

Vol.8 (2018) No. 4-2

ISSN: 2088-5334

A Survey on Malware Analysis Techniques: Static, Dynamic, Hybrid
and Memory Analysis

Rami Sihwail#, Khairuddin Omar*, K. A. Z. Ariffin *

Supporting Studies Centre, King Faisal University, Al-Hasa, Saudi Arabia

E-mail: rsihwail@kfu.edu.sa

*Faculty of Information Science & Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia

E-mail: ko@ukm.edu.my, k.akram@ukm.edu.my

Abstract— The threats malware pose to the people around the world are increasing rapidly. A software that sneaks to your computer
system without your knowledge with a harmful intent to disrupt your computer operations. Due to the vast number of malware, it is
impossible to handle malware by human engineers. Therefore, security researchers are taking great efforts to develop accurate and
effective techniques to detect malware. This paper offers an overall view and detailed survey for malware detection methods like
signature-based and heuristic-based. The Signature-based is largely used today by anti-virus software to detect malware. It is fast and
capable to detect known malware. However, it is not effective in detecting zero-day malware and is easily defeated by malware that
use obfuscation techniques. Likewise, a considerable amount of legitimate files that are incorrectly classified as malware (false
positive) and long scanning time are the major limitations of heuristic-based. Alternatively, memory-based analysis is a promising
technique that gives a comprehensive view of malware and it is expected to become more popular in malware detection. This paper
mainly focuses on the following areas: (1) providing an overview of malware types and malware detection methods, (2) discussing
current malware analysis techniques, their findings and limitations, (3) studying the malware obfuscation, attacking and anti-analysis
techniques, and (4) exploring the structure of memory-based analysis in malware detection. The methods of malware detection are
compared with each other according to their techniques, selected features, accuracy rates, and their advantages and disadvantages.
This paper aims to help the readers to have a comprehensive view of malware detection and discuss the importance of memory-based
analysis in malware detection.

Keywords— malicious; malware detection method; feature; behaviour-based; memory analysis; security.

I. INTRODUCTION

The threat that malware (short for malicious software)
cause to the computing world is growing rapidly. According
to the AV-TEST institute, 48 million various malware
samples were developed in the first quarter of 2017 [1].
Due to the vast number of malware, it is impossible to
handle malware by human engineers. Thus, security
researchers use malware detection systems to detect
malware. Detection systems includes two stages: analysis
and detection. Anti-virus software commonly use signature-
based approach to detect malware. This approach is fast and
capable to detect known malware with minimal false
positive rate. However, signature-based fails to discover
unknown malware and is easily defeated by malware that
uses obfuscation techniques. On the other hand, behavior-

based is another approach that is used in malware detection
where suspicious files are executed in a controlled
environment, monitored, and marked as malicious if their
behaviors match with known malware behavior. Behavior-
based is able to detect unknown malware and malware that
use obfuscation techniques, but it is time consuming with
considerable false positive rate [2].

Alternatively, memory-based is another approach that is
becoming more popular in malware detection lately due to
the wealth of information found in the dumped memory that
can be used in investigating malicious activities [3].

The paper is organized as follows: In the next section,
under material and method, we explain malware types,
detection methods, analysis techniques, and an overview of
related works, Section III discusses the future direction of

1662

Malware
Detection
Methods

Signature-
Based

Hash
Signature

Byte
Signature

Heuristic-
Based

Static
Techniques

Dynamic
Techniques

malware and the main sources of malware dataset. Finally,
the conclusion of the survey.

II. MATERIAL AND METHOD

This section provides an overview of malware types,
malware detection methods, and analysis techniques.

A. Malware Types

Malware is a software that is inserted into the system
without user knowlege. It can harm the computer system by
compromising computer functions, stealing data or evading
access controls. The following list presents the common
categories of malware:

• Virus: A malicious software that duplicates itself by
injecting its code into other programs. Virus can
spread from one program to another and from one
computer to another [4].

• Worms: Are malicious programs that replicate
themselves in a computer and destroy the files and
data on it. Worms might also encrypt files or send
junk emails. Unlike viruses, worms carry themselves
in their own containers [5].

• Trojan horse: While acting as a legitimate programs,
Trojans perform unknown and unwanted activities [4].
Trojans allow attackers to gain access to the effective
computer and extract user confidential information
like password and banking details.

• Spyware: Spyware is a software that continuously
spies on the users activities. It is used to gather
information about the users like webpages regularly
visited and credit card number without their
knowledge, then sends that information back to the
attackers [6].

• Rootkit: Rootkit is a collection of malicious software
that is programmed to access a computer system and
allow other types of malware to get into the system
[7].

• Ransomware: A harmful software that allows the
hacker to lock the computer and restrict the victim
access to the vital information. Ransomware encrypts
the important data on the infected computer or
network then asks for payment to lift the restriction
[8].

• Adware: Advertising-supported software is a type of
malware that continuously brings advertisements to
the computer. Usually adware is bundled with free
downloaded software and applications like free
playing games [9].

• Botnet: A malware that remotely controls a group of
devices like PCs, smart phones and internet of things
devices are infected and controlled by a cybercriminal.
Botnet is typically used for spam emails campaigns or
denial of service attacks. Users are often unaware that
their systems are infected by a botnet malware [10].

Fig. 1 Methods of Malware detection

B. Malware Detection Methods

Malware detection methods are categorized in several
ways from different point of view. In this section, we discuss
the main methods of malware detection: Signature-based and
heuristic-based. Figure 1, shows the main malware detection
methods.

1) Signature-Based Detection

Majority of available antivirus software use signature-
based approach. This approach extracts unique signature
from captured malware file and use this signature to detect
similar malware. A signature is a sequence of bytes or a file
hash that can be used to identify specific malware [11].
Therefore, this method has small false positive (FP) rate
[14].. However, it is not difficult for attackers to change
malware signature to evade being detected by antivirus
software. Signature-based is very effective and fast in
detecting known malware, but it is incapable to capture new
released malware [13]. Signature-based approach depends
on implementing static analysis to extract exceptional byte
sequences known as marks [12]Figure 2 shows the
signature-based general procedure for malware detection.

Fig. 2 Signature-based general flow

Malware authors have created another challenge for

signature-based approach by using obfuscation techniques.
This techniques include dead code insertion, register
reassignment, instruction substitution, and code
manipulation [15]. In the following we briefly explain each
technique.

