m)

	Summer	Autumn	Winter	Spring
1	41.6 (41.7)	2.5 (-)	39.6 (40.0)	-
2	41.0 (41.5)	41.0 (41.9)	39.5 (39.9)	37.6 (37.6)
3	39.7 (39.8)	39.6 (39.6)	39.0 (39.1)	-
4	36.0 (38.9)	40.2 (43.8)	25.5 (39.5)	37.6 (38.0)
5	41.1 (41.1)	43.0 (43.0)	39.7 (39.7)	38.7 (38.9)
6	41.1 (41.7)	45.5 (45.5)	40.2 (40.6)	38.6 (38.9)
7	41.3 (41.7)	44.6 (44.6)	40.8 (40.9)	-
8	41.2 (41.5)	41.0 (42.0)	40.9 (40.9)	-
9	41.4 (42.0)	45.5 (45.6)	41.4 (41.4)	-
10	41.9 (42.0)	45.4 (45.3)	40.6 (40.8)	36.8 (37.9)
11	41.6 (41.7)	45.5 (44.6)	39.6 (39.8)	39.0 (39.1)
average	40.7 (41.3)	43.0 (43.6)	40.1 (40.2)	38.0 (38.4)

Table 4.1.1.3.b.Ec/season/station (average of all measurements per station)

Station	Summer	Autumn	Winter	Spring	average minus
					spring
1	41.7	2.5	39.8	-	28.0
2	41.4	41.6	39.9	37.6	41.0
3	39.8	39.8	39.0	-	39.5
4	38.2	42.8	34.9	38.1	38.6
5	41.3	43.6	39.9	39.0	41.6
6	41.7	45.5	40.7	38.9	42.6
7	41.8	44.7	40.9	-	42.5
8	41.8	42.6	41.0	-	41.8
9	42.1	45.5	41.4	-	43.0
10	42.1	45.3	40.8	37.9	42.7
11	41.6	44.6	39.8	39.1	42.0
Average	41.3	43.8	40.0	38.4	41.7

Table 4.1.1.3.c. The maximal differences between Ec levels at the different stations and (depth)

	S	ummer	А	utumn	W	/inter	SI	pring
1	. 1	(1.2)			.4	(1.0)		
2	.7	(2.5)	1.0	(2.1)	.9	(2.6)	.1	(2.5)
3	.1	(2.0)	.7	(2.5)	.1	(2.0)		
4	3.6	(2.3)	4.2	(2.0)	4.0	(1.9)	1.3	(2.8)
5	.6	(3.7)	1.7	(3.5)	.4	(4.0)	.7	(3.6)
6	.9	(7.5)	.0	(4.7)	.8	(4.3)	.4	(5.1)
7	.7	(6.5)	.3	(4.5)	.1	(7.2)		
8	1.2	(5.1)	3.9	(3.5)	.3	(5.0)		
9	1.4	(5.3)	.1	(3.3)	.1	(5.5)		
10	.4	(7.5)	.1	(6.9)	.3	(8.4)	1.5	(7.1)
11	.2	(3.0)	.1	(3.1)	.3	(3.7)	.1	(3.6)

۰.

Table4.1.1.4.AveragepH (range)

	Summer	Autumn	Winter	Spring	
1	8.5 (-)	- (-)	8.4 (-)	-	
2	8.0 (-)	8.3 (-)	8.3 (8.3- 8.4)	-	
3	8.5 (-)	8.0 (-)	8.3 (-)	-	
4	8.3 (8.2-8.4)	- (-)	8.2 (8.1-8.3)	-	
5	8.0 (-)	7.5* (-)	8.3 (8.1-8.4)	-	
6	8.4 (8.3-8.4)	- (-)	8.3 (-)	-	
7	8.4 (8.3-8.4)	- (-)	8.3 (-)	-	
8	8.4 (8.3-8.4)	8.4 (8.3-8.5)	8.4 (8.3-8.4)	-	
9	8.4 (8.3-8.4)	- (-)	8.4 (8.3-8.4)	-	
10	8.4 (-)	- (-)	8.4 (8.3-8.4)	-	
11	8.0 (-)	- (-)	8.5 (8.4-8.5)	-	
average	8.3	8.2	8.3	-	

* measured with pH paper

Table 4.1.1.5. Transparency at various stations during different seasons, in cm.

Station	Summer	Autumn	Winter	Spring
1	28	-	40	-
2	55	75	55	50
3	40	50	55	-
4	90	75	40	50
5	60	-	50	45
6	110	160	70	65
7	98	200	80	-
8	95	130	65	-
9	70	235	75	-
10	100	-	85	60
11	80	105	50	65
Average	75	129	60	56

Table 4.1.1.6.

