
Vandenplas et al. Genet Sel Evol           (2020) 52:24  
https://doi.org/10.1186/s12711-020-00543-9

RESEARCH ARTICLE

Computational strategies 
for the preconditioned conjugate 
gradient method applied to ssSNPBLUP, 
with an application to a multivariate maternal 
model
Jeremie Vandenplas1* , Herwin Eding2, Maarten Bosmans3 and Mario P. L. Calus1

Abstract 

Background: The single-step single nucleotide polymorphism best linear unbiased prediction (ssSNPBLUP) is one of 
the single-step evaluations that enable a simultaneous analysis of phenotypic and pedigree information of geno-
typed and non-genotyped animals with a large number of genotypes. The aim of this study was to develop and 
illustrate several computational strategies to efficiently solve different ssSNPBLUP systems with a large number of 
genotypes on current computers.

Results: The different developed strategies were based on simplified computations of some terms of the precon-
ditioner, and on splitting the coefficient matrix of the different ssSNPBLUP systems into multiple parts to perform its 
multiplication by a vector more efficiently. Some matrices were computed explicitly and stored in memory (e.g. the 
inverse of the pedigree relationship matrix), or were stored using a compressed form (e.g. the Plink 1 binary form 
for the genotype matrix), to permit the use of efficient parallel procedures while limiting the required amount of 
memory. The developed strategies were tested on a bivariate genetic evaluation for livability of calves for the Nether-
lands and the Flemish region in Belgium. There were 29,885,286 animals in the pedigree, 25,184,654 calf records, and 
131,189 genotyped animals. The ssSNPBLUP system required around 18 GB Random Access Memory and 12 h to be 
solved with the most performing implementation.

Conclusions: Based on our proposed approaches and results, we showed that ssSNPBLUP provides a feasible 
approach in terms of memory and time requirements to estimate genomic breeding values using current computers.
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permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat iveco 
mmons .org/licen ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/publi cdoma in/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Genomic data for livestock often include around 50 thou-
sand single nucleotide polymorphism (SNPs), and are 
used in genomic prediction to obtain genomic estimated 
breeding values [1]. While some challenges must be still 

solved, the method of choice for genomic prediction is 
currently the so-called single-step genomic best linear 
unbiased prediction (ssGBLUP) that simultaneously anal-
yses phenotypic and pedigree information of genotyped 
and non-genotyped animals with genomic information 
of genotyped animals [1]. ssGBLUP considers genomic 
information by combining genomic and pedigree rela-
tionships into a combined genomic-pedigree relationship 
matrix [2, 3]. A drawback of ssGBLUP is that it requires 
the inverse of the genomic relationship matrix ( G ), which 
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can be computed up to approximately 100,000 genotyped 
animals on current computers [4]. As a result of this limi-
tation some methods were proposed to approximate, or 
to compute implicitly, the inverse of G [4–6].

Equivalent models that directly estimate SNP effects 
and that do not rely on G , hereafter called ssSNPBLUP, 
were also proposed [7–9]. However, these models have 
not yet been implemented and tested on a large scale 
due to several reasons, such as the lack of breeding value 
estimation software that is  flexible enough to perform 
ssSNPBLUP, more complicated modeling compared to 
ssGBLUP, and convergence issues [1]. In Vandenplas 
et al. [10], we proposed a preconditioned conjugate gra-
dient (PCG) method with a second-level preconditioner 
that is easy to implement, and that substantially improves 
the convergence issues associated with two ssSNPBLUP 
systems. The objective of this paper is to present several 
computational strategies that improve the efficiency of 
solving two different ssSNPBLUP systems efficiently with 
a PCG method. These strategies aim at taking advan-
tage of existing shared-memory parallel libraries while 
limiting the amount of required random access memory 

and Stranden [11], xMS =
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 where β is the vector of 

fixed effects, the subscripts g and n refer to ng genotyped 
and nn non-genotyped animals, respectively, un is the 
vector of additive genetic effects for non-genotyped ani-
mals, ag is the vector of residual polygenic effects for gen-
otyped animals, and g is the vector of SNP effects. The 
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 where y is 

the vector of records, and the matrices X , Wn and Wg are 
incidence matrices relating records to the corresponding 
effects. The matrix Z contains the SNP genotypes (coded 
as 0 for one homozygous genotype, 1 for the heterozy-
gous genotype, or 2 for the alternate homozygous geno-
type) centered by their observed means. The matrix 
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 is the inverse of the residual (co)vari-
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where σ−2
u  is the inverse of the additive genetic variance, 

w is the proportion (strictly between 0 and 1) of variance 
(due to additive genetic effects) considered as residual 
polygenic effects, and m = 2