• Dead-Code insertion: This simple code obfuscation
technique adds some NOP (No operation Performed)
instructions or inserts ineffective PUSH/ POP
statements to a program to change its look, but keep
its same behavior.

1663

• Register Reassignment: This technique works by
switching registers or by reassigning the value of one
register to unused one. For example, EAX is
reassigned to EBX register.

• Subroutine Reordering: Subroutine is a group of
program operations that do a specific task. This
technique changes the subroutines order randomly in
the program.

• Instruction Substitution: In this technique, original
instructions that perform the same function are
replaced by equivalent ones, such as replacing MOV
instruction with PUSH instruction.

• Code Integration: A malware that embedded itself to
another legal program. It was first found in Zmist
malware. To apply this technique, malware
decompiles its targeted program and adds itself in
between its source code [16]. Code integration is
considered as one of the most sophisticated
obfuscation techniques that allows malware to evade
detection.

2) Heuristic-Based Detection

Heuristic-based is also known as anomaly or behavior-
based detection. In this detection, the activities performed by
malware during runtime are analyzed in a training (learning)
phase. After that, the file is labelled as malicious or
legitimate file during a testing (monitoring) phase based on a
pattern extracted during the training test [11].

Unlike signature-based, behavior-based approach is
capable to detect both unknown malware and malware that
uses obfuscation techniques. However, the major drawbacks
of behavior-based are a considerable false positive rate (FP)
and excessive monitoring time [14]. Further, the reduction of
thousands of extracted features, evaluate similarities
between them, and monitoring malware activities are
directly effecting the ability of detecting zero-day malware
attacks [17], [18].

Heuristic-based commonly depends on data mining
techniques in order to understand the behaviors of running
files, such techniques include Support Vector Machine,
Naïve Bayes, Decision Tree and Random Forest.

C. Malware Analysis Techniques

Malware analysis concerns studying malicious files with
the aim of having better understanding about several aspects
of malware like malware behavior, evolution over time, and
their selected targets [19]. The outcome of malware analysis
should allow security firms to strengthen their defence
strategies against malware attacks.

Techniques used for malware analysis mainly categorized
into three parts: Static, Dynamic, and Hybrid analysis. In
addition, memory-based analysis is another technique that is
very useful in malware analysis. Figure 3, shows malware
analysis techniques and their common features.

Fig. 3 Malware analysis techniques and features

1) Static Analysis

This technique refers to analyzing the Portable Executable
files (PE files) without running them. Malware commonly
uses binary packer, such as UPX and ASP Pack Shell, to
avoid being analyzed [6]. A PE file needs to be unpacked
and decompressed before being analyzed. To decompile
windows executable file a disassembler tool can be used,
such as IDA Pro and OlleyDbg that display assembly
instructions, provide information about the malware, and
extract pattern to identify the attacker.

The detection pattern can be extracted in static analysis
like Windows API calls, string signature, control flow graph
(CFG), opcode (operation codes) frequency and byte
sequence n-grams [20]. In the following, we explain the
main features in static analysis.

Almost all programs use Windows API (short for
Application Programming Interface) calls to communicate
with the operating system. For example, the "OpenFileW" is
a Windows API in "Kernel32.dll" that creates a new file or
opens an existing one. Therefore, API calls reveal the
behavior of programs and could be considered as an
essential mark in malware detection. For instance, the
Windows API calls "WriteProcessMemory", "LoadLibrary"
and "CreateRemoteThread" are a suspected behavior used by
malware for DLL injection into a process, while rarely come
together in a legitimate set. DLL injection is discussed in
memory analysis section.

Strings are good indicator of malicious existence. Strings
reveal the attacker's intent and goals since they often hold
critical semantic information [6]. For example, the following
string “This program cannot be run in DOS mode” indicates
malicious file when it is found outside of the typical PE
header, which is a common feature of droppers and
installers.

Control Flow Graph (CFG): A CFG is a directed graph
that demonstrates the control flow of a program, where
blocks of code are presented by nodes and control flow paths
by edges. In malware detection, CFG can be used to capture
the behavior of a PE file and extract the program structure
[19].

1664

Opcodes is the first part of a machine code instruction
(also called machine language) that identifies what operation
to be executed by the CPU. A full machine language
instruction composed of opcode and, optionally, one or more
operands (e.g., "mov eax 7", "add eax ecx" and "sub ebx 1").
Opcode can be employed as a feature in malware detection
by testing opcode frequency or calculating the similarity
between opcode sequences.

N-grams are all of contiguous subsequences of a sequence
of a length N [21]. For example, the word "MALWARE" is
a sequence of letters of length 7, it can be segmented into 3-
grams as: "MAL", "ALW", "LWA", "WAR" and "ARE". N-
Grams have been applied with various detection features like
API calls and opcodes.

Beside the previous features, there are other features that
have been used in static analysis like file size and function
length. Networking features like TCP/ UDP ports,
destination IP and HTTP request are also features in static
analysis [19].

One of the most significant research on malware signature
evasion techniques has been done by Kirat and Vigna [22].
They were able to extract techniques from 2810 malware
samples and group them into 78 similar evasion signature
techniques.

Hashemi and Hamzeh presented a new approach that
extracts unique opcode from the executable file and converts
them into digital image. Visual features are then extracted
from the image using Local Binary Pattern (LBP), which is
one of the most famous texture extraction method in image
processing. Finally, machine-learning methods are used to
detect malware. The proposed detection technique obtained
accuracy rate of 91.9% [23]. Shaid and Maarof also
suggested displaying malware in the form of images. Their
technique captures API calls of malware and converts them
into visual cues or images. These images are used to identify
malware variants [24].

On the other hand, both Salehi et al. [25] and Han et al.
[26] built their techniques based on extracted API calls.
Salehi et al. extracted API calls from each binary files and
used API frequencies to learn the classifier. Then, three
feature sets were generated ‘API calls list’, 'API arguments'
and ‘API and arguments list’, and each set has been tested
separately. Results showed that API arguments list is better
compared to the other two sets with accuracy of 98.4% and
false positive rate around 3%. In the same way, Han et al.
extracted APIs from the IAT table (import Address Table)
using static analysis. They compared the extracted API
sequence with another sequence and calculated the similarity
between them to classify malware family. Han found that
malware within the same family are about 40% similar and
false positive rate calculated 16%. Likewise, Cheng et al.
[27] analyzed native APIs sequences using WinDbg tool and
applied Support Vector Machine to detect shellcode
malware. They used a too small training set, and were able
to achieve 94.37% accuracy rate. However, false negative
rate accounted as high as 44.44%.