÷.

Air temperatures in 'C at various stations per seasons (time)

	Summer	Autumn	Winter	Spring
1	32.0 (16.55)	21.0 (08.50)	17.5 (15.15)	
2	34.0 (13.15)	18.5 (10.15)	16.0 (12.10)	25.0 (10.30)
3	36.0 (14.10)	20.0 (11.50)	14.0 (11.40)	- (-)
4	29.9 (9.25)	20.0 (14.55)	15.0 (-)	27.0 (12.20)
5	- (14.30)	21.0 (12.35)	15.5 (11.15)	25.0 (12.55)
6	41.3 (15.00)	22.0 (16.00)	19.0 (10.30)	21.0 (10.05)
7	37.3 (14.10)	23.0 (14.00)	- (12.00)	- (-)
8	38.3 (13.15)	22.0 (13.20)	16.0 (12.40)	- (-)
9	39.8 (12.15)	21.0 (12.20)	16.0 (13.20)	- (-)
10	35.5 (15.45)	20.0 (16.40)	16.0 (11.15)	23.0 (09.30)
11	33.0 (15.55)	21.5 (14.10)	14.0 (10.00)	27.0 (11.50)
Average	35.7	20.9	16.1	24.7

•

Table 4.2.1.1.

Fish and shrimp production of lake Qarun in tons.

fishing seasons	Mullets	Tilapias	Soles	other fish	shrimp	total catch	source
1921	-	1478.1	-	64.9	-	1543.0	Faouzi '36
22	-	2645.9	_	51.9	-	2697.8	
23	_	1069.9	-	37.9	-	1107.8	••
24	_	1526.7	-	20.3	-	1547.0	
24	_	2576.6	-	25.1	-	2601.7	••
26	-	2649.6	_	13.1	-	2662.7	••
27	_	5026.1	-	13.3	-	5039.4	••
28	-	2521.4	-	23.1	-	2544.5	••
29	.2	474.8	-	8.0	-	482.8	••
30	.4	874.3	-	40.0	-	914.3	••
31	.1	1728.6	-	18.8	_	1747.4	• •
32	1.2	1569.2	-	6.8	-	1576.0	••
33	2.8	1869.9	-	4.7	-	1874.6	,,
33	42.3	2485.8		18.1	-	2503.9	• •
34	42.5 341.7	1283.0	-	7.0	-	1290.0	••
55	541.7	1205.0	-	1.0	- average	2009.6	••
					average	2007.0	
61/62	451.2	1071.1	899.6	39.1	-	2461.0	El Zarka 68
62/63	284.6	1084.3	527.9	126.4	-	2022.6	
63/64	287.7	979.4	601.7	144.1	-	2012.9	• •
64/65	205.5	928.5	336.5	111.6	-	1582.2	••
65/66	125.0	856.3	1004.7	100.5	-	2086.6	••
,					average	2033.1	
	10(0100		2226	T-1- 00
66	106.	-	-	2120.	-	2226.	Ishak 82
67	136.	-	-	1922.	-	2058.	••
68	141.	-	-	1620.	-	1761.	••
69	130.	-	-	1530.	-	1660.	••
					average	1926.3	
75/76	303.	832.	647.	5.	-	1782.	coop
76/77	244.	684.	212.	52.	-	1193.	
77/78	237.	835.	284.	11.	-	1268.	••
78/79	382.	763.	350.	54.	13.	1563.	Ishak 80
79/80	463.	918.	310.	7.		1698.	coop
80/81	212.	1214.	219.	24.	-	1696.	-
81/82	338.	742.	403.	49.	-	1532.	••
82/83	365.	537.	29.	93.	329.	1353.	••
	5.551				took over	1511.	••
83/84	184.	526.	236.	5.	70.	1021.	
84/85	299.	411.	93.	4.	15.	822.	11
85/86	484.	456.	50.	3.	199.	1192.	• •
86/87	222.	761.	55.	1.	127.	1166.	• •
87/88	88.	482.	76.	*	492.	1137.	••
					average	1068.	
					average	1794.	

Table 4.2.1.1.3.