∑

pj
(

1− pj
)

 with pj being 
the observed allele frequency of the j-th SNP. The matrix 
Q is equal to Q = Agn

(Ann
)
−1Ang , where 

A−1 =

[

Ann Ang

Agn Agg

]

 is the inverse of the pedigree relation-

ship matrix.

For the linear system of Liu et  al. [9], xLiu =
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where ug = ag + Zg is the vector of additive genetic 
effects for genotyped animals. The vector bLiu is equal to 

CMS =
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(RAM). Some of these computational strategies can also 
be implemented in breeding value estimation software 
that rely on ssGBLUP.

Methods
Two ssSNPBLUP systems
In this study, we investigate the ssSNPBLUP linear equa-
tions system proposed by Mantysaari and Stranden [11] 
(ssSNPBLUP_MS) and the ssSNPBLUP linear equations 
system proposed by Liu et al. [9] (ssSNPBLUP_Liu). The 
two ssSNPBLUP systems are equivalent and both systems 
of equations can be summarized as:

where i refers to the linear system proposed by Manty-
saari and Stranden [11] (i = MS) or to the linear system 
proposed by Liu et  al. [9] (i = Liu), Ci is a symmetric 
(semi-)definite coefficient matrix, xi is the vector of solu-
tions, and bi is the right-hand side of the linear system.

For simplicity, and without loss of generality, the differ-
ent matrices and vectors are described below for a uni-
variate animal model. For the linear system of Mantysaari 

Cixi = bi,
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bLiu =









X
′
R−1y

W
′

nR
−1
n yn

W
′

gR
−1
g yg
0









 . The coefficient matrix CLiu is equal 

to:
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is worth noting that A−1
gg = Agg −Q [12].

A PCG method
A PCG method is an iterative method that uses succes-
sive approximations to obtain more accurate solutions 
for a linear system at each iteration step [13]. Our imple-
mentation of the preconditioned system of linear equa-
tions of both ssSNPBLUP has the form:

where M is a preconditioner defined below, and D is a 
second-level diagonal preconditioner proposed by Van-
denplas et al. [10] and described in the “Analyses” section.

The main computational costs of the PCG method 
for solving ssSNPBLUP systems are the computation of 
some terms of the preconditioner M and the multiplica-
tion of the coefficient matrix C by a vector at each PCG 
iteration. In the next section, we propose computational 
approaches at approximating specific elements of M and 
to multiply C by a vector in an efficient manner.

Computation of the preconditioner M
In animal breeding, a (block-)diagonal preconditioner is 
commonly used [14]. The (block-)diagonal elements of 
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ditioner aims to approximate the coefficient matrix, we 
approximate diag

(

A−1
gg

)

 with a Monte Carlo approach 
based on 1000 samples, as proposed by Masuda et  al. 
[15]. Furthermore, the j-th diagonal element of 
diag
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(1)D−1M−1Cx = D−1M−1b,

the j-th diagonal element of diag
(

Z
′
QZ

)

 was approxi-
mated to 

(

2ng + noffspring
)

pj
(

1− pj
)

 , where noffspring is the 
total number of offspring of all the ng genotyped animals 
(see Additional file 1 for derivations). These approxima-
tions always provided the same convergence rate com-

pared with the exact values (results not shown).

Computational strategies for the multiplication of C 
by a vector
Our approach for the efficient multiplication of C by a 
vector, e.g. x , relies on splitting the coefficient matrix C 
into multiple parts for which the multiplication by a vec-
tor is easier to perform.

For ssSNPBLUP_MS, the coefficient matrix CMS can be 
split into:
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The multiplication of CMS by a vector, e.g. xMS , can be 
easily computed in multiple steps as follows:

where the brackets [.] indicate the order of the matrix-

vector operations, and v1 = TxMS =
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.