Table I, shows the results of surveyed papers that applied
static analysis in their malware detection approaches.

TABLE I
SURVEYED PAPERS THAT APPLY STATIC ANALYSIS

Author
Year

Static
feature

Classifier
Dataset

Malware/
Benign

Acc FP

Hashemi
2018 [23]

Opcode KNN
M=3,100
B=3,100

91.9% -

Salehi
2014 [25]

API,
arguments

ROT-F, RF,
DT, J48,

NB

M=826
B=395

98.4% 3%

Han
2012 [26]

APIs
sequence

- M=545 40%* 16%

Santos
2013 [28]

Opcode
sequence

DT, KNN,
BN, SVM

M=1,000
B=1,000

97.5% 6%

Cheng
2017 [27]

Native APIs
sequence

SVM
M=18/
B=72

94.4% 1.4%

* Similarity within the same family

2) Dynamic Analysis

It is also called behavior analysis. In this analysis,
suspicious files are executed and monitored in a controlled
environment like VM, emulator or simulator [9]. The
infected files need to be analyzed in invisible environment
for simple reason that some malware are supported with
anti-virtual machine and anti-emulator techniques. Malware
behave normally when they detect such environment and do
not show any malicious activity.

Compared to static analysis, dynamic analysis is more
effective as there is no need to disassemble the infected file
to analyze it. In addition, dynamic analysis is able to detect
known and unknown malware. Furthermore, obfuscated and
polymorphic malware cannot evade dynamic detection.
However, dynamic analysis is time intensive and resource
consuming [6].

TABLE II
SURVEYED PAPERS THAT APPLY DYNAMIC ANALYSIS

Author
Year

Dynamic
feature

Classifier
Dataset

Malware/
Benign

Acc FP

Liang
2016 [32]

API calls
DT, ANN,

SVM
M=12,199 91.3% -

Mohaisen
2013 [29]

file system,
registry,
network

SVM, DT,
KNN

M=1,980 95% 5%

Mohaisen
2015 [30]

file system,
registry,
network

SVM, DT,
KNN

M=115,000 99% -

Galal
2017 [33]

APIs
sequence

DT, RF,
SVM

M=2,000/
B=2,000

97.2% -

Ki
2015 [34]

APIs
sequence

- M=23,080 99.8% 0%

Fan
2015 [35]

User API,
native API

J48, NB,
SVM

M=773/
B=253

95.9% 5%

Various techniques can be used with dynamic analysis,

such as function call monitoring, function parameter
analysis, instruction traces, and information flow tracking
[20]. Reviewing the surveyed papers, API and system calls
are largely employed in malware dynamic analysis as well as
file system, Windows registry and network features.

Mohaisen et al. tried to classify Zeus malware using
several machine learning techniques. Artifacts like registry,
file system, and network features were used to learn the

1665

classifier [29]. The dataset consisted of 1980 samples of
Zeus Banking Trojan and accuracy achieved close to 95%.
Afterward, in the next work, Mohaisen et al. proposed
AMAL, an automated and behavior-based malware analysis
and labeling system. AMAL consists of two components:
AutoMal and AutoLabel. Automal uses file system, network
activity logging, and registry monitoring features to analyze
malware samples. Further, AutoLabel classifies malware
samples into their families based on their behavior. AMAL
used more than 115,000 malware samples and achieved
detection rate around 99% [30].

In their work [31], Chen and Bridges studied WannaCry
Ransomware features from system logs, which is produced
using Cuckoo Sandbox. TF-IDF approach, shorts for term
frequency–inverse document frequency, has been used to
calculate frequent terms with high weights in the system
logs.

Most of the dynamic techniques focused on API calls to
represent malware behaviors (e.g. [32], [33], [34]–[35]).
Liang et al. [32] introduced a behavior-based malware
variant classification technique that captures API calls of
running malware, then creates multilayer dependency chain
based on the dependency relationship of the API calls. The
technique is able to measure the degree of similarity between
malware variants. Galal et al. also applied API hook to
capture information about API calls and their parameters.
Then, related API calls that share common semantic
purposes are set together into sequences. Their highest
accuracy was 97.19% achieved using Decision Tree [33].
Likewise, Ki et al. [34] proposed an approach that extracts
user level API call sequences by using, Microsoft supported
tool, Detours and apply Multiple Sequence Alignment
algorithm (MSA), which is one of the most popular
algorithms used in DNA sequence alignment. After that, Ki
et al. applied Longest Common Subsequence algorithm
(LCS) to match similar sequences. The approach achieved
99.8% accuracy and zero (0) false positive. Further, Fan et
al. [35] used API hooking to trace APIs that malware try to
hide. The technique monitors both regular APIs and native
APIs like undocumented and low-level APIs. In the
experiment, only 80 APIs were selected and detection rate
reached 95% using Decision Tree and Naive Bayesian
algorithms.

Table II, shows the results of surveyed papers that applied
dynamic analysis in their malware detection approaches.

In dynamic analysis, malware are executed in a controlled
environment to examine the live behavior of malicious files
without being harmed by them. There are several types of
control environment like emulators, debuggers, simulators
and virtual machines. Next, we present each type and
explain the strategies malware use in order to detect the
existence of controlled environment.

Emulator is a controlled environment that is used to
control the execution of a malicious program. A full
emulation system controls the CPU, hard disk and resources.
Emulators are distinguished based on the controlled part of
the running environment. TEMU, which is part of BitBlaze

project, introduced in 2008 by Sont et al. [36] as a full
emulation system that supports dynamic binary analysis by
monitoring features like network activities, memory
locations, function calls, processes, modules and API calls.
TTAnaylze [37] is another type of emulators that works on
QEMU, which is an open source machine emulator, and
provides automatic malware analysis module that records
windows APIs and native APIs. However, majority of
malware are able to detect emulated environment. In case of
partial emulation system, malware can perform operation
that works outside the emulated environment to detect
whether it is running inside a controlled environment.
Further, malware can still detect the characteristics and side
effects of full environment system like detecting imperfect
CPU features and comparing system properties (i.e.
currently logged-in user) [38].