Fry transport from El Girby (Damietta) to lake Qarun (predominantly grey mullet).

	water in transport tanks				water in unloading arcas			number of fry x 1000	number truck loads	
date	Ec	t.	D.O.	pН	Ec	t.	D.O.	pН		
17-XII-87	-	-	-	-	-	-	-	-	1200	2
6-I-88	-	-	-	-	-	-	-	-	440	2
9-I-88	-	-	-	-	-	-	-	-	460	2
12-I-88	-	-	-	-	-	-	-	-	400	1
16-I-88	-	-	-	-	-	-	-	-	1290	3
17-I-88	28.9	10.7	10.1	8.2	38.5	13.9	-	8.4	650	1
19-I-88	29.5	14.1	8.4	8.2	39.5	16.5	9.3	8.4	400	1
Subtotal; f	ry unic	aded in e	enclosure	near po	lice stat	ion	а			4,840,000
19-I-88	28.9	12.8	9.2	8.2	38.9	14.9	11.8	8.4	1800	2
23-I-88		-	-	-	-	-	-	-	450	1
24-I-88	-	-	-	-	-	-	-	-	1400	2
26-I-88	-	-	-	-	-	-	-	-	400	1
27-I-88	-	-	-	-	-	-	-	-	1500	2
30-I-88	-	-	-	-	-	-	-	-'	2000	3
Subtotal; f	ry unlo	aded in e	nclosure i	near IO	F station	1				7,550,000
2-II-88	-	-	-	-	-	_	_	_	850	2
6-II-88	33.6	15.1	8.7	-	35.1	16.4	_	_	4100	5
8-II-88	19.3	15.4	9.1	8.1	35.0	17.6	_	-	3800	5
10-II-88	34.1	15.4	9.9	8.1	38.3	17.4	_	-	3800	5
6-III-88	-	-	-	-		-	-	-	1000	2
9-III-88	-	-	-	-	-	-	-	-	1200	2
13-III-88	-	-	-	_	-	-	-	-	1200	2
16-III-88	-	-	-	-	-	-	-	-	1200	2
25-III-88		-	_	-	-	-	-	-	78	1*
13-IV-88	-	-	_	-	-	-	-	-	200	1**
14-IV-88	-	-	-	-	-	-	-	-	150	1
Subtotal; f	ry unlo	aded at A	bu Shana	b pond:	5					17,578,000
Total num * fry fro	om El C	Gamil (Por	rt Said).		-					29,968,000

** fry from Suez, mostly other species (Sparus and Dicentrarchus etc.)

Table 4.2.1.2.1.

Plankton composition and distribution in the 280 μ samples

station season	-	-	-	4 abc	-	-		-	•	10 11 abc abc
Botanic	ox-	ox.	ox-	o # •	ххх	οχο	ох-	ох-	o * -	οχχοχ-
Copepods	•	• + •	• + -	• • •	• • #	x # #	x # -	x # -	x # -	• * + . + + -
Cladocerans	00-	000	00-	000	00.	οχο	ο	ο	o * -	0.0 00-
other crustaceans		охх	х	o.x	o x *	. x x	ο	. x -	ο	x.x x
Fish larvae	. 0 -	охх	00-	0.0	000	οοχ	00-	ο	ох-	00-
Fish eggs	* o -	# o #	# o -	х.о	x x *	x o •	* x -	хх-	ох-	хх•хо-
Insects	00-	οχο	00-	0 X 0	ххо	х.о	x o -	х	хо-	х.о хх-
Molluscs	00-	x o o	00-	000	000	000	x o -		00-	00.00-

Botanic material existed mainly of macrophytes and seeds and rests of terrestial plants.

a = summer b = winterc = spring

- no sample taken o not found in sample . 1 specimen
- - x several specimen
- * common
- # many
- abundant
- + very abundant

Table 4.2.1.2.2.a.

Systematic list of net plankton species collected during June 1987 - April 1988.

Division: Cyanophyta (I) Order: Oscillatoriales Family: Oscillatoriaceae (I) Genus: Oscillatoria (vaucher) I O. brevis	47	70	18	50
2 O. limosa	-	15	-	-
(I) Genus: Lyngbya (Agardh)		15		
3 Lyngbya sp.	-	15	-	-
Family: Nostocaceae (II) Genus: Anabaena (Bory)				
4 A. augstumails	-	9	· _	-
5 Anabaena sp.	-	14	-	-
(IV) Genus: Nodularia				
6 N. spumigena	-	38	-	-
(V) Genus: Aphanizonemon				
7 A. gracille	-	53	34	35
(VI) Genus: Trichodesmium				
8 T. lacustre	-	61	-	-
(II) Order: chroococales Family: Chroococaceae (VII) Genus: Microcystis (Kutzing)				
9 Microsystis sp.	-	2045	733	550
(VIII) Genus: Dactylococcopsis				
10 D. acicularis	-	30	-	-
 (III) Order: Chamacsiphonales Family: Chamacsiphonaccac (IX) Genus: Chamacsiphon (Braun) 11 C. incrustans 	-	63	-	-
Division: Chlorophyta Class : chlorophyceae (I) Order: Chlorellales Family: Chlorellaceae (I) Genus: Ankistrodesmus (carda) 12 Ankistrodesmus sp.	-	371	_	-
 (II) Order: Zygnematales Family: Zygenmataceae (II) Genus: Spirogyra (link) 13 Spirogyra sp. 	-	25	5	10
Family: Desmidiaceae (III) Genus: Gonatozygon 14 G. aculatum	128	51	35	33
 (III) Order: Volvocales Family: Volvocaceae (IV) Genus: Volvox (linnacus) 15 Volvox sp. 	126 -	-	-	