For ssSNPBLUP_Liu, the multiplication of the coeffi-
cient matrix CLiu by a vector, e.g. xLiu , can be performed 
in multiple steps as:

(2)CMS = T
′(

CMSLS + CMSR1

)

T+ CMSR2

CMSxMS = T
′[

[CLSv1]+
[

CMSR1v1
]]

+
[
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with CLiuLS =
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It is worth noting that the multiplication of CMSLS and 
of CLiuLS by a vector can be performed with approaches 
that have  already been  developed in animal breeding, 
such as iteration-on-data approaches [16–19], because 
these matrices are similar to those obtained with tra-
ditional pedigree BLUP. Similarly, the multiplication 
of CMSR2 and of CLiuR2 (both involving A−1 ) by a vector, 
can be easily computed using strategies such as those 
developed by Stranden and Lidauer [18], or as described 
below.

In the following, we describe in detail computational 
strategies for multiplying efficiently submatrices of T , of 
its transpose, of CMSR1 , of CMSR2 , of CLiuR1 , and of CLiuR2 , 
by a vector. It should be noted that the multiplication of 
these matrices requires the multiplication of the centered 
genotype matrix Z , its transpose Z′ , Q , and A−1

gg  , by an 
array. Furthermore, while the proposed computational 
strategies are described in the context of a univariate ani-
mal model, they are readily applicable to more complex 
models, such as multivariate maternal models (see Addi-
tional file 2 for a description of a ssSNPBLUP_MS system 
associated with a standard bivariate maternal model).

Multiplication of CiLS by a vector
The implemented approach for multiplying CiLS (i = MS, 
Liu) by a vector was the three-step approach combined 
with an iteration-on-data technique, as proposed by 
Stranden and Lidauer [18]. The phenotypes and associ-
ated levels for all effects were stored in RAM to allow 
shared-memory parallelization. Phenotypes were stored 
using double precision reals, and levels for all effects were 
stored using 4-byte integers. Each thread was associated 
with a same amount of records to make the computations 
involving submatrices of CiLS as even as possible across 
the threads. Furthermore, the records were sorted fol-
lowing an increasing order of the effect with the largest 
number of levels to minimize RAM required by the tem-
porary arrays.

(3)
CLiuxLiu = CLiuLSxLiu + T

′

CLiuR1TxLiu + CLiuR2xLiu
Multiplication of Z , or Z′ , by an array
The main cost of the multiplication of the matrix T , or 
its transpose, by an array is the multiplication of the cen-
tered genotyped matrix Z , or its transpose Z′ , by an array.

To benefit from shared-memory parallel programming 
while limiting the amount of RAM required, the SNP 
genotypes included in Z were stored in RAM using the 
Plink 1 binary form [20]. In brief, the value of each SNP 
locus (coded as 0 for one homozygous genotype, 1 for the 
heterozygous genotype, 2 for the alternate homozygous 
genotype, or missing) is coded using 2 bits, and each byte 
(B) stores the genotype of four genotyped animals for 
a same SNP (see [20] for more details). Observed allele 
frequencies needed for centering SNP genotypes were 
stored into a double precision real array. This approach 
requires ng∗nSNP

4
 B to store the genotypes and 8nSNP B 

to store the allele frequencies. For example, to store 
one million genotypes with 50,000 SNPs, this approach 
requires around 12 GB RAM. In comparison, the stor-
age of the same information using a double precision real 
array would require 32 times more RAM, i.e. around 373 
GB.

Because the matrix Z is stored in Plink 1 binary form 
in RAM, a custom implementation of a Matrix-Matrix 
product is needed. The matrix Z is split into small blocks 
intended to fit into the CPU cache. Each block of Z is 
converted into a small matrix of double-precision num-
bers (corresponding to centered genotypes or zero for 
missing values) and subsequently multiplied with part 
of the array. This implementation uses vectorization and 
loop unrolling to make optimal use of available hardware 
resources on modern CPUs.

While it might not be straightforward to implement, 
the proposed approach for multiplying Z , or its trans-
pose, by an array could be also used in single-step evalua-
tions that rely on genomic relationship matrices. Indeed, 
the multiplication of the inverse of the genomic relation-
ship matrix by an array could be replaced by a system of 
equations that would be solved iteratively and that would 
require the multiplication of Z , and its transpose, by an 
array [21].