Debugger is another type of controlled environment,
which is a program that observes and examines the
execution of other binary programs. WinDbg, OllyDbg and
GDB are debuggers that can be used to monitor the
execution behavior of suspected binaries at the instruction
level. Unlike OllyDbg, WinDbg also supports kernel
debugging. Further, IDA Pro is a static analysis tool that has
less capable built-in debugger. Though, The use of Windows
API is the most straightforward technique malware use to
determine that it is being debugged. API functions that can
be used for anti-debugging include “IsDebuggerPresent”,
“CheckRemoteDebuggerPresent” and “OutputDebugString”.
Another technique performed by malware is to look for signs
of installing debugging tool on the system such as searching
registry keys, files and directories. Further, malware can use
several techniques like exceptions and interrupts to disrupt
the execution of a program only if it is being debugged [40].

Another environment is simulator, which is a program
that simulates operation in order to be observed by user
without actually performing that operation. Simulator tools
such as CWSandbox, Norman sandbox and Detours allow
malware to execute in a controlled virtual environment and
record its behavior. Detours is used to intercept function
calls made by a process to any DLL (DLL injection), while
CWSandbox performs API hooking to capture Windows
API calls invoked by a malware. On the other hand, Norman
sandbox simulates Windows operating system, LAN and
Internet connectivity on the host machine [38]. For anti-
simulation, Malware checks for registry, files or processes to
determine the existence of certain sandbox product. The
execution time is another technique to detect sandbox and
virtual environment as executing instruction under controlled
environment requires longer time than a real one [41].

The most common controlled environment is virtual
machine (VM). VM is a computer software that runs an
operating system and applications. These applications are
isolated from the host system. Thus, running file or software
inside a virtual machine cannot interfere with the host
machine. Virtual machine applications include VirtualBox,
Parallels and VMware. A virtual machine monitor (VMM) is
a software that creates, runs and manages virtual machine

1666

[39]. Furthermore, it is also responsible for assigning
hardware to virtual machine. However, Malware examines
the existence of virtual machine (VM) on a system by
searching for artifacts that installed VM tools leave in the
file system, registry and process listing. Malware can also
look for certain instructions that can be invoked by user
mode such as “sidt”, “sgdt“, and “sldt“ to observe the
presence of VM tools [40]. Furthermore, Hardware
characteristics and features may lead to the presents of
virtual machine. For example, CPUID hypervisor bit is set to
zero in the real system and malware, therefore, can test this
bit to determine if they are running inside a virtual machine.
In addition, most debuggers and Virtual Machines create
files and drivers that belong to that particular tool, malware
can look for these artifacts to discover the presence of virtual
machines or debuggers [41].

3) Hybrid Analysis

Hybrid analysis gather information about malware from
static analysis and dynamic analysis. By using hybrid
analysis, security researchers gain the benefits of both
analyses, static and dynamic. Therefore, increasing the
ability of detecting malicious programs correctly [42]. Both
analyses have their own advantages and limitations. Static
analysis is cheap, fast and safer compared to dynamic
analysis. However, malware evade it by using obfuscation
techniques. On the other hand, dynamic analysis is reliable
and can beats obfuscation techniques. Furthermore, it is able
to recognize malware variants and unknown malware
families. However it is time intensive and resource
consuming [6].

Shijo and Salim [43] proposed an integrated technique to
detect and classify unknown files. Printable strings
information (PSI) feature was extracted by performing static
analysis. Besides, using dynamic analysis to extract API
calls. Experiment showed detection rate of 95.8% applying
static, 97.1% applying dynamic and 98.7% for hybrid
analysis. Their highest accuracy was achieved using SVM
technique. Islam et al. [44] extracted two features from static
analysis Function Length Frequency (FLF) and Printable
String information (PSI) and API calls and parameters
during dynamic analysis. Based on the results, Random
Forest machine learning technique showed the highest result
in classifying the data. In addition, they have found that
applying the approach on old malware samples has better
accuracy compared to new samples, with accuracy of 99.8%
and 97.1% respectively. Further, Ma et al. [45] introduced a
method to reduce false positive in malware classification
called Ensemble that combined static and dynamic classifier
into one classifier. The method uses multi features include
static import functions and dynamic call functions to
improve the accuracy and reduce false positive.
Furthermore, Santos et al. [46] introduced OPEM, a tool to
detect unknown malicious files by combining opcode
frequency obtained during static analysis and system calls,
operations and raised exceptions during dynamic analysis.
OPEM showed accuracy of 95.9% from static analysis,

77.26% using dynamic and 96.6% using hybrid analysis with
SVM.

Table III, shows the results of surveyed papers that applied
hybrid analysis in their malware detection approaches.

TABLE III
SURVEYED PAPERS THAT APPLY HYBRID ANALYSIS

Author
Year

Feature
Static/

Dynamic
Classifier

Dataset
Malware/
Benign

Acc FP

Shijo
2016 [43]

PSI/ API calls RF, SVM
M=1,368
B=456

98.7% -

Islam
2013 [44]

Function
length, PSI/

API

DT, SVM,
RF, IB1

M=2,939 97% 5.1%

Ma
2016 [45]

Import
functions/ call

functions

DT, NB,
SVM

M=279 - -

Santos
2013 [46]

Opcode/
system calls,

operations, and
exceptions

DT, KNN,
NB, SVM

M=13,189
B=13,000

96.6% 3%

4) Memory Analysis

Memory analysis has become a popular technique, in the
recent years, proven to be efficient and accurate in malware
analysis. Memory analysis attracts malware analysts as it
gives comprehensive analysis of malware [47] since it is
able to examine malware hooks and code outside the
function normal scope [48]. It uses memory image to
analyze information about running programs, operating
system, and the general state of the computer.

Memory forensics investigations pass through two steps:
memory acquisition and memory analysis. In the memory
acquisition, the memory of the target machine is dumped to
obtain a memory image using tools such as Memoryze,
FastDump and DumpIt. The memory analysis step is to
analyze the memory image looking for malicious activities
using tools like Volatility and Rekall.