 Family: Phacotaceae (V) Genus: Phacotus (Perty) 16 Phocotus sp. (IV) Order: Chlorococcales 	120	-	-	-
Family: Hydrodictyaceae (VI) Genus: Pediastrum (Meyen) 17 P. simplex 18 P. ovatum 19 P. duplex	69 - -	8 13 63	- - -	68 - -
Division: Chrysophyta Class: Bacillariophyceae (I) Order: Pennales Suborder: Araphidinae				
Family: Diatomiaceae				
(I) Genus: Fragillaria20 F. crotonensis	_	148	_	36
(II) Genus: Synedra		110		50
21 S. capitata	-	87	68	14
22 S. acus (III) Genus: Astorionella	-	56	102	20
23 A. notata	-	63	39	40
(IV) Genus: Diatoma				
24 D. elongatum	-	42	-	174
Suborder: Biraphidineae Family: Naviculaceae (V) Genus: Navicula				
25 N. pupula	-	79	21	30
26 N. cryptocephala (VI) Genus: Cymbella	-	113	-	-
27 C. lanceolata	-	62	-	-
28 C. helvetica	-	-	36	-
(VII) Genus: Amphora 29 A. ovales	218	92	20	28
30 A. hendeyi	188	-	-	-
(VIII) Genus: Anomoconeis 31 A. sphaerophora	-	58	-	-
(IX) Genus: Gomphonema		•••		
32 Gomphonema sp.	-	189	-	174
(X) Genus: Gyrosigma 33 G. attenuatum	-	64	47	6
(XI) Genus: Rhizosalina				0
34 R. firma	-	153	-	-
35 R. alata 36 R. calcar	-	109 83	-	-
(XII) Genus: Bacillarla	-	60	-	-
37 B. paradox	1842	87	100	72
Family: Epithemiaceae (XIII) Genus: Epithemia 38 E. zebra	-	80		-

Family Nitzahioogo				
Family: Nitzschiaceae (XIV) Genus: Nitzschia				
39 N. bilobata	-	52	14	30
40 N. sigmoida	-	65	-	-
41 N. palea	-	45	-	-
41. Tr. paica				
Family: Surirellaceae				
(XV) Genus: Surirella				
42 S. robusta	-	69	-	24
43 S. ovalis	-	81	29	9
(II) Order: Centrales				
Suborder: Coscinodiscineae				
Family: Coscinodisciaceae				
(XVI) Genus: Coscinodiscus				
44 C. radiatus	279	148	-	209
45 C. centralis	310	95	130	149
46 C. perforatus	358	111	127	139
47 C. nodulifer	297	94	105	184
48 C. alboranis	-	55	117	-
49 C. thori	-	141	-	-
50 C. auruatulus	-	189	-	-
51 C. excentricus	-	-	90	153
52 C. lineatus	-	-	84	174
(XVII) Genus: Melosira				
53 M. granulata	28	-	-	-
54 M. sulcata	-	-	16	-
(XVIII) Genus: Cyclotella				
55 C. meneghiniana	220	-	-	-
(XIX) Genus: stephanopyxis				
56 S. palmeriana	398	34	-	-
Family: Surirellaceae				
(XX) Genus: Campylodiscus				
57 C. noricus	-	76	52	12
Suborder: Biddulphiineae				
Family: Biddulphiineaceae				
(XXI) Genus: Biddulphia				
58 B. regia	-	95	-	71
59 B. pulchella	-	63	42	30
Division: Pyrrhophyta				
Class: Dinaphyceae				
Subclass: Dinophysiales (lindmann)				
(I) Order: Thecatales (lind.)				
Family: prorocentridae (Schüt)				
(I) Genus: Prorocentrum (Ehrenborg)				
60 P. scultellum (sch)	215	72	37	12
61 P. micans (Ehrbg)	-	95	36	12
62 P. perforatus	215	-	-	-
(II) Genus: Exuviella (ienk)		_		
63 Ex. compressa (Osten.)	142	56	-	-
(III) Genus: Cenchridium (Ehrenb.)				
64 C. globosum (stein.)	-	53	-	

¢

.