Multiplication of A−1 by an array
The multiplication of the matrices CMSR2 , and CLiuR2 , by 
an array requires the multiplication of A−1 by an array. 
Due to the small amounts of RAM available in the past, 
an approach that only requires reading the pedigree was 
developed to multiply A−1 by an array [16]. While such 
an approach is memory-efficient, it does not allow an 
efficient shared-memory parallelization of the multiplica-
tion of A−1 by an array.

With the current large amounts of RAM available, 
it is now possible to store A−1 in RAM, even for large 



Page 5 of 10Vandenplas et al. Genet Sel Evol           (2020) 52:24  

pedigrees. For our implementation, since A−1 is a sparse 
and symmetric matrix, its upper triangular part is stored 
in RAM using the well-known and widely used 3-array 
variation of the compressed row storage (CRS3) format 
[13]. The CRS3 format of a sparse matrix is specified by 
two arrays of (4-byte) integers (named IA and JA) and 
one (double precision) real array (named AA). The array 
IA, of size equal to the number of rows of the sparse 
matrix plus one, contains the pointers to the beginning 
of each row of the sparse matrix in the arrays JA and AA. 
The array JA, of size equal to the number of non-zero real 
values, contains the column indices of the corresponding 
elements stored in AA. The array AA contains the non-
zero real values of the sparse matrix [13].

Following Henderson’s rules to construct A−1 recur-
sively [22], adding the contributions of one animal to 
A−1 leads to adding three diagonal elements and three 
off-diagonal elements to the upper-triangular part of 
A−1 . Therefore, assuming that there are n animals in the 
pedigree, the maximum number of non-zeros elements 
in the upper-triangular part of A−1 is equal to 4n (that 
is, the sum of n diagonal elements and of 3n off-diago-
nal elements). With the CRS3 format, an upper bound of 
RAM needed to store the upper triangular part of A−1 as 
a sparse matrix using double precision reals is equal to 
the sum of 4 ∗ (n+ 1) B for the array IA, of 4 ∗ 4n B for 
the array JA, and of 8 ∗ 4n B for the array AA, which is 
equal to a total of 52n+ 4 B. This upper bound increases 
linearly as the number of animals increases in the pedi-
gree, and is equal, for example, to 1.45 GB for a pedigree 
with 30 million animals. Using shared-memory parallel 
programming, efficient libraries, such as sparse BLAS 
routines, can be used for multiplying A−1 by an array.

Multiplication of Q by an array
The multiplication of CMSR1 by an array implies several 
multiplications of the matrix Q by an array, and subse-
quently several multiplications of (Ann

)
−1 by an array. 

This matrix (Ann
)
−1 has a size almost equal to the num-

ber of animals in the pedigree, because, for most single-
step genomic evaluations, the number of genotyped 
animals is a small fraction of the number of animals in 
the pedigree. An alternative computation of the matrix Q 
is as follows (see Additional file 3 for the derivation):

with the matrices Aii
anc being submatrices of the inverse 

of the pedigree relationship matrix that include only the 
genotyped animals and their ancestors, and the matrix � 
being equal to � = Agg − A

gg
anc.

Based on Henderson’s rules [22] to directly con-
struct A−1 , it follows that the matrix � contains only 

Q = A
gn
anc

(

A
gg
anc

)−1

A
ng
anc +�

the contributions of the non-genotyped offspring of the 
genotyped animals that are not ancestors of genotyped 
animals (see Additional file 3 for details). Therefore, the 
matrix � can be easily and directly constructed by read-
ing the pedigree only once.

Finally, it is worth noting that the multiplication of 
CMSR1 by a vector involves four multiplications of Q by an 
array. However, only two multiplications of Q by an array 
are actually required due to the presence of the same 
multiplications.

Multiplication of A−1
gg by an array

The multiplication of CLiuR1 by a vector implies two mul-
tiplications of the matrix A−1

gg  by an array. As proposed by 
Stranden et al. [12], the multiplication of A−1

gg  by an array 
is performed using sparse matrices:

The sparse matrices Agg
anc , A

gn
anc , and Ann

anc , were stored in 
RAM to enable shared-memory parallelization.