A number of researches related to memory forensics
techniques have been proposed. Teller and Hayon [50]
proposed a trigger-based memory analysis approach that
triggers memory dumps based on the following events: API-
based, performance-based and instrumentation-based in
order to know what happens during the execution of the
malware file and not only at the end of it. Further, Choi et al.
[51] introduced a modification to Teller and Hayon’s
technique in [50]. By implementing API trigger-based
memory dump technology for Cuckoo sandbox, which
makes Cuckoo capable to dump the memory at every wanted
API call.

In their research, Mosli et al. [3] investigated three
features extracted from memory images: imported libraries,
registry activity, and API function calls to detect malware.
Their highest accuracy was about 96% using SVM with data
from registry activity. Afterward, in the next research, Mosli
et al. [52] proposed a technique that uses the process handles
to detect whether the suspected sample is malicious or
benign. The experiment have spotted the light on the main
types of handles that malicious process commonly use, such

1667

as section handles, process handles and mutants. On the
other hands, Zaki and Humphrey [7] studied the memory
artifacts left by rootkits in kernel-level such as: driver,
module, SSDT hook, IDT hook and callback. The
experiment has proven that callback functions, modified
drivers, and attached devices are the most suspicious
activities in the kernel-level. Table IV, shows the results of
surveyed papers that applied memory analysis in their
malware detection approaches.

TABLE IV
SURVEYED PAPERS THAT APPLY MEMORY ANALYSIS

Author
Year

Feature Classifier
Dataset

Malware/
Benign

Acc FP

Mosli
2016 [3]

Registry,
imported libraries,

API calls

SVM,
SGD, DT,
RF, KNN

M=400
B=100

96% -

Mosli
2017 [52]

Number of
opened handles

KNN,
SVM, RF

M=3,130
B=1,157

91.4% -

Zaki
2014 [7]

Driver, module,
hooks, callback

- - - -

In addition, Memory forensic techniques are able to

monitor malware behaviors like API hooking, DLL injection
and Hidden processes [49]. In the following, we discuss each
behavior and malware anti-forensics techniques.

Windows API is generally used to communicate with
system resources like files, processes, registry and network
[53]. Malware use a technique called API hooking to
interrupt the function calls. In other words, it can change the
behavior and flow of API calls. Following is the most
common types of API hooks [54] [55]:

• IAT hooks: A PE file stores the address of API
functions in the Import Address Table (IAT). Malware
overwrites the location of API in the IAT, thus forcing
the process to call an attacker function instead of the
original API. Many well-known malware are using
IAT hook like Zeus, FinFisher and Stuxnet.

• Inline API hooks: Also called trampoline or detours
hooks. Inline hooks require writing in few places in
process's memory. For example, Malware adds jump
instruction (JMP) into a legitimate function prologue
to move the flow to a different memory location that is
occupied by a rootkit.

• IDT hook: The Interrupt Descriptor Table (IDT) stores
functions for handling interrupts and exceptions.
Malware changes the value in 0x2E entry in the IDT
and gain control when a call to a kernel mode API
function is executed.

• SSDT hooks: The System Service Descriptor Table
(SSDT) is a table containing pointers to kernel mode
functions. Malware uses SSDT to protect and hide
themselves. For example, by hooking the SSDT
malware can negate the call to "NTOpenProcess" and,
therefore, no program will be able to kill the malicious
process.

• IRP hook: Applications in Windows communicate
with drivers through Input/ Output Request Packet
(IRP). Malware uses IRP hook to do malicious actions
such as keylogging and disk access filtering.

DLL injection is a technique aiming to insert a malicious
code into a legitimate process. Once the malicious DLL is
injected, the execution flow is transferred to the malicious
memory space [56]. The DLL injection can be categorized
into the following main techniques:

• Classic DLL injection using remote thread: DLL
injection is a common technique malware use to inject
malicious code into another process. Malware write
the Dynamic Link Library (DLL) path in the virtual
address space of the target process, and creates remote
thread in the target process to make sure that it loads
the malicious DLL. The malware first calls the API
"VirtualAllocEx" to assign memory into the address
space of the victim, and then it calls
"WriteProcessMemory" to write the DLL path into the
allocated memory. After that, "LoadLibrary" is called
for the DLL load. Finally, the malware calls function
like "CreateRemoteThread", "NtCreateThreadEx" or
"RtlCreateUserThread" to create the thread in the
target process [57].

• Injecting via registry modification: Hackers modify
the value of "Appinit_DLL" registry key that is
located at
"HKLM\Software\Microsoft\WindowsNT\CurrentVer
sion\Windows\Appinit_Dlls", to conduct DLL
injection. Then, the location of the malware library is
added to "Appinit_DLL" to make another process load
their library. To apply this, malware calls
"RegCreateKeyEx" to open the "Appinit_Dlls"
registry key, and then calls "RegSetValueEx" to
modify its values. Additional, rebooting the system is
needed to apply the modifications in the registry
values to the system [58].

• Injection using window hooking function: In
Windows application, program code is executed based
on events. Malware can load their malicious DLL
whenever certain event is triggered. The
"SetWindowsHookEx" function is used to install a
hook routine into the hook chain. Thus, the malicious
action inputted into the "SetWindowsHookEx"
function is called whenever a particular event is
triggered such as mouse move or key press [56].

The existence of hidden processes, files or network
connections is a good indicator of a successful malicious
attack [59]. Therefore, attackers try to hide their malicious
artifacts. Hiding a process is typically accomplished by
rootkit called stealth rootkit, which modifies program
binaries. Another method is to hook the call path between
applications and the kernel by modifying system call tables,
dynamic link structures, libraries, or operating system
functions [60]. Further, some rootkits modify the kernel data
structures using direct kernel object manipulation (DKOM)
leading to incorrect user requests and, therefore, unrevealing
the existence of malicious process [61].

In order to prevent memory forensics or make it
unworkable, malware use anti-forensic techniques. The
following are some of anti-forensic techniques:

• Memory hiding: Malware tries to hide malicious
memory region form memory analysis tools.

1668

• Memory acquisition failure: By terminating certain
processes or limiting driver loading to thwart memory
acquisition process.