				Z
 (II) Order: Gymnodiales (Lindemann) Family: Gymnosclerotidae (schiller (IV) Genus: plectodinium (Biech.) 65 P. nucleovolvatum (Biecheler) 	185	-	-	-
 (III) Order: Peridiniales Family: Goniaulacidae (Lindemann) (V) Genus: Goniaulax (Diesing.) 66 G. polygramma (Stein.) 	146	-	-	-
Family: Ceratidae (Sch.) (VI) Genus: Ceratium (Schrank.) 67 C. pentagonum (Go.) 68 C. candelabrum (Ehrenb.)	177	48 66	-	18 33
Sub. genus: Euceratium 69 E. platycome (Dad.) Sub. genus: Biceratium	-	104	-	-
70 B. furca 71 B. belone	-	68	146 61	87
 (IV) Order: Blastodiniales (Schiller) Family: Coccidinidae (Chatton) (VII) Genus: Duboscquella (Chatton) 72 D. anisospora (Grassé) 73 D. grasse (Grassé) 	-	118	67 28	-
 (V) Order: Dinococcales (Pascher.) Family: Dinococcidae (Pascher.) (VIII) Genus: Pyrocystis (Murr.) 74 P. fusifrormis (Tho.) 	-	• 78	-	-
Subphylum: Sarcomastigophora Superclass: Sarcodina Class: Rhizopodeo Subclass: Granuloreticulosia (I) Order: Foraminiferida Family: Globigerinidae (Brady) Subfamily: Globigeriniinae (Cushman.) (I) Genus: Globigerinoides (Cushman)				
75 G. conglobata (Brady)	196	88	54	68
76 G. sacculifera (Brady)	-	90	62	65
77 G. helicina (Orb.)	-	72	23	71
(II) Genus: Globigerina (Orbig) 78 G. inflata (Orbig)	113	58	53	69
 (III) Genus: Globigerinella (Cushman) 79 G. acquilateralis (Brady) (IV) Genus: Hastigerinella (Crushman) 	143	109	60	66
80 H. digitata (Rhumbler.)	-	70	51	-
Subfamily: Orbuliniinae (Cushmann) (V) Genus: Orbulina (Orb.) 81 O. universa (Orb.)	-	43	23	27
Family: Globorotalidae (Cushmann) (VI) Genus: Globorotalla (Cushmann)				
82 G. truncatuloides (Orb.)	-	19	-	-

				Lake Qarun	16
Family: Cymbaloporidae (Cushmann)					
(VII) Genus: Tretomphalus (Moeb.)					
83 T. bulloides (Orb.)	-	-	14	5	
Family: Hyperamminidae (Cushmann)					
(VIII) Genus: Iridia (Heron)					
84 I. lucida (Calvez)	-	-	36	-	
04 1. Meiou (Curvez)					
Class: Ciliatea					
Subclass: Spirotrichla					
(I) Order: Tintinnida (I) Family: Tintinnididae (Kof.)					
(I) Genus: Tintinnidium (Kent.)		83	46	60	
85 T. neapolitanum (Dad.)	-	120	40	-	
86 T. fluviatile	-	120	-	-	
Family Cadapallidaa (Vant)					
Family: Codonellidae (Kent)					
(II) Genus: Tintinnopsis (Brandt)	222	85	44	19	
87 T. lobiancoi (Daday)	182	65	19	17	
88 T. nucula (Fol.)	102	62	17		
89 T. cylindrica (Daday)	-	75	96	30	
90 T. vosmaeri (Daday)	-	9	90	50	
91 T. beroidea (Stein)	-	9	-	-	
(III) Genus: Codonella (Haeck)		105			
92 C. galea (Haeck)	-	105	-	-	
Family: Coxliellidae (Campb)					
Subfamily: Coxliellinae (Campb)					
(IV) Genus: Coxliella (Brandt)		100			
93 C. helix (Clef.)	-	100	-	-	
94 C. decipiens (Jørg)	-	-	35	-	
Subfamily: Metacylinae					
(V) Genus: Metacylis (Jorgensen)		02	70		
95 M. meresekowskil (Jorg.)	-	83	72	-	
(VI) Genus: Helicostomella (Jorgen.)	140			20	
96 H. subulata (Ehr.)	149	55	-	29	
97 H. edentata (Fauré)	-	62	-	43	
Family: Ptychocylidae (Campb.)					
(VII) Genus: Poroecus (Cleve)		60	202	45	
98 P. apiculatus (Cleve)	-	62	292	43	
(VIII) Genus: Favella (Jorgensen)		20	01	20	
99 F. adriatica (Imh.)	-	28	91	20	
100 F. serrata (Mobius)	-	126	92	23	
101 F. brevis (Laackm.)	-	-	131	-	
102 F. fistulicauda (Jorgensen)	-	-	136	-	
Family: Epiplocylidae (Kof.)					
(IX) Genus: Epiplocylis (Jorgenson)			(1		
103 E. blanda (Daday)	-	-	61	-	
Family: xystonellidae (Campbell)					
(X) Genus: Xystonella (Brandt)	100				
104 X. treforti (Daday)	129	-	-	-	
105 X. longicauda (Brandt)	-	44	-	-	
106 X. Iohmanni (Daday)	-	88	-	-	
Family: Tintinnidae (Campbell)					
Subfamily: Tintinninac (Campbell)					
(XI) Genus: Bursaopsis (Campbell)		<i></i>			
107 B. striata (Daday)	-	(1) 33	-	~	