Data
The implementations of ssSNPBLUP as described in 
the previous sections were compared to each other in 
terms of computational efficiency. This comparison 
was based on data and associated variance components 
from the bivariate routine genetic evaluation published 
in April 2019 for livability of calves for the Netherlands 
and the Flemish region in Belgium [23, 24]. The data file 
included 25,184,654 calf records. The pedigree included 
29,885,286 animals. The genotypes included 37,995 seg-
regating SNPs, and were associated with 131,189 ani-
mals without phenotypes and with 129,402 animals with 
phenotypes.

The two traits are livability of calves born from heif-
ers, and livability of calves born from multiparous cows. 
The bivariate mixed model included random effects 
(correlated additive direct and maternal genetic effects, 
permanent environmental effect and residual), fixed co-
variables ((direct and maternal) heterosis and recombina-
tion effects) and fixed cross-classified effects (herd x year 
x season, year x month, age at calving, and parity). More 
details about the model and genetic parameters can be 
found in [23] and [24].

For both ssSNPBLUP_Liu and ssSNPBLUP_MS, the 
observed allele frequencies were used to center the gen-
otype matrix, and the compatibility between pedigree 
and genomic information was guaranteed by fitting two 
J covariates (corresponding to the additive and mater-
nal genetic effects) as fixed effects in the model [25]. The 
proportion of variance (due to additive genetic effects) 

A−1
gg = A

gg
anc − A

gn
anc

(

Ann
anc

)−1
A
ng
anc.
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considered as residual polygenic effects, w, was assumed 
to be equal to 0.05.

Analyses
Both ssSNPBLUP_MS and ssSNPBLUP_Liu were solved 
by using a Fortran 2003 program that implements the 
described computational approaches. The program also 
exploits BLAS and sparse BLAS routines, the paral-
lel direct sparse solver PARDISO, all from the multi-
threaded Intel Math Kernel Library 11.3.2, and OpenMP 
parallel computing. Except for the preconditioner, all 
real vectors and matrices were stored using double pre-
cision reals. For comparison, ssSNPBLUP_Liu was also 
performed with the centered genotyped matrix stored in 
RAM using double precision reals, instead of the Plink 1 
binary form.

In this study, the preconditioner is defined for both ssS-
NPBLUP as:

where the subscripts f1, f2, and r refer to the equa-
tions associated with the herd x year x season effect, 
the other fixed effects, and the random effects, respec-
tively, and block_diag(Crr) is a block-diagonal matrix 
with blocks corresponding to equations for different 
traits within a level (e.g. an animal). The diagonal and 
block-diagonal elements of the preconditioner were 
stored using single precision reals, while the matrix 
Cf 2,f 2 + 10−4 ∗ diag

(

Cf 2,f 2

)

 was stored using the CRS3 
format described earlier.

The diagonal elements of the second-level diagonal 
preconditioner D that correspond to the equations of the 
direct and maternal effects of the SNP effects were equal 
to 103 for ssSNPBLUP_MS, and 102 for ssSNPBLUP_Liu 
[10]. Other diagonal elements were equal to 1.

For both ssSNPBLUP systems, convergence was 
achieved when �ri,k�

�bi�
< 10−6 with ‖.‖ being the 2-norm, 

M =





diag
�

Cf 1,f 1

�

0 0
0 block_diag(Crr) 0

0 0 Cf 2,f 2 + 10−4 ∗ diag
�

Cf 2,f 2
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and ri,k being the residual after k+1 iterations computed 
as ri,k = bi − Cixi,k , although it is not strictly comparable 
across systems. For all systems, the smallest and largest 
eigenvalues of the preconditioned coefficient matrices 
D−1M−1C that influence the convergence of the PCG 
method were estimated using the Lanczos method based 
on information obtained from the PCG method [26]. 
Effective condition numbers were computed from the 
ratio of these estimates, as this provides an indication of 
the properties of the preconditioned system of equations, 
with higher effective spectral condition numbers being 
associated with poorer convergence [27].