• Anti-Carving: Malware attempts to prevent memory
analysts from extracting kernel information by
manipulating the kernel data structure field in order to
make the memory analysis tools mislead the field [62].

• Increase timing: Malware creates fake objects in the
kernel data structure to increase analysis time.

III. RESULTS AND DISCUSSION

A. Future Direction

Many security researchers believe that the future of
malware still ambiguous. There are a number of challenges
in the future of malware development in which, we believe,
security firms and researchers should consider. First, one
worry is the automation of creating malware variants.
Studying the latest malware detection methods and using
machine learning, attackers can develop automated tools that
are able to produce thousands of different malware samples
every day. Second, malware groups may offer those malware
automation tools for rental or sale, giving the chance to low-
skilled groups and amateur hackers to enter malware world.
Third, Malware are rapidly change in terms of structure and
functionality. Most of the surveyed techniques used one
malware dataset to learn and test the behaviors (the
classifier). Although they have got a high detection rate, but
results would be different when applying the techniques on a
new released malware. Finally, malware are expected to
become more complicated in the future. Attackers might use
a new encryption methods or obfuscation techniques to make
malware detection and analysis an impossible job.

The traditional way anti-virus software use to capture
malware is by searching for known signature. Unfortunately,
this technique can easily be evaded by simple obfuscation
technique [63]. Static and dynamic analyses have their
limitations as well. Alternatively, memory analysis gives
comprehensive analysis of malware. Malware can hide its
code in the computer system effectively. However, malware
must execute its code in the memory to perform its tasks
eventually. Volatile memory (RAM) keeps its contents until
it is powered off. Therefore, analyzing the RAM can tell us
about the activities which is happening in the system.
Valuable live Information that resides in memory include
running process, Dynamic Link Library (DLL), files,
registry keys, services, sockets and ports, and active network
connections [64]. Thus, memory analysis is a promising
technique that is expected to become more popular, together
with data mining and machine learning techniques, in
malware detection.

B. Dataset

In order to study malware techniques and tricks, it is very
important for researchers to collect malware samples. One
way to collect samples is by using honeypots, which is a
dedicated machine deployed to attract attackers to learn their
attacking techniques [65]. Researchers can also use known

malicious URLs. In addition, malware dataset can be
downloaded from anti-malware agents' websites such as
Malware DB, Malwr, MalShare, VX Heaven, theZoo and
VirusShare malware repository. Furthermore, some
specialized companies and research project groups
occasionally share their collection of malware datasets. In
2015, Microsoft provided 500 GB dataset of known malware
files in the big challenge competition [66]. Recently,
Endgame is sharing “ember” project with 600 thousands
malicious files to address the lack of open-source datasets in
the domain of static detection malware [67].

IV. CONCLUSION

Malware is causing a critical threat to our computer
systems, internet and data. The challenges that malware
authors pose by developing complicated malware that
frequently changes their signature to evade detection, and by
releasing more sophisticated versions of malware that use
new obfuscation techniques, have brought many issues to
anti-virus software and security researchers. In this paper,
we briefly surveyed malware types and malware detection
methods. We have also reviewed three types of malware
analysis techniques: static, dynamic and hybrid. We also
gave a discussion on the use of memory forensics in finding
malware artifacts. In addition, we discussed the future of
memory-based analysis in malware detection. Techniques
used by malware to evade detection such as obfuscation,
attacking and anti-analysis techniques have been reviewed as
well. Finally, the future direction of malware development
and the main sources of malware dataset have been studied
in this paper.

ACKNOWLEDGMENT

The authors would like to thank the Ministry of Education
Malaysia for supporting this work under grant
FRGS/1/2016/ICT02/UKM/01/1. Also, would like to thank
Universiti Kebangsaan Malaysia (UKM) for supporting this
work under grant GGPM-2017-026.

REFERENCES

[1] AV-TEST, “The AV-TEST Security Report,” 2017. [Online].
Available: https://www.av-
test.org/fileadmin/pdf/security_report/AV-
TEST_Security_Report_2016-2017.pdf.

[2] C. T. Lin, N. J. Wang, H. Xiao, and C. Eckert, “Feature selection and
extraction for malware classification,” J. Inf. Sci. Eng., vol. 31, no. 3,
pp. 965–992, 2015.

[3] R. Mosli, R. Li, B. Yuan, and Y. Pan, “Automated malware detection
using artifacts in forensic memory images,” in 2016 IEEE
Symposium on Technologies for Homeland Security, HST 2016,
2016, pp. 1–6.

[4] M. Karresand, “Separating Trojan horses, viruses, and worms - A
proposed taxonomy of software weapons,” in IEEE Systems, Man
and Cybernetics Society Information Assurance Workshop, 2003, pp.
127–134.

[5] X. Wang, W. Yu, A. Champion, X. Fu, and D. Xuan, “Detecting
worms via mining dynamic program execution,” in Proceedings of
the 3rd International Conference on Security and Privacy in
Communication Networks, SecureComm, 2007, pp. 412–421.

[6] Y. Ye, T. Li, D. Adjeroh, and S. S. Iyengar, “A Survey on Malware
Detection Using Data Mining Techniques,” ACM Comput. Surv.,

1669

vol. 50, no. 3, pp. 1–40, 2017.
[7] A. Zaki and B. Humphrey, “Unveiling the kernel : Rootkit discovery

using selective automated kernel memory differencing,” Virus Bull.,
no. September, pp. 239–256, 2014.

[8] N. Scaife, H. Carter, P. Traynor, and K. R. B. Butler, “CryptoLock
(and Drop It): Stopping Ransomware Attacks on User Data,” in
Proceedings - International Conference on Distributed Computing
Systems, 2016, vol. 2016–Augus, pp. 303–312.

[9] G. A. N. Mohamed and N. B. Ithnin, “Survey on Representation
Techniques for Malware Detection System,” Am. J. Appl. Sci., vol.
14, no. 11, pp. 1049–1069, 2017.

[10] M. Chowdhury and A. Rahman, “Malware Analysis and Detection
Using Data Mining and Machine Learning Classificatio,” in
International Conference on Applications and Techniques in Cyber
Security and Intelligence, 2018, vol. 580, pp. 266–274.