				Lake Qarun I
Family: Dictyocystidae (Haeck.)				
(XII) Genus: Dictyocysta (Ehrbg.)				
108 D. obtussa (Jorgensen)	103	-	-	-
Dhulum Arthropodo				
Phylum: Arthropoda				
Subphylum: Mandibulata				
Class: Crustacea				
Subclass: Copepoda				
(I) Order: Cyclopoida				
(I) Family: Cyclopedeae				
(I) Genus: Cyclops			73	
109 C. fimbriatus	-	78	15	-
110 C. vicinus	161	95	105	-
Cyclops larvae	101	75	105	-
(II) Order: Calanoida				
Family: Diaptomedae				
(II) Genus: Diaptomus	104			
111 D. kenai	104	-	-	-
Diaptonus larvae	111	- 74	-	-
112 D. siciloides	-	74	-	-
(III) Genus: Eudiaptomus			<i>C</i> 1	
113 E. graciloides	-	-	51	-
(IV) Genus: Sinodiaptomus		27		
114 S. chofranjoni	-	37	-	-
Family: Corycaeidae				
(V) Genus: Calanus				
115 C. helgolandicus	124	88	-	64
(VI) Genus: Centropages	127	00		01
116 C. typicus	112	35	-	-
(VII) Genus: Euchaeta	112	55		
117 E. heben	_	30	-	-
(VIII) Genus: Acartia		50		
118 A. danae	_	30	-	-
(IX) Genus: Amallothrix		50		
119 A. auropecten	244	-	-	-
(X) Genus: Caligus	2			
120 C. rapax	-	43	-	-
121 larvae or parapaeneus longirostris	136	-	-	-
Phylum: Nemathelminthes				
Class: Rotifera				
(I) Order: Monogonta				
Suborder: Ploima				
Family: Brachionidae				
(I) Genus: Brachiones				
122 B. plicatilis	-	45	54	-
123 B. pala	-	44	-	-
124 B. leydigi	-	288	-	-
125 B. urceolaris	-	95	-	-
(II) Genus: Keratella				
126 K. cochlearis	-	11	5	5
(III) Genus: Epiphanes				
127 E. senta	-	55	-	-
128 E. brachionus	-	61	104	-
(IV) Genus: Colurella				
129 C. adriatica	-	~	68	-
(V) Genus: Notholca				
130 N. acumirata	-	35	-	-
(VI) Genus: Cyrtonia				
131 C. tuba	-	53	62	

Family: Trichocercidae				Lake Qarun 1	18
(VII) Genus: Elosa 132 E. woralli	-	28	-	10	
Family: Gastropodidae					
(VIII) Genus: Ascomorpha 133 A. ecaudis	-	-	47	-	
(IX) Genus: Ascomorphelia 134 A. volvocicola	-	-	46		
Family: Asplanchnidae					
(X) Genus: Polyanthra 135 P. vulgaris Family: Synchoctidae	-	-	56	-	
(XI) Genus: Pleosoma 136 P. triacanthum	-	_	35	-	
(XII) Genus: Synchaeta 137 S. pectinata (1)	213	_	54	-	
138 S. oblonga (XIII) Genus: Microcodon	-	-	59	-	
139 M. clavus	-	-	44	-	
Family: Lecanidae (XIV) Genus: Lecane					
140 L. lunar	-	-	30	-	
(XV) Genus: Proales 141 P. decipiens	-	-	39	-	
Family: Asplanchnidae (XVI) Genus: Asplanchna 142 A. priodonts	-	-	63	-	
Family: Lindidae (XVII) Genus: Lindia 143 L. truncata	-	25	-	-	
Family: Notommatidae (XVIII) Genus: Cephalodella 144 C. forficula	-	-	34	-	
Suborder: Flosculariaceae Family: Testudinellidae					
(XVIV) Genus: Hexarthra 145 H. intermedia	107	-	-	-	
146 H. mira 147 H. fennica	133	45	104	-	
(I) Order: Diplostraca Suborder: Cladocera Family: Bosminidae					
(I) Genus: Bosminopsis 154 B. deiterai	-	28	-	14	
(II) Genus: Bosmina 155 B. coregoni 156 B. longirostris	157	58 70	59 147	65 32	
Family: Daphniadae(IV) (III) Genus: Daphnia 157 D. pulex 158 D. longispina	59 I (V) G	Genus Diapha D. brachiurur enus Cerioda C. rigaudi	n		

Table 4.2.1.2.2.b.