All computations were performed on a computer with 
528 GB and running RedHat 7.4 (x86_64) with an Intel 
Xeon E5-2667 (3.20 GHz) processor with 16 cores. The 
number of OpenMP threads used for all computations 
was equal to 5. All reported times are indicative, because 

Table 1 Characteristics of different ssSNPBLUP systems

a ssSNPBLUP model proposed by Liu et al. [9] and using the Plink 1 binary form; or b using double precision reals; cssSNPBLUP model proposed by Mantysaari and 
Stranden [11] and using the Plink 1 binary form; dThe software peak memory is defined as the peak resident size (VmHWM) obtained from the Linux /proc virtual file 
system

Characteristic ssSNPBLUP_Liu (Plink)a ssSNPBLUP_Liu (DP)b ssSNPBLUP_MSc

Number of iterations 3,358 3,359 6,334

Smallest eigenvalue 2.304 ∗ 10−6
2.304 ∗ 10−6

1.989 ∗ 10−6

Largest eigenvalue 3.813 3.813 5.194

Spectral condition number 1.655 ∗ 106 1.655 ∗ 106 2.612 ∗ 106

Software peak memory (MB)d 18,120.7 89,615.7 27,780.3

Table 2 Wall clock times  for  the preparation and  solving 
processes of different ssSNPBLUP systems

a ssSNPBLUP model proposed by Liu et al. [9] and using the Plink 1 binary form; 
or busing double precision reals; cssSNPBLUP model proposed by Mantysaari 
and Stranden [11] and using the Plink 1 binary form; dWall clock time needed 
for the computation of the mentioned matrix; eMultiplication of the centered 
genotype matrix, or its transpose, by an array

Wall clock time (s) ssSNPBLUP_
Liu (Plink)a

ssSNPBLUP_
Liu (DP)b

ssSNPBLUP_MSc

diag
(

A
−1
gg

)

d 136.69 139.78 136.20

Preconditionerd 546.41 581.42 1,177.26

A
−1d 50.62 57.40 50.77

Zv
e 3.47 7.77 3.42

Z
′
v

e 1.53 4.61 1.45

Average time/itera-
tion

12.82 20.23 16.89

Iterative process 43,074.48 67,961.84 107,041.71

Software total time 44,531.00 69,593.09 109,126.07
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they may have been influenced by other jobs running 
simultaneously on the computer.

Results
Characteristics and results for different parts of the 
preparation and solving steps for ssSNPBLUP_MS and 
ssSNPBLUP_Liu using the Plink 1 binary form, or using 
double precision reals, are in Tables  1 and  2. All three 
ssSNPBLUP systems included 142,283,778 equations. 
Estimates for all fixed effects, additive direct and mater-
nal genetic effects, and other random effects, of the 
three ssSNPBLUP systems were (almost) the same after 
convergence was reached (e.g., the Pearson correlations 
between all estimates for the direct and maternal genetic 
effects of the three systems were higher than 0.999).

The wall clock time spent outside the iterative pro-
cess varied between 1456 s for ssSNPBLUP_Liu using 
the Plink 1 binary form and 2084 s for ssSNPBLUP_MS. 
Those times include input/output operations and compu-
tations of several matrices. For example, the computation 
of the diagonal elements of the matrix A−1

gg  using a Monte 
Carlo method [15] required less than 140 s for each of 
the three evaluations (Table 2). As described by Masuda 
et  al. [15], the Monte Carlo method only requires Agg

anc , 
A
gn
anc , and Ann

anc . These three sparse matrices were com-
puted using the pedigree of the 558,642 ancestors of the 
260,591 genotyped animals. Also, the preparation of A−1 
for the whole pedigree, i.e. for the 29,885,286 animals, 
required less than a minute (Table 2) and about 1.40 GB 
RAM. Finally, while the same amount of RAM (i.e. 807.71 
MB) was required across the three evaluations, the com-
putation of the preconditioner M for ssSNPBLUP_MS 
needed about twice the wall clock time of the computa-
tion of M for ssSNPBLUP_Liu (Table  2). This was due 
to the fact that the diagonal elements of Z′

W
′

gR
−1
g WgZ 

were computed explicitly for ssSNPBLUP_MS. This addi-
tional computation also explains the additional wall clock 
time needed for ssSNPBLUP_MS outside the iterative 
process.