[11] A. Damodaran, F. Di Troia, C. A. Visaggio, T. H. Austin, and M.
Stamp, “A comparison of static, dynamic, and hybrid analysis for
malware detection,” J. Comput. Virol. Hacking Tech., vol. 13, no. 1,
pp. 1–12, 2017.

[12] A. Souri and R. Hosseini, “A state-of-the-art survey of malware
detection approaches using data mining techniques,” Human-centric
Computing and Information Sciences, vol. 8, no. 1. 2018.

[13] M. Alazab, S. Venkataraman, and P. Watters, “Towards
understanding malware behaviour by the extraction of API calls,”
Proc. - 2nd Cybercrime Trust. Comput. Work. CTC 2010, no. July
2009, pp. 52–59, 2010.

[14] Z. Bazrafshan, H. Hashemi, S. M. H. Fard, and A. Hamzeh, “A
survey on heuristic malware detection techniques,” in IKT 2013 -
2013 5th Conference on Information and Knowledge Technology,
2013, pp. 113–120.

[15] I. You and K. Yim, “Malware obfuscation techniques: A brief
survey,” in Proceedings - 2010 International Conference on
Broadband, Wireless Computing Communication and Applications,
BWCCA 2010, 2010, pp. 297–300.

[16] W. Wong and M. Stamp, “Hunting for metamorphic engines,” J.
Comput. Virol., vol. 2, no. 3, pp. 211–229, 2006.

[17] M. Hafiz, M. Yusof, and M. R. Mokhtar, “A Review of Predictive
Analytic Applications of Bayesian Network,” Int. J. Adv. Sci. Eng.
Inf. Technol., vol. 6, no. 6, pp. 857–867, 2016.

[18] S. N. Das, M. Mathew, and P. K. Vijayaraghavan, “An Approach for
Optimal Feature Subset Selection using a New Term Weighting
Scheme and Mutual Information,” Int. J. Adv. Sci. Eng. Inf.
Technol., vol. 1, no. 3, pp. 273–278, 2011.

[19] D. Ucci, L. Aniello, and R. Baldoni, “Survey on the Usage of
Machine Learning Techniques for Malware Analysis,” arXiv Prepr.
arXiv1710.08189, pp. 1–67, 2018.

[20] E. Gandotra, D. Bansal, and S. Sofat, “Malware Analysis and
Classification: A Survey,” J. Inf. Secur., vol. 05, no. 02, pp. 56–64,
2014.

[21] T. Abou-Assaleh, N. Cercone, V. Keselj, and R. Sweidan, “N-gram-
based detection of new malicious code,” Proc. 28th Annu. Int.
Comput. Softw. Appl. Conf. 2004. COMPSAC 2004., vol. 2, no. 1,
pp. 41–42, 2004.

[22] D. Kirat and G. Vigna, “MalGene,” in Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security -
CCS ’15, 2015, pp. 769–780.

[23] H. Hashemi and A. Hamzeh, “Visual malware detection using local
malicious pattern,” Journal of Computer Virology and Hacking
Techniques, pp. 1–14, 2018.

[24] S. Z. M. Shaid and M. A. Maarof, “Malware behaviour
visualization,” J. Teknol., vol. 70, no. 5, pp. 25–33, 2014.

[25] Z. Salehi, A. Sami, and M. Ghiasi, “Using feature generation from
API calls for malware detection,” Comput. Fraud Secur., vol. 2014,
no. 9, pp. 9–18, 2014.

[26] K. S. Han, I. K. Kim, and E. G. Im, “Malware classification methods
using API sequence characteristics,” in Lecture Notes in Electrical
Engineering, 2012, vol. 120 LNEE, pp. 613–626.

[27] Y. Cheng, W. Fan, W. Huang, and J. An, “A Shellcode Detection
Method Based on Full Native API Sequence and Support Vector
Machine,” in IOP Conference Series: Materials Science and
Engineering, 2017, vol. 242, no. 1, pp. 1–7.

[28] I. Santos, F. Brezo, X. Ugarte-Pedrero, and P. G. Bringas, “Opcode
sequences as representation of executables for data-mining-based
unknown malware detection,” Inf. Sci. (Ny)., vol. 231, pp. 64–82,
2013.

[29] A. Mohaisen and O. Alrawi, “Unveiling Zeus: automated
classification of malware samples,” Proc. 22nd Int. Conf. World

Wide Web companion, pp. 829–832, 2013.
[30] A. Mohaisen, O. Alrawi, and M. Mohaisen, “AMAL: High-fidelity,

behavior-based automated malware analysis and classification,”
Comput. Secur., vol. 52, pp. 251–266, 2015.

[31] Q. Chen and R. A. Bridges, “Automated Behavioral Analysis of
Malware A Case Study of WannaCry Ransomware,” arXiv Prepr.
arXiv1709.08753, pp. 1–9, 2017.

[32] G. Liang, J. Pang, and C. Dai, “A Behavior-Based Malware Variant
Classification Technique,” Int. J. Inf. Educ. Technol., vol. 6, pp.
291–295, 2016.

[33] H. S. Galal, Y. B. Mahdy, and M. A. Atiea, “Behavior-based features
model for malware detection,” J. Comput. Virol. Hacking Tech., vol.
12, no. 2, pp. 59–67, 2016.

[34] Y. Ki, E. Kim, and H. K. Kim, “A novel approach to detect malware
based on API call sequence analysis,” Int. J. Distrib. Sens. Networks,
vol. 2015, no. 6: 659101, pp. 1–9, 2015.

[35] C.-I. Fan, H.-W. Hsiao, C.-H. Chou, and Y.-F. Tseng, “Malware
Detection Systems Based on API Log Data Mining,” in 2015 IEEE
39th Annual Computer Software and Applications Conference, 2015,
pp. 255–260.

[36] D. Song et al., “BitBlaze: A new approach to computer security via
binary analysis,” in Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), 2008, vol. 5352 LNCS, pp. 1–25.

[37] U. Bayer et al., “Dynamic analysis of malicious code,” J Comput
Virol, vol. 2, pp. 67–77, 2006.

[38] M. Egele, T. Scholte, E. Kirda, and C. Kruegel, “A survey on
automated dynamic malware-analysis techniques and tools,” ACM
Comput. Surv., vol. 44, no. 2, pp. 1–42, 2012.