Average plankton distribution of the 60 μ samples per season in number of plankters per I. and (in % of total). Data obtained from Mr. Magdi Abbas Saleh May '88.

S	Summer	Autumn	Winter	Spring	Average
Blue green algae 47	(.5)	2591 (21.9)	785 (13.2)	635(15.3)	1015(12.6)
Green algae 443	(4.4)	531 (4.5)	40 (.7)	61 (1.5)	269 (3.4)
Diatoms 4993	(49.2)	4166 (35.2)	1413 (23.8)	1863(44.9)	3109(38.7)
Dinoflagelates 980	(9.7)	758 (6.4)	375 (6.3)	162 (3.9)	569 (7.1)
Phytoplankton 6463	(63.7)	8046 (67.9)	2613 (44.0)	2721(65.5)	4962(61.8)
Rotifers 453	(4.5)	769 (6.5)	973 (16.4)	154 (3.7)	587 (7.3)
Copepods 1439	(14.2)	587 (5.0)	346 (5.8)	418(10.1)	698 (8.7)
Cladocerans 525	(5.2)	642 (5.4)	521 (8.8)	314 (7.6)	501 (6.2)
Tintinids 785	(7.7)	1220 (10.3)	1115 (18.8)	174 (4.2)	824 0.3)
Foraminifers 485	(4.8)	582 (4.9)	376 (6.3)	371 (8.9)	454 (5.7)
Zooplankton 3687	(36.3)	3800 (32.1)	3331 (56.0)	1431(34.5)	3064(38.2)
Total number of species	10150 50	11846 135	5944 86	4152 61	8026 83

Table 4.2.1.2.2.c.

Total number of plankton organisms per liter water, taken from the 60 μ net samples, per season and station (zooplankton only), data obtained from Mr. Magdi Abbas Saleh just after each analysis.

Station	Su	nmer	Autu	ımn	Wi	nter	Av	crage
1	4920	(642)	-	_	1904	(642)	3412	(642)
2	5608	(1788)	8197	(344)	2097	(678)	5301	(937)
3	3251	(911)	1291	(196)	1544	(605)	2029	(571)
4	1975	(1076)	6031	(384)	1877	(1041)	3294	(834)
5	1415	(692)	1863	(487)	3259	(784)	2179	(654)
6	2208	(999)	4771	(429)	2290	(478)	3090	(635)
7	3625	(1139)	4256	(588)	2724	(475)	3535	(734)
8	1682	(725)	3868	(696)	2382	(368)	2644	(596)
9	2589	(1338)	2873	(666)	2025	(274)	2496	(759)
10	4696	(2243)	2716	(121)	2024	(705)	3145	(1023)
11	4061	(2026)	2642	(150)	1779	(760)	2827	`(979)
Average	3276	(1234)	3851	(406)	2182	(619)	3087	(760)

Table 5.1.1.3.2 Total salt load of lake Qarun

year	TDS g/l	Level in m MSL	Volume x 106m3	saltload in kilotor	n reference
1901	13.42	-44.90	794.0	10,655.5	lucas 1906
1902	8.56	-44.62	861.2	7,371.9	••
1906	11.06	-44.31	935.6	10,347.7	
1906	11.17	-44.28	942.8	10,532.1	Ball 1939
1918	18.0	-45.00	770.0	13,860.0	
1919	18.4	-44.86	803.6	14,786.2	.,
1920	17.6	-44.62	861.2	15,157.1	••
1921	19.2	-45.00	770.0	17,784.0	••
1922	21.5	-45.25	708.3	15,228.3	.,
1925	21.1	-45.10	736.4	15,538.0	.,
1926	22.4	-44.99	761.4	17,055.4	,,
1927	22.3	-44.95	782.0	17,438.6	••
1928	24.4	-45.10	746.0	18,202.4	••
1929	24.6	-45.23	714.8	17,584.1	••
1930	23.5	-45.15	734.0	17,249.0	••
1931	27.4	-45.37	681.2	18,664.9	••
1932	31.6	-45.77	585.2	18,492.3	••
1954	31.49	-44.98	774.8	24,398.5	Naquib 1958
1954	31.5	-44.40	914.0	28,791.0	v.d.Linden 1984
1970	30.0	-43.90	1034.0	31,020.0	••
1970	31.73	-43.89	1036.4	32,885.0	Meshal 1977
1975	30.16	-43.98	1014.8	30,606.4	Nasr salines 1976
1975	36.05	-44.30	938.0	33,814.9	••
1975	36.1	-44.12	978.8	35,334.7	DRI 1987
1978	36.0	-43.99	1012.4	36,446.4	IOF 1984
1981	31.98	-43.45	1142.0	36,521.2	••
1982	31.28	-43.70	1082.0	33,845.0	• •
1982	35.5	-43.69	1084.4	38,496.2	DRI 1987
1983	27.23	-43.59	1108.4	30,181.7	IOF 1984
1986	35.2	-43.41	1151.6	40,536.3	DRI 1987
1987	34.6	-43.36	1163.6	40,260.6	own data