As expected, ssSNPBLUP_Liu using the Plink 1 binary 
form and ssSNPBLUP_Liu using double precision reals, 
converged in about the same number of iterations (i.e. 
around 3360 iterations; Fig.  1; Table 1). Their precondi-
tioned coefficient matrices had an effective spectral con-
dition number equal to 1.655 ∗ 106 , resulting from the 
same extreme eigenvalues (Table 1). Differences between 
the two ssSNPBLUP_Liu were observed at the level of 
their performances. ssSNPBLUP_Liu using the Plink 1 
binary form required a maximum of around 18 GB RAM 
and about 13 s per iteration. In comparison, ssSNPB-
LUP_Liu using double precision reals required a maxi-
mum of around 89 GB RAM and about 20 s per iteration 
(Tables 1 and 2). The increase in RAM was due to the fact 

that the centered genotyped matrix stored with double 
precision reals required about 74 GB RAM (versus <3 GB 
RAM with the Plink 1 binary form). The increase in time 
per iteration was due to the fact that the wall clock time 
for the multiplication of the centered genotyped matrix 
by an array using the Intel MKL DGEMM subroutine 
was more than twice the wall clock time needed for the 
same multiplication using our subroutine with the Plink 
1 binary form (Table 2). Due to this increase in time per 
iteration, ssSNPBLUP_Liu using double precision reals 
needed about 56% more wall clock time to complete than 
ssSNPBLUP_Liu using Plink 1 binary form (that required 
about 12 h to complete) (Table  2). Using the Plink 1 
binary form instead of double precision reals to store the 
genotype matrix in-memory is therefore beneficial for 
both memory and time requirements.

In comparison to ssSNPBLUP_Liu using the Plink 1 
binary form, ssSNPBLUP_MS using the Plink 1 binary 
form was less efficient in terms of convergence, wall 
clock time, and RAM (Figure  1; Tables  1 and  2). The 
PCG method required a total of 6334 iterations to reach 
convergence, which can be partly explained by a larger 
spectral condition number, equal to 2.612 ∗ 106 . Previ-
ously Vandenplas et  al. [10] noted that spectral condi-
tion numbers and convergence of the PCG method for 
ssSNPBLUP_MS are worse than for ssSNPBLUP_Liu. 
Furthermore, ssSNPBLUP_MS required 5 additional 
seconds per iteration in comparison to ssSNPBLUP_Liu 
using the Plink 1 binary form (Table  2). This additional 
time per iteration is mainly due to additional computa-
tions needed for ssSNPBLUP_MS when multiplying 
CMSLS and CMSR1 by a vector. For CMSLS , compared to 

Fig. 1 Termination criteria for different 
ssSNPBLUP systems. The three systems investigated were a 
ssSNPBLUP system proposed by Liu et al. [9] using the Plink 1 binary 
form, or using double precision (DP) reals, and a ssSNPBLUP proposed 
by Mantysaari and Stranden [11] using the Plink 1 binary form
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CLiuLS , this was due to the additional non-zero entries 
for the SNP equations. For CMSR1 , compared to CLiuR1 , 
the extra time needed was mainly due to the presence of 
Ang and its transpose. The larger number of iterations to 
reach convergence and the longer time per iteration are 
the two main reasons that explain that ssSNPBLUP_MS 
completed in almost three times the time needed for 
ssSNPBLUP_Liu using the Plink 1 binary form. Finally, 
ssSNPBLUP_MS also required more RAM than ssSNPB-
LUP_Liu (around 52% more) due to additional temporary 
arrays to perform the multiplication of the Eq. (2).

Discussion
In this study, several computational strategies were pro-
posed to compute a preconditioner M for different ssSN-
PBLUP systems and to multiply the associated coefficient 
matrix C by a vector efficiently. The different strategies 
are based on approximations for the computation of the 
preconditioner, and on the splitting of the coefficient 
matrix C into multiple parts. Some matrices, such as A−1 , 
are also computed explicitly and stored in RAM to enable 
the use of efficient parallel libraries (e.g. BLAS and sparse 
BLAS). We also developed an approach to multiply a cen-
tered genotype matrix by an array when the genotype 
matrix is stored using a Plink 1 binary form. In general, it 
is not possible to write a matrix-matrix product subrou-
tine that outperforms a good BLAS DGEMM implemen-
tation like the one found in the Intel MKL by a significant 
margin, if at all. We have shown however that signifi-
cantly better performance can be achieved by storing the 
genotype matrix in a compressed form and applying the 
computation directly to that form.