[39] Microsoft Azure, “What is a virtual machine?,” 2018. [Online].
Available: https://azure.microsoft.com/en-in/overview/what-is-a-
virtual-machine/.

[40] M. Sikorski and A. Honig, Practical malware analysis: the hands-on
guide to dissecting malicious software. no starch press. 2012.

[41] X. Chen, J. Andersen, Z. Morley Mao, M. Bailey, and J. Nazario,
“Towards an understanding of anti-virtualization and anti-debugging
behavior in modern malware,” in Proceedings of the International
Conference on Dependable Systems and Networks, 2008, pp. 177–
186.

[42] M. Eskandari, Z. Khorshidpour, and S. Hashemi, “HDM-Analyser: a
hybrid analysis approach based on data mining techniques for
malware detection,” J. Comput. Virol. Hacking Tech., vol. 9, no. 2,
pp. 77–93, 2013.

[43] P. V. Shijo and A. Salim, “Integrated static and dynamic analysis for
malware detection,” in Procedia Computer Science, 2015, vol. 46,
pp. 804–811.

[44] R. Islam, R. Tian, L. M. Batten, and S. Versteeg, “Classification of
malware based on integrated static and dynamic features,” Journal of
Network and Computer Applications, vol. 36, no. 2. pp. 646–656,
2013.

[45] X. Ma, Q. Biao, W. Yang, and J. Jiang, “Using multi-features to
reduce false positive in malware classification,” in Proceedings of
2016 IEEE Information Technology, Networking, Electronic and
Automation Control Conference, ITNEC 2016, 2016, vol. 3, pp. 361–
365.

[46] I. Santos, J. Devesa, F. Brezo, J. Nieves, and P. G. Bringas, “OPEM:
A static-dynamic approach for machine-learning-based malware
detection,” in Advances in Intelligent Systems and Computing, 2013,
vol. 189 AISC, pp. 271–280.

[47] C. Rathnayaka and A. Jamdagni, “An efficient approach for
advanced malware analysis using memory forensic technique,” Proc.
- 16th IEEE Int. Conf. Trust. Secur. Priv. Comput. Commun. 11th
IEEE Int. Conf. Big Data Sci. Eng. 14th IEEE Int. Conf. Embed.
Softw. Syst., pp. 1145–1150, 2017.

[48] J. Stüttgen and M. Cohen, “Anti-forensic resilient memory
acquisition,” in Digital Investigation, 2013, vol. 10, no. SUPPL., pp.
105–115.

[49] C. W. Tien, J. W. Liao, S. C. Chang, and S. Y. Kuo, “Memory
forensics using virtual machine introspection for Malware analysis,”
in 2017 IEEE Conference on Dependable and Secure Computing,
2017, pp. 518–519.

[50] T. Teller and A. Hayon, “Enhancing Automated Malware Analysis
Machines with Memory Analysis Report,” Black Hat USA, 2014.

[51] and K.-W. P. Choi, Sang-Hoon, Yu-Seong Kim, “Toward Semantic
Gap-less Memory Dump for Malware Analysis,” ICNGC Conf., pp.
1–4, 2016.

1670

[52] R. Mosli, R. Li, B. Yuan, and Y. Pan, “A behavior-based approach
for malware detection,” in IFIP Advances in Information and
Communication Technology, 2017, vol. 511, pp. 187–201.

[53] G. Willems, T. Holz, and F. Freiling, “Toward automated dynamic
malware analysis using CWSandbox,” IEEE Security and Privacy,
vol. 5, no. 2. pp. 32–39, 2007.

[54] M. H. Ligh, S. Adair, B. Hartstein, and M. Richard, Malware
analyst’s cookbook and DVD: tools and techniques for fighting
malicious code. Wiley Publishing, 2011.

[55] Adlice Software, “Rootkits hooks,” 2014. [Online]. Available:
https://www.adlice.com/.

[56] S. Kim, J. Park, K. Lee, I. You, and K. Yim, “A Brief Survey on
Rootkit Techniques in Malicious Codes,” J. Internet Serv. Inf. Secur.,
vol. 3, no. 4, pp. 134–147, 2012.

[57] A. Hosseini, “Ten Process Injection Techniques: A Technical Survey
Of Common And Trending Process Injection Techniques,” 2017.
[Online]. Available: https://www.endgame.com/blog/technical-
blog/ten-process-injection-techniques-technical-survey-common-and-
trending-process.

[58] J. Berdajs and Z. Bosnic, “Extending applications using an advanced
approach to DLL injection and API hooking,” Softw. - Pract. Exp.,
vol. 40, no. 7, pp. 567–584, 2010.

[59] J. Butler, J. L. Undercoffer, and J. Pinkston, “Hidden processes: The
implication for intrusion detection,” in IEEE Systems, Man and
Cybernetics Society Information Assurance Workshop, 2003, pp.
116–121.

[60] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau,
“VMM-based hidden process detection and identification using
Lycosid,” in Proceedings of the fourth ACM SIGPLAN/SIGOPS
international conference on Virtual execution environments - VEE
’08, 2008, pp. 91–100.

[61] A. Schuster, “Searching for processes and threads in Microsoft
Windows memory dumps,” Digit. Investig., vol. 3, no. SUPPL., pp.
10–16, 2006.

[62] K. Lee, H. Hwang, K. Kim, and B. N. Noh, “Robust bootstrapping
memory analysis against anti-forensics,” Digit. Investig., vol. 18, pp.
S23–S32, 2016.

[63] A. Moser, C. Kruegel, and E. Kirda, “Limits of static analysis for
malware detection,” in Proceedings - Annual Computer Security
Applications Conference, ACSAC, 2007, pp. 421–430.

[64] J. Okolica and G. Peterson, “A compiled memory analysis tool,” in
IFIP Advances in Information and Communication Technology,
2010, vol. 337 AICT, pp. 195–204.

[65] V. ATLURI, Anoop Chowdary; TRAN, Botnets threat analysis and
detection. Cham, 2017.

[66] Endgame, “Ember,” 2018. [Online]. Available:
https://www.endgame.com/blog/technical-blog/introducing-ember-
open-source-classifier-and-dataset.

[67] Microsoft, “Microsoft Malware Classification Challenge (BIG
2015),” 2015. [Online]. Available:
https://www.kaggle.com/c/malware-classification.

1671