Table 5.1.1.3.3 Total dissolved salts at various lake levels

salt load		40500 KT TDS in g/l	41500 KT TDS in g/l	43000 KT TDS in g/l	45000 KT TDS in g/l
lake level	volume	Č.	Ū.	, G .,,	0
meters below	in m ³ x 10 ⁶				
MSL					
-43.0	1250	32.4	33.2	34.4	36.0
-43.1	1226	33.0	33.8	35.1	36.7
-43.2	1202	33.7	34.5	35.8	37.4
-43.4	1154	35.1	36.0	37.3	39.0
-43.5	1130	35.8	36.7	38.1	39.8
-43.6	1106	36.6	37.5	38.9	40.7
-43.7	1082	37.4	38.4	39.7	41.6
-43.8	1058	38.3	39.2	40.6	42.5
-43.9	1034	39.2	40.1	41.6	43.5
-44.0	1010	40.1	41.1	42.6	44.6
-44.1	986	41.1	42.1	43.6	45.6
-44.2	962	42.1	43.1	44.7	46.8
-44.3	938	43.2	44.2	45.8	48.0
-44.4	914	44.3	45.4	47.0	49.2
-44.5	890	45.5	46.6	48.3	50.6*
-44.6	866	46.8	47.9	49.7	52.0
-44.7	842	48.1	49.3	51.1*	53.4
-44.8	818	49.5	50.7*	52.6	55.0
-44.9	794	51.0*	52.3	54.2	56.7

* critical point.

Table 5.1.1.3.4 Anions and cations in mg/l

ions	1987*	1978**	1967***	scawater
Ca	470	423	606	422
Mg	1220	1236	1117	1326
Na	10100	10576	8885	11050
к	235	232	-	410
CO3	-	-	102	•
HCO3	375	503	195	146
SO4	10000	8800	6277	2780
C1	14200	14184	12873	19870
Total Dissolved Salts	36600 IWACO sr Saline Cy	35954	30055	36004
	of Industry			

Table 5.2.1.1.1.a.

Length frequencies of Liza ramada in cm groups

0	-			
lenghth group in cm.	30-VI-87	27-VII-87	Total (% of total)	IOF (% of total)
13.0				16 (3.4)
15.0				18 (3.9)
17.0				29 (6.2)
19.0				32 (6.9)
21.0				39 (8.4)
23.0				25 (5.4)
25.0				17 (3.6)
26.0	1		1 (.6)	
27.0		/		24 (5.1)
28.0	1	3	4 (2.3)	
29.0	1	1	2 (1.1)	29 (6.2)
30.0	3	10	13 (7.4)	
31.0	14	5	19 (10.8)	33 (7.1)
32.0	20	7	27 (15.3)	
33.0	22	15	37 (21.0)	28 (6.0)
34.0	16	12	28 (15.9)	
35.0	12	7 5 3	19 (10.8)	20 (4.3)
36.0	9	5	14 (8.0)	
37.0	1	3	4 (2.3)	15 (3.2)
38.0		3 2	3 (1.7)	
39.0		2	2 (1.1)	28 (6.0)
40.0				22 (47)
41.0	1		1 (.6)	22 (4.7)
42.0				16 (2.4)
43.0				16 (3.4)
44.0	1		1 (6)	10 (2.1)
45.0	1		1 (.6)	18 (3.9)
47.0				20 (4.3)
49.0 51.0				13 (2.8)
53.0				8 (1.7)
55.0				5 (1.1)
57.0				2 (.4)
57.0				2 ()
total	102	73	175	467
average length		33.3	33.3 ± 3.0	31.1± 11.36
Trouge tought		22.2	22122 210	