Across the three implemented evaluations, ssSNPB-
LUP_Liu using the Plink 1 binary form outperformed 
the two others in terms of RAM and time requirements. 
Regarding RAM requirements, the main gain can be 
explained by the use of the Plink 1 binary form. Assum-
ing one million genotypes of 50,000 SNPs, using the 
Plink 1 binary form would require around 12 GB to store 
the genotype matrix, while using double precision reals 
would require around 373 GB. Even with dimensional-
ity-reduction methods [6, 28], single-step evaluations 
will still require more RAM than with the Plink 1 binary 
form. For example, assuming that 20,000 eigenvalues 
explain 99% of the variation of the genomic information, 
around 149 GB would still be needed to store the reduced 
genotype matrix. Similar amounts of RAM would also be 
required for single-step evaluations using dosage scores 
(e.g. to account for imputation errors [29, 30]), or based 
on the algorithm for proven and young animals [4] or 
on the Woodbury decomposition of the genomic rela-
tionship matrix [5], because these approaches require 
real arrays. Therefore, for a same amount of RAM, 

ssSNPBLUP using the Plink 1 binary form allows more 
genotyped animals in a single-step evaluation than the 
other approaches. A second reason of smaller RAM 
requirements by ssSNPBLUP_Liu is that in our imple-
mentation fewer temporary arrays were needed for ssSN-
PBLUP_Liu than for ssSNPBLUP_MS.

Regarding the time requirements of the different 
approaches implemented, ssSNPBLUP_Liu using the 
Plink 1 binary form used the smallest amount of time per 
iteration due to its use of the Plink 1 binary form and to 
fewer multiplications needed than ssSNPBLUP_MS. In 
addition, the convergence properties of ssSNPBLUP_Liu 
are better than those of ssSNPBLUP_MS [10, 31]. Hence, 
it is preferable to implement ssSNPBLUP_Liu instead 
of ssSNPBLUP_MS. It is also worth noting that the 
actual runtimes could be shorter than those reported in 
this study. For example, for direct and maternal genetic 
effects, as well as for direct and maternal SNP effects, of 
ssSNPBLUP_Liu, the Pearson correlations between esti-
mates obtained when the termination criterion reached 
10−5 (i.e. after 2032 iterations) and when it reached 10−6 
(i.e. after 3358 iterations; Table  1) were all higher than 
0.999. Further investigation on convergence criteria 
applied to ssSNPBLUP are therefore needed.

Our splitting of the coefficient matrix C of the two ssS-
NPBLUP systems into multiple parts to efficiently cal-
culate its multiplication by a vector, should facilitate the 
implementation of ssSNPBLUP in breeding value estima-
tion software currently used in animal breeding. Indeed, 
current software that implement ssGBLUP have already 
procedures to perform efficiently multiplications involv-
ing matrices such as CiLS , CiR1 , or CiR2 [16, 18]. To enable 
running ssSNPBLUP with those software, requires the 
implementation of at least two multiplications of the cen-
tered genotype matrix by an array. Finally, the computa-
tional strategies for two ssSNPBLUP systems proposed in 
this manuscript can be readily adapted for other ssSNPB-
LUP systems proposed in the literature [7, 8, 32].

Conclusions
Based on the proposed approaches and our results, we 
showed that ssSNPBLUP provides a feasible approach 
to estimate genomic breeding values using current com-
puters without resource to graphics processing units or 
special architecture. Using the Plink 1 binary form effi-
ciently throughout the whole breeding value estimation 
process is relatively straightforward with a ssSNPBLUP 
approach, and allows to include more genotyped ani-
mals in a single-step evaluation than other single-step 
approaches with a same amount of RAM. The ssSNPB-
LUP approach proposed by Liu et  al. [9] in combina-
tion with the Plink 1 binary form and solved with a PCG 
method with a second-level preconditioner was shown to 
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be the most efficient approach in terms of memory and 
time requirements.
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